2 * SRAM allocator for Blackfin on-chip memory
4 * Copyright 2004-2009 Analog Devices Inc.
6 * Licensed under the GPL-2 or later.
9 #include <linux/module.h>
10 #include <linux/kernel.h>
11 #include <linux/types.h>
12 #include <linux/miscdevice.h>
13 #include <linux/ioport.h>
14 #include <linux/fcntl.h>
15 #include <linux/init.h>
16 #include <linux/poll.h>
17 #include <linux/proc_fs.h>
18 #include <linux/seq_file.h>
19 #include <linux/spinlock.h>
20 #include <linux/rtc.h>
21 #include <linux/slab.h>
22 #include <linux/mm_types.h>
24 #include <asm/blackfin.h>
25 #include <asm/mem_map.h>
26 #include "blackfin_sram.h"
28 /* the data structure for L1 scratchpad and DATA SRAM */
33 struct sram_piece
*next
;
36 static DEFINE_PER_CPU_SHARED_ALIGNED(spinlock_t
, l1sram_lock
);
37 static DEFINE_PER_CPU(struct sram_piece
, free_l1_ssram_head
);
38 static DEFINE_PER_CPU(struct sram_piece
, used_l1_ssram_head
);
40 #if L1_DATA_A_LENGTH != 0
41 static DEFINE_PER_CPU(struct sram_piece
, free_l1_data_A_sram_head
);
42 static DEFINE_PER_CPU(struct sram_piece
, used_l1_data_A_sram_head
);
45 #if L1_DATA_B_LENGTH != 0
46 static DEFINE_PER_CPU(struct sram_piece
, free_l1_data_B_sram_head
);
47 static DEFINE_PER_CPU(struct sram_piece
, used_l1_data_B_sram_head
);
50 #if L1_DATA_A_LENGTH || L1_DATA_B_LENGTH
51 static DEFINE_PER_CPU_SHARED_ALIGNED(spinlock_t
, l1_data_sram_lock
);
54 #if L1_CODE_LENGTH != 0
55 static DEFINE_PER_CPU_SHARED_ALIGNED(spinlock_t
, l1_inst_sram_lock
);
56 static DEFINE_PER_CPU(struct sram_piece
, free_l1_inst_sram_head
);
57 static DEFINE_PER_CPU(struct sram_piece
, used_l1_inst_sram_head
);
61 static spinlock_t l2_sram_lock ____cacheline_aligned_in_smp
;
62 static struct sram_piece free_l2_sram_head
, used_l2_sram_head
;
65 static struct kmem_cache
*sram_piece_cache
;
67 /* L1 Scratchpad SRAM initialization function */
68 static void __init
l1sram_init(void)
71 unsigned long reserve
;
76 reserve
= sizeof(struct l1_scratch_task_info
);
79 for (cpu
= 0; cpu
< num_possible_cpus(); ++cpu
) {
80 per_cpu(free_l1_ssram_head
, cpu
).next
=
81 kmem_cache_alloc(sram_piece_cache
, GFP_KERNEL
);
82 if (!per_cpu(free_l1_ssram_head
, cpu
).next
) {
83 printk(KERN_INFO
"Fail to initialize Scratchpad data SRAM.\n");
87 per_cpu(free_l1_ssram_head
, cpu
).next
->paddr
= (void *)get_l1_scratch_start_cpu(cpu
) + reserve
;
88 per_cpu(free_l1_ssram_head
, cpu
).next
->size
= L1_SCRATCH_LENGTH
- reserve
;
89 per_cpu(free_l1_ssram_head
, cpu
).next
->pid
= 0;
90 per_cpu(free_l1_ssram_head
, cpu
).next
->next
= NULL
;
92 per_cpu(used_l1_ssram_head
, cpu
).next
= NULL
;
94 /* mutex initialize */
95 spin_lock_init(&per_cpu(l1sram_lock
, cpu
));
96 printk(KERN_INFO
"Blackfin Scratchpad data SRAM: %d KB\n",
97 L1_SCRATCH_LENGTH
>> 10);
101 static void __init
l1_data_sram_init(void)
103 #if L1_DATA_A_LENGTH != 0 || L1_DATA_B_LENGTH != 0
106 #if L1_DATA_A_LENGTH != 0
107 for (cpu
= 0; cpu
< num_possible_cpus(); ++cpu
) {
108 per_cpu(free_l1_data_A_sram_head
, cpu
).next
=
109 kmem_cache_alloc(sram_piece_cache
, GFP_KERNEL
);
110 if (!per_cpu(free_l1_data_A_sram_head
, cpu
).next
) {
111 printk(KERN_INFO
"Fail to initialize L1 Data A SRAM.\n");
115 per_cpu(free_l1_data_A_sram_head
, cpu
).next
->paddr
=
116 (void *)get_l1_data_a_start_cpu(cpu
) + (_ebss_l1
- _sdata_l1
);
117 per_cpu(free_l1_data_A_sram_head
, cpu
).next
->size
=
118 L1_DATA_A_LENGTH
- (_ebss_l1
- _sdata_l1
);
119 per_cpu(free_l1_data_A_sram_head
, cpu
).next
->pid
= 0;
120 per_cpu(free_l1_data_A_sram_head
, cpu
).next
->next
= NULL
;
122 per_cpu(used_l1_data_A_sram_head
, cpu
).next
= NULL
;
124 printk(KERN_INFO
"Blackfin L1 Data A SRAM: %d KB (%d KB free)\n",
125 L1_DATA_A_LENGTH
>> 10,
126 per_cpu(free_l1_data_A_sram_head
, cpu
).next
->size
>> 10);
129 #if L1_DATA_B_LENGTH != 0
130 for (cpu
= 0; cpu
< num_possible_cpus(); ++cpu
) {
131 per_cpu(free_l1_data_B_sram_head
, cpu
).next
=
132 kmem_cache_alloc(sram_piece_cache
, GFP_KERNEL
);
133 if (!per_cpu(free_l1_data_B_sram_head
, cpu
).next
) {
134 printk(KERN_INFO
"Fail to initialize L1 Data B SRAM.\n");
138 per_cpu(free_l1_data_B_sram_head
, cpu
).next
->paddr
=
139 (void *)get_l1_data_b_start_cpu(cpu
) + (_ebss_b_l1
- _sdata_b_l1
);
140 per_cpu(free_l1_data_B_sram_head
, cpu
).next
->size
=
141 L1_DATA_B_LENGTH
- (_ebss_b_l1
- _sdata_b_l1
);
142 per_cpu(free_l1_data_B_sram_head
, cpu
).next
->pid
= 0;
143 per_cpu(free_l1_data_B_sram_head
, cpu
).next
->next
= NULL
;
145 per_cpu(used_l1_data_B_sram_head
, cpu
).next
= NULL
;
147 printk(KERN_INFO
"Blackfin L1 Data B SRAM: %d KB (%d KB free)\n",
148 L1_DATA_B_LENGTH
>> 10,
149 per_cpu(free_l1_data_B_sram_head
, cpu
).next
->size
>> 10);
150 /* mutex initialize */
154 #if L1_DATA_A_LENGTH != 0 || L1_DATA_B_LENGTH != 0
155 for (cpu
= 0; cpu
< num_possible_cpus(); ++cpu
)
156 spin_lock_init(&per_cpu(l1_data_sram_lock
, cpu
));
160 static void __init
l1_inst_sram_init(void)
162 #if L1_CODE_LENGTH != 0
164 for (cpu
= 0; cpu
< num_possible_cpus(); ++cpu
) {
165 per_cpu(free_l1_inst_sram_head
, cpu
).next
=
166 kmem_cache_alloc(sram_piece_cache
, GFP_KERNEL
);
167 if (!per_cpu(free_l1_inst_sram_head
, cpu
).next
) {
168 printk(KERN_INFO
"Failed to initialize L1 Instruction SRAM\n");
172 per_cpu(free_l1_inst_sram_head
, cpu
).next
->paddr
=
173 (void *)get_l1_code_start_cpu(cpu
) + (_etext_l1
- _stext_l1
);
174 per_cpu(free_l1_inst_sram_head
, cpu
).next
->size
=
175 L1_CODE_LENGTH
- (_etext_l1
- _stext_l1
);
176 per_cpu(free_l1_inst_sram_head
, cpu
).next
->pid
= 0;
177 per_cpu(free_l1_inst_sram_head
, cpu
).next
->next
= NULL
;
179 per_cpu(used_l1_inst_sram_head
, cpu
).next
= NULL
;
181 printk(KERN_INFO
"Blackfin L1 Instruction SRAM: %d KB (%d KB free)\n",
182 L1_CODE_LENGTH
>> 10,
183 per_cpu(free_l1_inst_sram_head
, cpu
).next
->size
>> 10);
185 /* mutex initialize */
186 spin_lock_init(&per_cpu(l1_inst_sram_lock
, cpu
));
192 static irqreturn_t
l2_ecc_err(int irq
, void *dev_id
)
196 printk(KERN_ERR
"L2 ecc error happened\n");
197 status
= bfin_read32(L2CTL0_STAT
);
199 printk(KERN_ERR
"Core channel error type:0x%x, addr:0x%x\n",
200 bfin_read32(L2CTL0_ET0
), bfin_read32(L2CTL0_EADDR0
));
202 printk(KERN_ERR
"System channel error type:0x%x, addr:0x%x\n",
203 bfin_read32(L2CTL0_ET1
), bfin_read32(L2CTL0_EADDR1
));
205 status
= status
>> 8;
207 printk(KERN_ERR
"L2 Bank%d error, addr:0x%x\n",
208 status
, bfin_read32(L2CTL0_ERRADDR0
+ status
));
210 panic("L2 Ecc error");
215 static void __init
l2_sram_init(void)
222 ret
= request_irq(IRQ_L2CTL0_ECC_ERR
, l2_ecc_err
, 0, "l2-ecc-err",
224 if (unlikely(ret
< 0)) {
225 printk(KERN_INFO
"Fail to request l2 ecc error interrupt");
230 free_l2_sram_head
.next
=
231 kmem_cache_alloc(sram_piece_cache
, GFP_KERNEL
);
232 if (!free_l2_sram_head
.next
) {
233 printk(KERN_INFO
"Fail to initialize L2 SRAM.\n");
237 free_l2_sram_head
.next
->paddr
=
238 (void *)L2_START
+ (_ebss_l2
- _stext_l2
);
239 free_l2_sram_head
.next
->size
=
240 L2_LENGTH
- (_ebss_l2
- _stext_l2
);
241 free_l2_sram_head
.next
->pid
= 0;
242 free_l2_sram_head
.next
->next
= NULL
;
244 used_l2_sram_head
.next
= NULL
;
246 printk(KERN_INFO
"Blackfin L2 SRAM: %d KB (%d KB free)\n",
248 free_l2_sram_head
.next
->size
>> 10);
250 /* mutex initialize */
251 spin_lock_init(&l2_sram_lock
);
255 static int __init
bfin_sram_init(void)
257 sram_piece_cache
= kmem_cache_create("sram_piece_cache",
258 sizeof(struct sram_piece
),
259 0, SLAB_PANIC
, NULL
);
268 pure_initcall(bfin_sram_init
);
270 /* SRAM allocate function */
271 static void *_sram_alloc(size_t size
, struct sram_piece
*pfree_head
,
272 struct sram_piece
*pused_head
)
274 struct sram_piece
*pslot
, *plast
, *pavail
;
276 if (size
<= 0 || !pfree_head
|| !pused_head
)
280 size
= (size
+ 3) & ~3;
282 pslot
= pfree_head
->next
;
285 /* search an available piece slot */
286 while (pslot
!= NULL
&& size
> pslot
->size
) {
294 if (pslot
->size
== size
) {
295 plast
->next
= pslot
->next
;
298 /* use atomic so our L1 allocator can be used atomically */
299 pavail
= kmem_cache_alloc(sram_piece_cache
, GFP_ATOMIC
);
304 pavail
->paddr
= pslot
->paddr
;
306 pslot
->paddr
+= size
;
310 pavail
->pid
= current
->pid
;
312 pslot
= pused_head
->next
;
315 /* insert new piece into used piece list !!! */
316 while (pslot
!= NULL
&& pavail
->paddr
< pslot
->paddr
) {
321 pavail
->next
= pslot
;
322 plast
->next
= pavail
;
324 return pavail
->paddr
;
327 /* Allocate the largest available block. */
328 static void *_sram_alloc_max(struct sram_piece
*pfree_head
,
329 struct sram_piece
*pused_head
,
330 unsigned long *psize
)
332 struct sram_piece
*pslot
, *pmax
;
334 if (!pfree_head
|| !pused_head
)
337 pmax
= pslot
= pfree_head
->next
;
339 /* search an available piece slot */
340 while (pslot
!= NULL
) {
341 if (pslot
->size
> pmax
->size
)
351 return _sram_alloc(*psize
, pfree_head
, pused_head
);
354 /* SRAM free function */
355 static int _sram_free(const void *addr
,
356 struct sram_piece
*pfree_head
,
357 struct sram_piece
*pused_head
)
359 struct sram_piece
*pslot
, *plast
, *pavail
;
361 if (!pfree_head
|| !pused_head
)
364 /* search the relevant memory slot */
365 pslot
= pused_head
->next
;
368 /* search an available piece slot */
369 while (pslot
!= NULL
&& pslot
->paddr
!= addr
) {
377 plast
->next
= pslot
->next
;
381 /* insert free pieces back to the free list */
382 pslot
= pfree_head
->next
;
385 while (pslot
!= NULL
&& addr
> pslot
->paddr
) {
390 if (plast
!= pfree_head
&& plast
->paddr
+ plast
->size
== pavail
->paddr
) {
391 plast
->size
+= pavail
->size
;
392 kmem_cache_free(sram_piece_cache
, pavail
);
394 pavail
->next
= plast
->next
;
395 plast
->next
= pavail
;
399 if (pslot
&& plast
->paddr
+ plast
->size
== pslot
->paddr
) {
400 plast
->size
+= pslot
->size
;
401 plast
->next
= pslot
->next
;
402 kmem_cache_free(sram_piece_cache
, pslot
);
408 int sram_free(const void *addr
)
411 #if L1_CODE_LENGTH != 0
412 if (addr
>= (void *)get_l1_code_start()
413 && addr
< (void *)(get_l1_code_start() + L1_CODE_LENGTH
))
414 return l1_inst_sram_free(addr
);
417 #if L1_DATA_A_LENGTH != 0
418 if (addr
>= (void *)get_l1_data_a_start()
419 && addr
< (void *)(get_l1_data_a_start() + L1_DATA_A_LENGTH
))
420 return l1_data_A_sram_free(addr
);
423 #if L1_DATA_B_LENGTH != 0
424 if (addr
>= (void *)get_l1_data_b_start()
425 && addr
< (void *)(get_l1_data_b_start() + L1_DATA_B_LENGTH
))
426 return l1_data_B_sram_free(addr
);
430 if (addr
>= (void *)L2_START
431 && addr
< (void *)(L2_START
+ L2_LENGTH
))
432 return l2_sram_free(addr
);
437 EXPORT_SYMBOL(sram_free
);
439 void *l1_data_A_sram_alloc(size_t size
)
441 #if L1_DATA_A_LENGTH != 0
446 cpu
= smp_processor_id();
447 /* add mutex operation */
448 spin_lock_irqsave(&per_cpu(l1_data_sram_lock
, cpu
), flags
);
450 addr
= _sram_alloc(size
, &per_cpu(free_l1_data_A_sram_head
, cpu
),
451 &per_cpu(used_l1_data_A_sram_head
, cpu
));
453 /* add mutex operation */
454 spin_unlock_irqrestore(&per_cpu(l1_data_sram_lock
, cpu
), flags
);
456 pr_debug("Allocated address in l1_data_A_sram_alloc is 0x%lx+0x%lx\n",
457 (long unsigned int)addr
, size
);
464 EXPORT_SYMBOL(l1_data_A_sram_alloc
);
466 int l1_data_A_sram_free(const void *addr
)
468 #if L1_DATA_A_LENGTH != 0
473 cpu
= smp_processor_id();
474 /* add mutex operation */
475 spin_lock_irqsave(&per_cpu(l1_data_sram_lock
, cpu
), flags
);
477 ret
= _sram_free(addr
, &per_cpu(free_l1_data_A_sram_head
, cpu
),
478 &per_cpu(used_l1_data_A_sram_head
, cpu
));
480 /* add mutex operation */
481 spin_unlock_irqrestore(&per_cpu(l1_data_sram_lock
, cpu
), flags
);
488 EXPORT_SYMBOL(l1_data_A_sram_free
);
490 void *l1_data_B_sram_alloc(size_t size
)
492 #if L1_DATA_B_LENGTH != 0
497 cpu
= smp_processor_id();
498 /* add mutex operation */
499 spin_lock_irqsave(&per_cpu(l1_data_sram_lock
, cpu
), flags
);
501 addr
= _sram_alloc(size
, &per_cpu(free_l1_data_B_sram_head
, cpu
),
502 &per_cpu(used_l1_data_B_sram_head
, cpu
));
504 /* add mutex operation */
505 spin_unlock_irqrestore(&per_cpu(l1_data_sram_lock
, cpu
), flags
);
507 pr_debug("Allocated address in l1_data_B_sram_alloc is 0x%lx+0x%lx\n",
508 (long unsigned int)addr
, size
);
515 EXPORT_SYMBOL(l1_data_B_sram_alloc
);
517 int l1_data_B_sram_free(const void *addr
)
519 #if L1_DATA_B_LENGTH != 0
524 cpu
= smp_processor_id();
525 /* add mutex operation */
526 spin_lock_irqsave(&per_cpu(l1_data_sram_lock
, cpu
), flags
);
528 ret
= _sram_free(addr
, &per_cpu(free_l1_data_B_sram_head
, cpu
),
529 &per_cpu(used_l1_data_B_sram_head
, cpu
));
531 /* add mutex operation */
532 spin_unlock_irqrestore(&per_cpu(l1_data_sram_lock
, cpu
), flags
);
539 EXPORT_SYMBOL(l1_data_B_sram_free
);
541 void *l1_data_sram_alloc(size_t size
)
543 void *addr
= l1_data_A_sram_alloc(size
);
546 addr
= l1_data_B_sram_alloc(size
);
550 EXPORT_SYMBOL(l1_data_sram_alloc
);
552 void *l1_data_sram_zalloc(size_t size
)
554 void *addr
= l1_data_sram_alloc(size
);
557 memset(addr
, 0x00, size
);
561 EXPORT_SYMBOL(l1_data_sram_zalloc
);
563 int l1_data_sram_free(const void *addr
)
566 ret
= l1_data_A_sram_free(addr
);
568 ret
= l1_data_B_sram_free(addr
);
571 EXPORT_SYMBOL(l1_data_sram_free
);
573 void *l1_inst_sram_alloc(size_t size
)
575 #if L1_CODE_LENGTH != 0
580 cpu
= smp_processor_id();
581 /* add mutex operation */
582 spin_lock_irqsave(&per_cpu(l1_inst_sram_lock
, cpu
), flags
);
584 addr
= _sram_alloc(size
, &per_cpu(free_l1_inst_sram_head
, cpu
),
585 &per_cpu(used_l1_inst_sram_head
, cpu
));
587 /* add mutex operation */
588 spin_unlock_irqrestore(&per_cpu(l1_inst_sram_lock
, cpu
), flags
);
590 pr_debug("Allocated address in l1_inst_sram_alloc is 0x%lx+0x%lx\n",
591 (long unsigned int)addr
, size
);
598 EXPORT_SYMBOL(l1_inst_sram_alloc
);
600 int l1_inst_sram_free(const void *addr
)
602 #if L1_CODE_LENGTH != 0
607 cpu
= smp_processor_id();
608 /* add mutex operation */
609 spin_lock_irqsave(&per_cpu(l1_inst_sram_lock
, cpu
), flags
);
611 ret
= _sram_free(addr
, &per_cpu(free_l1_inst_sram_head
, cpu
),
612 &per_cpu(used_l1_inst_sram_head
, cpu
));
614 /* add mutex operation */
615 spin_unlock_irqrestore(&per_cpu(l1_inst_sram_lock
, cpu
), flags
);
622 EXPORT_SYMBOL(l1_inst_sram_free
);
624 /* L1 Scratchpad memory allocate function */
625 void *l1sram_alloc(size_t size
)
631 cpu
= smp_processor_id();
632 /* add mutex operation */
633 spin_lock_irqsave(&per_cpu(l1sram_lock
, cpu
), flags
);
635 addr
= _sram_alloc(size
, &per_cpu(free_l1_ssram_head
, cpu
),
636 &per_cpu(used_l1_ssram_head
, cpu
));
638 /* add mutex operation */
639 spin_unlock_irqrestore(&per_cpu(l1sram_lock
, cpu
), flags
);
644 /* L1 Scratchpad memory allocate function */
645 void *l1sram_alloc_max(size_t *psize
)
651 cpu
= smp_processor_id();
652 /* add mutex operation */
653 spin_lock_irqsave(&per_cpu(l1sram_lock
, cpu
), flags
);
655 addr
= _sram_alloc_max(&per_cpu(free_l1_ssram_head
, cpu
),
656 &per_cpu(used_l1_ssram_head
, cpu
), psize
);
658 /* add mutex operation */
659 spin_unlock_irqrestore(&per_cpu(l1sram_lock
, cpu
), flags
);
664 /* L1 Scratchpad memory free function */
665 int l1sram_free(const void *addr
)
671 cpu
= smp_processor_id();
672 /* add mutex operation */
673 spin_lock_irqsave(&per_cpu(l1sram_lock
, cpu
), flags
);
675 ret
= _sram_free(addr
, &per_cpu(free_l1_ssram_head
, cpu
),
676 &per_cpu(used_l1_ssram_head
, cpu
));
678 /* add mutex operation */
679 spin_unlock_irqrestore(&per_cpu(l1sram_lock
, cpu
), flags
);
684 void *l2_sram_alloc(size_t size
)
690 /* add mutex operation */
691 spin_lock_irqsave(&l2_sram_lock
, flags
);
693 addr
= _sram_alloc(size
, &free_l2_sram_head
,
696 /* add mutex operation */
697 spin_unlock_irqrestore(&l2_sram_lock
, flags
);
699 pr_debug("Allocated address in l2_sram_alloc is 0x%lx+0x%lx\n",
700 (long unsigned int)addr
, size
);
707 EXPORT_SYMBOL(l2_sram_alloc
);
709 void *l2_sram_zalloc(size_t size
)
711 void *addr
= l2_sram_alloc(size
);
714 memset(addr
, 0x00, size
);
718 EXPORT_SYMBOL(l2_sram_zalloc
);
720 int l2_sram_free(const void *addr
)
726 /* add mutex operation */
727 spin_lock_irqsave(&l2_sram_lock
, flags
);
729 ret
= _sram_free(addr
, &free_l2_sram_head
,
732 /* add mutex operation */
733 spin_unlock_irqrestore(&l2_sram_lock
, flags
);
740 EXPORT_SYMBOL(l2_sram_free
);
742 int sram_free_with_lsl(const void *addr
)
744 struct sram_list_struct
*lsl
, **tmp
;
745 struct mm_struct
*mm
= current
->mm
;
748 for (tmp
= &mm
->context
.sram_list
; *tmp
; tmp
= &(*tmp
)->next
)
749 if ((*tmp
)->addr
== addr
) {
751 ret
= sram_free(addr
);
759 EXPORT_SYMBOL(sram_free_with_lsl
);
761 /* Allocate memory and keep in L1 SRAM List (lsl) so that the resources are
762 * tracked. These are designed for userspace so that when a process exits,
763 * we can safely reap their resources.
765 void *sram_alloc_with_lsl(size_t size
, unsigned long flags
)
768 struct sram_list_struct
*lsl
= NULL
;
769 struct mm_struct
*mm
= current
->mm
;
771 lsl
= kzalloc(sizeof(struct sram_list_struct
), GFP_KERNEL
);
775 if (flags
& L1_INST_SRAM
)
776 addr
= l1_inst_sram_alloc(size
);
778 if (addr
== NULL
&& (flags
& L1_DATA_A_SRAM
))
779 addr
= l1_data_A_sram_alloc(size
);
781 if (addr
== NULL
&& (flags
& L1_DATA_B_SRAM
))
782 addr
= l1_data_B_sram_alloc(size
);
784 if (addr
== NULL
&& (flags
& L2_SRAM
))
785 addr
= l2_sram_alloc(size
);
793 lsl
->next
= mm
->context
.sram_list
;
794 mm
->context
.sram_list
= lsl
;
797 EXPORT_SYMBOL(sram_alloc_with_lsl
);
799 #ifdef CONFIG_PROC_FS
800 /* Once we get a real allocator, we'll throw all of this away.
801 * Until then, we need some sort of visibility into the L1 alloc.
803 /* Need to keep line of output the same. Currently, that is 44 bytes
804 * (including newline).
806 static int _sram_proc_show(struct seq_file
*m
, const char *desc
,
807 struct sram_piece
*pfree_head
,
808 struct sram_piece
*pused_head
)
810 struct sram_piece
*pslot
;
812 if (!pfree_head
|| !pused_head
)
815 seq_printf(m
, "--- SRAM %-14s Size PID State \n", desc
);
817 /* search the relevant memory slot */
818 pslot
= pused_head
->next
;
820 while (pslot
!= NULL
) {
821 seq_printf(m
, "%p-%p %10i %5i %-10s\n",
822 pslot
->paddr
, pslot
->paddr
+ pslot
->size
,
823 pslot
->size
, pslot
->pid
, "ALLOCATED");
828 pslot
= pfree_head
->next
;
830 while (pslot
!= NULL
) {
831 seq_printf(m
, "%p-%p %10i %5i %-10s\n",
832 pslot
->paddr
, pslot
->paddr
+ pslot
->size
,
833 pslot
->size
, pslot
->pid
, "FREE");
840 static int sram_proc_show(struct seq_file
*m
, void *v
)
844 for (cpu
= 0; cpu
< num_possible_cpus(); ++cpu
) {
845 if (_sram_proc_show(m
, "Scratchpad",
846 &per_cpu(free_l1_ssram_head
, cpu
), &per_cpu(used_l1_ssram_head
, cpu
)))
848 #if L1_DATA_A_LENGTH != 0
849 if (_sram_proc_show(m
, "L1 Data A",
850 &per_cpu(free_l1_data_A_sram_head
, cpu
),
851 &per_cpu(used_l1_data_A_sram_head
, cpu
)))
854 #if L1_DATA_B_LENGTH != 0
855 if (_sram_proc_show(m
, "L1 Data B",
856 &per_cpu(free_l1_data_B_sram_head
, cpu
),
857 &per_cpu(used_l1_data_B_sram_head
, cpu
)))
860 #if L1_CODE_LENGTH != 0
861 if (_sram_proc_show(m
, "L1 Instruction",
862 &per_cpu(free_l1_inst_sram_head
, cpu
),
863 &per_cpu(used_l1_inst_sram_head
, cpu
)))
868 if (_sram_proc_show(m
, "L2", &free_l2_sram_head
, &used_l2_sram_head
))
875 static int sram_proc_open(struct inode
*inode
, struct file
*file
)
877 return single_open(file
, sram_proc_show
, NULL
);
880 static const struct file_operations sram_proc_ops
= {
881 .open
= sram_proc_open
,
884 .release
= single_release
,
887 static int __init
sram_proc_init(void)
889 struct proc_dir_entry
*ptr
;
891 ptr
= proc_create("sram", S_IRUGO
, NULL
, &sram_proc_ops
);
893 printk(KERN_WARNING
"unable to create /proc/sram\n");
898 late_initcall(sram_proc_init
);