Merge tag 'for_linus' of git://git.kernel.org/pub/scm/linux/kernel/git/mst/vhost
[cris-mirror.git] / arch / mips / math-emu / dp_maddf.c
blob7ea2f82220267ad45198ce8ec7ccf3fc829fe89f
1 /*
2 * IEEE754 floating point arithmetic
3 * double precision: MADDF.f (Fused Multiply Add)
4 * MADDF.fmt: FPR[fd] = FPR[fd] + (FPR[fs] x FPR[ft])
6 * MIPS floating point support
7 * Copyright (C) 2015 Imagination Technologies, Ltd.
8 * Author: Markos Chandras <markos.chandras@imgtec.com>
10 * This program is free software; you can distribute it and/or modify it
11 * under the terms of the GNU General Public License as published by the
12 * Free Software Foundation; version 2 of the License.
15 #include "ieee754dp.h"
18 /* 128 bits shift right logical with rounding. */
19 static void srl128(u64 *hptr, u64 *lptr, int count)
21 u64 low;
23 if (count >= 128) {
24 *lptr = *hptr != 0 || *lptr != 0;
25 *hptr = 0;
26 } else if (count >= 64) {
27 if (count == 64) {
28 *lptr = *hptr | (*lptr != 0);
29 } else {
30 low = *lptr;
31 *lptr = *hptr >> (count - 64);
32 *lptr |= (*hptr << (128 - count)) != 0 || low != 0;
34 *hptr = 0;
35 } else {
36 low = *lptr;
37 *lptr = low >> count | *hptr << (64 - count);
38 *lptr |= (low << (64 - count)) != 0;
39 *hptr = *hptr >> count;
43 static union ieee754dp _dp_maddf(union ieee754dp z, union ieee754dp x,
44 union ieee754dp y, enum maddf_flags flags)
46 int re;
47 int rs;
48 unsigned int lxm;
49 unsigned int hxm;
50 unsigned int lym;
51 unsigned int hym;
52 u64 lrm;
53 u64 hrm;
54 u64 lzm;
55 u64 hzm;
56 u64 t;
57 u64 at;
58 int s;
60 COMPXDP;
61 COMPYDP;
62 COMPZDP;
64 EXPLODEXDP;
65 EXPLODEYDP;
66 EXPLODEZDP;
68 FLUSHXDP;
69 FLUSHYDP;
70 FLUSHZDP;
72 ieee754_clearcx();
75 * Handle the cases when at least one of x, y or z is a NaN.
76 * Order of precedence is sNaN, qNaN and z, x, y.
78 if (zc == IEEE754_CLASS_SNAN)
79 return ieee754dp_nanxcpt(z);
80 if (xc == IEEE754_CLASS_SNAN)
81 return ieee754dp_nanxcpt(x);
82 if (yc == IEEE754_CLASS_SNAN)
83 return ieee754dp_nanxcpt(y);
84 if (zc == IEEE754_CLASS_QNAN)
85 return z;
86 if (xc == IEEE754_CLASS_QNAN)
87 return x;
88 if (yc == IEEE754_CLASS_QNAN)
89 return y;
91 if (zc == IEEE754_CLASS_DNORM)
92 DPDNORMZ;
93 /* ZERO z cases are handled separately below */
95 switch (CLPAIR(xc, yc)) {
98 * Infinity handling
100 case CLPAIR(IEEE754_CLASS_INF, IEEE754_CLASS_ZERO):
101 case CLPAIR(IEEE754_CLASS_ZERO, IEEE754_CLASS_INF):
102 ieee754_setcx(IEEE754_INVALID_OPERATION);
103 return ieee754dp_indef();
105 case CLPAIR(IEEE754_CLASS_NORM, IEEE754_CLASS_INF):
106 case CLPAIR(IEEE754_CLASS_DNORM, IEEE754_CLASS_INF):
107 case CLPAIR(IEEE754_CLASS_INF, IEEE754_CLASS_NORM):
108 case CLPAIR(IEEE754_CLASS_INF, IEEE754_CLASS_DNORM):
109 case CLPAIR(IEEE754_CLASS_INF, IEEE754_CLASS_INF):
110 if ((zc == IEEE754_CLASS_INF) &&
111 ((!(flags & MADDF_NEGATE_PRODUCT) && (zs != (xs ^ ys))) ||
112 ((flags & MADDF_NEGATE_PRODUCT) && (zs == (xs ^ ys))))) {
114 * Cases of addition of infinities with opposite signs
115 * or subtraction of infinities with same signs.
117 ieee754_setcx(IEEE754_INVALID_OPERATION);
118 return ieee754dp_indef();
121 * z is here either not an infinity, or an infinity having the
122 * same sign as product (x*y) (in case of MADDF.D instruction)
123 * or product -(x*y) (in MSUBF.D case). The result must be an
124 * infinity, and its sign is determined only by the value of
125 * (flags & MADDF_NEGATE_PRODUCT) and the signs of x and y.
127 if (flags & MADDF_NEGATE_PRODUCT)
128 return ieee754dp_inf(1 ^ (xs ^ ys));
129 else
130 return ieee754dp_inf(xs ^ ys);
132 case CLPAIR(IEEE754_CLASS_ZERO, IEEE754_CLASS_ZERO):
133 case CLPAIR(IEEE754_CLASS_ZERO, IEEE754_CLASS_NORM):
134 case CLPAIR(IEEE754_CLASS_ZERO, IEEE754_CLASS_DNORM):
135 case CLPAIR(IEEE754_CLASS_NORM, IEEE754_CLASS_ZERO):
136 case CLPAIR(IEEE754_CLASS_DNORM, IEEE754_CLASS_ZERO):
137 if (zc == IEEE754_CLASS_INF)
138 return ieee754dp_inf(zs);
139 if (zc == IEEE754_CLASS_ZERO) {
140 /* Handle cases +0 + (-0) and similar ones. */
141 if ((!(flags & MADDF_NEGATE_PRODUCT)
142 && (zs == (xs ^ ys))) ||
143 ((flags & MADDF_NEGATE_PRODUCT)
144 && (zs != (xs ^ ys))))
146 * Cases of addition of zeros of equal signs
147 * or subtraction of zeroes of opposite signs.
148 * The sign of the resulting zero is in any
149 * such case determined only by the sign of z.
151 return z;
153 return ieee754dp_zero(ieee754_csr.rm == FPU_CSR_RD);
155 /* x*y is here 0, and z is not 0, so just return z */
156 return z;
158 case CLPAIR(IEEE754_CLASS_DNORM, IEEE754_CLASS_DNORM):
159 DPDNORMX;
160 /* fall through */
162 case CLPAIR(IEEE754_CLASS_NORM, IEEE754_CLASS_DNORM):
163 if (zc == IEEE754_CLASS_INF)
164 return ieee754dp_inf(zs);
165 DPDNORMY;
166 break;
168 case CLPAIR(IEEE754_CLASS_DNORM, IEEE754_CLASS_NORM):
169 if (zc == IEEE754_CLASS_INF)
170 return ieee754dp_inf(zs);
171 DPDNORMX;
172 break;
174 case CLPAIR(IEEE754_CLASS_NORM, IEEE754_CLASS_NORM):
175 if (zc == IEEE754_CLASS_INF)
176 return ieee754dp_inf(zs);
177 /* continue to real computations */
180 /* Finally get to do some computation */
183 * Do the multiplication bit first
185 * rm = xm * ym, re = xe + ye basically
187 * At this point xm and ym should have been normalized.
189 assert(xm & DP_HIDDEN_BIT);
190 assert(ym & DP_HIDDEN_BIT);
192 re = xe + ye;
193 rs = xs ^ ys;
194 if (flags & MADDF_NEGATE_PRODUCT)
195 rs ^= 1;
197 /* shunt to top of word */
198 xm <<= 64 - (DP_FBITS + 1);
199 ym <<= 64 - (DP_FBITS + 1);
202 * Multiply 64 bits xm and ym to give 128 bits result in hrm:lrm.
205 lxm = xm;
206 hxm = xm >> 32;
207 lym = ym;
208 hym = ym >> 32;
210 lrm = DPXMULT(lxm, lym);
211 hrm = DPXMULT(hxm, hym);
213 t = DPXMULT(lxm, hym);
215 at = lrm + (t << 32);
216 hrm += at < lrm;
217 lrm = at;
219 hrm = hrm + (t >> 32);
221 t = DPXMULT(hxm, lym);
223 at = lrm + (t << 32);
224 hrm += at < lrm;
225 lrm = at;
227 hrm = hrm + (t >> 32);
229 /* Put explicit bit at bit 126 if necessary */
230 if ((int64_t)hrm < 0) {
231 lrm = (hrm << 63) | (lrm >> 1);
232 hrm = hrm >> 1;
233 re++;
236 assert(hrm & (1 << 62));
238 if (zc == IEEE754_CLASS_ZERO) {
240 * Move explicit bit from bit 126 to bit 55 since the
241 * ieee754dp_format code expects the mantissa to be
242 * 56 bits wide (53 + 3 rounding bits).
244 srl128(&hrm, &lrm, (126 - 55));
245 return ieee754dp_format(rs, re, lrm);
248 /* Move explicit bit from bit 52 to bit 126 */
249 lzm = 0;
250 hzm = zm << 10;
251 assert(hzm & (1 << 62));
253 /* Make the exponents the same */
254 if (ze > re) {
256 * Have to shift y fraction right to align.
258 s = ze - re;
259 srl128(&hrm, &lrm, s);
260 re += s;
261 } else if (re > ze) {
263 * Have to shift x fraction right to align.
265 s = re - ze;
266 srl128(&hzm, &lzm, s);
267 ze += s;
269 assert(ze == re);
270 assert(ze <= DP_EMAX);
272 /* Do the addition */
273 if (zs == rs) {
275 * Generate 128 bit result by adding two 127 bit numbers
276 * leaving result in hzm:lzm, zs and ze.
278 hzm = hzm + hrm + (lzm > (lzm + lrm));
279 lzm = lzm + lrm;
280 if ((int64_t)hzm < 0) { /* carry out */
281 srl128(&hzm, &lzm, 1);
282 ze++;
284 } else {
285 if (hzm > hrm || (hzm == hrm && lzm >= lrm)) {
286 hzm = hzm - hrm - (lzm < lrm);
287 lzm = lzm - lrm;
288 } else {
289 hzm = hrm - hzm - (lrm < lzm);
290 lzm = lrm - lzm;
291 zs = rs;
293 if (lzm == 0 && hzm == 0)
294 return ieee754dp_zero(ieee754_csr.rm == FPU_CSR_RD);
297 * Put explicit bit at bit 126 if necessary.
299 if (hzm == 0) {
300 /* left shift by 63 or 64 bits */
301 if ((int64_t)lzm < 0) {
302 /* MSB of lzm is the explicit bit */
303 hzm = lzm >> 1;
304 lzm = lzm << 63;
305 ze -= 63;
306 } else {
307 hzm = lzm;
308 lzm = 0;
309 ze -= 64;
313 t = 0;
314 while ((hzm >> (62 - t)) == 0)
315 t++;
317 assert(t <= 62);
318 if (t) {
319 hzm = hzm << t | lzm >> (64 - t);
320 lzm = lzm << t;
321 ze -= t;
326 * Move explicit bit from bit 126 to bit 55 since the
327 * ieee754dp_format code expects the mantissa to be
328 * 56 bits wide (53 + 3 rounding bits).
330 srl128(&hzm, &lzm, (126 - 55));
332 return ieee754dp_format(zs, ze, lzm);
335 union ieee754dp ieee754dp_maddf(union ieee754dp z, union ieee754dp x,
336 union ieee754dp y)
338 return _dp_maddf(z, x, y, 0);
341 union ieee754dp ieee754dp_msubf(union ieee754dp z, union ieee754dp x,
342 union ieee754dp y)
344 return _dp_maddf(z, x, y, MADDF_NEGATE_PRODUCT);