Merge tag 'for_linus' of git://git.kernel.org/pub/scm/linux/kernel/git/mst/vhost
[cris-mirror.git] / arch / mips / math-emu / cp1emu.c
blob62deb025970bdd5391f1288a554fa24d14070bf5
1 /*
2 * cp1emu.c: a MIPS coprocessor 1 (FPU) instruction emulator
4 * MIPS floating point support
5 * Copyright (C) 1994-2000 Algorithmics Ltd.
7 * Kevin D. Kissell, kevink@mips.com and Carsten Langgaard, carstenl@mips.com
8 * Copyright (C) 2000 MIPS Technologies, Inc.
10 * This program is free software; you can distribute it and/or modify it
11 * under the terms of the GNU General Public License (Version 2) as
12 * published by the Free Software Foundation.
14 * This program is distributed in the hope it will be useful, but WITHOUT
15 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
16 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
17 * for more details.
19 * You should have received a copy of the GNU General Public License along
20 * with this program; if not, write to the Free Software Foundation, Inc.,
21 * 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
23 * A complete emulator for MIPS coprocessor 1 instructions. This is
24 * required for #float(switch) or #float(trap), where it catches all
25 * COP1 instructions via the "CoProcessor Unusable" exception.
27 * More surprisingly it is also required for #float(ieee), to help out
28 * the hardware FPU at the boundaries of the IEEE-754 representation
29 * (denormalised values, infinities, underflow, etc). It is made
30 * quite nasty because emulation of some non-COP1 instructions is
31 * required, e.g. in branch delay slots.
33 * Note if you know that you won't have an FPU, then you'll get much
34 * better performance by compiling with -msoft-float!
36 #include <linux/sched.h>
37 #include <linux/debugfs.h>
38 #include <linux/percpu-defs.h>
39 #include <linux/perf_event.h>
41 #include <asm/branch.h>
42 #include <asm/inst.h>
43 #include <asm/ptrace.h>
44 #include <asm/signal.h>
45 #include <linux/uaccess.h>
47 #include <asm/cpu-info.h>
48 #include <asm/processor.h>
49 #include <asm/fpu_emulator.h>
50 #include <asm/fpu.h>
51 #include <asm/mips-r2-to-r6-emul.h>
53 #include "ieee754.h"
55 /* Function which emulates a floating point instruction. */
57 static int fpu_emu(struct pt_regs *, struct mips_fpu_struct *,
58 mips_instruction);
60 static int fpux_emu(struct pt_regs *,
61 struct mips_fpu_struct *, mips_instruction, void __user **);
63 /* Control registers */
65 #define FPCREG_RID 0 /* $0 = revision id */
66 #define FPCREG_FCCR 25 /* $25 = fccr */
67 #define FPCREG_FEXR 26 /* $26 = fexr */
68 #define FPCREG_FENR 28 /* $28 = fenr */
69 #define FPCREG_CSR 31 /* $31 = csr */
71 /* convert condition code register number to csr bit */
72 const unsigned int fpucondbit[8] = {
73 FPU_CSR_COND,
74 FPU_CSR_COND1,
75 FPU_CSR_COND2,
76 FPU_CSR_COND3,
77 FPU_CSR_COND4,
78 FPU_CSR_COND5,
79 FPU_CSR_COND6,
80 FPU_CSR_COND7
83 /* (microMIPS) Convert certain microMIPS instructions to MIPS32 format. */
84 static const int sd_format[] = {16, 17, 0, 0, 0, 0, 0, 0};
85 static const int sdps_format[] = {16, 17, 22, 0, 0, 0, 0, 0};
86 static const int dwl_format[] = {17, 20, 21, 0, 0, 0, 0, 0};
87 static const int swl_format[] = {16, 20, 21, 0, 0, 0, 0, 0};
90 * This functions translates a 32-bit microMIPS instruction
91 * into a 32-bit MIPS32 instruction. Returns 0 on success
92 * and SIGILL otherwise.
94 static int microMIPS32_to_MIPS32(union mips_instruction *insn_ptr)
96 union mips_instruction insn = *insn_ptr;
97 union mips_instruction mips32_insn = insn;
98 int func, fmt, op;
100 switch (insn.mm_i_format.opcode) {
101 case mm_ldc132_op:
102 mips32_insn.mm_i_format.opcode = ldc1_op;
103 mips32_insn.mm_i_format.rt = insn.mm_i_format.rs;
104 mips32_insn.mm_i_format.rs = insn.mm_i_format.rt;
105 break;
106 case mm_lwc132_op:
107 mips32_insn.mm_i_format.opcode = lwc1_op;
108 mips32_insn.mm_i_format.rt = insn.mm_i_format.rs;
109 mips32_insn.mm_i_format.rs = insn.mm_i_format.rt;
110 break;
111 case mm_sdc132_op:
112 mips32_insn.mm_i_format.opcode = sdc1_op;
113 mips32_insn.mm_i_format.rt = insn.mm_i_format.rs;
114 mips32_insn.mm_i_format.rs = insn.mm_i_format.rt;
115 break;
116 case mm_swc132_op:
117 mips32_insn.mm_i_format.opcode = swc1_op;
118 mips32_insn.mm_i_format.rt = insn.mm_i_format.rs;
119 mips32_insn.mm_i_format.rs = insn.mm_i_format.rt;
120 break;
121 case mm_pool32i_op:
122 /* NOTE: offset is << by 1 if in microMIPS mode. */
123 if ((insn.mm_i_format.rt == mm_bc1f_op) ||
124 (insn.mm_i_format.rt == mm_bc1t_op)) {
125 mips32_insn.fb_format.opcode = cop1_op;
126 mips32_insn.fb_format.bc = bc_op;
127 mips32_insn.fb_format.flag =
128 (insn.mm_i_format.rt == mm_bc1t_op) ? 1 : 0;
129 } else
130 return SIGILL;
131 break;
132 case mm_pool32f_op:
133 switch (insn.mm_fp0_format.func) {
134 case mm_32f_01_op:
135 case mm_32f_11_op:
136 case mm_32f_02_op:
137 case mm_32f_12_op:
138 case mm_32f_41_op:
139 case mm_32f_51_op:
140 case mm_32f_42_op:
141 case mm_32f_52_op:
142 op = insn.mm_fp0_format.func;
143 if (op == mm_32f_01_op)
144 func = madd_s_op;
145 else if (op == mm_32f_11_op)
146 func = madd_d_op;
147 else if (op == mm_32f_02_op)
148 func = nmadd_s_op;
149 else if (op == mm_32f_12_op)
150 func = nmadd_d_op;
151 else if (op == mm_32f_41_op)
152 func = msub_s_op;
153 else if (op == mm_32f_51_op)
154 func = msub_d_op;
155 else if (op == mm_32f_42_op)
156 func = nmsub_s_op;
157 else
158 func = nmsub_d_op;
159 mips32_insn.fp6_format.opcode = cop1x_op;
160 mips32_insn.fp6_format.fr = insn.mm_fp6_format.fr;
161 mips32_insn.fp6_format.ft = insn.mm_fp6_format.ft;
162 mips32_insn.fp6_format.fs = insn.mm_fp6_format.fs;
163 mips32_insn.fp6_format.fd = insn.mm_fp6_format.fd;
164 mips32_insn.fp6_format.func = func;
165 break;
166 case mm_32f_10_op:
167 func = -1; /* Invalid */
168 op = insn.mm_fp5_format.op & 0x7;
169 if (op == mm_ldxc1_op)
170 func = ldxc1_op;
171 else if (op == mm_sdxc1_op)
172 func = sdxc1_op;
173 else if (op == mm_lwxc1_op)
174 func = lwxc1_op;
175 else if (op == mm_swxc1_op)
176 func = swxc1_op;
178 if (func != -1) {
179 mips32_insn.r_format.opcode = cop1x_op;
180 mips32_insn.r_format.rs =
181 insn.mm_fp5_format.base;
182 mips32_insn.r_format.rt =
183 insn.mm_fp5_format.index;
184 mips32_insn.r_format.rd = 0;
185 mips32_insn.r_format.re = insn.mm_fp5_format.fd;
186 mips32_insn.r_format.func = func;
187 } else
188 return SIGILL;
189 break;
190 case mm_32f_40_op:
191 op = -1; /* Invalid */
192 if (insn.mm_fp2_format.op == mm_fmovt_op)
193 op = 1;
194 else if (insn.mm_fp2_format.op == mm_fmovf_op)
195 op = 0;
196 if (op != -1) {
197 mips32_insn.fp0_format.opcode = cop1_op;
198 mips32_insn.fp0_format.fmt =
199 sdps_format[insn.mm_fp2_format.fmt];
200 mips32_insn.fp0_format.ft =
201 (insn.mm_fp2_format.cc<<2) + op;
202 mips32_insn.fp0_format.fs =
203 insn.mm_fp2_format.fs;
204 mips32_insn.fp0_format.fd =
205 insn.mm_fp2_format.fd;
206 mips32_insn.fp0_format.func = fmovc_op;
207 } else
208 return SIGILL;
209 break;
210 case mm_32f_60_op:
211 func = -1; /* Invalid */
212 if (insn.mm_fp0_format.op == mm_fadd_op)
213 func = fadd_op;
214 else if (insn.mm_fp0_format.op == mm_fsub_op)
215 func = fsub_op;
216 else if (insn.mm_fp0_format.op == mm_fmul_op)
217 func = fmul_op;
218 else if (insn.mm_fp0_format.op == mm_fdiv_op)
219 func = fdiv_op;
220 if (func != -1) {
221 mips32_insn.fp0_format.opcode = cop1_op;
222 mips32_insn.fp0_format.fmt =
223 sdps_format[insn.mm_fp0_format.fmt];
224 mips32_insn.fp0_format.ft =
225 insn.mm_fp0_format.ft;
226 mips32_insn.fp0_format.fs =
227 insn.mm_fp0_format.fs;
228 mips32_insn.fp0_format.fd =
229 insn.mm_fp0_format.fd;
230 mips32_insn.fp0_format.func = func;
231 } else
232 return SIGILL;
233 break;
234 case mm_32f_70_op:
235 func = -1; /* Invalid */
236 if (insn.mm_fp0_format.op == mm_fmovn_op)
237 func = fmovn_op;
238 else if (insn.mm_fp0_format.op == mm_fmovz_op)
239 func = fmovz_op;
240 if (func != -1) {
241 mips32_insn.fp0_format.opcode = cop1_op;
242 mips32_insn.fp0_format.fmt =
243 sdps_format[insn.mm_fp0_format.fmt];
244 mips32_insn.fp0_format.ft =
245 insn.mm_fp0_format.ft;
246 mips32_insn.fp0_format.fs =
247 insn.mm_fp0_format.fs;
248 mips32_insn.fp0_format.fd =
249 insn.mm_fp0_format.fd;
250 mips32_insn.fp0_format.func = func;
251 } else
252 return SIGILL;
253 break;
254 case mm_32f_73_op: /* POOL32FXF */
255 switch (insn.mm_fp1_format.op) {
256 case mm_movf0_op:
257 case mm_movf1_op:
258 case mm_movt0_op:
259 case mm_movt1_op:
260 if ((insn.mm_fp1_format.op & 0x7f) ==
261 mm_movf0_op)
262 op = 0;
263 else
264 op = 1;
265 mips32_insn.r_format.opcode = spec_op;
266 mips32_insn.r_format.rs = insn.mm_fp4_format.fs;
267 mips32_insn.r_format.rt =
268 (insn.mm_fp4_format.cc << 2) + op;
269 mips32_insn.r_format.rd = insn.mm_fp4_format.rt;
270 mips32_insn.r_format.re = 0;
271 mips32_insn.r_format.func = movc_op;
272 break;
273 case mm_fcvtd0_op:
274 case mm_fcvtd1_op:
275 case mm_fcvts0_op:
276 case mm_fcvts1_op:
277 if ((insn.mm_fp1_format.op & 0x7f) ==
278 mm_fcvtd0_op) {
279 func = fcvtd_op;
280 fmt = swl_format[insn.mm_fp3_format.fmt];
281 } else {
282 func = fcvts_op;
283 fmt = dwl_format[insn.mm_fp3_format.fmt];
285 mips32_insn.fp0_format.opcode = cop1_op;
286 mips32_insn.fp0_format.fmt = fmt;
287 mips32_insn.fp0_format.ft = 0;
288 mips32_insn.fp0_format.fs =
289 insn.mm_fp3_format.fs;
290 mips32_insn.fp0_format.fd =
291 insn.mm_fp3_format.rt;
292 mips32_insn.fp0_format.func = func;
293 break;
294 case mm_fmov0_op:
295 case mm_fmov1_op:
296 case mm_fabs0_op:
297 case mm_fabs1_op:
298 case mm_fneg0_op:
299 case mm_fneg1_op:
300 if ((insn.mm_fp1_format.op & 0x7f) ==
301 mm_fmov0_op)
302 func = fmov_op;
303 else if ((insn.mm_fp1_format.op & 0x7f) ==
304 mm_fabs0_op)
305 func = fabs_op;
306 else
307 func = fneg_op;
308 mips32_insn.fp0_format.opcode = cop1_op;
309 mips32_insn.fp0_format.fmt =
310 sdps_format[insn.mm_fp3_format.fmt];
311 mips32_insn.fp0_format.ft = 0;
312 mips32_insn.fp0_format.fs =
313 insn.mm_fp3_format.fs;
314 mips32_insn.fp0_format.fd =
315 insn.mm_fp3_format.rt;
316 mips32_insn.fp0_format.func = func;
317 break;
318 case mm_ffloorl_op:
319 case mm_ffloorw_op:
320 case mm_fceill_op:
321 case mm_fceilw_op:
322 case mm_ftruncl_op:
323 case mm_ftruncw_op:
324 case mm_froundl_op:
325 case mm_froundw_op:
326 case mm_fcvtl_op:
327 case mm_fcvtw_op:
328 if (insn.mm_fp1_format.op == mm_ffloorl_op)
329 func = ffloorl_op;
330 else if (insn.mm_fp1_format.op == mm_ffloorw_op)
331 func = ffloor_op;
332 else if (insn.mm_fp1_format.op == mm_fceill_op)
333 func = fceill_op;
334 else if (insn.mm_fp1_format.op == mm_fceilw_op)
335 func = fceil_op;
336 else if (insn.mm_fp1_format.op == mm_ftruncl_op)
337 func = ftruncl_op;
338 else if (insn.mm_fp1_format.op == mm_ftruncw_op)
339 func = ftrunc_op;
340 else if (insn.mm_fp1_format.op == mm_froundl_op)
341 func = froundl_op;
342 else if (insn.mm_fp1_format.op == mm_froundw_op)
343 func = fround_op;
344 else if (insn.mm_fp1_format.op == mm_fcvtl_op)
345 func = fcvtl_op;
346 else
347 func = fcvtw_op;
348 mips32_insn.fp0_format.opcode = cop1_op;
349 mips32_insn.fp0_format.fmt =
350 sd_format[insn.mm_fp1_format.fmt];
351 mips32_insn.fp0_format.ft = 0;
352 mips32_insn.fp0_format.fs =
353 insn.mm_fp1_format.fs;
354 mips32_insn.fp0_format.fd =
355 insn.mm_fp1_format.rt;
356 mips32_insn.fp0_format.func = func;
357 break;
358 case mm_frsqrt_op:
359 case mm_fsqrt_op:
360 case mm_frecip_op:
361 if (insn.mm_fp1_format.op == mm_frsqrt_op)
362 func = frsqrt_op;
363 else if (insn.mm_fp1_format.op == mm_fsqrt_op)
364 func = fsqrt_op;
365 else
366 func = frecip_op;
367 mips32_insn.fp0_format.opcode = cop1_op;
368 mips32_insn.fp0_format.fmt =
369 sdps_format[insn.mm_fp1_format.fmt];
370 mips32_insn.fp0_format.ft = 0;
371 mips32_insn.fp0_format.fs =
372 insn.mm_fp1_format.fs;
373 mips32_insn.fp0_format.fd =
374 insn.mm_fp1_format.rt;
375 mips32_insn.fp0_format.func = func;
376 break;
377 case mm_mfc1_op:
378 case mm_mtc1_op:
379 case mm_cfc1_op:
380 case mm_ctc1_op:
381 case mm_mfhc1_op:
382 case mm_mthc1_op:
383 if (insn.mm_fp1_format.op == mm_mfc1_op)
384 op = mfc_op;
385 else if (insn.mm_fp1_format.op == mm_mtc1_op)
386 op = mtc_op;
387 else if (insn.mm_fp1_format.op == mm_cfc1_op)
388 op = cfc_op;
389 else if (insn.mm_fp1_format.op == mm_ctc1_op)
390 op = ctc_op;
391 else if (insn.mm_fp1_format.op == mm_mfhc1_op)
392 op = mfhc_op;
393 else
394 op = mthc_op;
395 mips32_insn.fp1_format.opcode = cop1_op;
396 mips32_insn.fp1_format.op = op;
397 mips32_insn.fp1_format.rt =
398 insn.mm_fp1_format.rt;
399 mips32_insn.fp1_format.fs =
400 insn.mm_fp1_format.fs;
401 mips32_insn.fp1_format.fd = 0;
402 mips32_insn.fp1_format.func = 0;
403 break;
404 default:
405 return SIGILL;
407 break;
408 case mm_32f_74_op: /* c.cond.fmt */
409 mips32_insn.fp0_format.opcode = cop1_op;
410 mips32_insn.fp0_format.fmt =
411 sdps_format[insn.mm_fp4_format.fmt];
412 mips32_insn.fp0_format.ft = insn.mm_fp4_format.rt;
413 mips32_insn.fp0_format.fs = insn.mm_fp4_format.fs;
414 mips32_insn.fp0_format.fd = insn.mm_fp4_format.cc << 2;
415 mips32_insn.fp0_format.func =
416 insn.mm_fp4_format.cond | MM_MIPS32_COND_FC;
417 break;
418 default:
419 return SIGILL;
421 break;
422 default:
423 return SIGILL;
426 *insn_ptr = mips32_insn;
427 return 0;
431 * Redundant with logic already in kernel/branch.c,
432 * embedded in compute_return_epc. At some point,
433 * a single subroutine should be used across both
434 * modules.
436 int isBranchInstr(struct pt_regs *regs, struct mm_decoded_insn dec_insn,
437 unsigned long *contpc)
439 union mips_instruction insn = (union mips_instruction)dec_insn.insn;
440 unsigned int fcr31;
441 unsigned int bit = 0;
442 unsigned int bit0;
443 union fpureg *fpr;
445 switch (insn.i_format.opcode) {
446 case spec_op:
447 switch (insn.r_format.func) {
448 case jalr_op:
449 if (insn.r_format.rd != 0) {
450 regs->regs[insn.r_format.rd] =
451 regs->cp0_epc + dec_insn.pc_inc +
452 dec_insn.next_pc_inc;
454 /* fall through */
455 case jr_op:
456 /* For R6, JR already emulated in jalr_op */
457 if (NO_R6EMU && insn.r_format.func == jr_op)
458 break;
459 *contpc = regs->regs[insn.r_format.rs];
460 return 1;
462 break;
463 case bcond_op:
464 switch (insn.i_format.rt) {
465 case bltzal_op:
466 case bltzall_op:
467 if (NO_R6EMU && (insn.i_format.rs ||
468 insn.i_format.rt == bltzall_op))
469 break;
471 regs->regs[31] = regs->cp0_epc +
472 dec_insn.pc_inc +
473 dec_insn.next_pc_inc;
474 /* fall through */
475 case bltzl_op:
476 if (NO_R6EMU)
477 break;
478 /* fall through */
479 case bltz_op:
480 if ((long)regs->regs[insn.i_format.rs] < 0)
481 *contpc = regs->cp0_epc +
482 dec_insn.pc_inc +
483 (insn.i_format.simmediate << 2);
484 else
485 *contpc = regs->cp0_epc +
486 dec_insn.pc_inc +
487 dec_insn.next_pc_inc;
488 return 1;
489 case bgezal_op:
490 case bgezall_op:
491 if (NO_R6EMU && (insn.i_format.rs ||
492 insn.i_format.rt == bgezall_op))
493 break;
495 regs->regs[31] = regs->cp0_epc +
496 dec_insn.pc_inc +
497 dec_insn.next_pc_inc;
498 /* fall through */
499 case bgezl_op:
500 if (NO_R6EMU)
501 break;
502 /* fall through */
503 case bgez_op:
504 if ((long)regs->regs[insn.i_format.rs] >= 0)
505 *contpc = regs->cp0_epc +
506 dec_insn.pc_inc +
507 (insn.i_format.simmediate << 2);
508 else
509 *contpc = regs->cp0_epc +
510 dec_insn.pc_inc +
511 dec_insn.next_pc_inc;
512 return 1;
514 break;
515 case jalx_op:
516 set_isa16_mode(bit);
517 /* fall through */
518 case jal_op:
519 regs->regs[31] = regs->cp0_epc +
520 dec_insn.pc_inc +
521 dec_insn.next_pc_inc;
522 /* fall through */
523 case j_op:
524 *contpc = regs->cp0_epc + dec_insn.pc_inc;
525 *contpc >>= 28;
526 *contpc <<= 28;
527 *contpc |= (insn.j_format.target << 2);
528 /* Set microMIPS mode bit: XOR for jalx. */
529 *contpc ^= bit;
530 return 1;
531 case beql_op:
532 if (NO_R6EMU)
533 break;
534 /* fall through */
535 case beq_op:
536 if (regs->regs[insn.i_format.rs] ==
537 regs->regs[insn.i_format.rt])
538 *contpc = regs->cp0_epc +
539 dec_insn.pc_inc +
540 (insn.i_format.simmediate << 2);
541 else
542 *contpc = regs->cp0_epc +
543 dec_insn.pc_inc +
544 dec_insn.next_pc_inc;
545 return 1;
546 case bnel_op:
547 if (NO_R6EMU)
548 break;
549 /* fall through */
550 case bne_op:
551 if (regs->regs[insn.i_format.rs] !=
552 regs->regs[insn.i_format.rt])
553 *contpc = regs->cp0_epc +
554 dec_insn.pc_inc +
555 (insn.i_format.simmediate << 2);
556 else
557 *contpc = regs->cp0_epc +
558 dec_insn.pc_inc +
559 dec_insn.next_pc_inc;
560 return 1;
561 case blezl_op:
562 if (!insn.i_format.rt && NO_R6EMU)
563 break;
564 /* fall through */
565 case blez_op:
568 * Compact branches for R6 for the
569 * blez and blezl opcodes.
570 * BLEZ | rs = 0 | rt != 0 == BLEZALC
571 * BLEZ | rs = rt != 0 == BGEZALC
572 * BLEZ | rs != 0 | rt != 0 == BGEUC
573 * BLEZL | rs = 0 | rt != 0 == BLEZC
574 * BLEZL | rs = rt != 0 == BGEZC
575 * BLEZL | rs != 0 | rt != 0 == BGEC
577 * For real BLEZ{,L}, rt is always 0.
579 if (cpu_has_mips_r6 && insn.i_format.rt) {
580 if ((insn.i_format.opcode == blez_op) &&
581 ((!insn.i_format.rs && insn.i_format.rt) ||
582 (insn.i_format.rs == insn.i_format.rt)))
583 regs->regs[31] = regs->cp0_epc +
584 dec_insn.pc_inc;
585 *contpc = regs->cp0_epc + dec_insn.pc_inc +
586 dec_insn.next_pc_inc;
588 return 1;
590 if ((long)regs->regs[insn.i_format.rs] <= 0)
591 *contpc = regs->cp0_epc +
592 dec_insn.pc_inc +
593 (insn.i_format.simmediate << 2);
594 else
595 *contpc = regs->cp0_epc +
596 dec_insn.pc_inc +
597 dec_insn.next_pc_inc;
598 return 1;
599 case bgtzl_op:
600 if (!insn.i_format.rt && NO_R6EMU)
601 break;
602 /* fall through */
603 case bgtz_op:
605 * Compact branches for R6 for the
606 * bgtz and bgtzl opcodes.
607 * BGTZ | rs = 0 | rt != 0 == BGTZALC
608 * BGTZ | rs = rt != 0 == BLTZALC
609 * BGTZ | rs != 0 | rt != 0 == BLTUC
610 * BGTZL | rs = 0 | rt != 0 == BGTZC
611 * BGTZL | rs = rt != 0 == BLTZC
612 * BGTZL | rs != 0 | rt != 0 == BLTC
614 * *ZALC varint for BGTZ &&& rt != 0
615 * For real GTZ{,L}, rt is always 0.
617 if (cpu_has_mips_r6 && insn.i_format.rt) {
618 if ((insn.i_format.opcode == blez_op) &&
619 ((!insn.i_format.rs && insn.i_format.rt) ||
620 (insn.i_format.rs == insn.i_format.rt)))
621 regs->regs[31] = regs->cp0_epc +
622 dec_insn.pc_inc;
623 *contpc = regs->cp0_epc + dec_insn.pc_inc +
624 dec_insn.next_pc_inc;
626 return 1;
629 if ((long)regs->regs[insn.i_format.rs] > 0)
630 *contpc = regs->cp0_epc +
631 dec_insn.pc_inc +
632 (insn.i_format.simmediate << 2);
633 else
634 *contpc = regs->cp0_epc +
635 dec_insn.pc_inc +
636 dec_insn.next_pc_inc;
637 return 1;
638 case pop10_op:
639 case pop30_op:
640 if (!cpu_has_mips_r6)
641 break;
642 if (insn.i_format.rt && !insn.i_format.rs)
643 regs->regs[31] = regs->cp0_epc + 4;
644 *contpc = regs->cp0_epc + dec_insn.pc_inc +
645 dec_insn.next_pc_inc;
647 return 1;
648 #ifdef CONFIG_CPU_CAVIUM_OCTEON
649 case lwc2_op: /* This is bbit0 on Octeon */
650 if ((regs->regs[insn.i_format.rs] & (1ull<<insn.i_format.rt)) == 0)
651 *contpc = regs->cp0_epc + 4 + (insn.i_format.simmediate << 2);
652 else
653 *contpc = regs->cp0_epc + 8;
654 return 1;
655 case ldc2_op: /* This is bbit032 on Octeon */
656 if ((regs->regs[insn.i_format.rs] & (1ull<<(insn.i_format.rt + 32))) == 0)
657 *contpc = regs->cp0_epc + 4 + (insn.i_format.simmediate << 2);
658 else
659 *contpc = regs->cp0_epc + 8;
660 return 1;
661 case swc2_op: /* This is bbit1 on Octeon */
662 if (regs->regs[insn.i_format.rs] & (1ull<<insn.i_format.rt))
663 *contpc = regs->cp0_epc + 4 + (insn.i_format.simmediate << 2);
664 else
665 *contpc = regs->cp0_epc + 8;
666 return 1;
667 case sdc2_op: /* This is bbit132 on Octeon */
668 if (regs->regs[insn.i_format.rs] & (1ull<<(insn.i_format.rt + 32)))
669 *contpc = regs->cp0_epc + 4 + (insn.i_format.simmediate << 2);
670 else
671 *contpc = regs->cp0_epc + 8;
672 return 1;
673 #else
674 case bc6_op:
676 * Only valid for MIPS R6 but we can still end up
677 * here from a broken userland so just tell emulator
678 * this is not a branch and let it break later on.
680 if (!cpu_has_mips_r6)
681 break;
682 *contpc = regs->cp0_epc + dec_insn.pc_inc +
683 dec_insn.next_pc_inc;
685 return 1;
686 case balc6_op:
687 if (!cpu_has_mips_r6)
688 break;
689 regs->regs[31] = regs->cp0_epc + 4;
690 *contpc = regs->cp0_epc + dec_insn.pc_inc +
691 dec_insn.next_pc_inc;
693 return 1;
694 case pop66_op:
695 if (!cpu_has_mips_r6)
696 break;
697 *contpc = regs->cp0_epc + dec_insn.pc_inc +
698 dec_insn.next_pc_inc;
700 return 1;
701 case pop76_op:
702 if (!cpu_has_mips_r6)
703 break;
704 if (!insn.i_format.rs)
705 regs->regs[31] = regs->cp0_epc + 4;
706 *contpc = regs->cp0_epc + dec_insn.pc_inc +
707 dec_insn.next_pc_inc;
709 return 1;
710 #endif
711 case cop0_op:
712 case cop1_op:
713 /* Need to check for R6 bc1nez and bc1eqz branches */
714 if (cpu_has_mips_r6 &&
715 ((insn.i_format.rs == bc1eqz_op) ||
716 (insn.i_format.rs == bc1nez_op))) {
717 bit = 0;
718 fpr = &current->thread.fpu.fpr[insn.i_format.rt];
719 bit0 = get_fpr32(fpr, 0) & 0x1;
720 switch (insn.i_format.rs) {
721 case bc1eqz_op:
722 bit = bit0 == 0;
723 break;
724 case bc1nez_op:
725 bit = bit0 != 0;
726 break;
728 if (bit)
729 *contpc = regs->cp0_epc +
730 dec_insn.pc_inc +
731 (insn.i_format.simmediate << 2);
732 else
733 *contpc = regs->cp0_epc +
734 dec_insn.pc_inc +
735 dec_insn.next_pc_inc;
737 return 1;
739 /* R2/R6 compatible cop1 instruction */
740 /* fall through */
741 case cop2_op:
742 case cop1x_op:
743 if (insn.i_format.rs == bc_op) {
744 preempt_disable();
745 if (is_fpu_owner())
746 fcr31 = read_32bit_cp1_register(CP1_STATUS);
747 else
748 fcr31 = current->thread.fpu.fcr31;
749 preempt_enable();
751 bit = (insn.i_format.rt >> 2);
752 bit += (bit != 0);
753 bit += 23;
754 switch (insn.i_format.rt & 3) {
755 case 0: /* bc1f */
756 case 2: /* bc1fl */
757 if (~fcr31 & (1 << bit))
758 *contpc = regs->cp0_epc +
759 dec_insn.pc_inc +
760 (insn.i_format.simmediate << 2);
761 else
762 *contpc = regs->cp0_epc +
763 dec_insn.pc_inc +
764 dec_insn.next_pc_inc;
765 return 1;
766 case 1: /* bc1t */
767 case 3: /* bc1tl */
768 if (fcr31 & (1 << bit))
769 *contpc = regs->cp0_epc +
770 dec_insn.pc_inc +
771 (insn.i_format.simmediate << 2);
772 else
773 *contpc = regs->cp0_epc +
774 dec_insn.pc_inc +
775 dec_insn.next_pc_inc;
776 return 1;
779 break;
781 return 0;
785 * In the Linux kernel, we support selection of FPR format on the
786 * basis of the Status.FR bit. If an FPU is not present, the FR bit
787 * is hardwired to zero, which would imply a 32-bit FPU even for
788 * 64-bit CPUs so we rather look at TIF_32BIT_FPREGS.
789 * FPU emu is slow and bulky and optimizing this function offers fairly
790 * sizeable benefits so we try to be clever and make this function return
791 * a constant whenever possible, that is on 64-bit kernels without O32
792 * compatibility enabled and on 32-bit without 64-bit FPU support.
794 static inline int cop1_64bit(struct pt_regs *xcp)
796 if (IS_ENABLED(CONFIG_64BIT) && !IS_ENABLED(CONFIG_MIPS32_O32))
797 return 1;
798 else if (IS_ENABLED(CONFIG_32BIT) &&
799 !IS_ENABLED(CONFIG_MIPS_O32_FP64_SUPPORT))
800 return 0;
802 return !test_thread_flag(TIF_32BIT_FPREGS);
805 static inline bool hybrid_fprs(void)
807 return test_thread_flag(TIF_HYBRID_FPREGS);
810 #define SIFROMREG(si, x) \
811 do { \
812 if (cop1_64bit(xcp) && !hybrid_fprs()) \
813 (si) = (int)get_fpr32(&ctx->fpr[x], 0); \
814 else \
815 (si) = (int)get_fpr32(&ctx->fpr[(x) & ~1], (x) & 1); \
816 } while (0)
818 #define SITOREG(si, x) \
819 do { \
820 if (cop1_64bit(xcp) && !hybrid_fprs()) { \
821 unsigned int i; \
822 set_fpr32(&ctx->fpr[x], 0, si); \
823 for (i = 1; i < ARRAY_SIZE(ctx->fpr[x].val32); i++) \
824 set_fpr32(&ctx->fpr[x], i, 0); \
825 } else { \
826 set_fpr32(&ctx->fpr[(x) & ~1], (x) & 1, si); \
828 } while (0)
830 #define SIFROMHREG(si, x) ((si) = (int)get_fpr32(&ctx->fpr[x], 1))
832 #define SITOHREG(si, x) \
833 do { \
834 unsigned int i; \
835 set_fpr32(&ctx->fpr[x], 1, si); \
836 for (i = 2; i < ARRAY_SIZE(ctx->fpr[x].val32); i++) \
837 set_fpr32(&ctx->fpr[x], i, 0); \
838 } while (0)
840 #define DIFROMREG(di, x) \
841 ((di) = get_fpr64(&ctx->fpr[(x) & ~(cop1_64bit(xcp) ^ 1)], 0))
843 #define DITOREG(di, x) \
844 do { \
845 unsigned int fpr, i; \
846 fpr = (x) & ~(cop1_64bit(xcp) ^ 1); \
847 set_fpr64(&ctx->fpr[fpr], 0, di); \
848 for (i = 1; i < ARRAY_SIZE(ctx->fpr[x].val64); i++) \
849 set_fpr64(&ctx->fpr[fpr], i, 0); \
850 } while (0)
852 #define SPFROMREG(sp, x) SIFROMREG((sp).bits, x)
853 #define SPTOREG(sp, x) SITOREG((sp).bits, x)
854 #define DPFROMREG(dp, x) DIFROMREG((dp).bits, x)
855 #define DPTOREG(dp, x) DITOREG((dp).bits, x)
858 * Emulate a CFC1 instruction.
860 static inline void cop1_cfc(struct pt_regs *xcp, struct mips_fpu_struct *ctx,
861 mips_instruction ir)
863 u32 fcr31 = ctx->fcr31;
864 u32 value = 0;
866 switch (MIPSInst_RD(ir)) {
867 case FPCREG_CSR:
868 value = fcr31;
869 pr_debug("%p gpr[%d]<-csr=%08x\n",
870 (void *)xcp->cp0_epc, MIPSInst_RT(ir), value);
871 break;
873 case FPCREG_FENR:
874 if (!cpu_has_mips_r)
875 break;
876 value = (fcr31 >> (FPU_CSR_FS_S - MIPS_FENR_FS_S)) &
877 MIPS_FENR_FS;
878 value |= fcr31 & (FPU_CSR_ALL_E | FPU_CSR_RM);
879 pr_debug("%p gpr[%d]<-enr=%08x\n",
880 (void *)xcp->cp0_epc, MIPSInst_RT(ir), value);
881 break;
883 case FPCREG_FEXR:
884 if (!cpu_has_mips_r)
885 break;
886 value = fcr31 & (FPU_CSR_ALL_X | FPU_CSR_ALL_S);
887 pr_debug("%p gpr[%d]<-exr=%08x\n",
888 (void *)xcp->cp0_epc, MIPSInst_RT(ir), value);
889 break;
891 case FPCREG_FCCR:
892 if (!cpu_has_mips_r)
893 break;
894 value = (fcr31 >> (FPU_CSR_COND_S - MIPS_FCCR_COND0_S)) &
895 MIPS_FCCR_COND0;
896 value |= (fcr31 >> (FPU_CSR_COND1_S - MIPS_FCCR_COND1_S)) &
897 (MIPS_FCCR_CONDX & ~MIPS_FCCR_COND0);
898 pr_debug("%p gpr[%d]<-ccr=%08x\n",
899 (void *)xcp->cp0_epc, MIPSInst_RT(ir), value);
900 break;
902 case FPCREG_RID:
903 value = boot_cpu_data.fpu_id;
904 break;
906 default:
907 break;
910 if (MIPSInst_RT(ir))
911 xcp->regs[MIPSInst_RT(ir)] = value;
915 * Emulate a CTC1 instruction.
917 static inline void cop1_ctc(struct pt_regs *xcp, struct mips_fpu_struct *ctx,
918 mips_instruction ir)
920 u32 fcr31 = ctx->fcr31;
921 u32 value;
922 u32 mask;
924 if (MIPSInst_RT(ir) == 0)
925 value = 0;
926 else
927 value = xcp->regs[MIPSInst_RT(ir)];
929 switch (MIPSInst_RD(ir)) {
930 case FPCREG_CSR:
931 pr_debug("%p gpr[%d]->csr=%08x\n",
932 (void *)xcp->cp0_epc, MIPSInst_RT(ir), value);
934 /* Preserve read-only bits. */
935 mask = boot_cpu_data.fpu_msk31;
936 fcr31 = (value & ~mask) | (fcr31 & mask);
937 break;
939 case FPCREG_FENR:
940 if (!cpu_has_mips_r)
941 break;
942 pr_debug("%p gpr[%d]->enr=%08x\n",
943 (void *)xcp->cp0_epc, MIPSInst_RT(ir), value);
944 fcr31 &= ~(FPU_CSR_FS | FPU_CSR_ALL_E | FPU_CSR_RM);
945 fcr31 |= (value << (FPU_CSR_FS_S - MIPS_FENR_FS_S)) &
946 FPU_CSR_FS;
947 fcr31 |= value & (FPU_CSR_ALL_E | FPU_CSR_RM);
948 break;
950 case FPCREG_FEXR:
951 if (!cpu_has_mips_r)
952 break;
953 pr_debug("%p gpr[%d]->exr=%08x\n",
954 (void *)xcp->cp0_epc, MIPSInst_RT(ir), value);
955 fcr31 &= ~(FPU_CSR_ALL_X | FPU_CSR_ALL_S);
956 fcr31 |= value & (FPU_CSR_ALL_X | FPU_CSR_ALL_S);
957 break;
959 case FPCREG_FCCR:
960 if (!cpu_has_mips_r)
961 break;
962 pr_debug("%p gpr[%d]->ccr=%08x\n",
963 (void *)xcp->cp0_epc, MIPSInst_RT(ir), value);
964 fcr31 &= ~(FPU_CSR_CONDX | FPU_CSR_COND);
965 fcr31 |= (value << (FPU_CSR_COND_S - MIPS_FCCR_COND0_S)) &
966 FPU_CSR_COND;
967 fcr31 |= (value << (FPU_CSR_COND1_S - MIPS_FCCR_COND1_S)) &
968 FPU_CSR_CONDX;
969 break;
971 default:
972 break;
975 ctx->fcr31 = fcr31;
979 * Emulate the single floating point instruction pointed at by EPC.
980 * Two instructions if the instruction is in a branch delay slot.
983 static int cop1Emulate(struct pt_regs *xcp, struct mips_fpu_struct *ctx,
984 struct mm_decoded_insn dec_insn, void __user **fault_addr)
986 unsigned long contpc = xcp->cp0_epc + dec_insn.pc_inc;
987 unsigned int cond, cbit, bit0;
988 mips_instruction ir;
989 int likely, pc_inc;
990 union fpureg *fpr;
991 u32 __user *wva;
992 u64 __user *dva;
993 u32 wval;
994 u64 dval;
995 int sig;
998 * These are giving gcc a gentle hint about what to expect in
999 * dec_inst in order to do better optimization.
1001 if (!cpu_has_mmips && dec_insn.micro_mips_mode)
1002 unreachable();
1004 /* XXX NEC Vr54xx bug workaround */
1005 if (delay_slot(xcp)) {
1006 if (dec_insn.micro_mips_mode) {
1007 if (!mm_isBranchInstr(xcp, dec_insn, &contpc))
1008 clear_delay_slot(xcp);
1009 } else {
1010 if (!isBranchInstr(xcp, dec_insn, &contpc))
1011 clear_delay_slot(xcp);
1015 if (delay_slot(xcp)) {
1017 * The instruction to be emulated is in a branch delay slot
1018 * which means that we have to emulate the branch instruction
1019 * BEFORE we do the cop1 instruction.
1021 * This branch could be a COP1 branch, but in that case we
1022 * would have had a trap for that instruction, and would not
1023 * come through this route.
1025 * Linux MIPS branch emulator operates on context, updating the
1026 * cp0_epc.
1028 ir = dec_insn.next_insn; /* process delay slot instr */
1029 pc_inc = dec_insn.next_pc_inc;
1030 } else {
1031 ir = dec_insn.insn; /* process current instr */
1032 pc_inc = dec_insn.pc_inc;
1036 * Since microMIPS FPU instructios are a subset of MIPS32 FPU
1037 * instructions, we want to convert microMIPS FPU instructions
1038 * into MIPS32 instructions so that we could reuse all of the
1039 * FPU emulation code.
1041 * NOTE: We cannot do this for branch instructions since they
1042 * are not a subset. Example: Cannot emulate a 16-bit
1043 * aligned target address with a MIPS32 instruction.
1045 if (dec_insn.micro_mips_mode) {
1047 * If next instruction is a 16-bit instruction, then it
1048 * it cannot be a FPU instruction. This could happen
1049 * since we can be called for non-FPU instructions.
1051 if ((pc_inc == 2) ||
1052 (microMIPS32_to_MIPS32((union mips_instruction *)&ir)
1053 == SIGILL))
1054 return SIGILL;
1057 emul:
1058 perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS, 1, xcp, 0);
1059 MIPS_FPU_EMU_INC_STATS(emulated);
1060 switch (MIPSInst_OPCODE(ir)) {
1061 case ldc1_op:
1062 dva = (u64 __user *) (xcp->regs[MIPSInst_RS(ir)] +
1063 MIPSInst_SIMM(ir));
1064 MIPS_FPU_EMU_INC_STATS(loads);
1066 if (!access_ok(VERIFY_READ, dva, sizeof(u64))) {
1067 MIPS_FPU_EMU_INC_STATS(errors);
1068 *fault_addr = dva;
1069 return SIGBUS;
1071 if (__get_user(dval, dva)) {
1072 MIPS_FPU_EMU_INC_STATS(errors);
1073 *fault_addr = dva;
1074 return SIGSEGV;
1076 DITOREG(dval, MIPSInst_RT(ir));
1077 break;
1079 case sdc1_op:
1080 dva = (u64 __user *) (xcp->regs[MIPSInst_RS(ir)] +
1081 MIPSInst_SIMM(ir));
1082 MIPS_FPU_EMU_INC_STATS(stores);
1083 DIFROMREG(dval, MIPSInst_RT(ir));
1084 if (!access_ok(VERIFY_WRITE, dva, sizeof(u64))) {
1085 MIPS_FPU_EMU_INC_STATS(errors);
1086 *fault_addr = dva;
1087 return SIGBUS;
1089 if (__put_user(dval, dva)) {
1090 MIPS_FPU_EMU_INC_STATS(errors);
1091 *fault_addr = dva;
1092 return SIGSEGV;
1094 break;
1096 case lwc1_op:
1097 wva = (u32 __user *) (xcp->regs[MIPSInst_RS(ir)] +
1098 MIPSInst_SIMM(ir));
1099 MIPS_FPU_EMU_INC_STATS(loads);
1100 if (!access_ok(VERIFY_READ, wva, sizeof(u32))) {
1101 MIPS_FPU_EMU_INC_STATS(errors);
1102 *fault_addr = wva;
1103 return SIGBUS;
1105 if (__get_user(wval, wva)) {
1106 MIPS_FPU_EMU_INC_STATS(errors);
1107 *fault_addr = wva;
1108 return SIGSEGV;
1110 SITOREG(wval, MIPSInst_RT(ir));
1111 break;
1113 case swc1_op:
1114 wva = (u32 __user *) (xcp->regs[MIPSInst_RS(ir)] +
1115 MIPSInst_SIMM(ir));
1116 MIPS_FPU_EMU_INC_STATS(stores);
1117 SIFROMREG(wval, MIPSInst_RT(ir));
1118 if (!access_ok(VERIFY_WRITE, wva, sizeof(u32))) {
1119 MIPS_FPU_EMU_INC_STATS(errors);
1120 *fault_addr = wva;
1121 return SIGBUS;
1123 if (__put_user(wval, wva)) {
1124 MIPS_FPU_EMU_INC_STATS(errors);
1125 *fault_addr = wva;
1126 return SIGSEGV;
1128 break;
1130 case cop1_op:
1131 switch (MIPSInst_RS(ir)) {
1132 case dmfc_op:
1133 if (!cpu_has_mips_3_4_5 && !cpu_has_mips64)
1134 return SIGILL;
1136 /* copregister fs -> gpr[rt] */
1137 if (MIPSInst_RT(ir) != 0) {
1138 DIFROMREG(xcp->regs[MIPSInst_RT(ir)],
1139 MIPSInst_RD(ir));
1141 break;
1143 case dmtc_op:
1144 if (!cpu_has_mips_3_4_5 && !cpu_has_mips64)
1145 return SIGILL;
1147 /* copregister fs <- rt */
1148 DITOREG(xcp->regs[MIPSInst_RT(ir)], MIPSInst_RD(ir));
1149 break;
1151 case mfhc_op:
1152 if (!cpu_has_mips_r2_r6)
1153 return SIGILL;
1155 /* copregister rd -> gpr[rt] */
1156 if (MIPSInst_RT(ir) != 0) {
1157 SIFROMHREG(xcp->regs[MIPSInst_RT(ir)],
1158 MIPSInst_RD(ir));
1160 break;
1162 case mthc_op:
1163 if (!cpu_has_mips_r2_r6)
1164 return SIGILL;
1166 /* copregister rd <- gpr[rt] */
1167 SITOHREG(xcp->regs[MIPSInst_RT(ir)], MIPSInst_RD(ir));
1168 break;
1170 case mfc_op:
1171 /* copregister rd -> gpr[rt] */
1172 if (MIPSInst_RT(ir) != 0) {
1173 SIFROMREG(xcp->regs[MIPSInst_RT(ir)],
1174 MIPSInst_RD(ir));
1176 break;
1178 case mtc_op:
1179 /* copregister rd <- rt */
1180 SITOREG(xcp->regs[MIPSInst_RT(ir)], MIPSInst_RD(ir));
1181 break;
1183 case cfc_op:
1184 /* cop control register rd -> gpr[rt] */
1185 cop1_cfc(xcp, ctx, ir);
1186 break;
1188 case ctc_op:
1189 /* copregister rd <- rt */
1190 cop1_ctc(xcp, ctx, ir);
1191 if ((ctx->fcr31 >> 5) & ctx->fcr31 & FPU_CSR_ALL_E) {
1192 return SIGFPE;
1194 break;
1196 case bc1eqz_op:
1197 case bc1nez_op:
1198 if (!cpu_has_mips_r6 || delay_slot(xcp))
1199 return SIGILL;
1201 likely = 0;
1202 cond = 0;
1203 fpr = &current->thread.fpu.fpr[MIPSInst_RT(ir)];
1204 bit0 = get_fpr32(fpr, 0) & 0x1;
1205 switch (MIPSInst_RS(ir)) {
1206 case bc1eqz_op:
1207 MIPS_FPU_EMU_INC_STATS(bc1eqz);
1208 cond = bit0 == 0;
1209 break;
1210 case bc1nez_op:
1211 MIPS_FPU_EMU_INC_STATS(bc1nez);
1212 cond = bit0 != 0;
1213 break;
1215 goto branch_common;
1217 case bc_op:
1218 if (delay_slot(xcp))
1219 return SIGILL;
1221 if (cpu_has_mips_4_5_r)
1222 cbit = fpucondbit[MIPSInst_RT(ir) >> 2];
1223 else
1224 cbit = FPU_CSR_COND;
1225 cond = ctx->fcr31 & cbit;
1227 likely = 0;
1228 switch (MIPSInst_RT(ir) & 3) {
1229 case bcfl_op:
1230 if (cpu_has_mips_2_3_4_5_r)
1231 likely = 1;
1232 /* fall through */
1233 case bcf_op:
1234 cond = !cond;
1235 break;
1236 case bctl_op:
1237 if (cpu_has_mips_2_3_4_5_r)
1238 likely = 1;
1239 /* fall through */
1240 case bct_op:
1241 break;
1243 branch_common:
1244 MIPS_FPU_EMU_INC_STATS(branches);
1245 set_delay_slot(xcp);
1246 if (cond) {
1248 * Branch taken: emulate dslot instruction
1250 unsigned long bcpc;
1253 * Remember EPC at the branch to point back
1254 * at so that any delay-slot instruction
1255 * signal is not silently ignored.
1257 bcpc = xcp->cp0_epc;
1258 xcp->cp0_epc += dec_insn.pc_inc;
1260 contpc = MIPSInst_SIMM(ir);
1261 ir = dec_insn.next_insn;
1262 if (dec_insn.micro_mips_mode) {
1263 contpc = (xcp->cp0_epc + (contpc << 1));
1265 /* If 16-bit instruction, not FPU. */
1266 if ((dec_insn.next_pc_inc == 2) ||
1267 (microMIPS32_to_MIPS32((union mips_instruction *)&ir) == SIGILL)) {
1270 * Since this instruction will
1271 * be put on the stack with
1272 * 32-bit words, get around
1273 * this problem by putting a
1274 * NOP16 as the second one.
1276 if (dec_insn.next_pc_inc == 2)
1277 ir = (ir & (~0xffff)) | MM_NOP16;
1280 * Single step the non-CP1
1281 * instruction in the dslot.
1283 sig = mips_dsemul(xcp, ir,
1284 bcpc, contpc);
1285 if (sig < 0)
1286 break;
1287 if (sig)
1288 xcp->cp0_epc = bcpc;
1290 * SIGILL forces out of
1291 * the emulation loop.
1293 return sig ? sig : SIGILL;
1295 } else
1296 contpc = (xcp->cp0_epc + (contpc << 2));
1298 switch (MIPSInst_OPCODE(ir)) {
1299 case lwc1_op:
1300 case swc1_op:
1301 goto emul;
1303 case ldc1_op:
1304 case sdc1_op:
1305 if (cpu_has_mips_2_3_4_5_r)
1306 goto emul;
1308 goto bc_sigill;
1310 case cop1_op:
1311 goto emul;
1313 case cop1x_op:
1314 if (cpu_has_mips_4_5_64_r2_r6)
1315 /* its one of ours */
1316 goto emul;
1318 goto bc_sigill;
1320 case spec_op:
1321 switch (MIPSInst_FUNC(ir)) {
1322 case movc_op:
1323 if (cpu_has_mips_4_5_r)
1324 goto emul;
1326 goto bc_sigill;
1328 break;
1330 bc_sigill:
1331 xcp->cp0_epc = bcpc;
1332 return SIGILL;
1336 * Single step the non-cp1
1337 * instruction in the dslot
1339 sig = mips_dsemul(xcp, ir, bcpc, contpc);
1340 if (sig < 0)
1341 break;
1342 if (sig)
1343 xcp->cp0_epc = bcpc;
1344 /* SIGILL forces out of the emulation loop. */
1345 return sig ? sig : SIGILL;
1346 } else if (likely) { /* branch not taken */
1348 * branch likely nullifies
1349 * dslot if not taken
1351 xcp->cp0_epc += dec_insn.pc_inc;
1352 contpc += dec_insn.pc_inc;
1354 * else continue & execute
1355 * dslot as normal insn
1358 break;
1360 default:
1361 if (!(MIPSInst_RS(ir) & 0x10))
1362 return SIGILL;
1364 /* a real fpu computation instruction */
1365 sig = fpu_emu(xcp, ctx, ir);
1366 if (sig)
1367 return sig;
1369 break;
1371 case cop1x_op:
1372 if (!cpu_has_mips_4_5_64_r2_r6)
1373 return SIGILL;
1375 sig = fpux_emu(xcp, ctx, ir, fault_addr);
1376 if (sig)
1377 return sig;
1378 break;
1380 case spec_op:
1381 if (!cpu_has_mips_4_5_r)
1382 return SIGILL;
1384 if (MIPSInst_FUNC(ir) != movc_op)
1385 return SIGILL;
1386 cond = fpucondbit[MIPSInst_RT(ir) >> 2];
1387 if (((ctx->fcr31 & cond) != 0) == ((MIPSInst_RT(ir) & 1) != 0))
1388 xcp->regs[MIPSInst_RD(ir)] =
1389 xcp->regs[MIPSInst_RS(ir)];
1390 break;
1391 default:
1392 return SIGILL;
1395 /* we did it !! */
1396 xcp->cp0_epc = contpc;
1397 clear_delay_slot(xcp);
1399 return 0;
1403 * Conversion table from MIPS compare ops 48-63
1404 * cond = ieee754dp_cmp(x,y,IEEE754_UN,sig);
1406 static const unsigned char cmptab[8] = {
1407 0, /* cmp_0 (sig) cmp_sf */
1408 IEEE754_CUN, /* cmp_un (sig) cmp_ngle */
1409 IEEE754_CEQ, /* cmp_eq (sig) cmp_seq */
1410 IEEE754_CEQ | IEEE754_CUN, /* cmp_ueq (sig) cmp_ngl */
1411 IEEE754_CLT, /* cmp_olt (sig) cmp_lt */
1412 IEEE754_CLT | IEEE754_CUN, /* cmp_ult (sig) cmp_nge */
1413 IEEE754_CLT | IEEE754_CEQ, /* cmp_ole (sig) cmp_le */
1414 IEEE754_CLT | IEEE754_CEQ | IEEE754_CUN, /* cmp_ule (sig) cmp_ngt */
1417 static const unsigned char negative_cmptab[8] = {
1418 0, /* Reserved */
1419 IEEE754_CLT | IEEE754_CGT | IEEE754_CEQ,
1420 IEEE754_CLT | IEEE754_CGT | IEEE754_CUN,
1421 IEEE754_CLT | IEEE754_CGT,
1422 /* Reserved */
1427 * Additional MIPS4 instructions
1430 #define DEF3OP(name, p, f1, f2, f3) \
1431 static union ieee754##p fpemu_##p##_##name(union ieee754##p r, \
1432 union ieee754##p s, union ieee754##p t) \
1434 struct _ieee754_csr ieee754_csr_save; \
1435 s = f1(s, t); \
1436 ieee754_csr_save = ieee754_csr; \
1437 s = f2(s, r); \
1438 ieee754_csr_save.cx |= ieee754_csr.cx; \
1439 ieee754_csr_save.sx |= ieee754_csr.sx; \
1440 s = f3(s); \
1441 ieee754_csr.cx |= ieee754_csr_save.cx; \
1442 ieee754_csr.sx |= ieee754_csr_save.sx; \
1443 return s; \
1446 static union ieee754dp fpemu_dp_recip(union ieee754dp d)
1448 return ieee754dp_div(ieee754dp_one(0), d);
1451 static union ieee754dp fpemu_dp_rsqrt(union ieee754dp d)
1453 return ieee754dp_div(ieee754dp_one(0), ieee754dp_sqrt(d));
1456 static union ieee754sp fpemu_sp_recip(union ieee754sp s)
1458 return ieee754sp_div(ieee754sp_one(0), s);
1461 static union ieee754sp fpemu_sp_rsqrt(union ieee754sp s)
1463 return ieee754sp_div(ieee754sp_one(0), ieee754sp_sqrt(s));
1466 DEF3OP(madd, sp, ieee754sp_mul, ieee754sp_add, );
1467 DEF3OP(msub, sp, ieee754sp_mul, ieee754sp_sub, );
1468 DEF3OP(nmadd, sp, ieee754sp_mul, ieee754sp_add, ieee754sp_neg);
1469 DEF3OP(nmsub, sp, ieee754sp_mul, ieee754sp_sub, ieee754sp_neg);
1470 DEF3OP(madd, dp, ieee754dp_mul, ieee754dp_add, );
1471 DEF3OP(msub, dp, ieee754dp_mul, ieee754dp_sub, );
1472 DEF3OP(nmadd, dp, ieee754dp_mul, ieee754dp_add, ieee754dp_neg);
1473 DEF3OP(nmsub, dp, ieee754dp_mul, ieee754dp_sub, ieee754dp_neg);
1475 static int fpux_emu(struct pt_regs *xcp, struct mips_fpu_struct *ctx,
1476 mips_instruction ir, void __user **fault_addr)
1478 unsigned int rcsr = 0; /* resulting csr */
1480 MIPS_FPU_EMU_INC_STATS(cp1xops);
1482 switch (MIPSInst_FMA_FFMT(ir)) {
1483 case s_fmt:{ /* 0 */
1485 union ieee754sp(*handler) (union ieee754sp, union ieee754sp, union ieee754sp);
1486 union ieee754sp fd, fr, fs, ft;
1487 u32 __user *va;
1488 u32 val;
1490 switch (MIPSInst_FUNC(ir)) {
1491 case lwxc1_op:
1492 va = (void __user *) (xcp->regs[MIPSInst_FR(ir)] +
1493 xcp->regs[MIPSInst_FT(ir)]);
1495 MIPS_FPU_EMU_INC_STATS(loads);
1496 if (!access_ok(VERIFY_READ, va, sizeof(u32))) {
1497 MIPS_FPU_EMU_INC_STATS(errors);
1498 *fault_addr = va;
1499 return SIGBUS;
1501 if (__get_user(val, va)) {
1502 MIPS_FPU_EMU_INC_STATS(errors);
1503 *fault_addr = va;
1504 return SIGSEGV;
1506 SITOREG(val, MIPSInst_FD(ir));
1507 break;
1509 case swxc1_op:
1510 va = (void __user *) (xcp->regs[MIPSInst_FR(ir)] +
1511 xcp->regs[MIPSInst_FT(ir)]);
1513 MIPS_FPU_EMU_INC_STATS(stores);
1515 SIFROMREG(val, MIPSInst_FS(ir));
1516 if (!access_ok(VERIFY_WRITE, va, sizeof(u32))) {
1517 MIPS_FPU_EMU_INC_STATS(errors);
1518 *fault_addr = va;
1519 return SIGBUS;
1521 if (put_user(val, va)) {
1522 MIPS_FPU_EMU_INC_STATS(errors);
1523 *fault_addr = va;
1524 return SIGSEGV;
1526 break;
1528 case madd_s_op:
1529 handler = fpemu_sp_madd;
1530 goto scoptop;
1531 case msub_s_op:
1532 handler = fpemu_sp_msub;
1533 goto scoptop;
1534 case nmadd_s_op:
1535 handler = fpemu_sp_nmadd;
1536 goto scoptop;
1537 case nmsub_s_op:
1538 handler = fpemu_sp_nmsub;
1539 goto scoptop;
1541 scoptop:
1542 SPFROMREG(fr, MIPSInst_FR(ir));
1543 SPFROMREG(fs, MIPSInst_FS(ir));
1544 SPFROMREG(ft, MIPSInst_FT(ir));
1545 fd = (*handler) (fr, fs, ft);
1546 SPTOREG(fd, MIPSInst_FD(ir));
1548 copcsr:
1549 if (ieee754_cxtest(IEEE754_INEXACT)) {
1550 MIPS_FPU_EMU_INC_STATS(ieee754_inexact);
1551 rcsr |= FPU_CSR_INE_X | FPU_CSR_INE_S;
1553 if (ieee754_cxtest(IEEE754_UNDERFLOW)) {
1554 MIPS_FPU_EMU_INC_STATS(ieee754_underflow);
1555 rcsr |= FPU_CSR_UDF_X | FPU_CSR_UDF_S;
1557 if (ieee754_cxtest(IEEE754_OVERFLOW)) {
1558 MIPS_FPU_EMU_INC_STATS(ieee754_overflow);
1559 rcsr |= FPU_CSR_OVF_X | FPU_CSR_OVF_S;
1561 if (ieee754_cxtest(IEEE754_INVALID_OPERATION)) {
1562 MIPS_FPU_EMU_INC_STATS(ieee754_invalidop);
1563 rcsr |= FPU_CSR_INV_X | FPU_CSR_INV_S;
1566 ctx->fcr31 = (ctx->fcr31 & ~FPU_CSR_ALL_X) | rcsr;
1567 if ((ctx->fcr31 >> 5) & ctx->fcr31 & FPU_CSR_ALL_E) {
1568 /*printk ("SIGFPE: FPU csr = %08x\n",
1569 ctx->fcr31); */
1570 return SIGFPE;
1573 break;
1575 default:
1576 return SIGILL;
1578 break;
1581 case d_fmt:{ /* 1 */
1582 union ieee754dp(*handler) (union ieee754dp, union ieee754dp, union ieee754dp);
1583 union ieee754dp fd, fr, fs, ft;
1584 u64 __user *va;
1585 u64 val;
1587 switch (MIPSInst_FUNC(ir)) {
1588 case ldxc1_op:
1589 va = (void __user *) (xcp->regs[MIPSInst_FR(ir)] +
1590 xcp->regs[MIPSInst_FT(ir)]);
1592 MIPS_FPU_EMU_INC_STATS(loads);
1593 if (!access_ok(VERIFY_READ, va, sizeof(u64))) {
1594 MIPS_FPU_EMU_INC_STATS(errors);
1595 *fault_addr = va;
1596 return SIGBUS;
1598 if (__get_user(val, va)) {
1599 MIPS_FPU_EMU_INC_STATS(errors);
1600 *fault_addr = va;
1601 return SIGSEGV;
1603 DITOREG(val, MIPSInst_FD(ir));
1604 break;
1606 case sdxc1_op:
1607 va = (void __user *) (xcp->regs[MIPSInst_FR(ir)] +
1608 xcp->regs[MIPSInst_FT(ir)]);
1610 MIPS_FPU_EMU_INC_STATS(stores);
1611 DIFROMREG(val, MIPSInst_FS(ir));
1612 if (!access_ok(VERIFY_WRITE, va, sizeof(u64))) {
1613 MIPS_FPU_EMU_INC_STATS(errors);
1614 *fault_addr = va;
1615 return SIGBUS;
1617 if (__put_user(val, va)) {
1618 MIPS_FPU_EMU_INC_STATS(errors);
1619 *fault_addr = va;
1620 return SIGSEGV;
1622 break;
1624 case madd_d_op:
1625 handler = fpemu_dp_madd;
1626 goto dcoptop;
1627 case msub_d_op:
1628 handler = fpemu_dp_msub;
1629 goto dcoptop;
1630 case nmadd_d_op:
1631 handler = fpemu_dp_nmadd;
1632 goto dcoptop;
1633 case nmsub_d_op:
1634 handler = fpemu_dp_nmsub;
1635 goto dcoptop;
1637 dcoptop:
1638 DPFROMREG(fr, MIPSInst_FR(ir));
1639 DPFROMREG(fs, MIPSInst_FS(ir));
1640 DPFROMREG(ft, MIPSInst_FT(ir));
1641 fd = (*handler) (fr, fs, ft);
1642 DPTOREG(fd, MIPSInst_FD(ir));
1643 goto copcsr;
1645 default:
1646 return SIGILL;
1648 break;
1651 case 0x3:
1652 if (MIPSInst_FUNC(ir) != pfetch_op)
1653 return SIGILL;
1655 /* ignore prefx operation */
1656 break;
1658 default:
1659 return SIGILL;
1662 return 0;
1668 * Emulate a single COP1 arithmetic instruction.
1670 static int fpu_emu(struct pt_regs *xcp, struct mips_fpu_struct *ctx,
1671 mips_instruction ir)
1673 int rfmt; /* resulting format */
1674 unsigned int rcsr = 0; /* resulting csr */
1675 unsigned int oldrm;
1676 unsigned int cbit;
1677 unsigned int cond;
1678 union {
1679 union ieee754dp d;
1680 union ieee754sp s;
1681 int w;
1682 s64 l;
1683 } rv; /* resulting value */
1684 u64 bits;
1686 MIPS_FPU_EMU_INC_STATS(cp1ops);
1687 switch (rfmt = (MIPSInst_FFMT(ir) & 0xf)) {
1688 case s_fmt: { /* 0 */
1689 union {
1690 union ieee754sp(*b) (union ieee754sp, union ieee754sp);
1691 union ieee754sp(*u) (union ieee754sp);
1692 } handler;
1693 union ieee754sp fd, fs, ft;
1695 switch (MIPSInst_FUNC(ir)) {
1696 /* binary ops */
1697 case fadd_op:
1698 MIPS_FPU_EMU_INC_STATS(add_s);
1699 handler.b = ieee754sp_add;
1700 goto scopbop;
1701 case fsub_op:
1702 MIPS_FPU_EMU_INC_STATS(sub_s);
1703 handler.b = ieee754sp_sub;
1704 goto scopbop;
1705 case fmul_op:
1706 MIPS_FPU_EMU_INC_STATS(mul_s);
1707 handler.b = ieee754sp_mul;
1708 goto scopbop;
1709 case fdiv_op:
1710 MIPS_FPU_EMU_INC_STATS(div_s);
1711 handler.b = ieee754sp_div;
1712 goto scopbop;
1714 /* unary ops */
1715 case fsqrt_op:
1716 if (!cpu_has_mips_2_3_4_5_r)
1717 return SIGILL;
1719 MIPS_FPU_EMU_INC_STATS(sqrt_s);
1720 handler.u = ieee754sp_sqrt;
1721 goto scopuop;
1724 * Note that on some MIPS IV implementations such as the
1725 * R5000 and R8000 the FSQRT and FRECIP instructions do not
1726 * achieve full IEEE-754 accuracy - however this emulator does.
1728 case frsqrt_op:
1729 if (!cpu_has_mips_4_5_64_r2_r6)
1730 return SIGILL;
1732 MIPS_FPU_EMU_INC_STATS(rsqrt_s);
1733 handler.u = fpemu_sp_rsqrt;
1734 goto scopuop;
1736 case frecip_op:
1737 if (!cpu_has_mips_4_5_64_r2_r6)
1738 return SIGILL;
1740 MIPS_FPU_EMU_INC_STATS(recip_s);
1741 handler.u = fpemu_sp_recip;
1742 goto scopuop;
1744 case fmovc_op:
1745 if (!cpu_has_mips_4_5_r)
1746 return SIGILL;
1748 cond = fpucondbit[MIPSInst_FT(ir) >> 2];
1749 if (((ctx->fcr31 & cond) != 0) !=
1750 ((MIPSInst_FT(ir) & 1) != 0))
1751 return 0;
1752 SPFROMREG(rv.s, MIPSInst_FS(ir));
1753 break;
1755 case fmovz_op:
1756 if (!cpu_has_mips_4_5_r)
1757 return SIGILL;
1759 if (xcp->regs[MIPSInst_FT(ir)] != 0)
1760 return 0;
1761 SPFROMREG(rv.s, MIPSInst_FS(ir));
1762 break;
1764 case fmovn_op:
1765 if (!cpu_has_mips_4_5_r)
1766 return SIGILL;
1768 if (xcp->regs[MIPSInst_FT(ir)] == 0)
1769 return 0;
1770 SPFROMREG(rv.s, MIPSInst_FS(ir));
1771 break;
1773 case fseleqz_op:
1774 if (!cpu_has_mips_r6)
1775 return SIGILL;
1777 MIPS_FPU_EMU_INC_STATS(seleqz_s);
1778 SPFROMREG(rv.s, MIPSInst_FT(ir));
1779 if (rv.w & 0x1)
1780 rv.w = 0;
1781 else
1782 SPFROMREG(rv.s, MIPSInst_FS(ir));
1783 break;
1785 case fselnez_op:
1786 if (!cpu_has_mips_r6)
1787 return SIGILL;
1789 MIPS_FPU_EMU_INC_STATS(selnez_s);
1790 SPFROMREG(rv.s, MIPSInst_FT(ir));
1791 if (rv.w & 0x1)
1792 SPFROMREG(rv.s, MIPSInst_FS(ir));
1793 else
1794 rv.w = 0;
1795 break;
1797 case fmaddf_op: {
1798 union ieee754sp ft, fs, fd;
1800 if (!cpu_has_mips_r6)
1801 return SIGILL;
1803 MIPS_FPU_EMU_INC_STATS(maddf_s);
1804 SPFROMREG(ft, MIPSInst_FT(ir));
1805 SPFROMREG(fs, MIPSInst_FS(ir));
1806 SPFROMREG(fd, MIPSInst_FD(ir));
1807 rv.s = ieee754sp_maddf(fd, fs, ft);
1808 goto copcsr;
1811 case fmsubf_op: {
1812 union ieee754sp ft, fs, fd;
1814 if (!cpu_has_mips_r6)
1815 return SIGILL;
1817 MIPS_FPU_EMU_INC_STATS(msubf_s);
1818 SPFROMREG(ft, MIPSInst_FT(ir));
1819 SPFROMREG(fs, MIPSInst_FS(ir));
1820 SPFROMREG(fd, MIPSInst_FD(ir));
1821 rv.s = ieee754sp_msubf(fd, fs, ft);
1822 goto copcsr;
1825 case frint_op: {
1826 union ieee754sp fs;
1828 if (!cpu_has_mips_r6)
1829 return SIGILL;
1831 MIPS_FPU_EMU_INC_STATS(rint_s);
1832 SPFROMREG(fs, MIPSInst_FS(ir));
1833 rv.s = ieee754sp_rint(fs);
1834 goto copcsr;
1837 case fclass_op: {
1838 union ieee754sp fs;
1840 if (!cpu_has_mips_r6)
1841 return SIGILL;
1843 MIPS_FPU_EMU_INC_STATS(class_s);
1844 SPFROMREG(fs, MIPSInst_FS(ir));
1845 rv.w = ieee754sp_2008class(fs);
1846 rfmt = w_fmt;
1847 goto copcsr;
1850 case fmin_op: {
1851 union ieee754sp fs, ft;
1853 if (!cpu_has_mips_r6)
1854 return SIGILL;
1856 MIPS_FPU_EMU_INC_STATS(min_s);
1857 SPFROMREG(ft, MIPSInst_FT(ir));
1858 SPFROMREG(fs, MIPSInst_FS(ir));
1859 rv.s = ieee754sp_fmin(fs, ft);
1860 goto copcsr;
1863 case fmina_op: {
1864 union ieee754sp fs, ft;
1866 if (!cpu_has_mips_r6)
1867 return SIGILL;
1869 MIPS_FPU_EMU_INC_STATS(mina_s);
1870 SPFROMREG(ft, MIPSInst_FT(ir));
1871 SPFROMREG(fs, MIPSInst_FS(ir));
1872 rv.s = ieee754sp_fmina(fs, ft);
1873 goto copcsr;
1876 case fmax_op: {
1877 union ieee754sp fs, ft;
1879 if (!cpu_has_mips_r6)
1880 return SIGILL;
1882 MIPS_FPU_EMU_INC_STATS(max_s);
1883 SPFROMREG(ft, MIPSInst_FT(ir));
1884 SPFROMREG(fs, MIPSInst_FS(ir));
1885 rv.s = ieee754sp_fmax(fs, ft);
1886 goto copcsr;
1889 case fmaxa_op: {
1890 union ieee754sp fs, ft;
1892 if (!cpu_has_mips_r6)
1893 return SIGILL;
1895 MIPS_FPU_EMU_INC_STATS(maxa_s);
1896 SPFROMREG(ft, MIPSInst_FT(ir));
1897 SPFROMREG(fs, MIPSInst_FS(ir));
1898 rv.s = ieee754sp_fmaxa(fs, ft);
1899 goto copcsr;
1902 case fabs_op:
1903 MIPS_FPU_EMU_INC_STATS(abs_s);
1904 handler.u = ieee754sp_abs;
1905 goto scopuop;
1907 case fneg_op:
1908 MIPS_FPU_EMU_INC_STATS(neg_s);
1909 handler.u = ieee754sp_neg;
1910 goto scopuop;
1912 case fmov_op:
1913 /* an easy one */
1914 MIPS_FPU_EMU_INC_STATS(mov_s);
1915 SPFROMREG(rv.s, MIPSInst_FS(ir));
1916 goto copcsr;
1918 /* binary op on handler */
1919 scopbop:
1920 SPFROMREG(fs, MIPSInst_FS(ir));
1921 SPFROMREG(ft, MIPSInst_FT(ir));
1923 rv.s = (*handler.b) (fs, ft);
1924 goto copcsr;
1925 scopuop:
1926 SPFROMREG(fs, MIPSInst_FS(ir));
1927 rv.s = (*handler.u) (fs);
1928 goto copcsr;
1929 copcsr:
1930 if (ieee754_cxtest(IEEE754_INEXACT)) {
1931 MIPS_FPU_EMU_INC_STATS(ieee754_inexact);
1932 rcsr |= FPU_CSR_INE_X | FPU_CSR_INE_S;
1934 if (ieee754_cxtest(IEEE754_UNDERFLOW)) {
1935 MIPS_FPU_EMU_INC_STATS(ieee754_underflow);
1936 rcsr |= FPU_CSR_UDF_X | FPU_CSR_UDF_S;
1938 if (ieee754_cxtest(IEEE754_OVERFLOW)) {
1939 MIPS_FPU_EMU_INC_STATS(ieee754_overflow);
1940 rcsr |= FPU_CSR_OVF_X | FPU_CSR_OVF_S;
1942 if (ieee754_cxtest(IEEE754_ZERO_DIVIDE)) {
1943 MIPS_FPU_EMU_INC_STATS(ieee754_zerodiv);
1944 rcsr |= FPU_CSR_DIV_X | FPU_CSR_DIV_S;
1946 if (ieee754_cxtest(IEEE754_INVALID_OPERATION)) {
1947 MIPS_FPU_EMU_INC_STATS(ieee754_invalidop);
1948 rcsr |= FPU_CSR_INV_X | FPU_CSR_INV_S;
1950 break;
1952 /* unary conv ops */
1953 case fcvts_op:
1954 return SIGILL; /* not defined */
1956 case fcvtd_op:
1957 MIPS_FPU_EMU_INC_STATS(cvt_d_s);
1958 SPFROMREG(fs, MIPSInst_FS(ir));
1959 rv.d = ieee754dp_fsp(fs);
1960 rfmt = d_fmt;
1961 goto copcsr;
1963 case fcvtw_op:
1964 MIPS_FPU_EMU_INC_STATS(cvt_w_s);
1965 SPFROMREG(fs, MIPSInst_FS(ir));
1966 rv.w = ieee754sp_tint(fs);
1967 rfmt = w_fmt;
1968 goto copcsr;
1970 case fround_op:
1971 case ftrunc_op:
1972 case fceil_op:
1973 case ffloor_op:
1974 if (!cpu_has_mips_2_3_4_5_r)
1975 return SIGILL;
1977 if (MIPSInst_FUNC(ir) == fceil_op)
1978 MIPS_FPU_EMU_INC_STATS(ceil_w_s);
1979 if (MIPSInst_FUNC(ir) == ffloor_op)
1980 MIPS_FPU_EMU_INC_STATS(floor_w_s);
1981 if (MIPSInst_FUNC(ir) == fround_op)
1982 MIPS_FPU_EMU_INC_STATS(round_w_s);
1983 if (MIPSInst_FUNC(ir) == ftrunc_op)
1984 MIPS_FPU_EMU_INC_STATS(trunc_w_s);
1986 oldrm = ieee754_csr.rm;
1987 SPFROMREG(fs, MIPSInst_FS(ir));
1988 ieee754_csr.rm = MIPSInst_FUNC(ir);
1989 rv.w = ieee754sp_tint(fs);
1990 ieee754_csr.rm = oldrm;
1991 rfmt = w_fmt;
1992 goto copcsr;
1994 case fsel_op:
1995 if (!cpu_has_mips_r6)
1996 return SIGILL;
1998 MIPS_FPU_EMU_INC_STATS(sel_s);
1999 SPFROMREG(fd, MIPSInst_FD(ir));
2000 if (fd.bits & 0x1)
2001 SPFROMREG(rv.s, MIPSInst_FT(ir));
2002 else
2003 SPFROMREG(rv.s, MIPSInst_FS(ir));
2004 break;
2006 case fcvtl_op:
2007 if (!cpu_has_mips_3_4_5_64_r2_r6)
2008 return SIGILL;
2010 MIPS_FPU_EMU_INC_STATS(cvt_l_s);
2011 SPFROMREG(fs, MIPSInst_FS(ir));
2012 rv.l = ieee754sp_tlong(fs);
2013 rfmt = l_fmt;
2014 goto copcsr;
2016 case froundl_op:
2017 case ftruncl_op:
2018 case fceill_op:
2019 case ffloorl_op:
2020 if (!cpu_has_mips_3_4_5_64_r2_r6)
2021 return SIGILL;
2023 if (MIPSInst_FUNC(ir) == fceill_op)
2024 MIPS_FPU_EMU_INC_STATS(ceil_l_s);
2025 if (MIPSInst_FUNC(ir) == ffloorl_op)
2026 MIPS_FPU_EMU_INC_STATS(floor_l_s);
2027 if (MIPSInst_FUNC(ir) == froundl_op)
2028 MIPS_FPU_EMU_INC_STATS(round_l_s);
2029 if (MIPSInst_FUNC(ir) == ftruncl_op)
2030 MIPS_FPU_EMU_INC_STATS(trunc_l_s);
2032 oldrm = ieee754_csr.rm;
2033 SPFROMREG(fs, MIPSInst_FS(ir));
2034 ieee754_csr.rm = MIPSInst_FUNC(ir);
2035 rv.l = ieee754sp_tlong(fs);
2036 ieee754_csr.rm = oldrm;
2037 rfmt = l_fmt;
2038 goto copcsr;
2040 default:
2041 if (!NO_R6EMU && MIPSInst_FUNC(ir) >= fcmp_op) {
2042 unsigned int cmpop;
2043 union ieee754sp fs, ft;
2045 cmpop = MIPSInst_FUNC(ir) - fcmp_op;
2046 SPFROMREG(fs, MIPSInst_FS(ir));
2047 SPFROMREG(ft, MIPSInst_FT(ir));
2048 rv.w = ieee754sp_cmp(fs, ft,
2049 cmptab[cmpop & 0x7], cmpop & 0x8);
2050 rfmt = -1;
2051 if ((cmpop & 0x8) && ieee754_cxtest
2052 (IEEE754_INVALID_OPERATION))
2053 rcsr = FPU_CSR_INV_X | FPU_CSR_INV_S;
2054 else
2055 goto copcsr;
2057 } else
2058 return SIGILL;
2059 break;
2061 break;
2064 case d_fmt: {
2065 union ieee754dp fd, fs, ft;
2066 union {
2067 union ieee754dp(*b) (union ieee754dp, union ieee754dp);
2068 union ieee754dp(*u) (union ieee754dp);
2069 } handler;
2071 switch (MIPSInst_FUNC(ir)) {
2072 /* binary ops */
2073 case fadd_op:
2074 MIPS_FPU_EMU_INC_STATS(add_d);
2075 handler.b = ieee754dp_add;
2076 goto dcopbop;
2077 case fsub_op:
2078 MIPS_FPU_EMU_INC_STATS(sub_d);
2079 handler.b = ieee754dp_sub;
2080 goto dcopbop;
2081 case fmul_op:
2082 MIPS_FPU_EMU_INC_STATS(mul_d);
2083 handler.b = ieee754dp_mul;
2084 goto dcopbop;
2085 case fdiv_op:
2086 MIPS_FPU_EMU_INC_STATS(div_d);
2087 handler.b = ieee754dp_div;
2088 goto dcopbop;
2090 /* unary ops */
2091 case fsqrt_op:
2092 if (!cpu_has_mips_2_3_4_5_r)
2093 return SIGILL;
2095 MIPS_FPU_EMU_INC_STATS(sqrt_d);
2096 handler.u = ieee754dp_sqrt;
2097 goto dcopuop;
2099 * Note that on some MIPS IV implementations such as the
2100 * R5000 and R8000 the FSQRT and FRECIP instructions do not
2101 * achieve full IEEE-754 accuracy - however this emulator does.
2103 case frsqrt_op:
2104 if (!cpu_has_mips_4_5_64_r2_r6)
2105 return SIGILL;
2107 MIPS_FPU_EMU_INC_STATS(rsqrt_d);
2108 handler.u = fpemu_dp_rsqrt;
2109 goto dcopuop;
2110 case frecip_op:
2111 if (!cpu_has_mips_4_5_64_r2_r6)
2112 return SIGILL;
2114 MIPS_FPU_EMU_INC_STATS(recip_d);
2115 handler.u = fpemu_dp_recip;
2116 goto dcopuop;
2117 case fmovc_op:
2118 if (!cpu_has_mips_4_5_r)
2119 return SIGILL;
2121 cond = fpucondbit[MIPSInst_FT(ir) >> 2];
2122 if (((ctx->fcr31 & cond) != 0) !=
2123 ((MIPSInst_FT(ir) & 1) != 0))
2124 return 0;
2125 DPFROMREG(rv.d, MIPSInst_FS(ir));
2126 break;
2127 case fmovz_op:
2128 if (!cpu_has_mips_4_5_r)
2129 return SIGILL;
2131 if (xcp->regs[MIPSInst_FT(ir)] != 0)
2132 return 0;
2133 DPFROMREG(rv.d, MIPSInst_FS(ir));
2134 break;
2135 case fmovn_op:
2136 if (!cpu_has_mips_4_5_r)
2137 return SIGILL;
2139 if (xcp->regs[MIPSInst_FT(ir)] == 0)
2140 return 0;
2141 DPFROMREG(rv.d, MIPSInst_FS(ir));
2142 break;
2144 case fseleqz_op:
2145 if (!cpu_has_mips_r6)
2146 return SIGILL;
2148 MIPS_FPU_EMU_INC_STATS(seleqz_d);
2149 DPFROMREG(rv.d, MIPSInst_FT(ir));
2150 if (rv.l & 0x1)
2151 rv.l = 0;
2152 else
2153 DPFROMREG(rv.d, MIPSInst_FS(ir));
2154 break;
2156 case fselnez_op:
2157 if (!cpu_has_mips_r6)
2158 return SIGILL;
2160 MIPS_FPU_EMU_INC_STATS(selnez_d);
2161 DPFROMREG(rv.d, MIPSInst_FT(ir));
2162 if (rv.l & 0x1)
2163 DPFROMREG(rv.d, MIPSInst_FS(ir));
2164 else
2165 rv.l = 0;
2166 break;
2168 case fmaddf_op: {
2169 union ieee754dp ft, fs, fd;
2171 if (!cpu_has_mips_r6)
2172 return SIGILL;
2174 MIPS_FPU_EMU_INC_STATS(maddf_d);
2175 DPFROMREG(ft, MIPSInst_FT(ir));
2176 DPFROMREG(fs, MIPSInst_FS(ir));
2177 DPFROMREG(fd, MIPSInst_FD(ir));
2178 rv.d = ieee754dp_maddf(fd, fs, ft);
2179 goto copcsr;
2182 case fmsubf_op: {
2183 union ieee754dp ft, fs, fd;
2185 if (!cpu_has_mips_r6)
2186 return SIGILL;
2188 MIPS_FPU_EMU_INC_STATS(msubf_d);
2189 DPFROMREG(ft, MIPSInst_FT(ir));
2190 DPFROMREG(fs, MIPSInst_FS(ir));
2191 DPFROMREG(fd, MIPSInst_FD(ir));
2192 rv.d = ieee754dp_msubf(fd, fs, ft);
2193 goto copcsr;
2196 case frint_op: {
2197 union ieee754dp fs;
2199 if (!cpu_has_mips_r6)
2200 return SIGILL;
2202 MIPS_FPU_EMU_INC_STATS(rint_d);
2203 DPFROMREG(fs, MIPSInst_FS(ir));
2204 rv.d = ieee754dp_rint(fs);
2205 goto copcsr;
2208 case fclass_op: {
2209 union ieee754dp fs;
2211 if (!cpu_has_mips_r6)
2212 return SIGILL;
2214 MIPS_FPU_EMU_INC_STATS(class_d);
2215 DPFROMREG(fs, MIPSInst_FS(ir));
2216 rv.l = ieee754dp_2008class(fs);
2217 rfmt = l_fmt;
2218 goto copcsr;
2221 case fmin_op: {
2222 union ieee754dp fs, ft;
2224 if (!cpu_has_mips_r6)
2225 return SIGILL;
2227 MIPS_FPU_EMU_INC_STATS(min_d);
2228 DPFROMREG(ft, MIPSInst_FT(ir));
2229 DPFROMREG(fs, MIPSInst_FS(ir));
2230 rv.d = ieee754dp_fmin(fs, ft);
2231 goto copcsr;
2234 case fmina_op: {
2235 union ieee754dp fs, ft;
2237 if (!cpu_has_mips_r6)
2238 return SIGILL;
2240 MIPS_FPU_EMU_INC_STATS(mina_d);
2241 DPFROMREG(ft, MIPSInst_FT(ir));
2242 DPFROMREG(fs, MIPSInst_FS(ir));
2243 rv.d = ieee754dp_fmina(fs, ft);
2244 goto copcsr;
2247 case fmax_op: {
2248 union ieee754dp fs, ft;
2250 if (!cpu_has_mips_r6)
2251 return SIGILL;
2253 MIPS_FPU_EMU_INC_STATS(max_d);
2254 DPFROMREG(ft, MIPSInst_FT(ir));
2255 DPFROMREG(fs, MIPSInst_FS(ir));
2256 rv.d = ieee754dp_fmax(fs, ft);
2257 goto copcsr;
2260 case fmaxa_op: {
2261 union ieee754dp fs, ft;
2263 if (!cpu_has_mips_r6)
2264 return SIGILL;
2266 MIPS_FPU_EMU_INC_STATS(maxa_d);
2267 DPFROMREG(ft, MIPSInst_FT(ir));
2268 DPFROMREG(fs, MIPSInst_FS(ir));
2269 rv.d = ieee754dp_fmaxa(fs, ft);
2270 goto copcsr;
2273 case fabs_op:
2274 MIPS_FPU_EMU_INC_STATS(abs_d);
2275 handler.u = ieee754dp_abs;
2276 goto dcopuop;
2278 case fneg_op:
2279 MIPS_FPU_EMU_INC_STATS(neg_d);
2280 handler.u = ieee754dp_neg;
2281 goto dcopuop;
2283 case fmov_op:
2284 /* an easy one */
2285 MIPS_FPU_EMU_INC_STATS(mov_d);
2286 DPFROMREG(rv.d, MIPSInst_FS(ir));
2287 goto copcsr;
2289 /* binary op on handler */
2290 dcopbop:
2291 DPFROMREG(fs, MIPSInst_FS(ir));
2292 DPFROMREG(ft, MIPSInst_FT(ir));
2294 rv.d = (*handler.b) (fs, ft);
2295 goto copcsr;
2296 dcopuop:
2297 DPFROMREG(fs, MIPSInst_FS(ir));
2298 rv.d = (*handler.u) (fs);
2299 goto copcsr;
2302 * unary conv ops
2304 case fcvts_op:
2305 MIPS_FPU_EMU_INC_STATS(cvt_s_d);
2306 DPFROMREG(fs, MIPSInst_FS(ir));
2307 rv.s = ieee754sp_fdp(fs);
2308 rfmt = s_fmt;
2309 goto copcsr;
2311 case fcvtd_op:
2312 return SIGILL; /* not defined */
2314 case fcvtw_op:
2315 MIPS_FPU_EMU_INC_STATS(cvt_w_d);
2316 DPFROMREG(fs, MIPSInst_FS(ir));
2317 rv.w = ieee754dp_tint(fs); /* wrong */
2318 rfmt = w_fmt;
2319 goto copcsr;
2321 case fround_op:
2322 case ftrunc_op:
2323 case fceil_op:
2324 case ffloor_op:
2325 if (!cpu_has_mips_2_3_4_5_r)
2326 return SIGILL;
2328 if (MIPSInst_FUNC(ir) == fceil_op)
2329 MIPS_FPU_EMU_INC_STATS(ceil_w_d);
2330 if (MIPSInst_FUNC(ir) == ffloor_op)
2331 MIPS_FPU_EMU_INC_STATS(floor_w_d);
2332 if (MIPSInst_FUNC(ir) == fround_op)
2333 MIPS_FPU_EMU_INC_STATS(round_w_d);
2334 if (MIPSInst_FUNC(ir) == ftrunc_op)
2335 MIPS_FPU_EMU_INC_STATS(trunc_w_d);
2337 oldrm = ieee754_csr.rm;
2338 DPFROMREG(fs, MIPSInst_FS(ir));
2339 ieee754_csr.rm = MIPSInst_FUNC(ir);
2340 rv.w = ieee754dp_tint(fs);
2341 ieee754_csr.rm = oldrm;
2342 rfmt = w_fmt;
2343 goto copcsr;
2345 case fsel_op:
2346 if (!cpu_has_mips_r6)
2347 return SIGILL;
2349 MIPS_FPU_EMU_INC_STATS(sel_d);
2350 DPFROMREG(fd, MIPSInst_FD(ir));
2351 if (fd.bits & 0x1)
2352 DPFROMREG(rv.d, MIPSInst_FT(ir));
2353 else
2354 DPFROMREG(rv.d, MIPSInst_FS(ir));
2355 break;
2357 case fcvtl_op:
2358 if (!cpu_has_mips_3_4_5_64_r2_r6)
2359 return SIGILL;
2361 MIPS_FPU_EMU_INC_STATS(cvt_l_d);
2362 DPFROMREG(fs, MIPSInst_FS(ir));
2363 rv.l = ieee754dp_tlong(fs);
2364 rfmt = l_fmt;
2365 goto copcsr;
2367 case froundl_op:
2368 case ftruncl_op:
2369 case fceill_op:
2370 case ffloorl_op:
2371 if (!cpu_has_mips_3_4_5_64_r2_r6)
2372 return SIGILL;
2374 if (MIPSInst_FUNC(ir) == fceill_op)
2375 MIPS_FPU_EMU_INC_STATS(ceil_l_d);
2376 if (MIPSInst_FUNC(ir) == ffloorl_op)
2377 MIPS_FPU_EMU_INC_STATS(floor_l_d);
2378 if (MIPSInst_FUNC(ir) == froundl_op)
2379 MIPS_FPU_EMU_INC_STATS(round_l_d);
2380 if (MIPSInst_FUNC(ir) == ftruncl_op)
2381 MIPS_FPU_EMU_INC_STATS(trunc_l_d);
2383 oldrm = ieee754_csr.rm;
2384 DPFROMREG(fs, MIPSInst_FS(ir));
2385 ieee754_csr.rm = MIPSInst_FUNC(ir);
2386 rv.l = ieee754dp_tlong(fs);
2387 ieee754_csr.rm = oldrm;
2388 rfmt = l_fmt;
2389 goto copcsr;
2391 default:
2392 if (!NO_R6EMU && MIPSInst_FUNC(ir) >= fcmp_op) {
2393 unsigned int cmpop;
2394 union ieee754dp fs, ft;
2396 cmpop = MIPSInst_FUNC(ir) - fcmp_op;
2397 DPFROMREG(fs, MIPSInst_FS(ir));
2398 DPFROMREG(ft, MIPSInst_FT(ir));
2399 rv.w = ieee754dp_cmp(fs, ft,
2400 cmptab[cmpop & 0x7], cmpop & 0x8);
2401 rfmt = -1;
2402 if ((cmpop & 0x8)
2404 ieee754_cxtest
2405 (IEEE754_INVALID_OPERATION))
2406 rcsr = FPU_CSR_INV_X | FPU_CSR_INV_S;
2407 else
2408 goto copcsr;
2411 else {
2412 return SIGILL;
2414 break;
2416 break;
2419 case w_fmt: {
2420 union ieee754dp fs;
2422 switch (MIPSInst_FUNC(ir)) {
2423 case fcvts_op:
2424 /* convert word to single precision real */
2425 MIPS_FPU_EMU_INC_STATS(cvt_s_w);
2426 SPFROMREG(fs, MIPSInst_FS(ir));
2427 rv.s = ieee754sp_fint(fs.bits);
2428 rfmt = s_fmt;
2429 goto copcsr;
2430 case fcvtd_op:
2431 /* convert word to double precision real */
2432 MIPS_FPU_EMU_INC_STATS(cvt_d_w);
2433 SPFROMREG(fs, MIPSInst_FS(ir));
2434 rv.d = ieee754dp_fint(fs.bits);
2435 rfmt = d_fmt;
2436 goto copcsr;
2437 default: {
2438 /* Emulating the new CMP.condn.fmt R6 instruction */
2439 #define CMPOP_MASK 0x7
2440 #define SIGN_BIT (0x1 << 3)
2441 #define PREDICATE_BIT (0x1 << 4)
2443 int cmpop = MIPSInst_FUNC(ir) & CMPOP_MASK;
2444 int sig = MIPSInst_FUNC(ir) & SIGN_BIT;
2445 union ieee754sp fs, ft;
2447 /* This is an R6 only instruction */
2448 if (!cpu_has_mips_r6 ||
2449 (MIPSInst_FUNC(ir) & 0x20))
2450 return SIGILL;
2452 if (!sig) {
2453 if (!(MIPSInst_FUNC(ir) & PREDICATE_BIT)) {
2454 switch (cmpop) {
2455 case 0:
2456 MIPS_FPU_EMU_INC_STATS(cmp_af_s);
2457 break;
2458 case 1:
2459 MIPS_FPU_EMU_INC_STATS(cmp_un_s);
2460 break;
2461 case 2:
2462 MIPS_FPU_EMU_INC_STATS(cmp_eq_s);
2463 break;
2464 case 3:
2465 MIPS_FPU_EMU_INC_STATS(cmp_ueq_s);
2466 break;
2467 case 4:
2468 MIPS_FPU_EMU_INC_STATS(cmp_lt_s);
2469 break;
2470 case 5:
2471 MIPS_FPU_EMU_INC_STATS(cmp_ult_s);
2472 break;
2473 case 6:
2474 MIPS_FPU_EMU_INC_STATS(cmp_le_s);
2475 break;
2476 case 7:
2477 MIPS_FPU_EMU_INC_STATS(cmp_ule_s);
2478 break;
2480 } else {
2481 switch (cmpop) {
2482 case 1:
2483 MIPS_FPU_EMU_INC_STATS(cmp_or_s);
2484 break;
2485 case 2:
2486 MIPS_FPU_EMU_INC_STATS(cmp_une_s);
2487 break;
2488 case 3:
2489 MIPS_FPU_EMU_INC_STATS(cmp_ne_s);
2490 break;
2493 } else {
2494 if (!(MIPSInst_FUNC(ir) & PREDICATE_BIT)) {
2495 switch (cmpop) {
2496 case 0:
2497 MIPS_FPU_EMU_INC_STATS(cmp_saf_s);
2498 break;
2499 case 1:
2500 MIPS_FPU_EMU_INC_STATS(cmp_sun_s);
2501 break;
2502 case 2:
2503 MIPS_FPU_EMU_INC_STATS(cmp_seq_s);
2504 break;
2505 case 3:
2506 MIPS_FPU_EMU_INC_STATS(cmp_sueq_s);
2507 break;
2508 case 4:
2509 MIPS_FPU_EMU_INC_STATS(cmp_slt_s);
2510 break;
2511 case 5:
2512 MIPS_FPU_EMU_INC_STATS(cmp_sult_s);
2513 break;
2514 case 6:
2515 MIPS_FPU_EMU_INC_STATS(cmp_sle_s);
2516 break;
2517 case 7:
2518 MIPS_FPU_EMU_INC_STATS(cmp_sule_s);
2519 break;
2521 } else {
2522 switch (cmpop) {
2523 case 1:
2524 MIPS_FPU_EMU_INC_STATS(cmp_sor_s);
2525 break;
2526 case 2:
2527 MIPS_FPU_EMU_INC_STATS(cmp_sune_s);
2528 break;
2529 case 3:
2530 MIPS_FPU_EMU_INC_STATS(cmp_sne_s);
2531 break;
2536 /* fmt is w_fmt for single precision so fix it */
2537 rfmt = s_fmt;
2538 /* default to false */
2539 rv.w = 0;
2541 /* CMP.condn.S */
2542 SPFROMREG(fs, MIPSInst_FS(ir));
2543 SPFROMREG(ft, MIPSInst_FT(ir));
2545 /* positive predicates */
2546 if (!(MIPSInst_FUNC(ir) & PREDICATE_BIT)) {
2547 if (ieee754sp_cmp(fs, ft, cmptab[cmpop],
2548 sig))
2549 rv.w = -1; /* true, all 1s */
2550 if ((sig) &&
2551 ieee754_cxtest(IEEE754_INVALID_OPERATION))
2552 rcsr = FPU_CSR_INV_X | FPU_CSR_INV_S;
2553 else
2554 goto copcsr;
2555 } else {
2556 /* negative predicates */
2557 switch (cmpop) {
2558 case 1:
2559 case 2:
2560 case 3:
2561 if (ieee754sp_cmp(fs, ft,
2562 negative_cmptab[cmpop],
2563 sig))
2564 rv.w = -1; /* true, all 1s */
2565 if (sig &&
2566 ieee754_cxtest(IEEE754_INVALID_OPERATION))
2567 rcsr = FPU_CSR_INV_X | FPU_CSR_INV_S;
2568 else
2569 goto copcsr;
2570 break;
2571 default:
2572 /* Reserved R6 ops */
2573 return SIGILL;
2576 break;
2579 break;
2582 case l_fmt:
2584 if (!cpu_has_mips_3_4_5_64_r2_r6)
2585 return SIGILL;
2587 DIFROMREG(bits, MIPSInst_FS(ir));
2589 switch (MIPSInst_FUNC(ir)) {
2590 case fcvts_op:
2591 /* convert long to single precision real */
2592 MIPS_FPU_EMU_INC_STATS(cvt_s_l);
2593 rv.s = ieee754sp_flong(bits);
2594 rfmt = s_fmt;
2595 goto copcsr;
2596 case fcvtd_op:
2597 /* convert long to double precision real */
2598 MIPS_FPU_EMU_INC_STATS(cvt_d_l);
2599 rv.d = ieee754dp_flong(bits);
2600 rfmt = d_fmt;
2601 goto copcsr;
2602 default: {
2603 /* Emulating the new CMP.condn.fmt R6 instruction */
2604 int cmpop = MIPSInst_FUNC(ir) & CMPOP_MASK;
2605 int sig = MIPSInst_FUNC(ir) & SIGN_BIT;
2606 union ieee754dp fs, ft;
2608 if (!cpu_has_mips_r6 ||
2609 (MIPSInst_FUNC(ir) & 0x20))
2610 return SIGILL;
2612 if (!sig) {
2613 if (!(MIPSInst_FUNC(ir) & PREDICATE_BIT)) {
2614 switch (cmpop) {
2615 case 0:
2616 MIPS_FPU_EMU_INC_STATS(cmp_af_d);
2617 break;
2618 case 1:
2619 MIPS_FPU_EMU_INC_STATS(cmp_un_d);
2620 break;
2621 case 2:
2622 MIPS_FPU_EMU_INC_STATS(cmp_eq_d);
2623 break;
2624 case 3:
2625 MIPS_FPU_EMU_INC_STATS(cmp_ueq_d);
2626 break;
2627 case 4:
2628 MIPS_FPU_EMU_INC_STATS(cmp_lt_d);
2629 break;
2630 case 5:
2631 MIPS_FPU_EMU_INC_STATS(cmp_ult_d);
2632 break;
2633 case 6:
2634 MIPS_FPU_EMU_INC_STATS(cmp_le_d);
2635 break;
2636 case 7:
2637 MIPS_FPU_EMU_INC_STATS(cmp_ule_d);
2638 break;
2640 } else {
2641 switch (cmpop) {
2642 case 1:
2643 MIPS_FPU_EMU_INC_STATS(cmp_or_d);
2644 break;
2645 case 2:
2646 MIPS_FPU_EMU_INC_STATS(cmp_une_d);
2647 break;
2648 case 3:
2649 MIPS_FPU_EMU_INC_STATS(cmp_ne_d);
2650 break;
2653 } else {
2654 if (!(MIPSInst_FUNC(ir) & PREDICATE_BIT)) {
2655 switch (cmpop) {
2656 case 0:
2657 MIPS_FPU_EMU_INC_STATS(cmp_saf_d);
2658 break;
2659 case 1:
2660 MIPS_FPU_EMU_INC_STATS(cmp_sun_d);
2661 break;
2662 case 2:
2663 MIPS_FPU_EMU_INC_STATS(cmp_seq_d);
2664 break;
2665 case 3:
2666 MIPS_FPU_EMU_INC_STATS(cmp_sueq_d);
2667 break;
2668 case 4:
2669 MIPS_FPU_EMU_INC_STATS(cmp_slt_d);
2670 break;
2671 case 5:
2672 MIPS_FPU_EMU_INC_STATS(cmp_sult_d);
2673 break;
2674 case 6:
2675 MIPS_FPU_EMU_INC_STATS(cmp_sle_d);
2676 break;
2677 case 7:
2678 MIPS_FPU_EMU_INC_STATS(cmp_sule_d);
2679 break;
2681 } else {
2682 switch (cmpop) {
2683 case 1:
2684 MIPS_FPU_EMU_INC_STATS(cmp_sor_d);
2685 break;
2686 case 2:
2687 MIPS_FPU_EMU_INC_STATS(cmp_sune_d);
2688 break;
2689 case 3:
2690 MIPS_FPU_EMU_INC_STATS(cmp_sne_d);
2691 break;
2696 /* fmt is l_fmt for double precision so fix it */
2697 rfmt = d_fmt;
2698 /* default to false */
2699 rv.l = 0;
2701 /* CMP.condn.D */
2702 DPFROMREG(fs, MIPSInst_FS(ir));
2703 DPFROMREG(ft, MIPSInst_FT(ir));
2705 /* positive predicates */
2706 if (!(MIPSInst_FUNC(ir) & PREDICATE_BIT)) {
2707 if (ieee754dp_cmp(fs, ft,
2708 cmptab[cmpop], sig))
2709 rv.l = -1LL; /* true, all 1s */
2710 if (sig &&
2711 ieee754_cxtest(IEEE754_INVALID_OPERATION))
2712 rcsr = FPU_CSR_INV_X | FPU_CSR_INV_S;
2713 else
2714 goto copcsr;
2715 } else {
2716 /* negative predicates */
2717 switch (cmpop) {
2718 case 1:
2719 case 2:
2720 case 3:
2721 if (ieee754dp_cmp(fs, ft,
2722 negative_cmptab[cmpop],
2723 sig))
2724 rv.l = -1LL; /* true, all 1s */
2725 if (sig &&
2726 ieee754_cxtest(IEEE754_INVALID_OPERATION))
2727 rcsr = FPU_CSR_INV_X | FPU_CSR_INV_S;
2728 else
2729 goto copcsr;
2730 break;
2731 default:
2732 /* Reserved R6 ops */
2733 return SIGILL;
2736 break;
2739 break;
2741 default:
2742 return SIGILL;
2746 * Update the fpu CSR register for this operation.
2747 * If an exception is required, generate a tidy SIGFPE exception,
2748 * without updating the result register.
2749 * Note: cause exception bits do not accumulate, they are rewritten
2750 * for each op; only the flag/sticky bits accumulate.
2752 ctx->fcr31 = (ctx->fcr31 & ~FPU_CSR_ALL_X) | rcsr;
2753 if ((ctx->fcr31 >> 5) & ctx->fcr31 & FPU_CSR_ALL_E) {
2754 /*printk ("SIGFPE: FPU csr = %08x\n",ctx->fcr31); */
2755 return SIGFPE;
2759 * Now we can safely write the result back to the register file.
2761 switch (rfmt) {
2762 case -1:
2764 if (cpu_has_mips_4_5_r)
2765 cbit = fpucondbit[MIPSInst_FD(ir) >> 2];
2766 else
2767 cbit = FPU_CSR_COND;
2768 if (rv.w)
2769 ctx->fcr31 |= cbit;
2770 else
2771 ctx->fcr31 &= ~cbit;
2772 break;
2774 case d_fmt:
2775 DPTOREG(rv.d, MIPSInst_FD(ir));
2776 break;
2777 case s_fmt:
2778 SPTOREG(rv.s, MIPSInst_FD(ir));
2779 break;
2780 case w_fmt:
2781 SITOREG(rv.w, MIPSInst_FD(ir));
2782 break;
2783 case l_fmt:
2784 if (!cpu_has_mips_3_4_5_64_r2_r6)
2785 return SIGILL;
2787 DITOREG(rv.l, MIPSInst_FD(ir));
2788 break;
2789 default:
2790 return SIGILL;
2793 return 0;
2797 * Emulate FPU instructions.
2799 * If we use FPU hardware, then we have been typically called to handle
2800 * an unimplemented operation, such as where an operand is a NaN or
2801 * denormalized. In that case exit the emulation loop after a single
2802 * iteration so as to let hardware execute any subsequent instructions.
2804 * If we have no FPU hardware or it has been disabled, then continue
2805 * emulating floating-point instructions until one of these conditions
2806 * has occurred:
2808 * - a non-FPU instruction has been encountered,
2810 * - an attempt to emulate has ended with a signal,
2812 * - the ISA mode has been switched.
2814 * We need to terminate the emulation loop if we got switched to the
2815 * MIPS16 mode, whether supported or not, so that we do not attempt
2816 * to emulate a MIPS16 instruction as a regular MIPS FPU instruction.
2817 * Similarly if we got switched to the microMIPS mode and only the
2818 * regular MIPS mode is supported, so that we do not attempt to emulate
2819 * a microMIPS instruction as a regular MIPS FPU instruction. Or if
2820 * we got switched to the regular MIPS mode and only the microMIPS mode
2821 * is supported, so that we do not attempt to emulate a regular MIPS
2822 * instruction that should cause an Address Error exception instead.
2823 * For simplicity we always terminate upon an ISA mode switch.
2825 int fpu_emulator_cop1Handler(struct pt_regs *xcp, struct mips_fpu_struct *ctx,
2826 int has_fpu, void __user **fault_addr)
2828 unsigned long oldepc, prevepc;
2829 struct mm_decoded_insn dec_insn;
2830 u16 instr[4];
2831 u16 *instr_ptr;
2832 int sig = 0;
2834 oldepc = xcp->cp0_epc;
2835 do {
2836 prevepc = xcp->cp0_epc;
2838 if (get_isa16_mode(prevepc) && cpu_has_mmips) {
2840 * Get next 2 microMIPS instructions and convert them
2841 * into 32-bit instructions.
2843 if ((get_user(instr[0], (u16 __user *)msk_isa16_mode(xcp->cp0_epc))) ||
2844 (get_user(instr[1], (u16 __user *)msk_isa16_mode(xcp->cp0_epc + 2))) ||
2845 (get_user(instr[2], (u16 __user *)msk_isa16_mode(xcp->cp0_epc + 4))) ||
2846 (get_user(instr[3], (u16 __user *)msk_isa16_mode(xcp->cp0_epc + 6)))) {
2847 MIPS_FPU_EMU_INC_STATS(errors);
2848 return SIGBUS;
2850 instr_ptr = instr;
2852 /* Get first instruction. */
2853 if (mm_insn_16bit(*instr_ptr)) {
2854 /* Duplicate the half-word. */
2855 dec_insn.insn = (*instr_ptr << 16) |
2856 (*instr_ptr);
2857 /* 16-bit instruction. */
2858 dec_insn.pc_inc = 2;
2859 instr_ptr += 1;
2860 } else {
2861 dec_insn.insn = (*instr_ptr << 16) |
2862 *(instr_ptr+1);
2863 /* 32-bit instruction. */
2864 dec_insn.pc_inc = 4;
2865 instr_ptr += 2;
2867 /* Get second instruction. */
2868 if (mm_insn_16bit(*instr_ptr)) {
2869 /* Duplicate the half-word. */
2870 dec_insn.next_insn = (*instr_ptr << 16) |
2871 (*instr_ptr);
2872 /* 16-bit instruction. */
2873 dec_insn.next_pc_inc = 2;
2874 } else {
2875 dec_insn.next_insn = (*instr_ptr << 16) |
2876 *(instr_ptr+1);
2877 /* 32-bit instruction. */
2878 dec_insn.next_pc_inc = 4;
2880 dec_insn.micro_mips_mode = 1;
2881 } else {
2882 if ((get_user(dec_insn.insn,
2883 (mips_instruction __user *) xcp->cp0_epc)) ||
2884 (get_user(dec_insn.next_insn,
2885 (mips_instruction __user *)(xcp->cp0_epc+4)))) {
2886 MIPS_FPU_EMU_INC_STATS(errors);
2887 return SIGBUS;
2889 dec_insn.pc_inc = 4;
2890 dec_insn.next_pc_inc = 4;
2891 dec_insn.micro_mips_mode = 0;
2894 if ((dec_insn.insn == 0) ||
2895 ((dec_insn.pc_inc == 2) &&
2896 ((dec_insn.insn & 0xffff) == MM_NOP16)))
2897 xcp->cp0_epc += dec_insn.pc_inc; /* Skip NOPs */
2898 else {
2900 * The 'ieee754_csr' is an alias of ctx->fcr31.
2901 * No need to copy ctx->fcr31 to ieee754_csr.
2903 sig = cop1Emulate(xcp, ctx, dec_insn, fault_addr);
2906 if (has_fpu)
2907 break;
2908 if (sig)
2909 break;
2911 * We have to check for the ISA bit explicitly here,
2912 * because `get_isa16_mode' may return 0 if support
2913 * for code compression has been globally disabled,
2914 * or otherwise we may produce the wrong signal or
2915 * even proceed successfully where we must not.
2917 if ((xcp->cp0_epc ^ prevepc) & 0x1)
2918 break;
2920 cond_resched();
2921 } while (xcp->cp0_epc > prevepc);
2923 /* SIGILL indicates a non-fpu instruction */
2924 if (sig == SIGILL && xcp->cp0_epc != oldepc)
2925 /* but if EPC has advanced, then ignore it */
2926 sig = 0;
2928 return sig;