2 * Derived from "arch/i386/kernel/process.c"
3 * Copyright (C) 1995 Linus Torvalds
5 * Updated and modified by Cort Dougan (cort@cs.nmt.edu) and
6 * Paul Mackerras (paulus@cs.anu.edu.au)
9 * Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org)
11 * This program is free software; you can redistribute it and/or
12 * modify it under the terms of the GNU General Public License
13 * as published by the Free Software Foundation; either version
14 * 2 of the License, or (at your option) any later version.
17 #include <linux/errno.h>
18 #include <linux/sched.h>
19 #include <linux/sched/debug.h>
20 #include <linux/sched/task.h>
21 #include <linux/sched/task_stack.h>
22 #include <linux/kernel.h>
24 #include <linux/smp.h>
25 #include <linux/stddef.h>
26 #include <linux/unistd.h>
27 #include <linux/ptrace.h>
28 #include <linux/slab.h>
29 #include <linux/user.h>
30 #include <linux/elf.h>
31 #include <linux/prctl.h>
32 #include <linux/init_task.h>
33 #include <linux/export.h>
34 #include <linux/kallsyms.h>
35 #include <linux/mqueue.h>
36 #include <linux/hardirq.h>
37 #include <linux/utsname.h>
38 #include <linux/ftrace.h>
39 #include <linux/kernel_stat.h>
40 #include <linux/personality.h>
41 #include <linux/random.h>
42 #include <linux/hw_breakpoint.h>
43 #include <linux/uaccess.h>
44 #include <linux/elf-randomize.h>
45 #include <linux/pkeys.h>
47 #include <asm/pgtable.h>
49 #include <asm/processor.h>
52 #include <asm/machdep.h>
54 #include <asm/runlatch.h>
55 #include <asm/syscalls.h>
56 #include <asm/switch_to.h>
58 #include <asm/debug.h>
60 #include <asm/firmware.h>
61 #include <asm/hw_irq.h>
63 #include <asm/code-patching.h>
65 #include <asm/livepatch.h>
66 #include <asm/cpu_has_feature.h>
67 #include <asm/asm-prototypes.h>
69 #include <linux/kprobes.h>
70 #include <linux/kdebug.h>
72 /* Transactional Memory debug */
74 #define TM_DEBUG(x...) printk(KERN_INFO x)
76 #define TM_DEBUG(x...) do { } while(0)
79 extern unsigned long _get_SP(void);
81 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
83 * Are we running in "Suspend disabled" mode? If so we have to block any
84 * sigreturn that would get us into suspended state, and we also warn in some
85 * other paths that we should never reach with suspend disabled.
87 bool tm_suspend_disabled __ro_after_init
= false;
89 static void check_if_tm_restore_required(struct task_struct
*tsk
)
92 * If we are saving the current thread's registers, and the
93 * thread is in a transactional state, set the TIF_RESTORE_TM
94 * bit so that we know to restore the registers before
95 * returning to userspace.
97 if (tsk
== current
&& tsk
->thread
.regs
&&
98 MSR_TM_ACTIVE(tsk
->thread
.regs
->msr
) &&
99 !test_thread_flag(TIF_RESTORE_TM
)) {
100 tsk
->thread
.ckpt_regs
.msr
= tsk
->thread
.regs
->msr
;
101 set_thread_flag(TIF_RESTORE_TM
);
105 static inline bool msr_tm_active(unsigned long msr
)
107 return MSR_TM_ACTIVE(msr
);
110 static bool tm_active_with_fp(struct task_struct
*tsk
)
112 return msr_tm_active(tsk
->thread
.regs
->msr
) &&
113 (tsk
->thread
.ckpt_regs
.msr
& MSR_FP
);
116 static bool tm_active_with_altivec(struct task_struct
*tsk
)
118 return msr_tm_active(tsk
->thread
.regs
->msr
) &&
119 (tsk
->thread
.ckpt_regs
.msr
& MSR_VEC
);
122 static inline bool msr_tm_active(unsigned long msr
) { return false; }
123 static inline void check_if_tm_restore_required(struct task_struct
*tsk
) { }
124 static inline bool tm_active_with_fp(struct task_struct
*tsk
) { return false; }
125 static inline bool tm_active_with_altivec(struct task_struct
*tsk
) { return false; }
126 #endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
128 bool strict_msr_control
;
129 EXPORT_SYMBOL(strict_msr_control
);
131 static int __init
enable_strict_msr_control(char *str
)
133 strict_msr_control
= true;
134 pr_info("Enabling strict facility control\n");
138 early_param("ppc_strict_facility_enable", enable_strict_msr_control
);
140 unsigned long msr_check_and_set(unsigned long bits
)
142 unsigned long oldmsr
= mfmsr();
143 unsigned long newmsr
;
145 newmsr
= oldmsr
| bits
;
148 if (cpu_has_feature(CPU_FTR_VSX
) && (bits
& MSR_FP
))
152 if (oldmsr
!= newmsr
)
158 void __msr_check_and_clear(unsigned long bits
)
160 unsigned long oldmsr
= mfmsr();
161 unsigned long newmsr
;
163 newmsr
= oldmsr
& ~bits
;
166 if (cpu_has_feature(CPU_FTR_VSX
) && (bits
& MSR_FP
))
170 if (oldmsr
!= newmsr
)
173 EXPORT_SYMBOL(__msr_check_and_clear
);
175 #ifdef CONFIG_PPC_FPU
176 void __giveup_fpu(struct task_struct
*tsk
)
181 msr
= tsk
->thread
.regs
->msr
;
184 if (cpu_has_feature(CPU_FTR_VSX
))
187 tsk
->thread
.regs
->msr
= msr
;
190 void giveup_fpu(struct task_struct
*tsk
)
192 check_if_tm_restore_required(tsk
);
194 msr_check_and_set(MSR_FP
);
196 msr_check_and_clear(MSR_FP
);
198 EXPORT_SYMBOL(giveup_fpu
);
201 * Make sure the floating-point register state in the
202 * the thread_struct is up to date for task tsk.
204 void flush_fp_to_thread(struct task_struct
*tsk
)
206 if (tsk
->thread
.regs
) {
208 * We need to disable preemption here because if we didn't,
209 * another process could get scheduled after the regs->msr
210 * test but before we have finished saving the FP registers
211 * to the thread_struct. That process could take over the
212 * FPU, and then when we get scheduled again we would store
213 * bogus values for the remaining FP registers.
216 if (tsk
->thread
.regs
->msr
& MSR_FP
) {
218 * This should only ever be called for current or
219 * for a stopped child process. Since we save away
220 * the FP register state on context switch,
221 * there is something wrong if a stopped child appears
222 * to still have its FP state in the CPU registers.
224 BUG_ON(tsk
!= current
);
230 EXPORT_SYMBOL_GPL(flush_fp_to_thread
);
232 void enable_kernel_fp(void)
234 unsigned long cpumsr
;
236 WARN_ON(preemptible());
238 cpumsr
= msr_check_and_set(MSR_FP
);
240 if (current
->thread
.regs
&& (current
->thread
.regs
->msr
& MSR_FP
)) {
241 check_if_tm_restore_required(current
);
243 * If a thread has already been reclaimed then the
244 * checkpointed registers are on the CPU but have definitely
245 * been saved by the reclaim code. Don't need to and *cannot*
246 * giveup as this would save to the 'live' structure not the
247 * checkpointed structure.
249 if(!msr_tm_active(cpumsr
) && msr_tm_active(current
->thread
.regs
->msr
))
251 __giveup_fpu(current
);
254 EXPORT_SYMBOL(enable_kernel_fp
);
256 static int restore_fp(struct task_struct
*tsk
)
258 if (tsk
->thread
.load_fp
|| tm_active_with_fp(tsk
)) {
259 load_fp_state(¤t
->thread
.fp_state
);
260 current
->thread
.load_fp
++;
266 static int restore_fp(struct task_struct
*tsk
) { return 0; }
267 #endif /* CONFIG_PPC_FPU */
269 #ifdef CONFIG_ALTIVEC
270 #define loadvec(thr) ((thr).load_vec)
272 static void __giveup_altivec(struct task_struct
*tsk
)
277 msr
= tsk
->thread
.regs
->msr
;
280 if (cpu_has_feature(CPU_FTR_VSX
))
283 tsk
->thread
.regs
->msr
= msr
;
286 void giveup_altivec(struct task_struct
*tsk
)
288 check_if_tm_restore_required(tsk
);
290 msr_check_and_set(MSR_VEC
);
291 __giveup_altivec(tsk
);
292 msr_check_and_clear(MSR_VEC
);
294 EXPORT_SYMBOL(giveup_altivec
);
296 void enable_kernel_altivec(void)
298 unsigned long cpumsr
;
300 WARN_ON(preemptible());
302 cpumsr
= msr_check_and_set(MSR_VEC
);
304 if (current
->thread
.regs
&& (current
->thread
.regs
->msr
& MSR_VEC
)) {
305 check_if_tm_restore_required(current
);
307 * If a thread has already been reclaimed then the
308 * checkpointed registers are on the CPU but have definitely
309 * been saved by the reclaim code. Don't need to and *cannot*
310 * giveup as this would save to the 'live' structure not the
311 * checkpointed structure.
313 if(!msr_tm_active(cpumsr
) && msr_tm_active(current
->thread
.regs
->msr
))
315 __giveup_altivec(current
);
318 EXPORT_SYMBOL(enable_kernel_altivec
);
321 * Make sure the VMX/Altivec register state in the
322 * the thread_struct is up to date for task tsk.
324 void flush_altivec_to_thread(struct task_struct
*tsk
)
326 if (tsk
->thread
.regs
) {
328 if (tsk
->thread
.regs
->msr
& MSR_VEC
) {
329 BUG_ON(tsk
!= current
);
335 EXPORT_SYMBOL_GPL(flush_altivec_to_thread
);
337 static int restore_altivec(struct task_struct
*tsk
)
339 if (cpu_has_feature(CPU_FTR_ALTIVEC
) &&
340 (tsk
->thread
.load_vec
|| tm_active_with_altivec(tsk
))) {
341 load_vr_state(&tsk
->thread
.vr_state
);
342 tsk
->thread
.used_vr
= 1;
343 tsk
->thread
.load_vec
++;
350 #define loadvec(thr) 0
351 static inline int restore_altivec(struct task_struct
*tsk
) { return 0; }
352 #endif /* CONFIG_ALTIVEC */
355 static void __giveup_vsx(struct task_struct
*tsk
)
357 unsigned long msr
= tsk
->thread
.regs
->msr
;
360 * We should never be ssetting MSR_VSX without also setting
363 WARN_ON((msr
& MSR_VSX
) && !((msr
& MSR_FP
) && (msr
& MSR_VEC
)));
365 /* __giveup_fpu will clear MSR_VSX */
369 __giveup_altivec(tsk
);
372 static void giveup_vsx(struct task_struct
*tsk
)
374 check_if_tm_restore_required(tsk
);
376 msr_check_and_set(MSR_FP
|MSR_VEC
|MSR_VSX
);
378 msr_check_and_clear(MSR_FP
|MSR_VEC
|MSR_VSX
);
381 void enable_kernel_vsx(void)
383 unsigned long cpumsr
;
385 WARN_ON(preemptible());
387 cpumsr
= msr_check_and_set(MSR_FP
|MSR_VEC
|MSR_VSX
);
389 if (current
->thread
.regs
&&
390 (current
->thread
.regs
->msr
& (MSR_VSX
|MSR_VEC
|MSR_FP
))) {
391 check_if_tm_restore_required(current
);
393 * If a thread has already been reclaimed then the
394 * checkpointed registers are on the CPU but have definitely
395 * been saved by the reclaim code. Don't need to and *cannot*
396 * giveup as this would save to the 'live' structure not the
397 * checkpointed structure.
399 if(!msr_tm_active(cpumsr
) && msr_tm_active(current
->thread
.regs
->msr
))
401 __giveup_vsx(current
);
404 EXPORT_SYMBOL(enable_kernel_vsx
);
406 void flush_vsx_to_thread(struct task_struct
*tsk
)
408 if (tsk
->thread
.regs
) {
410 if (tsk
->thread
.regs
->msr
& (MSR_VSX
|MSR_VEC
|MSR_FP
)) {
411 BUG_ON(tsk
!= current
);
417 EXPORT_SYMBOL_GPL(flush_vsx_to_thread
);
419 static int restore_vsx(struct task_struct
*tsk
)
421 if (cpu_has_feature(CPU_FTR_VSX
)) {
422 tsk
->thread
.used_vsr
= 1;
429 static inline int restore_vsx(struct task_struct
*tsk
) { return 0; }
430 #endif /* CONFIG_VSX */
433 void giveup_spe(struct task_struct
*tsk
)
435 check_if_tm_restore_required(tsk
);
437 msr_check_and_set(MSR_SPE
);
439 msr_check_and_clear(MSR_SPE
);
441 EXPORT_SYMBOL(giveup_spe
);
443 void enable_kernel_spe(void)
445 WARN_ON(preemptible());
447 msr_check_and_set(MSR_SPE
);
449 if (current
->thread
.regs
&& (current
->thread
.regs
->msr
& MSR_SPE
)) {
450 check_if_tm_restore_required(current
);
451 __giveup_spe(current
);
454 EXPORT_SYMBOL(enable_kernel_spe
);
456 void flush_spe_to_thread(struct task_struct
*tsk
)
458 if (tsk
->thread
.regs
) {
460 if (tsk
->thread
.regs
->msr
& MSR_SPE
) {
461 BUG_ON(tsk
!= current
);
462 tsk
->thread
.spefscr
= mfspr(SPRN_SPEFSCR
);
468 #endif /* CONFIG_SPE */
470 static unsigned long msr_all_available
;
472 static int __init
init_msr_all_available(void)
474 #ifdef CONFIG_PPC_FPU
475 msr_all_available
|= MSR_FP
;
477 #ifdef CONFIG_ALTIVEC
478 if (cpu_has_feature(CPU_FTR_ALTIVEC
))
479 msr_all_available
|= MSR_VEC
;
482 if (cpu_has_feature(CPU_FTR_VSX
))
483 msr_all_available
|= MSR_VSX
;
486 if (cpu_has_feature(CPU_FTR_SPE
))
487 msr_all_available
|= MSR_SPE
;
492 early_initcall(init_msr_all_available
);
494 void giveup_all(struct task_struct
*tsk
)
496 unsigned long usermsr
;
498 if (!tsk
->thread
.regs
)
501 usermsr
= tsk
->thread
.regs
->msr
;
503 if ((usermsr
& msr_all_available
) == 0)
506 msr_check_and_set(msr_all_available
);
507 check_if_tm_restore_required(tsk
);
509 WARN_ON((usermsr
& MSR_VSX
) && !((usermsr
& MSR_FP
) && (usermsr
& MSR_VEC
)));
511 #ifdef CONFIG_PPC_FPU
512 if (usermsr
& MSR_FP
)
515 #ifdef CONFIG_ALTIVEC
516 if (usermsr
& MSR_VEC
)
517 __giveup_altivec(tsk
);
520 if (usermsr
& MSR_SPE
)
524 msr_check_and_clear(msr_all_available
);
526 EXPORT_SYMBOL(giveup_all
);
528 void restore_math(struct pt_regs
*regs
)
532 if (!msr_tm_active(regs
->msr
) &&
533 !current
->thread
.load_fp
&& !loadvec(current
->thread
))
537 msr_check_and_set(msr_all_available
);
540 * Only reload if the bit is not set in the user MSR, the bit BEING set
541 * indicates that the registers are hot
543 if ((!(msr
& MSR_FP
)) && restore_fp(current
))
544 msr
|= MSR_FP
| current
->thread
.fpexc_mode
;
546 if ((!(msr
& MSR_VEC
)) && restore_altivec(current
))
549 if ((msr
& (MSR_FP
| MSR_VEC
)) == (MSR_FP
| MSR_VEC
) &&
550 restore_vsx(current
)) {
554 msr_check_and_clear(msr_all_available
);
559 void save_all(struct task_struct
*tsk
)
561 unsigned long usermsr
;
563 if (!tsk
->thread
.regs
)
566 usermsr
= tsk
->thread
.regs
->msr
;
568 if ((usermsr
& msr_all_available
) == 0)
571 msr_check_and_set(msr_all_available
);
573 WARN_ON((usermsr
& MSR_VSX
) && !((usermsr
& MSR_FP
) && (usermsr
& MSR_VEC
)));
575 if (usermsr
& MSR_FP
)
578 if (usermsr
& MSR_VEC
)
581 if (usermsr
& MSR_SPE
)
584 msr_check_and_clear(msr_all_available
);
587 void flush_all_to_thread(struct task_struct
*tsk
)
589 if (tsk
->thread
.regs
) {
591 BUG_ON(tsk
!= current
);
595 if (tsk
->thread
.regs
->msr
& MSR_SPE
)
596 tsk
->thread
.spefscr
= mfspr(SPRN_SPEFSCR
);
602 EXPORT_SYMBOL(flush_all_to_thread
);
604 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
605 void do_send_trap(struct pt_regs
*regs
, unsigned long address
,
606 unsigned long error_code
, int breakpt
)
608 current
->thread
.trap_nr
= TRAP_HWBKPT
;
609 if (notify_die(DIE_DABR_MATCH
, "dabr_match", regs
, error_code
,
610 11, SIGSEGV
) == NOTIFY_STOP
)
613 /* Deliver the signal to userspace */
614 force_sig_ptrace_errno_trap(breakpt
, /* breakpoint or watchpoint id */
615 (void __user
*)address
);
617 #else /* !CONFIG_PPC_ADV_DEBUG_REGS */
618 void do_break (struct pt_regs
*regs
, unsigned long address
,
619 unsigned long error_code
)
623 current
->thread
.trap_nr
= TRAP_HWBKPT
;
624 if (notify_die(DIE_DABR_MATCH
, "dabr_match", regs
, error_code
,
625 11, SIGSEGV
) == NOTIFY_STOP
)
628 if (debugger_break_match(regs
))
631 /* Clear the breakpoint */
632 hw_breakpoint_disable();
634 /* Deliver the signal to userspace */
635 info
.si_signo
= SIGTRAP
;
637 info
.si_code
= TRAP_HWBKPT
;
638 info
.si_addr
= (void __user
*)address
;
639 force_sig_info(SIGTRAP
, &info
, current
);
641 #endif /* CONFIG_PPC_ADV_DEBUG_REGS */
643 static DEFINE_PER_CPU(struct arch_hw_breakpoint
, current_brk
);
645 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
647 * Set the debug registers back to their default "safe" values.
649 static void set_debug_reg_defaults(struct thread_struct
*thread
)
651 thread
->debug
.iac1
= thread
->debug
.iac2
= 0;
652 #if CONFIG_PPC_ADV_DEBUG_IACS > 2
653 thread
->debug
.iac3
= thread
->debug
.iac4
= 0;
655 thread
->debug
.dac1
= thread
->debug
.dac2
= 0;
656 #if CONFIG_PPC_ADV_DEBUG_DVCS > 0
657 thread
->debug
.dvc1
= thread
->debug
.dvc2
= 0;
659 thread
->debug
.dbcr0
= 0;
662 * Force User/Supervisor bits to b11 (user-only MSR[PR]=1)
664 thread
->debug
.dbcr1
= DBCR1_IAC1US
| DBCR1_IAC2US
|
665 DBCR1_IAC3US
| DBCR1_IAC4US
;
667 * Force Data Address Compare User/Supervisor bits to be User-only
668 * (0b11 MSR[PR]=1) and set all other bits in DBCR2 register to be 0.
670 thread
->debug
.dbcr2
= DBCR2_DAC1US
| DBCR2_DAC2US
;
672 thread
->debug
.dbcr1
= 0;
676 static void prime_debug_regs(struct debug_reg
*debug
)
679 * We could have inherited MSR_DE from userspace, since
680 * it doesn't get cleared on exception entry. Make sure
681 * MSR_DE is clear before we enable any debug events.
683 mtmsr(mfmsr() & ~MSR_DE
);
685 mtspr(SPRN_IAC1
, debug
->iac1
);
686 mtspr(SPRN_IAC2
, debug
->iac2
);
687 #if CONFIG_PPC_ADV_DEBUG_IACS > 2
688 mtspr(SPRN_IAC3
, debug
->iac3
);
689 mtspr(SPRN_IAC4
, debug
->iac4
);
691 mtspr(SPRN_DAC1
, debug
->dac1
);
692 mtspr(SPRN_DAC2
, debug
->dac2
);
693 #if CONFIG_PPC_ADV_DEBUG_DVCS > 0
694 mtspr(SPRN_DVC1
, debug
->dvc1
);
695 mtspr(SPRN_DVC2
, debug
->dvc2
);
697 mtspr(SPRN_DBCR0
, debug
->dbcr0
);
698 mtspr(SPRN_DBCR1
, debug
->dbcr1
);
700 mtspr(SPRN_DBCR2
, debug
->dbcr2
);
704 * Unless neither the old or new thread are making use of the
705 * debug registers, set the debug registers from the values
706 * stored in the new thread.
708 void switch_booke_debug_regs(struct debug_reg
*new_debug
)
710 if ((current
->thread
.debug
.dbcr0
& DBCR0_IDM
)
711 || (new_debug
->dbcr0
& DBCR0_IDM
))
712 prime_debug_regs(new_debug
);
714 EXPORT_SYMBOL_GPL(switch_booke_debug_regs
);
715 #else /* !CONFIG_PPC_ADV_DEBUG_REGS */
716 #ifndef CONFIG_HAVE_HW_BREAKPOINT
717 static void set_debug_reg_defaults(struct thread_struct
*thread
)
719 thread
->hw_brk
.address
= 0;
720 thread
->hw_brk
.type
= 0;
721 set_breakpoint(&thread
->hw_brk
);
723 #endif /* !CONFIG_HAVE_HW_BREAKPOINT */
724 #endif /* CONFIG_PPC_ADV_DEBUG_REGS */
726 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
727 static inline int __set_dabr(unsigned long dabr
, unsigned long dabrx
)
729 mtspr(SPRN_DAC1
, dabr
);
730 #ifdef CONFIG_PPC_47x
735 #elif defined(CONFIG_PPC_BOOK3S)
736 static inline int __set_dabr(unsigned long dabr
, unsigned long dabrx
)
738 mtspr(SPRN_DABR
, dabr
);
739 if (cpu_has_feature(CPU_FTR_DABRX
))
740 mtspr(SPRN_DABRX
, dabrx
);
743 #elif defined(CONFIG_PPC_8xx)
744 static inline int __set_dabr(unsigned long dabr
, unsigned long dabrx
)
746 unsigned long addr
= dabr
& ~HW_BRK_TYPE_DABR
;
747 unsigned long lctrl1
= 0x90000000; /* compare type: equal on E & F */
748 unsigned long lctrl2
= 0x8e000002; /* watchpoint 1 on cmp E | F */
750 if ((dabr
& HW_BRK_TYPE_RDWR
) == HW_BRK_TYPE_READ
)
752 else if ((dabr
& HW_BRK_TYPE_RDWR
) == HW_BRK_TYPE_WRITE
)
754 else if ((dabr
& HW_BRK_TYPE_RDWR
) == 0)
757 mtspr(SPRN_LCTRL2
, 0);
758 mtspr(SPRN_CMPE
, addr
);
759 mtspr(SPRN_CMPF
, addr
+ 4);
760 mtspr(SPRN_LCTRL1
, lctrl1
);
761 mtspr(SPRN_LCTRL2
, lctrl2
);
766 static inline int __set_dabr(unsigned long dabr
, unsigned long dabrx
)
772 static inline int set_dabr(struct arch_hw_breakpoint
*brk
)
774 unsigned long dabr
, dabrx
;
776 dabr
= brk
->address
| (brk
->type
& HW_BRK_TYPE_DABR
);
777 dabrx
= ((brk
->type
>> 3) & 0x7);
780 return ppc_md
.set_dabr(dabr
, dabrx
);
782 return __set_dabr(dabr
, dabrx
);
785 static inline int set_dawr(struct arch_hw_breakpoint
*brk
)
787 unsigned long dawr
, dawrx
, mrd
;
791 dawrx
= (brk
->type
& (HW_BRK_TYPE_READ
| HW_BRK_TYPE_WRITE
)) \
792 << (63 - 58); //* read/write bits */
793 dawrx
|= ((brk
->type
& (HW_BRK_TYPE_TRANSLATE
)) >> 2) \
794 << (63 - 59); //* translate */
795 dawrx
|= (brk
->type
& (HW_BRK_TYPE_PRIV_ALL
)) \
796 >> 3; //* PRIM bits */
797 /* dawr length is stored in field MDR bits 48:53. Matches range in
798 doublewords (64 bits) baised by -1 eg. 0b000000=1DW and
800 brk->len is in bytes.
801 This aligns up to double word size, shifts and does the bias.
803 mrd
= ((brk
->len
+ 7) >> 3) - 1;
804 dawrx
|= (mrd
& 0x3f) << (63 - 53);
807 return ppc_md
.set_dawr(dawr
, dawrx
);
808 mtspr(SPRN_DAWR
, dawr
);
809 mtspr(SPRN_DAWRX
, dawrx
);
813 void __set_breakpoint(struct arch_hw_breakpoint
*brk
)
815 memcpy(this_cpu_ptr(¤t_brk
), brk
, sizeof(*brk
));
817 if (cpu_has_feature(CPU_FTR_DAWR
))
823 void set_breakpoint(struct arch_hw_breakpoint
*brk
)
826 __set_breakpoint(brk
);
831 DEFINE_PER_CPU(struct cpu_usage
, cpu_usage_array
);
834 static inline bool hw_brk_match(struct arch_hw_breakpoint
*a
,
835 struct arch_hw_breakpoint
*b
)
837 if (a
->address
!= b
->address
)
839 if (a
->type
!= b
->type
)
841 if (a
->len
!= b
->len
)
846 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
848 static inline bool tm_enabled(struct task_struct
*tsk
)
850 return tsk
&& tsk
->thread
.regs
&& (tsk
->thread
.regs
->msr
& MSR_TM
);
853 static void tm_reclaim_thread(struct thread_struct
*thr
,
854 struct thread_info
*ti
, uint8_t cause
)
857 * Use the current MSR TM suspended bit to track if we have
858 * checkpointed state outstanding.
859 * On signal delivery, we'd normally reclaim the checkpointed
860 * state to obtain stack pointer (see:get_tm_stackpointer()).
861 * This will then directly return to userspace without going
862 * through __switch_to(). However, if the stack frame is bad,
863 * we need to exit this thread which calls __switch_to() which
864 * will again attempt to reclaim the already saved tm state.
865 * Hence we need to check that we've not already reclaimed
867 * We do this using the current MSR, rather tracking it in
868 * some specific thread_struct bit, as it has the additional
869 * benefit of checking for a potential TM bad thing exception.
871 if (!MSR_TM_SUSPENDED(mfmsr()))
874 giveup_all(container_of(thr
, struct task_struct
, thread
));
876 tm_reclaim(thr
, cause
);
879 * If we are in a transaction and FP is off then we can't have
880 * used FP inside that transaction. Hence the checkpointed
881 * state is the same as the live state. We need to copy the
882 * live state to the checkpointed state so that when the
883 * transaction is restored, the checkpointed state is correct
884 * and the aborted transaction sees the correct state. We use
885 * ckpt_regs.msr here as that's what tm_reclaim will use to
886 * determine if it's going to write the checkpointed state or
887 * not. So either this will write the checkpointed registers,
888 * or reclaim will. Similarly for VMX.
890 if ((thr
->ckpt_regs
.msr
& MSR_FP
) == 0)
891 memcpy(&thr
->ckfp_state
, &thr
->fp_state
,
892 sizeof(struct thread_fp_state
));
893 if ((thr
->ckpt_regs
.msr
& MSR_VEC
) == 0)
894 memcpy(&thr
->ckvr_state
, &thr
->vr_state
,
895 sizeof(struct thread_vr_state
));
898 void tm_reclaim_current(uint8_t cause
)
901 tm_reclaim_thread(¤t
->thread
, current_thread_info(), cause
);
904 static inline void tm_reclaim_task(struct task_struct
*tsk
)
906 /* We have to work out if we're switching from/to a task that's in the
907 * middle of a transaction.
909 * In switching we need to maintain a 2nd register state as
910 * oldtask->thread.ckpt_regs. We tm_reclaim(oldproc); this saves the
911 * checkpointed (tbegin) state in ckpt_regs, ckfp_state and
914 * We also context switch (save) TFHAR/TEXASR/TFIAR in here.
916 struct thread_struct
*thr
= &tsk
->thread
;
921 if (!MSR_TM_ACTIVE(thr
->regs
->msr
))
922 goto out_and_saveregs
;
924 WARN_ON(tm_suspend_disabled
);
926 TM_DEBUG("--- tm_reclaim on pid %d (NIP=%lx, "
927 "ccr=%lx, msr=%lx, trap=%lx)\n",
928 tsk
->pid
, thr
->regs
->nip
,
929 thr
->regs
->ccr
, thr
->regs
->msr
,
932 tm_reclaim_thread(thr
, task_thread_info(tsk
), TM_CAUSE_RESCHED
);
934 TM_DEBUG("--- tm_reclaim on pid %d complete\n",
938 /* Always save the regs here, even if a transaction's not active.
939 * This context-switches a thread's TM info SPRs. We do it here to
940 * be consistent with the restore path (in recheckpoint) which
941 * cannot happen later in _switch().
946 extern void __tm_recheckpoint(struct thread_struct
*thread
);
948 void tm_recheckpoint(struct thread_struct
*thread
)
952 if (!(thread
->regs
->msr
& MSR_TM
))
955 /* We really can't be interrupted here as the TEXASR registers can't
956 * change and later in the trecheckpoint code, we have a userspace R1.
957 * So let's hard disable over this region.
959 local_irq_save(flags
);
962 /* The TM SPRs are restored here, so that TEXASR.FS can be set
963 * before the trecheckpoint and no explosion occurs.
965 tm_restore_sprs(thread
);
967 __tm_recheckpoint(thread
);
969 local_irq_restore(flags
);
972 static inline void tm_recheckpoint_new_task(struct task_struct
*new)
974 if (!cpu_has_feature(CPU_FTR_TM
))
977 /* Recheckpoint the registers of the thread we're about to switch to.
979 * If the task was using FP, we non-lazily reload both the original and
980 * the speculative FP register states. This is because the kernel
981 * doesn't see if/when a TM rollback occurs, so if we take an FP
982 * unavailable later, we are unable to determine which set of FP regs
983 * need to be restored.
985 if (!tm_enabled(new))
988 if (!MSR_TM_ACTIVE(new->thread
.regs
->msr
)){
989 tm_restore_sprs(&new->thread
);
992 /* Recheckpoint to restore original checkpointed register state. */
993 TM_DEBUG("*** tm_recheckpoint of pid %d (new->msr 0x%lx)\n",
994 new->pid
, new->thread
.regs
->msr
);
996 tm_recheckpoint(&new->thread
);
999 * The checkpointed state has been restored but the live state has
1000 * not, ensure all the math functionality is turned off to trigger
1001 * restore_math() to reload.
1003 new->thread
.regs
->msr
&= ~(MSR_FP
| MSR_VEC
| MSR_VSX
);
1005 TM_DEBUG("*** tm_recheckpoint of pid %d complete "
1006 "(kernel msr 0x%lx)\n",
1010 static inline void __switch_to_tm(struct task_struct
*prev
,
1011 struct task_struct
*new)
1013 if (cpu_has_feature(CPU_FTR_TM
)) {
1014 if (tm_enabled(prev
) || tm_enabled(new))
1017 if (tm_enabled(prev
)) {
1018 prev
->thread
.load_tm
++;
1019 tm_reclaim_task(prev
);
1020 if (!MSR_TM_ACTIVE(prev
->thread
.regs
->msr
) && prev
->thread
.load_tm
== 0)
1021 prev
->thread
.regs
->msr
&= ~MSR_TM
;
1024 tm_recheckpoint_new_task(new);
1029 * This is called if we are on the way out to userspace and the
1030 * TIF_RESTORE_TM flag is set. It checks if we need to reload
1031 * FP and/or vector state and does so if necessary.
1032 * If userspace is inside a transaction (whether active or
1033 * suspended) and FP/VMX/VSX instructions have ever been enabled
1034 * inside that transaction, then we have to keep them enabled
1035 * and keep the FP/VMX/VSX state loaded while ever the transaction
1036 * continues. The reason is that if we didn't, and subsequently
1037 * got a FP/VMX/VSX unavailable interrupt inside a transaction,
1038 * we don't know whether it's the same transaction, and thus we
1039 * don't know which of the checkpointed state and the transactional
1042 void restore_tm_state(struct pt_regs
*regs
)
1044 unsigned long msr_diff
;
1047 * This is the only moment we should clear TIF_RESTORE_TM as
1048 * it is here that ckpt_regs.msr and pt_regs.msr become the same
1049 * again, anything else could lead to an incorrect ckpt_msr being
1050 * saved and therefore incorrect signal contexts.
1052 clear_thread_flag(TIF_RESTORE_TM
);
1053 if (!MSR_TM_ACTIVE(regs
->msr
))
1056 msr_diff
= current
->thread
.ckpt_regs
.msr
& ~regs
->msr
;
1057 msr_diff
&= MSR_FP
| MSR_VEC
| MSR_VSX
;
1059 /* Ensure that restore_math() will restore */
1060 if (msr_diff
& MSR_FP
)
1061 current
->thread
.load_fp
= 1;
1062 #ifdef CONFIG_ALTIVEC
1063 if (cpu_has_feature(CPU_FTR_ALTIVEC
) && msr_diff
& MSR_VEC
)
1064 current
->thread
.load_vec
= 1;
1068 regs
->msr
|= msr_diff
;
1072 #define tm_recheckpoint_new_task(new)
1073 #define __switch_to_tm(prev, new)
1074 #endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
1076 static inline void save_sprs(struct thread_struct
*t
)
1078 #ifdef CONFIG_ALTIVEC
1079 if (cpu_has_feature(CPU_FTR_ALTIVEC
))
1080 t
->vrsave
= mfspr(SPRN_VRSAVE
);
1082 #ifdef CONFIG_PPC_BOOK3S_64
1083 if (cpu_has_feature(CPU_FTR_DSCR
))
1084 t
->dscr
= mfspr(SPRN_DSCR
);
1086 if (cpu_has_feature(CPU_FTR_ARCH_207S
)) {
1087 t
->bescr
= mfspr(SPRN_BESCR
);
1088 t
->ebbhr
= mfspr(SPRN_EBBHR
);
1089 t
->ebbrr
= mfspr(SPRN_EBBRR
);
1091 t
->fscr
= mfspr(SPRN_FSCR
);
1094 * Note that the TAR is not available for use in the kernel.
1095 * (To provide this, the TAR should be backed up/restored on
1096 * exception entry/exit instead, and be in pt_regs. FIXME,
1097 * this should be in pt_regs anyway (for debug).)
1099 t
->tar
= mfspr(SPRN_TAR
);
1103 thread_pkey_regs_save(t
);
1106 static inline void restore_sprs(struct thread_struct
*old_thread
,
1107 struct thread_struct
*new_thread
)
1109 #ifdef CONFIG_ALTIVEC
1110 if (cpu_has_feature(CPU_FTR_ALTIVEC
) &&
1111 old_thread
->vrsave
!= new_thread
->vrsave
)
1112 mtspr(SPRN_VRSAVE
, new_thread
->vrsave
);
1114 #ifdef CONFIG_PPC_BOOK3S_64
1115 if (cpu_has_feature(CPU_FTR_DSCR
)) {
1116 u64 dscr
= get_paca()->dscr_default
;
1117 if (new_thread
->dscr_inherit
)
1118 dscr
= new_thread
->dscr
;
1120 if (old_thread
->dscr
!= dscr
)
1121 mtspr(SPRN_DSCR
, dscr
);
1124 if (cpu_has_feature(CPU_FTR_ARCH_207S
)) {
1125 if (old_thread
->bescr
!= new_thread
->bescr
)
1126 mtspr(SPRN_BESCR
, new_thread
->bescr
);
1127 if (old_thread
->ebbhr
!= new_thread
->ebbhr
)
1128 mtspr(SPRN_EBBHR
, new_thread
->ebbhr
);
1129 if (old_thread
->ebbrr
!= new_thread
->ebbrr
)
1130 mtspr(SPRN_EBBRR
, new_thread
->ebbrr
);
1132 if (old_thread
->fscr
!= new_thread
->fscr
)
1133 mtspr(SPRN_FSCR
, new_thread
->fscr
);
1135 if (old_thread
->tar
!= new_thread
->tar
)
1136 mtspr(SPRN_TAR
, new_thread
->tar
);
1139 if (cpu_has_feature(CPU_FTR_ARCH_300
) &&
1140 old_thread
->tidr
!= new_thread
->tidr
)
1141 mtspr(SPRN_TIDR
, new_thread
->tidr
);
1144 thread_pkey_regs_restore(new_thread
, old_thread
);
1147 #ifdef CONFIG_PPC_BOOK3S_64
1149 static const u8 dummy_copy_buffer
[CP_SIZE
] __attribute__((aligned(CP_SIZE
)));
1152 struct task_struct
*__switch_to(struct task_struct
*prev
,
1153 struct task_struct
*new)
1155 struct thread_struct
*new_thread
, *old_thread
;
1156 struct task_struct
*last
;
1157 #ifdef CONFIG_PPC_BOOK3S_64
1158 struct ppc64_tlb_batch
*batch
;
1161 new_thread
= &new->thread
;
1162 old_thread
= ¤t
->thread
;
1164 WARN_ON(!irqs_disabled());
1168 * Collect processor utilization data per process
1170 if (firmware_has_feature(FW_FEATURE_SPLPAR
)) {
1171 struct cpu_usage
*cu
= this_cpu_ptr(&cpu_usage_array
);
1172 long unsigned start_tb
, current_tb
;
1173 start_tb
= old_thread
->start_tb
;
1174 cu
->current_tb
= current_tb
= mfspr(SPRN_PURR
);
1175 old_thread
->accum_tb
+= (current_tb
- start_tb
);
1176 new_thread
->start_tb
= current_tb
;
1178 #endif /* CONFIG_PPC64 */
1180 #ifdef CONFIG_PPC_BOOK3S_64
1181 batch
= this_cpu_ptr(&ppc64_tlb_batch
);
1182 if (batch
->active
) {
1183 current_thread_info()->local_flags
|= _TLF_LAZY_MMU
;
1185 __flush_tlb_pending(batch
);
1188 #endif /* CONFIG_PPC_BOOK3S_64 */
1190 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
1191 switch_booke_debug_regs(&new->thread
.debug
);
1194 * For PPC_BOOK3S_64, we use the hw-breakpoint interfaces that would
1197 #ifndef CONFIG_HAVE_HW_BREAKPOINT
1198 if (unlikely(!hw_brk_match(this_cpu_ptr(¤t_brk
), &new->thread
.hw_brk
)))
1199 __set_breakpoint(&new->thread
.hw_brk
);
1200 #endif /* CONFIG_HAVE_HW_BREAKPOINT */
1204 * We need to save SPRs before treclaim/trecheckpoint as these will
1205 * change a number of them.
1207 save_sprs(&prev
->thread
);
1209 /* Save FPU, Altivec, VSX and SPE state */
1212 __switch_to_tm(prev
, new);
1214 if (!radix_enabled()) {
1216 * We can't take a PMU exception inside _switch() since there
1217 * is a window where the kernel stack SLB and the kernel stack
1218 * are out of sync. Hard disable here.
1224 * Call restore_sprs() before calling _switch(). If we move it after
1225 * _switch() then we miss out on calling it for new tasks. The reason
1226 * for this is we manually create a stack frame for new tasks that
1227 * directly returns through ret_from_fork() or
1228 * ret_from_kernel_thread(). See copy_thread() for details.
1230 restore_sprs(old_thread
, new_thread
);
1232 last
= _switch(old_thread
, new_thread
);
1234 #ifdef CONFIG_PPC_BOOK3S_64
1235 if (current_thread_info()->local_flags
& _TLF_LAZY_MMU
) {
1236 current_thread_info()->local_flags
&= ~_TLF_LAZY_MMU
;
1237 batch
= this_cpu_ptr(&ppc64_tlb_batch
);
1241 if (current_thread_info()->task
->thread
.regs
) {
1242 restore_math(current_thread_info()->task
->thread
.regs
);
1245 * The copy-paste buffer can only store into foreign real
1246 * addresses, so unprivileged processes can not see the
1247 * data or use it in any way unless they have foreign real
1248 * mappings. If the new process has the foreign real address
1249 * mappings, we must issue a cp_abort to clear any state and
1250 * prevent snooping, corruption or a covert channel.
1252 * DD1 allows paste into normal system memory so we do an
1253 * unpaired copy, rather than cp_abort, to clear the buffer,
1254 * since cp_abort is quite expensive.
1256 if (current_thread_info()->task
->thread
.used_vas
) {
1257 asm volatile(PPC_CP_ABORT
);
1258 } else if (cpu_has_feature(CPU_FTR_POWER9_DD1
)) {
1259 asm volatile(PPC_COPY(%0, %1)
1260 : : "r"(dummy_copy_buffer
), "r"(0));
1263 #endif /* CONFIG_PPC_BOOK3S_64 */
1268 static int instructions_to_print
= 16;
1270 static void show_instructions(struct pt_regs
*regs
)
1273 unsigned long pc
= regs
->nip
- (instructions_to_print
* 3 / 4 *
1276 printk("Instruction dump:");
1278 for (i
= 0; i
< instructions_to_print
; i
++) {
1284 #if !defined(CONFIG_BOOKE)
1285 /* If executing with the IMMU off, adjust pc rather
1286 * than print XXXXXXXX.
1288 if (!(regs
->msr
& MSR_IR
))
1289 pc
= (unsigned long)phys_to_virt(pc
);
1292 if (!__kernel_text_address(pc
) ||
1293 probe_kernel_address((unsigned int __user
*)pc
, instr
)) {
1294 pr_cont("XXXXXXXX ");
1296 if (regs
->nip
== pc
)
1297 pr_cont("<%08x> ", instr
);
1299 pr_cont("%08x ", instr
);
1313 static struct regbit msr_bits
[] = {
1314 #if defined(CONFIG_PPC64) && !defined(CONFIG_BOOKE)
1336 #ifndef CONFIG_BOOKE
1343 static void print_bits(unsigned long val
, struct regbit
*bits
, const char *sep
)
1347 for (; bits
->bit
; ++bits
)
1348 if (val
& bits
->bit
) {
1349 pr_cont("%s%s", s
, bits
->name
);
1354 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1355 static struct regbit msr_tm_bits
[] = {
1362 static void print_tm_bits(unsigned long val
)
1365 * This only prints something if at least one of the TM bit is set.
1366 * Inside the TM[], the output means:
1367 * E: Enabled (bit 32)
1368 * S: Suspended (bit 33)
1369 * T: Transactional (bit 34)
1371 if (val
& (MSR_TM
| MSR_TS_S
| MSR_TS_T
)) {
1373 print_bits(val
, msr_tm_bits
, "");
1378 static void print_tm_bits(unsigned long val
) {}
1381 static void print_msr_bits(unsigned long val
)
1384 print_bits(val
, msr_bits
, ",");
1390 #define REG "%016lx"
1391 #define REGS_PER_LINE 4
1392 #define LAST_VOLATILE 13
1395 #define REGS_PER_LINE 8
1396 #define LAST_VOLATILE 12
1399 void show_regs(struct pt_regs
* regs
)
1403 show_regs_print_info(KERN_DEFAULT
);
1405 printk("NIP: "REG
" LR: "REG
" CTR: "REG
"\n",
1406 regs
->nip
, regs
->link
, regs
->ctr
);
1407 printk("REGS: %px TRAP: %04lx %s (%s)\n",
1408 regs
, regs
->trap
, print_tainted(), init_utsname()->release
);
1409 printk("MSR: "REG
" ", regs
->msr
);
1410 print_msr_bits(regs
->msr
);
1411 pr_cont(" CR: %08lx XER: %08lx\n", regs
->ccr
, regs
->xer
);
1413 if ((TRAP(regs
) != 0xc00) && cpu_has_feature(CPU_FTR_CFAR
))
1414 pr_cont("CFAR: "REG
" ", regs
->orig_gpr3
);
1415 if (trap
== 0x200 || trap
== 0x300 || trap
== 0x600)
1416 #if defined(CONFIG_4xx) || defined(CONFIG_BOOKE)
1417 pr_cont("DEAR: "REG
" ESR: "REG
" ", regs
->dar
, regs
->dsisr
);
1419 pr_cont("DAR: "REG
" DSISR: %08lx ", regs
->dar
, regs
->dsisr
);
1422 pr_cont("SOFTE: %ld ", regs
->softe
);
1424 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1425 if (MSR_TM_ACTIVE(regs
->msr
))
1426 pr_cont("\nPACATMSCRATCH: %016llx ", get_paca()->tm_scratch
);
1429 for (i
= 0; i
< 32; i
++) {
1430 if ((i
% REGS_PER_LINE
) == 0)
1431 pr_cont("\nGPR%02d: ", i
);
1432 pr_cont(REG
" ", regs
->gpr
[i
]);
1433 if (i
== LAST_VOLATILE
&& !FULL_REGS(regs
))
1437 #ifdef CONFIG_KALLSYMS
1439 * Lookup NIP late so we have the best change of getting the
1440 * above info out without failing
1442 printk("NIP ["REG
"] %pS\n", regs
->nip
, (void *)regs
->nip
);
1443 printk("LR ["REG
"] %pS\n", regs
->link
, (void *)regs
->link
);
1445 show_stack(current
, (unsigned long *) regs
->gpr
[1]);
1446 if (!user_mode(regs
))
1447 show_instructions(regs
);
1450 void flush_thread(void)
1452 #ifdef CONFIG_HAVE_HW_BREAKPOINT
1453 flush_ptrace_hw_breakpoint(current
);
1454 #else /* CONFIG_HAVE_HW_BREAKPOINT */
1455 set_debug_reg_defaults(¤t
->thread
);
1456 #endif /* CONFIG_HAVE_HW_BREAKPOINT */
1459 int set_thread_uses_vas(void)
1461 #ifdef CONFIG_PPC_BOOK3S_64
1462 if (!cpu_has_feature(CPU_FTR_ARCH_300
))
1465 current
->thread
.used_vas
= 1;
1468 * Even a process that has no foreign real address mapping can use
1469 * an unpaired COPY instruction (to no real effect). Issue CP_ABORT
1470 * to clear any pending COPY and prevent a covert channel.
1472 * __switch_to() will issue CP_ABORT on future context switches.
1474 asm volatile(PPC_CP_ABORT
);
1476 #endif /* CONFIG_PPC_BOOK3S_64 */
1481 static DEFINE_SPINLOCK(vas_thread_id_lock
);
1482 static DEFINE_IDA(vas_thread_ida
);
1485 * We need to assign a unique thread id to each thread in a process.
1487 * This thread id, referred to as TIDR, and separate from the Linux's tgid,
1488 * is intended to be used to direct an ASB_Notify from the hardware to the
1489 * thread, when a suitable event occurs in the system.
1491 * One such event is a "paste" instruction in the context of Fast Thread
1492 * Wakeup (aka Core-to-core wake up in the Virtual Accelerator Switchboard
1495 * To get a unique TIDR per process we could simply reuse task_pid_nr() but
1496 * the problem is that task_pid_nr() is not yet available copy_thread() is
1497 * called. Fixing that would require changing more intrusive arch-neutral
1498 * code in code path in copy_process()?.
1500 * Further, to assign unique TIDRs within each process, we need an atomic
1501 * field (or an IDR) in task_struct, which again intrudes into the arch-
1502 * neutral code. So try to assign globally unique TIDRs for now.
1504 * NOTE: TIDR 0 indicates that the thread does not need a TIDR value.
1505 * For now, only threads that expect to be notified by the VAS
1506 * hardware need a TIDR value and we assign values > 0 for those.
1508 #define MAX_THREAD_CONTEXT ((1 << 16) - 1)
1509 static int assign_thread_tidr(void)
1513 unsigned long flags
;
1516 if (!ida_pre_get(&vas_thread_ida
, GFP_KERNEL
))
1519 spin_lock_irqsave(&vas_thread_id_lock
, flags
);
1520 err
= ida_get_new_above(&vas_thread_ida
, 1, &index
);
1521 spin_unlock_irqrestore(&vas_thread_id_lock
, flags
);
1528 if (index
> MAX_THREAD_CONTEXT
) {
1529 spin_lock_irqsave(&vas_thread_id_lock
, flags
);
1530 ida_remove(&vas_thread_ida
, index
);
1531 spin_unlock_irqrestore(&vas_thread_id_lock
, flags
);
1538 static void free_thread_tidr(int id
)
1540 unsigned long flags
;
1542 spin_lock_irqsave(&vas_thread_id_lock
, flags
);
1543 ida_remove(&vas_thread_ida
, id
);
1544 spin_unlock_irqrestore(&vas_thread_id_lock
, flags
);
1548 * Clear any TIDR value assigned to this thread.
1550 void clear_thread_tidr(struct task_struct
*t
)
1552 if (!t
->thread
.tidr
)
1555 if (!cpu_has_feature(CPU_FTR_ARCH_300
)) {
1560 mtspr(SPRN_TIDR
, 0);
1561 free_thread_tidr(t
->thread
.tidr
);
1565 void arch_release_task_struct(struct task_struct
*t
)
1567 clear_thread_tidr(t
);
1571 * Assign a unique TIDR (thread id) for task @t and set it in the thread
1572 * structure. For now, we only support setting TIDR for 'current' task.
1574 int set_thread_tidr(struct task_struct
*t
)
1578 if (!cpu_has_feature(CPU_FTR_ARCH_300
))
1587 rc
= assign_thread_tidr();
1591 t
->thread
.tidr
= rc
;
1592 mtspr(SPRN_TIDR
, t
->thread
.tidr
);
1596 EXPORT_SYMBOL_GPL(set_thread_tidr
);
1598 #endif /* CONFIG_PPC64 */
1601 release_thread(struct task_struct
*t
)
1606 * this gets called so that we can store coprocessor state into memory and
1607 * copy the current task into the new thread.
1609 int arch_dup_task_struct(struct task_struct
*dst
, struct task_struct
*src
)
1611 flush_all_to_thread(src
);
1613 * Flush TM state out so we can copy it. __switch_to_tm() does this
1614 * flush but it removes the checkpointed state from the current CPU and
1615 * transitions the CPU out of TM mode. Hence we need to call
1616 * tm_recheckpoint_new_task() (on the same task) to restore the
1617 * checkpointed state back and the TM mode.
1619 * Can't pass dst because it isn't ready. Doesn't matter, passing
1620 * dst is only important for __switch_to()
1622 __switch_to_tm(src
, src
);
1626 clear_task_ebb(dst
);
1631 static void setup_ksp_vsid(struct task_struct
*p
, unsigned long sp
)
1633 #ifdef CONFIG_PPC_BOOK3S_64
1634 unsigned long sp_vsid
;
1635 unsigned long llp
= mmu_psize_defs
[mmu_linear_psize
].sllp
;
1637 if (radix_enabled())
1640 if (mmu_has_feature(MMU_FTR_1T_SEGMENT
))
1641 sp_vsid
= get_kernel_vsid(sp
, MMU_SEGSIZE_1T
)
1642 << SLB_VSID_SHIFT_1T
;
1644 sp_vsid
= get_kernel_vsid(sp
, MMU_SEGSIZE_256M
)
1646 sp_vsid
|= SLB_VSID_KERNEL
| llp
;
1647 p
->thread
.ksp_vsid
= sp_vsid
;
1656 * Copy architecture-specific thread state
1658 int copy_thread(unsigned long clone_flags
, unsigned long usp
,
1659 unsigned long kthread_arg
, struct task_struct
*p
)
1661 struct pt_regs
*childregs
, *kregs
;
1662 extern void ret_from_fork(void);
1663 extern void ret_from_kernel_thread(void);
1665 unsigned long sp
= (unsigned long)task_stack_page(p
) + THREAD_SIZE
;
1666 struct thread_info
*ti
= task_thread_info(p
);
1668 klp_init_thread_info(ti
);
1670 /* Copy registers */
1671 sp
-= sizeof(struct pt_regs
);
1672 childregs
= (struct pt_regs
*) sp
;
1673 if (unlikely(p
->flags
& PF_KTHREAD
)) {
1675 memset(childregs
, 0, sizeof(struct pt_regs
));
1676 childregs
->gpr
[1] = sp
+ sizeof(struct pt_regs
);
1679 childregs
->gpr
[14] = ppc_function_entry((void *)usp
);
1681 clear_tsk_thread_flag(p
, TIF_32BIT
);
1682 childregs
->softe
= IRQS_ENABLED
;
1684 childregs
->gpr
[15] = kthread_arg
;
1685 p
->thread
.regs
= NULL
; /* no user register state */
1686 ti
->flags
|= _TIF_RESTOREALL
;
1687 f
= ret_from_kernel_thread
;
1690 struct pt_regs
*regs
= current_pt_regs();
1691 CHECK_FULL_REGS(regs
);
1694 childregs
->gpr
[1] = usp
;
1695 p
->thread
.regs
= childregs
;
1696 childregs
->gpr
[3] = 0; /* Result from fork() */
1697 if (clone_flags
& CLONE_SETTLS
) {
1699 if (!is_32bit_task())
1700 childregs
->gpr
[13] = childregs
->gpr
[6];
1703 childregs
->gpr
[2] = childregs
->gpr
[6];
1708 childregs
->msr
&= ~(MSR_FP
|MSR_VEC
|MSR_VSX
);
1709 sp
-= STACK_FRAME_OVERHEAD
;
1712 * The way this works is that at some point in the future
1713 * some task will call _switch to switch to the new task.
1714 * That will pop off the stack frame created below and start
1715 * the new task running at ret_from_fork. The new task will
1716 * do some house keeping and then return from the fork or clone
1717 * system call, using the stack frame created above.
1719 ((unsigned long *)sp
)[0] = 0;
1720 sp
-= sizeof(struct pt_regs
);
1721 kregs
= (struct pt_regs
*) sp
;
1722 sp
-= STACK_FRAME_OVERHEAD
;
1725 p
->thread
.ksp_limit
= (unsigned long)task_stack_page(p
) +
1726 _ALIGN_UP(sizeof(struct thread_info
), 16);
1728 #ifdef CONFIG_HAVE_HW_BREAKPOINT
1729 p
->thread
.ptrace_bps
[0] = NULL
;
1732 p
->thread
.fp_save_area
= NULL
;
1733 #ifdef CONFIG_ALTIVEC
1734 p
->thread
.vr_save_area
= NULL
;
1737 setup_ksp_vsid(p
, sp
);
1740 if (cpu_has_feature(CPU_FTR_DSCR
)) {
1741 p
->thread
.dscr_inherit
= current
->thread
.dscr_inherit
;
1742 p
->thread
.dscr
= mfspr(SPRN_DSCR
);
1744 if (cpu_has_feature(CPU_FTR_HAS_PPR
))
1745 p
->thread
.ppr
= INIT_PPR
;
1749 kregs
->nip
= ppc_function_entry(f
);
1754 * Set up a thread for executing a new program
1756 void start_thread(struct pt_regs
*regs
, unsigned long start
, unsigned long sp
)
1759 unsigned long load_addr
= regs
->gpr
[2]; /* saved by ELF_PLAT_INIT */
1763 * If we exec out of a kernel thread then thread.regs will not be
1766 if (!current
->thread
.regs
) {
1767 struct pt_regs
*regs
= task_stack_page(current
) + THREAD_SIZE
;
1768 current
->thread
.regs
= regs
- 1;
1771 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1773 * Clear any transactional state, we're exec()ing. The cause is
1774 * not important as there will never be a recheckpoint so it's not
1777 if (MSR_TM_SUSPENDED(mfmsr()))
1778 tm_reclaim_current(0);
1781 memset(regs
->gpr
, 0, sizeof(regs
->gpr
));
1789 * We have just cleared all the nonvolatile GPRs, so make
1790 * FULL_REGS(regs) return true. This is necessary to allow
1791 * ptrace to examine the thread immediately after exec.
1798 regs
->msr
= MSR_USER
;
1800 if (!is_32bit_task()) {
1801 unsigned long entry
;
1803 if (is_elf2_task()) {
1804 /* Look ma, no function descriptors! */
1809 * The latest iteration of the ABI requires that when
1810 * calling a function (at its global entry point),
1811 * the caller must ensure r12 holds the entry point
1812 * address (so that the function can quickly
1813 * establish addressability).
1815 regs
->gpr
[12] = start
;
1816 /* Make sure that's restored on entry to userspace. */
1817 set_thread_flag(TIF_RESTOREALL
);
1821 /* start is a relocated pointer to the function
1822 * descriptor for the elf _start routine. The first
1823 * entry in the function descriptor is the entry
1824 * address of _start and the second entry is the TOC
1825 * value we need to use.
1827 __get_user(entry
, (unsigned long __user
*)start
);
1828 __get_user(toc
, (unsigned long __user
*)start
+1);
1830 /* Check whether the e_entry function descriptor entries
1831 * need to be relocated before we can use them.
1833 if (load_addr
!= 0) {
1840 regs
->msr
= MSR_USER64
;
1844 regs
->msr
= MSR_USER32
;
1848 current
->thread
.used_vsr
= 0;
1850 current
->thread
.load_fp
= 0;
1851 memset(¤t
->thread
.fp_state
, 0, sizeof(current
->thread
.fp_state
));
1852 current
->thread
.fp_save_area
= NULL
;
1853 #ifdef CONFIG_ALTIVEC
1854 memset(¤t
->thread
.vr_state
, 0, sizeof(current
->thread
.vr_state
));
1855 current
->thread
.vr_state
.vscr
.u
[3] = 0x00010000; /* Java mode disabled */
1856 current
->thread
.vr_save_area
= NULL
;
1857 current
->thread
.vrsave
= 0;
1858 current
->thread
.used_vr
= 0;
1859 current
->thread
.load_vec
= 0;
1860 #endif /* CONFIG_ALTIVEC */
1862 memset(current
->thread
.evr
, 0, sizeof(current
->thread
.evr
));
1863 current
->thread
.acc
= 0;
1864 current
->thread
.spefscr
= 0;
1865 current
->thread
.used_spe
= 0;
1866 #endif /* CONFIG_SPE */
1867 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1868 current
->thread
.tm_tfhar
= 0;
1869 current
->thread
.tm_texasr
= 0;
1870 current
->thread
.tm_tfiar
= 0;
1871 current
->thread
.load_tm
= 0;
1872 #endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
1874 thread_pkey_regs_init(¤t
->thread
);
1876 EXPORT_SYMBOL(start_thread
);
1878 #define PR_FP_ALL_EXCEPT (PR_FP_EXC_DIV | PR_FP_EXC_OVF | PR_FP_EXC_UND \
1879 | PR_FP_EXC_RES | PR_FP_EXC_INV)
1881 int set_fpexc_mode(struct task_struct
*tsk
, unsigned int val
)
1883 struct pt_regs
*regs
= tsk
->thread
.regs
;
1885 /* This is a bit hairy. If we are an SPE enabled processor
1886 * (have embedded fp) we store the IEEE exception enable flags in
1887 * fpexc_mode. fpexc_mode is also used for setting FP exception
1888 * mode (asyn, precise, disabled) for 'Classic' FP. */
1889 if (val
& PR_FP_EXC_SW_ENABLE
) {
1891 if (cpu_has_feature(CPU_FTR_SPE
)) {
1893 * When the sticky exception bits are set
1894 * directly by userspace, it must call prctl
1895 * with PR_GET_FPEXC (with PR_FP_EXC_SW_ENABLE
1896 * in the existing prctl settings) or
1897 * PR_SET_FPEXC (with PR_FP_EXC_SW_ENABLE in
1898 * the bits being set). <fenv.h> functions
1899 * saving and restoring the whole
1900 * floating-point environment need to do so
1901 * anyway to restore the prctl settings from
1902 * the saved environment.
1904 tsk
->thread
.spefscr_last
= mfspr(SPRN_SPEFSCR
);
1905 tsk
->thread
.fpexc_mode
= val
&
1906 (PR_FP_EXC_SW_ENABLE
| PR_FP_ALL_EXCEPT
);
1916 /* on a CONFIG_SPE this does not hurt us. The bits that
1917 * __pack_fe01 use do not overlap with bits used for
1918 * PR_FP_EXC_SW_ENABLE. Additionally, the MSR[FE0,FE1] bits
1919 * on CONFIG_SPE implementations are reserved so writing to
1920 * them does not change anything */
1921 if (val
> PR_FP_EXC_PRECISE
)
1923 tsk
->thread
.fpexc_mode
= __pack_fe01(val
);
1924 if (regs
!= NULL
&& (regs
->msr
& MSR_FP
) != 0)
1925 regs
->msr
= (regs
->msr
& ~(MSR_FE0
|MSR_FE1
))
1926 | tsk
->thread
.fpexc_mode
;
1930 int get_fpexc_mode(struct task_struct
*tsk
, unsigned long adr
)
1934 if (tsk
->thread
.fpexc_mode
& PR_FP_EXC_SW_ENABLE
)
1936 if (cpu_has_feature(CPU_FTR_SPE
)) {
1938 * When the sticky exception bits are set
1939 * directly by userspace, it must call prctl
1940 * with PR_GET_FPEXC (with PR_FP_EXC_SW_ENABLE
1941 * in the existing prctl settings) or
1942 * PR_SET_FPEXC (with PR_FP_EXC_SW_ENABLE in
1943 * the bits being set). <fenv.h> functions
1944 * saving and restoring the whole
1945 * floating-point environment need to do so
1946 * anyway to restore the prctl settings from
1947 * the saved environment.
1949 tsk
->thread
.spefscr_last
= mfspr(SPRN_SPEFSCR
);
1950 val
= tsk
->thread
.fpexc_mode
;
1957 val
= __unpack_fe01(tsk
->thread
.fpexc_mode
);
1958 return put_user(val
, (unsigned int __user
*) adr
);
1961 int set_endian(struct task_struct
*tsk
, unsigned int val
)
1963 struct pt_regs
*regs
= tsk
->thread
.regs
;
1965 if ((val
== PR_ENDIAN_LITTLE
&& !cpu_has_feature(CPU_FTR_REAL_LE
)) ||
1966 (val
== PR_ENDIAN_PPC_LITTLE
&& !cpu_has_feature(CPU_FTR_PPC_LE
)))
1972 if (val
== PR_ENDIAN_BIG
)
1973 regs
->msr
&= ~MSR_LE
;
1974 else if (val
== PR_ENDIAN_LITTLE
|| val
== PR_ENDIAN_PPC_LITTLE
)
1975 regs
->msr
|= MSR_LE
;
1982 int get_endian(struct task_struct
*tsk
, unsigned long adr
)
1984 struct pt_regs
*regs
= tsk
->thread
.regs
;
1987 if (!cpu_has_feature(CPU_FTR_PPC_LE
) &&
1988 !cpu_has_feature(CPU_FTR_REAL_LE
))
1994 if (regs
->msr
& MSR_LE
) {
1995 if (cpu_has_feature(CPU_FTR_REAL_LE
))
1996 val
= PR_ENDIAN_LITTLE
;
1998 val
= PR_ENDIAN_PPC_LITTLE
;
2000 val
= PR_ENDIAN_BIG
;
2002 return put_user(val
, (unsigned int __user
*)adr
);
2005 int set_unalign_ctl(struct task_struct
*tsk
, unsigned int val
)
2007 tsk
->thread
.align_ctl
= val
;
2011 int get_unalign_ctl(struct task_struct
*tsk
, unsigned long adr
)
2013 return put_user(tsk
->thread
.align_ctl
, (unsigned int __user
*)adr
);
2016 static inline int valid_irq_stack(unsigned long sp
, struct task_struct
*p
,
2017 unsigned long nbytes
)
2019 unsigned long stack_page
;
2020 unsigned long cpu
= task_cpu(p
);
2023 * Avoid crashing if the stack has overflowed and corrupted
2024 * task_cpu(p), which is in the thread_info struct.
2026 if (cpu
< NR_CPUS
&& cpu_possible(cpu
)) {
2027 stack_page
= (unsigned long) hardirq_ctx
[cpu
];
2028 if (sp
>= stack_page
+ sizeof(struct thread_struct
)
2029 && sp
<= stack_page
+ THREAD_SIZE
- nbytes
)
2032 stack_page
= (unsigned long) softirq_ctx
[cpu
];
2033 if (sp
>= stack_page
+ sizeof(struct thread_struct
)
2034 && sp
<= stack_page
+ THREAD_SIZE
- nbytes
)
2040 int validate_sp(unsigned long sp
, struct task_struct
*p
,
2041 unsigned long nbytes
)
2043 unsigned long stack_page
= (unsigned long)task_stack_page(p
);
2045 if (sp
>= stack_page
+ sizeof(struct thread_struct
)
2046 && sp
<= stack_page
+ THREAD_SIZE
- nbytes
)
2049 return valid_irq_stack(sp
, p
, nbytes
);
2052 EXPORT_SYMBOL(validate_sp
);
2054 unsigned long get_wchan(struct task_struct
*p
)
2056 unsigned long ip
, sp
;
2059 if (!p
|| p
== current
|| p
->state
== TASK_RUNNING
)
2063 if (!validate_sp(sp
, p
, STACK_FRAME_OVERHEAD
))
2067 sp
= *(unsigned long *)sp
;
2068 if (!validate_sp(sp
, p
, STACK_FRAME_OVERHEAD
) ||
2069 p
->state
== TASK_RUNNING
)
2072 ip
= ((unsigned long *)sp
)[STACK_FRAME_LR_SAVE
];
2073 if (!in_sched_functions(ip
))
2076 } while (count
++ < 16);
2080 static int kstack_depth_to_print
= CONFIG_PRINT_STACK_DEPTH
;
2082 void show_stack(struct task_struct
*tsk
, unsigned long *stack
)
2084 unsigned long sp
, ip
, lr
, newsp
;
2087 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
2088 int curr_frame
= current
->curr_ret_stack
;
2089 extern void return_to_handler(void);
2090 unsigned long rth
= (unsigned long)return_to_handler
;
2093 sp
= (unsigned long) stack
;
2098 sp
= current_stack_pointer();
2100 sp
= tsk
->thread
.ksp
;
2104 printk("Call Trace:\n");
2106 if (!validate_sp(sp
, tsk
, STACK_FRAME_OVERHEAD
))
2109 stack
= (unsigned long *) sp
;
2111 ip
= stack
[STACK_FRAME_LR_SAVE
];
2112 if (!firstframe
|| ip
!= lr
) {
2113 printk("["REG
"] ["REG
"] %pS", sp
, ip
, (void *)ip
);
2114 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
2115 if ((ip
== rth
) && curr_frame
>= 0) {
2117 (void *)current
->ret_stack
[curr_frame
].ret
);
2122 pr_cont(" (unreliable)");
2128 * See if this is an exception frame.
2129 * We look for the "regshere" marker in the current frame.
2131 if (validate_sp(sp
, tsk
, STACK_INT_FRAME_SIZE
)
2132 && stack
[STACK_FRAME_MARKER
] == STACK_FRAME_REGS_MARKER
) {
2133 struct pt_regs
*regs
= (struct pt_regs
*)
2134 (sp
+ STACK_FRAME_OVERHEAD
);
2136 printk("--- interrupt: %lx at %pS\n LR = %pS\n",
2137 regs
->trap
, (void *)regs
->nip
, (void *)lr
);
2142 } while (count
++ < kstack_depth_to_print
);
2146 /* Called with hard IRQs off */
2147 void notrace
__ppc64_runlatch_on(void)
2149 struct thread_info
*ti
= current_thread_info();
2151 if (cpu_has_feature(CPU_FTR_ARCH_206
)) {
2153 * Least significant bit (RUN) is the only writable bit of
2154 * the CTRL register, so we can avoid mfspr. 2.06 is not the
2155 * earliest ISA where this is the case, but it's convenient.
2157 mtspr(SPRN_CTRLT
, CTRL_RUNLATCH
);
2162 * Some architectures (e.g., Cell) have writable fields other
2163 * than RUN, so do the read-modify-write.
2165 ctrl
= mfspr(SPRN_CTRLF
);
2166 ctrl
|= CTRL_RUNLATCH
;
2167 mtspr(SPRN_CTRLT
, ctrl
);
2170 ti
->local_flags
|= _TLF_RUNLATCH
;
2173 /* Called with hard IRQs off */
2174 void notrace
__ppc64_runlatch_off(void)
2176 struct thread_info
*ti
= current_thread_info();
2178 ti
->local_flags
&= ~_TLF_RUNLATCH
;
2180 if (cpu_has_feature(CPU_FTR_ARCH_206
)) {
2181 mtspr(SPRN_CTRLT
, 0);
2185 ctrl
= mfspr(SPRN_CTRLF
);
2186 ctrl
&= ~CTRL_RUNLATCH
;
2187 mtspr(SPRN_CTRLT
, ctrl
);
2190 #endif /* CONFIG_PPC64 */
2192 unsigned long arch_align_stack(unsigned long sp
)
2194 if (!(current
->personality
& ADDR_NO_RANDOMIZE
) && randomize_va_space
)
2195 sp
-= get_random_int() & ~PAGE_MASK
;
2199 static inline unsigned long brk_rnd(void)
2201 unsigned long rnd
= 0;
2203 /* 8MB for 32bit, 1GB for 64bit */
2204 if (is_32bit_task())
2205 rnd
= (get_random_long() % (1UL<<(23-PAGE_SHIFT
)));
2207 rnd
= (get_random_long() % (1UL<<(30-PAGE_SHIFT
)));
2209 return rnd
<< PAGE_SHIFT
;
2212 unsigned long arch_randomize_brk(struct mm_struct
*mm
)
2214 unsigned long base
= mm
->brk
;
2217 #ifdef CONFIG_PPC_BOOK3S_64
2219 * If we are using 1TB segments and we are allowed to randomise
2220 * the heap, we can put it above 1TB so it is backed by a 1TB
2221 * segment. Otherwise the heap will be in the bottom 1TB
2222 * which always uses 256MB segments and this may result in a
2223 * performance penalty. We don't need to worry about radix. For
2224 * radix, mmu_highuser_ssize remains unchanged from 256MB.
2226 if (!is_32bit_task() && (mmu_highuser_ssize
== MMU_SEGSIZE_1T
))
2227 base
= max_t(unsigned long, mm
->brk
, 1UL << SID_SHIFT_1T
);
2230 ret
= PAGE_ALIGN(base
+ brk_rnd());