Merge tag 'for_linus' of git://git.kernel.org/pub/scm/linux/kernel/git/mst/vhost
[cris-mirror.git] / arch / mips / kernel / traps.c
blob0ae4a731cc121b6e002894067bd61f220735b79f
1 /*
2 * This file is subject to the terms and conditions of the GNU General Public
3 * License. See the file "COPYING" in the main directory of this archive
4 * for more details.
6 * Copyright (C) 1994 - 1999, 2000, 01, 06 Ralf Baechle
7 * Copyright (C) 1995, 1996 Paul M. Antoine
8 * Copyright (C) 1998 Ulf Carlsson
9 * Copyright (C) 1999 Silicon Graphics, Inc.
10 * Kevin D. Kissell, kevink@mips.com and Carsten Langgaard, carstenl@mips.com
11 * Copyright (C) 2002, 2003, 2004, 2005, 2007 Maciej W. Rozycki
12 * Copyright (C) 2000, 2001, 2012 MIPS Technologies, Inc. All rights reserved.
13 * Copyright (C) 2014, Imagination Technologies Ltd.
15 #include <linux/bitops.h>
16 #include <linux/bug.h>
17 #include <linux/compiler.h>
18 #include <linux/context_tracking.h>
19 #include <linux/cpu_pm.h>
20 #include <linux/kexec.h>
21 #include <linux/init.h>
22 #include <linux/kernel.h>
23 #include <linux/module.h>
24 #include <linux/extable.h>
25 #include <linux/mm.h>
26 #include <linux/sched/mm.h>
27 #include <linux/sched/debug.h>
28 #include <linux/smp.h>
29 #include <linux/spinlock.h>
30 #include <linux/kallsyms.h>
31 #include <linux/bootmem.h>
32 #include <linux/interrupt.h>
33 #include <linux/ptrace.h>
34 #include <linux/kgdb.h>
35 #include <linux/kdebug.h>
36 #include <linux/kprobes.h>
37 #include <linux/notifier.h>
38 #include <linux/kdb.h>
39 #include <linux/irq.h>
40 #include <linux/perf_event.h>
42 #include <asm/addrspace.h>
43 #include <asm/bootinfo.h>
44 #include <asm/branch.h>
45 #include <asm/break.h>
46 #include <asm/cop2.h>
47 #include <asm/cpu.h>
48 #include <asm/cpu-type.h>
49 #include <asm/dsp.h>
50 #include <asm/fpu.h>
51 #include <asm/fpu_emulator.h>
52 #include <asm/idle.h>
53 #include <asm/mips-cps.h>
54 #include <asm/mips-r2-to-r6-emul.h>
55 #include <asm/mipsregs.h>
56 #include <asm/mipsmtregs.h>
57 #include <asm/module.h>
58 #include <asm/msa.h>
59 #include <asm/pgtable.h>
60 #include <asm/ptrace.h>
61 #include <asm/sections.h>
62 #include <asm/siginfo.h>
63 #include <asm/tlbdebug.h>
64 #include <asm/traps.h>
65 #include <linux/uaccess.h>
66 #include <asm/watch.h>
67 #include <asm/mmu_context.h>
68 #include <asm/types.h>
69 #include <asm/stacktrace.h>
70 #include <asm/uasm.h>
72 extern void check_wait(void);
73 extern asmlinkage void rollback_handle_int(void);
74 extern asmlinkage void handle_int(void);
75 extern u32 handle_tlbl[];
76 extern u32 handle_tlbs[];
77 extern u32 handle_tlbm[];
78 extern asmlinkage void handle_adel(void);
79 extern asmlinkage void handle_ades(void);
80 extern asmlinkage void handle_ibe(void);
81 extern asmlinkage void handle_dbe(void);
82 extern asmlinkage void handle_sys(void);
83 extern asmlinkage void handle_bp(void);
84 extern asmlinkage void handle_ri(void);
85 extern asmlinkage void handle_ri_rdhwr_tlbp(void);
86 extern asmlinkage void handle_ri_rdhwr(void);
87 extern asmlinkage void handle_cpu(void);
88 extern asmlinkage void handle_ov(void);
89 extern asmlinkage void handle_tr(void);
90 extern asmlinkage void handle_msa_fpe(void);
91 extern asmlinkage void handle_fpe(void);
92 extern asmlinkage void handle_ftlb(void);
93 extern asmlinkage void handle_msa(void);
94 extern asmlinkage void handle_mdmx(void);
95 extern asmlinkage void handle_watch(void);
96 extern asmlinkage void handle_mt(void);
97 extern asmlinkage void handle_dsp(void);
98 extern asmlinkage void handle_mcheck(void);
99 extern asmlinkage void handle_reserved(void);
100 extern void tlb_do_page_fault_0(void);
102 void (*board_be_init)(void);
103 int (*board_be_handler)(struct pt_regs *regs, int is_fixup);
104 void (*board_nmi_handler_setup)(void);
105 void (*board_ejtag_handler_setup)(void);
106 void (*board_bind_eic_interrupt)(int irq, int regset);
107 void (*board_ebase_setup)(void);
108 void(*board_cache_error_setup)(void);
110 static void show_raw_backtrace(unsigned long reg29)
112 unsigned long *sp = (unsigned long *)(reg29 & ~3);
113 unsigned long addr;
115 printk("Call Trace:");
116 #ifdef CONFIG_KALLSYMS
117 printk("\n");
118 #endif
119 while (!kstack_end(sp)) {
120 unsigned long __user *p =
121 (unsigned long __user *)(unsigned long)sp++;
122 if (__get_user(addr, p)) {
123 printk(" (Bad stack address)");
124 break;
126 if (__kernel_text_address(addr))
127 print_ip_sym(addr);
129 printk("\n");
132 #ifdef CONFIG_KALLSYMS
133 int raw_show_trace;
134 static int __init set_raw_show_trace(char *str)
136 raw_show_trace = 1;
137 return 1;
139 __setup("raw_show_trace", set_raw_show_trace);
140 #endif
142 static void show_backtrace(struct task_struct *task, const struct pt_regs *regs)
144 unsigned long sp = regs->regs[29];
145 unsigned long ra = regs->regs[31];
146 unsigned long pc = regs->cp0_epc;
148 if (!task)
149 task = current;
151 if (raw_show_trace || user_mode(regs) || !__kernel_text_address(pc)) {
152 show_raw_backtrace(sp);
153 return;
155 printk("Call Trace:\n");
156 do {
157 print_ip_sym(pc);
158 pc = unwind_stack(task, &sp, pc, &ra);
159 } while (pc);
160 pr_cont("\n");
164 * This routine abuses get_user()/put_user() to reference pointers
165 * with at least a bit of error checking ...
167 static void show_stacktrace(struct task_struct *task,
168 const struct pt_regs *regs)
170 const int field = 2 * sizeof(unsigned long);
171 long stackdata;
172 int i;
173 unsigned long __user *sp = (unsigned long __user *)regs->regs[29];
175 printk("Stack :");
176 i = 0;
177 while ((unsigned long) sp & (PAGE_SIZE - 1)) {
178 if (i && ((i % (64 / field)) == 0)) {
179 pr_cont("\n");
180 printk(" ");
182 if (i > 39) {
183 pr_cont(" ...");
184 break;
187 if (__get_user(stackdata, sp++)) {
188 pr_cont(" (Bad stack address)");
189 break;
192 pr_cont(" %0*lx", field, stackdata);
193 i++;
195 pr_cont("\n");
196 show_backtrace(task, regs);
199 void show_stack(struct task_struct *task, unsigned long *sp)
201 struct pt_regs regs;
202 mm_segment_t old_fs = get_fs();
204 regs.cp0_status = KSU_KERNEL;
205 if (sp) {
206 regs.regs[29] = (unsigned long)sp;
207 regs.regs[31] = 0;
208 regs.cp0_epc = 0;
209 } else {
210 if (task && task != current) {
211 regs.regs[29] = task->thread.reg29;
212 regs.regs[31] = 0;
213 regs.cp0_epc = task->thread.reg31;
214 #ifdef CONFIG_KGDB_KDB
215 } else if (atomic_read(&kgdb_active) != -1 &&
216 kdb_current_regs) {
217 memcpy(&regs, kdb_current_regs, sizeof(regs));
218 #endif /* CONFIG_KGDB_KDB */
219 } else {
220 prepare_frametrace(&regs);
224 * show_stack() deals exclusively with kernel mode, so be sure to access
225 * the stack in the kernel (not user) address space.
227 set_fs(KERNEL_DS);
228 show_stacktrace(task, &regs);
229 set_fs(old_fs);
232 static void show_code(unsigned int __user *pc)
234 long i;
235 unsigned short __user *pc16 = NULL;
237 printk("Code:");
239 if ((unsigned long)pc & 1)
240 pc16 = (unsigned short __user *)((unsigned long)pc & ~1);
241 for(i = -3 ; i < 6 ; i++) {
242 unsigned int insn;
243 if (pc16 ? __get_user(insn, pc16 + i) : __get_user(insn, pc + i)) {
244 pr_cont(" (Bad address in epc)\n");
245 break;
247 pr_cont("%c%0*x%c", (i?' ':'<'), pc16 ? 4 : 8, insn, (i?' ':'>'));
249 pr_cont("\n");
252 static void __show_regs(const struct pt_regs *regs)
254 const int field = 2 * sizeof(unsigned long);
255 unsigned int cause = regs->cp0_cause;
256 unsigned int exccode;
257 int i;
259 show_regs_print_info(KERN_DEFAULT);
262 * Saved main processor registers
264 for (i = 0; i < 32; ) {
265 if ((i % 4) == 0)
266 printk("$%2d :", i);
267 if (i == 0)
268 pr_cont(" %0*lx", field, 0UL);
269 else if (i == 26 || i == 27)
270 pr_cont(" %*s", field, "");
271 else
272 pr_cont(" %0*lx", field, regs->regs[i]);
274 i++;
275 if ((i % 4) == 0)
276 pr_cont("\n");
279 #ifdef CONFIG_CPU_HAS_SMARTMIPS
280 printk("Acx : %0*lx\n", field, regs->acx);
281 #endif
282 printk("Hi : %0*lx\n", field, regs->hi);
283 printk("Lo : %0*lx\n", field, regs->lo);
286 * Saved cp0 registers
288 printk("epc : %0*lx %pS\n", field, regs->cp0_epc,
289 (void *) regs->cp0_epc);
290 printk("ra : %0*lx %pS\n", field, regs->regs[31],
291 (void *) regs->regs[31]);
293 printk("Status: %08x ", (uint32_t) regs->cp0_status);
295 if (cpu_has_3kex) {
296 if (regs->cp0_status & ST0_KUO)
297 pr_cont("KUo ");
298 if (regs->cp0_status & ST0_IEO)
299 pr_cont("IEo ");
300 if (regs->cp0_status & ST0_KUP)
301 pr_cont("KUp ");
302 if (regs->cp0_status & ST0_IEP)
303 pr_cont("IEp ");
304 if (regs->cp0_status & ST0_KUC)
305 pr_cont("KUc ");
306 if (regs->cp0_status & ST0_IEC)
307 pr_cont("IEc ");
308 } else if (cpu_has_4kex) {
309 if (regs->cp0_status & ST0_KX)
310 pr_cont("KX ");
311 if (regs->cp0_status & ST0_SX)
312 pr_cont("SX ");
313 if (regs->cp0_status & ST0_UX)
314 pr_cont("UX ");
315 switch (regs->cp0_status & ST0_KSU) {
316 case KSU_USER:
317 pr_cont("USER ");
318 break;
319 case KSU_SUPERVISOR:
320 pr_cont("SUPERVISOR ");
321 break;
322 case KSU_KERNEL:
323 pr_cont("KERNEL ");
324 break;
325 default:
326 pr_cont("BAD_MODE ");
327 break;
329 if (regs->cp0_status & ST0_ERL)
330 pr_cont("ERL ");
331 if (regs->cp0_status & ST0_EXL)
332 pr_cont("EXL ");
333 if (regs->cp0_status & ST0_IE)
334 pr_cont("IE ");
336 pr_cont("\n");
338 exccode = (cause & CAUSEF_EXCCODE) >> CAUSEB_EXCCODE;
339 printk("Cause : %08x (ExcCode %02x)\n", cause, exccode);
341 if (1 <= exccode && exccode <= 5)
342 printk("BadVA : %0*lx\n", field, regs->cp0_badvaddr);
344 printk("PrId : %08x (%s)\n", read_c0_prid(),
345 cpu_name_string());
349 * FIXME: really the generic show_regs should take a const pointer argument.
351 void show_regs(struct pt_regs *regs)
353 __show_regs((struct pt_regs *)regs);
356 void show_registers(struct pt_regs *regs)
358 const int field = 2 * sizeof(unsigned long);
359 mm_segment_t old_fs = get_fs();
361 __show_regs(regs);
362 print_modules();
363 printk("Process %s (pid: %d, threadinfo=%p, task=%p, tls=%0*lx)\n",
364 current->comm, current->pid, current_thread_info(), current,
365 field, current_thread_info()->tp_value);
366 if (cpu_has_userlocal) {
367 unsigned long tls;
369 tls = read_c0_userlocal();
370 if (tls != current_thread_info()->tp_value)
371 printk("*HwTLS: %0*lx\n", field, tls);
374 if (!user_mode(regs))
375 /* Necessary for getting the correct stack content */
376 set_fs(KERNEL_DS);
377 show_stacktrace(current, regs);
378 show_code((unsigned int __user *) regs->cp0_epc);
379 printk("\n");
380 set_fs(old_fs);
383 static DEFINE_RAW_SPINLOCK(die_lock);
385 void __noreturn die(const char *str, struct pt_regs *regs)
387 static int die_counter;
388 int sig = SIGSEGV;
390 oops_enter();
392 if (notify_die(DIE_OOPS, str, regs, 0, current->thread.trap_nr,
393 SIGSEGV) == NOTIFY_STOP)
394 sig = 0;
396 console_verbose();
397 raw_spin_lock_irq(&die_lock);
398 bust_spinlocks(1);
400 printk("%s[#%d]:\n", str, ++die_counter);
401 show_registers(regs);
402 add_taint(TAINT_DIE, LOCKDEP_NOW_UNRELIABLE);
403 raw_spin_unlock_irq(&die_lock);
405 oops_exit();
407 if (in_interrupt())
408 panic("Fatal exception in interrupt");
410 if (panic_on_oops)
411 panic("Fatal exception");
413 if (regs && kexec_should_crash(current))
414 crash_kexec(regs);
416 do_exit(sig);
419 extern struct exception_table_entry __start___dbe_table[];
420 extern struct exception_table_entry __stop___dbe_table[];
422 __asm__(
423 " .section __dbe_table, \"a\"\n"
424 " .previous \n");
426 /* Given an address, look for it in the exception tables. */
427 static const struct exception_table_entry *search_dbe_tables(unsigned long addr)
429 const struct exception_table_entry *e;
431 e = search_extable(__start___dbe_table,
432 __stop___dbe_table - __start___dbe_table, addr);
433 if (!e)
434 e = search_module_dbetables(addr);
435 return e;
438 asmlinkage void do_be(struct pt_regs *regs)
440 const int field = 2 * sizeof(unsigned long);
441 const struct exception_table_entry *fixup = NULL;
442 int data = regs->cp0_cause & 4;
443 int action = MIPS_BE_FATAL;
444 enum ctx_state prev_state;
446 prev_state = exception_enter();
447 /* XXX For now. Fixme, this searches the wrong table ... */
448 if (data && !user_mode(regs))
449 fixup = search_dbe_tables(exception_epc(regs));
451 if (fixup)
452 action = MIPS_BE_FIXUP;
454 if (board_be_handler)
455 action = board_be_handler(regs, fixup != NULL);
456 else
457 mips_cm_error_report();
459 switch (action) {
460 case MIPS_BE_DISCARD:
461 goto out;
462 case MIPS_BE_FIXUP:
463 if (fixup) {
464 regs->cp0_epc = fixup->nextinsn;
465 goto out;
467 break;
468 default:
469 break;
473 * Assume it would be too dangerous to continue ...
475 printk(KERN_ALERT "%s bus error, epc == %0*lx, ra == %0*lx\n",
476 data ? "Data" : "Instruction",
477 field, regs->cp0_epc, field, regs->regs[31]);
478 if (notify_die(DIE_OOPS, "bus error", regs, 0, current->thread.trap_nr,
479 SIGBUS) == NOTIFY_STOP)
480 goto out;
482 die_if_kernel("Oops", regs);
483 force_sig(SIGBUS, current);
485 out:
486 exception_exit(prev_state);
490 * ll/sc, rdhwr, sync emulation
493 #define OPCODE 0xfc000000
494 #define BASE 0x03e00000
495 #define RT 0x001f0000
496 #define OFFSET 0x0000ffff
497 #define LL 0xc0000000
498 #define SC 0xe0000000
499 #define SPEC0 0x00000000
500 #define SPEC3 0x7c000000
501 #define RD 0x0000f800
502 #define FUNC 0x0000003f
503 #define SYNC 0x0000000f
504 #define RDHWR 0x0000003b
506 /* microMIPS definitions */
507 #define MM_POOL32A_FUNC 0xfc00ffff
508 #define MM_RDHWR 0x00006b3c
509 #define MM_RS 0x001f0000
510 #define MM_RT 0x03e00000
513 * The ll_bit is cleared by r*_switch.S
516 unsigned int ll_bit;
517 struct task_struct *ll_task;
519 static inline int simulate_ll(struct pt_regs *regs, unsigned int opcode)
521 unsigned long value, __user *vaddr;
522 long offset;
525 * analyse the ll instruction that just caused a ri exception
526 * and put the referenced address to addr.
529 /* sign extend offset */
530 offset = opcode & OFFSET;
531 offset <<= 16;
532 offset >>= 16;
534 vaddr = (unsigned long __user *)
535 ((unsigned long)(regs->regs[(opcode & BASE) >> 21]) + offset);
537 if ((unsigned long)vaddr & 3)
538 return SIGBUS;
539 if (get_user(value, vaddr))
540 return SIGSEGV;
542 preempt_disable();
544 if (ll_task == NULL || ll_task == current) {
545 ll_bit = 1;
546 } else {
547 ll_bit = 0;
549 ll_task = current;
551 preempt_enable();
553 regs->regs[(opcode & RT) >> 16] = value;
555 return 0;
558 static inline int simulate_sc(struct pt_regs *regs, unsigned int opcode)
560 unsigned long __user *vaddr;
561 unsigned long reg;
562 long offset;
565 * analyse the sc instruction that just caused a ri exception
566 * and put the referenced address to addr.
569 /* sign extend offset */
570 offset = opcode & OFFSET;
571 offset <<= 16;
572 offset >>= 16;
574 vaddr = (unsigned long __user *)
575 ((unsigned long)(regs->regs[(opcode & BASE) >> 21]) + offset);
576 reg = (opcode & RT) >> 16;
578 if ((unsigned long)vaddr & 3)
579 return SIGBUS;
581 preempt_disable();
583 if (ll_bit == 0 || ll_task != current) {
584 regs->regs[reg] = 0;
585 preempt_enable();
586 return 0;
589 preempt_enable();
591 if (put_user(regs->regs[reg], vaddr))
592 return SIGSEGV;
594 regs->regs[reg] = 1;
596 return 0;
600 * ll uses the opcode of lwc0 and sc uses the opcode of swc0. That is both
601 * opcodes are supposed to result in coprocessor unusable exceptions if
602 * executed on ll/sc-less processors. That's the theory. In practice a
603 * few processors such as NEC's VR4100 throw reserved instruction exceptions
604 * instead, so we're doing the emulation thing in both exception handlers.
606 static int simulate_llsc(struct pt_regs *regs, unsigned int opcode)
608 if ((opcode & OPCODE) == LL) {
609 perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS,
610 1, regs, 0);
611 return simulate_ll(regs, opcode);
613 if ((opcode & OPCODE) == SC) {
614 perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS,
615 1, regs, 0);
616 return simulate_sc(regs, opcode);
619 return -1; /* Must be something else ... */
623 * Simulate trapping 'rdhwr' instructions to provide user accessible
624 * registers not implemented in hardware.
626 static int simulate_rdhwr(struct pt_regs *regs, int rd, int rt)
628 struct thread_info *ti = task_thread_info(current);
630 perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS,
631 1, regs, 0);
632 switch (rd) {
633 case MIPS_HWR_CPUNUM: /* CPU number */
634 regs->regs[rt] = smp_processor_id();
635 return 0;
636 case MIPS_HWR_SYNCISTEP: /* SYNCI length */
637 regs->regs[rt] = min(current_cpu_data.dcache.linesz,
638 current_cpu_data.icache.linesz);
639 return 0;
640 case MIPS_HWR_CC: /* Read count register */
641 regs->regs[rt] = read_c0_count();
642 return 0;
643 case MIPS_HWR_CCRES: /* Count register resolution */
644 switch (current_cpu_type()) {
645 case CPU_20KC:
646 case CPU_25KF:
647 regs->regs[rt] = 1;
648 break;
649 default:
650 regs->regs[rt] = 2;
652 return 0;
653 case MIPS_HWR_ULR: /* Read UserLocal register */
654 regs->regs[rt] = ti->tp_value;
655 return 0;
656 default:
657 return -1;
661 static int simulate_rdhwr_normal(struct pt_regs *regs, unsigned int opcode)
663 if ((opcode & OPCODE) == SPEC3 && (opcode & FUNC) == RDHWR) {
664 int rd = (opcode & RD) >> 11;
665 int rt = (opcode & RT) >> 16;
667 simulate_rdhwr(regs, rd, rt);
668 return 0;
671 /* Not ours. */
672 return -1;
675 static int simulate_rdhwr_mm(struct pt_regs *regs, unsigned int opcode)
677 if ((opcode & MM_POOL32A_FUNC) == MM_RDHWR) {
678 int rd = (opcode & MM_RS) >> 16;
679 int rt = (opcode & MM_RT) >> 21;
680 simulate_rdhwr(regs, rd, rt);
681 return 0;
684 /* Not ours. */
685 return -1;
688 static int simulate_sync(struct pt_regs *regs, unsigned int opcode)
690 if ((opcode & OPCODE) == SPEC0 && (opcode & FUNC) == SYNC) {
691 perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS,
692 1, regs, 0);
693 return 0;
696 return -1; /* Must be something else ... */
699 asmlinkage void do_ov(struct pt_regs *regs)
701 enum ctx_state prev_state;
702 siginfo_t info;
704 clear_siginfo(&info);
705 info.si_signo = SIGFPE;
706 info.si_code = FPE_INTOVF;
707 info.si_addr = (void __user *)regs->cp0_epc;
709 prev_state = exception_enter();
710 die_if_kernel("Integer overflow", regs);
712 force_sig_info(SIGFPE, &info, current);
713 exception_exit(prev_state);
717 * Send SIGFPE according to FCSR Cause bits, which must have already
718 * been masked against Enable bits. This is impotant as Inexact can
719 * happen together with Overflow or Underflow, and `ptrace' can set
720 * any bits.
722 void force_fcr31_sig(unsigned long fcr31, void __user *fault_addr,
723 struct task_struct *tsk)
725 struct siginfo si;
727 clear_siginfo(&si);
728 si.si_addr = fault_addr;
729 si.si_signo = SIGFPE;
731 if (fcr31 & FPU_CSR_INV_X)
732 si.si_code = FPE_FLTINV;
733 else if (fcr31 & FPU_CSR_DIV_X)
734 si.si_code = FPE_FLTDIV;
735 else if (fcr31 & FPU_CSR_OVF_X)
736 si.si_code = FPE_FLTOVF;
737 else if (fcr31 & FPU_CSR_UDF_X)
738 si.si_code = FPE_FLTUND;
739 else if (fcr31 & FPU_CSR_INE_X)
740 si.si_code = FPE_FLTRES;
742 force_sig_info(SIGFPE, &si, tsk);
745 int process_fpemu_return(int sig, void __user *fault_addr, unsigned long fcr31)
747 struct siginfo si;
748 struct vm_area_struct *vma;
750 clear_siginfo(&si);
751 switch (sig) {
752 case 0:
753 return 0;
755 case SIGFPE:
756 force_fcr31_sig(fcr31, fault_addr, current);
757 return 1;
759 case SIGBUS:
760 si.si_addr = fault_addr;
761 si.si_signo = sig;
762 si.si_code = BUS_ADRERR;
763 force_sig_info(sig, &si, current);
764 return 1;
766 case SIGSEGV:
767 si.si_addr = fault_addr;
768 si.si_signo = sig;
769 down_read(&current->mm->mmap_sem);
770 vma = find_vma(current->mm, (unsigned long)fault_addr);
771 if (vma && (vma->vm_start <= (unsigned long)fault_addr))
772 si.si_code = SEGV_ACCERR;
773 else
774 si.si_code = SEGV_MAPERR;
775 up_read(&current->mm->mmap_sem);
776 force_sig_info(sig, &si, current);
777 return 1;
779 default:
780 force_sig(sig, current);
781 return 1;
785 static int simulate_fp(struct pt_regs *regs, unsigned int opcode,
786 unsigned long old_epc, unsigned long old_ra)
788 union mips_instruction inst = { .word = opcode };
789 void __user *fault_addr;
790 unsigned long fcr31;
791 int sig;
793 /* If it's obviously not an FP instruction, skip it */
794 switch (inst.i_format.opcode) {
795 case cop1_op:
796 case cop1x_op:
797 case lwc1_op:
798 case ldc1_op:
799 case swc1_op:
800 case sdc1_op:
801 break;
803 default:
804 return -1;
808 * do_ri skipped over the instruction via compute_return_epc, undo
809 * that for the FPU emulator.
811 regs->cp0_epc = old_epc;
812 regs->regs[31] = old_ra;
814 /* Save the FP context to struct thread_struct */
815 lose_fpu(1);
817 /* Run the emulator */
818 sig = fpu_emulator_cop1Handler(regs, &current->thread.fpu, 1,
819 &fault_addr);
822 * We can't allow the emulated instruction to leave any
823 * enabled Cause bits set in $fcr31.
825 fcr31 = mask_fcr31_x(current->thread.fpu.fcr31);
826 current->thread.fpu.fcr31 &= ~fcr31;
828 /* Restore the hardware register state */
829 own_fpu(1);
831 /* Send a signal if required. */
832 process_fpemu_return(sig, fault_addr, fcr31);
834 return 0;
838 * XXX Delayed fp exceptions when doing a lazy ctx switch XXX
840 asmlinkage void do_fpe(struct pt_regs *regs, unsigned long fcr31)
842 enum ctx_state prev_state;
843 void __user *fault_addr;
844 int sig;
846 prev_state = exception_enter();
847 if (notify_die(DIE_FP, "FP exception", regs, 0, current->thread.trap_nr,
848 SIGFPE) == NOTIFY_STOP)
849 goto out;
851 /* Clear FCSR.Cause before enabling interrupts */
852 write_32bit_cp1_register(CP1_STATUS, fcr31 & ~mask_fcr31_x(fcr31));
853 local_irq_enable();
855 die_if_kernel("FP exception in kernel code", regs);
857 if (fcr31 & FPU_CSR_UNI_X) {
859 * Unimplemented operation exception. If we've got the full
860 * software emulator on-board, let's use it...
862 * Force FPU to dump state into task/thread context. We're
863 * moving a lot of data here for what is probably a single
864 * instruction, but the alternative is to pre-decode the FP
865 * register operands before invoking the emulator, which seems
866 * a bit extreme for what should be an infrequent event.
868 /* Ensure 'resume' not overwrite saved fp context again. */
869 lose_fpu(1);
871 /* Run the emulator */
872 sig = fpu_emulator_cop1Handler(regs, &current->thread.fpu, 1,
873 &fault_addr);
876 * We can't allow the emulated instruction to leave any
877 * enabled Cause bits set in $fcr31.
879 fcr31 = mask_fcr31_x(current->thread.fpu.fcr31);
880 current->thread.fpu.fcr31 &= ~fcr31;
882 /* Restore the hardware register state */
883 own_fpu(1); /* Using the FPU again. */
884 } else {
885 sig = SIGFPE;
886 fault_addr = (void __user *) regs->cp0_epc;
889 /* Send a signal if required. */
890 process_fpemu_return(sig, fault_addr, fcr31);
892 out:
893 exception_exit(prev_state);
896 void do_trap_or_bp(struct pt_regs *regs, unsigned int code, int si_code,
897 const char *str)
899 siginfo_t info;
900 char b[40];
902 clear_siginfo(&info);
903 #ifdef CONFIG_KGDB_LOW_LEVEL_TRAP
904 if (kgdb_ll_trap(DIE_TRAP, str, regs, code, current->thread.trap_nr,
905 SIGTRAP) == NOTIFY_STOP)
906 return;
907 #endif /* CONFIG_KGDB_LOW_LEVEL_TRAP */
909 if (notify_die(DIE_TRAP, str, regs, code, current->thread.trap_nr,
910 SIGTRAP) == NOTIFY_STOP)
911 return;
914 * A short test says that IRIX 5.3 sends SIGTRAP for all trap
915 * insns, even for trap and break codes that indicate arithmetic
916 * failures. Weird ...
917 * But should we continue the brokenness??? --macro
919 switch (code) {
920 case BRK_OVERFLOW:
921 case BRK_DIVZERO:
922 scnprintf(b, sizeof(b), "%s instruction in kernel code", str);
923 die_if_kernel(b, regs);
924 if (code == BRK_DIVZERO)
925 info.si_code = FPE_INTDIV;
926 else
927 info.si_code = FPE_INTOVF;
928 info.si_signo = SIGFPE;
929 info.si_addr = (void __user *) regs->cp0_epc;
930 force_sig_info(SIGFPE, &info, current);
931 break;
932 case BRK_BUG:
933 die_if_kernel("Kernel bug detected", regs);
934 force_sig(SIGTRAP, current);
935 break;
936 case BRK_MEMU:
938 * This breakpoint code is used by the FPU emulator to retake
939 * control of the CPU after executing the instruction from the
940 * delay slot of an emulated branch.
942 * Terminate if exception was recognized as a delay slot return
943 * otherwise handle as normal.
945 if (do_dsemulret(regs))
946 return;
948 die_if_kernel("Math emu break/trap", regs);
949 force_sig(SIGTRAP, current);
950 break;
951 default:
952 scnprintf(b, sizeof(b), "%s instruction in kernel code", str);
953 die_if_kernel(b, regs);
954 if (si_code) {
955 info.si_signo = SIGTRAP;
956 info.si_code = si_code;
957 force_sig_info(SIGTRAP, &info, current);
958 } else {
959 force_sig(SIGTRAP, current);
964 asmlinkage void do_bp(struct pt_regs *regs)
966 unsigned long epc = msk_isa16_mode(exception_epc(regs));
967 unsigned int opcode, bcode;
968 enum ctx_state prev_state;
969 mm_segment_t seg;
971 seg = get_fs();
972 if (!user_mode(regs))
973 set_fs(KERNEL_DS);
975 prev_state = exception_enter();
976 current->thread.trap_nr = (regs->cp0_cause >> 2) & 0x1f;
977 if (get_isa16_mode(regs->cp0_epc)) {
978 u16 instr[2];
980 if (__get_user(instr[0], (u16 __user *)epc))
981 goto out_sigsegv;
983 if (!cpu_has_mmips) {
984 /* MIPS16e mode */
985 bcode = (instr[0] >> 5) & 0x3f;
986 } else if (mm_insn_16bit(instr[0])) {
987 /* 16-bit microMIPS BREAK */
988 bcode = instr[0] & 0xf;
989 } else {
990 /* 32-bit microMIPS BREAK */
991 if (__get_user(instr[1], (u16 __user *)(epc + 2)))
992 goto out_sigsegv;
993 opcode = (instr[0] << 16) | instr[1];
994 bcode = (opcode >> 6) & ((1 << 20) - 1);
996 } else {
997 if (__get_user(opcode, (unsigned int __user *)epc))
998 goto out_sigsegv;
999 bcode = (opcode >> 6) & ((1 << 20) - 1);
1003 * There is the ancient bug in the MIPS assemblers that the break
1004 * code starts left to bit 16 instead to bit 6 in the opcode.
1005 * Gas is bug-compatible, but not always, grrr...
1006 * We handle both cases with a simple heuristics. --macro
1008 if (bcode >= (1 << 10))
1009 bcode = ((bcode & ((1 << 10) - 1)) << 10) | (bcode >> 10);
1012 * notify the kprobe handlers, if instruction is likely to
1013 * pertain to them.
1015 switch (bcode) {
1016 case BRK_UPROBE:
1017 if (notify_die(DIE_UPROBE, "uprobe", regs, bcode,
1018 current->thread.trap_nr, SIGTRAP) == NOTIFY_STOP)
1019 goto out;
1020 else
1021 break;
1022 case BRK_UPROBE_XOL:
1023 if (notify_die(DIE_UPROBE_XOL, "uprobe_xol", regs, bcode,
1024 current->thread.trap_nr, SIGTRAP) == NOTIFY_STOP)
1025 goto out;
1026 else
1027 break;
1028 case BRK_KPROBE_BP:
1029 if (notify_die(DIE_BREAK, "debug", regs, bcode,
1030 current->thread.trap_nr, SIGTRAP) == NOTIFY_STOP)
1031 goto out;
1032 else
1033 break;
1034 case BRK_KPROBE_SSTEPBP:
1035 if (notify_die(DIE_SSTEPBP, "single_step", regs, bcode,
1036 current->thread.trap_nr, SIGTRAP) == NOTIFY_STOP)
1037 goto out;
1038 else
1039 break;
1040 default:
1041 break;
1044 do_trap_or_bp(regs, bcode, TRAP_BRKPT, "Break");
1046 out:
1047 set_fs(seg);
1048 exception_exit(prev_state);
1049 return;
1051 out_sigsegv:
1052 force_sig(SIGSEGV, current);
1053 goto out;
1056 asmlinkage void do_tr(struct pt_regs *regs)
1058 u32 opcode, tcode = 0;
1059 enum ctx_state prev_state;
1060 u16 instr[2];
1061 mm_segment_t seg;
1062 unsigned long epc = msk_isa16_mode(exception_epc(regs));
1064 seg = get_fs();
1065 if (!user_mode(regs))
1066 set_fs(get_ds());
1068 prev_state = exception_enter();
1069 current->thread.trap_nr = (regs->cp0_cause >> 2) & 0x1f;
1070 if (get_isa16_mode(regs->cp0_epc)) {
1071 if (__get_user(instr[0], (u16 __user *)(epc + 0)) ||
1072 __get_user(instr[1], (u16 __user *)(epc + 2)))
1073 goto out_sigsegv;
1074 opcode = (instr[0] << 16) | instr[1];
1075 /* Immediate versions don't provide a code. */
1076 if (!(opcode & OPCODE))
1077 tcode = (opcode >> 12) & ((1 << 4) - 1);
1078 } else {
1079 if (__get_user(opcode, (u32 __user *)epc))
1080 goto out_sigsegv;
1081 /* Immediate versions don't provide a code. */
1082 if (!(opcode & OPCODE))
1083 tcode = (opcode >> 6) & ((1 << 10) - 1);
1086 do_trap_or_bp(regs, tcode, 0, "Trap");
1088 out:
1089 set_fs(seg);
1090 exception_exit(prev_state);
1091 return;
1093 out_sigsegv:
1094 force_sig(SIGSEGV, current);
1095 goto out;
1098 asmlinkage void do_ri(struct pt_regs *regs)
1100 unsigned int __user *epc = (unsigned int __user *)exception_epc(regs);
1101 unsigned long old_epc = regs->cp0_epc;
1102 unsigned long old31 = regs->regs[31];
1103 enum ctx_state prev_state;
1104 unsigned int opcode = 0;
1105 int status = -1;
1108 * Avoid any kernel code. Just emulate the R2 instruction
1109 * as quickly as possible.
1111 if (mipsr2_emulation && cpu_has_mips_r6 &&
1112 likely(user_mode(regs)) &&
1113 likely(get_user(opcode, epc) >= 0)) {
1114 unsigned long fcr31 = 0;
1116 status = mipsr2_decoder(regs, opcode, &fcr31);
1117 switch (status) {
1118 case 0:
1119 case SIGEMT:
1120 return;
1121 case SIGILL:
1122 goto no_r2_instr;
1123 default:
1124 process_fpemu_return(status,
1125 &current->thread.cp0_baduaddr,
1126 fcr31);
1127 return;
1131 no_r2_instr:
1133 prev_state = exception_enter();
1134 current->thread.trap_nr = (regs->cp0_cause >> 2) & 0x1f;
1136 if (notify_die(DIE_RI, "RI Fault", regs, 0, current->thread.trap_nr,
1137 SIGILL) == NOTIFY_STOP)
1138 goto out;
1140 die_if_kernel("Reserved instruction in kernel code", regs);
1142 if (unlikely(compute_return_epc(regs) < 0))
1143 goto out;
1145 if (!get_isa16_mode(regs->cp0_epc)) {
1146 if (unlikely(get_user(opcode, epc) < 0))
1147 status = SIGSEGV;
1149 if (!cpu_has_llsc && status < 0)
1150 status = simulate_llsc(regs, opcode);
1152 if (status < 0)
1153 status = simulate_rdhwr_normal(regs, opcode);
1155 if (status < 0)
1156 status = simulate_sync(regs, opcode);
1158 if (status < 0)
1159 status = simulate_fp(regs, opcode, old_epc, old31);
1160 } else if (cpu_has_mmips) {
1161 unsigned short mmop[2] = { 0 };
1163 if (unlikely(get_user(mmop[0], (u16 __user *)epc + 0) < 0))
1164 status = SIGSEGV;
1165 if (unlikely(get_user(mmop[1], (u16 __user *)epc + 1) < 0))
1166 status = SIGSEGV;
1167 opcode = mmop[0];
1168 opcode = (opcode << 16) | mmop[1];
1170 if (status < 0)
1171 status = simulate_rdhwr_mm(regs, opcode);
1174 if (status < 0)
1175 status = SIGILL;
1177 if (unlikely(status > 0)) {
1178 regs->cp0_epc = old_epc; /* Undo skip-over. */
1179 regs->regs[31] = old31;
1180 force_sig(status, current);
1183 out:
1184 exception_exit(prev_state);
1188 * MIPS MT processors may have fewer FPU contexts than CPU threads. If we've
1189 * emulated more than some threshold number of instructions, force migration to
1190 * a "CPU" that has FP support.
1192 static void mt_ase_fp_affinity(void)
1194 #ifdef CONFIG_MIPS_MT_FPAFF
1195 if (mt_fpemul_threshold > 0 &&
1196 ((current->thread.emulated_fp++ > mt_fpemul_threshold))) {
1198 * If there's no FPU present, or if the application has already
1199 * restricted the allowed set to exclude any CPUs with FPUs,
1200 * we'll skip the procedure.
1202 if (cpumask_intersects(&current->cpus_allowed, &mt_fpu_cpumask)) {
1203 cpumask_t tmask;
1205 current->thread.user_cpus_allowed
1206 = current->cpus_allowed;
1207 cpumask_and(&tmask, &current->cpus_allowed,
1208 &mt_fpu_cpumask);
1209 set_cpus_allowed_ptr(current, &tmask);
1210 set_thread_flag(TIF_FPUBOUND);
1213 #endif /* CONFIG_MIPS_MT_FPAFF */
1217 * No lock; only written during early bootup by CPU 0.
1219 static RAW_NOTIFIER_HEAD(cu2_chain);
1221 int __ref register_cu2_notifier(struct notifier_block *nb)
1223 return raw_notifier_chain_register(&cu2_chain, nb);
1226 int cu2_notifier_call_chain(unsigned long val, void *v)
1228 return raw_notifier_call_chain(&cu2_chain, val, v);
1231 static int default_cu2_call(struct notifier_block *nfb, unsigned long action,
1232 void *data)
1234 struct pt_regs *regs = data;
1236 die_if_kernel("COP2: Unhandled kernel unaligned access or invalid "
1237 "instruction", regs);
1238 force_sig(SIGILL, current);
1240 return NOTIFY_OK;
1243 static int enable_restore_fp_context(int msa)
1245 int err, was_fpu_owner, prior_msa;
1248 * If an FP mode switch is currently underway, wait for it to
1249 * complete before proceeding.
1251 wait_on_atomic_t(&current->mm->context.fp_mode_switching,
1252 atomic_t_wait, TASK_KILLABLE);
1254 if (!used_math()) {
1255 /* First time FP context user. */
1256 preempt_disable();
1257 err = init_fpu();
1258 if (msa && !err) {
1259 enable_msa();
1260 init_msa_upper();
1261 set_thread_flag(TIF_USEDMSA);
1262 set_thread_flag(TIF_MSA_CTX_LIVE);
1264 preempt_enable();
1265 if (!err)
1266 set_used_math();
1267 return err;
1271 * This task has formerly used the FP context.
1273 * If this thread has no live MSA vector context then we can simply
1274 * restore the scalar FP context. If it has live MSA vector context
1275 * (that is, it has or may have used MSA since last performing a
1276 * function call) then we'll need to restore the vector context. This
1277 * applies even if we're currently only executing a scalar FP
1278 * instruction. This is because if we were to later execute an MSA
1279 * instruction then we'd either have to:
1281 * - Restore the vector context & clobber any registers modified by
1282 * scalar FP instructions between now & then.
1284 * or
1286 * - Not restore the vector context & lose the most significant bits
1287 * of all vector registers.
1289 * Neither of those options is acceptable. We cannot restore the least
1290 * significant bits of the registers now & only restore the most
1291 * significant bits later because the most significant bits of any
1292 * vector registers whose aliased FP register is modified now will have
1293 * been zeroed. We'd have no way to know that when restoring the vector
1294 * context & thus may load an outdated value for the most significant
1295 * bits of a vector register.
1297 if (!msa && !thread_msa_context_live())
1298 return own_fpu(1);
1301 * This task is using or has previously used MSA. Thus we require
1302 * that Status.FR == 1.
1304 preempt_disable();
1305 was_fpu_owner = is_fpu_owner();
1306 err = own_fpu_inatomic(0);
1307 if (err)
1308 goto out;
1310 enable_msa();
1311 write_msa_csr(current->thread.fpu.msacsr);
1312 set_thread_flag(TIF_USEDMSA);
1315 * If this is the first time that the task is using MSA and it has
1316 * previously used scalar FP in this time slice then we already nave
1317 * FP context which we shouldn't clobber. We do however need to clear
1318 * the upper 64b of each vector register so that this task has no
1319 * opportunity to see data left behind by another.
1321 prior_msa = test_and_set_thread_flag(TIF_MSA_CTX_LIVE);
1322 if (!prior_msa && was_fpu_owner) {
1323 init_msa_upper();
1325 goto out;
1328 if (!prior_msa) {
1330 * Restore the least significant 64b of each vector register
1331 * from the existing scalar FP context.
1333 _restore_fp(current);
1336 * The task has not formerly used MSA, so clear the upper 64b
1337 * of each vector register such that it cannot see data left
1338 * behind by another task.
1340 init_msa_upper();
1341 } else {
1342 /* We need to restore the vector context. */
1343 restore_msa(current);
1345 /* Restore the scalar FP control & status register */
1346 if (!was_fpu_owner)
1347 write_32bit_cp1_register(CP1_STATUS,
1348 current->thread.fpu.fcr31);
1351 out:
1352 preempt_enable();
1354 return 0;
1357 asmlinkage void do_cpu(struct pt_regs *regs)
1359 enum ctx_state prev_state;
1360 unsigned int __user *epc;
1361 unsigned long old_epc, old31;
1362 void __user *fault_addr;
1363 unsigned int opcode;
1364 unsigned long fcr31;
1365 unsigned int cpid;
1366 int status, err;
1367 int sig;
1369 prev_state = exception_enter();
1370 cpid = (regs->cp0_cause >> CAUSEB_CE) & 3;
1372 if (cpid != 2)
1373 die_if_kernel("do_cpu invoked from kernel context!", regs);
1375 switch (cpid) {
1376 case 0:
1377 epc = (unsigned int __user *)exception_epc(regs);
1378 old_epc = regs->cp0_epc;
1379 old31 = regs->regs[31];
1380 opcode = 0;
1381 status = -1;
1383 if (unlikely(compute_return_epc(regs) < 0))
1384 break;
1386 if (!get_isa16_mode(regs->cp0_epc)) {
1387 if (unlikely(get_user(opcode, epc) < 0))
1388 status = SIGSEGV;
1390 if (!cpu_has_llsc && status < 0)
1391 status = simulate_llsc(regs, opcode);
1394 if (status < 0)
1395 status = SIGILL;
1397 if (unlikely(status > 0)) {
1398 regs->cp0_epc = old_epc; /* Undo skip-over. */
1399 regs->regs[31] = old31;
1400 force_sig(status, current);
1403 break;
1405 case 3:
1407 * The COP3 opcode space and consequently the CP0.Status.CU3
1408 * bit and the CP0.Cause.CE=3 encoding have been removed as
1409 * of the MIPS III ISA. From the MIPS IV and MIPS32r2 ISAs
1410 * up the space has been reused for COP1X instructions, that
1411 * are enabled by the CP0.Status.CU1 bit and consequently
1412 * use the CP0.Cause.CE=1 encoding for Coprocessor Unusable
1413 * exceptions. Some FPU-less processors that implement one
1414 * of these ISAs however use this code erroneously for COP1X
1415 * instructions. Therefore we redirect this trap to the FP
1416 * emulator too.
1418 if (raw_cpu_has_fpu || !cpu_has_mips_4_5_64_r2_r6) {
1419 force_sig(SIGILL, current);
1420 break;
1422 /* Fall through. */
1424 case 1:
1425 err = enable_restore_fp_context(0);
1427 if (raw_cpu_has_fpu && !err)
1428 break;
1430 sig = fpu_emulator_cop1Handler(regs, &current->thread.fpu, 0,
1431 &fault_addr);
1434 * We can't allow the emulated instruction to leave
1435 * any enabled Cause bits set in $fcr31.
1437 fcr31 = mask_fcr31_x(current->thread.fpu.fcr31);
1438 current->thread.fpu.fcr31 &= ~fcr31;
1440 /* Send a signal if required. */
1441 if (!process_fpemu_return(sig, fault_addr, fcr31) && !err)
1442 mt_ase_fp_affinity();
1444 break;
1446 case 2:
1447 raw_notifier_call_chain(&cu2_chain, CU2_EXCEPTION, regs);
1448 break;
1451 exception_exit(prev_state);
1454 asmlinkage void do_msa_fpe(struct pt_regs *regs, unsigned int msacsr)
1456 enum ctx_state prev_state;
1458 prev_state = exception_enter();
1459 current->thread.trap_nr = (regs->cp0_cause >> 2) & 0x1f;
1460 if (notify_die(DIE_MSAFP, "MSA FP exception", regs, 0,
1461 current->thread.trap_nr, SIGFPE) == NOTIFY_STOP)
1462 goto out;
1464 /* Clear MSACSR.Cause before enabling interrupts */
1465 write_msa_csr(msacsr & ~MSA_CSR_CAUSEF);
1466 local_irq_enable();
1468 die_if_kernel("do_msa_fpe invoked from kernel context!", regs);
1469 force_sig(SIGFPE, current);
1470 out:
1471 exception_exit(prev_state);
1474 asmlinkage void do_msa(struct pt_regs *regs)
1476 enum ctx_state prev_state;
1477 int err;
1479 prev_state = exception_enter();
1481 if (!cpu_has_msa || test_thread_flag(TIF_32BIT_FPREGS)) {
1482 force_sig(SIGILL, current);
1483 goto out;
1486 die_if_kernel("do_msa invoked from kernel context!", regs);
1488 err = enable_restore_fp_context(1);
1489 if (err)
1490 force_sig(SIGILL, current);
1491 out:
1492 exception_exit(prev_state);
1495 asmlinkage void do_mdmx(struct pt_regs *regs)
1497 enum ctx_state prev_state;
1499 prev_state = exception_enter();
1500 force_sig(SIGILL, current);
1501 exception_exit(prev_state);
1505 * Called with interrupts disabled.
1507 asmlinkage void do_watch(struct pt_regs *regs)
1509 siginfo_t info;
1510 enum ctx_state prev_state;
1512 clear_siginfo(&info);
1513 info.si_signo = SIGTRAP;
1514 info.si_code = TRAP_HWBKPT;
1516 prev_state = exception_enter();
1518 * Clear WP (bit 22) bit of cause register so we don't loop
1519 * forever.
1521 clear_c0_cause(CAUSEF_WP);
1524 * If the current thread has the watch registers loaded, save
1525 * their values and send SIGTRAP. Otherwise another thread
1526 * left the registers set, clear them and continue.
1528 if (test_tsk_thread_flag(current, TIF_LOAD_WATCH)) {
1529 mips_read_watch_registers();
1530 local_irq_enable();
1531 force_sig_info(SIGTRAP, &info, current);
1532 } else {
1533 mips_clear_watch_registers();
1534 local_irq_enable();
1536 exception_exit(prev_state);
1539 asmlinkage void do_mcheck(struct pt_regs *regs)
1541 int multi_match = regs->cp0_status & ST0_TS;
1542 enum ctx_state prev_state;
1543 mm_segment_t old_fs = get_fs();
1545 prev_state = exception_enter();
1546 show_regs(regs);
1548 if (multi_match) {
1549 dump_tlb_regs();
1550 pr_info("\n");
1551 dump_tlb_all();
1554 if (!user_mode(regs))
1555 set_fs(KERNEL_DS);
1557 show_code((unsigned int __user *) regs->cp0_epc);
1559 set_fs(old_fs);
1562 * Some chips may have other causes of machine check (e.g. SB1
1563 * graduation timer)
1565 panic("Caught Machine Check exception - %scaused by multiple "
1566 "matching entries in the TLB.",
1567 (multi_match) ? "" : "not ");
1570 asmlinkage void do_mt(struct pt_regs *regs)
1572 int subcode;
1574 subcode = (read_vpe_c0_vpecontrol() & VPECONTROL_EXCPT)
1575 >> VPECONTROL_EXCPT_SHIFT;
1576 switch (subcode) {
1577 case 0:
1578 printk(KERN_DEBUG "Thread Underflow\n");
1579 break;
1580 case 1:
1581 printk(KERN_DEBUG "Thread Overflow\n");
1582 break;
1583 case 2:
1584 printk(KERN_DEBUG "Invalid YIELD Qualifier\n");
1585 break;
1586 case 3:
1587 printk(KERN_DEBUG "Gating Storage Exception\n");
1588 break;
1589 case 4:
1590 printk(KERN_DEBUG "YIELD Scheduler Exception\n");
1591 break;
1592 case 5:
1593 printk(KERN_DEBUG "Gating Storage Scheduler Exception\n");
1594 break;
1595 default:
1596 printk(KERN_DEBUG "*** UNKNOWN THREAD EXCEPTION %d ***\n",
1597 subcode);
1598 break;
1600 die_if_kernel("MIPS MT Thread exception in kernel", regs);
1602 force_sig(SIGILL, current);
1606 asmlinkage void do_dsp(struct pt_regs *regs)
1608 if (cpu_has_dsp)
1609 panic("Unexpected DSP exception");
1611 force_sig(SIGILL, current);
1614 asmlinkage void do_reserved(struct pt_regs *regs)
1617 * Game over - no way to handle this if it ever occurs. Most probably
1618 * caused by a new unknown cpu type or after another deadly
1619 * hard/software error.
1621 show_regs(regs);
1622 panic("Caught reserved exception %ld - should not happen.",
1623 (regs->cp0_cause & 0x7f) >> 2);
1626 static int __initdata l1parity = 1;
1627 static int __init nol1parity(char *s)
1629 l1parity = 0;
1630 return 1;
1632 __setup("nol1par", nol1parity);
1633 static int __initdata l2parity = 1;
1634 static int __init nol2parity(char *s)
1636 l2parity = 0;
1637 return 1;
1639 __setup("nol2par", nol2parity);
1642 * Some MIPS CPUs can enable/disable for cache parity detection, but do
1643 * it different ways.
1645 static inline void parity_protection_init(void)
1647 #define ERRCTL_PE 0x80000000
1648 #define ERRCTL_L2P 0x00800000
1650 if (mips_cm_revision() >= CM_REV_CM3) {
1651 ulong gcr_ectl, cp0_ectl;
1654 * With CM3 systems we need to ensure that the L1 & L2
1655 * parity enables are set to the same value, since this
1656 * is presumed by the hardware engineers.
1658 * If the user disabled either of L1 or L2 ECC checking,
1659 * disable both.
1661 l1parity &= l2parity;
1662 l2parity &= l1parity;
1664 /* Probe L1 ECC support */
1665 cp0_ectl = read_c0_ecc();
1666 write_c0_ecc(cp0_ectl | ERRCTL_PE);
1667 back_to_back_c0_hazard();
1668 cp0_ectl = read_c0_ecc();
1670 /* Probe L2 ECC support */
1671 gcr_ectl = read_gcr_err_control();
1673 if (!(gcr_ectl & CM_GCR_ERR_CONTROL_L2_ECC_SUPPORT) ||
1674 !(cp0_ectl & ERRCTL_PE)) {
1676 * One of L1 or L2 ECC checking isn't supported,
1677 * so we cannot enable either.
1679 l1parity = l2parity = 0;
1682 /* Configure L1 ECC checking */
1683 if (l1parity)
1684 cp0_ectl |= ERRCTL_PE;
1685 else
1686 cp0_ectl &= ~ERRCTL_PE;
1687 write_c0_ecc(cp0_ectl);
1688 back_to_back_c0_hazard();
1689 WARN_ON(!!(read_c0_ecc() & ERRCTL_PE) != l1parity);
1691 /* Configure L2 ECC checking */
1692 if (l2parity)
1693 gcr_ectl |= CM_GCR_ERR_CONTROL_L2_ECC_EN;
1694 else
1695 gcr_ectl &= ~CM_GCR_ERR_CONTROL_L2_ECC_EN;
1696 write_gcr_err_control(gcr_ectl);
1697 gcr_ectl = read_gcr_err_control();
1698 gcr_ectl &= CM_GCR_ERR_CONTROL_L2_ECC_EN;
1699 WARN_ON(!!gcr_ectl != l2parity);
1701 pr_info("Cache parity protection %sabled\n",
1702 l1parity ? "en" : "dis");
1703 return;
1706 switch (current_cpu_type()) {
1707 case CPU_24K:
1708 case CPU_34K:
1709 case CPU_74K:
1710 case CPU_1004K:
1711 case CPU_1074K:
1712 case CPU_INTERAPTIV:
1713 case CPU_PROAPTIV:
1714 case CPU_P5600:
1715 case CPU_QEMU_GENERIC:
1716 case CPU_P6600:
1718 unsigned long errctl;
1719 unsigned int l1parity_present, l2parity_present;
1721 errctl = read_c0_ecc();
1722 errctl &= ~(ERRCTL_PE|ERRCTL_L2P);
1724 /* probe L1 parity support */
1725 write_c0_ecc(errctl | ERRCTL_PE);
1726 back_to_back_c0_hazard();
1727 l1parity_present = (read_c0_ecc() & ERRCTL_PE);
1729 /* probe L2 parity support */
1730 write_c0_ecc(errctl|ERRCTL_L2P);
1731 back_to_back_c0_hazard();
1732 l2parity_present = (read_c0_ecc() & ERRCTL_L2P);
1734 if (l1parity_present && l2parity_present) {
1735 if (l1parity)
1736 errctl |= ERRCTL_PE;
1737 if (l1parity ^ l2parity)
1738 errctl |= ERRCTL_L2P;
1739 } else if (l1parity_present) {
1740 if (l1parity)
1741 errctl |= ERRCTL_PE;
1742 } else if (l2parity_present) {
1743 if (l2parity)
1744 errctl |= ERRCTL_L2P;
1745 } else {
1746 /* No parity available */
1749 printk(KERN_INFO "Writing ErrCtl register=%08lx\n", errctl);
1751 write_c0_ecc(errctl);
1752 back_to_back_c0_hazard();
1753 errctl = read_c0_ecc();
1754 printk(KERN_INFO "Readback ErrCtl register=%08lx\n", errctl);
1756 if (l1parity_present)
1757 printk(KERN_INFO "Cache parity protection %sabled\n",
1758 (errctl & ERRCTL_PE) ? "en" : "dis");
1760 if (l2parity_present) {
1761 if (l1parity_present && l1parity)
1762 errctl ^= ERRCTL_L2P;
1763 printk(KERN_INFO "L2 cache parity protection %sabled\n",
1764 (errctl & ERRCTL_L2P) ? "en" : "dis");
1767 break;
1769 case CPU_5KC:
1770 case CPU_5KE:
1771 case CPU_LOONGSON1:
1772 write_c0_ecc(0x80000000);
1773 back_to_back_c0_hazard();
1774 /* Set the PE bit (bit 31) in the c0_errctl register. */
1775 printk(KERN_INFO "Cache parity protection %sabled\n",
1776 (read_c0_ecc() & 0x80000000) ? "en" : "dis");
1777 break;
1778 case CPU_20KC:
1779 case CPU_25KF:
1780 /* Clear the DE bit (bit 16) in the c0_status register. */
1781 printk(KERN_INFO "Enable cache parity protection for "
1782 "MIPS 20KC/25KF CPUs.\n");
1783 clear_c0_status(ST0_DE);
1784 break;
1785 default:
1786 break;
1790 asmlinkage void cache_parity_error(void)
1792 const int field = 2 * sizeof(unsigned long);
1793 unsigned int reg_val;
1795 /* For the moment, report the problem and hang. */
1796 printk("Cache error exception:\n");
1797 printk("cp0_errorepc == %0*lx\n", field, read_c0_errorepc());
1798 reg_val = read_c0_cacheerr();
1799 printk("c0_cacheerr == %08x\n", reg_val);
1801 printk("Decoded c0_cacheerr: %s cache fault in %s reference.\n",
1802 reg_val & (1<<30) ? "secondary" : "primary",
1803 reg_val & (1<<31) ? "data" : "insn");
1804 if ((cpu_has_mips_r2_r6) &&
1805 ((current_cpu_data.processor_id & 0xff0000) == PRID_COMP_MIPS)) {
1806 pr_err("Error bits: %s%s%s%s%s%s%s%s\n",
1807 reg_val & (1<<29) ? "ED " : "",
1808 reg_val & (1<<28) ? "ET " : "",
1809 reg_val & (1<<27) ? "ES " : "",
1810 reg_val & (1<<26) ? "EE " : "",
1811 reg_val & (1<<25) ? "EB " : "",
1812 reg_val & (1<<24) ? "EI " : "",
1813 reg_val & (1<<23) ? "E1 " : "",
1814 reg_val & (1<<22) ? "E0 " : "");
1815 } else {
1816 pr_err("Error bits: %s%s%s%s%s%s%s\n",
1817 reg_val & (1<<29) ? "ED " : "",
1818 reg_val & (1<<28) ? "ET " : "",
1819 reg_val & (1<<26) ? "EE " : "",
1820 reg_val & (1<<25) ? "EB " : "",
1821 reg_val & (1<<24) ? "EI " : "",
1822 reg_val & (1<<23) ? "E1 " : "",
1823 reg_val & (1<<22) ? "E0 " : "");
1825 printk("IDX: 0x%08x\n", reg_val & ((1<<22)-1));
1827 #if defined(CONFIG_CPU_MIPS32) || defined(CONFIG_CPU_MIPS64)
1828 if (reg_val & (1<<22))
1829 printk("DErrAddr0: 0x%0*lx\n", field, read_c0_derraddr0());
1831 if (reg_val & (1<<23))
1832 printk("DErrAddr1: 0x%0*lx\n", field, read_c0_derraddr1());
1833 #endif
1835 panic("Can't handle the cache error!");
1838 asmlinkage void do_ftlb(void)
1840 const int field = 2 * sizeof(unsigned long);
1841 unsigned int reg_val;
1843 /* For the moment, report the problem and hang. */
1844 if ((cpu_has_mips_r2_r6) &&
1845 (((current_cpu_data.processor_id & 0xff0000) == PRID_COMP_MIPS) ||
1846 ((current_cpu_data.processor_id & 0xff0000) == PRID_COMP_LOONGSON))) {
1847 pr_err("FTLB error exception, cp0_ecc=0x%08x:\n",
1848 read_c0_ecc());
1849 pr_err("cp0_errorepc == %0*lx\n", field, read_c0_errorepc());
1850 reg_val = read_c0_cacheerr();
1851 pr_err("c0_cacheerr == %08x\n", reg_val);
1853 if ((reg_val & 0xc0000000) == 0xc0000000) {
1854 pr_err("Decoded c0_cacheerr: FTLB parity error\n");
1855 } else {
1856 pr_err("Decoded c0_cacheerr: %s cache fault in %s reference.\n",
1857 reg_val & (1<<30) ? "secondary" : "primary",
1858 reg_val & (1<<31) ? "data" : "insn");
1860 } else {
1861 pr_err("FTLB error exception\n");
1863 /* Just print the cacheerr bits for now */
1864 cache_parity_error();
1868 * SDBBP EJTAG debug exception handler.
1869 * We skip the instruction and return to the next instruction.
1871 void ejtag_exception_handler(struct pt_regs *regs)
1873 const int field = 2 * sizeof(unsigned long);
1874 unsigned long depc, old_epc, old_ra;
1875 unsigned int debug;
1877 printk(KERN_DEBUG "SDBBP EJTAG debug exception - not handled yet, just ignored!\n");
1878 depc = read_c0_depc();
1879 debug = read_c0_debug();
1880 printk(KERN_DEBUG "c0_depc = %0*lx, DEBUG = %08x\n", field, depc, debug);
1881 if (debug & 0x80000000) {
1883 * In branch delay slot.
1884 * We cheat a little bit here and use EPC to calculate the
1885 * debug return address (DEPC). EPC is restored after the
1886 * calculation.
1888 old_epc = regs->cp0_epc;
1889 old_ra = regs->regs[31];
1890 regs->cp0_epc = depc;
1891 compute_return_epc(regs);
1892 depc = regs->cp0_epc;
1893 regs->cp0_epc = old_epc;
1894 regs->regs[31] = old_ra;
1895 } else
1896 depc += 4;
1897 write_c0_depc(depc);
1899 #if 0
1900 printk(KERN_DEBUG "\n\n----- Enable EJTAG single stepping ----\n\n");
1901 write_c0_debug(debug | 0x100);
1902 #endif
1906 * NMI exception handler.
1907 * No lock; only written during early bootup by CPU 0.
1909 static RAW_NOTIFIER_HEAD(nmi_chain);
1911 int register_nmi_notifier(struct notifier_block *nb)
1913 return raw_notifier_chain_register(&nmi_chain, nb);
1916 void __noreturn nmi_exception_handler(struct pt_regs *regs)
1918 char str[100];
1920 nmi_enter();
1921 raw_notifier_call_chain(&nmi_chain, 0, regs);
1922 bust_spinlocks(1);
1923 snprintf(str, 100, "CPU%d NMI taken, CP0_EPC=%lx\n",
1924 smp_processor_id(), regs->cp0_epc);
1925 regs->cp0_epc = read_c0_errorepc();
1926 die(str, regs);
1927 nmi_exit();
1930 #define VECTORSPACING 0x100 /* for EI/VI mode */
1932 unsigned long ebase;
1933 EXPORT_SYMBOL_GPL(ebase);
1934 unsigned long exception_handlers[32];
1935 unsigned long vi_handlers[64];
1937 void __init *set_except_vector(int n, void *addr)
1939 unsigned long handler = (unsigned long) addr;
1940 unsigned long old_handler;
1942 #ifdef CONFIG_CPU_MICROMIPS
1944 * Only the TLB handlers are cache aligned with an even
1945 * address. All other handlers are on an odd address and
1946 * require no modification. Otherwise, MIPS32 mode will
1947 * be entered when handling any TLB exceptions. That
1948 * would be bad...since we must stay in microMIPS mode.
1950 if (!(handler & 0x1))
1951 handler |= 1;
1952 #endif
1953 old_handler = xchg(&exception_handlers[n], handler);
1955 if (n == 0 && cpu_has_divec) {
1956 #ifdef CONFIG_CPU_MICROMIPS
1957 unsigned long jump_mask = ~((1 << 27) - 1);
1958 #else
1959 unsigned long jump_mask = ~((1 << 28) - 1);
1960 #endif
1961 u32 *buf = (u32 *)(ebase + 0x200);
1962 unsigned int k0 = 26;
1963 if ((handler & jump_mask) == ((ebase + 0x200) & jump_mask)) {
1964 uasm_i_j(&buf, handler & ~jump_mask);
1965 uasm_i_nop(&buf);
1966 } else {
1967 UASM_i_LA(&buf, k0, handler);
1968 uasm_i_jr(&buf, k0);
1969 uasm_i_nop(&buf);
1971 local_flush_icache_range(ebase + 0x200, (unsigned long)buf);
1973 return (void *)old_handler;
1976 static void do_default_vi(void)
1978 show_regs(get_irq_regs());
1979 panic("Caught unexpected vectored interrupt.");
1982 static void *set_vi_srs_handler(int n, vi_handler_t addr, int srs)
1984 unsigned long handler;
1985 unsigned long old_handler = vi_handlers[n];
1986 int srssets = current_cpu_data.srsets;
1987 u16 *h;
1988 unsigned char *b;
1990 BUG_ON(!cpu_has_veic && !cpu_has_vint);
1992 if (addr == NULL) {
1993 handler = (unsigned long) do_default_vi;
1994 srs = 0;
1995 } else
1996 handler = (unsigned long) addr;
1997 vi_handlers[n] = handler;
1999 b = (unsigned char *)(ebase + 0x200 + n*VECTORSPACING);
2001 if (srs >= srssets)
2002 panic("Shadow register set %d not supported", srs);
2004 if (cpu_has_veic) {
2005 if (board_bind_eic_interrupt)
2006 board_bind_eic_interrupt(n, srs);
2007 } else if (cpu_has_vint) {
2008 /* SRSMap is only defined if shadow sets are implemented */
2009 if (srssets > 1)
2010 change_c0_srsmap(0xf << n*4, srs << n*4);
2013 if (srs == 0) {
2015 * If no shadow set is selected then use the default handler
2016 * that does normal register saving and standard interrupt exit
2018 extern char except_vec_vi, except_vec_vi_lui;
2019 extern char except_vec_vi_ori, except_vec_vi_end;
2020 extern char rollback_except_vec_vi;
2021 char *vec_start = using_rollback_handler() ?
2022 &rollback_except_vec_vi : &except_vec_vi;
2023 #if defined(CONFIG_CPU_MICROMIPS) || defined(CONFIG_CPU_BIG_ENDIAN)
2024 const int lui_offset = &except_vec_vi_lui - vec_start + 2;
2025 const int ori_offset = &except_vec_vi_ori - vec_start + 2;
2026 #else
2027 const int lui_offset = &except_vec_vi_lui - vec_start;
2028 const int ori_offset = &except_vec_vi_ori - vec_start;
2029 #endif
2030 const int handler_len = &except_vec_vi_end - vec_start;
2032 if (handler_len > VECTORSPACING) {
2034 * Sigh... panicing won't help as the console
2035 * is probably not configured :(
2037 panic("VECTORSPACING too small");
2040 set_handler(((unsigned long)b - ebase), vec_start,
2041 #ifdef CONFIG_CPU_MICROMIPS
2042 (handler_len - 1));
2043 #else
2044 handler_len);
2045 #endif
2046 h = (u16 *)(b + lui_offset);
2047 *h = (handler >> 16) & 0xffff;
2048 h = (u16 *)(b + ori_offset);
2049 *h = (handler & 0xffff);
2050 local_flush_icache_range((unsigned long)b,
2051 (unsigned long)(b+handler_len));
2053 else {
2055 * In other cases jump directly to the interrupt handler. It
2056 * is the handler's responsibility to save registers if required
2057 * (eg hi/lo) and return from the exception using "eret".
2059 u32 insn;
2061 h = (u16 *)b;
2062 /* j handler */
2063 #ifdef CONFIG_CPU_MICROMIPS
2064 insn = 0xd4000000 | (((u32)handler & 0x07ffffff) >> 1);
2065 #else
2066 insn = 0x08000000 | (((u32)handler & 0x0fffffff) >> 2);
2067 #endif
2068 h[0] = (insn >> 16) & 0xffff;
2069 h[1] = insn & 0xffff;
2070 h[2] = 0;
2071 h[3] = 0;
2072 local_flush_icache_range((unsigned long)b,
2073 (unsigned long)(b+8));
2076 return (void *)old_handler;
2079 void *set_vi_handler(int n, vi_handler_t addr)
2081 return set_vi_srs_handler(n, addr, 0);
2084 extern void tlb_init(void);
2087 * Timer interrupt
2089 int cp0_compare_irq;
2090 EXPORT_SYMBOL_GPL(cp0_compare_irq);
2091 int cp0_compare_irq_shift;
2094 * Performance counter IRQ or -1 if shared with timer
2096 int cp0_perfcount_irq;
2097 EXPORT_SYMBOL_GPL(cp0_perfcount_irq);
2100 * Fast debug channel IRQ or -1 if not present
2102 int cp0_fdc_irq;
2103 EXPORT_SYMBOL_GPL(cp0_fdc_irq);
2105 static int noulri;
2107 static int __init ulri_disable(char *s)
2109 pr_info("Disabling ulri\n");
2110 noulri = 1;
2112 return 1;
2114 __setup("noulri", ulri_disable);
2116 /* configure STATUS register */
2117 static void configure_status(void)
2120 * Disable coprocessors and select 32-bit or 64-bit addressing
2121 * and the 16/32 or 32/32 FPR register model. Reset the BEV
2122 * flag that some firmware may have left set and the TS bit (for
2123 * IP27). Set XX for ISA IV code to work.
2125 unsigned int status_set = ST0_CU0;
2126 #ifdef CONFIG_64BIT
2127 status_set |= ST0_FR|ST0_KX|ST0_SX|ST0_UX;
2128 #endif
2129 if (current_cpu_data.isa_level & MIPS_CPU_ISA_IV)
2130 status_set |= ST0_XX;
2131 if (cpu_has_dsp)
2132 status_set |= ST0_MX;
2134 change_c0_status(ST0_CU|ST0_MX|ST0_RE|ST0_FR|ST0_BEV|ST0_TS|ST0_KX|ST0_SX|ST0_UX,
2135 status_set);
2138 unsigned int hwrena;
2139 EXPORT_SYMBOL_GPL(hwrena);
2141 /* configure HWRENA register */
2142 static void configure_hwrena(void)
2144 hwrena = cpu_hwrena_impl_bits;
2146 if (cpu_has_mips_r2_r6)
2147 hwrena |= MIPS_HWRENA_CPUNUM |
2148 MIPS_HWRENA_SYNCISTEP |
2149 MIPS_HWRENA_CC |
2150 MIPS_HWRENA_CCRES;
2152 if (!noulri && cpu_has_userlocal)
2153 hwrena |= MIPS_HWRENA_ULR;
2155 if (hwrena)
2156 write_c0_hwrena(hwrena);
2159 static void configure_exception_vector(void)
2161 if (cpu_has_veic || cpu_has_vint) {
2162 unsigned long sr = set_c0_status(ST0_BEV);
2163 /* If available, use WG to set top bits of EBASE */
2164 if (cpu_has_ebase_wg) {
2165 #ifdef CONFIG_64BIT
2166 write_c0_ebase_64(ebase | MIPS_EBASE_WG);
2167 #else
2168 write_c0_ebase(ebase | MIPS_EBASE_WG);
2169 #endif
2171 write_c0_ebase(ebase);
2172 write_c0_status(sr);
2173 /* Setting vector spacing enables EI/VI mode */
2174 change_c0_intctl(0x3e0, VECTORSPACING);
2176 if (cpu_has_divec) {
2177 if (cpu_has_mipsmt) {
2178 unsigned int vpflags = dvpe();
2179 set_c0_cause(CAUSEF_IV);
2180 evpe(vpflags);
2181 } else
2182 set_c0_cause(CAUSEF_IV);
2186 void per_cpu_trap_init(bool is_boot_cpu)
2188 unsigned int cpu = smp_processor_id();
2190 configure_status();
2191 configure_hwrena();
2193 configure_exception_vector();
2196 * Before R2 both interrupt numbers were fixed to 7, so on R2 only:
2198 * o read IntCtl.IPTI to determine the timer interrupt
2199 * o read IntCtl.IPPCI to determine the performance counter interrupt
2200 * o read IntCtl.IPFDC to determine the fast debug channel interrupt
2202 if (cpu_has_mips_r2_r6) {
2204 * We shouldn't trust a secondary core has a sane EBASE register
2205 * so use the one calculated by the boot CPU.
2207 if (!is_boot_cpu) {
2208 /* If available, use WG to set top bits of EBASE */
2209 if (cpu_has_ebase_wg) {
2210 #ifdef CONFIG_64BIT
2211 write_c0_ebase_64(ebase | MIPS_EBASE_WG);
2212 #else
2213 write_c0_ebase(ebase | MIPS_EBASE_WG);
2214 #endif
2216 write_c0_ebase(ebase);
2219 cp0_compare_irq_shift = CAUSEB_TI - CAUSEB_IP;
2220 cp0_compare_irq = (read_c0_intctl() >> INTCTLB_IPTI) & 7;
2221 cp0_perfcount_irq = (read_c0_intctl() >> INTCTLB_IPPCI) & 7;
2222 cp0_fdc_irq = (read_c0_intctl() >> INTCTLB_IPFDC) & 7;
2223 if (!cp0_fdc_irq)
2224 cp0_fdc_irq = -1;
2226 } else {
2227 cp0_compare_irq = CP0_LEGACY_COMPARE_IRQ;
2228 cp0_compare_irq_shift = CP0_LEGACY_PERFCNT_IRQ;
2229 cp0_perfcount_irq = -1;
2230 cp0_fdc_irq = -1;
2233 if (!cpu_data[cpu].asid_cache)
2234 cpu_data[cpu].asid_cache = asid_first_version(cpu);
2236 mmgrab(&init_mm);
2237 current->active_mm = &init_mm;
2238 BUG_ON(current->mm);
2239 enter_lazy_tlb(&init_mm, current);
2241 /* Boot CPU's cache setup in setup_arch(). */
2242 if (!is_boot_cpu)
2243 cpu_cache_init();
2244 tlb_init();
2245 TLBMISS_HANDLER_SETUP();
2248 /* Install CPU exception handler */
2249 void set_handler(unsigned long offset, void *addr, unsigned long size)
2251 #ifdef CONFIG_CPU_MICROMIPS
2252 memcpy((void *)(ebase + offset), ((unsigned char *)addr - 1), size);
2253 #else
2254 memcpy((void *)(ebase + offset), addr, size);
2255 #endif
2256 local_flush_icache_range(ebase + offset, ebase + offset + size);
2259 static const char panic_null_cerr[] =
2260 "Trying to set NULL cache error exception handler\n";
2263 * Install uncached CPU exception handler.
2264 * This is suitable only for the cache error exception which is the only
2265 * exception handler that is being run uncached.
2267 void set_uncached_handler(unsigned long offset, void *addr,
2268 unsigned long size)
2270 unsigned long uncached_ebase = CKSEG1ADDR(ebase);
2272 if (!addr)
2273 panic(panic_null_cerr);
2275 memcpy((void *)(uncached_ebase + offset), addr, size);
2278 static int __initdata rdhwr_noopt;
2279 static int __init set_rdhwr_noopt(char *str)
2281 rdhwr_noopt = 1;
2282 return 1;
2285 __setup("rdhwr_noopt", set_rdhwr_noopt);
2287 void __init trap_init(void)
2289 extern char except_vec3_generic;
2290 extern char except_vec4;
2291 extern char except_vec3_r4000;
2292 unsigned long i;
2294 check_wait();
2296 if (cpu_has_veic || cpu_has_vint) {
2297 unsigned long size = 0x200 + VECTORSPACING*64;
2298 phys_addr_t ebase_pa;
2300 ebase = (unsigned long)
2301 __alloc_bootmem(size, 1 << fls(size), 0);
2304 * Try to ensure ebase resides in KSeg0 if possible.
2306 * It shouldn't generally be in XKPhys on MIPS64 to avoid
2307 * hitting a poorly defined exception base for Cache Errors.
2308 * The allocation is likely to be in the low 512MB of physical,
2309 * in which case we should be able to convert to KSeg0.
2311 * EVA is special though as it allows segments to be rearranged
2312 * and to become uncached during cache error handling.
2314 ebase_pa = __pa(ebase);
2315 if (!IS_ENABLED(CONFIG_EVA) && !WARN_ON(ebase_pa >= 0x20000000))
2316 ebase = CKSEG0ADDR(ebase_pa);
2317 } else {
2318 ebase = CAC_BASE;
2320 if (cpu_has_mips_r2_r6) {
2321 if (cpu_has_ebase_wg) {
2322 #ifdef CONFIG_64BIT
2323 ebase = (read_c0_ebase_64() & ~0xfff);
2324 #else
2325 ebase = (read_c0_ebase() & ~0xfff);
2326 #endif
2327 } else {
2328 ebase += (read_c0_ebase() & 0x3ffff000);
2333 if (cpu_has_mmips) {
2334 unsigned int config3 = read_c0_config3();
2336 if (IS_ENABLED(CONFIG_CPU_MICROMIPS))
2337 write_c0_config3(config3 | MIPS_CONF3_ISA_OE);
2338 else
2339 write_c0_config3(config3 & ~MIPS_CONF3_ISA_OE);
2342 if (board_ebase_setup)
2343 board_ebase_setup();
2344 per_cpu_trap_init(true);
2347 * Copy the generic exception handlers to their final destination.
2348 * This will be overridden later as suitable for a particular
2349 * configuration.
2351 set_handler(0x180, &except_vec3_generic, 0x80);
2354 * Setup default vectors
2356 for (i = 0; i <= 31; i++)
2357 set_except_vector(i, handle_reserved);
2360 * Copy the EJTAG debug exception vector handler code to it's final
2361 * destination.
2363 if (cpu_has_ejtag && board_ejtag_handler_setup)
2364 board_ejtag_handler_setup();
2367 * Only some CPUs have the watch exceptions.
2369 if (cpu_has_watch)
2370 set_except_vector(EXCCODE_WATCH, handle_watch);
2373 * Initialise interrupt handlers
2375 if (cpu_has_veic || cpu_has_vint) {
2376 int nvec = cpu_has_veic ? 64 : 8;
2377 for (i = 0; i < nvec; i++)
2378 set_vi_handler(i, NULL);
2380 else if (cpu_has_divec)
2381 set_handler(0x200, &except_vec4, 0x8);
2384 * Some CPUs can enable/disable for cache parity detection, but does
2385 * it different ways.
2387 parity_protection_init();
2390 * The Data Bus Errors / Instruction Bus Errors are signaled
2391 * by external hardware. Therefore these two exceptions
2392 * may have board specific handlers.
2394 if (board_be_init)
2395 board_be_init();
2397 set_except_vector(EXCCODE_INT, using_rollback_handler() ?
2398 rollback_handle_int : handle_int);
2399 set_except_vector(EXCCODE_MOD, handle_tlbm);
2400 set_except_vector(EXCCODE_TLBL, handle_tlbl);
2401 set_except_vector(EXCCODE_TLBS, handle_tlbs);
2403 set_except_vector(EXCCODE_ADEL, handle_adel);
2404 set_except_vector(EXCCODE_ADES, handle_ades);
2406 set_except_vector(EXCCODE_IBE, handle_ibe);
2407 set_except_vector(EXCCODE_DBE, handle_dbe);
2409 set_except_vector(EXCCODE_SYS, handle_sys);
2410 set_except_vector(EXCCODE_BP, handle_bp);
2412 if (rdhwr_noopt)
2413 set_except_vector(EXCCODE_RI, handle_ri);
2414 else {
2415 if (cpu_has_vtag_icache)
2416 set_except_vector(EXCCODE_RI, handle_ri_rdhwr_tlbp);
2417 else if (current_cpu_type() == CPU_LOONGSON3)
2418 set_except_vector(EXCCODE_RI, handle_ri_rdhwr_tlbp);
2419 else
2420 set_except_vector(EXCCODE_RI, handle_ri_rdhwr);
2423 set_except_vector(EXCCODE_CPU, handle_cpu);
2424 set_except_vector(EXCCODE_OV, handle_ov);
2425 set_except_vector(EXCCODE_TR, handle_tr);
2426 set_except_vector(EXCCODE_MSAFPE, handle_msa_fpe);
2428 if (board_nmi_handler_setup)
2429 board_nmi_handler_setup();
2431 if (cpu_has_fpu && !cpu_has_nofpuex)
2432 set_except_vector(EXCCODE_FPE, handle_fpe);
2434 set_except_vector(MIPS_EXCCODE_TLBPAR, handle_ftlb);
2436 if (cpu_has_rixiex) {
2437 set_except_vector(EXCCODE_TLBRI, tlb_do_page_fault_0);
2438 set_except_vector(EXCCODE_TLBXI, tlb_do_page_fault_0);
2441 set_except_vector(EXCCODE_MSADIS, handle_msa);
2442 set_except_vector(EXCCODE_MDMX, handle_mdmx);
2444 if (cpu_has_mcheck)
2445 set_except_vector(EXCCODE_MCHECK, handle_mcheck);
2447 if (cpu_has_mipsmt)
2448 set_except_vector(EXCCODE_THREAD, handle_mt);
2450 set_except_vector(EXCCODE_DSPDIS, handle_dsp);
2452 if (board_cache_error_setup)
2453 board_cache_error_setup();
2455 if (cpu_has_vce)
2456 /* Special exception: R4[04]00 uses also the divec space. */
2457 set_handler(0x180, &except_vec3_r4000, 0x100);
2458 else if (cpu_has_4kex)
2459 set_handler(0x180, &except_vec3_generic, 0x80);
2460 else
2461 set_handler(0x080, &except_vec3_generic, 0x80);
2463 local_flush_icache_range(ebase, ebase + 0x400);
2465 sort_extable(__start___dbe_table, __stop___dbe_table);
2467 cu2_notifier(default_cu2_call, 0x80000000); /* Run last */
2470 static int trap_pm_notifier(struct notifier_block *self, unsigned long cmd,
2471 void *v)
2473 switch (cmd) {
2474 case CPU_PM_ENTER_FAILED:
2475 case CPU_PM_EXIT:
2476 configure_status();
2477 configure_hwrena();
2478 configure_exception_vector();
2480 /* Restore register with CPU number for TLB handlers */
2481 TLBMISS_HANDLER_RESTORE();
2483 break;
2486 return NOTIFY_OK;
2489 static struct notifier_block trap_pm_notifier_block = {
2490 .notifier_call = trap_pm_notifier,
2493 static int __init trap_pm_init(void)
2495 return cpu_pm_register_notifier(&trap_pm_notifier_block);
2497 arch_initcall(trap_pm_init);