2 * This file is subject to the terms and conditions of the GNU General Public
3 * License. See the file "COPYING" in the main directory of this archive
6 * Copyright (C) 1994 - 1999, 2000, 01, 06 Ralf Baechle
7 * Copyright (C) 1995, 1996 Paul M. Antoine
8 * Copyright (C) 1998 Ulf Carlsson
9 * Copyright (C) 1999 Silicon Graphics, Inc.
10 * Kevin D. Kissell, kevink@mips.com and Carsten Langgaard, carstenl@mips.com
11 * Copyright (C) 2002, 2003, 2004, 2005, 2007 Maciej W. Rozycki
12 * Copyright (C) 2000, 2001, 2012 MIPS Technologies, Inc. All rights reserved.
13 * Copyright (C) 2014, Imagination Technologies Ltd.
15 #include <linux/bitops.h>
16 #include <linux/bug.h>
17 #include <linux/compiler.h>
18 #include <linux/context_tracking.h>
19 #include <linux/cpu_pm.h>
20 #include <linux/kexec.h>
21 #include <linux/init.h>
22 #include <linux/kernel.h>
23 #include <linux/module.h>
24 #include <linux/extable.h>
26 #include <linux/sched/mm.h>
27 #include <linux/sched/debug.h>
28 #include <linux/smp.h>
29 #include <linux/spinlock.h>
30 #include <linux/kallsyms.h>
31 #include <linux/bootmem.h>
32 #include <linux/interrupt.h>
33 #include <linux/ptrace.h>
34 #include <linux/kgdb.h>
35 #include <linux/kdebug.h>
36 #include <linux/kprobes.h>
37 #include <linux/notifier.h>
38 #include <linux/kdb.h>
39 #include <linux/irq.h>
40 #include <linux/perf_event.h>
42 #include <asm/addrspace.h>
43 #include <asm/bootinfo.h>
44 #include <asm/branch.h>
45 #include <asm/break.h>
48 #include <asm/cpu-type.h>
51 #include <asm/fpu_emulator.h>
53 #include <asm/mips-cps.h>
54 #include <asm/mips-r2-to-r6-emul.h>
55 #include <asm/mipsregs.h>
56 #include <asm/mipsmtregs.h>
57 #include <asm/module.h>
59 #include <asm/pgtable.h>
60 #include <asm/ptrace.h>
61 #include <asm/sections.h>
62 #include <asm/siginfo.h>
63 #include <asm/tlbdebug.h>
64 #include <asm/traps.h>
65 #include <linux/uaccess.h>
66 #include <asm/watch.h>
67 #include <asm/mmu_context.h>
68 #include <asm/types.h>
69 #include <asm/stacktrace.h>
72 extern void check_wait(void);
73 extern asmlinkage
void rollback_handle_int(void);
74 extern asmlinkage
void handle_int(void);
75 extern u32 handle_tlbl
[];
76 extern u32 handle_tlbs
[];
77 extern u32 handle_tlbm
[];
78 extern asmlinkage
void handle_adel(void);
79 extern asmlinkage
void handle_ades(void);
80 extern asmlinkage
void handle_ibe(void);
81 extern asmlinkage
void handle_dbe(void);
82 extern asmlinkage
void handle_sys(void);
83 extern asmlinkage
void handle_bp(void);
84 extern asmlinkage
void handle_ri(void);
85 extern asmlinkage
void handle_ri_rdhwr_tlbp(void);
86 extern asmlinkage
void handle_ri_rdhwr(void);
87 extern asmlinkage
void handle_cpu(void);
88 extern asmlinkage
void handle_ov(void);
89 extern asmlinkage
void handle_tr(void);
90 extern asmlinkage
void handle_msa_fpe(void);
91 extern asmlinkage
void handle_fpe(void);
92 extern asmlinkage
void handle_ftlb(void);
93 extern asmlinkage
void handle_msa(void);
94 extern asmlinkage
void handle_mdmx(void);
95 extern asmlinkage
void handle_watch(void);
96 extern asmlinkage
void handle_mt(void);
97 extern asmlinkage
void handle_dsp(void);
98 extern asmlinkage
void handle_mcheck(void);
99 extern asmlinkage
void handle_reserved(void);
100 extern void tlb_do_page_fault_0(void);
102 void (*board_be_init
)(void);
103 int (*board_be_handler
)(struct pt_regs
*regs
, int is_fixup
);
104 void (*board_nmi_handler_setup
)(void);
105 void (*board_ejtag_handler_setup
)(void);
106 void (*board_bind_eic_interrupt
)(int irq
, int regset
);
107 void (*board_ebase_setup
)(void);
108 void(*board_cache_error_setup
)(void);
110 static void show_raw_backtrace(unsigned long reg29
)
112 unsigned long *sp
= (unsigned long *)(reg29
& ~3);
115 printk("Call Trace:");
116 #ifdef CONFIG_KALLSYMS
119 while (!kstack_end(sp
)) {
120 unsigned long __user
*p
=
121 (unsigned long __user
*)(unsigned long)sp
++;
122 if (__get_user(addr
, p
)) {
123 printk(" (Bad stack address)");
126 if (__kernel_text_address(addr
))
132 #ifdef CONFIG_KALLSYMS
134 static int __init
set_raw_show_trace(char *str
)
139 __setup("raw_show_trace", set_raw_show_trace
);
142 static void show_backtrace(struct task_struct
*task
, const struct pt_regs
*regs
)
144 unsigned long sp
= regs
->regs
[29];
145 unsigned long ra
= regs
->regs
[31];
146 unsigned long pc
= regs
->cp0_epc
;
151 if (raw_show_trace
|| user_mode(regs
) || !__kernel_text_address(pc
)) {
152 show_raw_backtrace(sp
);
155 printk("Call Trace:\n");
158 pc
= unwind_stack(task
, &sp
, pc
, &ra
);
164 * This routine abuses get_user()/put_user() to reference pointers
165 * with at least a bit of error checking ...
167 static void show_stacktrace(struct task_struct
*task
,
168 const struct pt_regs
*regs
)
170 const int field
= 2 * sizeof(unsigned long);
173 unsigned long __user
*sp
= (unsigned long __user
*)regs
->regs
[29];
177 while ((unsigned long) sp
& (PAGE_SIZE
- 1)) {
178 if (i
&& ((i
% (64 / field
)) == 0)) {
187 if (__get_user(stackdata
, sp
++)) {
188 pr_cont(" (Bad stack address)");
192 pr_cont(" %0*lx", field
, stackdata
);
196 show_backtrace(task
, regs
);
199 void show_stack(struct task_struct
*task
, unsigned long *sp
)
202 mm_segment_t old_fs
= get_fs();
204 regs
.cp0_status
= KSU_KERNEL
;
206 regs
.regs
[29] = (unsigned long)sp
;
210 if (task
&& task
!= current
) {
211 regs
.regs
[29] = task
->thread
.reg29
;
213 regs
.cp0_epc
= task
->thread
.reg31
;
214 #ifdef CONFIG_KGDB_KDB
215 } else if (atomic_read(&kgdb_active
) != -1 &&
217 memcpy(®s
, kdb_current_regs
, sizeof(regs
));
218 #endif /* CONFIG_KGDB_KDB */
220 prepare_frametrace(®s
);
224 * show_stack() deals exclusively with kernel mode, so be sure to access
225 * the stack in the kernel (not user) address space.
228 show_stacktrace(task
, ®s
);
232 static void show_code(unsigned int __user
*pc
)
235 unsigned short __user
*pc16
= NULL
;
239 if ((unsigned long)pc
& 1)
240 pc16
= (unsigned short __user
*)((unsigned long)pc
& ~1);
241 for(i
= -3 ; i
< 6 ; i
++) {
243 if (pc16
? __get_user(insn
, pc16
+ i
) : __get_user(insn
, pc
+ i
)) {
244 pr_cont(" (Bad address in epc)\n");
247 pr_cont("%c%0*x%c", (i
?' ':'<'), pc16
? 4 : 8, insn
, (i
?' ':'>'));
252 static void __show_regs(const struct pt_regs
*regs
)
254 const int field
= 2 * sizeof(unsigned long);
255 unsigned int cause
= regs
->cp0_cause
;
256 unsigned int exccode
;
259 show_regs_print_info(KERN_DEFAULT
);
262 * Saved main processor registers
264 for (i
= 0; i
< 32; ) {
268 pr_cont(" %0*lx", field
, 0UL);
269 else if (i
== 26 || i
== 27)
270 pr_cont(" %*s", field
, "");
272 pr_cont(" %0*lx", field
, regs
->regs
[i
]);
279 #ifdef CONFIG_CPU_HAS_SMARTMIPS
280 printk("Acx : %0*lx\n", field
, regs
->acx
);
282 printk("Hi : %0*lx\n", field
, regs
->hi
);
283 printk("Lo : %0*lx\n", field
, regs
->lo
);
286 * Saved cp0 registers
288 printk("epc : %0*lx %pS\n", field
, regs
->cp0_epc
,
289 (void *) regs
->cp0_epc
);
290 printk("ra : %0*lx %pS\n", field
, regs
->regs
[31],
291 (void *) regs
->regs
[31]);
293 printk("Status: %08x ", (uint32_t) regs
->cp0_status
);
296 if (regs
->cp0_status
& ST0_KUO
)
298 if (regs
->cp0_status
& ST0_IEO
)
300 if (regs
->cp0_status
& ST0_KUP
)
302 if (regs
->cp0_status
& ST0_IEP
)
304 if (regs
->cp0_status
& ST0_KUC
)
306 if (regs
->cp0_status
& ST0_IEC
)
308 } else if (cpu_has_4kex
) {
309 if (regs
->cp0_status
& ST0_KX
)
311 if (regs
->cp0_status
& ST0_SX
)
313 if (regs
->cp0_status
& ST0_UX
)
315 switch (regs
->cp0_status
& ST0_KSU
) {
320 pr_cont("SUPERVISOR ");
326 pr_cont("BAD_MODE ");
329 if (regs
->cp0_status
& ST0_ERL
)
331 if (regs
->cp0_status
& ST0_EXL
)
333 if (regs
->cp0_status
& ST0_IE
)
338 exccode
= (cause
& CAUSEF_EXCCODE
) >> CAUSEB_EXCCODE
;
339 printk("Cause : %08x (ExcCode %02x)\n", cause
, exccode
);
341 if (1 <= exccode
&& exccode
<= 5)
342 printk("BadVA : %0*lx\n", field
, regs
->cp0_badvaddr
);
344 printk("PrId : %08x (%s)\n", read_c0_prid(),
349 * FIXME: really the generic show_regs should take a const pointer argument.
351 void show_regs(struct pt_regs
*regs
)
353 __show_regs((struct pt_regs
*)regs
);
356 void show_registers(struct pt_regs
*regs
)
358 const int field
= 2 * sizeof(unsigned long);
359 mm_segment_t old_fs
= get_fs();
363 printk("Process %s (pid: %d, threadinfo=%p, task=%p, tls=%0*lx)\n",
364 current
->comm
, current
->pid
, current_thread_info(), current
,
365 field
, current_thread_info()->tp_value
);
366 if (cpu_has_userlocal
) {
369 tls
= read_c0_userlocal();
370 if (tls
!= current_thread_info()->tp_value
)
371 printk("*HwTLS: %0*lx\n", field
, tls
);
374 if (!user_mode(regs
))
375 /* Necessary for getting the correct stack content */
377 show_stacktrace(current
, regs
);
378 show_code((unsigned int __user
*) regs
->cp0_epc
);
383 static DEFINE_RAW_SPINLOCK(die_lock
);
385 void __noreturn
die(const char *str
, struct pt_regs
*regs
)
387 static int die_counter
;
392 if (notify_die(DIE_OOPS
, str
, regs
, 0, current
->thread
.trap_nr
,
393 SIGSEGV
) == NOTIFY_STOP
)
397 raw_spin_lock_irq(&die_lock
);
400 printk("%s[#%d]:\n", str
, ++die_counter
);
401 show_registers(regs
);
402 add_taint(TAINT_DIE
, LOCKDEP_NOW_UNRELIABLE
);
403 raw_spin_unlock_irq(&die_lock
);
408 panic("Fatal exception in interrupt");
411 panic("Fatal exception");
413 if (regs
&& kexec_should_crash(current
))
419 extern struct exception_table_entry __start___dbe_table
[];
420 extern struct exception_table_entry __stop___dbe_table
[];
423 " .section __dbe_table, \"a\"\n"
426 /* Given an address, look for it in the exception tables. */
427 static const struct exception_table_entry
*search_dbe_tables(unsigned long addr
)
429 const struct exception_table_entry
*e
;
431 e
= search_extable(__start___dbe_table
,
432 __stop___dbe_table
- __start___dbe_table
, addr
);
434 e
= search_module_dbetables(addr
);
438 asmlinkage
void do_be(struct pt_regs
*regs
)
440 const int field
= 2 * sizeof(unsigned long);
441 const struct exception_table_entry
*fixup
= NULL
;
442 int data
= regs
->cp0_cause
& 4;
443 int action
= MIPS_BE_FATAL
;
444 enum ctx_state prev_state
;
446 prev_state
= exception_enter();
447 /* XXX For now. Fixme, this searches the wrong table ... */
448 if (data
&& !user_mode(regs
))
449 fixup
= search_dbe_tables(exception_epc(regs
));
452 action
= MIPS_BE_FIXUP
;
454 if (board_be_handler
)
455 action
= board_be_handler(regs
, fixup
!= NULL
);
457 mips_cm_error_report();
460 case MIPS_BE_DISCARD
:
464 regs
->cp0_epc
= fixup
->nextinsn
;
473 * Assume it would be too dangerous to continue ...
475 printk(KERN_ALERT
"%s bus error, epc == %0*lx, ra == %0*lx\n",
476 data
? "Data" : "Instruction",
477 field
, regs
->cp0_epc
, field
, regs
->regs
[31]);
478 if (notify_die(DIE_OOPS
, "bus error", regs
, 0, current
->thread
.trap_nr
,
479 SIGBUS
) == NOTIFY_STOP
)
482 die_if_kernel("Oops", regs
);
483 force_sig(SIGBUS
, current
);
486 exception_exit(prev_state
);
490 * ll/sc, rdhwr, sync emulation
493 #define OPCODE 0xfc000000
494 #define BASE 0x03e00000
495 #define RT 0x001f0000
496 #define OFFSET 0x0000ffff
497 #define LL 0xc0000000
498 #define SC 0xe0000000
499 #define SPEC0 0x00000000
500 #define SPEC3 0x7c000000
501 #define RD 0x0000f800
502 #define FUNC 0x0000003f
503 #define SYNC 0x0000000f
504 #define RDHWR 0x0000003b
506 /* microMIPS definitions */
507 #define MM_POOL32A_FUNC 0xfc00ffff
508 #define MM_RDHWR 0x00006b3c
509 #define MM_RS 0x001f0000
510 #define MM_RT 0x03e00000
513 * The ll_bit is cleared by r*_switch.S
517 struct task_struct
*ll_task
;
519 static inline int simulate_ll(struct pt_regs
*regs
, unsigned int opcode
)
521 unsigned long value
, __user
*vaddr
;
525 * analyse the ll instruction that just caused a ri exception
526 * and put the referenced address to addr.
529 /* sign extend offset */
530 offset
= opcode
& OFFSET
;
534 vaddr
= (unsigned long __user
*)
535 ((unsigned long)(regs
->regs
[(opcode
& BASE
) >> 21]) + offset
);
537 if ((unsigned long)vaddr
& 3)
539 if (get_user(value
, vaddr
))
544 if (ll_task
== NULL
|| ll_task
== current
) {
553 regs
->regs
[(opcode
& RT
) >> 16] = value
;
558 static inline int simulate_sc(struct pt_regs
*regs
, unsigned int opcode
)
560 unsigned long __user
*vaddr
;
565 * analyse the sc instruction that just caused a ri exception
566 * and put the referenced address to addr.
569 /* sign extend offset */
570 offset
= opcode
& OFFSET
;
574 vaddr
= (unsigned long __user
*)
575 ((unsigned long)(regs
->regs
[(opcode
& BASE
) >> 21]) + offset
);
576 reg
= (opcode
& RT
) >> 16;
578 if ((unsigned long)vaddr
& 3)
583 if (ll_bit
== 0 || ll_task
!= current
) {
591 if (put_user(regs
->regs
[reg
], vaddr
))
600 * ll uses the opcode of lwc0 and sc uses the opcode of swc0. That is both
601 * opcodes are supposed to result in coprocessor unusable exceptions if
602 * executed on ll/sc-less processors. That's the theory. In practice a
603 * few processors such as NEC's VR4100 throw reserved instruction exceptions
604 * instead, so we're doing the emulation thing in both exception handlers.
606 static int simulate_llsc(struct pt_regs
*regs
, unsigned int opcode
)
608 if ((opcode
& OPCODE
) == LL
) {
609 perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS
,
611 return simulate_ll(regs
, opcode
);
613 if ((opcode
& OPCODE
) == SC
) {
614 perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS
,
616 return simulate_sc(regs
, opcode
);
619 return -1; /* Must be something else ... */
623 * Simulate trapping 'rdhwr' instructions to provide user accessible
624 * registers not implemented in hardware.
626 static int simulate_rdhwr(struct pt_regs
*regs
, int rd
, int rt
)
628 struct thread_info
*ti
= task_thread_info(current
);
630 perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS
,
633 case MIPS_HWR_CPUNUM
: /* CPU number */
634 regs
->regs
[rt
] = smp_processor_id();
636 case MIPS_HWR_SYNCISTEP
: /* SYNCI length */
637 regs
->regs
[rt
] = min(current_cpu_data
.dcache
.linesz
,
638 current_cpu_data
.icache
.linesz
);
640 case MIPS_HWR_CC
: /* Read count register */
641 regs
->regs
[rt
] = read_c0_count();
643 case MIPS_HWR_CCRES
: /* Count register resolution */
644 switch (current_cpu_type()) {
653 case MIPS_HWR_ULR
: /* Read UserLocal register */
654 regs
->regs
[rt
] = ti
->tp_value
;
661 static int simulate_rdhwr_normal(struct pt_regs
*regs
, unsigned int opcode
)
663 if ((opcode
& OPCODE
) == SPEC3
&& (opcode
& FUNC
) == RDHWR
) {
664 int rd
= (opcode
& RD
) >> 11;
665 int rt
= (opcode
& RT
) >> 16;
667 simulate_rdhwr(regs
, rd
, rt
);
675 static int simulate_rdhwr_mm(struct pt_regs
*regs
, unsigned int opcode
)
677 if ((opcode
& MM_POOL32A_FUNC
) == MM_RDHWR
) {
678 int rd
= (opcode
& MM_RS
) >> 16;
679 int rt
= (opcode
& MM_RT
) >> 21;
680 simulate_rdhwr(regs
, rd
, rt
);
688 static int simulate_sync(struct pt_regs
*regs
, unsigned int opcode
)
690 if ((opcode
& OPCODE
) == SPEC0
&& (opcode
& FUNC
) == SYNC
) {
691 perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS
,
696 return -1; /* Must be something else ... */
699 asmlinkage
void do_ov(struct pt_regs
*regs
)
701 enum ctx_state prev_state
;
704 clear_siginfo(&info
);
705 info
.si_signo
= SIGFPE
;
706 info
.si_code
= FPE_INTOVF
;
707 info
.si_addr
= (void __user
*)regs
->cp0_epc
;
709 prev_state
= exception_enter();
710 die_if_kernel("Integer overflow", regs
);
712 force_sig_info(SIGFPE
, &info
, current
);
713 exception_exit(prev_state
);
717 * Send SIGFPE according to FCSR Cause bits, which must have already
718 * been masked against Enable bits. This is impotant as Inexact can
719 * happen together with Overflow or Underflow, and `ptrace' can set
722 void force_fcr31_sig(unsigned long fcr31
, void __user
*fault_addr
,
723 struct task_struct
*tsk
)
728 si
.si_addr
= fault_addr
;
729 si
.si_signo
= SIGFPE
;
731 if (fcr31
& FPU_CSR_INV_X
)
732 si
.si_code
= FPE_FLTINV
;
733 else if (fcr31
& FPU_CSR_DIV_X
)
734 si
.si_code
= FPE_FLTDIV
;
735 else if (fcr31
& FPU_CSR_OVF_X
)
736 si
.si_code
= FPE_FLTOVF
;
737 else if (fcr31
& FPU_CSR_UDF_X
)
738 si
.si_code
= FPE_FLTUND
;
739 else if (fcr31
& FPU_CSR_INE_X
)
740 si
.si_code
= FPE_FLTRES
;
742 force_sig_info(SIGFPE
, &si
, tsk
);
745 int process_fpemu_return(int sig
, void __user
*fault_addr
, unsigned long fcr31
)
748 struct vm_area_struct
*vma
;
756 force_fcr31_sig(fcr31
, fault_addr
, current
);
760 si
.si_addr
= fault_addr
;
762 si
.si_code
= BUS_ADRERR
;
763 force_sig_info(sig
, &si
, current
);
767 si
.si_addr
= fault_addr
;
769 down_read(¤t
->mm
->mmap_sem
);
770 vma
= find_vma(current
->mm
, (unsigned long)fault_addr
);
771 if (vma
&& (vma
->vm_start
<= (unsigned long)fault_addr
))
772 si
.si_code
= SEGV_ACCERR
;
774 si
.si_code
= SEGV_MAPERR
;
775 up_read(¤t
->mm
->mmap_sem
);
776 force_sig_info(sig
, &si
, current
);
780 force_sig(sig
, current
);
785 static int simulate_fp(struct pt_regs
*regs
, unsigned int opcode
,
786 unsigned long old_epc
, unsigned long old_ra
)
788 union mips_instruction inst
= { .word
= opcode
};
789 void __user
*fault_addr
;
793 /* If it's obviously not an FP instruction, skip it */
794 switch (inst
.i_format
.opcode
) {
808 * do_ri skipped over the instruction via compute_return_epc, undo
809 * that for the FPU emulator.
811 regs
->cp0_epc
= old_epc
;
812 regs
->regs
[31] = old_ra
;
814 /* Save the FP context to struct thread_struct */
817 /* Run the emulator */
818 sig
= fpu_emulator_cop1Handler(regs
, ¤t
->thread
.fpu
, 1,
822 * We can't allow the emulated instruction to leave any
823 * enabled Cause bits set in $fcr31.
825 fcr31
= mask_fcr31_x(current
->thread
.fpu
.fcr31
);
826 current
->thread
.fpu
.fcr31
&= ~fcr31
;
828 /* Restore the hardware register state */
831 /* Send a signal if required. */
832 process_fpemu_return(sig
, fault_addr
, fcr31
);
838 * XXX Delayed fp exceptions when doing a lazy ctx switch XXX
840 asmlinkage
void do_fpe(struct pt_regs
*regs
, unsigned long fcr31
)
842 enum ctx_state prev_state
;
843 void __user
*fault_addr
;
846 prev_state
= exception_enter();
847 if (notify_die(DIE_FP
, "FP exception", regs
, 0, current
->thread
.trap_nr
,
848 SIGFPE
) == NOTIFY_STOP
)
851 /* Clear FCSR.Cause before enabling interrupts */
852 write_32bit_cp1_register(CP1_STATUS
, fcr31
& ~mask_fcr31_x(fcr31
));
855 die_if_kernel("FP exception in kernel code", regs
);
857 if (fcr31
& FPU_CSR_UNI_X
) {
859 * Unimplemented operation exception. If we've got the full
860 * software emulator on-board, let's use it...
862 * Force FPU to dump state into task/thread context. We're
863 * moving a lot of data here for what is probably a single
864 * instruction, but the alternative is to pre-decode the FP
865 * register operands before invoking the emulator, which seems
866 * a bit extreme for what should be an infrequent event.
868 /* Ensure 'resume' not overwrite saved fp context again. */
871 /* Run the emulator */
872 sig
= fpu_emulator_cop1Handler(regs
, ¤t
->thread
.fpu
, 1,
876 * We can't allow the emulated instruction to leave any
877 * enabled Cause bits set in $fcr31.
879 fcr31
= mask_fcr31_x(current
->thread
.fpu
.fcr31
);
880 current
->thread
.fpu
.fcr31
&= ~fcr31
;
882 /* Restore the hardware register state */
883 own_fpu(1); /* Using the FPU again. */
886 fault_addr
= (void __user
*) regs
->cp0_epc
;
889 /* Send a signal if required. */
890 process_fpemu_return(sig
, fault_addr
, fcr31
);
893 exception_exit(prev_state
);
896 void do_trap_or_bp(struct pt_regs
*regs
, unsigned int code
, int si_code
,
902 clear_siginfo(&info
);
903 #ifdef CONFIG_KGDB_LOW_LEVEL_TRAP
904 if (kgdb_ll_trap(DIE_TRAP
, str
, regs
, code
, current
->thread
.trap_nr
,
905 SIGTRAP
) == NOTIFY_STOP
)
907 #endif /* CONFIG_KGDB_LOW_LEVEL_TRAP */
909 if (notify_die(DIE_TRAP
, str
, regs
, code
, current
->thread
.trap_nr
,
910 SIGTRAP
) == NOTIFY_STOP
)
914 * A short test says that IRIX 5.3 sends SIGTRAP for all trap
915 * insns, even for trap and break codes that indicate arithmetic
916 * failures. Weird ...
917 * But should we continue the brokenness??? --macro
922 scnprintf(b
, sizeof(b
), "%s instruction in kernel code", str
);
923 die_if_kernel(b
, regs
);
924 if (code
== BRK_DIVZERO
)
925 info
.si_code
= FPE_INTDIV
;
927 info
.si_code
= FPE_INTOVF
;
928 info
.si_signo
= SIGFPE
;
929 info
.si_addr
= (void __user
*) regs
->cp0_epc
;
930 force_sig_info(SIGFPE
, &info
, current
);
933 die_if_kernel("Kernel bug detected", regs
);
934 force_sig(SIGTRAP
, current
);
938 * This breakpoint code is used by the FPU emulator to retake
939 * control of the CPU after executing the instruction from the
940 * delay slot of an emulated branch.
942 * Terminate if exception was recognized as a delay slot return
943 * otherwise handle as normal.
945 if (do_dsemulret(regs
))
948 die_if_kernel("Math emu break/trap", regs
);
949 force_sig(SIGTRAP
, current
);
952 scnprintf(b
, sizeof(b
), "%s instruction in kernel code", str
);
953 die_if_kernel(b
, regs
);
955 info
.si_signo
= SIGTRAP
;
956 info
.si_code
= si_code
;
957 force_sig_info(SIGTRAP
, &info
, current
);
959 force_sig(SIGTRAP
, current
);
964 asmlinkage
void do_bp(struct pt_regs
*regs
)
966 unsigned long epc
= msk_isa16_mode(exception_epc(regs
));
967 unsigned int opcode
, bcode
;
968 enum ctx_state prev_state
;
972 if (!user_mode(regs
))
975 prev_state
= exception_enter();
976 current
->thread
.trap_nr
= (regs
->cp0_cause
>> 2) & 0x1f;
977 if (get_isa16_mode(regs
->cp0_epc
)) {
980 if (__get_user(instr
[0], (u16 __user
*)epc
))
983 if (!cpu_has_mmips
) {
985 bcode
= (instr
[0] >> 5) & 0x3f;
986 } else if (mm_insn_16bit(instr
[0])) {
987 /* 16-bit microMIPS BREAK */
988 bcode
= instr
[0] & 0xf;
990 /* 32-bit microMIPS BREAK */
991 if (__get_user(instr
[1], (u16 __user
*)(epc
+ 2)))
993 opcode
= (instr
[0] << 16) | instr
[1];
994 bcode
= (opcode
>> 6) & ((1 << 20) - 1);
997 if (__get_user(opcode
, (unsigned int __user
*)epc
))
999 bcode
= (opcode
>> 6) & ((1 << 20) - 1);
1003 * There is the ancient bug in the MIPS assemblers that the break
1004 * code starts left to bit 16 instead to bit 6 in the opcode.
1005 * Gas is bug-compatible, but not always, grrr...
1006 * We handle both cases with a simple heuristics. --macro
1008 if (bcode
>= (1 << 10))
1009 bcode
= ((bcode
& ((1 << 10) - 1)) << 10) | (bcode
>> 10);
1012 * notify the kprobe handlers, if instruction is likely to
1017 if (notify_die(DIE_UPROBE
, "uprobe", regs
, bcode
,
1018 current
->thread
.trap_nr
, SIGTRAP
) == NOTIFY_STOP
)
1022 case BRK_UPROBE_XOL
:
1023 if (notify_die(DIE_UPROBE_XOL
, "uprobe_xol", regs
, bcode
,
1024 current
->thread
.trap_nr
, SIGTRAP
) == NOTIFY_STOP
)
1029 if (notify_die(DIE_BREAK
, "debug", regs
, bcode
,
1030 current
->thread
.trap_nr
, SIGTRAP
) == NOTIFY_STOP
)
1034 case BRK_KPROBE_SSTEPBP
:
1035 if (notify_die(DIE_SSTEPBP
, "single_step", regs
, bcode
,
1036 current
->thread
.trap_nr
, SIGTRAP
) == NOTIFY_STOP
)
1044 do_trap_or_bp(regs
, bcode
, TRAP_BRKPT
, "Break");
1048 exception_exit(prev_state
);
1052 force_sig(SIGSEGV
, current
);
1056 asmlinkage
void do_tr(struct pt_regs
*regs
)
1058 u32 opcode
, tcode
= 0;
1059 enum ctx_state prev_state
;
1062 unsigned long epc
= msk_isa16_mode(exception_epc(regs
));
1065 if (!user_mode(regs
))
1068 prev_state
= exception_enter();
1069 current
->thread
.trap_nr
= (regs
->cp0_cause
>> 2) & 0x1f;
1070 if (get_isa16_mode(regs
->cp0_epc
)) {
1071 if (__get_user(instr
[0], (u16 __user
*)(epc
+ 0)) ||
1072 __get_user(instr
[1], (u16 __user
*)(epc
+ 2)))
1074 opcode
= (instr
[0] << 16) | instr
[1];
1075 /* Immediate versions don't provide a code. */
1076 if (!(opcode
& OPCODE
))
1077 tcode
= (opcode
>> 12) & ((1 << 4) - 1);
1079 if (__get_user(opcode
, (u32 __user
*)epc
))
1081 /* Immediate versions don't provide a code. */
1082 if (!(opcode
& OPCODE
))
1083 tcode
= (opcode
>> 6) & ((1 << 10) - 1);
1086 do_trap_or_bp(regs
, tcode
, 0, "Trap");
1090 exception_exit(prev_state
);
1094 force_sig(SIGSEGV
, current
);
1098 asmlinkage
void do_ri(struct pt_regs
*regs
)
1100 unsigned int __user
*epc
= (unsigned int __user
*)exception_epc(regs
);
1101 unsigned long old_epc
= regs
->cp0_epc
;
1102 unsigned long old31
= regs
->regs
[31];
1103 enum ctx_state prev_state
;
1104 unsigned int opcode
= 0;
1108 * Avoid any kernel code. Just emulate the R2 instruction
1109 * as quickly as possible.
1111 if (mipsr2_emulation
&& cpu_has_mips_r6
&&
1112 likely(user_mode(regs
)) &&
1113 likely(get_user(opcode
, epc
) >= 0)) {
1114 unsigned long fcr31
= 0;
1116 status
= mipsr2_decoder(regs
, opcode
, &fcr31
);
1124 process_fpemu_return(status
,
1125 ¤t
->thread
.cp0_baduaddr
,
1133 prev_state
= exception_enter();
1134 current
->thread
.trap_nr
= (regs
->cp0_cause
>> 2) & 0x1f;
1136 if (notify_die(DIE_RI
, "RI Fault", regs
, 0, current
->thread
.trap_nr
,
1137 SIGILL
) == NOTIFY_STOP
)
1140 die_if_kernel("Reserved instruction in kernel code", regs
);
1142 if (unlikely(compute_return_epc(regs
) < 0))
1145 if (!get_isa16_mode(regs
->cp0_epc
)) {
1146 if (unlikely(get_user(opcode
, epc
) < 0))
1149 if (!cpu_has_llsc
&& status
< 0)
1150 status
= simulate_llsc(regs
, opcode
);
1153 status
= simulate_rdhwr_normal(regs
, opcode
);
1156 status
= simulate_sync(regs
, opcode
);
1159 status
= simulate_fp(regs
, opcode
, old_epc
, old31
);
1160 } else if (cpu_has_mmips
) {
1161 unsigned short mmop
[2] = { 0 };
1163 if (unlikely(get_user(mmop
[0], (u16 __user
*)epc
+ 0) < 0))
1165 if (unlikely(get_user(mmop
[1], (u16 __user
*)epc
+ 1) < 0))
1168 opcode
= (opcode
<< 16) | mmop
[1];
1171 status
= simulate_rdhwr_mm(regs
, opcode
);
1177 if (unlikely(status
> 0)) {
1178 regs
->cp0_epc
= old_epc
; /* Undo skip-over. */
1179 regs
->regs
[31] = old31
;
1180 force_sig(status
, current
);
1184 exception_exit(prev_state
);
1188 * MIPS MT processors may have fewer FPU contexts than CPU threads. If we've
1189 * emulated more than some threshold number of instructions, force migration to
1190 * a "CPU" that has FP support.
1192 static void mt_ase_fp_affinity(void)
1194 #ifdef CONFIG_MIPS_MT_FPAFF
1195 if (mt_fpemul_threshold
> 0 &&
1196 ((current
->thread
.emulated_fp
++ > mt_fpemul_threshold
))) {
1198 * If there's no FPU present, or if the application has already
1199 * restricted the allowed set to exclude any CPUs with FPUs,
1200 * we'll skip the procedure.
1202 if (cpumask_intersects(¤t
->cpus_allowed
, &mt_fpu_cpumask
)) {
1205 current
->thread
.user_cpus_allowed
1206 = current
->cpus_allowed
;
1207 cpumask_and(&tmask
, ¤t
->cpus_allowed
,
1209 set_cpus_allowed_ptr(current
, &tmask
);
1210 set_thread_flag(TIF_FPUBOUND
);
1213 #endif /* CONFIG_MIPS_MT_FPAFF */
1217 * No lock; only written during early bootup by CPU 0.
1219 static RAW_NOTIFIER_HEAD(cu2_chain
);
1221 int __ref
register_cu2_notifier(struct notifier_block
*nb
)
1223 return raw_notifier_chain_register(&cu2_chain
, nb
);
1226 int cu2_notifier_call_chain(unsigned long val
, void *v
)
1228 return raw_notifier_call_chain(&cu2_chain
, val
, v
);
1231 static int default_cu2_call(struct notifier_block
*nfb
, unsigned long action
,
1234 struct pt_regs
*regs
= data
;
1236 die_if_kernel("COP2: Unhandled kernel unaligned access or invalid "
1237 "instruction", regs
);
1238 force_sig(SIGILL
, current
);
1243 static int enable_restore_fp_context(int msa
)
1245 int err
, was_fpu_owner
, prior_msa
;
1248 * If an FP mode switch is currently underway, wait for it to
1249 * complete before proceeding.
1251 wait_on_atomic_t(¤t
->mm
->context
.fp_mode_switching
,
1252 atomic_t_wait
, TASK_KILLABLE
);
1255 /* First time FP context user. */
1261 set_thread_flag(TIF_USEDMSA
);
1262 set_thread_flag(TIF_MSA_CTX_LIVE
);
1271 * This task has formerly used the FP context.
1273 * If this thread has no live MSA vector context then we can simply
1274 * restore the scalar FP context. If it has live MSA vector context
1275 * (that is, it has or may have used MSA since last performing a
1276 * function call) then we'll need to restore the vector context. This
1277 * applies even if we're currently only executing a scalar FP
1278 * instruction. This is because if we were to later execute an MSA
1279 * instruction then we'd either have to:
1281 * - Restore the vector context & clobber any registers modified by
1282 * scalar FP instructions between now & then.
1286 * - Not restore the vector context & lose the most significant bits
1287 * of all vector registers.
1289 * Neither of those options is acceptable. We cannot restore the least
1290 * significant bits of the registers now & only restore the most
1291 * significant bits later because the most significant bits of any
1292 * vector registers whose aliased FP register is modified now will have
1293 * been zeroed. We'd have no way to know that when restoring the vector
1294 * context & thus may load an outdated value for the most significant
1295 * bits of a vector register.
1297 if (!msa
&& !thread_msa_context_live())
1301 * This task is using or has previously used MSA. Thus we require
1302 * that Status.FR == 1.
1305 was_fpu_owner
= is_fpu_owner();
1306 err
= own_fpu_inatomic(0);
1311 write_msa_csr(current
->thread
.fpu
.msacsr
);
1312 set_thread_flag(TIF_USEDMSA
);
1315 * If this is the first time that the task is using MSA and it has
1316 * previously used scalar FP in this time slice then we already nave
1317 * FP context which we shouldn't clobber. We do however need to clear
1318 * the upper 64b of each vector register so that this task has no
1319 * opportunity to see data left behind by another.
1321 prior_msa
= test_and_set_thread_flag(TIF_MSA_CTX_LIVE
);
1322 if (!prior_msa
&& was_fpu_owner
) {
1330 * Restore the least significant 64b of each vector register
1331 * from the existing scalar FP context.
1333 _restore_fp(current
);
1336 * The task has not formerly used MSA, so clear the upper 64b
1337 * of each vector register such that it cannot see data left
1338 * behind by another task.
1342 /* We need to restore the vector context. */
1343 restore_msa(current
);
1345 /* Restore the scalar FP control & status register */
1347 write_32bit_cp1_register(CP1_STATUS
,
1348 current
->thread
.fpu
.fcr31
);
1357 asmlinkage
void do_cpu(struct pt_regs
*regs
)
1359 enum ctx_state prev_state
;
1360 unsigned int __user
*epc
;
1361 unsigned long old_epc
, old31
;
1362 void __user
*fault_addr
;
1363 unsigned int opcode
;
1364 unsigned long fcr31
;
1369 prev_state
= exception_enter();
1370 cpid
= (regs
->cp0_cause
>> CAUSEB_CE
) & 3;
1373 die_if_kernel("do_cpu invoked from kernel context!", regs
);
1377 epc
= (unsigned int __user
*)exception_epc(regs
);
1378 old_epc
= regs
->cp0_epc
;
1379 old31
= regs
->regs
[31];
1383 if (unlikely(compute_return_epc(regs
) < 0))
1386 if (!get_isa16_mode(regs
->cp0_epc
)) {
1387 if (unlikely(get_user(opcode
, epc
) < 0))
1390 if (!cpu_has_llsc
&& status
< 0)
1391 status
= simulate_llsc(regs
, opcode
);
1397 if (unlikely(status
> 0)) {
1398 regs
->cp0_epc
= old_epc
; /* Undo skip-over. */
1399 regs
->regs
[31] = old31
;
1400 force_sig(status
, current
);
1407 * The COP3 opcode space and consequently the CP0.Status.CU3
1408 * bit and the CP0.Cause.CE=3 encoding have been removed as
1409 * of the MIPS III ISA. From the MIPS IV and MIPS32r2 ISAs
1410 * up the space has been reused for COP1X instructions, that
1411 * are enabled by the CP0.Status.CU1 bit and consequently
1412 * use the CP0.Cause.CE=1 encoding for Coprocessor Unusable
1413 * exceptions. Some FPU-less processors that implement one
1414 * of these ISAs however use this code erroneously for COP1X
1415 * instructions. Therefore we redirect this trap to the FP
1418 if (raw_cpu_has_fpu
|| !cpu_has_mips_4_5_64_r2_r6
) {
1419 force_sig(SIGILL
, current
);
1425 err
= enable_restore_fp_context(0);
1427 if (raw_cpu_has_fpu
&& !err
)
1430 sig
= fpu_emulator_cop1Handler(regs
, ¤t
->thread
.fpu
, 0,
1434 * We can't allow the emulated instruction to leave
1435 * any enabled Cause bits set in $fcr31.
1437 fcr31
= mask_fcr31_x(current
->thread
.fpu
.fcr31
);
1438 current
->thread
.fpu
.fcr31
&= ~fcr31
;
1440 /* Send a signal if required. */
1441 if (!process_fpemu_return(sig
, fault_addr
, fcr31
) && !err
)
1442 mt_ase_fp_affinity();
1447 raw_notifier_call_chain(&cu2_chain
, CU2_EXCEPTION
, regs
);
1451 exception_exit(prev_state
);
1454 asmlinkage
void do_msa_fpe(struct pt_regs
*regs
, unsigned int msacsr
)
1456 enum ctx_state prev_state
;
1458 prev_state
= exception_enter();
1459 current
->thread
.trap_nr
= (regs
->cp0_cause
>> 2) & 0x1f;
1460 if (notify_die(DIE_MSAFP
, "MSA FP exception", regs
, 0,
1461 current
->thread
.trap_nr
, SIGFPE
) == NOTIFY_STOP
)
1464 /* Clear MSACSR.Cause before enabling interrupts */
1465 write_msa_csr(msacsr
& ~MSA_CSR_CAUSEF
);
1468 die_if_kernel("do_msa_fpe invoked from kernel context!", regs
);
1469 force_sig(SIGFPE
, current
);
1471 exception_exit(prev_state
);
1474 asmlinkage
void do_msa(struct pt_regs
*regs
)
1476 enum ctx_state prev_state
;
1479 prev_state
= exception_enter();
1481 if (!cpu_has_msa
|| test_thread_flag(TIF_32BIT_FPREGS
)) {
1482 force_sig(SIGILL
, current
);
1486 die_if_kernel("do_msa invoked from kernel context!", regs
);
1488 err
= enable_restore_fp_context(1);
1490 force_sig(SIGILL
, current
);
1492 exception_exit(prev_state
);
1495 asmlinkage
void do_mdmx(struct pt_regs
*regs
)
1497 enum ctx_state prev_state
;
1499 prev_state
= exception_enter();
1500 force_sig(SIGILL
, current
);
1501 exception_exit(prev_state
);
1505 * Called with interrupts disabled.
1507 asmlinkage
void do_watch(struct pt_regs
*regs
)
1510 enum ctx_state prev_state
;
1512 clear_siginfo(&info
);
1513 info
.si_signo
= SIGTRAP
;
1514 info
.si_code
= TRAP_HWBKPT
;
1516 prev_state
= exception_enter();
1518 * Clear WP (bit 22) bit of cause register so we don't loop
1521 clear_c0_cause(CAUSEF_WP
);
1524 * If the current thread has the watch registers loaded, save
1525 * their values and send SIGTRAP. Otherwise another thread
1526 * left the registers set, clear them and continue.
1528 if (test_tsk_thread_flag(current
, TIF_LOAD_WATCH
)) {
1529 mips_read_watch_registers();
1531 force_sig_info(SIGTRAP
, &info
, current
);
1533 mips_clear_watch_registers();
1536 exception_exit(prev_state
);
1539 asmlinkage
void do_mcheck(struct pt_regs
*regs
)
1541 int multi_match
= regs
->cp0_status
& ST0_TS
;
1542 enum ctx_state prev_state
;
1543 mm_segment_t old_fs
= get_fs();
1545 prev_state
= exception_enter();
1554 if (!user_mode(regs
))
1557 show_code((unsigned int __user
*) regs
->cp0_epc
);
1562 * Some chips may have other causes of machine check (e.g. SB1
1565 panic("Caught Machine Check exception - %scaused by multiple "
1566 "matching entries in the TLB.",
1567 (multi_match
) ? "" : "not ");
1570 asmlinkage
void do_mt(struct pt_regs
*regs
)
1574 subcode
= (read_vpe_c0_vpecontrol() & VPECONTROL_EXCPT
)
1575 >> VPECONTROL_EXCPT_SHIFT
;
1578 printk(KERN_DEBUG
"Thread Underflow\n");
1581 printk(KERN_DEBUG
"Thread Overflow\n");
1584 printk(KERN_DEBUG
"Invalid YIELD Qualifier\n");
1587 printk(KERN_DEBUG
"Gating Storage Exception\n");
1590 printk(KERN_DEBUG
"YIELD Scheduler Exception\n");
1593 printk(KERN_DEBUG
"Gating Storage Scheduler Exception\n");
1596 printk(KERN_DEBUG
"*** UNKNOWN THREAD EXCEPTION %d ***\n",
1600 die_if_kernel("MIPS MT Thread exception in kernel", regs
);
1602 force_sig(SIGILL
, current
);
1606 asmlinkage
void do_dsp(struct pt_regs
*regs
)
1609 panic("Unexpected DSP exception");
1611 force_sig(SIGILL
, current
);
1614 asmlinkage
void do_reserved(struct pt_regs
*regs
)
1617 * Game over - no way to handle this if it ever occurs. Most probably
1618 * caused by a new unknown cpu type or after another deadly
1619 * hard/software error.
1622 panic("Caught reserved exception %ld - should not happen.",
1623 (regs
->cp0_cause
& 0x7f) >> 2);
1626 static int __initdata l1parity
= 1;
1627 static int __init
nol1parity(char *s
)
1632 __setup("nol1par", nol1parity
);
1633 static int __initdata l2parity
= 1;
1634 static int __init
nol2parity(char *s
)
1639 __setup("nol2par", nol2parity
);
1642 * Some MIPS CPUs can enable/disable for cache parity detection, but do
1643 * it different ways.
1645 static inline void parity_protection_init(void)
1647 #define ERRCTL_PE 0x80000000
1648 #define ERRCTL_L2P 0x00800000
1650 if (mips_cm_revision() >= CM_REV_CM3
) {
1651 ulong gcr_ectl
, cp0_ectl
;
1654 * With CM3 systems we need to ensure that the L1 & L2
1655 * parity enables are set to the same value, since this
1656 * is presumed by the hardware engineers.
1658 * If the user disabled either of L1 or L2 ECC checking,
1661 l1parity
&= l2parity
;
1662 l2parity
&= l1parity
;
1664 /* Probe L1 ECC support */
1665 cp0_ectl
= read_c0_ecc();
1666 write_c0_ecc(cp0_ectl
| ERRCTL_PE
);
1667 back_to_back_c0_hazard();
1668 cp0_ectl
= read_c0_ecc();
1670 /* Probe L2 ECC support */
1671 gcr_ectl
= read_gcr_err_control();
1673 if (!(gcr_ectl
& CM_GCR_ERR_CONTROL_L2_ECC_SUPPORT
) ||
1674 !(cp0_ectl
& ERRCTL_PE
)) {
1676 * One of L1 or L2 ECC checking isn't supported,
1677 * so we cannot enable either.
1679 l1parity
= l2parity
= 0;
1682 /* Configure L1 ECC checking */
1684 cp0_ectl
|= ERRCTL_PE
;
1686 cp0_ectl
&= ~ERRCTL_PE
;
1687 write_c0_ecc(cp0_ectl
);
1688 back_to_back_c0_hazard();
1689 WARN_ON(!!(read_c0_ecc() & ERRCTL_PE
) != l1parity
);
1691 /* Configure L2 ECC checking */
1693 gcr_ectl
|= CM_GCR_ERR_CONTROL_L2_ECC_EN
;
1695 gcr_ectl
&= ~CM_GCR_ERR_CONTROL_L2_ECC_EN
;
1696 write_gcr_err_control(gcr_ectl
);
1697 gcr_ectl
= read_gcr_err_control();
1698 gcr_ectl
&= CM_GCR_ERR_CONTROL_L2_ECC_EN
;
1699 WARN_ON(!!gcr_ectl
!= l2parity
);
1701 pr_info("Cache parity protection %sabled\n",
1702 l1parity
? "en" : "dis");
1706 switch (current_cpu_type()) {
1712 case CPU_INTERAPTIV
:
1715 case CPU_QEMU_GENERIC
:
1718 unsigned long errctl
;
1719 unsigned int l1parity_present
, l2parity_present
;
1721 errctl
= read_c0_ecc();
1722 errctl
&= ~(ERRCTL_PE
|ERRCTL_L2P
);
1724 /* probe L1 parity support */
1725 write_c0_ecc(errctl
| ERRCTL_PE
);
1726 back_to_back_c0_hazard();
1727 l1parity_present
= (read_c0_ecc() & ERRCTL_PE
);
1729 /* probe L2 parity support */
1730 write_c0_ecc(errctl
|ERRCTL_L2P
);
1731 back_to_back_c0_hazard();
1732 l2parity_present
= (read_c0_ecc() & ERRCTL_L2P
);
1734 if (l1parity_present
&& l2parity_present
) {
1736 errctl
|= ERRCTL_PE
;
1737 if (l1parity
^ l2parity
)
1738 errctl
|= ERRCTL_L2P
;
1739 } else if (l1parity_present
) {
1741 errctl
|= ERRCTL_PE
;
1742 } else if (l2parity_present
) {
1744 errctl
|= ERRCTL_L2P
;
1746 /* No parity available */
1749 printk(KERN_INFO
"Writing ErrCtl register=%08lx\n", errctl
);
1751 write_c0_ecc(errctl
);
1752 back_to_back_c0_hazard();
1753 errctl
= read_c0_ecc();
1754 printk(KERN_INFO
"Readback ErrCtl register=%08lx\n", errctl
);
1756 if (l1parity_present
)
1757 printk(KERN_INFO
"Cache parity protection %sabled\n",
1758 (errctl
& ERRCTL_PE
) ? "en" : "dis");
1760 if (l2parity_present
) {
1761 if (l1parity_present
&& l1parity
)
1762 errctl
^= ERRCTL_L2P
;
1763 printk(KERN_INFO
"L2 cache parity protection %sabled\n",
1764 (errctl
& ERRCTL_L2P
) ? "en" : "dis");
1772 write_c0_ecc(0x80000000);
1773 back_to_back_c0_hazard();
1774 /* Set the PE bit (bit 31) in the c0_errctl register. */
1775 printk(KERN_INFO
"Cache parity protection %sabled\n",
1776 (read_c0_ecc() & 0x80000000) ? "en" : "dis");
1780 /* Clear the DE bit (bit 16) in the c0_status register. */
1781 printk(KERN_INFO
"Enable cache parity protection for "
1782 "MIPS 20KC/25KF CPUs.\n");
1783 clear_c0_status(ST0_DE
);
1790 asmlinkage
void cache_parity_error(void)
1792 const int field
= 2 * sizeof(unsigned long);
1793 unsigned int reg_val
;
1795 /* For the moment, report the problem and hang. */
1796 printk("Cache error exception:\n");
1797 printk("cp0_errorepc == %0*lx\n", field
, read_c0_errorepc());
1798 reg_val
= read_c0_cacheerr();
1799 printk("c0_cacheerr == %08x\n", reg_val
);
1801 printk("Decoded c0_cacheerr: %s cache fault in %s reference.\n",
1802 reg_val
& (1<<30) ? "secondary" : "primary",
1803 reg_val
& (1<<31) ? "data" : "insn");
1804 if ((cpu_has_mips_r2_r6
) &&
1805 ((current_cpu_data
.processor_id
& 0xff0000) == PRID_COMP_MIPS
)) {
1806 pr_err("Error bits: %s%s%s%s%s%s%s%s\n",
1807 reg_val
& (1<<29) ? "ED " : "",
1808 reg_val
& (1<<28) ? "ET " : "",
1809 reg_val
& (1<<27) ? "ES " : "",
1810 reg_val
& (1<<26) ? "EE " : "",
1811 reg_val
& (1<<25) ? "EB " : "",
1812 reg_val
& (1<<24) ? "EI " : "",
1813 reg_val
& (1<<23) ? "E1 " : "",
1814 reg_val
& (1<<22) ? "E0 " : "");
1816 pr_err("Error bits: %s%s%s%s%s%s%s\n",
1817 reg_val
& (1<<29) ? "ED " : "",
1818 reg_val
& (1<<28) ? "ET " : "",
1819 reg_val
& (1<<26) ? "EE " : "",
1820 reg_val
& (1<<25) ? "EB " : "",
1821 reg_val
& (1<<24) ? "EI " : "",
1822 reg_val
& (1<<23) ? "E1 " : "",
1823 reg_val
& (1<<22) ? "E0 " : "");
1825 printk("IDX: 0x%08x\n", reg_val
& ((1<<22)-1));
1827 #if defined(CONFIG_CPU_MIPS32) || defined(CONFIG_CPU_MIPS64)
1828 if (reg_val
& (1<<22))
1829 printk("DErrAddr0: 0x%0*lx\n", field
, read_c0_derraddr0());
1831 if (reg_val
& (1<<23))
1832 printk("DErrAddr1: 0x%0*lx\n", field
, read_c0_derraddr1());
1835 panic("Can't handle the cache error!");
1838 asmlinkage
void do_ftlb(void)
1840 const int field
= 2 * sizeof(unsigned long);
1841 unsigned int reg_val
;
1843 /* For the moment, report the problem and hang. */
1844 if ((cpu_has_mips_r2_r6
) &&
1845 (((current_cpu_data
.processor_id
& 0xff0000) == PRID_COMP_MIPS
) ||
1846 ((current_cpu_data
.processor_id
& 0xff0000) == PRID_COMP_LOONGSON
))) {
1847 pr_err("FTLB error exception, cp0_ecc=0x%08x:\n",
1849 pr_err("cp0_errorepc == %0*lx\n", field
, read_c0_errorepc());
1850 reg_val
= read_c0_cacheerr();
1851 pr_err("c0_cacheerr == %08x\n", reg_val
);
1853 if ((reg_val
& 0xc0000000) == 0xc0000000) {
1854 pr_err("Decoded c0_cacheerr: FTLB parity error\n");
1856 pr_err("Decoded c0_cacheerr: %s cache fault in %s reference.\n",
1857 reg_val
& (1<<30) ? "secondary" : "primary",
1858 reg_val
& (1<<31) ? "data" : "insn");
1861 pr_err("FTLB error exception\n");
1863 /* Just print the cacheerr bits for now */
1864 cache_parity_error();
1868 * SDBBP EJTAG debug exception handler.
1869 * We skip the instruction and return to the next instruction.
1871 void ejtag_exception_handler(struct pt_regs
*regs
)
1873 const int field
= 2 * sizeof(unsigned long);
1874 unsigned long depc
, old_epc
, old_ra
;
1877 printk(KERN_DEBUG
"SDBBP EJTAG debug exception - not handled yet, just ignored!\n");
1878 depc
= read_c0_depc();
1879 debug
= read_c0_debug();
1880 printk(KERN_DEBUG
"c0_depc = %0*lx, DEBUG = %08x\n", field
, depc
, debug
);
1881 if (debug
& 0x80000000) {
1883 * In branch delay slot.
1884 * We cheat a little bit here and use EPC to calculate the
1885 * debug return address (DEPC). EPC is restored after the
1888 old_epc
= regs
->cp0_epc
;
1889 old_ra
= regs
->regs
[31];
1890 regs
->cp0_epc
= depc
;
1891 compute_return_epc(regs
);
1892 depc
= regs
->cp0_epc
;
1893 regs
->cp0_epc
= old_epc
;
1894 regs
->regs
[31] = old_ra
;
1897 write_c0_depc(depc
);
1900 printk(KERN_DEBUG
"\n\n----- Enable EJTAG single stepping ----\n\n");
1901 write_c0_debug(debug
| 0x100);
1906 * NMI exception handler.
1907 * No lock; only written during early bootup by CPU 0.
1909 static RAW_NOTIFIER_HEAD(nmi_chain
);
1911 int register_nmi_notifier(struct notifier_block
*nb
)
1913 return raw_notifier_chain_register(&nmi_chain
, nb
);
1916 void __noreturn
nmi_exception_handler(struct pt_regs
*regs
)
1921 raw_notifier_call_chain(&nmi_chain
, 0, regs
);
1923 snprintf(str
, 100, "CPU%d NMI taken, CP0_EPC=%lx\n",
1924 smp_processor_id(), regs
->cp0_epc
);
1925 regs
->cp0_epc
= read_c0_errorepc();
1930 #define VECTORSPACING 0x100 /* for EI/VI mode */
1932 unsigned long ebase
;
1933 EXPORT_SYMBOL_GPL(ebase
);
1934 unsigned long exception_handlers
[32];
1935 unsigned long vi_handlers
[64];
1937 void __init
*set_except_vector(int n
, void *addr
)
1939 unsigned long handler
= (unsigned long) addr
;
1940 unsigned long old_handler
;
1942 #ifdef CONFIG_CPU_MICROMIPS
1944 * Only the TLB handlers are cache aligned with an even
1945 * address. All other handlers are on an odd address and
1946 * require no modification. Otherwise, MIPS32 mode will
1947 * be entered when handling any TLB exceptions. That
1948 * would be bad...since we must stay in microMIPS mode.
1950 if (!(handler
& 0x1))
1953 old_handler
= xchg(&exception_handlers
[n
], handler
);
1955 if (n
== 0 && cpu_has_divec
) {
1956 #ifdef CONFIG_CPU_MICROMIPS
1957 unsigned long jump_mask
= ~((1 << 27) - 1);
1959 unsigned long jump_mask
= ~((1 << 28) - 1);
1961 u32
*buf
= (u32
*)(ebase
+ 0x200);
1962 unsigned int k0
= 26;
1963 if ((handler
& jump_mask
) == ((ebase
+ 0x200) & jump_mask
)) {
1964 uasm_i_j(&buf
, handler
& ~jump_mask
);
1967 UASM_i_LA(&buf
, k0
, handler
);
1968 uasm_i_jr(&buf
, k0
);
1971 local_flush_icache_range(ebase
+ 0x200, (unsigned long)buf
);
1973 return (void *)old_handler
;
1976 static void do_default_vi(void)
1978 show_regs(get_irq_regs());
1979 panic("Caught unexpected vectored interrupt.");
1982 static void *set_vi_srs_handler(int n
, vi_handler_t addr
, int srs
)
1984 unsigned long handler
;
1985 unsigned long old_handler
= vi_handlers
[n
];
1986 int srssets
= current_cpu_data
.srsets
;
1990 BUG_ON(!cpu_has_veic
&& !cpu_has_vint
);
1993 handler
= (unsigned long) do_default_vi
;
1996 handler
= (unsigned long) addr
;
1997 vi_handlers
[n
] = handler
;
1999 b
= (unsigned char *)(ebase
+ 0x200 + n
*VECTORSPACING
);
2002 panic("Shadow register set %d not supported", srs
);
2005 if (board_bind_eic_interrupt
)
2006 board_bind_eic_interrupt(n
, srs
);
2007 } else if (cpu_has_vint
) {
2008 /* SRSMap is only defined if shadow sets are implemented */
2010 change_c0_srsmap(0xf << n
*4, srs
<< n
*4);
2015 * If no shadow set is selected then use the default handler
2016 * that does normal register saving and standard interrupt exit
2018 extern char except_vec_vi
, except_vec_vi_lui
;
2019 extern char except_vec_vi_ori
, except_vec_vi_end
;
2020 extern char rollback_except_vec_vi
;
2021 char *vec_start
= using_rollback_handler() ?
2022 &rollback_except_vec_vi
: &except_vec_vi
;
2023 #if defined(CONFIG_CPU_MICROMIPS) || defined(CONFIG_CPU_BIG_ENDIAN)
2024 const int lui_offset
= &except_vec_vi_lui
- vec_start
+ 2;
2025 const int ori_offset
= &except_vec_vi_ori
- vec_start
+ 2;
2027 const int lui_offset
= &except_vec_vi_lui
- vec_start
;
2028 const int ori_offset
= &except_vec_vi_ori
- vec_start
;
2030 const int handler_len
= &except_vec_vi_end
- vec_start
;
2032 if (handler_len
> VECTORSPACING
) {
2034 * Sigh... panicing won't help as the console
2035 * is probably not configured :(
2037 panic("VECTORSPACING too small");
2040 set_handler(((unsigned long)b
- ebase
), vec_start
,
2041 #ifdef CONFIG_CPU_MICROMIPS
2046 h
= (u16
*)(b
+ lui_offset
);
2047 *h
= (handler
>> 16) & 0xffff;
2048 h
= (u16
*)(b
+ ori_offset
);
2049 *h
= (handler
& 0xffff);
2050 local_flush_icache_range((unsigned long)b
,
2051 (unsigned long)(b
+handler_len
));
2055 * In other cases jump directly to the interrupt handler. It
2056 * is the handler's responsibility to save registers if required
2057 * (eg hi/lo) and return from the exception using "eret".
2063 #ifdef CONFIG_CPU_MICROMIPS
2064 insn
= 0xd4000000 | (((u32
)handler
& 0x07ffffff) >> 1);
2066 insn
= 0x08000000 | (((u32
)handler
& 0x0fffffff) >> 2);
2068 h
[0] = (insn
>> 16) & 0xffff;
2069 h
[1] = insn
& 0xffff;
2072 local_flush_icache_range((unsigned long)b
,
2073 (unsigned long)(b
+8));
2076 return (void *)old_handler
;
2079 void *set_vi_handler(int n
, vi_handler_t addr
)
2081 return set_vi_srs_handler(n
, addr
, 0);
2084 extern void tlb_init(void);
2089 int cp0_compare_irq
;
2090 EXPORT_SYMBOL_GPL(cp0_compare_irq
);
2091 int cp0_compare_irq_shift
;
2094 * Performance counter IRQ or -1 if shared with timer
2096 int cp0_perfcount_irq
;
2097 EXPORT_SYMBOL_GPL(cp0_perfcount_irq
);
2100 * Fast debug channel IRQ or -1 if not present
2103 EXPORT_SYMBOL_GPL(cp0_fdc_irq
);
2107 static int __init
ulri_disable(char *s
)
2109 pr_info("Disabling ulri\n");
2114 __setup("noulri", ulri_disable
);
2116 /* configure STATUS register */
2117 static void configure_status(void)
2120 * Disable coprocessors and select 32-bit or 64-bit addressing
2121 * and the 16/32 or 32/32 FPR register model. Reset the BEV
2122 * flag that some firmware may have left set and the TS bit (for
2123 * IP27). Set XX for ISA IV code to work.
2125 unsigned int status_set
= ST0_CU0
;
2127 status_set
|= ST0_FR
|ST0_KX
|ST0_SX
|ST0_UX
;
2129 if (current_cpu_data
.isa_level
& MIPS_CPU_ISA_IV
)
2130 status_set
|= ST0_XX
;
2132 status_set
|= ST0_MX
;
2134 change_c0_status(ST0_CU
|ST0_MX
|ST0_RE
|ST0_FR
|ST0_BEV
|ST0_TS
|ST0_KX
|ST0_SX
|ST0_UX
,
2138 unsigned int hwrena
;
2139 EXPORT_SYMBOL_GPL(hwrena
);
2141 /* configure HWRENA register */
2142 static void configure_hwrena(void)
2144 hwrena
= cpu_hwrena_impl_bits
;
2146 if (cpu_has_mips_r2_r6
)
2147 hwrena
|= MIPS_HWRENA_CPUNUM
|
2148 MIPS_HWRENA_SYNCISTEP
|
2152 if (!noulri
&& cpu_has_userlocal
)
2153 hwrena
|= MIPS_HWRENA_ULR
;
2156 write_c0_hwrena(hwrena
);
2159 static void configure_exception_vector(void)
2161 if (cpu_has_veic
|| cpu_has_vint
) {
2162 unsigned long sr
= set_c0_status(ST0_BEV
);
2163 /* If available, use WG to set top bits of EBASE */
2164 if (cpu_has_ebase_wg
) {
2166 write_c0_ebase_64(ebase
| MIPS_EBASE_WG
);
2168 write_c0_ebase(ebase
| MIPS_EBASE_WG
);
2171 write_c0_ebase(ebase
);
2172 write_c0_status(sr
);
2173 /* Setting vector spacing enables EI/VI mode */
2174 change_c0_intctl(0x3e0, VECTORSPACING
);
2176 if (cpu_has_divec
) {
2177 if (cpu_has_mipsmt
) {
2178 unsigned int vpflags
= dvpe();
2179 set_c0_cause(CAUSEF_IV
);
2182 set_c0_cause(CAUSEF_IV
);
2186 void per_cpu_trap_init(bool is_boot_cpu
)
2188 unsigned int cpu
= smp_processor_id();
2193 configure_exception_vector();
2196 * Before R2 both interrupt numbers were fixed to 7, so on R2 only:
2198 * o read IntCtl.IPTI to determine the timer interrupt
2199 * o read IntCtl.IPPCI to determine the performance counter interrupt
2200 * o read IntCtl.IPFDC to determine the fast debug channel interrupt
2202 if (cpu_has_mips_r2_r6
) {
2204 * We shouldn't trust a secondary core has a sane EBASE register
2205 * so use the one calculated by the boot CPU.
2208 /* If available, use WG to set top bits of EBASE */
2209 if (cpu_has_ebase_wg
) {
2211 write_c0_ebase_64(ebase
| MIPS_EBASE_WG
);
2213 write_c0_ebase(ebase
| MIPS_EBASE_WG
);
2216 write_c0_ebase(ebase
);
2219 cp0_compare_irq_shift
= CAUSEB_TI
- CAUSEB_IP
;
2220 cp0_compare_irq
= (read_c0_intctl() >> INTCTLB_IPTI
) & 7;
2221 cp0_perfcount_irq
= (read_c0_intctl() >> INTCTLB_IPPCI
) & 7;
2222 cp0_fdc_irq
= (read_c0_intctl() >> INTCTLB_IPFDC
) & 7;
2227 cp0_compare_irq
= CP0_LEGACY_COMPARE_IRQ
;
2228 cp0_compare_irq_shift
= CP0_LEGACY_PERFCNT_IRQ
;
2229 cp0_perfcount_irq
= -1;
2233 if (!cpu_data
[cpu
].asid_cache
)
2234 cpu_data
[cpu
].asid_cache
= asid_first_version(cpu
);
2237 current
->active_mm
= &init_mm
;
2238 BUG_ON(current
->mm
);
2239 enter_lazy_tlb(&init_mm
, current
);
2241 /* Boot CPU's cache setup in setup_arch(). */
2245 TLBMISS_HANDLER_SETUP();
2248 /* Install CPU exception handler */
2249 void set_handler(unsigned long offset
, void *addr
, unsigned long size
)
2251 #ifdef CONFIG_CPU_MICROMIPS
2252 memcpy((void *)(ebase
+ offset
), ((unsigned char *)addr
- 1), size
);
2254 memcpy((void *)(ebase
+ offset
), addr
, size
);
2256 local_flush_icache_range(ebase
+ offset
, ebase
+ offset
+ size
);
2259 static const char panic_null_cerr
[] =
2260 "Trying to set NULL cache error exception handler\n";
2263 * Install uncached CPU exception handler.
2264 * This is suitable only for the cache error exception which is the only
2265 * exception handler that is being run uncached.
2267 void set_uncached_handler(unsigned long offset
, void *addr
,
2270 unsigned long uncached_ebase
= CKSEG1ADDR(ebase
);
2273 panic(panic_null_cerr
);
2275 memcpy((void *)(uncached_ebase
+ offset
), addr
, size
);
2278 static int __initdata rdhwr_noopt
;
2279 static int __init
set_rdhwr_noopt(char *str
)
2285 __setup("rdhwr_noopt", set_rdhwr_noopt
);
2287 void __init
trap_init(void)
2289 extern char except_vec3_generic
;
2290 extern char except_vec4
;
2291 extern char except_vec3_r4000
;
2296 if (cpu_has_veic
|| cpu_has_vint
) {
2297 unsigned long size
= 0x200 + VECTORSPACING
*64;
2298 phys_addr_t ebase_pa
;
2300 ebase
= (unsigned long)
2301 __alloc_bootmem(size
, 1 << fls(size
), 0);
2304 * Try to ensure ebase resides in KSeg0 if possible.
2306 * It shouldn't generally be in XKPhys on MIPS64 to avoid
2307 * hitting a poorly defined exception base for Cache Errors.
2308 * The allocation is likely to be in the low 512MB of physical,
2309 * in which case we should be able to convert to KSeg0.
2311 * EVA is special though as it allows segments to be rearranged
2312 * and to become uncached during cache error handling.
2314 ebase_pa
= __pa(ebase
);
2315 if (!IS_ENABLED(CONFIG_EVA
) && !WARN_ON(ebase_pa
>= 0x20000000))
2316 ebase
= CKSEG0ADDR(ebase_pa
);
2320 if (cpu_has_mips_r2_r6
) {
2321 if (cpu_has_ebase_wg
) {
2323 ebase
= (read_c0_ebase_64() & ~0xfff);
2325 ebase
= (read_c0_ebase() & ~0xfff);
2328 ebase
+= (read_c0_ebase() & 0x3ffff000);
2333 if (cpu_has_mmips
) {
2334 unsigned int config3
= read_c0_config3();
2336 if (IS_ENABLED(CONFIG_CPU_MICROMIPS
))
2337 write_c0_config3(config3
| MIPS_CONF3_ISA_OE
);
2339 write_c0_config3(config3
& ~MIPS_CONF3_ISA_OE
);
2342 if (board_ebase_setup
)
2343 board_ebase_setup();
2344 per_cpu_trap_init(true);
2347 * Copy the generic exception handlers to their final destination.
2348 * This will be overridden later as suitable for a particular
2351 set_handler(0x180, &except_vec3_generic
, 0x80);
2354 * Setup default vectors
2356 for (i
= 0; i
<= 31; i
++)
2357 set_except_vector(i
, handle_reserved
);
2360 * Copy the EJTAG debug exception vector handler code to it's final
2363 if (cpu_has_ejtag
&& board_ejtag_handler_setup
)
2364 board_ejtag_handler_setup();
2367 * Only some CPUs have the watch exceptions.
2370 set_except_vector(EXCCODE_WATCH
, handle_watch
);
2373 * Initialise interrupt handlers
2375 if (cpu_has_veic
|| cpu_has_vint
) {
2376 int nvec
= cpu_has_veic
? 64 : 8;
2377 for (i
= 0; i
< nvec
; i
++)
2378 set_vi_handler(i
, NULL
);
2380 else if (cpu_has_divec
)
2381 set_handler(0x200, &except_vec4
, 0x8);
2384 * Some CPUs can enable/disable for cache parity detection, but does
2385 * it different ways.
2387 parity_protection_init();
2390 * The Data Bus Errors / Instruction Bus Errors are signaled
2391 * by external hardware. Therefore these two exceptions
2392 * may have board specific handlers.
2397 set_except_vector(EXCCODE_INT
, using_rollback_handler() ?
2398 rollback_handle_int
: handle_int
);
2399 set_except_vector(EXCCODE_MOD
, handle_tlbm
);
2400 set_except_vector(EXCCODE_TLBL
, handle_tlbl
);
2401 set_except_vector(EXCCODE_TLBS
, handle_tlbs
);
2403 set_except_vector(EXCCODE_ADEL
, handle_adel
);
2404 set_except_vector(EXCCODE_ADES
, handle_ades
);
2406 set_except_vector(EXCCODE_IBE
, handle_ibe
);
2407 set_except_vector(EXCCODE_DBE
, handle_dbe
);
2409 set_except_vector(EXCCODE_SYS
, handle_sys
);
2410 set_except_vector(EXCCODE_BP
, handle_bp
);
2413 set_except_vector(EXCCODE_RI
, handle_ri
);
2415 if (cpu_has_vtag_icache
)
2416 set_except_vector(EXCCODE_RI
, handle_ri_rdhwr_tlbp
);
2417 else if (current_cpu_type() == CPU_LOONGSON3
)
2418 set_except_vector(EXCCODE_RI
, handle_ri_rdhwr_tlbp
);
2420 set_except_vector(EXCCODE_RI
, handle_ri_rdhwr
);
2423 set_except_vector(EXCCODE_CPU
, handle_cpu
);
2424 set_except_vector(EXCCODE_OV
, handle_ov
);
2425 set_except_vector(EXCCODE_TR
, handle_tr
);
2426 set_except_vector(EXCCODE_MSAFPE
, handle_msa_fpe
);
2428 if (board_nmi_handler_setup
)
2429 board_nmi_handler_setup();
2431 if (cpu_has_fpu
&& !cpu_has_nofpuex
)
2432 set_except_vector(EXCCODE_FPE
, handle_fpe
);
2434 set_except_vector(MIPS_EXCCODE_TLBPAR
, handle_ftlb
);
2436 if (cpu_has_rixiex
) {
2437 set_except_vector(EXCCODE_TLBRI
, tlb_do_page_fault_0
);
2438 set_except_vector(EXCCODE_TLBXI
, tlb_do_page_fault_0
);
2441 set_except_vector(EXCCODE_MSADIS
, handle_msa
);
2442 set_except_vector(EXCCODE_MDMX
, handle_mdmx
);
2445 set_except_vector(EXCCODE_MCHECK
, handle_mcheck
);
2448 set_except_vector(EXCCODE_THREAD
, handle_mt
);
2450 set_except_vector(EXCCODE_DSPDIS
, handle_dsp
);
2452 if (board_cache_error_setup
)
2453 board_cache_error_setup();
2456 /* Special exception: R4[04]00 uses also the divec space. */
2457 set_handler(0x180, &except_vec3_r4000
, 0x100);
2458 else if (cpu_has_4kex
)
2459 set_handler(0x180, &except_vec3_generic
, 0x80);
2461 set_handler(0x080, &except_vec3_generic
, 0x80);
2463 local_flush_icache_range(ebase
, ebase
+ 0x400);
2465 sort_extable(__start___dbe_table
, __stop___dbe_table
);
2467 cu2_notifier(default_cu2_call
, 0x80000000); /* Run last */
2470 static int trap_pm_notifier(struct notifier_block
*self
, unsigned long cmd
,
2474 case CPU_PM_ENTER_FAILED
:
2478 configure_exception_vector();
2480 /* Restore register with CPU number for TLB handlers */
2481 TLBMISS_HANDLER_RESTORE();
2489 static struct notifier_block trap_pm_notifier_block
= {
2490 .notifier_call
= trap_pm_notifier
,
2493 static int __init
trap_pm_init(void)
2495 return cpu_pm_register_notifier(&trap_pm_notifier_block
);
2497 arch_initcall(trap_pm_init
);