1 /* Kernel dynamically loadable module help for PARISC.
3 * The best reference for this stuff is probably the Processor-
4 * Specific ELF Supplement for PA-RISC:
5 * http://ftp.parisc-linux.org/docs/arch/elf-pa-hp.pdf
7 * Linux/PA-RISC Project (http://www.parisc-linux.org/)
8 * Copyright (C) 2003 Randolph Chung <tausq at debian . org>
9 * Copyright (C) 2008 Helge Deller <deller@gmx.de>
12 * This program is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU General Public License as published by
14 * the Free Software Foundation; either version 2 of the License, or
15 * (at your option) any later version.
17 * This program is distributed in the hope that it will be useful,
18 * but WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 * GNU General Public License for more details.
22 * You should have received a copy of the GNU General Public License
23 * along with this program; if not, write to the Free Software
24 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
29 * On 32bit (and sometimes 64bit) and with big kernel modules like xfs or
30 * ipv6 the relocation types R_PARISC_PCREL17F and R_PARISC_PCREL22F may
31 * fail to reach their PLT stub if we only create one big stub array for
32 * all sections at the beginning of the core or init section.
33 * Instead we now insert individual PLT stub entries directly in front of
34 * of the code sections where the stubs are actually called.
35 * This reduces the distance between the PCREL location and the stub entry
36 * so that the relocations can be fulfilled.
37 * While calculating the final layout of the kernel module in memory, the
38 * kernel module loader calls arch_mod_section_prepend() to request the
39 * to be reserved amount of memory in front of each individual section.
42 * We are not doing SEGREL32 handling correctly. According to the ABI, we
43 * should do a value offset, like this:
44 * if (in_init(me, (void *)val))
45 * val -= (uint32_t)me->init_layout.base;
47 * val -= (uint32_t)me->core_layout.base;
48 * However, SEGREL32 is used only for PARISC unwind entries, and we want
49 * those entries to have an absolute address, and not just an offset.
51 * The unwind table mechanism has the ability to specify an offset for
52 * the unwind table; however, because we split off the init functions into
53 * a different piece of memory, it is not possible to do this using a
54 * single offset. Instead, we use the above hack for now.
57 #include <linux/moduleloader.h>
58 #include <linux/elf.h>
59 #include <linux/vmalloc.h>
61 #include <linux/string.h>
62 #include <linux/kernel.h>
63 #include <linux/bug.h>
65 #include <linux/slab.h>
67 #include <asm/pgtable.h>
68 #include <asm/unwind.h>
69 #include <asm/sections.h>
74 #define DEBUGP(fmt...)
77 #define RELOC_REACHABLE(val, bits) \
78 (( ( !((val) & (1<<((bits)-1))) && ((val)>>(bits)) != 0 ) || \
79 ( ((val) & (1<<((bits)-1))) && ((val)>>(bits)) != (((__typeof__(val))(~0))>>((bits)+2)))) ? \
82 #define CHECK_RELOC(val, bits) \
83 if (!RELOC_REACHABLE(val, bits)) { \
84 printk(KERN_ERR "module %s relocation of symbol %s is out of range (0x%lx in %d bits)\n", \
85 me->name, strtab + sym->st_name, (unsigned long)val, bits); \
89 /* Maximum number of GOT entries. We use a long displacement ldd from
90 * the bottom of the table, which has a maximum signed displacement of
91 * 0x3fff; however, since we're only going forward, this becomes
92 * 0x1fff, and thus, since each GOT entry is 8 bytes long we can have
93 * at most 1023 entries.
94 * To overcome this 14bit displacement with some kernel modules, we'll
95 * use instead the unusal 16bit displacement method (see reassemble_16a)
96 * which gives us a maximum positive displacement of 0x7fff, and as such
97 * allows us to allocate up to 4095 GOT entries. */
100 /* three functions to determine where in the module core
101 * or init pieces the location is */
102 static inline int in_init(struct module
*me
, void *loc
)
104 return (loc
>= me
->init_layout
.base
&&
105 loc
<= (me
->init_layout
.base
+ me
->init_layout
.size
));
108 static inline int in_core(struct module
*me
, void *loc
)
110 return (loc
>= me
->core_layout
.base
&&
111 loc
<= (me
->core_layout
.base
+ me
->core_layout
.size
));
114 static inline int in_local(struct module
*me
, void *loc
)
116 return in_init(me
, loc
) || in_core(me
, loc
);
125 Elf32_Word insns
[2]; /* each stub entry has two insns */
133 Elf64_Word insns
[4]; /* each stub entry has four insns */
137 /* Field selection types defined by hppa */
138 #define rnd(x) (((x)+0x1000)&~0x1fff)
139 /* fsel: full 32 bits */
140 #define fsel(v,a) ((v)+(a))
141 /* lsel: select left 21 bits */
142 #define lsel(v,a) (((v)+(a))>>11)
143 /* rsel: select right 11 bits */
144 #define rsel(v,a) (((v)+(a))&0x7ff)
145 /* lrsel with rounding of addend to nearest 8k */
146 #define lrsel(v,a) (((v)+rnd(a))>>11)
147 /* rrsel with rounding of addend to nearest 8k */
148 #define rrsel(v,a) ((((v)+rnd(a))&0x7ff)+((a)-rnd(a)))
150 #define mask(x,sz) ((x) & ~((1<<(sz))-1))
153 /* The reassemble_* functions prepare an immediate value for
154 insertion into an opcode. pa-risc uses all sorts of weird bitfields
155 in the instruction to hold the value. */
156 static inline int sign_unext(int x
, int len
)
160 len_ones
= (1 << len
) - 1;
164 static inline int low_sign_unext(int x
, int len
)
168 sign
= (x
>> (len
-1)) & 1;
169 temp
= sign_unext(x
, len
-1);
170 return (temp
<< 1) | sign
;
173 static inline int reassemble_14(int as14
)
175 return (((as14
& 0x1fff) << 1) |
176 ((as14
& 0x2000) >> 13));
179 static inline int reassemble_16a(int as16
)
183 /* Unusual 16-bit encoding, for wide mode only. */
184 t
= (as16
<< 1) & 0xffff;
186 return (t
^ s
^ (s
>> 1)) | (s
>> 15);
190 static inline int reassemble_17(int as17
)
192 return (((as17
& 0x10000) >> 16) |
193 ((as17
& 0x0f800) << 5) |
194 ((as17
& 0x00400) >> 8) |
195 ((as17
& 0x003ff) << 3));
198 static inline int reassemble_21(int as21
)
200 return (((as21
& 0x100000) >> 20) |
201 ((as21
& 0x0ffe00) >> 8) |
202 ((as21
& 0x000180) << 7) |
203 ((as21
& 0x00007c) << 14) |
204 ((as21
& 0x000003) << 12));
207 static inline int reassemble_22(int as22
)
209 return (((as22
& 0x200000) >> 21) |
210 ((as22
& 0x1f0000) << 5) |
211 ((as22
& 0x00f800) << 5) |
212 ((as22
& 0x000400) >> 8) |
213 ((as22
& 0x0003ff) << 3));
216 void *module_alloc(unsigned long size
)
218 /* using RWX means less protection for modules, but it's
219 * easier than trying to map the text, data, init_text and
220 * init_data correctly */
221 return __vmalloc_node_range(size
, 1, VMALLOC_START
, VMALLOC_END
,
223 PAGE_KERNEL_RWX
, 0, NUMA_NO_NODE
,
224 __builtin_return_address(0));
228 static inline unsigned long count_gots(const Elf_Rela
*rela
, unsigned long n
)
233 static inline unsigned long count_fdescs(const Elf_Rela
*rela
, unsigned long n
)
238 static inline unsigned long count_stubs(const Elf_Rela
*rela
, unsigned long n
)
240 unsigned long cnt
= 0;
242 for (; n
> 0; n
--, rela
++)
244 switch (ELF32_R_TYPE(rela
->r_info
)) {
245 case R_PARISC_PCREL17F
:
246 case R_PARISC_PCREL22F
:
254 static inline unsigned long count_gots(const Elf_Rela
*rela
, unsigned long n
)
256 unsigned long cnt
= 0;
258 for (; n
> 0; n
--, rela
++)
260 switch (ELF64_R_TYPE(rela
->r_info
)) {
261 case R_PARISC_LTOFF21L
:
262 case R_PARISC_LTOFF14R
:
263 case R_PARISC_PCREL22F
:
271 static inline unsigned long count_fdescs(const Elf_Rela
*rela
, unsigned long n
)
273 unsigned long cnt
= 0;
275 for (; n
> 0; n
--, rela
++)
277 switch (ELF64_R_TYPE(rela
->r_info
)) {
278 case R_PARISC_FPTR64
:
286 static inline unsigned long count_stubs(const Elf_Rela
*rela
, unsigned long n
)
288 unsigned long cnt
= 0;
290 for (; n
> 0; n
--, rela
++)
292 switch (ELF64_R_TYPE(rela
->r_info
)) {
293 case R_PARISC_PCREL22F
:
302 void module_arch_freeing_init(struct module
*mod
)
304 kfree(mod
->arch
.section
);
305 mod
->arch
.section
= NULL
;
308 /* Additional bytes needed in front of individual sections */
309 unsigned int arch_mod_section_prepend(struct module
*mod
,
310 unsigned int section
)
312 /* size needed for all stubs of this section (including
313 * one additional for correct alignment of the stubs) */
314 return (mod
->arch
.section
[section
].stub_entries
+ 1)
315 * sizeof(struct stub_entry
);
319 int module_frob_arch_sections(CONST Elf_Ehdr
*hdr
,
320 CONST Elf_Shdr
*sechdrs
,
321 CONST
char *secstrings
,
324 unsigned long gots
= 0, fdescs
= 0, len
;
327 len
= hdr
->e_shnum
* sizeof(me
->arch
.section
[0]);
328 me
->arch
.section
= kzalloc(len
, GFP_KERNEL
);
329 if (!me
->arch
.section
)
332 for (i
= 1; i
< hdr
->e_shnum
; i
++) {
333 const Elf_Rela
*rels
= (void *)sechdrs
[i
].sh_addr
;
334 unsigned long nrels
= sechdrs
[i
].sh_size
/ sizeof(*rels
);
335 unsigned int count
, s
;
337 if (strncmp(secstrings
+ sechdrs
[i
].sh_name
,
338 ".PARISC.unwind", 14) == 0)
339 me
->arch
.unwind_section
= i
;
341 if (sechdrs
[i
].sh_type
!= SHT_RELA
)
344 /* some of these are not relevant for 32-bit/64-bit
345 * we leave them here to make the code common. the
346 * compiler will do its thing and optimize out the
347 * stuff we don't need
349 gots
+= count_gots(rels
, nrels
);
350 fdescs
+= count_fdescs(rels
, nrels
);
352 /* XXX: By sorting the relocs and finding duplicate entries
353 * we could reduce the number of necessary stubs and save
355 count
= count_stubs(rels
, nrels
);
359 /* so we need relocation stubs. reserve necessary memory. */
360 /* sh_info gives the section for which we need to add stubs. */
361 s
= sechdrs
[i
].sh_info
;
363 /* each code section should only have one relocation section */
364 WARN_ON(me
->arch
.section
[s
].stub_entries
);
366 /* store number of stubs we need for this section */
367 me
->arch
.section
[s
].stub_entries
+= count
;
370 /* align things a bit */
371 me
->core_layout
.size
= ALIGN(me
->core_layout
.size
, 16);
372 me
->arch
.got_offset
= me
->core_layout
.size
;
373 me
->core_layout
.size
+= gots
* sizeof(struct got_entry
);
375 me
->core_layout
.size
= ALIGN(me
->core_layout
.size
, 16);
376 me
->arch
.fdesc_offset
= me
->core_layout
.size
;
377 me
->core_layout
.size
+= fdescs
* sizeof(Elf_Fdesc
);
379 me
->arch
.got_max
= gots
;
380 me
->arch
.fdesc_max
= fdescs
;
386 static Elf64_Word
get_got(struct module
*me
, unsigned long value
, long addend
)
389 struct got_entry
*got
;
395 got
= me
->core_layout
.base
+ me
->arch
.got_offset
;
396 for (i
= 0; got
[i
].addr
; i
++)
397 if (got
[i
].addr
== value
)
400 BUG_ON(++me
->arch
.got_count
> me
->arch
.got_max
);
404 DEBUGP("GOT ENTRY %d[%x] val %lx\n", i
, i
*sizeof(struct got_entry
),
406 return i
* sizeof(struct got_entry
);
408 #endif /* CONFIG_64BIT */
411 static Elf_Addr
get_fdesc(struct module
*me
, unsigned long value
)
413 Elf_Fdesc
*fdesc
= me
->core_layout
.base
+ me
->arch
.fdesc_offset
;
416 printk(KERN_ERR
"%s: zero OPD requested!\n", me
->name
);
420 /* Look for existing fdesc entry. */
421 while (fdesc
->addr
) {
422 if (fdesc
->addr
== value
)
423 return (Elf_Addr
)fdesc
;
427 BUG_ON(++me
->arch
.fdesc_count
> me
->arch
.fdesc_max
);
431 fdesc
->gp
= (Elf_Addr
)me
->core_layout
.base
+ me
->arch
.got_offset
;
432 return (Elf_Addr
)fdesc
;
434 #endif /* CONFIG_64BIT */
442 static Elf_Addr
get_stub(struct module
*me
, unsigned long value
, long addend
,
443 enum elf_stub_type stub_type
, Elf_Addr loc0
, unsigned int targetsec
)
445 struct stub_entry
*stub
;
446 int __maybe_unused d
;
448 /* initialize stub_offset to point in front of the section */
449 if (!me
->arch
.section
[targetsec
].stub_offset
) {
450 loc0
-= (me
->arch
.section
[targetsec
].stub_entries
+ 1) *
451 sizeof(struct stub_entry
);
452 /* get correct alignment for the stubs */
453 loc0
= ALIGN(loc0
, sizeof(struct stub_entry
));
454 me
->arch
.section
[targetsec
].stub_offset
= loc0
;
457 /* get address of stub entry */
458 stub
= (void *) me
->arch
.section
[targetsec
].stub_offset
;
459 me
->arch
.section
[targetsec
].stub_offset
+= sizeof(struct stub_entry
);
461 /* do not write outside available stub area */
462 BUG_ON(0 == me
->arch
.section
[targetsec
].stub_entries
--);
466 /* for 32-bit the stub looks like this:
468 * be,n R'XXX(%sr4,%r1)
470 //value = *(unsigned long *)((value + addend) & ~3); /* why? */
472 stub
->insns
[0] = 0x20200000; /* ldil L'XXX,%r1 */
473 stub
->insns
[1] = 0xe0202002; /* be,n R'XXX(%sr4,%r1) */
475 stub
->insns
[0] |= reassemble_21(lrsel(value
, addend
));
476 stub
->insns
[1] |= reassemble_17(rrsel(value
, addend
) / 4);
479 /* for 64-bit we have three kinds of stubs:
480 * for normal function calls:
492 * for direct branches (jumps between different section of the
500 d
= get_got(me
, value
, addend
);
503 stub
->insns
[0] = 0x0f6010db; /* ldd 0(%dp),%dp */
504 stub
->insns
[0] |= low_sign_unext(d
, 5) << 16;
507 stub
->insns
[0] = 0x537b0000; /* ldd 0(%dp),%dp */
508 stub
->insns
[0] |= reassemble_16a(d
);
510 stub
->insns
[1] = 0x53610020; /* ldd 10(%dp),%r1 */
511 stub
->insns
[2] = 0xe820d000; /* bve (%r1) */
512 stub
->insns
[3] = 0x537b0030; /* ldd 18(%dp),%dp */
515 stub
->insns
[0] = 0x20200000; /* ldil 0,%r1 */
516 stub
->insns
[1] = 0x34210000; /* ldo 0(%r1), %r1 */
517 stub
->insns
[2] = 0x50210020; /* ldd 10(%r1),%r1 */
518 stub
->insns
[3] = 0xe820d002; /* bve,n (%r1) */
520 stub
->insns
[0] |= reassemble_21(lrsel(value
, addend
));
521 stub
->insns
[1] |= reassemble_14(rrsel(value
, addend
));
523 case ELF_STUB_DIRECT
:
524 stub
->insns
[0] = 0x20200000; /* ldil 0,%r1 */
525 stub
->insns
[1] = 0x34210000; /* ldo 0(%r1), %r1 */
526 stub
->insns
[2] = 0xe820d002; /* bve,n (%r1) */
528 stub
->insns
[0] |= reassemble_21(lrsel(value
, addend
));
529 stub
->insns
[1] |= reassemble_14(rrsel(value
, addend
));
535 return (Elf_Addr
)stub
;
539 int apply_relocate_add(Elf_Shdr
*sechdrs
,
541 unsigned int symindex
,
546 Elf32_Rela
*rel
= (void *)sechdrs
[relsec
].sh_addr
;
553 unsigned int targetsec
= sechdrs
[relsec
].sh_info
;
554 //unsigned long dp = (unsigned long)$global$;
555 register unsigned long dp
asm ("r27");
557 DEBUGP("Applying relocate section %u to %u\n", relsec
,
559 for (i
= 0; i
< sechdrs
[relsec
].sh_size
/ sizeof(*rel
); i
++) {
560 /* This is where to make the change */
561 loc
= (void *)sechdrs
[targetsec
].sh_addr
563 /* This is the start of the target section */
564 loc0
= sechdrs
[targetsec
].sh_addr
;
565 /* This is the symbol it is referring to */
566 sym
= (Elf32_Sym
*)sechdrs
[symindex
].sh_addr
567 + ELF32_R_SYM(rel
[i
].r_info
);
568 if (!sym
->st_value
) {
569 printk(KERN_WARNING
"%s: Unknown symbol %s\n",
570 me
->name
, strtab
+ sym
->st_name
);
573 //dot = (sechdrs[relsec].sh_addr + rel->r_offset) & ~0x03;
574 dot
= (Elf32_Addr
)loc
& ~0x03;
577 addend
= rel
[i
].r_addend
;
580 #define r(t) ELF32_R_TYPE(rel[i].r_info)==t ? #t :
581 DEBUGP("Symbol %s loc 0x%x val 0x%x addend 0x%x: %s\n",
582 strtab
+ sym
->st_name
,
583 (uint32_t)loc
, val
, addend
,
597 switch (ELF32_R_TYPE(rel
[i
].r_info
)) {
598 case R_PARISC_PLABEL32
:
599 /* 32-bit function address */
600 /* no function descriptors... */
601 *loc
= fsel(val
, addend
);
604 /* direct 32-bit ref */
605 *loc
= fsel(val
, addend
);
607 case R_PARISC_DIR21L
:
608 /* left 21 bits of effective address */
609 val
= lrsel(val
, addend
);
610 *loc
= mask(*loc
, 21) | reassemble_21(val
);
612 case R_PARISC_DIR14R
:
613 /* right 14 bits of effective address */
614 val
= rrsel(val
, addend
);
615 *loc
= mask(*loc
, 14) | reassemble_14(val
);
617 case R_PARISC_SEGREL32
:
618 /* 32-bit segment relative address */
619 /* See note about special handling of SEGREL32 at
620 * the beginning of this file.
622 *loc
= fsel(val
, addend
);
624 case R_PARISC_SECREL32
:
625 /* 32-bit section relative address. */
626 *loc
= fsel(val
, addend
);
628 case R_PARISC_DPREL21L
:
629 /* left 21 bit of relative address */
630 val
= lrsel(val
- dp
, addend
);
631 *loc
= mask(*loc
, 21) | reassemble_21(val
);
633 case R_PARISC_DPREL14R
:
634 /* right 14 bit of relative address */
635 val
= rrsel(val
- dp
, addend
);
636 *loc
= mask(*loc
, 14) | reassemble_14(val
);
638 case R_PARISC_PCREL17F
:
639 /* 17-bit PC relative address */
640 /* calculate direct call offset */
642 val
= (val
- dot
- 8)/4;
643 if (!RELOC_REACHABLE(val
, 17)) {
644 /* direct distance too far, create
645 * stub entry instead */
646 val
= get_stub(me
, sym
->st_value
, addend
,
647 ELF_STUB_DIRECT
, loc0
, targetsec
);
648 val
= (val
- dot
- 8)/4;
649 CHECK_RELOC(val
, 17);
651 *loc
= (*loc
& ~0x1f1ffd) | reassemble_17(val
);
653 case R_PARISC_PCREL22F
:
654 /* 22-bit PC relative address; only defined for pa20 */
655 /* calculate direct call offset */
657 val
= (val
- dot
- 8)/4;
658 if (!RELOC_REACHABLE(val
, 22)) {
659 /* direct distance too far, create
660 * stub entry instead */
661 val
= get_stub(me
, sym
->st_value
, addend
,
662 ELF_STUB_DIRECT
, loc0
, targetsec
);
663 val
= (val
- dot
- 8)/4;
664 CHECK_RELOC(val
, 22);
666 *loc
= (*loc
& ~0x3ff1ffd) | reassemble_22(val
);
668 case R_PARISC_PCREL32
:
669 /* 32-bit PC relative address */
670 *loc
= val
- dot
- 8 + addend
;
674 printk(KERN_ERR
"module %s: Unknown relocation: %u\n",
675 me
->name
, ELF32_R_TYPE(rel
[i
].r_info
));
684 int apply_relocate_add(Elf_Shdr
*sechdrs
,
686 unsigned int symindex
,
691 Elf64_Rela
*rel
= (void *)sechdrs
[relsec
].sh_addr
;
699 unsigned int targetsec
= sechdrs
[relsec
].sh_info
;
701 DEBUGP("Applying relocate section %u to %u\n", relsec
,
703 for (i
= 0; i
< sechdrs
[relsec
].sh_size
/ sizeof(*rel
); i
++) {
704 /* This is where to make the change */
705 loc
= (void *)sechdrs
[targetsec
].sh_addr
707 /* This is the start of the target section */
708 loc0
= sechdrs
[targetsec
].sh_addr
;
709 /* This is the symbol it is referring to */
710 sym
= (Elf64_Sym
*)sechdrs
[symindex
].sh_addr
711 + ELF64_R_SYM(rel
[i
].r_info
);
712 if (!sym
->st_value
) {
713 printk(KERN_WARNING
"%s: Unknown symbol %s\n",
714 me
->name
, strtab
+ sym
->st_name
);
717 //dot = (sechdrs[relsec].sh_addr + rel->r_offset) & ~0x03;
718 dot
= (Elf64_Addr
)loc
& ~0x03;
719 loc64
= (Elf64_Xword
*)loc
;
722 addend
= rel
[i
].r_addend
;
725 #define r(t) ELF64_R_TYPE(rel[i].r_info)==t ? #t :
726 printk("Symbol %s loc %p val 0x%Lx addend 0x%Lx: %s\n",
727 strtab
+ sym
->st_name
,
739 switch (ELF64_R_TYPE(rel
[i
].r_info
)) {
740 case R_PARISC_LTOFF21L
:
741 /* LT-relative; left 21 bits */
742 val
= get_got(me
, val
, addend
);
743 DEBUGP("LTOFF21L Symbol %s loc %p val %lx\n",
744 strtab
+ sym
->st_name
,
747 *loc
= mask(*loc
, 21) | reassemble_21(val
);
749 case R_PARISC_LTOFF14R
:
750 /* L(ltoff(val+addend)) */
751 /* LT-relative; right 14 bits */
752 val
= get_got(me
, val
, addend
);
754 DEBUGP("LTOFF14R Symbol %s loc %p val %lx\n",
755 strtab
+ sym
->st_name
,
757 *loc
= mask(*loc
, 14) | reassemble_14(val
);
759 case R_PARISC_PCREL22F
:
760 /* PC-relative; 22 bits */
761 DEBUGP("PCREL22F Symbol %s loc %p val %lx\n",
762 strtab
+ sym
->st_name
,
765 /* can we reach it locally? */
766 if (in_local(me
, (void *)val
)) {
767 /* this is the case where the symbol is local
768 * to the module, but in a different section,
769 * so stub the jump in case it's more than 22
771 val
= (val
- dot
- 8)/4;
772 if (!RELOC_REACHABLE(val
, 22)) {
773 /* direct distance too far, create
774 * stub entry instead */
775 val
= get_stub(me
, sym
->st_value
,
776 addend
, ELF_STUB_DIRECT
,
779 /* Ok, we can reach it directly. */
785 if (strncmp(strtab
+ sym
->st_name
, "$$", 2)
787 val
= get_stub(me
, val
, addend
, ELF_STUB_MILLI
,
790 val
= get_stub(me
, val
, addend
, ELF_STUB_GOT
,
793 DEBUGP("STUB FOR %s loc %lx, val %lx+%lx at %lx\n",
794 strtab
+ sym
->st_name
, loc
, sym
->st_value
,
796 val
= (val
- dot
- 8)/4;
797 CHECK_RELOC(val
, 22);
798 *loc
= (*loc
& ~0x3ff1ffd) | reassemble_22(val
);
800 case R_PARISC_PCREL32
:
801 /* 32-bit PC relative address */
802 *loc
= val
- dot
- 8 + addend
;
805 /* 64-bit effective address */
806 *loc64
= val
+ addend
;
808 case R_PARISC_SEGREL32
:
809 /* 32-bit segment relative address */
810 /* See note about special handling of SEGREL32 at
811 * the beginning of this file.
813 *loc
= fsel(val
, addend
);
815 case R_PARISC_SECREL32
:
816 /* 32-bit section relative address. */
817 *loc
= fsel(val
, addend
);
819 case R_PARISC_FPTR64
:
820 /* 64-bit function address */
821 if(in_local(me
, (void *)(val
+ addend
))) {
822 *loc64
= get_fdesc(me
, val
+addend
);
823 DEBUGP("FDESC for %s at %p points to %lx\n",
824 strtab
+ sym
->st_name
, *loc64
,
825 ((Elf_Fdesc
*)*loc64
)->addr
);
827 /* if the symbol is not local to this
828 * module then val+addend is a pointer
829 * to the function descriptor */
830 DEBUGP("Non local FPTR64 Symbol %s loc %p val %lx\n",
831 strtab
+ sym
->st_name
,
833 *loc64
= val
+ addend
;
838 printk(KERN_ERR
"module %s: Unknown relocation: %Lu\n",
839 me
->name
, ELF64_R_TYPE(rel
[i
].r_info
));
848 register_unwind_table(struct module
*me
,
849 const Elf_Shdr
*sechdrs
)
851 unsigned char *table
, *end
;
854 if (!me
->arch
.unwind_section
)
857 table
= (unsigned char *)sechdrs
[me
->arch
.unwind_section
].sh_addr
;
858 end
= table
+ sechdrs
[me
->arch
.unwind_section
].sh_size
;
859 gp
= (Elf_Addr
)me
->core_layout
.base
+ me
->arch
.got_offset
;
861 DEBUGP("register_unwind_table(), sect = %d at 0x%p - 0x%p (gp=0x%lx)\n",
862 me
->arch
.unwind_section
, table
, end
, gp
);
863 me
->arch
.unwind
= unwind_table_add(me
->name
, 0, gp
, table
, end
);
867 deregister_unwind_table(struct module
*me
)
870 unwind_table_remove(me
->arch
.unwind
);
873 int module_finalize(const Elf_Ehdr
*hdr
,
874 const Elf_Shdr
*sechdrs
,
879 const char *strtab
= NULL
;
880 Elf_Sym
*newptr
, *oldptr
;
881 Elf_Shdr
*symhdr
= NULL
;
886 entry
= (Elf_Fdesc
*)me
->init
;
887 printk("FINALIZE, ->init FPTR is %p, GP %lx ADDR %lx\n", entry
,
888 entry
->gp
, entry
->addr
);
889 addr
= (u32
*)entry
->addr
;
890 printk("INSNS: %x %x %x %x\n",
891 addr
[0], addr
[1], addr
[2], addr
[3]);
892 printk("got entries used %ld, gots max %ld\n"
893 "fdescs used %ld, fdescs max %ld\n",
894 me
->arch
.got_count
, me
->arch
.got_max
,
895 me
->arch
.fdesc_count
, me
->arch
.fdesc_max
);
898 register_unwind_table(me
, sechdrs
);
900 /* haven't filled in me->symtab yet, so have to find it
902 for (i
= 1; i
< hdr
->e_shnum
; i
++) {
903 if(sechdrs
[i
].sh_type
== SHT_SYMTAB
904 && (sechdrs
[i
].sh_flags
& SHF_ALLOC
)) {
905 int strindex
= sechdrs
[i
].sh_link
;
907 * The cast is to drop the const from
908 * the sechdrs pointer */
909 symhdr
= (Elf_Shdr
*)&sechdrs
[i
];
910 strtab
= (char *)sechdrs
[strindex
].sh_addr
;
915 DEBUGP("module %s: strtab %p, symhdr %p\n",
916 me
->name
, strtab
, symhdr
);
918 if(me
->arch
.got_count
> MAX_GOTS
) {
919 printk(KERN_ERR
"%s: Global Offset Table overflow (used %ld, allowed %d)\n",
920 me
->name
, me
->arch
.got_count
, MAX_GOTS
);
924 kfree(me
->arch
.section
);
925 me
->arch
.section
= NULL
;
927 /* no symbol table */
931 oldptr
= (void *)symhdr
->sh_addr
;
932 newptr
= oldptr
+ 1; /* we start counting at 1 */
933 nsyms
= symhdr
->sh_size
/ sizeof(Elf_Sym
);
934 DEBUGP("OLD num_symtab %lu\n", nsyms
);
936 for (i
= 1; i
< nsyms
; i
++) {
937 oldptr
++; /* note, count starts at 1 so preincrement */
938 if(strncmp(strtab
+ oldptr
->st_name
,
948 nsyms
= newptr
- (Elf_Sym
*)symhdr
->sh_addr
;
949 DEBUGP("NEW num_symtab %lu\n", nsyms
);
950 symhdr
->sh_size
= nsyms
* sizeof(Elf_Sym
);
954 void module_arch_cleanup(struct module
*mod
)
956 deregister_unwind_table(mod
);
960 void *dereference_module_function_descriptor(struct module
*mod
, void *ptr
)
962 unsigned long start_opd
= (Elf64_Addr
)mod
->core_layout
.base
+
963 mod
->arch
.fdesc_offset
;
964 unsigned long end_opd
= start_opd
+
965 mod
->arch
.fdesc_count
* sizeof(Elf64_Fdesc
);
967 if (ptr
< (void *)start_opd
|| ptr
>= (void *)end_opd
)
970 return dereference_function_descriptor(ptr
);