3 * Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org)
5 * Derived from "arch/m68k/kernel/ptrace.c"
6 * Copyright (C) 1994 by Hamish Macdonald
7 * Taken from linux/kernel/ptrace.c and modified for M680x0.
8 * linux/kernel/ptrace.c is by Ross Biro 1/23/92, edited by Linus Torvalds
10 * Modified by Cort Dougan (cort@hq.fsmlabs.com)
11 * and Paul Mackerras (paulus@samba.org).
13 * This file is subject to the terms and conditions of the GNU General
14 * Public License. See the file README.legal in the main directory of
15 * this archive for more details.
18 #include <linux/kernel.h>
19 #include <linux/sched.h>
21 #include <linux/smp.h>
22 #include <linux/errno.h>
23 #include <linux/ptrace.h>
24 #include <linux/regset.h>
25 #include <linux/tracehook.h>
26 #include <linux/elf.h>
27 #include <linux/user.h>
28 #include <linux/security.h>
29 #include <linux/signal.h>
30 #include <linux/seccomp.h>
31 #include <linux/audit.h>
32 #include <trace/syscall.h>
33 #include <linux/hw_breakpoint.h>
34 #include <linux/perf_event.h>
35 #include <linux/context_tracking.h>
37 #include <linux/uaccess.h>
38 #include <linux/pkeys.h>
40 #include <asm/pgtable.h>
41 #include <asm/switch_to.h>
43 #include <asm/asm-prototypes.h>
45 #define CREATE_TRACE_POINTS
46 #include <trace/events/syscalls.h>
49 * The parameter save area on the stack is used to store arguments being passed
50 * to callee function and is located at fixed offset from stack pointer.
53 #define PARAMETER_SAVE_AREA_OFFSET 24 /* bytes */
54 #else /* CONFIG_PPC32 */
55 #define PARAMETER_SAVE_AREA_OFFSET 48 /* bytes */
58 struct pt_regs_offset
{
63 #define STR(s) #s /* convert to string */
64 #define REG_OFFSET_NAME(r) {.name = #r, .offset = offsetof(struct pt_regs, r)}
65 #define GPR_OFFSET_NAME(num) \
66 {.name = STR(r##num), .offset = offsetof(struct pt_regs, gpr[num])}, \
67 {.name = STR(gpr##num), .offset = offsetof(struct pt_regs, gpr[num])}
68 #define REG_OFFSET_END {.name = NULL, .offset = 0}
70 #define TVSO(f) (offsetof(struct thread_vr_state, f))
71 #define TFSO(f) (offsetof(struct thread_fp_state, f))
72 #define TSO(f) (offsetof(struct thread_struct, f))
74 static const struct pt_regs_offset regoffset_table
[] = {
107 REG_OFFSET_NAME(nip
),
108 REG_OFFSET_NAME(msr
),
109 REG_OFFSET_NAME(ctr
),
110 REG_OFFSET_NAME(link
),
111 REG_OFFSET_NAME(xer
),
112 REG_OFFSET_NAME(ccr
),
114 REG_OFFSET_NAME(softe
),
118 REG_OFFSET_NAME(trap
),
119 REG_OFFSET_NAME(dar
),
120 REG_OFFSET_NAME(dsisr
),
124 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
125 static void flush_tmregs_to_thread(struct task_struct
*tsk
)
128 * If task is not current, it will have been flushed already to
129 * it's thread_struct during __switch_to().
131 * A reclaim flushes ALL the state or if not in TM save TM SPRs
132 * in the appropriate thread structures from live.
135 if ((!cpu_has_feature(CPU_FTR_TM
)) || (tsk
!= current
))
138 if (MSR_TM_SUSPENDED(mfmsr())) {
139 tm_reclaim_current(TM_CAUSE_SIGNAL
);
142 tm_save_sprs(&(tsk
->thread
));
146 static inline void flush_tmregs_to_thread(struct task_struct
*tsk
) { }
150 * regs_query_register_offset() - query register offset from its name
151 * @name: the name of a register
153 * regs_query_register_offset() returns the offset of a register in struct
154 * pt_regs from its name. If the name is invalid, this returns -EINVAL;
156 int regs_query_register_offset(const char *name
)
158 const struct pt_regs_offset
*roff
;
159 for (roff
= regoffset_table
; roff
->name
!= NULL
; roff
++)
160 if (!strcmp(roff
->name
, name
))
166 * regs_query_register_name() - query register name from its offset
167 * @offset: the offset of a register in struct pt_regs.
169 * regs_query_register_name() returns the name of a register from its
170 * offset in struct pt_regs. If the @offset is invalid, this returns NULL;
172 const char *regs_query_register_name(unsigned int offset
)
174 const struct pt_regs_offset
*roff
;
175 for (roff
= regoffset_table
; roff
->name
!= NULL
; roff
++)
176 if (roff
->offset
== offset
)
182 * does not yet catch signals sent when the child dies.
183 * in exit.c or in signal.c.
187 * Set of msr bits that gdb can change on behalf of a process.
189 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
190 #define MSR_DEBUGCHANGE 0
192 #define MSR_DEBUGCHANGE (MSR_SE | MSR_BE)
196 * Max register writeable via put_reg
199 #define PT_MAX_PUT_REG PT_MQ
201 #define PT_MAX_PUT_REG PT_CCR
204 static unsigned long get_user_msr(struct task_struct
*task
)
206 return task
->thread
.regs
->msr
| task
->thread
.fpexc_mode
;
209 static int set_user_msr(struct task_struct
*task
, unsigned long msr
)
211 task
->thread
.regs
->msr
&= ~MSR_DEBUGCHANGE
;
212 task
->thread
.regs
->msr
|= msr
& MSR_DEBUGCHANGE
;
216 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
217 static unsigned long get_user_ckpt_msr(struct task_struct
*task
)
219 return task
->thread
.ckpt_regs
.msr
| task
->thread
.fpexc_mode
;
222 static int set_user_ckpt_msr(struct task_struct
*task
, unsigned long msr
)
224 task
->thread
.ckpt_regs
.msr
&= ~MSR_DEBUGCHANGE
;
225 task
->thread
.ckpt_regs
.msr
|= msr
& MSR_DEBUGCHANGE
;
229 static int set_user_ckpt_trap(struct task_struct
*task
, unsigned long trap
)
231 task
->thread
.ckpt_regs
.trap
= trap
& 0xfff0;
237 static int get_user_dscr(struct task_struct
*task
, unsigned long *data
)
239 *data
= task
->thread
.dscr
;
243 static int set_user_dscr(struct task_struct
*task
, unsigned long dscr
)
245 task
->thread
.dscr
= dscr
;
246 task
->thread
.dscr_inherit
= 1;
250 static int get_user_dscr(struct task_struct
*task
, unsigned long *data
)
255 static int set_user_dscr(struct task_struct
*task
, unsigned long dscr
)
262 * We prevent mucking around with the reserved area of trap
263 * which are used internally by the kernel.
265 static int set_user_trap(struct task_struct
*task
, unsigned long trap
)
267 task
->thread
.regs
->trap
= trap
& 0xfff0;
272 * Get contents of register REGNO in task TASK.
274 int ptrace_get_reg(struct task_struct
*task
, int regno
, unsigned long *data
)
276 if ((task
->thread
.regs
== NULL
) || !data
)
279 if (regno
== PT_MSR
) {
280 *data
= get_user_msr(task
);
284 if (regno
== PT_DSCR
)
285 return get_user_dscr(task
, data
);
289 * softe copies paca->irq_soft_mask variable state. Since irq_soft_mask is
290 * no more used as a flag, lets force usr to alway see the softe value as 1
291 * which means interrupts are not soft disabled.
293 if (regno
== PT_SOFTE
) {
299 if (regno
< (sizeof(struct pt_regs
) / sizeof(unsigned long))) {
300 *data
= ((unsigned long *)task
->thread
.regs
)[regno
];
308 * Write contents of register REGNO in task TASK.
310 int ptrace_put_reg(struct task_struct
*task
, int regno
, unsigned long data
)
312 if (task
->thread
.regs
== NULL
)
316 return set_user_msr(task
, data
);
317 if (regno
== PT_TRAP
)
318 return set_user_trap(task
, data
);
319 if (regno
== PT_DSCR
)
320 return set_user_dscr(task
, data
);
322 if (regno
<= PT_MAX_PUT_REG
) {
323 ((unsigned long *)task
->thread
.regs
)[regno
] = data
;
329 static int gpr_get(struct task_struct
*target
, const struct user_regset
*regset
,
330 unsigned int pos
, unsigned int count
,
331 void *kbuf
, void __user
*ubuf
)
335 if (target
->thread
.regs
== NULL
)
338 if (!FULL_REGS(target
->thread
.regs
)) {
339 /* We have a partial register set. Fill 14-31 with bogus values */
340 for (i
= 14; i
< 32; i
++)
341 target
->thread
.regs
->gpr
[i
] = NV_REG_POISON
;
344 ret
= user_regset_copyout(&pos
, &count
, &kbuf
, &ubuf
,
346 0, offsetof(struct pt_regs
, msr
));
348 unsigned long msr
= get_user_msr(target
);
349 ret
= user_regset_copyout(&pos
, &count
, &kbuf
, &ubuf
, &msr
,
350 offsetof(struct pt_regs
, msr
),
351 offsetof(struct pt_regs
, msr
) +
355 BUILD_BUG_ON(offsetof(struct pt_regs
, orig_gpr3
) !=
356 offsetof(struct pt_regs
, msr
) + sizeof(long));
359 ret
= user_regset_copyout(&pos
, &count
, &kbuf
, &ubuf
,
360 &target
->thread
.regs
->orig_gpr3
,
361 offsetof(struct pt_regs
, orig_gpr3
),
362 sizeof(struct pt_regs
));
364 ret
= user_regset_copyout_zero(&pos
, &count
, &kbuf
, &ubuf
,
365 sizeof(struct pt_regs
), -1);
370 static int gpr_set(struct task_struct
*target
, const struct user_regset
*regset
,
371 unsigned int pos
, unsigned int count
,
372 const void *kbuf
, const void __user
*ubuf
)
377 if (target
->thread
.regs
== NULL
)
380 CHECK_FULL_REGS(target
->thread
.regs
);
382 ret
= user_regset_copyin(&pos
, &count
, &kbuf
, &ubuf
,
384 0, PT_MSR
* sizeof(reg
));
386 if (!ret
&& count
> 0) {
387 ret
= user_regset_copyin(&pos
, &count
, &kbuf
, &ubuf
, ®
,
388 PT_MSR
* sizeof(reg
),
389 (PT_MSR
+ 1) * sizeof(reg
));
391 ret
= set_user_msr(target
, reg
);
394 BUILD_BUG_ON(offsetof(struct pt_regs
, orig_gpr3
) !=
395 offsetof(struct pt_regs
, msr
) + sizeof(long));
398 ret
= user_regset_copyin(&pos
, &count
, &kbuf
, &ubuf
,
399 &target
->thread
.regs
->orig_gpr3
,
400 PT_ORIG_R3
* sizeof(reg
),
401 (PT_MAX_PUT_REG
+ 1) * sizeof(reg
));
403 if (PT_MAX_PUT_REG
+ 1 < PT_TRAP
&& !ret
)
404 ret
= user_regset_copyin_ignore(
405 &pos
, &count
, &kbuf
, &ubuf
,
406 (PT_MAX_PUT_REG
+ 1) * sizeof(reg
),
407 PT_TRAP
* sizeof(reg
));
409 if (!ret
&& count
> 0) {
410 ret
= user_regset_copyin(&pos
, &count
, &kbuf
, &ubuf
, ®
,
411 PT_TRAP
* sizeof(reg
),
412 (PT_TRAP
+ 1) * sizeof(reg
));
414 ret
= set_user_trap(target
, reg
);
418 ret
= user_regset_copyin_ignore(
419 &pos
, &count
, &kbuf
, &ubuf
,
420 (PT_TRAP
+ 1) * sizeof(reg
), -1);
426 * Regardless of transactions, 'fp_state' holds the current running
427 * value of all FPR registers and 'ckfp_state' holds the last checkpointed
428 * value of all FPR registers for the current transaction.
430 * Userspace interface buffer layout:
437 static int fpr_get(struct task_struct
*target
, const struct user_regset
*regset
,
438 unsigned int pos
, unsigned int count
,
439 void *kbuf
, void __user
*ubuf
)
445 flush_fp_to_thread(target
);
447 /* copy to local buffer then write that out */
448 for (i
= 0; i
< 32 ; i
++)
449 buf
[i
] = target
->thread
.TS_FPR(i
);
450 buf
[32] = target
->thread
.fp_state
.fpscr
;
451 return user_regset_copyout(&pos
, &count
, &kbuf
, &ubuf
, buf
, 0, -1);
453 BUILD_BUG_ON(offsetof(struct thread_fp_state
, fpscr
) !=
454 offsetof(struct thread_fp_state
, fpr
[32]));
456 flush_fp_to_thread(target
);
458 return user_regset_copyout(&pos
, &count
, &kbuf
, &ubuf
,
459 &target
->thread
.fp_state
, 0, -1);
464 * Regardless of transactions, 'fp_state' holds the current running
465 * value of all FPR registers and 'ckfp_state' holds the last checkpointed
466 * value of all FPR registers for the current transaction.
468 * Userspace interface buffer layout:
476 static int fpr_set(struct task_struct
*target
, const struct user_regset
*regset
,
477 unsigned int pos
, unsigned int count
,
478 const void *kbuf
, const void __user
*ubuf
)
484 flush_fp_to_thread(target
);
486 for (i
= 0; i
< 32 ; i
++)
487 buf
[i
] = target
->thread
.TS_FPR(i
);
488 buf
[32] = target
->thread
.fp_state
.fpscr
;
490 /* copy to local buffer then write that out */
491 i
= user_regset_copyin(&pos
, &count
, &kbuf
, &ubuf
, buf
, 0, -1);
495 for (i
= 0; i
< 32 ; i
++)
496 target
->thread
.TS_FPR(i
) = buf
[i
];
497 target
->thread
.fp_state
.fpscr
= buf
[32];
500 BUILD_BUG_ON(offsetof(struct thread_fp_state
, fpscr
) !=
501 offsetof(struct thread_fp_state
, fpr
[32]));
503 flush_fp_to_thread(target
);
505 return user_regset_copyin(&pos
, &count
, &kbuf
, &ubuf
,
506 &target
->thread
.fp_state
, 0, -1);
510 #ifdef CONFIG_ALTIVEC
512 * Get/set all the altivec registers vr0..vr31, vscr, vrsave, in one go.
513 * The transfer totals 34 quadword. Quadwords 0-31 contain the
514 * corresponding vector registers. Quadword 32 contains the vscr as the
515 * last word (offset 12) within that quadword. Quadword 33 contains the
516 * vrsave as the first word (offset 0) within the quadword.
518 * This definition of the VMX state is compatible with the current PPC32
519 * ptrace interface. This allows signal handling and ptrace to use the
520 * same structures. This also simplifies the implementation of a bi-arch
521 * (combined (32- and 64-bit) gdb.
524 static int vr_active(struct task_struct
*target
,
525 const struct user_regset
*regset
)
527 flush_altivec_to_thread(target
);
528 return target
->thread
.used_vr
? regset
->n
: 0;
532 * Regardless of transactions, 'vr_state' holds the current running
533 * value of all the VMX registers and 'ckvr_state' holds the last
534 * checkpointed value of all the VMX registers for the current
535 * transaction to fall back on in case it aborts.
537 * Userspace interface buffer layout:
545 static int vr_get(struct task_struct
*target
, const struct user_regset
*regset
,
546 unsigned int pos
, unsigned int count
,
547 void *kbuf
, void __user
*ubuf
)
551 flush_altivec_to_thread(target
);
553 BUILD_BUG_ON(offsetof(struct thread_vr_state
, vscr
) !=
554 offsetof(struct thread_vr_state
, vr
[32]));
556 ret
= user_regset_copyout(&pos
, &count
, &kbuf
, &ubuf
,
557 &target
->thread
.vr_state
, 0,
558 33 * sizeof(vector128
));
561 * Copy out only the low-order word of vrsave.
567 memset(&vrsave
, 0, sizeof(vrsave
));
569 vrsave
.word
= target
->thread
.vrsave
;
571 ret
= user_regset_copyout(&pos
, &count
, &kbuf
, &ubuf
, &vrsave
,
572 33 * sizeof(vector128
), -1);
579 * Regardless of transactions, 'vr_state' holds the current running
580 * value of all the VMX registers and 'ckvr_state' holds the last
581 * checkpointed value of all the VMX registers for the current
582 * transaction to fall back on in case it aborts.
584 * Userspace interface buffer layout:
592 static int vr_set(struct task_struct
*target
, const struct user_regset
*regset
,
593 unsigned int pos
, unsigned int count
,
594 const void *kbuf
, const void __user
*ubuf
)
598 flush_altivec_to_thread(target
);
600 BUILD_BUG_ON(offsetof(struct thread_vr_state
, vscr
) !=
601 offsetof(struct thread_vr_state
, vr
[32]));
603 ret
= user_regset_copyin(&pos
, &count
, &kbuf
, &ubuf
,
604 &target
->thread
.vr_state
, 0,
605 33 * sizeof(vector128
));
606 if (!ret
&& count
> 0) {
608 * We use only the first word of vrsave.
614 memset(&vrsave
, 0, sizeof(vrsave
));
616 vrsave
.word
= target
->thread
.vrsave
;
618 ret
= user_regset_copyin(&pos
, &count
, &kbuf
, &ubuf
, &vrsave
,
619 33 * sizeof(vector128
), -1);
621 target
->thread
.vrsave
= vrsave
.word
;
626 #endif /* CONFIG_ALTIVEC */
630 * Currently to set and and get all the vsx state, you need to call
631 * the fp and VMX calls as well. This only get/sets the lower 32
632 * 128bit VSX registers.
635 static int vsr_active(struct task_struct
*target
,
636 const struct user_regset
*regset
)
638 flush_vsx_to_thread(target
);
639 return target
->thread
.used_vsr
? regset
->n
: 0;
643 * Regardless of transactions, 'fp_state' holds the current running
644 * value of all FPR registers and 'ckfp_state' holds the last
645 * checkpointed value of all FPR registers for the current
648 * Userspace interface buffer layout:
654 static int vsr_get(struct task_struct
*target
, const struct user_regset
*regset
,
655 unsigned int pos
, unsigned int count
,
656 void *kbuf
, void __user
*ubuf
)
661 flush_tmregs_to_thread(target
);
662 flush_fp_to_thread(target
);
663 flush_altivec_to_thread(target
);
664 flush_vsx_to_thread(target
);
666 for (i
= 0; i
< 32 ; i
++)
667 buf
[i
] = target
->thread
.fp_state
.fpr
[i
][TS_VSRLOWOFFSET
];
669 ret
= user_regset_copyout(&pos
, &count
, &kbuf
, &ubuf
,
670 buf
, 0, 32 * sizeof(double));
676 * Regardless of transactions, 'fp_state' holds the current running
677 * value of all FPR registers and 'ckfp_state' holds the last
678 * checkpointed value of all FPR registers for the current
681 * Userspace interface buffer layout:
687 static int vsr_set(struct task_struct
*target
, const struct user_regset
*regset
,
688 unsigned int pos
, unsigned int count
,
689 const void *kbuf
, const void __user
*ubuf
)
694 flush_tmregs_to_thread(target
);
695 flush_fp_to_thread(target
);
696 flush_altivec_to_thread(target
);
697 flush_vsx_to_thread(target
);
699 for (i
= 0; i
< 32 ; i
++)
700 buf
[i
] = target
->thread
.fp_state
.fpr
[i
][TS_VSRLOWOFFSET
];
702 ret
= user_regset_copyin(&pos
, &count
, &kbuf
, &ubuf
,
703 buf
, 0, 32 * sizeof(double));
705 for (i
= 0; i
< 32 ; i
++)
706 target
->thread
.fp_state
.fpr
[i
][TS_VSRLOWOFFSET
] = buf
[i
];
710 #endif /* CONFIG_VSX */
715 * For get_evrregs/set_evrregs functions 'data' has the following layout:
724 static int evr_active(struct task_struct
*target
,
725 const struct user_regset
*regset
)
727 flush_spe_to_thread(target
);
728 return target
->thread
.used_spe
? regset
->n
: 0;
731 static int evr_get(struct task_struct
*target
, const struct user_regset
*regset
,
732 unsigned int pos
, unsigned int count
,
733 void *kbuf
, void __user
*ubuf
)
737 flush_spe_to_thread(target
);
739 ret
= user_regset_copyout(&pos
, &count
, &kbuf
, &ubuf
,
741 0, sizeof(target
->thread
.evr
));
743 BUILD_BUG_ON(offsetof(struct thread_struct
, acc
) + sizeof(u64
) !=
744 offsetof(struct thread_struct
, spefscr
));
747 ret
= user_regset_copyout(&pos
, &count
, &kbuf
, &ubuf
,
749 sizeof(target
->thread
.evr
), -1);
754 static int evr_set(struct task_struct
*target
, const struct user_regset
*regset
,
755 unsigned int pos
, unsigned int count
,
756 const void *kbuf
, const void __user
*ubuf
)
760 flush_spe_to_thread(target
);
762 ret
= user_regset_copyin(&pos
, &count
, &kbuf
, &ubuf
,
764 0, sizeof(target
->thread
.evr
));
766 BUILD_BUG_ON(offsetof(struct thread_struct
, acc
) + sizeof(u64
) !=
767 offsetof(struct thread_struct
, spefscr
));
770 ret
= user_regset_copyin(&pos
, &count
, &kbuf
, &ubuf
,
772 sizeof(target
->thread
.evr
), -1);
776 #endif /* CONFIG_SPE */
778 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
780 * tm_cgpr_active - get active number of registers in CGPR
781 * @target: The target task.
782 * @regset: The user regset structure.
784 * This function checks for the active number of available
785 * regisers in transaction checkpointed GPR category.
787 static int tm_cgpr_active(struct task_struct
*target
,
788 const struct user_regset
*regset
)
790 if (!cpu_has_feature(CPU_FTR_TM
))
793 if (!MSR_TM_ACTIVE(target
->thread
.regs
->msr
))
800 * tm_cgpr_get - get CGPR registers
801 * @target: The target task.
802 * @regset: The user regset structure.
803 * @pos: The buffer position.
804 * @count: Number of bytes to copy.
805 * @kbuf: Kernel buffer to copy from.
806 * @ubuf: User buffer to copy into.
808 * This function gets transaction checkpointed GPR registers.
810 * When the transaction is active, 'ckpt_regs' holds all the checkpointed
811 * GPR register values for the current transaction to fall back on if it
812 * aborts in between. This function gets those checkpointed GPR registers.
813 * The userspace interface buffer layout is as follows.
816 * struct pt_regs ckpt_regs;
819 static int tm_cgpr_get(struct task_struct
*target
,
820 const struct user_regset
*regset
,
821 unsigned int pos
, unsigned int count
,
822 void *kbuf
, void __user
*ubuf
)
826 if (!cpu_has_feature(CPU_FTR_TM
))
829 if (!MSR_TM_ACTIVE(target
->thread
.regs
->msr
))
832 flush_tmregs_to_thread(target
);
833 flush_fp_to_thread(target
);
834 flush_altivec_to_thread(target
);
836 ret
= user_regset_copyout(&pos
, &count
, &kbuf
, &ubuf
,
837 &target
->thread
.ckpt_regs
,
838 0, offsetof(struct pt_regs
, msr
));
840 unsigned long msr
= get_user_ckpt_msr(target
);
842 ret
= user_regset_copyout(&pos
, &count
, &kbuf
, &ubuf
, &msr
,
843 offsetof(struct pt_regs
, msr
),
844 offsetof(struct pt_regs
, msr
) +
848 BUILD_BUG_ON(offsetof(struct pt_regs
, orig_gpr3
) !=
849 offsetof(struct pt_regs
, msr
) + sizeof(long));
852 ret
= user_regset_copyout(&pos
, &count
, &kbuf
, &ubuf
,
853 &target
->thread
.ckpt_regs
.orig_gpr3
,
854 offsetof(struct pt_regs
, orig_gpr3
),
855 sizeof(struct pt_regs
));
857 ret
= user_regset_copyout_zero(&pos
, &count
, &kbuf
, &ubuf
,
858 sizeof(struct pt_regs
), -1);
864 * tm_cgpr_set - set the CGPR registers
865 * @target: The target task.
866 * @regset: The user regset structure.
867 * @pos: The buffer position.
868 * @count: Number of bytes to copy.
869 * @kbuf: Kernel buffer to copy into.
870 * @ubuf: User buffer to copy from.
872 * This function sets in transaction checkpointed GPR registers.
874 * When the transaction is active, 'ckpt_regs' holds the checkpointed
875 * GPR register values for the current transaction to fall back on if it
876 * aborts in between. This function sets those checkpointed GPR registers.
877 * The userspace interface buffer layout is as follows.
880 * struct pt_regs ckpt_regs;
883 static int tm_cgpr_set(struct task_struct
*target
,
884 const struct user_regset
*regset
,
885 unsigned int pos
, unsigned int count
,
886 const void *kbuf
, const void __user
*ubuf
)
891 if (!cpu_has_feature(CPU_FTR_TM
))
894 if (!MSR_TM_ACTIVE(target
->thread
.regs
->msr
))
897 flush_tmregs_to_thread(target
);
898 flush_fp_to_thread(target
);
899 flush_altivec_to_thread(target
);
901 ret
= user_regset_copyin(&pos
, &count
, &kbuf
, &ubuf
,
902 &target
->thread
.ckpt_regs
,
903 0, PT_MSR
* sizeof(reg
));
905 if (!ret
&& count
> 0) {
906 ret
= user_regset_copyin(&pos
, &count
, &kbuf
, &ubuf
, ®
,
907 PT_MSR
* sizeof(reg
),
908 (PT_MSR
+ 1) * sizeof(reg
));
910 ret
= set_user_ckpt_msr(target
, reg
);
913 BUILD_BUG_ON(offsetof(struct pt_regs
, orig_gpr3
) !=
914 offsetof(struct pt_regs
, msr
) + sizeof(long));
917 ret
= user_regset_copyin(&pos
, &count
, &kbuf
, &ubuf
,
918 &target
->thread
.ckpt_regs
.orig_gpr3
,
919 PT_ORIG_R3
* sizeof(reg
),
920 (PT_MAX_PUT_REG
+ 1) * sizeof(reg
));
922 if (PT_MAX_PUT_REG
+ 1 < PT_TRAP
&& !ret
)
923 ret
= user_regset_copyin_ignore(
924 &pos
, &count
, &kbuf
, &ubuf
,
925 (PT_MAX_PUT_REG
+ 1) * sizeof(reg
),
926 PT_TRAP
* sizeof(reg
));
928 if (!ret
&& count
> 0) {
929 ret
= user_regset_copyin(&pos
, &count
, &kbuf
, &ubuf
, ®
,
930 PT_TRAP
* sizeof(reg
),
931 (PT_TRAP
+ 1) * sizeof(reg
));
933 ret
= set_user_ckpt_trap(target
, reg
);
937 ret
= user_regset_copyin_ignore(
938 &pos
, &count
, &kbuf
, &ubuf
,
939 (PT_TRAP
+ 1) * sizeof(reg
), -1);
945 * tm_cfpr_active - get active number of registers in CFPR
946 * @target: The target task.
947 * @regset: The user regset structure.
949 * This function checks for the active number of available
950 * regisers in transaction checkpointed FPR category.
952 static int tm_cfpr_active(struct task_struct
*target
,
953 const struct user_regset
*regset
)
955 if (!cpu_has_feature(CPU_FTR_TM
))
958 if (!MSR_TM_ACTIVE(target
->thread
.regs
->msr
))
965 * tm_cfpr_get - get CFPR registers
966 * @target: The target task.
967 * @regset: The user regset structure.
968 * @pos: The buffer position.
969 * @count: Number of bytes to copy.
970 * @kbuf: Kernel buffer to copy from.
971 * @ubuf: User buffer to copy into.
973 * This function gets in transaction checkpointed FPR registers.
975 * When the transaction is active 'ckfp_state' holds the checkpointed
976 * values for the current transaction to fall back on if it aborts
977 * in between. This function gets those checkpointed FPR registers.
978 * The userspace interface buffer layout is as follows.
985 static int tm_cfpr_get(struct task_struct
*target
,
986 const struct user_regset
*regset
,
987 unsigned int pos
, unsigned int count
,
988 void *kbuf
, void __user
*ubuf
)
993 if (!cpu_has_feature(CPU_FTR_TM
))
996 if (!MSR_TM_ACTIVE(target
->thread
.regs
->msr
))
999 flush_tmregs_to_thread(target
);
1000 flush_fp_to_thread(target
);
1001 flush_altivec_to_thread(target
);
1003 /* copy to local buffer then write that out */
1004 for (i
= 0; i
< 32 ; i
++)
1005 buf
[i
] = target
->thread
.TS_CKFPR(i
);
1006 buf
[32] = target
->thread
.ckfp_state
.fpscr
;
1007 return user_regset_copyout(&pos
, &count
, &kbuf
, &ubuf
, buf
, 0, -1);
1011 * tm_cfpr_set - set CFPR registers
1012 * @target: The target task.
1013 * @regset: The user regset structure.
1014 * @pos: The buffer position.
1015 * @count: Number of bytes to copy.
1016 * @kbuf: Kernel buffer to copy into.
1017 * @ubuf: User buffer to copy from.
1019 * This function sets in transaction checkpointed FPR registers.
1021 * When the transaction is active 'ckfp_state' holds the checkpointed
1022 * FPR register values for the current transaction to fall back on
1023 * if it aborts in between. This function sets these checkpointed
1024 * FPR registers. The userspace interface buffer layout is as follows.
1031 static int tm_cfpr_set(struct task_struct
*target
,
1032 const struct user_regset
*regset
,
1033 unsigned int pos
, unsigned int count
,
1034 const void *kbuf
, const void __user
*ubuf
)
1039 if (!cpu_has_feature(CPU_FTR_TM
))
1042 if (!MSR_TM_ACTIVE(target
->thread
.regs
->msr
))
1045 flush_tmregs_to_thread(target
);
1046 flush_fp_to_thread(target
);
1047 flush_altivec_to_thread(target
);
1049 for (i
= 0; i
< 32; i
++)
1050 buf
[i
] = target
->thread
.TS_CKFPR(i
);
1051 buf
[32] = target
->thread
.ckfp_state
.fpscr
;
1053 /* copy to local buffer then write that out */
1054 i
= user_regset_copyin(&pos
, &count
, &kbuf
, &ubuf
, buf
, 0, -1);
1057 for (i
= 0; i
< 32 ; i
++)
1058 target
->thread
.TS_CKFPR(i
) = buf
[i
];
1059 target
->thread
.ckfp_state
.fpscr
= buf
[32];
1064 * tm_cvmx_active - get active number of registers in CVMX
1065 * @target: The target task.
1066 * @regset: The user regset structure.
1068 * This function checks for the active number of available
1069 * regisers in checkpointed VMX category.
1071 static int tm_cvmx_active(struct task_struct
*target
,
1072 const struct user_regset
*regset
)
1074 if (!cpu_has_feature(CPU_FTR_TM
))
1077 if (!MSR_TM_ACTIVE(target
->thread
.regs
->msr
))
1084 * tm_cvmx_get - get CMVX registers
1085 * @target: The target task.
1086 * @regset: The user regset structure.
1087 * @pos: The buffer position.
1088 * @count: Number of bytes to copy.
1089 * @kbuf: Kernel buffer to copy from.
1090 * @ubuf: User buffer to copy into.
1092 * This function gets in transaction checkpointed VMX registers.
1094 * When the transaction is active 'ckvr_state' and 'ckvrsave' hold
1095 * the checkpointed values for the current transaction to fall
1096 * back on if it aborts in between. The userspace interface buffer
1097 * layout is as follows.
1105 static int tm_cvmx_get(struct task_struct
*target
,
1106 const struct user_regset
*regset
,
1107 unsigned int pos
, unsigned int count
,
1108 void *kbuf
, void __user
*ubuf
)
1112 BUILD_BUG_ON(TVSO(vscr
) != TVSO(vr
[32]));
1114 if (!cpu_has_feature(CPU_FTR_TM
))
1117 if (!MSR_TM_ACTIVE(target
->thread
.regs
->msr
))
1120 /* Flush the state */
1121 flush_tmregs_to_thread(target
);
1122 flush_fp_to_thread(target
);
1123 flush_altivec_to_thread(target
);
1125 ret
= user_regset_copyout(&pos
, &count
, &kbuf
, &ubuf
,
1126 &target
->thread
.ckvr_state
, 0,
1127 33 * sizeof(vector128
));
1130 * Copy out only the low-order word of vrsave.
1136 memset(&vrsave
, 0, sizeof(vrsave
));
1137 vrsave
.word
= target
->thread
.ckvrsave
;
1138 ret
= user_regset_copyout(&pos
, &count
, &kbuf
, &ubuf
, &vrsave
,
1139 33 * sizeof(vector128
), -1);
1146 * tm_cvmx_set - set CMVX registers
1147 * @target: The target task.
1148 * @regset: The user regset structure.
1149 * @pos: The buffer position.
1150 * @count: Number of bytes to copy.
1151 * @kbuf: Kernel buffer to copy into.
1152 * @ubuf: User buffer to copy from.
1154 * This function sets in transaction checkpointed VMX registers.
1156 * When the transaction is active 'ckvr_state' and 'ckvrsave' hold
1157 * the checkpointed values for the current transaction to fall
1158 * back on if it aborts in between. The userspace interface buffer
1159 * layout is as follows.
1167 static int tm_cvmx_set(struct task_struct
*target
,
1168 const struct user_regset
*regset
,
1169 unsigned int pos
, unsigned int count
,
1170 const void *kbuf
, const void __user
*ubuf
)
1174 BUILD_BUG_ON(TVSO(vscr
) != TVSO(vr
[32]));
1176 if (!cpu_has_feature(CPU_FTR_TM
))
1179 if (!MSR_TM_ACTIVE(target
->thread
.regs
->msr
))
1182 flush_tmregs_to_thread(target
);
1183 flush_fp_to_thread(target
);
1184 flush_altivec_to_thread(target
);
1186 ret
= user_regset_copyin(&pos
, &count
, &kbuf
, &ubuf
,
1187 &target
->thread
.ckvr_state
, 0,
1188 33 * sizeof(vector128
));
1189 if (!ret
&& count
> 0) {
1191 * We use only the low-order word of vrsave.
1197 memset(&vrsave
, 0, sizeof(vrsave
));
1198 vrsave
.word
= target
->thread
.ckvrsave
;
1199 ret
= user_regset_copyin(&pos
, &count
, &kbuf
, &ubuf
, &vrsave
,
1200 33 * sizeof(vector128
), -1);
1202 target
->thread
.ckvrsave
= vrsave
.word
;
1209 * tm_cvsx_active - get active number of registers in CVSX
1210 * @target: The target task.
1211 * @regset: The user regset structure.
1213 * This function checks for the active number of available
1214 * regisers in transaction checkpointed VSX category.
1216 static int tm_cvsx_active(struct task_struct
*target
,
1217 const struct user_regset
*regset
)
1219 if (!cpu_has_feature(CPU_FTR_TM
))
1222 if (!MSR_TM_ACTIVE(target
->thread
.regs
->msr
))
1225 flush_vsx_to_thread(target
);
1226 return target
->thread
.used_vsr
? regset
->n
: 0;
1230 * tm_cvsx_get - get CVSX registers
1231 * @target: The target task.
1232 * @regset: The user regset structure.
1233 * @pos: The buffer position.
1234 * @count: Number of bytes to copy.
1235 * @kbuf: Kernel buffer to copy from.
1236 * @ubuf: User buffer to copy into.
1238 * This function gets in transaction checkpointed VSX registers.
1240 * When the transaction is active 'ckfp_state' holds the checkpointed
1241 * values for the current transaction to fall back on if it aborts
1242 * in between. This function gets those checkpointed VSX registers.
1243 * The userspace interface buffer layout is as follows.
1249 static int tm_cvsx_get(struct task_struct
*target
,
1250 const struct user_regset
*regset
,
1251 unsigned int pos
, unsigned int count
,
1252 void *kbuf
, void __user
*ubuf
)
1257 if (!cpu_has_feature(CPU_FTR_TM
))
1260 if (!MSR_TM_ACTIVE(target
->thread
.regs
->msr
))
1263 /* Flush the state */
1264 flush_tmregs_to_thread(target
);
1265 flush_fp_to_thread(target
);
1266 flush_altivec_to_thread(target
);
1267 flush_vsx_to_thread(target
);
1269 for (i
= 0; i
< 32 ; i
++)
1270 buf
[i
] = target
->thread
.ckfp_state
.fpr
[i
][TS_VSRLOWOFFSET
];
1271 ret
= user_regset_copyout(&pos
, &count
, &kbuf
, &ubuf
,
1272 buf
, 0, 32 * sizeof(double));
1278 * tm_cvsx_set - set CFPR registers
1279 * @target: The target task.
1280 * @regset: The user regset structure.
1281 * @pos: The buffer position.
1282 * @count: Number of bytes to copy.
1283 * @kbuf: Kernel buffer to copy into.
1284 * @ubuf: User buffer to copy from.
1286 * This function sets in transaction checkpointed VSX registers.
1288 * When the transaction is active 'ckfp_state' holds the checkpointed
1289 * VSX register values for the current transaction to fall back on
1290 * if it aborts in between. This function sets these checkpointed
1291 * FPR registers. The userspace interface buffer layout is as follows.
1297 static int tm_cvsx_set(struct task_struct
*target
,
1298 const struct user_regset
*regset
,
1299 unsigned int pos
, unsigned int count
,
1300 const void *kbuf
, const void __user
*ubuf
)
1305 if (!cpu_has_feature(CPU_FTR_TM
))
1308 if (!MSR_TM_ACTIVE(target
->thread
.regs
->msr
))
1311 /* Flush the state */
1312 flush_tmregs_to_thread(target
);
1313 flush_fp_to_thread(target
);
1314 flush_altivec_to_thread(target
);
1315 flush_vsx_to_thread(target
);
1317 for (i
= 0; i
< 32 ; i
++)
1318 buf
[i
] = target
->thread
.ckfp_state
.fpr
[i
][TS_VSRLOWOFFSET
];
1320 ret
= user_regset_copyin(&pos
, &count
, &kbuf
, &ubuf
,
1321 buf
, 0, 32 * sizeof(double));
1323 for (i
= 0; i
< 32 ; i
++)
1324 target
->thread
.ckfp_state
.fpr
[i
][TS_VSRLOWOFFSET
] = buf
[i
];
1330 * tm_spr_active - get active number of registers in TM SPR
1331 * @target: The target task.
1332 * @regset: The user regset structure.
1334 * This function checks the active number of available
1335 * regisers in the transactional memory SPR category.
1337 static int tm_spr_active(struct task_struct
*target
,
1338 const struct user_regset
*regset
)
1340 if (!cpu_has_feature(CPU_FTR_TM
))
1347 * tm_spr_get - get the TM related SPR registers
1348 * @target: The target task.
1349 * @regset: The user regset structure.
1350 * @pos: The buffer position.
1351 * @count: Number of bytes to copy.
1352 * @kbuf: Kernel buffer to copy from.
1353 * @ubuf: User buffer to copy into.
1355 * This function gets transactional memory related SPR registers.
1356 * The userspace interface buffer layout is as follows.
1364 static int tm_spr_get(struct task_struct
*target
,
1365 const struct user_regset
*regset
,
1366 unsigned int pos
, unsigned int count
,
1367 void *kbuf
, void __user
*ubuf
)
1372 BUILD_BUG_ON(TSO(tm_tfhar
) + sizeof(u64
) != TSO(tm_texasr
));
1373 BUILD_BUG_ON(TSO(tm_texasr
) + sizeof(u64
) != TSO(tm_tfiar
));
1374 BUILD_BUG_ON(TSO(tm_tfiar
) + sizeof(u64
) != TSO(ckpt_regs
));
1376 if (!cpu_has_feature(CPU_FTR_TM
))
1379 /* Flush the states */
1380 flush_tmregs_to_thread(target
);
1381 flush_fp_to_thread(target
);
1382 flush_altivec_to_thread(target
);
1384 /* TFHAR register */
1385 ret
= user_regset_copyout(&pos
, &count
, &kbuf
, &ubuf
,
1386 &target
->thread
.tm_tfhar
, 0, sizeof(u64
));
1388 /* TEXASR register */
1390 ret
= user_regset_copyout(&pos
, &count
, &kbuf
, &ubuf
,
1391 &target
->thread
.tm_texasr
, sizeof(u64
),
1394 /* TFIAR register */
1396 ret
= user_regset_copyout(&pos
, &count
, &kbuf
, &ubuf
,
1397 &target
->thread
.tm_tfiar
,
1398 2 * sizeof(u64
), 3 * sizeof(u64
));
1403 * tm_spr_set - set the TM related SPR registers
1404 * @target: The target task.
1405 * @regset: The user regset structure.
1406 * @pos: The buffer position.
1407 * @count: Number of bytes to copy.
1408 * @kbuf: Kernel buffer to copy into.
1409 * @ubuf: User buffer to copy from.
1411 * This function sets transactional memory related SPR registers.
1412 * The userspace interface buffer layout is as follows.
1420 static int tm_spr_set(struct task_struct
*target
,
1421 const struct user_regset
*regset
,
1422 unsigned int pos
, unsigned int count
,
1423 const void *kbuf
, const void __user
*ubuf
)
1428 BUILD_BUG_ON(TSO(tm_tfhar
) + sizeof(u64
) != TSO(tm_texasr
));
1429 BUILD_BUG_ON(TSO(tm_texasr
) + sizeof(u64
) != TSO(tm_tfiar
));
1430 BUILD_BUG_ON(TSO(tm_tfiar
) + sizeof(u64
) != TSO(ckpt_regs
));
1432 if (!cpu_has_feature(CPU_FTR_TM
))
1435 /* Flush the states */
1436 flush_tmregs_to_thread(target
);
1437 flush_fp_to_thread(target
);
1438 flush_altivec_to_thread(target
);
1440 /* TFHAR register */
1441 ret
= user_regset_copyin(&pos
, &count
, &kbuf
, &ubuf
,
1442 &target
->thread
.tm_tfhar
, 0, sizeof(u64
));
1444 /* TEXASR register */
1446 ret
= user_regset_copyin(&pos
, &count
, &kbuf
, &ubuf
,
1447 &target
->thread
.tm_texasr
, sizeof(u64
),
1450 /* TFIAR register */
1452 ret
= user_regset_copyin(&pos
, &count
, &kbuf
, &ubuf
,
1453 &target
->thread
.tm_tfiar
,
1454 2 * sizeof(u64
), 3 * sizeof(u64
));
1458 static int tm_tar_active(struct task_struct
*target
,
1459 const struct user_regset
*regset
)
1461 if (!cpu_has_feature(CPU_FTR_TM
))
1464 if (MSR_TM_ACTIVE(target
->thread
.regs
->msr
))
1470 static int tm_tar_get(struct task_struct
*target
,
1471 const struct user_regset
*regset
,
1472 unsigned int pos
, unsigned int count
,
1473 void *kbuf
, void __user
*ubuf
)
1477 if (!cpu_has_feature(CPU_FTR_TM
))
1480 if (!MSR_TM_ACTIVE(target
->thread
.regs
->msr
))
1483 ret
= user_regset_copyout(&pos
, &count
, &kbuf
, &ubuf
,
1484 &target
->thread
.tm_tar
, 0, sizeof(u64
));
1488 static int tm_tar_set(struct task_struct
*target
,
1489 const struct user_regset
*regset
,
1490 unsigned int pos
, unsigned int count
,
1491 const void *kbuf
, const void __user
*ubuf
)
1495 if (!cpu_has_feature(CPU_FTR_TM
))
1498 if (!MSR_TM_ACTIVE(target
->thread
.regs
->msr
))
1501 ret
= user_regset_copyin(&pos
, &count
, &kbuf
, &ubuf
,
1502 &target
->thread
.tm_tar
, 0, sizeof(u64
));
1506 static int tm_ppr_active(struct task_struct
*target
,
1507 const struct user_regset
*regset
)
1509 if (!cpu_has_feature(CPU_FTR_TM
))
1512 if (MSR_TM_ACTIVE(target
->thread
.regs
->msr
))
1519 static int tm_ppr_get(struct task_struct
*target
,
1520 const struct user_regset
*regset
,
1521 unsigned int pos
, unsigned int count
,
1522 void *kbuf
, void __user
*ubuf
)
1526 if (!cpu_has_feature(CPU_FTR_TM
))
1529 if (!MSR_TM_ACTIVE(target
->thread
.regs
->msr
))
1532 ret
= user_regset_copyout(&pos
, &count
, &kbuf
, &ubuf
,
1533 &target
->thread
.tm_ppr
, 0, sizeof(u64
));
1537 static int tm_ppr_set(struct task_struct
*target
,
1538 const struct user_regset
*regset
,
1539 unsigned int pos
, unsigned int count
,
1540 const void *kbuf
, const void __user
*ubuf
)
1544 if (!cpu_has_feature(CPU_FTR_TM
))
1547 if (!MSR_TM_ACTIVE(target
->thread
.regs
->msr
))
1550 ret
= user_regset_copyin(&pos
, &count
, &kbuf
, &ubuf
,
1551 &target
->thread
.tm_ppr
, 0, sizeof(u64
));
1555 static int tm_dscr_active(struct task_struct
*target
,
1556 const struct user_regset
*regset
)
1558 if (!cpu_has_feature(CPU_FTR_TM
))
1561 if (MSR_TM_ACTIVE(target
->thread
.regs
->msr
))
1567 static int tm_dscr_get(struct task_struct
*target
,
1568 const struct user_regset
*regset
,
1569 unsigned int pos
, unsigned int count
,
1570 void *kbuf
, void __user
*ubuf
)
1574 if (!cpu_has_feature(CPU_FTR_TM
))
1577 if (!MSR_TM_ACTIVE(target
->thread
.regs
->msr
))
1580 ret
= user_regset_copyout(&pos
, &count
, &kbuf
, &ubuf
,
1581 &target
->thread
.tm_dscr
, 0, sizeof(u64
));
1585 static int tm_dscr_set(struct task_struct
*target
,
1586 const struct user_regset
*regset
,
1587 unsigned int pos
, unsigned int count
,
1588 const void *kbuf
, const void __user
*ubuf
)
1592 if (!cpu_has_feature(CPU_FTR_TM
))
1595 if (!MSR_TM_ACTIVE(target
->thread
.regs
->msr
))
1598 ret
= user_regset_copyin(&pos
, &count
, &kbuf
, &ubuf
,
1599 &target
->thread
.tm_dscr
, 0, sizeof(u64
));
1602 #endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
1605 static int ppr_get(struct task_struct
*target
,
1606 const struct user_regset
*regset
,
1607 unsigned int pos
, unsigned int count
,
1608 void *kbuf
, void __user
*ubuf
)
1610 return user_regset_copyout(&pos
, &count
, &kbuf
, &ubuf
,
1611 &target
->thread
.ppr
, 0, sizeof(u64
));
1614 static int ppr_set(struct task_struct
*target
,
1615 const struct user_regset
*regset
,
1616 unsigned int pos
, unsigned int count
,
1617 const void *kbuf
, const void __user
*ubuf
)
1619 return user_regset_copyin(&pos
, &count
, &kbuf
, &ubuf
,
1620 &target
->thread
.ppr
, 0, sizeof(u64
));
1623 static int dscr_get(struct task_struct
*target
,
1624 const struct user_regset
*regset
,
1625 unsigned int pos
, unsigned int count
,
1626 void *kbuf
, void __user
*ubuf
)
1628 return user_regset_copyout(&pos
, &count
, &kbuf
, &ubuf
,
1629 &target
->thread
.dscr
, 0, sizeof(u64
));
1631 static int dscr_set(struct task_struct
*target
,
1632 const struct user_regset
*regset
,
1633 unsigned int pos
, unsigned int count
,
1634 const void *kbuf
, const void __user
*ubuf
)
1636 return user_regset_copyin(&pos
, &count
, &kbuf
, &ubuf
,
1637 &target
->thread
.dscr
, 0, sizeof(u64
));
1640 #ifdef CONFIG_PPC_BOOK3S_64
1641 static int tar_get(struct task_struct
*target
,
1642 const struct user_regset
*regset
,
1643 unsigned int pos
, unsigned int count
,
1644 void *kbuf
, void __user
*ubuf
)
1646 return user_regset_copyout(&pos
, &count
, &kbuf
, &ubuf
,
1647 &target
->thread
.tar
, 0, sizeof(u64
));
1649 static int tar_set(struct task_struct
*target
,
1650 const struct user_regset
*regset
,
1651 unsigned int pos
, unsigned int count
,
1652 const void *kbuf
, const void __user
*ubuf
)
1654 return user_regset_copyin(&pos
, &count
, &kbuf
, &ubuf
,
1655 &target
->thread
.tar
, 0, sizeof(u64
));
1658 static int ebb_active(struct task_struct
*target
,
1659 const struct user_regset
*regset
)
1661 if (!cpu_has_feature(CPU_FTR_ARCH_207S
))
1664 if (target
->thread
.used_ebb
)
1670 static int ebb_get(struct task_struct
*target
,
1671 const struct user_regset
*regset
,
1672 unsigned int pos
, unsigned int count
,
1673 void *kbuf
, void __user
*ubuf
)
1676 BUILD_BUG_ON(TSO(ebbrr
) + sizeof(unsigned long) != TSO(ebbhr
));
1677 BUILD_BUG_ON(TSO(ebbhr
) + sizeof(unsigned long) != TSO(bescr
));
1679 if (!cpu_has_feature(CPU_FTR_ARCH_207S
))
1682 if (!target
->thread
.used_ebb
)
1685 return user_regset_copyout(&pos
, &count
, &kbuf
, &ubuf
,
1686 &target
->thread
.ebbrr
, 0, 3 * sizeof(unsigned long));
1689 static int ebb_set(struct task_struct
*target
,
1690 const struct user_regset
*regset
,
1691 unsigned int pos
, unsigned int count
,
1692 const void *kbuf
, const void __user
*ubuf
)
1697 BUILD_BUG_ON(TSO(ebbrr
) + sizeof(unsigned long) != TSO(ebbhr
));
1698 BUILD_BUG_ON(TSO(ebbhr
) + sizeof(unsigned long) != TSO(bescr
));
1700 if (!cpu_has_feature(CPU_FTR_ARCH_207S
))
1703 if (target
->thread
.used_ebb
)
1706 ret
= user_regset_copyin(&pos
, &count
, &kbuf
, &ubuf
,
1707 &target
->thread
.ebbrr
, 0, sizeof(unsigned long));
1710 ret
= user_regset_copyin(&pos
, &count
, &kbuf
, &ubuf
,
1711 &target
->thread
.ebbhr
, sizeof(unsigned long),
1712 2 * sizeof(unsigned long));
1715 ret
= user_regset_copyin(&pos
, &count
, &kbuf
, &ubuf
,
1716 &target
->thread
.bescr
,
1717 2 * sizeof(unsigned long), 3 * sizeof(unsigned long));
1721 static int pmu_active(struct task_struct
*target
,
1722 const struct user_regset
*regset
)
1724 if (!cpu_has_feature(CPU_FTR_ARCH_207S
))
1730 static int pmu_get(struct task_struct
*target
,
1731 const struct user_regset
*regset
,
1732 unsigned int pos
, unsigned int count
,
1733 void *kbuf
, void __user
*ubuf
)
1736 BUILD_BUG_ON(TSO(siar
) + sizeof(unsigned long) != TSO(sdar
));
1737 BUILD_BUG_ON(TSO(sdar
) + sizeof(unsigned long) != TSO(sier
));
1738 BUILD_BUG_ON(TSO(sier
) + sizeof(unsigned long) != TSO(mmcr2
));
1739 BUILD_BUG_ON(TSO(mmcr2
) + sizeof(unsigned long) != TSO(mmcr0
));
1741 if (!cpu_has_feature(CPU_FTR_ARCH_207S
))
1744 return user_regset_copyout(&pos
, &count
, &kbuf
, &ubuf
,
1745 &target
->thread
.siar
, 0,
1746 5 * sizeof(unsigned long));
1749 static int pmu_set(struct task_struct
*target
,
1750 const struct user_regset
*regset
,
1751 unsigned int pos
, unsigned int count
,
1752 const void *kbuf
, const void __user
*ubuf
)
1757 BUILD_BUG_ON(TSO(siar
) + sizeof(unsigned long) != TSO(sdar
));
1758 BUILD_BUG_ON(TSO(sdar
) + sizeof(unsigned long) != TSO(sier
));
1759 BUILD_BUG_ON(TSO(sier
) + sizeof(unsigned long) != TSO(mmcr2
));
1760 BUILD_BUG_ON(TSO(mmcr2
) + sizeof(unsigned long) != TSO(mmcr0
));
1762 if (!cpu_has_feature(CPU_FTR_ARCH_207S
))
1765 ret
= user_regset_copyin(&pos
, &count
, &kbuf
, &ubuf
,
1766 &target
->thread
.siar
, 0,
1767 sizeof(unsigned long));
1770 ret
= user_regset_copyin(&pos
, &count
, &kbuf
, &ubuf
,
1771 &target
->thread
.sdar
, sizeof(unsigned long),
1772 2 * sizeof(unsigned long));
1775 ret
= user_regset_copyin(&pos
, &count
, &kbuf
, &ubuf
,
1776 &target
->thread
.sier
, 2 * sizeof(unsigned long),
1777 3 * sizeof(unsigned long));
1780 ret
= user_regset_copyin(&pos
, &count
, &kbuf
, &ubuf
,
1781 &target
->thread
.mmcr2
, 3 * sizeof(unsigned long),
1782 4 * sizeof(unsigned long));
1785 ret
= user_regset_copyin(&pos
, &count
, &kbuf
, &ubuf
,
1786 &target
->thread
.mmcr0
, 4 * sizeof(unsigned long),
1787 5 * sizeof(unsigned long));
1792 #ifdef CONFIG_PPC_MEM_KEYS
1793 static int pkey_active(struct task_struct
*target
,
1794 const struct user_regset
*regset
)
1796 if (!arch_pkeys_enabled())
1802 static int pkey_get(struct task_struct
*target
,
1803 const struct user_regset
*regset
,
1804 unsigned int pos
, unsigned int count
,
1805 void *kbuf
, void __user
*ubuf
)
1807 BUILD_BUG_ON(TSO(amr
) + sizeof(unsigned long) != TSO(iamr
));
1808 BUILD_BUG_ON(TSO(iamr
) + sizeof(unsigned long) != TSO(uamor
));
1810 if (!arch_pkeys_enabled())
1813 return user_regset_copyout(&pos
, &count
, &kbuf
, &ubuf
,
1814 &target
->thread
.amr
, 0,
1815 ELF_NPKEY
* sizeof(unsigned long));
1818 static int pkey_set(struct task_struct
*target
,
1819 const struct user_regset
*regset
,
1820 unsigned int pos
, unsigned int count
,
1821 const void *kbuf
, const void __user
*ubuf
)
1826 if (!arch_pkeys_enabled())
1829 /* Only the AMR can be set from userspace */
1830 if (pos
!= 0 || count
!= sizeof(new_amr
))
1833 ret
= user_regset_copyin(&pos
, &count
, &kbuf
, &ubuf
,
1834 &new_amr
, 0, sizeof(new_amr
));
1838 /* UAMOR determines which bits of the AMR can be set from userspace. */
1839 target
->thread
.amr
= (new_amr
& target
->thread
.uamor
) |
1840 (target
->thread
.amr
& ~target
->thread
.uamor
);
1844 #endif /* CONFIG_PPC_MEM_KEYS */
1847 * These are our native regset flavors.
1849 enum powerpc_regset
{
1852 #ifdef CONFIG_ALTIVEC
1861 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1862 REGSET_TM_CGPR
, /* TM checkpointed GPR registers */
1863 REGSET_TM_CFPR
, /* TM checkpointed FPR registers */
1864 REGSET_TM_CVMX
, /* TM checkpointed VMX registers */
1865 REGSET_TM_CVSX
, /* TM checkpointed VSX registers */
1866 REGSET_TM_SPR
, /* TM specific SPR registers */
1867 REGSET_TM_CTAR
, /* TM checkpointed TAR register */
1868 REGSET_TM_CPPR
, /* TM checkpointed PPR register */
1869 REGSET_TM_CDSCR
, /* TM checkpointed DSCR register */
1872 REGSET_PPR
, /* PPR register */
1873 REGSET_DSCR
, /* DSCR register */
1875 #ifdef CONFIG_PPC_BOOK3S_64
1876 REGSET_TAR
, /* TAR register */
1877 REGSET_EBB
, /* EBB registers */
1878 REGSET_PMR
, /* Performance Monitor Registers */
1880 #ifdef CONFIG_PPC_MEM_KEYS
1881 REGSET_PKEY
, /* AMR register */
1885 static const struct user_regset native_regsets
[] = {
1887 .core_note_type
= NT_PRSTATUS
, .n
= ELF_NGREG
,
1888 .size
= sizeof(long), .align
= sizeof(long),
1889 .get
= gpr_get
, .set
= gpr_set
1892 .core_note_type
= NT_PRFPREG
, .n
= ELF_NFPREG
,
1893 .size
= sizeof(double), .align
= sizeof(double),
1894 .get
= fpr_get
, .set
= fpr_set
1896 #ifdef CONFIG_ALTIVEC
1898 .core_note_type
= NT_PPC_VMX
, .n
= 34,
1899 .size
= sizeof(vector128
), .align
= sizeof(vector128
),
1900 .active
= vr_active
, .get
= vr_get
, .set
= vr_set
1905 .core_note_type
= NT_PPC_VSX
, .n
= 32,
1906 .size
= sizeof(double), .align
= sizeof(double),
1907 .active
= vsr_active
, .get
= vsr_get
, .set
= vsr_set
1912 .core_note_type
= NT_PPC_SPE
, .n
= 35,
1913 .size
= sizeof(u32
), .align
= sizeof(u32
),
1914 .active
= evr_active
, .get
= evr_get
, .set
= evr_set
1917 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1918 [REGSET_TM_CGPR
] = {
1919 .core_note_type
= NT_PPC_TM_CGPR
, .n
= ELF_NGREG
,
1920 .size
= sizeof(long), .align
= sizeof(long),
1921 .active
= tm_cgpr_active
, .get
= tm_cgpr_get
, .set
= tm_cgpr_set
1923 [REGSET_TM_CFPR
] = {
1924 .core_note_type
= NT_PPC_TM_CFPR
, .n
= ELF_NFPREG
,
1925 .size
= sizeof(double), .align
= sizeof(double),
1926 .active
= tm_cfpr_active
, .get
= tm_cfpr_get
, .set
= tm_cfpr_set
1928 [REGSET_TM_CVMX
] = {
1929 .core_note_type
= NT_PPC_TM_CVMX
, .n
= ELF_NVMX
,
1930 .size
= sizeof(vector128
), .align
= sizeof(vector128
),
1931 .active
= tm_cvmx_active
, .get
= tm_cvmx_get
, .set
= tm_cvmx_set
1933 [REGSET_TM_CVSX
] = {
1934 .core_note_type
= NT_PPC_TM_CVSX
, .n
= ELF_NVSX
,
1935 .size
= sizeof(double), .align
= sizeof(double),
1936 .active
= tm_cvsx_active
, .get
= tm_cvsx_get
, .set
= tm_cvsx_set
1939 .core_note_type
= NT_PPC_TM_SPR
, .n
= ELF_NTMSPRREG
,
1940 .size
= sizeof(u64
), .align
= sizeof(u64
),
1941 .active
= tm_spr_active
, .get
= tm_spr_get
, .set
= tm_spr_set
1943 [REGSET_TM_CTAR
] = {
1944 .core_note_type
= NT_PPC_TM_CTAR
, .n
= 1,
1945 .size
= sizeof(u64
), .align
= sizeof(u64
),
1946 .active
= tm_tar_active
, .get
= tm_tar_get
, .set
= tm_tar_set
1948 [REGSET_TM_CPPR
] = {
1949 .core_note_type
= NT_PPC_TM_CPPR
, .n
= 1,
1950 .size
= sizeof(u64
), .align
= sizeof(u64
),
1951 .active
= tm_ppr_active
, .get
= tm_ppr_get
, .set
= tm_ppr_set
1953 [REGSET_TM_CDSCR
] = {
1954 .core_note_type
= NT_PPC_TM_CDSCR
, .n
= 1,
1955 .size
= sizeof(u64
), .align
= sizeof(u64
),
1956 .active
= tm_dscr_active
, .get
= tm_dscr_get
, .set
= tm_dscr_set
1961 .core_note_type
= NT_PPC_PPR
, .n
= 1,
1962 .size
= sizeof(u64
), .align
= sizeof(u64
),
1963 .get
= ppr_get
, .set
= ppr_set
1966 .core_note_type
= NT_PPC_DSCR
, .n
= 1,
1967 .size
= sizeof(u64
), .align
= sizeof(u64
),
1968 .get
= dscr_get
, .set
= dscr_set
1971 #ifdef CONFIG_PPC_BOOK3S_64
1973 .core_note_type
= NT_PPC_TAR
, .n
= 1,
1974 .size
= sizeof(u64
), .align
= sizeof(u64
),
1975 .get
= tar_get
, .set
= tar_set
1978 .core_note_type
= NT_PPC_EBB
, .n
= ELF_NEBB
,
1979 .size
= sizeof(u64
), .align
= sizeof(u64
),
1980 .active
= ebb_active
, .get
= ebb_get
, .set
= ebb_set
1983 .core_note_type
= NT_PPC_PMU
, .n
= ELF_NPMU
,
1984 .size
= sizeof(u64
), .align
= sizeof(u64
),
1985 .active
= pmu_active
, .get
= pmu_get
, .set
= pmu_set
1988 #ifdef CONFIG_PPC_MEM_KEYS
1990 .core_note_type
= NT_PPC_PKEY
, .n
= ELF_NPKEY
,
1991 .size
= sizeof(u64
), .align
= sizeof(u64
),
1992 .active
= pkey_active
, .get
= pkey_get
, .set
= pkey_set
1997 static const struct user_regset_view user_ppc_native_view
= {
1998 .name
= UTS_MACHINE
, .e_machine
= ELF_ARCH
, .ei_osabi
= ELF_OSABI
,
1999 .regsets
= native_regsets
, .n
= ARRAY_SIZE(native_regsets
)
2003 #include <linux/compat.h>
2005 static int gpr32_get_common(struct task_struct
*target
,
2006 const struct user_regset
*regset
,
2007 unsigned int pos
, unsigned int count
,
2008 void *kbuf
, void __user
*ubuf
,
2009 unsigned long *regs
)
2011 compat_ulong_t
*k
= kbuf
;
2012 compat_ulong_t __user
*u
= ubuf
;
2016 count
/= sizeof(reg
);
2019 for (; count
> 0 && pos
< PT_MSR
; --count
)
2022 for (; count
> 0 && pos
< PT_MSR
; --count
)
2023 if (__put_user((compat_ulong_t
) regs
[pos
++], u
++))
2026 if (count
> 0 && pos
== PT_MSR
) {
2027 reg
= get_user_msr(target
);
2030 else if (__put_user(reg
, u
++))
2037 for (; count
> 0 && pos
< PT_REGS_COUNT
; --count
)
2040 for (; count
> 0 && pos
< PT_REGS_COUNT
; --count
)
2041 if (__put_user((compat_ulong_t
) regs
[pos
++], u
++))
2047 count
*= sizeof(reg
);
2048 return user_regset_copyout_zero(&pos
, &count
, &kbuf
, &ubuf
,
2049 PT_REGS_COUNT
* sizeof(reg
), -1);
2052 static int gpr32_set_common(struct task_struct
*target
,
2053 const struct user_regset
*regset
,
2054 unsigned int pos
, unsigned int count
,
2055 const void *kbuf
, const void __user
*ubuf
,
2056 unsigned long *regs
)
2058 const compat_ulong_t
*k
= kbuf
;
2059 const compat_ulong_t __user
*u
= ubuf
;
2063 count
/= sizeof(reg
);
2066 for (; count
> 0 && pos
< PT_MSR
; --count
)
2069 for (; count
> 0 && pos
< PT_MSR
; --count
) {
2070 if (__get_user(reg
, u
++))
2076 if (count
> 0 && pos
== PT_MSR
) {
2079 else if (__get_user(reg
, u
++))
2081 set_user_msr(target
, reg
);
2087 for (; count
> 0 && pos
<= PT_MAX_PUT_REG
; --count
)
2089 for (; count
> 0 && pos
< PT_TRAP
; --count
, ++pos
)
2092 for (; count
> 0 && pos
<= PT_MAX_PUT_REG
; --count
) {
2093 if (__get_user(reg
, u
++))
2097 for (; count
> 0 && pos
< PT_TRAP
; --count
, ++pos
)
2098 if (__get_user(reg
, u
++))
2102 if (count
> 0 && pos
== PT_TRAP
) {
2105 else if (__get_user(reg
, u
++))
2107 set_user_trap(target
, reg
);
2115 count
*= sizeof(reg
);
2116 return user_regset_copyin_ignore(&pos
, &count
, &kbuf
, &ubuf
,
2117 (PT_TRAP
+ 1) * sizeof(reg
), -1);
2120 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
2121 static int tm_cgpr32_get(struct task_struct
*target
,
2122 const struct user_regset
*regset
,
2123 unsigned int pos
, unsigned int count
,
2124 void *kbuf
, void __user
*ubuf
)
2126 return gpr32_get_common(target
, regset
, pos
, count
, kbuf
, ubuf
,
2127 &target
->thread
.ckpt_regs
.gpr
[0]);
2130 static int tm_cgpr32_set(struct task_struct
*target
,
2131 const struct user_regset
*regset
,
2132 unsigned int pos
, unsigned int count
,
2133 const void *kbuf
, const void __user
*ubuf
)
2135 return gpr32_set_common(target
, regset
, pos
, count
, kbuf
, ubuf
,
2136 &target
->thread
.ckpt_regs
.gpr
[0]);
2138 #endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
2140 static int gpr32_get(struct task_struct
*target
,
2141 const struct user_regset
*regset
,
2142 unsigned int pos
, unsigned int count
,
2143 void *kbuf
, void __user
*ubuf
)
2147 if (target
->thread
.regs
== NULL
)
2150 if (!FULL_REGS(target
->thread
.regs
)) {
2152 * We have a partial register set.
2153 * Fill 14-31 with bogus values.
2155 for (i
= 14; i
< 32; i
++)
2156 target
->thread
.regs
->gpr
[i
] = NV_REG_POISON
;
2158 return gpr32_get_common(target
, regset
, pos
, count
, kbuf
, ubuf
,
2159 &target
->thread
.regs
->gpr
[0]);
2162 static int gpr32_set(struct task_struct
*target
,
2163 const struct user_regset
*regset
,
2164 unsigned int pos
, unsigned int count
,
2165 const void *kbuf
, const void __user
*ubuf
)
2167 if (target
->thread
.regs
== NULL
)
2170 CHECK_FULL_REGS(target
->thread
.regs
);
2171 return gpr32_set_common(target
, regset
, pos
, count
, kbuf
, ubuf
,
2172 &target
->thread
.regs
->gpr
[0]);
2176 * These are the regset flavors matching the CONFIG_PPC32 native set.
2178 static const struct user_regset compat_regsets
[] = {
2180 .core_note_type
= NT_PRSTATUS
, .n
= ELF_NGREG
,
2181 .size
= sizeof(compat_long_t
), .align
= sizeof(compat_long_t
),
2182 .get
= gpr32_get
, .set
= gpr32_set
2185 .core_note_type
= NT_PRFPREG
, .n
= ELF_NFPREG
,
2186 .size
= sizeof(double), .align
= sizeof(double),
2187 .get
= fpr_get
, .set
= fpr_set
2189 #ifdef CONFIG_ALTIVEC
2191 .core_note_type
= NT_PPC_VMX
, .n
= 34,
2192 .size
= sizeof(vector128
), .align
= sizeof(vector128
),
2193 .active
= vr_active
, .get
= vr_get
, .set
= vr_set
2198 .core_note_type
= NT_PPC_SPE
, .n
= 35,
2199 .size
= sizeof(u32
), .align
= sizeof(u32
),
2200 .active
= evr_active
, .get
= evr_get
, .set
= evr_set
2203 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
2204 [REGSET_TM_CGPR
] = {
2205 .core_note_type
= NT_PPC_TM_CGPR
, .n
= ELF_NGREG
,
2206 .size
= sizeof(long), .align
= sizeof(long),
2207 .active
= tm_cgpr_active
,
2208 .get
= tm_cgpr32_get
, .set
= tm_cgpr32_set
2210 [REGSET_TM_CFPR
] = {
2211 .core_note_type
= NT_PPC_TM_CFPR
, .n
= ELF_NFPREG
,
2212 .size
= sizeof(double), .align
= sizeof(double),
2213 .active
= tm_cfpr_active
, .get
= tm_cfpr_get
, .set
= tm_cfpr_set
2215 [REGSET_TM_CVMX
] = {
2216 .core_note_type
= NT_PPC_TM_CVMX
, .n
= ELF_NVMX
,
2217 .size
= sizeof(vector128
), .align
= sizeof(vector128
),
2218 .active
= tm_cvmx_active
, .get
= tm_cvmx_get
, .set
= tm_cvmx_set
2220 [REGSET_TM_CVSX
] = {
2221 .core_note_type
= NT_PPC_TM_CVSX
, .n
= ELF_NVSX
,
2222 .size
= sizeof(double), .align
= sizeof(double),
2223 .active
= tm_cvsx_active
, .get
= tm_cvsx_get
, .set
= tm_cvsx_set
2226 .core_note_type
= NT_PPC_TM_SPR
, .n
= ELF_NTMSPRREG
,
2227 .size
= sizeof(u64
), .align
= sizeof(u64
),
2228 .active
= tm_spr_active
, .get
= tm_spr_get
, .set
= tm_spr_set
2230 [REGSET_TM_CTAR
] = {
2231 .core_note_type
= NT_PPC_TM_CTAR
, .n
= 1,
2232 .size
= sizeof(u64
), .align
= sizeof(u64
),
2233 .active
= tm_tar_active
, .get
= tm_tar_get
, .set
= tm_tar_set
2235 [REGSET_TM_CPPR
] = {
2236 .core_note_type
= NT_PPC_TM_CPPR
, .n
= 1,
2237 .size
= sizeof(u64
), .align
= sizeof(u64
),
2238 .active
= tm_ppr_active
, .get
= tm_ppr_get
, .set
= tm_ppr_set
2240 [REGSET_TM_CDSCR
] = {
2241 .core_note_type
= NT_PPC_TM_CDSCR
, .n
= 1,
2242 .size
= sizeof(u64
), .align
= sizeof(u64
),
2243 .active
= tm_dscr_active
, .get
= tm_dscr_get
, .set
= tm_dscr_set
2248 .core_note_type
= NT_PPC_PPR
, .n
= 1,
2249 .size
= sizeof(u64
), .align
= sizeof(u64
),
2250 .get
= ppr_get
, .set
= ppr_set
2253 .core_note_type
= NT_PPC_DSCR
, .n
= 1,
2254 .size
= sizeof(u64
), .align
= sizeof(u64
),
2255 .get
= dscr_get
, .set
= dscr_set
2258 #ifdef CONFIG_PPC_BOOK3S_64
2260 .core_note_type
= NT_PPC_TAR
, .n
= 1,
2261 .size
= sizeof(u64
), .align
= sizeof(u64
),
2262 .get
= tar_get
, .set
= tar_set
2265 .core_note_type
= NT_PPC_EBB
, .n
= ELF_NEBB
,
2266 .size
= sizeof(u64
), .align
= sizeof(u64
),
2267 .active
= ebb_active
, .get
= ebb_get
, .set
= ebb_set
2272 static const struct user_regset_view user_ppc_compat_view
= {
2273 .name
= "ppc", .e_machine
= EM_PPC
, .ei_osabi
= ELF_OSABI
,
2274 .regsets
= compat_regsets
, .n
= ARRAY_SIZE(compat_regsets
)
2276 #endif /* CONFIG_PPC64 */
2278 const struct user_regset_view
*task_user_regset_view(struct task_struct
*task
)
2281 if (test_tsk_thread_flag(task
, TIF_32BIT
))
2282 return &user_ppc_compat_view
;
2284 return &user_ppc_native_view
;
2288 void user_enable_single_step(struct task_struct
*task
)
2290 struct pt_regs
*regs
= task
->thread
.regs
;
2293 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
2294 task
->thread
.debug
.dbcr0
&= ~DBCR0_BT
;
2295 task
->thread
.debug
.dbcr0
|= DBCR0_IDM
| DBCR0_IC
;
2296 regs
->msr
|= MSR_DE
;
2298 regs
->msr
&= ~MSR_BE
;
2299 regs
->msr
|= MSR_SE
;
2302 set_tsk_thread_flag(task
, TIF_SINGLESTEP
);
2305 void user_enable_block_step(struct task_struct
*task
)
2307 struct pt_regs
*regs
= task
->thread
.regs
;
2310 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
2311 task
->thread
.debug
.dbcr0
&= ~DBCR0_IC
;
2312 task
->thread
.debug
.dbcr0
= DBCR0_IDM
| DBCR0_BT
;
2313 regs
->msr
|= MSR_DE
;
2315 regs
->msr
&= ~MSR_SE
;
2316 regs
->msr
|= MSR_BE
;
2319 set_tsk_thread_flag(task
, TIF_SINGLESTEP
);
2322 void user_disable_single_step(struct task_struct
*task
)
2324 struct pt_regs
*regs
= task
->thread
.regs
;
2327 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
2329 * The logic to disable single stepping should be as
2330 * simple as turning off the Instruction Complete flag.
2331 * And, after doing so, if all debug flags are off, turn
2332 * off DBCR0(IDM) and MSR(DE) .... Torez
2334 task
->thread
.debug
.dbcr0
&= ~(DBCR0_IC
|DBCR0_BT
);
2336 * Test to see if any of the DBCR_ACTIVE_EVENTS bits are set.
2338 if (!DBCR_ACTIVE_EVENTS(task
->thread
.debug
.dbcr0
,
2339 task
->thread
.debug
.dbcr1
)) {
2341 * All debug events were off.....
2343 task
->thread
.debug
.dbcr0
&= ~DBCR0_IDM
;
2344 regs
->msr
&= ~MSR_DE
;
2347 regs
->msr
&= ~(MSR_SE
| MSR_BE
);
2350 clear_tsk_thread_flag(task
, TIF_SINGLESTEP
);
2353 #ifdef CONFIG_HAVE_HW_BREAKPOINT
2354 void ptrace_triggered(struct perf_event
*bp
,
2355 struct perf_sample_data
*data
, struct pt_regs
*regs
)
2357 struct perf_event_attr attr
;
2360 * Disable the breakpoint request here since ptrace has defined a
2361 * one-shot behaviour for breakpoint exceptions in PPC64.
2362 * The SIGTRAP signal is generated automatically for us in do_dabr().
2363 * We don't have to do anything about that here
2366 attr
.disabled
= true;
2367 modify_user_hw_breakpoint(bp
, &attr
);
2369 #endif /* CONFIG_HAVE_HW_BREAKPOINT */
2371 static int ptrace_set_debugreg(struct task_struct
*task
, unsigned long addr
,
2374 #ifdef CONFIG_HAVE_HW_BREAKPOINT
2376 struct thread_struct
*thread
= &(task
->thread
);
2377 struct perf_event
*bp
;
2378 struct perf_event_attr attr
;
2379 #endif /* CONFIG_HAVE_HW_BREAKPOINT */
2380 #ifndef CONFIG_PPC_ADV_DEBUG_REGS
2381 struct arch_hw_breakpoint hw_brk
;
2384 /* For ppc64 we support one DABR and no IABR's at the moment (ppc64).
2385 * For embedded processors we support one DAC and no IAC's at the
2391 /* The bottom 3 bits in dabr are flags */
2392 if ((data
& ~0x7UL
) >= TASK_SIZE
)
2395 #ifndef CONFIG_PPC_ADV_DEBUG_REGS
2396 /* For processors using DABR (i.e. 970), the bottom 3 bits are flags.
2397 * It was assumed, on previous implementations, that 3 bits were
2398 * passed together with the data address, fitting the design of the
2399 * DABR register, as follows:
2403 * bit 2: Breakpoint translation
2405 * Thus, we use them here as so.
2408 /* Ensure breakpoint translation bit is set */
2409 if (data
&& !(data
& HW_BRK_TYPE_TRANSLATE
))
2411 hw_brk
.address
= data
& (~HW_BRK_TYPE_DABR
);
2412 hw_brk
.type
= (data
& HW_BRK_TYPE_DABR
) | HW_BRK_TYPE_PRIV_ALL
;
2414 #ifdef CONFIG_HAVE_HW_BREAKPOINT
2415 bp
= thread
->ptrace_bps
[0];
2416 if ((!data
) || !(hw_brk
.type
& HW_BRK_TYPE_RDWR
)) {
2418 unregister_hw_breakpoint(bp
);
2419 thread
->ptrace_bps
[0] = NULL
;
2425 attr
.bp_addr
= hw_brk
.address
;
2426 arch_bp_generic_fields(hw_brk
.type
, &attr
.bp_type
);
2428 /* Enable breakpoint */
2429 attr
.disabled
= false;
2431 ret
= modify_user_hw_breakpoint(bp
, &attr
);
2435 thread
->ptrace_bps
[0] = bp
;
2436 thread
->hw_brk
= hw_brk
;
2440 /* Create a new breakpoint request if one doesn't exist already */
2441 hw_breakpoint_init(&attr
);
2442 attr
.bp_addr
= hw_brk
.address
;
2443 arch_bp_generic_fields(hw_brk
.type
,
2446 thread
->ptrace_bps
[0] = bp
= register_user_hw_breakpoint(&attr
,
2447 ptrace_triggered
, NULL
, task
);
2449 thread
->ptrace_bps
[0] = NULL
;
2453 #endif /* CONFIG_HAVE_HW_BREAKPOINT */
2454 task
->thread
.hw_brk
= hw_brk
;
2455 #else /* CONFIG_PPC_ADV_DEBUG_REGS */
2456 /* As described above, it was assumed 3 bits were passed with the data
2457 * address, but we will assume only the mode bits will be passed
2458 * as to not cause alignment restrictions for DAC-based processors.
2461 /* DAC's hold the whole address without any mode flags */
2462 task
->thread
.debug
.dac1
= data
& ~0x3UL
;
2464 if (task
->thread
.debug
.dac1
== 0) {
2465 dbcr_dac(task
) &= ~(DBCR_DAC1R
| DBCR_DAC1W
);
2466 if (!DBCR_ACTIVE_EVENTS(task
->thread
.debug
.dbcr0
,
2467 task
->thread
.debug
.dbcr1
)) {
2468 task
->thread
.regs
->msr
&= ~MSR_DE
;
2469 task
->thread
.debug
.dbcr0
&= ~DBCR0_IDM
;
2474 /* Read or Write bits must be set */
2476 if (!(data
& 0x3UL
))
2479 /* Set the Internal Debugging flag (IDM bit 1) for the DBCR0
2481 task
->thread
.debug
.dbcr0
|= DBCR0_IDM
;
2483 /* Check for write and read flags and set DBCR0
2485 dbcr_dac(task
) &= ~(DBCR_DAC1R
|DBCR_DAC1W
);
2487 dbcr_dac(task
) |= DBCR_DAC1R
;
2489 dbcr_dac(task
) |= DBCR_DAC1W
;
2490 task
->thread
.regs
->msr
|= MSR_DE
;
2491 #endif /* CONFIG_PPC_ADV_DEBUG_REGS */
2496 * Called by kernel/ptrace.c when detaching..
2498 * Make sure single step bits etc are not set.
2500 void ptrace_disable(struct task_struct
*child
)
2502 /* make sure the single step bit is not set. */
2503 user_disable_single_step(child
);
2506 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
2507 static long set_instruction_bp(struct task_struct
*child
,
2508 struct ppc_hw_breakpoint
*bp_info
)
2511 int slot1_in_use
= ((child
->thread
.debug
.dbcr0
& DBCR0_IAC1
) != 0);
2512 int slot2_in_use
= ((child
->thread
.debug
.dbcr0
& DBCR0_IAC2
) != 0);
2513 int slot3_in_use
= ((child
->thread
.debug
.dbcr0
& DBCR0_IAC3
) != 0);
2514 int slot4_in_use
= ((child
->thread
.debug
.dbcr0
& DBCR0_IAC4
) != 0);
2516 if (dbcr_iac_range(child
) & DBCR_IAC12MODE
)
2518 if (dbcr_iac_range(child
) & DBCR_IAC34MODE
)
2521 if (bp_info
->addr
>= TASK_SIZE
)
2524 if (bp_info
->addr_mode
!= PPC_BREAKPOINT_MODE_EXACT
) {
2526 /* Make sure range is valid. */
2527 if (bp_info
->addr2
>= TASK_SIZE
)
2530 /* We need a pair of IAC regsisters */
2531 if ((!slot1_in_use
) && (!slot2_in_use
)) {
2533 child
->thread
.debug
.iac1
= bp_info
->addr
;
2534 child
->thread
.debug
.iac2
= bp_info
->addr2
;
2535 child
->thread
.debug
.dbcr0
|= DBCR0_IAC1
;
2536 if (bp_info
->addr_mode
==
2537 PPC_BREAKPOINT_MODE_RANGE_EXCLUSIVE
)
2538 dbcr_iac_range(child
) |= DBCR_IAC12X
;
2540 dbcr_iac_range(child
) |= DBCR_IAC12I
;
2541 #if CONFIG_PPC_ADV_DEBUG_IACS > 2
2542 } else if ((!slot3_in_use
) && (!slot4_in_use
)) {
2544 child
->thread
.debug
.iac3
= bp_info
->addr
;
2545 child
->thread
.debug
.iac4
= bp_info
->addr2
;
2546 child
->thread
.debug
.dbcr0
|= DBCR0_IAC3
;
2547 if (bp_info
->addr_mode
==
2548 PPC_BREAKPOINT_MODE_RANGE_EXCLUSIVE
)
2549 dbcr_iac_range(child
) |= DBCR_IAC34X
;
2551 dbcr_iac_range(child
) |= DBCR_IAC34I
;
2556 /* We only need one. If possible leave a pair free in
2557 * case a range is needed later
2559 if (!slot1_in_use
) {
2561 * Don't use iac1 if iac1-iac2 are free and either
2562 * iac3 or iac4 (but not both) are free
2564 if (slot2_in_use
|| (slot3_in_use
== slot4_in_use
)) {
2566 child
->thread
.debug
.iac1
= bp_info
->addr
;
2567 child
->thread
.debug
.dbcr0
|= DBCR0_IAC1
;
2571 if (!slot2_in_use
) {
2573 child
->thread
.debug
.iac2
= bp_info
->addr
;
2574 child
->thread
.debug
.dbcr0
|= DBCR0_IAC2
;
2575 #if CONFIG_PPC_ADV_DEBUG_IACS > 2
2576 } else if (!slot3_in_use
) {
2578 child
->thread
.debug
.iac3
= bp_info
->addr
;
2579 child
->thread
.debug
.dbcr0
|= DBCR0_IAC3
;
2580 } else if (!slot4_in_use
) {
2582 child
->thread
.debug
.iac4
= bp_info
->addr
;
2583 child
->thread
.debug
.dbcr0
|= DBCR0_IAC4
;
2589 child
->thread
.debug
.dbcr0
|= DBCR0_IDM
;
2590 child
->thread
.regs
->msr
|= MSR_DE
;
2595 static int del_instruction_bp(struct task_struct
*child
, int slot
)
2599 if ((child
->thread
.debug
.dbcr0
& DBCR0_IAC1
) == 0)
2602 if (dbcr_iac_range(child
) & DBCR_IAC12MODE
) {
2603 /* address range - clear slots 1 & 2 */
2604 child
->thread
.debug
.iac2
= 0;
2605 dbcr_iac_range(child
) &= ~DBCR_IAC12MODE
;
2607 child
->thread
.debug
.iac1
= 0;
2608 child
->thread
.debug
.dbcr0
&= ~DBCR0_IAC1
;
2611 if ((child
->thread
.debug
.dbcr0
& DBCR0_IAC2
) == 0)
2614 if (dbcr_iac_range(child
) & DBCR_IAC12MODE
)
2615 /* used in a range */
2617 child
->thread
.debug
.iac2
= 0;
2618 child
->thread
.debug
.dbcr0
&= ~DBCR0_IAC2
;
2620 #if CONFIG_PPC_ADV_DEBUG_IACS > 2
2622 if ((child
->thread
.debug
.dbcr0
& DBCR0_IAC3
) == 0)
2625 if (dbcr_iac_range(child
) & DBCR_IAC34MODE
) {
2626 /* address range - clear slots 3 & 4 */
2627 child
->thread
.debug
.iac4
= 0;
2628 dbcr_iac_range(child
) &= ~DBCR_IAC34MODE
;
2630 child
->thread
.debug
.iac3
= 0;
2631 child
->thread
.debug
.dbcr0
&= ~DBCR0_IAC3
;
2634 if ((child
->thread
.debug
.dbcr0
& DBCR0_IAC4
) == 0)
2637 if (dbcr_iac_range(child
) & DBCR_IAC34MODE
)
2638 /* Used in a range */
2640 child
->thread
.debug
.iac4
= 0;
2641 child
->thread
.debug
.dbcr0
&= ~DBCR0_IAC4
;
2650 static int set_dac(struct task_struct
*child
, struct ppc_hw_breakpoint
*bp_info
)
2653 (bp_info
->condition_mode
>> PPC_BREAKPOINT_CONDITION_BE_SHIFT
)
2655 int condition_mode
=
2656 bp_info
->condition_mode
& PPC_BREAKPOINT_CONDITION_MODE
;
2659 if (byte_enable
&& (condition_mode
== 0))
2662 if (bp_info
->addr
>= TASK_SIZE
)
2665 if ((dbcr_dac(child
) & (DBCR_DAC1R
| DBCR_DAC1W
)) == 0) {
2667 if (bp_info
->trigger_type
& PPC_BREAKPOINT_TRIGGER_READ
)
2668 dbcr_dac(child
) |= DBCR_DAC1R
;
2669 if (bp_info
->trigger_type
& PPC_BREAKPOINT_TRIGGER_WRITE
)
2670 dbcr_dac(child
) |= DBCR_DAC1W
;
2671 child
->thread
.debug
.dac1
= (unsigned long)bp_info
->addr
;
2672 #if CONFIG_PPC_ADV_DEBUG_DVCS > 0
2674 child
->thread
.debug
.dvc1
=
2675 (unsigned long)bp_info
->condition_value
;
2676 child
->thread
.debug
.dbcr2
|=
2677 ((byte_enable
<< DBCR2_DVC1BE_SHIFT
) |
2678 (condition_mode
<< DBCR2_DVC1M_SHIFT
));
2681 #ifdef CONFIG_PPC_ADV_DEBUG_DAC_RANGE
2682 } else if (child
->thread
.debug
.dbcr2
& DBCR2_DAC12MODE
) {
2683 /* Both dac1 and dac2 are part of a range */
2686 } else if ((dbcr_dac(child
) & (DBCR_DAC2R
| DBCR_DAC2W
)) == 0) {
2688 if (bp_info
->trigger_type
& PPC_BREAKPOINT_TRIGGER_READ
)
2689 dbcr_dac(child
) |= DBCR_DAC2R
;
2690 if (bp_info
->trigger_type
& PPC_BREAKPOINT_TRIGGER_WRITE
)
2691 dbcr_dac(child
) |= DBCR_DAC2W
;
2692 child
->thread
.debug
.dac2
= (unsigned long)bp_info
->addr
;
2693 #if CONFIG_PPC_ADV_DEBUG_DVCS > 0
2695 child
->thread
.debug
.dvc2
=
2696 (unsigned long)bp_info
->condition_value
;
2697 child
->thread
.debug
.dbcr2
|=
2698 ((byte_enable
<< DBCR2_DVC2BE_SHIFT
) |
2699 (condition_mode
<< DBCR2_DVC2M_SHIFT
));
2704 child
->thread
.debug
.dbcr0
|= DBCR0_IDM
;
2705 child
->thread
.regs
->msr
|= MSR_DE
;
2710 static int del_dac(struct task_struct
*child
, int slot
)
2713 if ((dbcr_dac(child
) & (DBCR_DAC1R
| DBCR_DAC1W
)) == 0)
2716 child
->thread
.debug
.dac1
= 0;
2717 dbcr_dac(child
) &= ~(DBCR_DAC1R
| DBCR_DAC1W
);
2718 #ifdef CONFIG_PPC_ADV_DEBUG_DAC_RANGE
2719 if (child
->thread
.debug
.dbcr2
& DBCR2_DAC12MODE
) {
2720 child
->thread
.debug
.dac2
= 0;
2721 child
->thread
.debug
.dbcr2
&= ~DBCR2_DAC12MODE
;
2723 child
->thread
.debug
.dbcr2
&= ~(DBCR2_DVC1M
| DBCR2_DVC1BE
);
2725 #if CONFIG_PPC_ADV_DEBUG_DVCS > 0
2726 child
->thread
.debug
.dvc1
= 0;
2728 } else if (slot
== 2) {
2729 if ((dbcr_dac(child
) & (DBCR_DAC2R
| DBCR_DAC2W
)) == 0)
2732 #ifdef CONFIG_PPC_ADV_DEBUG_DAC_RANGE
2733 if (child
->thread
.debug
.dbcr2
& DBCR2_DAC12MODE
)
2734 /* Part of a range */
2736 child
->thread
.debug
.dbcr2
&= ~(DBCR2_DVC2M
| DBCR2_DVC2BE
);
2738 #if CONFIG_PPC_ADV_DEBUG_DVCS > 0
2739 child
->thread
.debug
.dvc2
= 0;
2741 child
->thread
.debug
.dac2
= 0;
2742 dbcr_dac(child
) &= ~(DBCR_DAC2R
| DBCR_DAC2W
);
2748 #endif /* CONFIG_PPC_ADV_DEBUG_REGS */
2750 #ifdef CONFIG_PPC_ADV_DEBUG_DAC_RANGE
2751 static int set_dac_range(struct task_struct
*child
,
2752 struct ppc_hw_breakpoint
*bp_info
)
2754 int mode
= bp_info
->addr_mode
& PPC_BREAKPOINT_MODE_MASK
;
2756 /* We don't allow range watchpoints to be used with DVC */
2757 if (bp_info
->condition_mode
)
2761 * Best effort to verify the address range. The user/supervisor bits
2762 * prevent trapping in kernel space, but let's fail on an obvious bad
2763 * range. The simple test on the mask is not fool-proof, and any
2764 * exclusive range will spill over into kernel space.
2766 if (bp_info
->addr
>= TASK_SIZE
)
2768 if (mode
== PPC_BREAKPOINT_MODE_MASK
) {
2770 * dac2 is a bitmask. Don't allow a mask that makes a
2771 * kernel space address from a valid dac1 value
2773 if (~((unsigned long)bp_info
->addr2
) >= TASK_SIZE
)
2777 * For range breakpoints, addr2 must also be a valid address
2779 if (bp_info
->addr2
>= TASK_SIZE
)
2783 if (child
->thread
.debug
.dbcr0
&
2784 (DBCR0_DAC1R
| DBCR0_DAC1W
| DBCR0_DAC2R
| DBCR0_DAC2W
))
2787 if (bp_info
->trigger_type
& PPC_BREAKPOINT_TRIGGER_READ
)
2788 child
->thread
.debug
.dbcr0
|= (DBCR0_DAC1R
| DBCR0_IDM
);
2789 if (bp_info
->trigger_type
& PPC_BREAKPOINT_TRIGGER_WRITE
)
2790 child
->thread
.debug
.dbcr0
|= (DBCR0_DAC1W
| DBCR0_IDM
);
2791 child
->thread
.debug
.dac1
= bp_info
->addr
;
2792 child
->thread
.debug
.dac2
= bp_info
->addr2
;
2793 if (mode
== PPC_BREAKPOINT_MODE_RANGE_INCLUSIVE
)
2794 child
->thread
.debug
.dbcr2
|= DBCR2_DAC12M
;
2795 else if (mode
== PPC_BREAKPOINT_MODE_RANGE_EXCLUSIVE
)
2796 child
->thread
.debug
.dbcr2
|= DBCR2_DAC12MX
;
2797 else /* PPC_BREAKPOINT_MODE_MASK */
2798 child
->thread
.debug
.dbcr2
|= DBCR2_DAC12MM
;
2799 child
->thread
.regs
->msr
|= MSR_DE
;
2803 #endif /* CONFIG_PPC_ADV_DEBUG_DAC_RANGE */
2805 static long ppc_set_hwdebug(struct task_struct
*child
,
2806 struct ppc_hw_breakpoint
*bp_info
)
2808 #ifdef CONFIG_HAVE_HW_BREAKPOINT
2810 struct thread_struct
*thread
= &(child
->thread
);
2811 struct perf_event
*bp
;
2812 struct perf_event_attr attr
;
2813 #endif /* CONFIG_HAVE_HW_BREAKPOINT */
2814 #ifndef CONFIG_PPC_ADV_DEBUG_REGS
2815 struct arch_hw_breakpoint brk
;
2818 if (bp_info
->version
!= 1)
2820 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
2822 * Check for invalid flags and combinations
2824 if ((bp_info
->trigger_type
== 0) ||
2825 (bp_info
->trigger_type
& ~(PPC_BREAKPOINT_TRIGGER_EXECUTE
|
2826 PPC_BREAKPOINT_TRIGGER_RW
)) ||
2827 (bp_info
->addr_mode
& ~PPC_BREAKPOINT_MODE_MASK
) ||
2828 (bp_info
->condition_mode
&
2829 ~(PPC_BREAKPOINT_CONDITION_MODE
|
2830 PPC_BREAKPOINT_CONDITION_BE_ALL
)))
2832 #if CONFIG_PPC_ADV_DEBUG_DVCS == 0
2833 if (bp_info
->condition_mode
!= PPC_BREAKPOINT_CONDITION_NONE
)
2837 if (bp_info
->trigger_type
& PPC_BREAKPOINT_TRIGGER_EXECUTE
) {
2838 if ((bp_info
->trigger_type
!= PPC_BREAKPOINT_TRIGGER_EXECUTE
) ||
2839 (bp_info
->condition_mode
!= PPC_BREAKPOINT_CONDITION_NONE
))
2841 return set_instruction_bp(child
, bp_info
);
2843 if (bp_info
->addr_mode
== PPC_BREAKPOINT_MODE_EXACT
)
2844 return set_dac(child
, bp_info
);
2846 #ifdef CONFIG_PPC_ADV_DEBUG_DAC_RANGE
2847 return set_dac_range(child
, bp_info
);
2851 #else /* !CONFIG_PPC_ADV_DEBUG_DVCS */
2853 * We only support one data breakpoint
2855 if ((bp_info
->trigger_type
& PPC_BREAKPOINT_TRIGGER_RW
) == 0 ||
2856 (bp_info
->trigger_type
& ~PPC_BREAKPOINT_TRIGGER_RW
) != 0 ||
2857 bp_info
->condition_mode
!= PPC_BREAKPOINT_CONDITION_NONE
)
2860 if ((unsigned long)bp_info
->addr
>= TASK_SIZE
)
2863 brk
.address
= bp_info
->addr
& ~7UL;
2864 brk
.type
= HW_BRK_TYPE_TRANSLATE
;
2866 if (bp_info
->trigger_type
& PPC_BREAKPOINT_TRIGGER_READ
)
2867 brk
.type
|= HW_BRK_TYPE_READ
;
2868 if (bp_info
->trigger_type
& PPC_BREAKPOINT_TRIGGER_WRITE
)
2869 brk
.type
|= HW_BRK_TYPE_WRITE
;
2870 #ifdef CONFIG_HAVE_HW_BREAKPOINT
2872 * Check if the request is for 'range' breakpoints. We can
2873 * support it if range < 8 bytes.
2875 if (bp_info
->addr_mode
== PPC_BREAKPOINT_MODE_RANGE_INCLUSIVE
)
2876 len
= bp_info
->addr2
- bp_info
->addr
;
2877 else if (bp_info
->addr_mode
== PPC_BREAKPOINT_MODE_EXACT
)
2881 bp
= thread
->ptrace_bps
[0];
2885 /* Create a new breakpoint request if one doesn't exist already */
2886 hw_breakpoint_init(&attr
);
2887 attr
.bp_addr
= (unsigned long)bp_info
->addr
& ~HW_BREAKPOINT_ALIGN
;
2889 arch_bp_generic_fields(brk
.type
, &attr
.bp_type
);
2891 thread
->ptrace_bps
[0] = bp
= register_user_hw_breakpoint(&attr
,
2892 ptrace_triggered
, NULL
, child
);
2894 thread
->ptrace_bps
[0] = NULL
;
2899 #endif /* CONFIG_HAVE_HW_BREAKPOINT */
2901 if (bp_info
->addr_mode
!= PPC_BREAKPOINT_MODE_EXACT
)
2904 if (child
->thread
.hw_brk
.address
)
2907 child
->thread
.hw_brk
= brk
;
2910 #endif /* !CONFIG_PPC_ADV_DEBUG_DVCS */
2913 static long ppc_del_hwdebug(struct task_struct
*child
, long data
)
2915 #ifdef CONFIG_HAVE_HW_BREAKPOINT
2917 struct thread_struct
*thread
= &(child
->thread
);
2918 struct perf_event
*bp
;
2919 #endif /* CONFIG_HAVE_HW_BREAKPOINT */
2920 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
2924 rc
= del_instruction_bp(child
, (int)data
);
2926 rc
= del_dac(child
, (int)data
- 4);
2929 if (!DBCR_ACTIVE_EVENTS(child
->thread
.debug
.dbcr0
,
2930 child
->thread
.debug
.dbcr1
)) {
2931 child
->thread
.debug
.dbcr0
&= ~DBCR0_IDM
;
2932 child
->thread
.regs
->msr
&= ~MSR_DE
;
2940 #ifdef CONFIG_HAVE_HW_BREAKPOINT
2941 bp
= thread
->ptrace_bps
[0];
2943 unregister_hw_breakpoint(bp
);
2944 thread
->ptrace_bps
[0] = NULL
;
2948 #else /* CONFIG_HAVE_HW_BREAKPOINT */
2949 if (child
->thread
.hw_brk
.address
== 0)
2952 child
->thread
.hw_brk
.address
= 0;
2953 child
->thread
.hw_brk
.type
= 0;
2954 #endif /* CONFIG_HAVE_HW_BREAKPOINT */
2960 long arch_ptrace(struct task_struct
*child
, long request
,
2961 unsigned long addr
, unsigned long data
)
2964 void __user
*datavp
= (void __user
*) data
;
2965 unsigned long __user
*datalp
= datavp
;
2968 /* read the word at location addr in the USER area. */
2969 case PTRACE_PEEKUSR
: {
2970 unsigned long index
, tmp
;
2973 /* convert to index and check */
2976 if ((addr
& 3) || (index
> PT_FPSCR
)
2977 || (child
->thread
.regs
== NULL
))
2980 if ((addr
& 7) || (index
> PT_FPSCR
))
2984 CHECK_FULL_REGS(child
->thread
.regs
);
2985 if (index
< PT_FPR0
) {
2986 ret
= ptrace_get_reg(child
, (int) index
, &tmp
);
2990 unsigned int fpidx
= index
- PT_FPR0
;
2992 flush_fp_to_thread(child
);
2993 if (fpidx
< (PT_FPSCR
- PT_FPR0
))
2994 memcpy(&tmp
, &child
->thread
.TS_FPR(fpidx
),
2997 tmp
= child
->thread
.fp_state
.fpscr
;
2999 ret
= put_user(tmp
, datalp
);
3003 /* write the word at location addr in the USER area */
3004 case PTRACE_POKEUSR
: {
3005 unsigned long index
;
3008 /* convert to index and check */
3011 if ((addr
& 3) || (index
> PT_FPSCR
)
3012 || (child
->thread
.regs
== NULL
))
3015 if ((addr
& 7) || (index
> PT_FPSCR
))
3019 CHECK_FULL_REGS(child
->thread
.regs
);
3020 if (index
< PT_FPR0
) {
3021 ret
= ptrace_put_reg(child
, index
, data
);
3023 unsigned int fpidx
= index
- PT_FPR0
;
3025 flush_fp_to_thread(child
);
3026 if (fpidx
< (PT_FPSCR
- PT_FPR0
))
3027 memcpy(&child
->thread
.TS_FPR(fpidx
), &data
,
3030 child
->thread
.fp_state
.fpscr
= data
;
3036 case PPC_PTRACE_GETHWDBGINFO
: {
3037 struct ppc_debug_info dbginfo
;
3039 dbginfo
.version
= 1;
3040 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
3041 dbginfo
.num_instruction_bps
= CONFIG_PPC_ADV_DEBUG_IACS
;
3042 dbginfo
.num_data_bps
= CONFIG_PPC_ADV_DEBUG_DACS
;
3043 dbginfo
.num_condition_regs
= CONFIG_PPC_ADV_DEBUG_DVCS
;
3044 dbginfo
.data_bp_alignment
= 4;
3045 dbginfo
.sizeof_condition
= 4;
3046 dbginfo
.features
= PPC_DEBUG_FEATURE_INSN_BP_RANGE
|
3047 PPC_DEBUG_FEATURE_INSN_BP_MASK
;
3048 #ifdef CONFIG_PPC_ADV_DEBUG_DAC_RANGE
3050 PPC_DEBUG_FEATURE_DATA_BP_RANGE
|
3051 PPC_DEBUG_FEATURE_DATA_BP_MASK
;
3053 #else /* !CONFIG_PPC_ADV_DEBUG_REGS */
3054 dbginfo
.num_instruction_bps
= 0;
3055 dbginfo
.num_data_bps
= 1;
3056 dbginfo
.num_condition_regs
= 0;
3058 dbginfo
.data_bp_alignment
= 8;
3060 dbginfo
.data_bp_alignment
= 4;
3062 dbginfo
.sizeof_condition
= 0;
3063 #ifdef CONFIG_HAVE_HW_BREAKPOINT
3064 dbginfo
.features
= PPC_DEBUG_FEATURE_DATA_BP_RANGE
;
3065 if (cpu_has_feature(CPU_FTR_DAWR
))
3066 dbginfo
.features
|= PPC_DEBUG_FEATURE_DATA_BP_DAWR
;
3068 dbginfo
.features
= 0;
3069 #endif /* CONFIG_HAVE_HW_BREAKPOINT */
3070 #endif /* CONFIG_PPC_ADV_DEBUG_REGS */
3072 if (!access_ok(VERIFY_WRITE
, datavp
,
3073 sizeof(struct ppc_debug_info
)))
3075 ret
= __copy_to_user(datavp
, &dbginfo
,
3076 sizeof(struct ppc_debug_info
)) ?
3081 case PPC_PTRACE_SETHWDEBUG
: {
3082 struct ppc_hw_breakpoint bp_info
;
3084 if (!access_ok(VERIFY_READ
, datavp
,
3085 sizeof(struct ppc_hw_breakpoint
)))
3087 ret
= __copy_from_user(&bp_info
, datavp
,
3088 sizeof(struct ppc_hw_breakpoint
)) ?
3091 ret
= ppc_set_hwdebug(child
, &bp_info
);
3095 case PPC_PTRACE_DELHWDEBUG
: {
3096 ret
= ppc_del_hwdebug(child
, data
);
3100 case PTRACE_GET_DEBUGREG
: {
3101 #ifndef CONFIG_PPC_ADV_DEBUG_REGS
3102 unsigned long dabr_fake
;
3105 /* We only support one DABR and no IABRS at the moment */
3108 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
3109 ret
= put_user(child
->thread
.debug
.dac1
, datalp
);
3111 dabr_fake
= ((child
->thread
.hw_brk
.address
& (~HW_BRK_TYPE_DABR
)) |
3112 (child
->thread
.hw_brk
.type
& HW_BRK_TYPE_DABR
));
3113 ret
= put_user(dabr_fake
, datalp
);
3118 case PTRACE_SET_DEBUGREG
:
3119 ret
= ptrace_set_debugreg(child
, addr
, data
);
3123 case PTRACE_GETREGS64
:
3125 case PTRACE_GETREGS
: /* Get all pt_regs from the child. */
3126 return copy_regset_to_user(child
, &user_ppc_native_view
,
3128 0, sizeof(struct pt_regs
),
3132 case PTRACE_SETREGS64
:
3134 case PTRACE_SETREGS
: /* Set all gp regs in the child. */
3135 return copy_regset_from_user(child
, &user_ppc_native_view
,
3137 0, sizeof(struct pt_regs
),
3140 case PTRACE_GETFPREGS
: /* Get the child FPU state (FPR0...31 + FPSCR) */
3141 return copy_regset_to_user(child
, &user_ppc_native_view
,
3143 0, sizeof(elf_fpregset_t
),
3146 case PTRACE_SETFPREGS
: /* Set the child FPU state (FPR0...31 + FPSCR) */
3147 return copy_regset_from_user(child
, &user_ppc_native_view
,
3149 0, sizeof(elf_fpregset_t
),
3152 #ifdef CONFIG_ALTIVEC
3153 case PTRACE_GETVRREGS
:
3154 return copy_regset_to_user(child
, &user_ppc_native_view
,
3156 0, (33 * sizeof(vector128
) +
3160 case PTRACE_SETVRREGS
:
3161 return copy_regset_from_user(child
, &user_ppc_native_view
,
3163 0, (33 * sizeof(vector128
) +
3168 case PTRACE_GETVSRREGS
:
3169 return copy_regset_to_user(child
, &user_ppc_native_view
,
3171 0, 32 * sizeof(double),
3174 case PTRACE_SETVSRREGS
:
3175 return copy_regset_from_user(child
, &user_ppc_native_view
,
3177 0, 32 * sizeof(double),
3181 case PTRACE_GETEVRREGS
:
3182 /* Get the child spe register state. */
3183 return copy_regset_to_user(child
, &user_ppc_native_view
,
3184 REGSET_SPE
, 0, 35 * sizeof(u32
),
3187 case PTRACE_SETEVRREGS
:
3188 /* Set the child spe register state. */
3189 return copy_regset_from_user(child
, &user_ppc_native_view
,
3190 REGSET_SPE
, 0, 35 * sizeof(u32
),
3195 ret
= ptrace_request(child
, request
, addr
, data
);
3201 #ifdef CONFIG_SECCOMP
3202 static int do_seccomp(struct pt_regs
*regs
)
3204 if (!test_thread_flag(TIF_SECCOMP
))
3208 * The ABI we present to seccomp tracers is that r3 contains
3209 * the syscall return value and orig_gpr3 contains the first
3210 * syscall parameter. This is different to the ptrace ABI where
3211 * both r3 and orig_gpr3 contain the first syscall parameter.
3213 regs
->gpr
[3] = -ENOSYS
;
3216 * We use the __ version here because we have already checked
3217 * TIF_SECCOMP. If this fails, there is nothing left to do, we
3218 * have already loaded -ENOSYS into r3, or seccomp has put
3219 * something else in r3 (via SECCOMP_RET_ERRNO/TRACE).
3221 if (__secure_computing(NULL
))
3225 * The syscall was allowed by seccomp, restore the register
3226 * state to what audit expects.
3227 * Note that we use orig_gpr3, which means a seccomp tracer can
3228 * modify the first syscall parameter (in orig_gpr3) and also
3229 * allow the syscall to proceed.
3231 regs
->gpr
[3] = regs
->orig_gpr3
;
3236 static inline int do_seccomp(struct pt_regs
*regs
) { return 0; }
3237 #endif /* CONFIG_SECCOMP */
3240 * do_syscall_trace_enter() - Do syscall tracing on kernel entry.
3241 * @regs: the pt_regs of the task to trace (current)
3243 * Performs various types of tracing on syscall entry. This includes seccomp,
3244 * ptrace, syscall tracepoints and audit.
3246 * The pt_regs are potentially visible to userspace via ptrace, so their
3249 * One or more of the tracers may modify the contents of pt_regs, in particular
3250 * to modify arguments or even the syscall number itself.
3252 * It's also possible that a tracer can choose to reject the system call. In
3253 * that case this function will return an illegal syscall number, and will put
3254 * an appropriate return value in regs->r3.
3256 * Return: the (possibly changed) syscall number.
3258 long do_syscall_trace_enter(struct pt_regs
*regs
)
3263 * The tracer may decide to abort the syscall, if so tracehook
3264 * will return !0. Note that the tracer may also just change
3265 * regs->gpr[0] to an invalid syscall number, that is handled
3266 * below on the exit path.
3268 if (test_thread_flag(TIF_SYSCALL_TRACE
) &&
3269 tracehook_report_syscall_entry(regs
))
3272 /* Run seccomp after ptrace; allow it to set gpr[3]. */
3273 if (do_seccomp(regs
))
3276 /* Avoid trace and audit when syscall is invalid. */
3277 if (regs
->gpr
[0] >= NR_syscalls
)
3280 if (unlikely(test_thread_flag(TIF_SYSCALL_TRACEPOINT
)))
3281 trace_sys_enter(regs
, regs
->gpr
[0]);
3284 if (!is_32bit_task())
3285 audit_syscall_entry(regs
->gpr
[0], regs
->gpr
[3], regs
->gpr
[4],
3286 regs
->gpr
[5], regs
->gpr
[6]);
3289 audit_syscall_entry(regs
->gpr
[0],
3290 regs
->gpr
[3] & 0xffffffff,
3291 regs
->gpr
[4] & 0xffffffff,
3292 regs
->gpr
[5] & 0xffffffff,
3293 regs
->gpr
[6] & 0xffffffff);
3295 /* Return the possibly modified but valid syscall number */
3296 return regs
->gpr
[0];
3300 * If we are aborting explicitly, or if the syscall number is
3301 * now invalid, set the return value to -ENOSYS.
3303 regs
->gpr
[3] = -ENOSYS
;
3307 void do_syscall_trace_leave(struct pt_regs
*regs
)
3311 audit_syscall_exit(regs
);
3313 if (unlikely(test_thread_flag(TIF_SYSCALL_TRACEPOINT
)))
3314 trace_sys_exit(regs
, regs
->result
);
3316 step
= test_thread_flag(TIF_SINGLESTEP
);
3317 if (step
|| test_thread_flag(TIF_SYSCALL_TRACE
))
3318 tracehook_report_syscall_exit(regs
, step
);