1 // SPDX-License-Identifier: GPL-2.0
3 * Memory arbiter functions. Allocates bandwidth through the
4 * arbiter and sets up arbiter breakpoints.
6 * The algorithm first assigns slots to the clients that has specified
7 * bandwidth (e.g. ethernet) and then the remaining slots are divided
8 * on all the active clients.
10 * Copyright (c) 2004-2007 Axis Communications AB.
13 #include <hwregs/reg_map.h>
14 #include <hwregs/reg_rdwr.h>
15 #include <hwregs/marb_defs.h>
17 #include <hwregs/intr_vect.h>
18 #include <linux/interrupt.h>
19 #include <linux/signal.h>
20 #include <linux/errno.h>
21 #include <linux/spinlock.h>
23 #include <asm/irq_regs.h>
25 struct crisv32_watch_entry
{
26 unsigned long instance
;
33 #define NUMBER_OF_BP 4
34 #define NBR_OF_CLIENTS 14
35 #define NBR_OF_SLOTS 64
36 #define SDRAM_BANDWIDTH 100000000 /* Some kind of expected value */
37 #define INTMEM_BANDWIDTH 400000000
38 #define NBR_OF_REGIONS 2
40 static struct crisv32_watch_entry watches
[NUMBER_OF_BP
] = {
47 static u8 requested_slots
[NBR_OF_REGIONS
][NBR_OF_CLIENTS
];
48 static u8 active_clients
[NBR_OF_REGIONS
][NBR_OF_CLIENTS
];
49 static int max_bandwidth
[NBR_OF_REGIONS
] =
50 { SDRAM_BANDWIDTH
, INTMEM_BANDWIDTH
};
52 DEFINE_SPINLOCK(arbiter_lock
);
54 static irqreturn_t
crisv32_arbiter_irq(int irq
, void *dev_id
);
57 * "I'm the arbiter, I know the score.
58 * From square one I'll be watching all 64."
59 * (memory arbiter slots, that is)
62 * Program the memory arbiter slots for "region" according to what's
63 * in requested_slots[] and active_clients[], while minimizing
64 * latency. A caller may pass a non-zero positive amount for
65 * "unused_slots", which must then be the unallocated, remaining
66 * number of slots, free to hand out to any client.
69 static void crisv32_arbiter_config(int region
, int unused_slots
)
76 * This vector corresponds to the hardware arbiter slots (see
77 * the hardware documentation for semantics). We initialize
78 * each slot with a suitable sentinel value outside the valid
79 * range {0 .. NBR_OF_CLIENTS - 1} and replace them with
80 * client indexes. Then it's fed to the hardware.
84 for (slot
= 0; slot
< NBR_OF_SLOTS
; slot
++)
87 for (client
= 0; client
< NBR_OF_CLIENTS
; client
++) {
89 /* Allocate the requested non-zero number of slots, but
90 * also give clients with zero-requests one slot each
91 * while stocks last. We do the latter here, in client
92 * order. This makes sure zero-request clients are the
93 * first to get to any spare slots, else those slots
94 * could, when bandwidth is allocated close to the limit,
95 * all be allocated to low-index non-zero-request clients
96 * in the default-fill loop below. Another positive but
97 * secondary effect is a somewhat better spread of the
98 * zero-bandwidth clients in the vector, avoiding some of
99 * the latency that could otherwise be caused by the
100 * partitioning of non-zero-bandwidth clients at low
101 * indexes and zero-bandwidth clients at high
102 * indexes. (Note that this spreading can only affect the
103 * unallocated bandwidth.) All the above only matters for
104 * memory-intensive situations, of course.
106 if (!requested_slots
[region
][client
]) {
108 * Skip inactive clients. Also skip zero-slot
109 * allocations in this pass when there are no known
112 if (!active_clients
[region
][client
]
113 || unused_slots
<= 0)
118 /* Only allocate one slot for this client. */
119 interval
= NBR_OF_SLOTS
;
122 NBR_OF_SLOTS
/ requested_slots
[region
][client
];
125 while (pos
< NBR_OF_SLOTS
) {
136 for (slot
= 0; slot
< NBR_OF_SLOTS
; slot
++) {
138 * Allocate remaining slots in round-robin
139 * client-number order for active clients. For this
140 * pass, we ignore requested bandwidth and previous
145 while (!active_clients
[region
][client
]) {
146 client
= (client
+ 1) % NBR_OF_CLIENTS
;
151 client
= (client
+ 1) % NBR_OF_CLIENTS
;
153 if (region
== EXT_REGION
)
154 REG_WR_INT_VECT(marb
, regi_marb
, rw_ext_slots
, slot
,
156 else if (region
== INT_REGION
)
157 REG_WR_INT_VECT(marb
, regi_marb
, rw_int_slots
, slot
,
162 extern char _stext
[], _etext
[];
164 static void crisv32_arbiter_init(void)
166 static int initialized
;
174 * CPU caches are always set to active, but with zero
175 * bandwidth allocated. It should be ok to allocate zero
176 * bandwidth for the caches, because DMA for other channels
177 * will supposedly finish, once their programmed amount is
178 * done, and then the caches will get access according to the
179 * "fixed scheme" for unclaimed slots. Though, if for some
180 * use-case somewhere, there's a maximum CPU latency for
181 * e.g. some interrupt, we have to start allocating specific
182 * bandwidth for the CPU caches too.
184 active_clients
[EXT_REGION
][10] = active_clients
[EXT_REGION
][11] = 1;
185 crisv32_arbiter_config(EXT_REGION
, 0);
186 crisv32_arbiter_config(INT_REGION
, 0);
188 if (request_irq(MEMARB_INTR_VECT
, crisv32_arbiter_irq
, 0,
190 printk(KERN_ERR
"Couldn't allocate arbiter IRQ\n");
192 #ifndef CONFIG_ETRAX_KGDB
193 /* Global watch for writes to kernel text segment. */
194 crisv32_arbiter_watch(virt_to_phys(_stext
), _etext
- _stext
,
195 arbiter_all_clients
, arbiter_all_write
, NULL
);
199 /* Main entry for bandwidth allocation. */
201 int crisv32_arbiter_allocate_bandwidth(int client
, int region
,
202 unsigned long bandwidth
)
205 int total_assigned
= 0;
206 int total_clients
= 0;
209 crisv32_arbiter_init();
211 for (i
= 0; i
< NBR_OF_CLIENTS
; i
++) {
212 total_assigned
+= requested_slots
[region
][i
];
213 total_clients
+= active_clients
[region
][i
];
216 /* Avoid division by 0 for 0-bandwidth requests. */
218 ? 0 : NBR_OF_SLOTS
/ (max_bandwidth
[region
] / bandwidth
);
221 * We make sure that there are enough slots only for non-zero
222 * requests. Requesting 0 bandwidth *may* allocate slots,
223 * though if all bandwidth is allocated, such a client won't
224 * get any and will have to rely on getting memory access
225 * according to the fixed scheme that's the default when one
226 * of the slot-allocated clients doesn't claim their slot.
228 if (total_assigned
+ req
> NBR_OF_SLOTS
)
231 active_clients
[region
][client
] = 1;
232 requested_slots
[region
][client
] = req
;
233 crisv32_arbiter_config(region
, NBR_OF_SLOTS
- total_assigned
);
239 * Main entry for bandwidth deallocation.
241 * Strictly speaking, for a somewhat constant set of clients where
242 * each client gets a constant bandwidth and is just enabled or
243 * disabled (somewhat dynamically), no action is necessary here to
244 * avoid starvation for non-zero-allocation clients, as the allocated
245 * slots will just be unused. However, handing out those unused slots
246 * to active clients avoids needless latency if the "fixed scheme"
247 * would give unclaimed slots to an eager low-index client.
250 void crisv32_arbiter_deallocate_bandwidth(int client
, int region
)
253 int total_assigned
= 0;
255 requested_slots
[region
][client
] = 0;
256 active_clients
[region
][client
] = 0;
258 for (i
= 0; i
< NBR_OF_CLIENTS
; i
++)
259 total_assigned
+= requested_slots
[region
][i
];
261 crisv32_arbiter_config(region
, NBR_OF_SLOTS
- total_assigned
);
264 int crisv32_arbiter_watch(unsigned long start
, unsigned long size
,
265 unsigned long clients
, unsigned long accesses
,
270 crisv32_arbiter_init();
272 if (start
> 0x80000000) {
273 printk(KERN_ERR
"Arbiter: %lX doesn't look like a "
274 "physical address", start
);
278 spin_lock(&arbiter_lock
);
280 for (i
= 0; i
< NUMBER_OF_BP
; i
++) {
281 if (!watches
[i
].used
) {
282 reg_marb_rw_intr_mask intr_mask
=
283 REG_RD(marb
, regi_marb
, rw_intr_mask
);
286 watches
[i
].start
= start
;
287 watches
[i
].end
= start
+ size
;
290 REG_WR_INT(marb_bp
, watches
[i
].instance
, rw_first_addr
,
292 REG_WR_INT(marb_bp
, watches
[i
].instance
, rw_last_addr
,
294 REG_WR_INT(marb_bp
, watches
[i
].instance
, rw_op
,
296 REG_WR_INT(marb_bp
, watches
[i
].instance
, rw_clients
,
300 intr_mask
.bp0
= regk_marb_yes
;
302 intr_mask
.bp1
= regk_marb_yes
;
304 intr_mask
.bp2
= regk_marb_yes
;
306 intr_mask
.bp3
= regk_marb_yes
;
308 REG_WR(marb
, regi_marb
, rw_intr_mask
, intr_mask
);
309 spin_unlock(&arbiter_lock
);
314 spin_unlock(&arbiter_lock
);
318 int crisv32_arbiter_unwatch(int id
)
320 reg_marb_rw_intr_mask intr_mask
= REG_RD(marb
, regi_marb
, rw_intr_mask
);
322 crisv32_arbiter_init();
324 spin_lock(&arbiter_lock
);
326 if ((id
< 0) || (id
>= NUMBER_OF_BP
) || (!watches
[id
].used
)) {
327 spin_unlock(&arbiter_lock
);
331 memset(&watches
[id
], 0, sizeof(struct crisv32_watch_entry
));
334 intr_mask
.bp0
= regk_marb_no
;
336 intr_mask
.bp1
= regk_marb_no
;
338 intr_mask
.bp2
= regk_marb_no
;
340 intr_mask
.bp3
= regk_marb_no
;
342 REG_WR(marb
, regi_marb
, rw_intr_mask
, intr_mask
);
344 spin_unlock(&arbiter_lock
);
348 extern void show_registers(struct pt_regs
*regs
);
350 static irqreturn_t
crisv32_arbiter_irq(int irq
, void *dev_id
)
352 reg_marb_r_masked_intr masked_intr
=
353 REG_RD(marb
, regi_marb
, r_masked_intr
);
354 reg_marb_bp_r_brk_clients r_clients
;
355 reg_marb_bp_r_brk_addr r_addr
;
356 reg_marb_bp_r_brk_op r_op
;
357 reg_marb_bp_r_brk_first_client r_first
;
358 reg_marb_bp_r_brk_size r_size
;
359 reg_marb_bp_rw_ack ack
= { 0 };
360 reg_marb_rw_ack_intr ack_intr
= {
361 .bp0
= 1, .bp1
= 1, .bp2
= 1, .bp3
= 1
363 struct crisv32_watch_entry
*watch
;
365 if (masked_intr
.bp0
) {
367 ack_intr
.bp0
= regk_marb_yes
;
368 } else if (masked_intr
.bp1
) {
370 ack_intr
.bp1
= regk_marb_yes
;
371 } else if (masked_intr
.bp2
) {
373 ack_intr
.bp2
= regk_marb_yes
;
374 } else if (masked_intr
.bp3
) {
376 ack_intr
.bp3
= regk_marb_yes
;
381 /* Retrieve all useful information and print it. */
382 r_clients
= REG_RD(marb_bp
, watch
->instance
, r_brk_clients
);
383 r_addr
= REG_RD(marb_bp
, watch
->instance
, r_brk_addr
);
384 r_op
= REG_RD(marb_bp
, watch
->instance
, r_brk_op
);
385 r_first
= REG_RD(marb_bp
, watch
->instance
, r_brk_first_client
);
386 r_size
= REG_RD(marb_bp
, watch
->instance
, r_brk_size
);
388 printk(KERN_INFO
"Arbiter IRQ\n");
389 printk(KERN_INFO
"Clients %X addr %X op %X first %X size %X\n",
390 REG_TYPE_CONV(int, reg_marb_bp_r_brk_clients
, r_clients
),
391 REG_TYPE_CONV(int, reg_marb_bp_r_brk_addr
, r_addr
),
392 REG_TYPE_CONV(int, reg_marb_bp_r_brk_op
, r_op
),
393 REG_TYPE_CONV(int, reg_marb_bp_r_brk_first_client
, r_first
),
394 REG_TYPE_CONV(int, reg_marb_bp_r_brk_size
, r_size
));
396 REG_WR(marb_bp
, watch
->instance
, rw_ack
, ack
);
397 REG_WR(marb
, regi_marb
, rw_ack_intr
, ack_intr
);
399 printk(KERN_INFO
"IRQ occurred at %lX\n", get_irq_regs()->erp
);