Merge tag 'for_linus' of git://git.kernel.org/pub/scm/linux/kernel/git/mst/vhost
[cris-mirror.git] / arch / powerpc / kernel / process.c
blob1738c4127b3207506e434dea167f755eea66ff7f
1 /*
2 * Derived from "arch/i386/kernel/process.c"
3 * Copyright (C) 1995 Linus Torvalds
5 * Updated and modified by Cort Dougan (cort@cs.nmt.edu) and
6 * Paul Mackerras (paulus@cs.anu.edu.au)
8 * PowerPC version
9 * Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org)
11 * This program is free software; you can redistribute it and/or
12 * modify it under the terms of the GNU General Public License
13 * as published by the Free Software Foundation; either version
14 * 2 of the License, or (at your option) any later version.
17 #include <linux/errno.h>
18 #include <linux/sched.h>
19 #include <linux/sched/debug.h>
20 #include <linux/sched/task.h>
21 #include <linux/sched/task_stack.h>
22 #include <linux/kernel.h>
23 #include <linux/mm.h>
24 #include <linux/smp.h>
25 #include <linux/stddef.h>
26 #include <linux/unistd.h>
27 #include <linux/ptrace.h>
28 #include <linux/slab.h>
29 #include <linux/user.h>
30 #include <linux/elf.h>
31 #include <linux/prctl.h>
32 #include <linux/init_task.h>
33 #include <linux/export.h>
34 #include <linux/kallsyms.h>
35 #include <linux/mqueue.h>
36 #include <linux/hardirq.h>
37 #include <linux/utsname.h>
38 #include <linux/ftrace.h>
39 #include <linux/kernel_stat.h>
40 #include <linux/personality.h>
41 #include <linux/random.h>
42 #include <linux/hw_breakpoint.h>
43 #include <linux/uaccess.h>
44 #include <linux/elf-randomize.h>
45 #include <linux/pkeys.h>
47 #include <asm/pgtable.h>
48 #include <asm/io.h>
49 #include <asm/processor.h>
50 #include <asm/mmu.h>
51 #include <asm/prom.h>
52 #include <asm/machdep.h>
53 #include <asm/time.h>
54 #include <asm/runlatch.h>
55 #include <asm/syscalls.h>
56 #include <asm/switch_to.h>
57 #include <asm/tm.h>
58 #include <asm/debug.h>
59 #ifdef CONFIG_PPC64
60 #include <asm/firmware.h>
61 #include <asm/hw_irq.h>
62 #endif
63 #include <asm/code-patching.h>
64 #include <asm/exec.h>
65 #include <asm/livepatch.h>
66 #include <asm/cpu_has_feature.h>
67 #include <asm/asm-prototypes.h>
69 #include <linux/kprobes.h>
70 #include <linux/kdebug.h>
72 /* Transactional Memory debug */
73 #ifdef TM_DEBUG_SW
74 #define TM_DEBUG(x...) printk(KERN_INFO x)
75 #else
76 #define TM_DEBUG(x...) do { } while(0)
77 #endif
79 extern unsigned long _get_SP(void);
81 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
83 * Are we running in "Suspend disabled" mode? If so we have to block any
84 * sigreturn that would get us into suspended state, and we also warn in some
85 * other paths that we should never reach with suspend disabled.
87 bool tm_suspend_disabled __ro_after_init = false;
89 static void check_if_tm_restore_required(struct task_struct *tsk)
92 * If we are saving the current thread's registers, and the
93 * thread is in a transactional state, set the TIF_RESTORE_TM
94 * bit so that we know to restore the registers before
95 * returning to userspace.
97 if (tsk == current && tsk->thread.regs &&
98 MSR_TM_ACTIVE(tsk->thread.regs->msr) &&
99 !test_thread_flag(TIF_RESTORE_TM)) {
100 tsk->thread.ckpt_regs.msr = tsk->thread.regs->msr;
101 set_thread_flag(TIF_RESTORE_TM);
105 static inline bool msr_tm_active(unsigned long msr)
107 return MSR_TM_ACTIVE(msr);
110 static bool tm_active_with_fp(struct task_struct *tsk)
112 return msr_tm_active(tsk->thread.regs->msr) &&
113 (tsk->thread.ckpt_regs.msr & MSR_FP);
116 static bool tm_active_with_altivec(struct task_struct *tsk)
118 return msr_tm_active(tsk->thread.regs->msr) &&
119 (tsk->thread.ckpt_regs.msr & MSR_VEC);
121 #else
122 static inline bool msr_tm_active(unsigned long msr) { return false; }
123 static inline void check_if_tm_restore_required(struct task_struct *tsk) { }
124 static inline bool tm_active_with_fp(struct task_struct *tsk) { return false; }
125 static inline bool tm_active_with_altivec(struct task_struct *tsk) { return false; }
126 #endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
128 bool strict_msr_control;
129 EXPORT_SYMBOL(strict_msr_control);
131 static int __init enable_strict_msr_control(char *str)
133 strict_msr_control = true;
134 pr_info("Enabling strict facility control\n");
136 return 0;
138 early_param("ppc_strict_facility_enable", enable_strict_msr_control);
140 unsigned long msr_check_and_set(unsigned long bits)
142 unsigned long oldmsr = mfmsr();
143 unsigned long newmsr;
145 newmsr = oldmsr | bits;
147 #ifdef CONFIG_VSX
148 if (cpu_has_feature(CPU_FTR_VSX) && (bits & MSR_FP))
149 newmsr |= MSR_VSX;
150 #endif
152 if (oldmsr != newmsr)
153 mtmsr_isync(newmsr);
155 return newmsr;
158 void __msr_check_and_clear(unsigned long bits)
160 unsigned long oldmsr = mfmsr();
161 unsigned long newmsr;
163 newmsr = oldmsr & ~bits;
165 #ifdef CONFIG_VSX
166 if (cpu_has_feature(CPU_FTR_VSX) && (bits & MSR_FP))
167 newmsr &= ~MSR_VSX;
168 #endif
170 if (oldmsr != newmsr)
171 mtmsr_isync(newmsr);
173 EXPORT_SYMBOL(__msr_check_and_clear);
175 #ifdef CONFIG_PPC_FPU
176 void __giveup_fpu(struct task_struct *tsk)
178 unsigned long msr;
180 save_fpu(tsk);
181 msr = tsk->thread.regs->msr;
182 msr &= ~MSR_FP;
183 #ifdef CONFIG_VSX
184 if (cpu_has_feature(CPU_FTR_VSX))
185 msr &= ~MSR_VSX;
186 #endif
187 tsk->thread.regs->msr = msr;
190 void giveup_fpu(struct task_struct *tsk)
192 check_if_tm_restore_required(tsk);
194 msr_check_and_set(MSR_FP);
195 __giveup_fpu(tsk);
196 msr_check_and_clear(MSR_FP);
198 EXPORT_SYMBOL(giveup_fpu);
201 * Make sure the floating-point register state in the
202 * the thread_struct is up to date for task tsk.
204 void flush_fp_to_thread(struct task_struct *tsk)
206 if (tsk->thread.regs) {
208 * We need to disable preemption here because if we didn't,
209 * another process could get scheduled after the regs->msr
210 * test but before we have finished saving the FP registers
211 * to the thread_struct. That process could take over the
212 * FPU, and then when we get scheduled again we would store
213 * bogus values for the remaining FP registers.
215 preempt_disable();
216 if (tsk->thread.regs->msr & MSR_FP) {
218 * This should only ever be called for current or
219 * for a stopped child process. Since we save away
220 * the FP register state on context switch,
221 * there is something wrong if a stopped child appears
222 * to still have its FP state in the CPU registers.
224 BUG_ON(tsk != current);
225 giveup_fpu(tsk);
227 preempt_enable();
230 EXPORT_SYMBOL_GPL(flush_fp_to_thread);
232 void enable_kernel_fp(void)
234 unsigned long cpumsr;
236 WARN_ON(preemptible());
238 cpumsr = msr_check_and_set(MSR_FP);
240 if (current->thread.regs && (current->thread.regs->msr & MSR_FP)) {
241 check_if_tm_restore_required(current);
243 * If a thread has already been reclaimed then the
244 * checkpointed registers are on the CPU but have definitely
245 * been saved by the reclaim code. Don't need to and *cannot*
246 * giveup as this would save to the 'live' structure not the
247 * checkpointed structure.
249 if(!msr_tm_active(cpumsr) && msr_tm_active(current->thread.regs->msr))
250 return;
251 __giveup_fpu(current);
254 EXPORT_SYMBOL(enable_kernel_fp);
256 static int restore_fp(struct task_struct *tsk)
258 if (tsk->thread.load_fp || tm_active_with_fp(tsk)) {
259 load_fp_state(&current->thread.fp_state);
260 current->thread.load_fp++;
261 return 1;
263 return 0;
265 #else
266 static int restore_fp(struct task_struct *tsk) { return 0; }
267 #endif /* CONFIG_PPC_FPU */
269 #ifdef CONFIG_ALTIVEC
270 #define loadvec(thr) ((thr).load_vec)
272 static void __giveup_altivec(struct task_struct *tsk)
274 unsigned long msr;
276 save_altivec(tsk);
277 msr = tsk->thread.regs->msr;
278 msr &= ~MSR_VEC;
279 #ifdef CONFIG_VSX
280 if (cpu_has_feature(CPU_FTR_VSX))
281 msr &= ~MSR_VSX;
282 #endif
283 tsk->thread.regs->msr = msr;
286 void giveup_altivec(struct task_struct *tsk)
288 check_if_tm_restore_required(tsk);
290 msr_check_and_set(MSR_VEC);
291 __giveup_altivec(tsk);
292 msr_check_and_clear(MSR_VEC);
294 EXPORT_SYMBOL(giveup_altivec);
296 void enable_kernel_altivec(void)
298 unsigned long cpumsr;
300 WARN_ON(preemptible());
302 cpumsr = msr_check_and_set(MSR_VEC);
304 if (current->thread.regs && (current->thread.regs->msr & MSR_VEC)) {
305 check_if_tm_restore_required(current);
307 * If a thread has already been reclaimed then the
308 * checkpointed registers are on the CPU but have definitely
309 * been saved by the reclaim code. Don't need to and *cannot*
310 * giveup as this would save to the 'live' structure not the
311 * checkpointed structure.
313 if(!msr_tm_active(cpumsr) && msr_tm_active(current->thread.regs->msr))
314 return;
315 __giveup_altivec(current);
318 EXPORT_SYMBOL(enable_kernel_altivec);
321 * Make sure the VMX/Altivec register state in the
322 * the thread_struct is up to date for task tsk.
324 void flush_altivec_to_thread(struct task_struct *tsk)
326 if (tsk->thread.regs) {
327 preempt_disable();
328 if (tsk->thread.regs->msr & MSR_VEC) {
329 BUG_ON(tsk != current);
330 giveup_altivec(tsk);
332 preempt_enable();
335 EXPORT_SYMBOL_GPL(flush_altivec_to_thread);
337 static int restore_altivec(struct task_struct *tsk)
339 if (cpu_has_feature(CPU_FTR_ALTIVEC) &&
340 (tsk->thread.load_vec || tm_active_with_altivec(tsk))) {
341 load_vr_state(&tsk->thread.vr_state);
342 tsk->thread.used_vr = 1;
343 tsk->thread.load_vec++;
345 return 1;
347 return 0;
349 #else
350 #define loadvec(thr) 0
351 static inline int restore_altivec(struct task_struct *tsk) { return 0; }
352 #endif /* CONFIG_ALTIVEC */
354 #ifdef CONFIG_VSX
355 static void __giveup_vsx(struct task_struct *tsk)
357 unsigned long msr = tsk->thread.regs->msr;
360 * We should never be ssetting MSR_VSX without also setting
361 * MSR_FP and MSR_VEC
363 WARN_ON((msr & MSR_VSX) && !((msr & MSR_FP) && (msr & MSR_VEC)));
365 /* __giveup_fpu will clear MSR_VSX */
366 if (msr & MSR_FP)
367 __giveup_fpu(tsk);
368 if (msr & MSR_VEC)
369 __giveup_altivec(tsk);
372 static void giveup_vsx(struct task_struct *tsk)
374 check_if_tm_restore_required(tsk);
376 msr_check_and_set(MSR_FP|MSR_VEC|MSR_VSX);
377 __giveup_vsx(tsk);
378 msr_check_and_clear(MSR_FP|MSR_VEC|MSR_VSX);
381 void enable_kernel_vsx(void)
383 unsigned long cpumsr;
385 WARN_ON(preemptible());
387 cpumsr = msr_check_and_set(MSR_FP|MSR_VEC|MSR_VSX);
389 if (current->thread.regs &&
390 (current->thread.regs->msr & (MSR_VSX|MSR_VEC|MSR_FP))) {
391 check_if_tm_restore_required(current);
393 * If a thread has already been reclaimed then the
394 * checkpointed registers are on the CPU but have definitely
395 * been saved by the reclaim code. Don't need to and *cannot*
396 * giveup as this would save to the 'live' structure not the
397 * checkpointed structure.
399 if(!msr_tm_active(cpumsr) && msr_tm_active(current->thread.regs->msr))
400 return;
401 __giveup_vsx(current);
404 EXPORT_SYMBOL(enable_kernel_vsx);
406 void flush_vsx_to_thread(struct task_struct *tsk)
408 if (tsk->thread.regs) {
409 preempt_disable();
410 if (tsk->thread.regs->msr & (MSR_VSX|MSR_VEC|MSR_FP)) {
411 BUG_ON(tsk != current);
412 giveup_vsx(tsk);
414 preempt_enable();
417 EXPORT_SYMBOL_GPL(flush_vsx_to_thread);
419 static int restore_vsx(struct task_struct *tsk)
421 if (cpu_has_feature(CPU_FTR_VSX)) {
422 tsk->thread.used_vsr = 1;
423 return 1;
426 return 0;
428 #else
429 static inline int restore_vsx(struct task_struct *tsk) { return 0; }
430 #endif /* CONFIG_VSX */
432 #ifdef CONFIG_SPE
433 void giveup_spe(struct task_struct *tsk)
435 check_if_tm_restore_required(tsk);
437 msr_check_and_set(MSR_SPE);
438 __giveup_spe(tsk);
439 msr_check_and_clear(MSR_SPE);
441 EXPORT_SYMBOL(giveup_spe);
443 void enable_kernel_spe(void)
445 WARN_ON(preemptible());
447 msr_check_and_set(MSR_SPE);
449 if (current->thread.regs && (current->thread.regs->msr & MSR_SPE)) {
450 check_if_tm_restore_required(current);
451 __giveup_spe(current);
454 EXPORT_SYMBOL(enable_kernel_spe);
456 void flush_spe_to_thread(struct task_struct *tsk)
458 if (tsk->thread.regs) {
459 preempt_disable();
460 if (tsk->thread.regs->msr & MSR_SPE) {
461 BUG_ON(tsk != current);
462 tsk->thread.spefscr = mfspr(SPRN_SPEFSCR);
463 giveup_spe(tsk);
465 preempt_enable();
468 #endif /* CONFIG_SPE */
470 static unsigned long msr_all_available;
472 static int __init init_msr_all_available(void)
474 #ifdef CONFIG_PPC_FPU
475 msr_all_available |= MSR_FP;
476 #endif
477 #ifdef CONFIG_ALTIVEC
478 if (cpu_has_feature(CPU_FTR_ALTIVEC))
479 msr_all_available |= MSR_VEC;
480 #endif
481 #ifdef CONFIG_VSX
482 if (cpu_has_feature(CPU_FTR_VSX))
483 msr_all_available |= MSR_VSX;
484 #endif
485 #ifdef CONFIG_SPE
486 if (cpu_has_feature(CPU_FTR_SPE))
487 msr_all_available |= MSR_SPE;
488 #endif
490 return 0;
492 early_initcall(init_msr_all_available);
494 void giveup_all(struct task_struct *tsk)
496 unsigned long usermsr;
498 if (!tsk->thread.regs)
499 return;
501 usermsr = tsk->thread.regs->msr;
503 if ((usermsr & msr_all_available) == 0)
504 return;
506 msr_check_and_set(msr_all_available);
507 check_if_tm_restore_required(tsk);
509 WARN_ON((usermsr & MSR_VSX) && !((usermsr & MSR_FP) && (usermsr & MSR_VEC)));
511 #ifdef CONFIG_PPC_FPU
512 if (usermsr & MSR_FP)
513 __giveup_fpu(tsk);
514 #endif
515 #ifdef CONFIG_ALTIVEC
516 if (usermsr & MSR_VEC)
517 __giveup_altivec(tsk);
518 #endif
519 #ifdef CONFIG_SPE
520 if (usermsr & MSR_SPE)
521 __giveup_spe(tsk);
522 #endif
524 msr_check_and_clear(msr_all_available);
526 EXPORT_SYMBOL(giveup_all);
528 void restore_math(struct pt_regs *regs)
530 unsigned long msr;
532 if (!msr_tm_active(regs->msr) &&
533 !current->thread.load_fp && !loadvec(current->thread))
534 return;
536 msr = regs->msr;
537 msr_check_and_set(msr_all_available);
540 * Only reload if the bit is not set in the user MSR, the bit BEING set
541 * indicates that the registers are hot
543 if ((!(msr & MSR_FP)) && restore_fp(current))
544 msr |= MSR_FP | current->thread.fpexc_mode;
546 if ((!(msr & MSR_VEC)) && restore_altivec(current))
547 msr |= MSR_VEC;
549 if ((msr & (MSR_FP | MSR_VEC)) == (MSR_FP | MSR_VEC) &&
550 restore_vsx(current)) {
551 msr |= MSR_VSX;
554 msr_check_and_clear(msr_all_available);
556 regs->msr = msr;
559 void save_all(struct task_struct *tsk)
561 unsigned long usermsr;
563 if (!tsk->thread.regs)
564 return;
566 usermsr = tsk->thread.regs->msr;
568 if ((usermsr & msr_all_available) == 0)
569 return;
571 msr_check_and_set(msr_all_available);
573 WARN_ON((usermsr & MSR_VSX) && !((usermsr & MSR_FP) && (usermsr & MSR_VEC)));
575 if (usermsr & MSR_FP)
576 save_fpu(tsk);
578 if (usermsr & MSR_VEC)
579 save_altivec(tsk);
581 if (usermsr & MSR_SPE)
582 __giveup_spe(tsk);
584 msr_check_and_clear(msr_all_available);
587 void flush_all_to_thread(struct task_struct *tsk)
589 if (tsk->thread.regs) {
590 preempt_disable();
591 BUG_ON(tsk != current);
592 save_all(tsk);
594 #ifdef CONFIG_SPE
595 if (tsk->thread.regs->msr & MSR_SPE)
596 tsk->thread.spefscr = mfspr(SPRN_SPEFSCR);
597 #endif
599 preempt_enable();
602 EXPORT_SYMBOL(flush_all_to_thread);
604 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
605 void do_send_trap(struct pt_regs *regs, unsigned long address,
606 unsigned long error_code, int breakpt)
608 current->thread.trap_nr = TRAP_HWBKPT;
609 if (notify_die(DIE_DABR_MATCH, "dabr_match", regs, error_code,
610 11, SIGSEGV) == NOTIFY_STOP)
611 return;
613 /* Deliver the signal to userspace */
614 force_sig_ptrace_errno_trap(breakpt, /* breakpoint or watchpoint id */
615 (void __user *)address);
617 #else /* !CONFIG_PPC_ADV_DEBUG_REGS */
618 void do_break (struct pt_regs *regs, unsigned long address,
619 unsigned long error_code)
621 siginfo_t info;
623 current->thread.trap_nr = TRAP_HWBKPT;
624 if (notify_die(DIE_DABR_MATCH, "dabr_match", regs, error_code,
625 11, SIGSEGV) == NOTIFY_STOP)
626 return;
628 if (debugger_break_match(regs))
629 return;
631 /* Clear the breakpoint */
632 hw_breakpoint_disable();
634 /* Deliver the signal to userspace */
635 info.si_signo = SIGTRAP;
636 info.si_errno = 0;
637 info.si_code = TRAP_HWBKPT;
638 info.si_addr = (void __user *)address;
639 force_sig_info(SIGTRAP, &info, current);
641 #endif /* CONFIG_PPC_ADV_DEBUG_REGS */
643 static DEFINE_PER_CPU(struct arch_hw_breakpoint, current_brk);
645 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
647 * Set the debug registers back to their default "safe" values.
649 static void set_debug_reg_defaults(struct thread_struct *thread)
651 thread->debug.iac1 = thread->debug.iac2 = 0;
652 #if CONFIG_PPC_ADV_DEBUG_IACS > 2
653 thread->debug.iac3 = thread->debug.iac4 = 0;
654 #endif
655 thread->debug.dac1 = thread->debug.dac2 = 0;
656 #if CONFIG_PPC_ADV_DEBUG_DVCS > 0
657 thread->debug.dvc1 = thread->debug.dvc2 = 0;
658 #endif
659 thread->debug.dbcr0 = 0;
660 #ifdef CONFIG_BOOKE
662 * Force User/Supervisor bits to b11 (user-only MSR[PR]=1)
664 thread->debug.dbcr1 = DBCR1_IAC1US | DBCR1_IAC2US |
665 DBCR1_IAC3US | DBCR1_IAC4US;
667 * Force Data Address Compare User/Supervisor bits to be User-only
668 * (0b11 MSR[PR]=1) and set all other bits in DBCR2 register to be 0.
670 thread->debug.dbcr2 = DBCR2_DAC1US | DBCR2_DAC2US;
671 #else
672 thread->debug.dbcr1 = 0;
673 #endif
676 static void prime_debug_regs(struct debug_reg *debug)
679 * We could have inherited MSR_DE from userspace, since
680 * it doesn't get cleared on exception entry. Make sure
681 * MSR_DE is clear before we enable any debug events.
683 mtmsr(mfmsr() & ~MSR_DE);
685 mtspr(SPRN_IAC1, debug->iac1);
686 mtspr(SPRN_IAC2, debug->iac2);
687 #if CONFIG_PPC_ADV_DEBUG_IACS > 2
688 mtspr(SPRN_IAC3, debug->iac3);
689 mtspr(SPRN_IAC4, debug->iac4);
690 #endif
691 mtspr(SPRN_DAC1, debug->dac1);
692 mtspr(SPRN_DAC2, debug->dac2);
693 #if CONFIG_PPC_ADV_DEBUG_DVCS > 0
694 mtspr(SPRN_DVC1, debug->dvc1);
695 mtspr(SPRN_DVC2, debug->dvc2);
696 #endif
697 mtspr(SPRN_DBCR0, debug->dbcr0);
698 mtspr(SPRN_DBCR1, debug->dbcr1);
699 #ifdef CONFIG_BOOKE
700 mtspr(SPRN_DBCR2, debug->dbcr2);
701 #endif
704 * Unless neither the old or new thread are making use of the
705 * debug registers, set the debug registers from the values
706 * stored in the new thread.
708 void switch_booke_debug_regs(struct debug_reg *new_debug)
710 if ((current->thread.debug.dbcr0 & DBCR0_IDM)
711 || (new_debug->dbcr0 & DBCR0_IDM))
712 prime_debug_regs(new_debug);
714 EXPORT_SYMBOL_GPL(switch_booke_debug_regs);
715 #else /* !CONFIG_PPC_ADV_DEBUG_REGS */
716 #ifndef CONFIG_HAVE_HW_BREAKPOINT
717 static void set_debug_reg_defaults(struct thread_struct *thread)
719 thread->hw_brk.address = 0;
720 thread->hw_brk.type = 0;
721 set_breakpoint(&thread->hw_brk);
723 #endif /* !CONFIG_HAVE_HW_BREAKPOINT */
724 #endif /* CONFIG_PPC_ADV_DEBUG_REGS */
726 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
727 static inline int __set_dabr(unsigned long dabr, unsigned long dabrx)
729 mtspr(SPRN_DAC1, dabr);
730 #ifdef CONFIG_PPC_47x
731 isync();
732 #endif
733 return 0;
735 #elif defined(CONFIG_PPC_BOOK3S)
736 static inline int __set_dabr(unsigned long dabr, unsigned long dabrx)
738 mtspr(SPRN_DABR, dabr);
739 if (cpu_has_feature(CPU_FTR_DABRX))
740 mtspr(SPRN_DABRX, dabrx);
741 return 0;
743 #elif defined(CONFIG_PPC_8xx)
744 static inline int __set_dabr(unsigned long dabr, unsigned long dabrx)
746 unsigned long addr = dabr & ~HW_BRK_TYPE_DABR;
747 unsigned long lctrl1 = 0x90000000; /* compare type: equal on E & F */
748 unsigned long lctrl2 = 0x8e000002; /* watchpoint 1 on cmp E | F */
750 if ((dabr & HW_BRK_TYPE_RDWR) == HW_BRK_TYPE_READ)
751 lctrl1 |= 0xa0000;
752 else if ((dabr & HW_BRK_TYPE_RDWR) == HW_BRK_TYPE_WRITE)
753 lctrl1 |= 0xf0000;
754 else if ((dabr & HW_BRK_TYPE_RDWR) == 0)
755 lctrl2 = 0;
757 mtspr(SPRN_LCTRL2, 0);
758 mtspr(SPRN_CMPE, addr);
759 mtspr(SPRN_CMPF, addr + 4);
760 mtspr(SPRN_LCTRL1, lctrl1);
761 mtspr(SPRN_LCTRL2, lctrl2);
763 return 0;
765 #else
766 static inline int __set_dabr(unsigned long dabr, unsigned long dabrx)
768 return -EINVAL;
770 #endif
772 static inline int set_dabr(struct arch_hw_breakpoint *brk)
774 unsigned long dabr, dabrx;
776 dabr = brk->address | (brk->type & HW_BRK_TYPE_DABR);
777 dabrx = ((brk->type >> 3) & 0x7);
779 if (ppc_md.set_dabr)
780 return ppc_md.set_dabr(dabr, dabrx);
782 return __set_dabr(dabr, dabrx);
785 static inline int set_dawr(struct arch_hw_breakpoint *brk)
787 unsigned long dawr, dawrx, mrd;
789 dawr = brk->address;
791 dawrx = (brk->type & (HW_BRK_TYPE_READ | HW_BRK_TYPE_WRITE)) \
792 << (63 - 58); //* read/write bits */
793 dawrx |= ((brk->type & (HW_BRK_TYPE_TRANSLATE)) >> 2) \
794 << (63 - 59); //* translate */
795 dawrx |= (brk->type & (HW_BRK_TYPE_PRIV_ALL)) \
796 >> 3; //* PRIM bits */
797 /* dawr length is stored in field MDR bits 48:53. Matches range in
798 doublewords (64 bits) baised by -1 eg. 0b000000=1DW and
799 0b111111=64DW.
800 brk->len is in bytes.
801 This aligns up to double word size, shifts and does the bias.
803 mrd = ((brk->len + 7) >> 3) - 1;
804 dawrx |= (mrd & 0x3f) << (63 - 53);
806 if (ppc_md.set_dawr)
807 return ppc_md.set_dawr(dawr, dawrx);
808 mtspr(SPRN_DAWR, dawr);
809 mtspr(SPRN_DAWRX, dawrx);
810 return 0;
813 void __set_breakpoint(struct arch_hw_breakpoint *brk)
815 memcpy(this_cpu_ptr(&current_brk), brk, sizeof(*brk));
817 if (cpu_has_feature(CPU_FTR_DAWR))
818 set_dawr(brk);
819 else
820 set_dabr(brk);
823 void set_breakpoint(struct arch_hw_breakpoint *brk)
825 preempt_disable();
826 __set_breakpoint(brk);
827 preempt_enable();
830 #ifdef CONFIG_PPC64
831 DEFINE_PER_CPU(struct cpu_usage, cpu_usage_array);
832 #endif
834 static inline bool hw_brk_match(struct arch_hw_breakpoint *a,
835 struct arch_hw_breakpoint *b)
837 if (a->address != b->address)
838 return false;
839 if (a->type != b->type)
840 return false;
841 if (a->len != b->len)
842 return false;
843 return true;
846 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
848 static inline bool tm_enabled(struct task_struct *tsk)
850 return tsk && tsk->thread.regs && (tsk->thread.regs->msr & MSR_TM);
853 static void tm_reclaim_thread(struct thread_struct *thr,
854 struct thread_info *ti, uint8_t cause)
857 * Use the current MSR TM suspended bit to track if we have
858 * checkpointed state outstanding.
859 * On signal delivery, we'd normally reclaim the checkpointed
860 * state to obtain stack pointer (see:get_tm_stackpointer()).
861 * This will then directly return to userspace without going
862 * through __switch_to(). However, if the stack frame is bad,
863 * we need to exit this thread which calls __switch_to() which
864 * will again attempt to reclaim the already saved tm state.
865 * Hence we need to check that we've not already reclaimed
866 * this state.
867 * We do this using the current MSR, rather tracking it in
868 * some specific thread_struct bit, as it has the additional
869 * benefit of checking for a potential TM bad thing exception.
871 if (!MSR_TM_SUSPENDED(mfmsr()))
872 return;
874 giveup_all(container_of(thr, struct task_struct, thread));
876 tm_reclaim(thr, cause);
879 * If we are in a transaction and FP is off then we can't have
880 * used FP inside that transaction. Hence the checkpointed
881 * state is the same as the live state. We need to copy the
882 * live state to the checkpointed state so that when the
883 * transaction is restored, the checkpointed state is correct
884 * and the aborted transaction sees the correct state. We use
885 * ckpt_regs.msr here as that's what tm_reclaim will use to
886 * determine if it's going to write the checkpointed state or
887 * not. So either this will write the checkpointed registers,
888 * or reclaim will. Similarly for VMX.
890 if ((thr->ckpt_regs.msr & MSR_FP) == 0)
891 memcpy(&thr->ckfp_state, &thr->fp_state,
892 sizeof(struct thread_fp_state));
893 if ((thr->ckpt_regs.msr & MSR_VEC) == 0)
894 memcpy(&thr->ckvr_state, &thr->vr_state,
895 sizeof(struct thread_vr_state));
898 void tm_reclaim_current(uint8_t cause)
900 tm_enable();
901 tm_reclaim_thread(&current->thread, current_thread_info(), cause);
904 static inline void tm_reclaim_task(struct task_struct *tsk)
906 /* We have to work out if we're switching from/to a task that's in the
907 * middle of a transaction.
909 * In switching we need to maintain a 2nd register state as
910 * oldtask->thread.ckpt_regs. We tm_reclaim(oldproc); this saves the
911 * checkpointed (tbegin) state in ckpt_regs, ckfp_state and
912 * ckvr_state
914 * We also context switch (save) TFHAR/TEXASR/TFIAR in here.
916 struct thread_struct *thr = &tsk->thread;
918 if (!thr->regs)
919 return;
921 if (!MSR_TM_ACTIVE(thr->regs->msr))
922 goto out_and_saveregs;
924 WARN_ON(tm_suspend_disabled);
926 TM_DEBUG("--- tm_reclaim on pid %d (NIP=%lx, "
927 "ccr=%lx, msr=%lx, trap=%lx)\n",
928 tsk->pid, thr->regs->nip,
929 thr->regs->ccr, thr->regs->msr,
930 thr->regs->trap);
932 tm_reclaim_thread(thr, task_thread_info(tsk), TM_CAUSE_RESCHED);
934 TM_DEBUG("--- tm_reclaim on pid %d complete\n",
935 tsk->pid);
937 out_and_saveregs:
938 /* Always save the regs here, even if a transaction's not active.
939 * This context-switches a thread's TM info SPRs. We do it here to
940 * be consistent with the restore path (in recheckpoint) which
941 * cannot happen later in _switch().
943 tm_save_sprs(thr);
946 extern void __tm_recheckpoint(struct thread_struct *thread);
948 void tm_recheckpoint(struct thread_struct *thread)
950 unsigned long flags;
952 if (!(thread->regs->msr & MSR_TM))
953 return;
955 /* We really can't be interrupted here as the TEXASR registers can't
956 * change and later in the trecheckpoint code, we have a userspace R1.
957 * So let's hard disable over this region.
959 local_irq_save(flags);
960 hard_irq_disable();
962 /* The TM SPRs are restored here, so that TEXASR.FS can be set
963 * before the trecheckpoint and no explosion occurs.
965 tm_restore_sprs(thread);
967 __tm_recheckpoint(thread);
969 local_irq_restore(flags);
972 static inline void tm_recheckpoint_new_task(struct task_struct *new)
974 if (!cpu_has_feature(CPU_FTR_TM))
975 return;
977 /* Recheckpoint the registers of the thread we're about to switch to.
979 * If the task was using FP, we non-lazily reload both the original and
980 * the speculative FP register states. This is because the kernel
981 * doesn't see if/when a TM rollback occurs, so if we take an FP
982 * unavailable later, we are unable to determine which set of FP regs
983 * need to be restored.
985 if (!tm_enabled(new))
986 return;
988 if (!MSR_TM_ACTIVE(new->thread.regs->msr)){
989 tm_restore_sprs(&new->thread);
990 return;
992 /* Recheckpoint to restore original checkpointed register state. */
993 TM_DEBUG("*** tm_recheckpoint of pid %d (new->msr 0x%lx)\n",
994 new->pid, new->thread.regs->msr);
996 tm_recheckpoint(&new->thread);
999 * The checkpointed state has been restored but the live state has
1000 * not, ensure all the math functionality is turned off to trigger
1001 * restore_math() to reload.
1003 new->thread.regs->msr &= ~(MSR_FP | MSR_VEC | MSR_VSX);
1005 TM_DEBUG("*** tm_recheckpoint of pid %d complete "
1006 "(kernel msr 0x%lx)\n",
1007 new->pid, mfmsr());
1010 static inline void __switch_to_tm(struct task_struct *prev,
1011 struct task_struct *new)
1013 if (cpu_has_feature(CPU_FTR_TM)) {
1014 if (tm_enabled(prev) || tm_enabled(new))
1015 tm_enable();
1017 if (tm_enabled(prev)) {
1018 prev->thread.load_tm++;
1019 tm_reclaim_task(prev);
1020 if (!MSR_TM_ACTIVE(prev->thread.regs->msr) && prev->thread.load_tm == 0)
1021 prev->thread.regs->msr &= ~MSR_TM;
1024 tm_recheckpoint_new_task(new);
1029 * This is called if we are on the way out to userspace and the
1030 * TIF_RESTORE_TM flag is set. It checks if we need to reload
1031 * FP and/or vector state and does so if necessary.
1032 * If userspace is inside a transaction (whether active or
1033 * suspended) and FP/VMX/VSX instructions have ever been enabled
1034 * inside that transaction, then we have to keep them enabled
1035 * and keep the FP/VMX/VSX state loaded while ever the transaction
1036 * continues. The reason is that if we didn't, and subsequently
1037 * got a FP/VMX/VSX unavailable interrupt inside a transaction,
1038 * we don't know whether it's the same transaction, and thus we
1039 * don't know which of the checkpointed state and the transactional
1040 * state to use.
1042 void restore_tm_state(struct pt_regs *regs)
1044 unsigned long msr_diff;
1047 * This is the only moment we should clear TIF_RESTORE_TM as
1048 * it is here that ckpt_regs.msr and pt_regs.msr become the same
1049 * again, anything else could lead to an incorrect ckpt_msr being
1050 * saved and therefore incorrect signal contexts.
1052 clear_thread_flag(TIF_RESTORE_TM);
1053 if (!MSR_TM_ACTIVE(regs->msr))
1054 return;
1056 msr_diff = current->thread.ckpt_regs.msr & ~regs->msr;
1057 msr_diff &= MSR_FP | MSR_VEC | MSR_VSX;
1059 /* Ensure that restore_math() will restore */
1060 if (msr_diff & MSR_FP)
1061 current->thread.load_fp = 1;
1062 #ifdef CONFIG_ALTIVEC
1063 if (cpu_has_feature(CPU_FTR_ALTIVEC) && msr_diff & MSR_VEC)
1064 current->thread.load_vec = 1;
1065 #endif
1066 restore_math(regs);
1068 regs->msr |= msr_diff;
1071 #else
1072 #define tm_recheckpoint_new_task(new)
1073 #define __switch_to_tm(prev, new)
1074 #endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
1076 static inline void save_sprs(struct thread_struct *t)
1078 #ifdef CONFIG_ALTIVEC
1079 if (cpu_has_feature(CPU_FTR_ALTIVEC))
1080 t->vrsave = mfspr(SPRN_VRSAVE);
1081 #endif
1082 #ifdef CONFIG_PPC_BOOK3S_64
1083 if (cpu_has_feature(CPU_FTR_DSCR))
1084 t->dscr = mfspr(SPRN_DSCR);
1086 if (cpu_has_feature(CPU_FTR_ARCH_207S)) {
1087 t->bescr = mfspr(SPRN_BESCR);
1088 t->ebbhr = mfspr(SPRN_EBBHR);
1089 t->ebbrr = mfspr(SPRN_EBBRR);
1091 t->fscr = mfspr(SPRN_FSCR);
1094 * Note that the TAR is not available for use in the kernel.
1095 * (To provide this, the TAR should be backed up/restored on
1096 * exception entry/exit instead, and be in pt_regs. FIXME,
1097 * this should be in pt_regs anyway (for debug).)
1099 t->tar = mfspr(SPRN_TAR);
1101 #endif
1103 thread_pkey_regs_save(t);
1106 static inline void restore_sprs(struct thread_struct *old_thread,
1107 struct thread_struct *new_thread)
1109 #ifdef CONFIG_ALTIVEC
1110 if (cpu_has_feature(CPU_FTR_ALTIVEC) &&
1111 old_thread->vrsave != new_thread->vrsave)
1112 mtspr(SPRN_VRSAVE, new_thread->vrsave);
1113 #endif
1114 #ifdef CONFIG_PPC_BOOK3S_64
1115 if (cpu_has_feature(CPU_FTR_DSCR)) {
1116 u64 dscr = get_paca()->dscr_default;
1117 if (new_thread->dscr_inherit)
1118 dscr = new_thread->dscr;
1120 if (old_thread->dscr != dscr)
1121 mtspr(SPRN_DSCR, dscr);
1124 if (cpu_has_feature(CPU_FTR_ARCH_207S)) {
1125 if (old_thread->bescr != new_thread->bescr)
1126 mtspr(SPRN_BESCR, new_thread->bescr);
1127 if (old_thread->ebbhr != new_thread->ebbhr)
1128 mtspr(SPRN_EBBHR, new_thread->ebbhr);
1129 if (old_thread->ebbrr != new_thread->ebbrr)
1130 mtspr(SPRN_EBBRR, new_thread->ebbrr);
1132 if (old_thread->fscr != new_thread->fscr)
1133 mtspr(SPRN_FSCR, new_thread->fscr);
1135 if (old_thread->tar != new_thread->tar)
1136 mtspr(SPRN_TAR, new_thread->tar);
1139 if (cpu_has_feature(CPU_FTR_ARCH_300) &&
1140 old_thread->tidr != new_thread->tidr)
1141 mtspr(SPRN_TIDR, new_thread->tidr);
1142 #endif
1144 thread_pkey_regs_restore(new_thread, old_thread);
1147 #ifdef CONFIG_PPC_BOOK3S_64
1148 #define CP_SIZE 128
1149 static const u8 dummy_copy_buffer[CP_SIZE] __attribute__((aligned(CP_SIZE)));
1150 #endif
1152 struct task_struct *__switch_to(struct task_struct *prev,
1153 struct task_struct *new)
1155 struct thread_struct *new_thread, *old_thread;
1156 struct task_struct *last;
1157 #ifdef CONFIG_PPC_BOOK3S_64
1158 struct ppc64_tlb_batch *batch;
1159 #endif
1161 new_thread = &new->thread;
1162 old_thread = &current->thread;
1164 WARN_ON(!irqs_disabled());
1166 #ifdef CONFIG_PPC64
1168 * Collect processor utilization data per process
1170 if (firmware_has_feature(FW_FEATURE_SPLPAR)) {
1171 struct cpu_usage *cu = this_cpu_ptr(&cpu_usage_array);
1172 long unsigned start_tb, current_tb;
1173 start_tb = old_thread->start_tb;
1174 cu->current_tb = current_tb = mfspr(SPRN_PURR);
1175 old_thread->accum_tb += (current_tb - start_tb);
1176 new_thread->start_tb = current_tb;
1178 #endif /* CONFIG_PPC64 */
1180 #ifdef CONFIG_PPC_BOOK3S_64
1181 batch = this_cpu_ptr(&ppc64_tlb_batch);
1182 if (batch->active) {
1183 current_thread_info()->local_flags |= _TLF_LAZY_MMU;
1184 if (batch->index)
1185 __flush_tlb_pending(batch);
1186 batch->active = 0;
1188 #endif /* CONFIG_PPC_BOOK3S_64 */
1190 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
1191 switch_booke_debug_regs(&new->thread.debug);
1192 #else
1194 * For PPC_BOOK3S_64, we use the hw-breakpoint interfaces that would
1195 * schedule DABR
1197 #ifndef CONFIG_HAVE_HW_BREAKPOINT
1198 if (unlikely(!hw_brk_match(this_cpu_ptr(&current_brk), &new->thread.hw_brk)))
1199 __set_breakpoint(&new->thread.hw_brk);
1200 #endif /* CONFIG_HAVE_HW_BREAKPOINT */
1201 #endif
1204 * We need to save SPRs before treclaim/trecheckpoint as these will
1205 * change a number of them.
1207 save_sprs(&prev->thread);
1209 /* Save FPU, Altivec, VSX and SPE state */
1210 giveup_all(prev);
1212 __switch_to_tm(prev, new);
1214 if (!radix_enabled()) {
1216 * We can't take a PMU exception inside _switch() since there
1217 * is a window where the kernel stack SLB and the kernel stack
1218 * are out of sync. Hard disable here.
1220 hard_irq_disable();
1224 * Call restore_sprs() before calling _switch(). If we move it after
1225 * _switch() then we miss out on calling it for new tasks. The reason
1226 * for this is we manually create a stack frame for new tasks that
1227 * directly returns through ret_from_fork() or
1228 * ret_from_kernel_thread(). See copy_thread() for details.
1230 restore_sprs(old_thread, new_thread);
1232 last = _switch(old_thread, new_thread);
1234 #ifdef CONFIG_PPC_BOOK3S_64
1235 if (current_thread_info()->local_flags & _TLF_LAZY_MMU) {
1236 current_thread_info()->local_flags &= ~_TLF_LAZY_MMU;
1237 batch = this_cpu_ptr(&ppc64_tlb_batch);
1238 batch->active = 1;
1241 if (current_thread_info()->task->thread.regs) {
1242 restore_math(current_thread_info()->task->thread.regs);
1245 * The copy-paste buffer can only store into foreign real
1246 * addresses, so unprivileged processes can not see the
1247 * data or use it in any way unless they have foreign real
1248 * mappings. If the new process has the foreign real address
1249 * mappings, we must issue a cp_abort to clear any state and
1250 * prevent snooping, corruption or a covert channel.
1252 * DD1 allows paste into normal system memory so we do an
1253 * unpaired copy, rather than cp_abort, to clear the buffer,
1254 * since cp_abort is quite expensive.
1256 if (current_thread_info()->task->thread.used_vas) {
1257 asm volatile(PPC_CP_ABORT);
1258 } else if (cpu_has_feature(CPU_FTR_POWER9_DD1)) {
1259 asm volatile(PPC_COPY(%0, %1)
1260 : : "r"(dummy_copy_buffer), "r"(0));
1263 #endif /* CONFIG_PPC_BOOK3S_64 */
1265 return last;
1268 static int instructions_to_print = 16;
1270 static void show_instructions(struct pt_regs *regs)
1272 int i;
1273 unsigned long pc = regs->nip - (instructions_to_print * 3 / 4 *
1274 sizeof(int));
1276 printk("Instruction dump:");
1278 for (i = 0; i < instructions_to_print; i++) {
1279 int instr;
1281 if (!(i % 8))
1282 pr_cont("\n");
1284 #if !defined(CONFIG_BOOKE)
1285 /* If executing with the IMMU off, adjust pc rather
1286 * than print XXXXXXXX.
1288 if (!(regs->msr & MSR_IR))
1289 pc = (unsigned long)phys_to_virt(pc);
1290 #endif
1292 if (!__kernel_text_address(pc) ||
1293 probe_kernel_address((unsigned int __user *)pc, instr)) {
1294 pr_cont("XXXXXXXX ");
1295 } else {
1296 if (regs->nip == pc)
1297 pr_cont("<%08x> ", instr);
1298 else
1299 pr_cont("%08x ", instr);
1302 pc += sizeof(int);
1305 pr_cont("\n");
1308 struct regbit {
1309 unsigned long bit;
1310 const char *name;
1313 static struct regbit msr_bits[] = {
1314 #if defined(CONFIG_PPC64) && !defined(CONFIG_BOOKE)
1315 {MSR_SF, "SF"},
1316 {MSR_HV, "HV"},
1317 #endif
1318 {MSR_VEC, "VEC"},
1319 {MSR_VSX, "VSX"},
1320 #ifdef CONFIG_BOOKE
1321 {MSR_CE, "CE"},
1322 #endif
1323 {MSR_EE, "EE"},
1324 {MSR_PR, "PR"},
1325 {MSR_FP, "FP"},
1326 {MSR_ME, "ME"},
1327 #ifdef CONFIG_BOOKE
1328 {MSR_DE, "DE"},
1329 #else
1330 {MSR_SE, "SE"},
1331 {MSR_BE, "BE"},
1332 #endif
1333 {MSR_IR, "IR"},
1334 {MSR_DR, "DR"},
1335 {MSR_PMM, "PMM"},
1336 #ifndef CONFIG_BOOKE
1337 {MSR_RI, "RI"},
1338 {MSR_LE, "LE"},
1339 #endif
1340 {0, NULL}
1343 static void print_bits(unsigned long val, struct regbit *bits, const char *sep)
1345 const char *s = "";
1347 for (; bits->bit; ++bits)
1348 if (val & bits->bit) {
1349 pr_cont("%s%s", s, bits->name);
1350 s = sep;
1354 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1355 static struct regbit msr_tm_bits[] = {
1356 {MSR_TS_T, "T"},
1357 {MSR_TS_S, "S"},
1358 {MSR_TM, "E"},
1359 {0, NULL}
1362 static void print_tm_bits(unsigned long val)
1365 * This only prints something if at least one of the TM bit is set.
1366 * Inside the TM[], the output means:
1367 * E: Enabled (bit 32)
1368 * S: Suspended (bit 33)
1369 * T: Transactional (bit 34)
1371 if (val & (MSR_TM | MSR_TS_S | MSR_TS_T)) {
1372 pr_cont(",TM[");
1373 print_bits(val, msr_tm_bits, "");
1374 pr_cont("]");
1377 #else
1378 static void print_tm_bits(unsigned long val) {}
1379 #endif
1381 static void print_msr_bits(unsigned long val)
1383 pr_cont("<");
1384 print_bits(val, msr_bits, ",");
1385 print_tm_bits(val);
1386 pr_cont(">");
1389 #ifdef CONFIG_PPC64
1390 #define REG "%016lx"
1391 #define REGS_PER_LINE 4
1392 #define LAST_VOLATILE 13
1393 #else
1394 #define REG "%08lx"
1395 #define REGS_PER_LINE 8
1396 #define LAST_VOLATILE 12
1397 #endif
1399 void show_regs(struct pt_regs * regs)
1401 int i, trap;
1403 show_regs_print_info(KERN_DEFAULT);
1405 printk("NIP: "REG" LR: "REG" CTR: "REG"\n",
1406 regs->nip, regs->link, regs->ctr);
1407 printk("REGS: %px TRAP: %04lx %s (%s)\n",
1408 regs, regs->trap, print_tainted(), init_utsname()->release);
1409 printk("MSR: "REG" ", regs->msr);
1410 print_msr_bits(regs->msr);
1411 pr_cont(" CR: %08lx XER: %08lx\n", regs->ccr, regs->xer);
1412 trap = TRAP(regs);
1413 if ((TRAP(regs) != 0xc00) && cpu_has_feature(CPU_FTR_CFAR))
1414 pr_cont("CFAR: "REG" ", regs->orig_gpr3);
1415 if (trap == 0x200 || trap == 0x300 || trap == 0x600)
1416 #if defined(CONFIG_4xx) || defined(CONFIG_BOOKE)
1417 pr_cont("DEAR: "REG" ESR: "REG" ", regs->dar, regs->dsisr);
1418 #else
1419 pr_cont("DAR: "REG" DSISR: %08lx ", regs->dar, regs->dsisr);
1420 #endif
1421 #ifdef CONFIG_PPC64
1422 pr_cont("SOFTE: %ld ", regs->softe);
1423 #endif
1424 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1425 if (MSR_TM_ACTIVE(regs->msr))
1426 pr_cont("\nPACATMSCRATCH: %016llx ", get_paca()->tm_scratch);
1427 #endif
1429 for (i = 0; i < 32; i++) {
1430 if ((i % REGS_PER_LINE) == 0)
1431 pr_cont("\nGPR%02d: ", i);
1432 pr_cont(REG " ", regs->gpr[i]);
1433 if (i == LAST_VOLATILE && !FULL_REGS(regs))
1434 break;
1436 pr_cont("\n");
1437 #ifdef CONFIG_KALLSYMS
1439 * Lookup NIP late so we have the best change of getting the
1440 * above info out without failing
1442 printk("NIP ["REG"] %pS\n", regs->nip, (void *)regs->nip);
1443 printk("LR ["REG"] %pS\n", regs->link, (void *)regs->link);
1444 #endif
1445 show_stack(current, (unsigned long *) regs->gpr[1]);
1446 if (!user_mode(regs))
1447 show_instructions(regs);
1450 void flush_thread(void)
1452 #ifdef CONFIG_HAVE_HW_BREAKPOINT
1453 flush_ptrace_hw_breakpoint(current);
1454 #else /* CONFIG_HAVE_HW_BREAKPOINT */
1455 set_debug_reg_defaults(&current->thread);
1456 #endif /* CONFIG_HAVE_HW_BREAKPOINT */
1459 int set_thread_uses_vas(void)
1461 #ifdef CONFIG_PPC_BOOK3S_64
1462 if (!cpu_has_feature(CPU_FTR_ARCH_300))
1463 return -EINVAL;
1465 current->thread.used_vas = 1;
1468 * Even a process that has no foreign real address mapping can use
1469 * an unpaired COPY instruction (to no real effect). Issue CP_ABORT
1470 * to clear any pending COPY and prevent a covert channel.
1472 * __switch_to() will issue CP_ABORT on future context switches.
1474 asm volatile(PPC_CP_ABORT);
1476 #endif /* CONFIG_PPC_BOOK3S_64 */
1477 return 0;
1480 #ifdef CONFIG_PPC64
1481 static DEFINE_SPINLOCK(vas_thread_id_lock);
1482 static DEFINE_IDA(vas_thread_ida);
1485 * We need to assign a unique thread id to each thread in a process.
1487 * This thread id, referred to as TIDR, and separate from the Linux's tgid,
1488 * is intended to be used to direct an ASB_Notify from the hardware to the
1489 * thread, when a suitable event occurs in the system.
1491 * One such event is a "paste" instruction in the context of Fast Thread
1492 * Wakeup (aka Core-to-core wake up in the Virtual Accelerator Switchboard
1493 * (VAS) in POWER9.
1495 * To get a unique TIDR per process we could simply reuse task_pid_nr() but
1496 * the problem is that task_pid_nr() is not yet available copy_thread() is
1497 * called. Fixing that would require changing more intrusive arch-neutral
1498 * code in code path in copy_process()?.
1500 * Further, to assign unique TIDRs within each process, we need an atomic
1501 * field (or an IDR) in task_struct, which again intrudes into the arch-
1502 * neutral code. So try to assign globally unique TIDRs for now.
1504 * NOTE: TIDR 0 indicates that the thread does not need a TIDR value.
1505 * For now, only threads that expect to be notified by the VAS
1506 * hardware need a TIDR value and we assign values > 0 for those.
1508 #define MAX_THREAD_CONTEXT ((1 << 16) - 1)
1509 static int assign_thread_tidr(void)
1511 int index;
1512 int err;
1513 unsigned long flags;
1515 again:
1516 if (!ida_pre_get(&vas_thread_ida, GFP_KERNEL))
1517 return -ENOMEM;
1519 spin_lock_irqsave(&vas_thread_id_lock, flags);
1520 err = ida_get_new_above(&vas_thread_ida, 1, &index);
1521 spin_unlock_irqrestore(&vas_thread_id_lock, flags);
1523 if (err == -EAGAIN)
1524 goto again;
1525 else if (err)
1526 return err;
1528 if (index > MAX_THREAD_CONTEXT) {
1529 spin_lock_irqsave(&vas_thread_id_lock, flags);
1530 ida_remove(&vas_thread_ida, index);
1531 spin_unlock_irqrestore(&vas_thread_id_lock, flags);
1532 return -ENOMEM;
1535 return index;
1538 static void free_thread_tidr(int id)
1540 unsigned long flags;
1542 spin_lock_irqsave(&vas_thread_id_lock, flags);
1543 ida_remove(&vas_thread_ida, id);
1544 spin_unlock_irqrestore(&vas_thread_id_lock, flags);
1548 * Clear any TIDR value assigned to this thread.
1550 void clear_thread_tidr(struct task_struct *t)
1552 if (!t->thread.tidr)
1553 return;
1555 if (!cpu_has_feature(CPU_FTR_ARCH_300)) {
1556 WARN_ON_ONCE(1);
1557 return;
1560 mtspr(SPRN_TIDR, 0);
1561 free_thread_tidr(t->thread.tidr);
1562 t->thread.tidr = 0;
1565 void arch_release_task_struct(struct task_struct *t)
1567 clear_thread_tidr(t);
1571 * Assign a unique TIDR (thread id) for task @t and set it in the thread
1572 * structure. For now, we only support setting TIDR for 'current' task.
1574 int set_thread_tidr(struct task_struct *t)
1576 int rc;
1578 if (!cpu_has_feature(CPU_FTR_ARCH_300))
1579 return -EINVAL;
1581 if (t != current)
1582 return -EINVAL;
1584 if (t->thread.tidr)
1585 return 0;
1587 rc = assign_thread_tidr();
1588 if (rc < 0)
1589 return rc;
1591 t->thread.tidr = rc;
1592 mtspr(SPRN_TIDR, t->thread.tidr);
1594 return 0;
1596 EXPORT_SYMBOL_GPL(set_thread_tidr);
1598 #endif /* CONFIG_PPC64 */
1600 void
1601 release_thread(struct task_struct *t)
1606 * this gets called so that we can store coprocessor state into memory and
1607 * copy the current task into the new thread.
1609 int arch_dup_task_struct(struct task_struct *dst, struct task_struct *src)
1611 flush_all_to_thread(src);
1613 * Flush TM state out so we can copy it. __switch_to_tm() does this
1614 * flush but it removes the checkpointed state from the current CPU and
1615 * transitions the CPU out of TM mode. Hence we need to call
1616 * tm_recheckpoint_new_task() (on the same task) to restore the
1617 * checkpointed state back and the TM mode.
1619 * Can't pass dst because it isn't ready. Doesn't matter, passing
1620 * dst is only important for __switch_to()
1622 __switch_to_tm(src, src);
1624 *dst = *src;
1626 clear_task_ebb(dst);
1628 return 0;
1631 static void setup_ksp_vsid(struct task_struct *p, unsigned long sp)
1633 #ifdef CONFIG_PPC_BOOK3S_64
1634 unsigned long sp_vsid;
1635 unsigned long llp = mmu_psize_defs[mmu_linear_psize].sllp;
1637 if (radix_enabled())
1638 return;
1640 if (mmu_has_feature(MMU_FTR_1T_SEGMENT))
1641 sp_vsid = get_kernel_vsid(sp, MMU_SEGSIZE_1T)
1642 << SLB_VSID_SHIFT_1T;
1643 else
1644 sp_vsid = get_kernel_vsid(sp, MMU_SEGSIZE_256M)
1645 << SLB_VSID_SHIFT;
1646 sp_vsid |= SLB_VSID_KERNEL | llp;
1647 p->thread.ksp_vsid = sp_vsid;
1648 #endif
1652 * Copy a thread..
1656 * Copy architecture-specific thread state
1658 int copy_thread(unsigned long clone_flags, unsigned long usp,
1659 unsigned long kthread_arg, struct task_struct *p)
1661 struct pt_regs *childregs, *kregs;
1662 extern void ret_from_fork(void);
1663 extern void ret_from_kernel_thread(void);
1664 void (*f)(void);
1665 unsigned long sp = (unsigned long)task_stack_page(p) + THREAD_SIZE;
1666 struct thread_info *ti = task_thread_info(p);
1668 klp_init_thread_info(ti);
1670 /* Copy registers */
1671 sp -= sizeof(struct pt_regs);
1672 childregs = (struct pt_regs *) sp;
1673 if (unlikely(p->flags & PF_KTHREAD)) {
1674 /* kernel thread */
1675 memset(childregs, 0, sizeof(struct pt_regs));
1676 childregs->gpr[1] = sp + sizeof(struct pt_regs);
1677 /* function */
1678 if (usp)
1679 childregs->gpr[14] = ppc_function_entry((void *)usp);
1680 #ifdef CONFIG_PPC64
1681 clear_tsk_thread_flag(p, TIF_32BIT);
1682 childregs->softe = IRQS_ENABLED;
1683 #endif
1684 childregs->gpr[15] = kthread_arg;
1685 p->thread.regs = NULL; /* no user register state */
1686 ti->flags |= _TIF_RESTOREALL;
1687 f = ret_from_kernel_thread;
1688 } else {
1689 /* user thread */
1690 struct pt_regs *regs = current_pt_regs();
1691 CHECK_FULL_REGS(regs);
1692 *childregs = *regs;
1693 if (usp)
1694 childregs->gpr[1] = usp;
1695 p->thread.regs = childregs;
1696 childregs->gpr[3] = 0; /* Result from fork() */
1697 if (clone_flags & CLONE_SETTLS) {
1698 #ifdef CONFIG_PPC64
1699 if (!is_32bit_task())
1700 childregs->gpr[13] = childregs->gpr[6];
1701 else
1702 #endif
1703 childregs->gpr[2] = childregs->gpr[6];
1706 f = ret_from_fork;
1708 childregs->msr &= ~(MSR_FP|MSR_VEC|MSR_VSX);
1709 sp -= STACK_FRAME_OVERHEAD;
1712 * The way this works is that at some point in the future
1713 * some task will call _switch to switch to the new task.
1714 * That will pop off the stack frame created below and start
1715 * the new task running at ret_from_fork. The new task will
1716 * do some house keeping and then return from the fork or clone
1717 * system call, using the stack frame created above.
1719 ((unsigned long *)sp)[0] = 0;
1720 sp -= sizeof(struct pt_regs);
1721 kregs = (struct pt_regs *) sp;
1722 sp -= STACK_FRAME_OVERHEAD;
1723 p->thread.ksp = sp;
1724 #ifdef CONFIG_PPC32
1725 p->thread.ksp_limit = (unsigned long)task_stack_page(p) +
1726 _ALIGN_UP(sizeof(struct thread_info), 16);
1727 #endif
1728 #ifdef CONFIG_HAVE_HW_BREAKPOINT
1729 p->thread.ptrace_bps[0] = NULL;
1730 #endif
1732 p->thread.fp_save_area = NULL;
1733 #ifdef CONFIG_ALTIVEC
1734 p->thread.vr_save_area = NULL;
1735 #endif
1737 setup_ksp_vsid(p, sp);
1739 #ifdef CONFIG_PPC64
1740 if (cpu_has_feature(CPU_FTR_DSCR)) {
1741 p->thread.dscr_inherit = current->thread.dscr_inherit;
1742 p->thread.dscr = mfspr(SPRN_DSCR);
1744 if (cpu_has_feature(CPU_FTR_HAS_PPR))
1745 p->thread.ppr = INIT_PPR;
1747 p->thread.tidr = 0;
1748 #endif
1749 kregs->nip = ppc_function_entry(f);
1750 return 0;
1754 * Set up a thread for executing a new program
1756 void start_thread(struct pt_regs *regs, unsigned long start, unsigned long sp)
1758 #ifdef CONFIG_PPC64
1759 unsigned long load_addr = regs->gpr[2]; /* saved by ELF_PLAT_INIT */
1760 #endif
1763 * If we exec out of a kernel thread then thread.regs will not be
1764 * set. Do it now.
1766 if (!current->thread.regs) {
1767 struct pt_regs *regs = task_stack_page(current) + THREAD_SIZE;
1768 current->thread.regs = regs - 1;
1771 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1773 * Clear any transactional state, we're exec()ing. The cause is
1774 * not important as there will never be a recheckpoint so it's not
1775 * user visible.
1777 if (MSR_TM_SUSPENDED(mfmsr()))
1778 tm_reclaim_current(0);
1779 #endif
1781 memset(regs->gpr, 0, sizeof(regs->gpr));
1782 regs->ctr = 0;
1783 regs->link = 0;
1784 regs->xer = 0;
1785 regs->ccr = 0;
1786 regs->gpr[1] = sp;
1789 * We have just cleared all the nonvolatile GPRs, so make
1790 * FULL_REGS(regs) return true. This is necessary to allow
1791 * ptrace to examine the thread immediately after exec.
1793 regs->trap &= ~1UL;
1795 #ifdef CONFIG_PPC32
1796 regs->mq = 0;
1797 regs->nip = start;
1798 regs->msr = MSR_USER;
1799 #else
1800 if (!is_32bit_task()) {
1801 unsigned long entry;
1803 if (is_elf2_task()) {
1804 /* Look ma, no function descriptors! */
1805 entry = start;
1808 * Ulrich says:
1809 * The latest iteration of the ABI requires that when
1810 * calling a function (at its global entry point),
1811 * the caller must ensure r12 holds the entry point
1812 * address (so that the function can quickly
1813 * establish addressability).
1815 regs->gpr[12] = start;
1816 /* Make sure that's restored on entry to userspace. */
1817 set_thread_flag(TIF_RESTOREALL);
1818 } else {
1819 unsigned long toc;
1821 /* start is a relocated pointer to the function
1822 * descriptor for the elf _start routine. The first
1823 * entry in the function descriptor is the entry
1824 * address of _start and the second entry is the TOC
1825 * value we need to use.
1827 __get_user(entry, (unsigned long __user *)start);
1828 __get_user(toc, (unsigned long __user *)start+1);
1830 /* Check whether the e_entry function descriptor entries
1831 * need to be relocated before we can use them.
1833 if (load_addr != 0) {
1834 entry += load_addr;
1835 toc += load_addr;
1837 regs->gpr[2] = toc;
1839 regs->nip = entry;
1840 regs->msr = MSR_USER64;
1841 } else {
1842 regs->nip = start;
1843 regs->gpr[2] = 0;
1844 regs->msr = MSR_USER32;
1846 #endif
1847 #ifdef CONFIG_VSX
1848 current->thread.used_vsr = 0;
1849 #endif
1850 current->thread.load_fp = 0;
1851 memset(&current->thread.fp_state, 0, sizeof(current->thread.fp_state));
1852 current->thread.fp_save_area = NULL;
1853 #ifdef CONFIG_ALTIVEC
1854 memset(&current->thread.vr_state, 0, sizeof(current->thread.vr_state));
1855 current->thread.vr_state.vscr.u[3] = 0x00010000; /* Java mode disabled */
1856 current->thread.vr_save_area = NULL;
1857 current->thread.vrsave = 0;
1858 current->thread.used_vr = 0;
1859 current->thread.load_vec = 0;
1860 #endif /* CONFIG_ALTIVEC */
1861 #ifdef CONFIG_SPE
1862 memset(current->thread.evr, 0, sizeof(current->thread.evr));
1863 current->thread.acc = 0;
1864 current->thread.spefscr = 0;
1865 current->thread.used_spe = 0;
1866 #endif /* CONFIG_SPE */
1867 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1868 current->thread.tm_tfhar = 0;
1869 current->thread.tm_texasr = 0;
1870 current->thread.tm_tfiar = 0;
1871 current->thread.load_tm = 0;
1872 #endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
1874 thread_pkey_regs_init(&current->thread);
1876 EXPORT_SYMBOL(start_thread);
1878 #define PR_FP_ALL_EXCEPT (PR_FP_EXC_DIV | PR_FP_EXC_OVF | PR_FP_EXC_UND \
1879 | PR_FP_EXC_RES | PR_FP_EXC_INV)
1881 int set_fpexc_mode(struct task_struct *tsk, unsigned int val)
1883 struct pt_regs *regs = tsk->thread.regs;
1885 /* This is a bit hairy. If we are an SPE enabled processor
1886 * (have embedded fp) we store the IEEE exception enable flags in
1887 * fpexc_mode. fpexc_mode is also used for setting FP exception
1888 * mode (asyn, precise, disabled) for 'Classic' FP. */
1889 if (val & PR_FP_EXC_SW_ENABLE) {
1890 #ifdef CONFIG_SPE
1891 if (cpu_has_feature(CPU_FTR_SPE)) {
1893 * When the sticky exception bits are set
1894 * directly by userspace, it must call prctl
1895 * with PR_GET_FPEXC (with PR_FP_EXC_SW_ENABLE
1896 * in the existing prctl settings) or
1897 * PR_SET_FPEXC (with PR_FP_EXC_SW_ENABLE in
1898 * the bits being set). <fenv.h> functions
1899 * saving and restoring the whole
1900 * floating-point environment need to do so
1901 * anyway to restore the prctl settings from
1902 * the saved environment.
1904 tsk->thread.spefscr_last = mfspr(SPRN_SPEFSCR);
1905 tsk->thread.fpexc_mode = val &
1906 (PR_FP_EXC_SW_ENABLE | PR_FP_ALL_EXCEPT);
1907 return 0;
1908 } else {
1909 return -EINVAL;
1911 #else
1912 return -EINVAL;
1913 #endif
1916 /* on a CONFIG_SPE this does not hurt us. The bits that
1917 * __pack_fe01 use do not overlap with bits used for
1918 * PR_FP_EXC_SW_ENABLE. Additionally, the MSR[FE0,FE1] bits
1919 * on CONFIG_SPE implementations are reserved so writing to
1920 * them does not change anything */
1921 if (val > PR_FP_EXC_PRECISE)
1922 return -EINVAL;
1923 tsk->thread.fpexc_mode = __pack_fe01(val);
1924 if (regs != NULL && (regs->msr & MSR_FP) != 0)
1925 regs->msr = (regs->msr & ~(MSR_FE0|MSR_FE1))
1926 | tsk->thread.fpexc_mode;
1927 return 0;
1930 int get_fpexc_mode(struct task_struct *tsk, unsigned long adr)
1932 unsigned int val;
1934 if (tsk->thread.fpexc_mode & PR_FP_EXC_SW_ENABLE)
1935 #ifdef CONFIG_SPE
1936 if (cpu_has_feature(CPU_FTR_SPE)) {
1938 * When the sticky exception bits are set
1939 * directly by userspace, it must call prctl
1940 * with PR_GET_FPEXC (with PR_FP_EXC_SW_ENABLE
1941 * in the existing prctl settings) or
1942 * PR_SET_FPEXC (with PR_FP_EXC_SW_ENABLE in
1943 * the bits being set). <fenv.h> functions
1944 * saving and restoring the whole
1945 * floating-point environment need to do so
1946 * anyway to restore the prctl settings from
1947 * the saved environment.
1949 tsk->thread.spefscr_last = mfspr(SPRN_SPEFSCR);
1950 val = tsk->thread.fpexc_mode;
1951 } else
1952 return -EINVAL;
1953 #else
1954 return -EINVAL;
1955 #endif
1956 else
1957 val = __unpack_fe01(tsk->thread.fpexc_mode);
1958 return put_user(val, (unsigned int __user *) adr);
1961 int set_endian(struct task_struct *tsk, unsigned int val)
1963 struct pt_regs *regs = tsk->thread.regs;
1965 if ((val == PR_ENDIAN_LITTLE && !cpu_has_feature(CPU_FTR_REAL_LE)) ||
1966 (val == PR_ENDIAN_PPC_LITTLE && !cpu_has_feature(CPU_FTR_PPC_LE)))
1967 return -EINVAL;
1969 if (regs == NULL)
1970 return -EINVAL;
1972 if (val == PR_ENDIAN_BIG)
1973 regs->msr &= ~MSR_LE;
1974 else if (val == PR_ENDIAN_LITTLE || val == PR_ENDIAN_PPC_LITTLE)
1975 regs->msr |= MSR_LE;
1976 else
1977 return -EINVAL;
1979 return 0;
1982 int get_endian(struct task_struct *tsk, unsigned long adr)
1984 struct pt_regs *regs = tsk->thread.regs;
1985 unsigned int val;
1987 if (!cpu_has_feature(CPU_FTR_PPC_LE) &&
1988 !cpu_has_feature(CPU_FTR_REAL_LE))
1989 return -EINVAL;
1991 if (regs == NULL)
1992 return -EINVAL;
1994 if (regs->msr & MSR_LE) {
1995 if (cpu_has_feature(CPU_FTR_REAL_LE))
1996 val = PR_ENDIAN_LITTLE;
1997 else
1998 val = PR_ENDIAN_PPC_LITTLE;
1999 } else
2000 val = PR_ENDIAN_BIG;
2002 return put_user(val, (unsigned int __user *)adr);
2005 int set_unalign_ctl(struct task_struct *tsk, unsigned int val)
2007 tsk->thread.align_ctl = val;
2008 return 0;
2011 int get_unalign_ctl(struct task_struct *tsk, unsigned long adr)
2013 return put_user(tsk->thread.align_ctl, (unsigned int __user *)adr);
2016 static inline int valid_irq_stack(unsigned long sp, struct task_struct *p,
2017 unsigned long nbytes)
2019 unsigned long stack_page;
2020 unsigned long cpu = task_cpu(p);
2023 * Avoid crashing if the stack has overflowed and corrupted
2024 * task_cpu(p), which is in the thread_info struct.
2026 if (cpu < NR_CPUS && cpu_possible(cpu)) {
2027 stack_page = (unsigned long) hardirq_ctx[cpu];
2028 if (sp >= stack_page + sizeof(struct thread_struct)
2029 && sp <= stack_page + THREAD_SIZE - nbytes)
2030 return 1;
2032 stack_page = (unsigned long) softirq_ctx[cpu];
2033 if (sp >= stack_page + sizeof(struct thread_struct)
2034 && sp <= stack_page + THREAD_SIZE - nbytes)
2035 return 1;
2037 return 0;
2040 int validate_sp(unsigned long sp, struct task_struct *p,
2041 unsigned long nbytes)
2043 unsigned long stack_page = (unsigned long)task_stack_page(p);
2045 if (sp >= stack_page + sizeof(struct thread_struct)
2046 && sp <= stack_page + THREAD_SIZE - nbytes)
2047 return 1;
2049 return valid_irq_stack(sp, p, nbytes);
2052 EXPORT_SYMBOL(validate_sp);
2054 unsigned long get_wchan(struct task_struct *p)
2056 unsigned long ip, sp;
2057 int count = 0;
2059 if (!p || p == current || p->state == TASK_RUNNING)
2060 return 0;
2062 sp = p->thread.ksp;
2063 if (!validate_sp(sp, p, STACK_FRAME_OVERHEAD))
2064 return 0;
2066 do {
2067 sp = *(unsigned long *)sp;
2068 if (!validate_sp(sp, p, STACK_FRAME_OVERHEAD) ||
2069 p->state == TASK_RUNNING)
2070 return 0;
2071 if (count > 0) {
2072 ip = ((unsigned long *)sp)[STACK_FRAME_LR_SAVE];
2073 if (!in_sched_functions(ip))
2074 return ip;
2076 } while (count++ < 16);
2077 return 0;
2080 static int kstack_depth_to_print = CONFIG_PRINT_STACK_DEPTH;
2082 void show_stack(struct task_struct *tsk, unsigned long *stack)
2084 unsigned long sp, ip, lr, newsp;
2085 int count = 0;
2086 int firstframe = 1;
2087 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
2088 int curr_frame = current->curr_ret_stack;
2089 extern void return_to_handler(void);
2090 unsigned long rth = (unsigned long)return_to_handler;
2091 #endif
2093 sp = (unsigned long) stack;
2094 if (tsk == NULL)
2095 tsk = current;
2096 if (sp == 0) {
2097 if (tsk == current)
2098 sp = current_stack_pointer();
2099 else
2100 sp = tsk->thread.ksp;
2103 lr = 0;
2104 printk("Call Trace:\n");
2105 do {
2106 if (!validate_sp(sp, tsk, STACK_FRAME_OVERHEAD))
2107 return;
2109 stack = (unsigned long *) sp;
2110 newsp = stack[0];
2111 ip = stack[STACK_FRAME_LR_SAVE];
2112 if (!firstframe || ip != lr) {
2113 printk("["REG"] ["REG"] %pS", sp, ip, (void *)ip);
2114 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
2115 if ((ip == rth) && curr_frame >= 0) {
2116 pr_cont(" (%pS)",
2117 (void *)current->ret_stack[curr_frame].ret);
2118 curr_frame--;
2120 #endif
2121 if (firstframe)
2122 pr_cont(" (unreliable)");
2123 pr_cont("\n");
2125 firstframe = 0;
2128 * See if this is an exception frame.
2129 * We look for the "regshere" marker in the current frame.
2131 if (validate_sp(sp, tsk, STACK_INT_FRAME_SIZE)
2132 && stack[STACK_FRAME_MARKER] == STACK_FRAME_REGS_MARKER) {
2133 struct pt_regs *regs = (struct pt_regs *)
2134 (sp + STACK_FRAME_OVERHEAD);
2135 lr = regs->link;
2136 printk("--- interrupt: %lx at %pS\n LR = %pS\n",
2137 regs->trap, (void *)regs->nip, (void *)lr);
2138 firstframe = 1;
2141 sp = newsp;
2142 } while (count++ < kstack_depth_to_print);
2145 #ifdef CONFIG_PPC64
2146 /* Called with hard IRQs off */
2147 void notrace __ppc64_runlatch_on(void)
2149 struct thread_info *ti = current_thread_info();
2151 if (cpu_has_feature(CPU_FTR_ARCH_206)) {
2153 * Least significant bit (RUN) is the only writable bit of
2154 * the CTRL register, so we can avoid mfspr. 2.06 is not the
2155 * earliest ISA where this is the case, but it's convenient.
2157 mtspr(SPRN_CTRLT, CTRL_RUNLATCH);
2158 } else {
2159 unsigned long ctrl;
2162 * Some architectures (e.g., Cell) have writable fields other
2163 * than RUN, so do the read-modify-write.
2165 ctrl = mfspr(SPRN_CTRLF);
2166 ctrl |= CTRL_RUNLATCH;
2167 mtspr(SPRN_CTRLT, ctrl);
2170 ti->local_flags |= _TLF_RUNLATCH;
2173 /* Called with hard IRQs off */
2174 void notrace __ppc64_runlatch_off(void)
2176 struct thread_info *ti = current_thread_info();
2178 ti->local_flags &= ~_TLF_RUNLATCH;
2180 if (cpu_has_feature(CPU_FTR_ARCH_206)) {
2181 mtspr(SPRN_CTRLT, 0);
2182 } else {
2183 unsigned long ctrl;
2185 ctrl = mfspr(SPRN_CTRLF);
2186 ctrl &= ~CTRL_RUNLATCH;
2187 mtspr(SPRN_CTRLT, ctrl);
2190 #endif /* CONFIG_PPC64 */
2192 unsigned long arch_align_stack(unsigned long sp)
2194 if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
2195 sp -= get_random_int() & ~PAGE_MASK;
2196 return sp & ~0xf;
2199 static inline unsigned long brk_rnd(void)
2201 unsigned long rnd = 0;
2203 /* 8MB for 32bit, 1GB for 64bit */
2204 if (is_32bit_task())
2205 rnd = (get_random_long() % (1UL<<(23-PAGE_SHIFT)));
2206 else
2207 rnd = (get_random_long() % (1UL<<(30-PAGE_SHIFT)));
2209 return rnd << PAGE_SHIFT;
2212 unsigned long arch_randomize_brk(struct mm_struct *mm)
2214 unsigned long base = mm->brk;
2215 unsigned long ret;
2217 #ifdef CONFIG_PPC_BOOK3S_64
2219 * If we are using 1TB segments and we are allowed to randomise
2220 * the heap, we can put it above 1TB so it is backed by a 1TB
2221 * segment. Otherwise the heap will be in the bottom 1TB
2222 * which always uses 256MB segments and this may result in a
2223 * performance penalty. We don't need to worry about radix. For
2224 * radix, mmu_highuser_ssize remains unchanged from 256MB.
2226 if (!is_32bit_task() && (mmu_highuser_ssize == MMU_SEGSIZE_1T))
2227 base = max_t(unsigned long, mm->brk, 1UL << SID_SHIFT_1T);
2228 #endif
2230 ret = PAGE_ALIGN(base + brk_rnd());
2232 if (ret < mm->brk)
2233 return mm->brk;
2235 return ret;