Merge tag 'for_linus' of git://git.kernel.org/pub/scm/linux/kernel/git/mst/vhost
[cris-mirror.git] / arch / cris / include / asm / pgtable.h
blob03fca401e23ce36b36b00a433df7d39da9f526bf
1 /* SPDX-License-Identifier: GPL-2.0 */
2 /*
3 * CRIS pgtable.h - macros and functions to manipulate page tables.
4 */
6 #ifndef _CRIS_PGTABLE_H
7 #define _CRIS_PGTABLE_H
9 #include <asm/page.h>
10 #define __ARCH_USE_5LEVEL_HACK
11 #include <asm-generic/pgtable-nopmd.h>
13 #ifndef __ASSEMBLY__
14 #include <linux/sched/mm.h>
15 #include <asm/mmu.h>
16 #endif
17 #include <arch/pgtable.h>
20 * The Linux memory management assumes a three-level page table setup. On
21 * CRIS, we use that, but "fold" the mid level into the top-level page
22 * table. Since the MMU TLB is software loaded through an interrupt, it
23 * supports any page table structure, so we could have used a three-level
24 * setup, but for the amounts of memory we normally use, a two-level is
25 * probably more efficient.
27 * This file contains the functions and defines necessary to modify and use
28 * the CRIS page table tree.
30 #ifndef __ASSEMBLY__
31 extern void paging_init(void);
32 #endif
34 /* Certain architectures need to do special things when pte's
35 * within a page table are directly modified. Thus, the following
36 * hook is made available.
38 #define set_pte(pteptr, pteval) ((*(pteptr)) = (pteval))
39 #define set_pte_at(mm,addr,ptep,pteval) set_pte(ptep,pteval)
42 * (pmds are folded into pgds so this doesn't get actually called,
43 * but the define is needed for a generic inline function.)
45 #define set_pmd(pmdptr, pmdval) (*(pmdptr) = pmdval)
46 #define set_pgu(pudptr, pudval) (*(pudptr) = pudval)
48 /* PGDIR_SHIFT determines the size of the area a second-level page table can
49 * map. It is equal to the page size times the number of PTE's that fit in
50 * a PMD page. A PTE is 4-bytes in CRIS. Hence the following number.
53 #define PGDIR_SHIFT (PAGE_SHIFT + (PAGE_SHIFT-2))
54 #define PGDIR_SIZE (1UL << PGDIR_SHIFT)
55 #define PGDIR_MASK (~(PGDIR_SIZE-1))
58 * entries per page directory level: we use a two-level, so
59 * we don't really have any PMD directory physically.
60 * pointers are 4 bytes so we can use the page size and
61 * divide it by 4 (shift by 2).
63 #define PTRS_PER_PTE (1UL << (PAGE_SHIFT-2))
64 #define PTRS_PER_PGD (1UL << (PAGE_SHIFT-2))
66 /* calculate how many PGD entries a user-level program can use
67 * the first mappable virtual address is 0
68 * (TASK_SIZE is the maximum virtual address space)
71 #define USER_PTRS_PER_PGD (TASK_SIZE/PGDIR_SIZE)
72 #define FIRST_USER_ADDRESS 0UL
74 /* zero page used for uninitialized stuff */
75 #ifndef __ASSEMBLY__
76 extern unsigned long empty_zero_page;
77 #define ZERO_PAGE(vaddr) (virt_to_page(empty_zero_page))
78 #endif
80 /* number of bits that fit into a memory pointer */
81 #define BITS_PER_PTR (8*sizeof(unsigned long))
83 /* to align the pointer to a pointer address */
84 #define PTR_MASK (~(sizeof(void*)-1))
86 /* sizeof(void*)==1<<SIZEOF_PTR_LOG2 */
87 /* 64-bit machines, beware! SRB. */
88 #define SIZEOF_PTR_LOG2 2
90 /* to find an entry in a page-table */
91 #define PAGE_PTR(address) \
92 ((unsigned long)(address)>>(PAGE_SHIFT-SIZEOF_PTR_LOG2)&PTR_MASK&~PAGE_MASK)
94 /* to set the page-dir */
95 #define SET_PAGE_DIR(tsk,pgdir)
97 #define pte_none(x) (!pte_val(x))
98 #define pte_present(x) (pte_val(x) & _PAGE_PRESENT)
99 #define pte_clear(mm,addr,xp) do { pte_val(*(xp)) = 0; } while (0)
101 #define pmd_none(x) (!pmd_val(x))
102 /* by removing the _PAGE_KERNEL bit from the comparison, the same pmd_bad
103 * works for both _PAGE_TABLE and _KERNPG_TABLE pmd entries.
105 #define pmd_bad(x) ((pmd_val(x) & (~PAGE_MASK & ~_PAGE_KERNEL)) != _PAGE_TABLE)
106 #define pmd_present(x) (pmd_val(x) & _PAGE_PRESENT)
107 #define pmd_clear(xp) do { pmd_val(*(xp)) = 0; } while (0)
109 #ifndef __ASSEMBLY__
112 * The following only work if pte_present() is true.
113 * Undefined behaviour if not..
116 static inline int pte_write(pte_t pte) { return pte_val(pte) & _PAGE_WRITE; }
117 static inline int pte_dirty(pte_t pte) { return pte_val(pte) & _PAGE_MODIFIED; }
118 static inline int pte_young(pte_t pte) { return pte_val(pte) & _PAGE_ACCESSED; }
119 static inline int pte_special(pte_t pte) { return 0; }
121 static inline pte_t pte_wrprotect(pte_t pte)
123 pte_val(pte) &= ~(_PAGE_WRITE | _PAGE_SILENT_WRITE);
124 return pte;
127 static inline pte_t pte_mkclean(pte_t pte)
129 pte_val(pte) &= ~(_PAGE_MODIFIED | _PAGE_SILENT_WRITE);
130 return pte;
133 static inline pte_t pte_mkold(pte_t pte)
135 pte_val(pte) &= ~(_PAGE_ACCESSED | _PAGE_SILENT_READ);
136 return pte;
139 static inline pte_t pte_mkwrite(pte_t pte)
141 pte_val(pte) |= _PAGE_WRITE;
142 if (pte_val(pte) & _PAGE_MODIFIED)
143 pte_val(pte) |= _PAGE_SILENT_WRITE;
144 return pte;
147 static inline pte_t pte_mkdirty(pte_t pte)
149 pte_val(pte) |= _PAGE_MODIFIED;
150 if (pte_val(pte) & _PAGE_WRITE)
151 pte_val(pte) |= _PAGE_SILENT_WRITE;
152 return pte;
155 static inline pte_t pte_mkyoung(pte_t pte)
157 pte_val(pte) |= _PAGE_ACCESSED;
158 if (pte_val(pte) & _PAGE_READ)
160 pte_val(pte) |= _PAGE_SILENT_READ;
161 if ((pte_val(pte) & (_PAGE_WRITE | _PAGE_MODIFIED)) ==
162 (_PAGE_WRITE | _PAGE_MODIFIED))
163 pte_val(pte) |= _PAGE_SILENT_WRITE;
165 return pte;
167 static inline pte_t pte_mkspecial(pte_t pte) { return pte; }
170 * Conversion functions: convert a page and protection to a page entry,
171 * and a page entry and page directory to the page they refer to.
174 /* What actually goes as arguments to the various functions is less than
175 * obvious, but a rule of thumb is that struct page's goes as struct page *,
176 * really physical DRAM addresses are unsigned long's, and DRAM "virtual"
177 * addresses (the 0xc0xxxxxx's) goes as void *'s.
180 static inline pte_t __mk_pte(void * page, pgprot_t pgprot)
182 pte_t pte;
183 /* the PTE needs a physical address */
184 pte_val(pte) = __pa(page) | pgprot_val(pgprot);
185 return pte;
188 #define mk_pte(page, pgprot) __mk_pte(page_address(page), (pgprot))
190 #define mk_pte_phys(physpage, pgprot) \
191 ({ \
192 pte_t __pte; \
194 pte_val(__pte) = (physpage) + pgprot_val(pgprot); \
195 __pte; \
198 static inline pte_t pte_modify(pte_t pte, pgprot_t newprot)
199 { pte_val(pte) = (pte_val(pte) & _PAGE_CHG_MASK) | pgprot_val(newprot); return pte; }
201 #define pgprot_noncached(prot) __pgprot((pgprot_val(prot) | _PAGE_NO_CACHE))
204 /* pte_val refers to a page in the 0x4xxxxxxx physical DRAM interval
205 * __pte_page(pte_val) refers to the "virtual" DRAM interval
206 * pte_pagenr refers to the page-number counted starting from the virtual DRAM start
209 static inline unsigned long __pte_page(pte_t pte)
211 /* the PTE contains a physical address */
212 return (unsigned long)__va(pte_val(pte) & PAGE_MASK);
215 #define pte_pagenr(pte) ((__pte_page(pte) - PAGE_OFFSET) >> PAGE_SHIFT)
217 /* permanent address of a page */
219 #define __page_address(page) (PAGE_OFFSET + (((page) - mem_map) << PAGE_SHIFT))
220 #define pte_page(pte) (mem_map+pte_pagenr(pte))
222 /* only the pte's themselves need to point to physical DRAM (see above)
223 * the pagetable links are purely handled within the kernel SW and thus
224 * don't need the __pa and __va transformations.
227 static inline void pmd_set(pmd_t * pmdp, pte_t * ptep)
228 { pmd_val(*pmdp) = _PAGE_TABLE | (unsigned long) ptep; }
230 #define pmd_page(pmd) (pfn_to_page(pmd_val(pmd) >> PAGE_SHIFT))
231 #define pmd_page_vaddr(pmd) ((unsigned long) __va(pmd_val(pmd) & PAGE_MASK))
233 /* to find an entry in a page-table-directory. */
234 #define pgd_index(address) (((address) >> PGDIR_SHIFT) & (PTRS_PER_PGD-1))
236 /* to find an entry in a page-table-directory */
237 static inline pgd_t * pgd_offset(const struct mm_struct *mm, unsigned long address)
239 return mm->pgd + pgd_index(address);
242 /* to find an entry in a kernel page-table-directory */
243 #define pgd_offset_k(address) pgd_offset(&init_mm, address)
245 /* Find an entry in the third-level page table.. */
246 #define __pte_offset(address) \
247 (((address) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1))
248 #define pte_offset_kernel(dir, address) \
249 ((pte_t *) pmd_page_vaddr(*(dir)) + __pte_offset(address))
250 #define pte_offset_map(dir, address) \
251 ((pte_t *)page_address(pmd_page(*(dir))) + __pte_offset(address))
253 #define pte_unmap(pte) do { } while (0)
254 #define pte_pfn(x) ((unsigned long)(__va((x).pte)) >> PAGE_SHIFT)
255 #define pfn_pte(pfn, prot) __pte(((pfn) << PAGE_SHIFT) | pgprot_val(prot))
257 #define pte_ERROR(e) \
258 printk("%s:%d: bad pte %p(%08lx).\n", __FILE__, __LINE__, &(e), pte_val(e))
259 #define pgd_ERROR(e) \
260 printk("%s:%d: bad pgd %p(%08lx).\n", __FILE__, __LINE__, &(e), pgd_val(e))
263 extern pgd_t swapper_pg_dir[PTRS_PER_PGD]; /* defined in head.S */
266 * CRIS doesn't have any external MMU info: the kernel page
267 * tables contain all the necessary information.
269 * Actually I am not sure on what this could be used for.
271 static inline void update_mmu_cache(struct vm_area_struct * vma,
272 unsigned long address, pte_t *ptep)
276 /* Encode and de-code a swap entry (must be !pte_none(e) && !pte_present(e)) */
277 /* Since the PAGE_PRESENT bit is bit 4, we can use the bits above */
279 #define __swp_type(x) (((x).val >> 5) & 0x7f)
280 #define __swp_offset(x) ((x).val >> 12)
281 #define __swp_entry(type, offset) ((swp_entry_t) { ((type) << 5) | ((offset) << 12) })
282 #define __pte_to_swp_entry(pte) ((swp_entry_t) { pte_val(pte) })
283 #define __swp_entry_to_pte(x) ((pte_t) { (x).val })
285 #define kern_addr_valid(addr) (1)
287 #include <asm-generic/pgtable.h>
290 * No page table caches to initialise
292 #define pgtable_cache_init() do { } while (0)
294 typedef pte_t *pte_addr_t;
296 #endif /* __ASSEMBLY__ */
297 #endif /* _CRIS_PGTABLE_H */