Merge tag 'for_linus' of git://git.kernel.org/pub/scm/linux/kernel/git/mst/vhost
[cris-mirror.git] / arch / powerpc / kernel / ptrace.c
blobca72d7391d404f9acb4dee60b800a2b1edd2f03c
1 /*
2 * PowerPC version
3 * Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org)
5 * Derived from "arch/m68k/kernel/ptrace.c"
6 * Copyright (C) 1994 by Hamish Macdonald
7 * Taken from linux/kernel/ptrace.c and modified for M680x0.
8 * linux/kernel/ptrace.c is by Ross Biro 1/23/92, edited by Linus Torvalds
10 * Modified by Cort Dougan (cort@hq.fsmlabs.com)
11 * and Paul Mackerras (paulus@samba.org).
13 * This file is subject to the terms and conditions of the GNU General
14 * Public License. See the file README.legal in the main directory of
15 * this archive for more details.
18 #include <linux/kernel.h>
19 #include <linux/sched.h>
20 #include <linux/mm.h>
21 #include <linux/smp.h>
22 #include <linux/errno.h>
23 #include <linux/ptrace.h>
24 #include <linux/regset.h>
25 #include <linux/tracehook.h>
26 #include <linux/elf.h>
27 #include <linux/user.h>
28 #include <linux/security.h>
29 #include <linux/signal.h>
30 #include <linux/seccomp.h>
31 #include <linux/audit.h>
32 #include <trace/syscall.h>
33 #include <linux/hw_breakpoint.h>
34 #include <linux/perf_event.h>
35 #include <linux/context_tracking.h>
37 #include <linux/uaccess.h>
38 #include <linux/pkeys.h>
39 #include <asm/page.h>
40 #include <asm/pgtable.h>
41 #include <asm/switch_to.h>
42 #include <asm/tm.h>
43 #include <asm/asm-prototypes.h>
45 #define CREATE_TRACE_POINTS
46 #include <trace/events/syscalls.h>
49 * The parameter save area on the stack is used to store arguments being passed
50 * to callee function and is located at fixed offset from stack pointer.
52 #ifdef CONFIG_PPC32
53 #define PARAMETER_SAVE_AREA_OFFSET 24 /* bytes */
54 #else /* CONFIG_PPC32 */
55 #define PARAMETER_SAVE_AREA_OFFSET 48 /* bytes */
56 #endif
58 struct pt_regs_offset {
59 const char *name;
60 int offset;
63 #define STR(s) #s /* convert to string */
64 #define REG_OFFSET_NAME(r) {.name = #r, .offset = offsetof(struct pt_regs, r)}
65 #define GPR_OFFSET_NAME(num) \
66 {.name = STR(r##num), .offset = offsetof(struct pt_regs, gpr[num])}, \
67 {.name = STR(gpr##num), .offset = offsetof(struct pt_regs, gpr[num])}
68 #define REG_OFFSET_END {.name = NULL, .offset = 0}
70 #define TVSO(f) (offsetof(struct thread_vr_state, f))
71 #define TFSO(f) (offsetof(struct thread_fp_state, f))
72 #define TSO(f) (offsetof(struct thread_struct, f))
74 static const struct pt_regs_offset regoffset_table[] = {
75 GPR_OFFSET_NAME(0),
76 GPR_OFFSET_NAME(1),
77 GPR_OFFSET_NAME(2),
78 GPR_OFFSET_NAME(3),
79 GPR_OFFSET_NAME(4),
80 GPR_OFFSET_NAME(5),
81 GPR_OFFSET_NAME(6),
82 GPR_OFFSET_NAME(7),
83 GPR_OFFSET_NAME(8),
84 GPR_OFFSET_NAME(9),
85 GPR_OFFSET_NAME(10),
86 GPR_OFFSET_NAME(11),
87 GPR_OFFSET_NAME(12),
88 GPR_OFFSET_NAME(13),
89 GPR_OFFSET_NAME(14),
90 GPR_OFFSET_NAME(15),
91 GPR_OFFSET_NAME(16),
92 GPR_OFFSET_NAME(17),
93 GPR_OFFSET_NAME(18),
94 GPR_OFFSET_NAME(19),
95 GPR_OFFSET_NAME(20),
96 GPR_OFFSET_NAME(21),
97 GPR_OFFSET_NAME(22),
98 GPR_OFFSET_NAME(23),
99 GPR_OFFSET_NAME(24),
100 GPR_OFFSET_NAME(25),
101 GPR_OFFSET_NAME(26),
102 GPR_OFFSET_NAME(27),
103 GPR_OFFSET_NAME(28),
104 GPR_OFFSET_NAME(29),
105 GPR_OFFSET_NAME(30),
106 GPR_OFFSET_NAME(31),
107 REG_OFFSET_NAME(nip),
108 REG_OFFSET_NAME(msr),
109 REG_OFFSET_NAME(ctr),
110 REG_OFFSET_NAME(link),
111 REG_OFFSET_NAME(xer),
112 REG_OFFSET_NAME(ccr),
113 #ifdef CONFIG_PPC64
114 REG_OFFSET_NAME(softe),
115 #else
116 REG_OFFSET_NAME(mq),
117 #endif
118 REG_OFFSET_NAME(trap),
119 REG_OFFSET_NAME(dar),
120 REG_OFFSET_NAME(dsisr),
121 REG_OFFSET_END,
124 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
125 static void flush_tmregs_to_thread(struct task_struct *tsk)
128 * If task is not current, it will have been flushed already to
129 * it's thread_struct during __switch_to().
131 * A reclaim flushes ALL the state or if not in TM save TM SPRs
132 * in the appropriate thread structures from live.
135 if ((!cpu_has_feature(CPU_FTR_TM)) || (tsk != current))
136 return;
138 if (MSR_TM_SUSPENDED(mfmsr())) {
139 tm_reclaim_current(TM_CAUSE_SIGNAL);
140 } else {
141 tm_enable();
142 tm_save_sprs(&(tsk->thread));
145 #else
146 static inline void flush_tmregs_to_thread(struct task_struct *tsk) { }
147 #endif
150 * regs_query_register_offset() - query register offset from its name
151 * @name: the name of a register
153 * regs_query_register_offset() returns the offset of a register in struct
154 * pt_regs from its name. If the name is invalid, this returns -EINVAL;
156 int regs_query_register_offset(const char *name)
158 const struct pt_regs_offset *roff;
159 for (roff = regoffset_table; roff->name != NULL; roff++)
160 if (!strcmp(roff->name, name))
161 return roff->offset;
162 return -EINVAL;
166 * regs_query_register_name() - query register name from its offset
167 * @offset: the offset of a register in struct pt_regs.
169 * regs_query_register_name() returns the name of a register from its
170 * offset in struct pt_regs. If the @offset is invalid, this returns NULL;
172 const char *regs_query_register_name(unsigned int offset)
174 const struct pt_regs_offset *roff;
175 for (roff = regoffset_table; roff->name != NULL; roff++)
176 if (roff->offset == offset)
177 return roff->name;
178 return NULL;
182 * does not yet catch signals sent when the child dies.
183 * in exit.c or in signal.c.
187 * Set of msr bits that gdb can change on behalf of a process.
189 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
190 #define MSR_DEBUGCHANGE 0
191 #else
192 #define MSR_DEBUGCHANGE (MSR_SE | MSR_BE)
193 #endif
196 * Max register writeable via put_reg
198 #ifdef CONFIG_PPC32
199 #define PT_MAX_PUT_REG PT_MQ
200 #else
201 #define PT_MAX_PUT_REG PT_CCR
202 #endif
204 static unsigned long get_user_msr(struct task_struct *task)
206 return task->thread.regs->msr | task->thread.fpexc_mode;
209 static int set_user_msr(struct task_struct *task, unsigned long msr)
211 task->thread.regs->msr &= ~MSR_DEBUGCHANGE;
212 task->thread.regs->msr |= msr & MSR_DEBUGCHANGE;
213 return 0;
216 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
217 static unsigned long get_user_ckpt_msr(struct task_struct *task)
219 return task->thread.ckpt_regs.msr | task->thread.fpexc_mode;
222 static int set_user_ckpt_msr(struct task_struct *task, unsigned long msr)
224 task->thread.ckpt_regs.msr &= ~MSR_DEBUGCHANGE;
225 task->thread.ckpt_regs.msr |= msr & MSR_DEBUGCHANGE;
226 return 0;
229 static int set_user_ckpt_trap(struct task_struct *task, unsigned long trap)
231 task->thread.ckpt_regs.trap = trap & 0xfff0;
232 return 0;
234 #endif
236 #ifdef CONFIG_PPC64
237 static int get_user_dscr(struct task_struct *task, unsigned long *data)
239 *data = task->thread.dscr;
240 return 0;
243 static int set_user_dscr(struct task_struct *task, unsigned long dscr)
245 task->thread.dscr = dscr;
246 task->thread.dscr_inherit = 1;
247 return 0;
249 #else
250 static int get_user_dscr(struct task_struct *task, unsigned long *data)
252 return -EIO;
255 static int set_user_dscr(struct task_struct *task, unsigned long dscr)
257 return -EIO;
259 #endif
262 * We prevent mucking around with the reserved area of trap
263 * which are used internally by the kernel.
265 static int set_user_trap(struct task_struct *task, unsigned long trap)
267 task->thread.regs->trap = trap & 0xfff0;
268 return 0;
272 * Get contents of register REGNO in task TASK.
274 int ptrace_get_reg(struct task_struct *task, int regno, unsigned long *data)
276 if ((task->thread.regs == NULL) || !data)
277 return -EIO;
279 if (regno == PT_MSR) {
280 *data = get_user_msr(task);
281 return 0;
284 if (regno == PT_DSCR)
285 return get_user_dscr(task, data);
287 #ifdef CONFIG_PPC64
289 * softe copies paca->irq_soft_mask variable state. Since irq_soft_mask is
290 * no more used as a flag, lets force usr to alway see the softe value as 1
291 * which means interrupts are not soft disabled.
293 if (regno == PT_SOFTE) {
294 *data = 1;
295 return 0;
297 #endif
299 if (regno < (sizeof(struct pt_regs) / sizeof(unsigned long))) {
300 *data = ((unsigned long *)task->thread.regs)[regno];
301 return 0;
304 return -EIO;
308 * Write contents of register REGNO in task TASK.
310 int ptrace_put_reg(struct task_struct *task, int regno, unsigned long data)
312 if (task->thread.regs == NULL)
313 return -EIO;
315 if (regno == PT_MSR)
316 return set_user_msr(task, data);
317 if (regno == PT_TRAP)
318 return set_user_trap(task, data);
319 if (regno == PT_DSCR)
320 return set_user_dscr(task, data);
322 if (regno <= PT_MAX_PUT_REG) {
323 ((unsigned long *)task->thread.regs)[regno] = data;
324 return 0;
326 return -EIO;
329 static int gpr_get(struct task_struct *target, const struct user_regset *regset,
330 unsigned int pos, unsigned int count,
331 void *kbuf, void __user *ubuf)
333 int i, ret;
335 if (target->thread.regs == NULL)
336 return -EIO;
338 if (!FULL_REGS(target->thread.regs)) {
339 /* We have a partial register set. Fill 14-31 with bogus values */
340 for (i = 14; i < 32; i++)
341 target->thread.regs->gpr[i] = NV_REG_POISON;
344 ret = user_regset_copyout(&pos, &count, &kbuf, &ubuf,
345 target->thread.regs,
346 0, offsetof(struct pt_regs, msr));
347 if (!ret) {
348 unsigned long msr = get_user_msr(target);
349 ret = user_regset_copyout(&pos, &count, &kbuf, &ubuf, &msr,
350 offsetof(struct pt_regs, msr),
351 offsetof(struct pt_regs, msr) +
352 sizeof(msr));
355 BUILD_BUG_ON(offsetof(struct pt_regs, orig_gpr3) !=
356 offsetof(struct pt_regs, msr) + sizeof(long));
358 if (!ret)
359 ret = user_regset_copyout(&pos, &count, &kbuf, &ubuf,
360 &target->thread.regs->orig_gpr3,
361 offsetof(struct pt_regs, orig_gpr3),
362 sizeof(struct pt_regs));
363 if (!ret)
364 ret = user_regset_copyout_zero(&pos, &count, &kbuf, &ubuf,
365 sizeof(struct pt_regs), -1);
367 return ret;
370 static int gpr_set(struct task_struct *target, const struct user_regset *regset,
371 unsigned int pos, unsigned int count,
372 const void *kbuf, const void __user *ubuf)
374 unsigned long reg;
375 int ret;
377 if (target->thread.regs == NULL)
378 return -EIO;
380 CHECK_FULL_REGS(target->thread.regs);
382 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
383 target->thread.regs,
384 0, PT_MSR * sizeof(reg));
386 if (!ret && count > 0) {
387 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, &reg,
388 PT_MSR * sizeof(reg),
389 (PT_MSR + 1) * sizeof(reg));
390 if (!ret)
391 ret = set_user_msr(target, reg);
394 BUILD_BUG_ON(offsetof(struct pt_regs, orig_gpr3) !=
395 offsetof(struct pt_regs, msr) + sizeof(long));
397 if (!ret)
398 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
399 &target->thread.regs->orig_gpr3,
400 PT_ORIG_R3 * sizeof(reg),
401 (PT_MAX_PUT_REG + 1) * sizeof(reg));
403 if (PT_MAX_PUT_REG + 1 < PT_TRAP && !ret)
404 ret = user_regset_copyin_ignore(
405 &pos, &count, &kbuf, &ubuf,
406 (PT_MAX_PUT_REG + 1) * sizeof(reg),
407 PT_TRAP * sizeof(reg));
409 if (!ret && count > 0) {
410 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, &reg,
411 PT_TRAP * sizeof(reg),
412 (PT_TRAP + 1) * sizeof(reg));
413 if (!ret)
414 ret = set_user_trap(target, reg);
417 if (!ret)
418 ret = user_regset_copyin_ignore(
419 &pos, &count, &kbuf, &ubuf,
420 (PT_TRAP + 1) * sizeof(reg), -1);
422 return ret;
426 * Regardless of transactions, 'fp_state' holds the current running
427 * value of all FPR registers and 'ckfp_state' holds the last checkpointed
428 * value of all FPR registers for the current transaction.
430 * Userspace interface buffer layout:
432 * struct data {
433 * u64 fpr[32];
434 * u64 fpscr;
435 * };
437 static int fpr_get(struct task_struct *target, const struct user_regset *regset,
438 unsigned int pos, unsigned int count,
439 void *kbuf, void __user *ubuf)
441 #ifdef CONFIG_VSX
442 u64 buf[33];
443 int i;
445 flush_fp_to_thread(target);
447 /* copy to local buffer then write that out */
448 for (i = 0; i < 32 ; i++)
449 buf[i] = target->thread.TS_FPR(i);
450 buf[32] = target->thread.fp_state.fpscr;
451 return user_regset_copyout(&pos, &count, &kbuf, &ubuf, buf, 0, -1);
452 #else
453 BUILD_BUG_ON(offsetof(struct thread_fp_state, fpscr) !=
454 offsetof(struct thread_fp_state, fpr[32]));
456 flush_fp_to_thread(target);
458 return user_regset_copyout(&pos, &count, &kbuf, &ubuf,
459 &target->thread.fp_state, 0, -1);
460 #endif
464 * Regardless of transactions, 'fp_state' holds the current running
465 * value of all FPR registers and 'ckfp_state' holds the last checkpointed
466 * value of all FPR registers for the current transaction.
468 * Userspace interface buffer layout:
470 * struct data {
471 * u64 fpr[32];
472 * u64 fpscr;
473 * };
476 static int fpr_set(struct task_struct *target, const struct user_regset *regset,
477 unsigned int pos, unsigned int count,
478 const void *kbuf, const void __user *ubuf)
480 #ifdef CONFIG_VSX
481 u64 buf[33];
482 int i;
484 flush_fp_to_thread(target);
486 for (i = 0; i < 32 ; i++)
487 buf[i] = target->thread.TS_FPR(i);
488 buf[32] = target->thread.fp_state.fpscr;
490 /* copy to local buffer then write that out */
491 i = user_regset_copyin(&pos, &count, &kbuf, &ubuf, buf, 0, -1);
492 if (i)
493 return i;
495 for (i = 0; i < 32 ; i++)
496 target->thread.TS_FPR(i) = buf[i];
497 target->thread.fp_state.fpscr = buf[32];
498 return 0;
499 #else
500 BUILD_BUG_ON(offsetof(struct thread_fp_state, fpscr) !=
501 offsetof(struct thread_fp_state, fpr[32]));
503 flush_fp_to_thread(target);
505 return user_regset_copyin(&pos, &count, &kbuf, &ubuf,
506 &target->thread.fp_state, 0, -1);
507 #endif
510 #ifdef CONFIG_ALTIVEC
512 * Get/set all the altivec registers vr0..vr31, vscr, vrsave, in one go.
513 * The transfer totals 34 quadword. Quadwords 0-31 contain the
514 * corresponding vector registers. Quadword 32 contains the vscr as the
515 * last word (offset 12) within that quadword. Quadword 33 contains the
516 * vrsave as the first word (offset 0) within the quadword.
518 * This definition of the VMX state is compatible with the current PPC32
519 * ptrace interface. This allows signal handling and ptrace to use the
520 * same structures. This also simplifies the implementation of a bi-arch
521 * (combined (32- and 64-bit) gdb.
524 static int vr_active(struct task_struct *target,
525 const struct user_regset *regset)
527 flush_altivec_to_thread(target);
528 return target->thread.used_vr ? regset->n : 0;
532 * Regardless of transactions, 'vr_state' holds the current running
533 * value of all the VMX registers and 'ckvr_state' holds the last
534 * checkpointed value of all the VMX registers for the current
535 * transaction to fall back on in case it aborts.
537 * Userspace interface buffer layout:
539 * struct data {
540 * vector128 vr[32];
541 * vector128 vscr;
542 * vector128 vrsave;
543 * };
545 static int vr_get(struct task_struct *target, const struct user_regset *regset,
546 unsigned int pos, unsigned int count,
547 void *kbuf, void __user *ubuf)
549 int ret;
551 flush_altivec_to_thread(target);
553 BUILD_BUG_ON(offsetof(struct thread_vr_state, vscr) !=
554 offsetof(struct thread_vr_state, vr[32]));
556 ret = user_regset_copyout(&pos, &count, &kbuf, &ubuf,
557 &target->thread.vr_state, 0,
558 33 * sizeof(vector128));
559 if (!ret) {
561 * Copy out only the low-order word of vrsave.
563 union {
564 elf_vrreg_t reg;
565 u32 word;
566 } vrsave;
567 memset(&vrsave, 0, sizeof(vrsave));
569 vrsave.word = target->thread.vrsave;
571 ret = user_regset_copyout(&pos, &count, &kbuf, &ubuf, &vrsave,
572 33 * sizeof(vector128), -1);
575 return ret;
579 * Regardless of transactions, 'vr_state' holds the current running
580 * value of all the VMX registers and 'ckvr_state' holds the last
581 * checkpointed value of all the VMX registers for the current
582 * transaction to fall back on in case it aborts.
584 * Userspace interface buffer layout:
586 * struct data {
587 * vector128 vr[32];
588 * vector128 vscr;
589 * vector128 vrsave;
590 * };
592 static int vr_set(struct task_struct *target, const struct user_regset *regset,
593 unsigned int pos, unsigned int count,
594 const void *kbuf, const void __user *ubuf)
596 int ret;
598 flush_altivec_to_thread(target);
600 BUILD_BUG_ON(offsetof(struct thread_vr_state, vscr) !=
601 offsetof(struct thread_vr_state, vr[32]));
603 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
604 &target->thread.vr_state, 0,
605 33 * sizeof(vector128));
606 if (!ret && count > 0) {
608 * We use only the first word of vrsave.
610 union {
611 elf_vrreg_t reg;
612 u32 word;
613 } vrsave;
614 memset(&vrsave, 0, sizeof(vrsave));
616 vrsave.word = target->thread.vrsave;
618 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, &vrsave,
619 33 * sizeof(vector128), -1);
620 if (!ret)
621 target->thread.vrsave = vrsave.word;
624 return ret;
626 #endif /* CONFIG_ALTIVEC */
628 #ifdef CONFIG_VSX
630 * Currently to set and and get all the vsx state, you need to call
631 * the fp and VMX calls as well. This only get/sets the lower 32
632 * 128bit VSX registers.
635 static int vsr_active(struct task_struct *target,
636 const struct user_regset *regset)
638 flush_vsx_to_thread(target);
639 return target->thread.used_vsr ? regset->n : 0;
643 * Regardless of transactions, 'fp_state' holds the current running
644 * value of all FPR registers and 'ckfp_state' holds the last
645 * checkpointed value of all FPR registers for the current
646 * transaction.
648 * Userspace interface buffer layout:
650 * struct data {
651 * u64 vsx[32];
652 * };
654 static int vsr_get(struct task_struct *target, const struct user_regset *regset,
655 unsigned int pos, unsigned int count,
656 void *kbuf, void __user *ubuf)
658 u64 buf[32];
659 int ret, i;
661 flush_tmregs_to_thread(target);
662 flush_fp_to_thread(target);
663 flush_altivec_to_thread(target);
664 flush_vsx_to_thread(target);
666 for (i = 0; i < 32 ; i++)
667 buf[i] = target->thread.fp_state.fpr[i][TS_VSRLOWOFFSET];
669 ret = user_regset_copyout(&pos, &count, &kbuf, &ubuf,
670 buf, 0, 32 * sizeof(double));
672 return ret;
676 * Regardless of transactions, 'fp_state' holds the current running
677 * value of all FPR registers and 'ckfp_state' holds the last
678 * checkpointed value of all FPR registers for the current
679 * transaction.
681 * Userspace interface buffer layout:
683 * struct data {
684 * u64 vsx[32];
685 * };
687 static int vsr_set(struct task_struct *target, const struct user_regset *regset,
688 unsigned int pos, unsigned int count,
689 const void *kbuf, const void __user *ubuf)
691 u64 buf[32];
692 int ret,i;
694 flush_tmregs_to_thread(target);
695 flush_fp_to_thread(target);
696 flush_altivec_to_thread(target);
697 flush_vsx_to_thread(target);
699 for (i = 0; i < 32 ; i++)
700 buf[i] = target->thread.fp_state.fpr[i][TS_VSRLOWOFFSET];
702 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
703 buf, 0, 32 * sizeof(double));
704 if (!ret)
705 for (i = 0; i < 32 ; i++)
706 target->thread.fp_state.fpr[i][TS_VSRLOWOFFSET] = buf[i];
708 return ret;
710 #endif /* CONFIG_VSX */
712 #ifdef CONFIG_SPE
715 * For get_evrregs/set_evrregs functions 'data' has the following layout:
717 * struct {
718 * u32 evr[32];
719 * u64 acc;
720 * u32 spefscr;
724 static int evr_active(struct task_struct *target,
725 const struct user_regset *regset)
727 flush_spe_to_thread(target);
728 return target->thread.used_spe ? regset->n : 0;
731 static int evr_get(struct task_struct *target, const struct user_regset *regset,
732 unsigned int pos, unsigned int count,
733 void *kbuf, void __user *ubuf)
735 int ret;
737 flush_spe_to_thread(target);
739 ret = user_regset_copyout(&pos, &count, &kbuf, &ubuf,
740 &target->thread.evr,
741 0, sizeof(target->thread.evr));
743 BUILD_BUG_ON(offsetof(struct thread_struct, acc) + sizeof(u64) !=
744 offsetof(struct thread_struct, spefscr));
746 if (!ret)
747 ret = user_regset_copyout(&pos, &count, &kbuf, &ubuf,
748 &target->thread.acc,
749 sizeof(target->thread.evr), -1);
751 return ret;
754 static int evr_set(struct task_struct *target, const struct user_regset *regset,
755 unsigned int pos, unsigned int count,
756 const void *kbuf, const void __user *ubuf)
758 int ret;
760 flush_spe_to_thread(target);
762 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
763 &target->thread.evr,
764 0, sizeof(target->thread.evr));
766 BUILD_BUG_ON(offsetof(struct thread_struct, acc) + sizeof(u64) !=
767 offsetof(struct thread_struct, spefscr));
769 if (!ret)
770 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
771 &target->thread.acc,
772 sizeof(target->thread.evr), -1);
774 return ret;
776 #endif /* CONFIG_SPE */
778 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
780 * tm_cgpr_active - get active number of registers in CGPR
781 * @target: The target task.
782 * @regset: The user regset structure.
784 * This function checks for the active number of available
785 * regisers in transaction checkpointed GPR category.
787 static int tm_cgpr_active(struct task_struct *target,
788 const struct user_regset *regset)
790 if (!cpu_has_feature(CPU_FTR_TM))
791 return -ENODEV;
793 if (!MSR_TM_ACTIVE(target->thread.regs->msr))
794 return 0;
796 return regset->n;
800 * tm_cgpr_get - get CGPR registers
801 * @target: The target task.
802 * @regset: The user regset structure.
803 * @pos: The buffer position.
804 * @count: Number of bytes to copy.
805 * @kbuf: Kernel buffer to copy from.
806 * @ubuf: User buffer to copy into.
808 * This function gets transaction checkpointed GPR registers.
810 * When the transaction is active, 'ckpt_regs' holds all the checkpointed
811 * GPR register values for the current transaction to fall back on if it
812 * aborts in between. This function gets those checkpointed GPR registers.
813 * The userspace interface buffer layout is as follows.
815 * struct data {
816 * struct pt_regs ckpt_regs;
817 * };
819 static int tm_cgpr_get(struct task_struct *target,
820 const struct user_regset *regset,
821 unsigned int pos, unsigned int count,
822 void *kbuf, void __user *ubuf)
824 int ret;
826 if (!cpu_has_feature(CPU_FTR_TM))
827 return -ENODEV;
829 if (!MSR_TM_ACTIVE(target->thread.regs->msr))
830 return -ENODATA;
832 flush_tmregs_to_thread(target);
833 flush_fp_to_thread(target);
834 flush_altivec_to_thread(target);
836 ret = user_regset_copyout(&pos, &count, &kbuf, &ubuf,
837 &target->thread.ckpt_regs,
838 0, offsetof(struct pt_regs, msr));
839 if (!ret) {
840 unsigned long msr = get_user_ckpt_msr(target);
842 ret = user_regset_copyout(&pos, &count, &kbuf, &ubuf, &msr,
843 offsetof(struct pt_regs, msr),
844 offsetof(struct pt_regs, msr) +
845 sizeof(msr));
848 BUILD_BUG_ON(offsetof(struct pt_regs, orig_gpr3) !=
849 offsetof(struct pt_regs, msr) + sizeof(long));
851 if (!ret)
852 ret = user_regset_copyout(&pos, &count, &kbuf, &ubuf,
853 &target->thread.ckpt_regs.orig_gpr3,
854 offsetof(struct pt_regs, orig_gpr3),
855 sizeof(struct pt_regs));
856 if (!ret)
857 ret = user_regset_copyout_zero(&pos, &count, &kbuf, &ubuf,
858 sizeof(struct pt_regs), -1);
860 return ret;
864 * tm_cgpr_set - set the CGPR registers
865 * @target: The target task.
866 * @regset: The user regset structure.
867 * @pos: The buffer position.
868 * @count: Number of bytes to copy.
869 * @kbuf: Kernel buffer to copy into.
870 * @ubuf: User buffer to copy from.
872 * This function sets in transaction checkpointed GPR registers.
874 * When the transaction is active, 'ckpt_regs' holds the checkpointed
875 * GPR register values for the current transaction to fall back on if it
876 * aborts in between. This function sets those checkpointed GPR registers.
877 * The userspace interface buffer layout is as follows.
879 * struct data {
880 * struct pt_regs ckpt_regs;
881 * };
883 static int tm_cgpr_set(struct task_struct *target,
884 const struct user_regset *regset,
885 unsigned int pos, unsigned int count,
886 const void *kbuf, const void __user *ubuf)
888 unsigned long reg;
889 int ret;
891 if (!cpu_has_feature(CPU_FTR_TM))
892 return -ENODEV;
894 if (!MSR_TM_ACTIVE(target->thread.regs->msr))
895 return -ENODATA;
897 flush_tmregs_to_thread(target);
898 flush_fp_to_thread(target);
899 flush_altivec_to_thread(target);
901 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
902 &target->thread.ckpt_regs,
903 0, PT_MSR * sizeof(reg));
905 if (!ret && count > 0) {
906 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, &reg,
907 PT_MSR * sizeof(reg),
908 (PT_MSR + 1) * sizeof(reg));
909 if (!ret)
910 ret = set_user_ckpt_msr(target, reg);
913 BUILD_BUG_ON(offsetof(struct pt_regs, orig_gpr3) !=
914 offsetof(struct pt_regs, msr) + sizeof(long));
916 if (!ret)
917 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
918 &target->thread.ckpt_regs.orig_gpr3,
919 PT_ORIG_R3 * sizeof(reg),
920 (PT_MAX_PUT_REG + 1) * sizeof(reg));
922 if (PT_MAX_PUT_REG + 1 < PT_TRAP && !ret)
923 ret = user_regset_copyin_ignore(
924 &pos, &count, &kbuf, &ubuf,
925 (PT_MAX_PUT_REG + 1) * sizeof(reg),
926 PT_TRAP * sizeof(reg));
928 if (!ret && count > 0) {
929 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, &reg,
930 PT_TRAP * sizeof(reg),
931 (PT_TRAP + 1) * sizeof(reg));
932 if (!ret)
933 ret = set_user_ckpt_trap(target, reg);
936 if (!ret)
937 ret = user_regset_copyin_ignore(
938 &pos, &count, &kbuf, &ubuf,
939 (PT_TRAP + 1) * sizeof(reg), -1);
941 return ret;
945 * tm_cfpr_active - get active number of registers in CFPR
946 * @target: The target task.
947 * @regset: The user regset structure.
949 * This function checks for the active number of available
950 * regisers in transaction checkpointed FPR category.
952 static int tm_cfpr_active(struct task_struct *target,
953 const struct user_regset *regset)
955 if (!cpu_has_feature(CPU_FTR_TM))
956 return -ENODEV;
958 if (!MSR_TM_ACTIVE(target->thread.regs->msr))
959 return 0;
961 return regset->n;
965 * tm_cfpr_get - get CFPR registers
966 * @target: The target task.
967 * @regset: The user regset structure.
968 * @pos: The buffer position.
969 * @count: Number of bytes to copy.
970 * @kbuf: Kernel buffer to copy from.
971 * @ubuf: User buffer to copy into.
973 * This function gets in transaction checkpointed FPR registers.
975 * When the transaction is active 'ckfp_state' holds the checkpointed
976 * values for the current transaction to fall back on if it aborts
977 * in between. This function gets those checkpointed FPR registers.
978 * The userspace interface buffer layout is as follows.
980 * struct data {
981 * u64 fpr[32];
982 * u64 fpscr;
985 static int tm_cfpr_get(struct task_struct *target,
986 const struct user_regset *regset,
987 unsigned int pos, unsigned int count,
988 void *kbuf, void __user *ubuf)
990 u64 buf[33];
991 int i;
993 if (!cpu_has_feature(CPU_FTR_TM))
994 return -ENODEV;
996 if (!MSR_TM_ACTIVE(target->thread.regs->msr))
997 return -ENODATA;
999 flush_tmregs_to_thread(target);
1000 flush_fp_to_thread(target);
1001 flush_altivec_to_thread(target);
1003 /* copy to local buffer then write that out */
1004 for (i = 0; i < 32 ; i++)
1005 buf[i] = target->thread.TS_CKFPR(i);
1006 buf[32] = target->thread.ckfp_state.fpscr;
1007 return user_regset_copyout(&pos, &count, &kbuf, &ubuf, buf, 0, -1);
1011 * tm_cfpr_set - set CFPR registers
1012 * @target: The target task.
1013 * @regset: The user regset structure.
1014 * @pos: The buffer position.
1015 * @count: Number of bytes to copy.
1016 * @kbuf: Kernel buffer to copy into.
1017 * @ubuf: User buffer to copy from.
1019 * This function sets in transaction checkpointed FPR registers.
1021 * When the transaction is active 'ckfp_state' holds the checkpointed
1022 * FPR register values for the current transaction to fall back on
1023 * if it aborts in between. This function sets these checkpointed
1024 * FPR registers. The userspace interface buffer layout is as follows.
1026 * struct data {
1027 * u64 fpr[32];
1028 * u64 fpscr;
1031 static int tm_cfpr_set(struct task_struct *target,
1032 const struct user_regset *regset,
1033 unsigned int pos, unsigned int count,
1034 const void *kbuf, const void __user *ubuf)
1036 u64 buf[33];
1037 int i;
1039 if (!cpu_has_feature(CPU_FTR_TM))
1040 return -ENODEV;
1042 if (!MSR_TM_ACTIVE(target->thread.regs->msr))
1043 return -ENODATA;
1045 flush_tmregs_to_thread(target);
1046 flush_fp_to_thread(target);
1047 flush_altivec_to_thread(target);
1049 for (i = 0; i < 32; i++)
1050 buf[i] = target->thread.TS_CKFPR(i);
1051 buf[32] = target->thread.ckfp_state.fpscr;
1053 /* copy to local buffer then write that out */
1054 i = user_regset_copyin(&pos, &count, &kbuf, &ubuf, buf, 0, -1);
1055 if (i)
1056 return i;
1057 for (i = 0; i < 32 ; i++)
1058 target->thread.TS_CKFPR(i) = buf[i];
1059 target->thread.ckfp_state.fpscr = buf[32];
1060 return 0;
1064 * tm_cvmx_active - get active number of registers in CVMX
1065 * @target: The target task.
1066 * @regset: The user regset structure.
1068 * This function checks for the active number of available
1069 * regisers in checkpointed VMX category.
1071 static int tm_cvmx_active(struct task_struct *target,
1072 const struct user_regset *regset)
1074 if (!cpu_has_feature(CPU_FTR_TM))
1075 return -ENODEV;
1077 if (!MSR_TM_ACTIVE(target->thread.regs->msr))
1078 return 0;
1080 return regset->n;
1084 * tm_cvmx_get - get CMVX registers
1085 * @target: The target task.
1086 * @regset: The user regset structure.
1087 * @pos: The buffer position.
1088 * @count: Number of bytes to copy.
1089 * @kbuf: Kernel buffer to copy from.
1090 * @ubuf: User buffer to copy into.
1092 * This function gets in transaction checkpointed VMX registers.
1094 * When the transaction is active 'ckvr_state' and 'ckvrsave' hold
1095 * the checkpointed values for the current transaction to fall
1096 * back on if it aborts in between. The userspace interface buffer
1097 * layout is as follows.
1099 * struct data {
1100 * vector128 vr[32];
1101 * vector128 vscr;
1102 * vector128 vrsave;
1105 static int tm_cvmx_get(struct task_struct *target,
1106 const struct user_regset *regset,
1107 unsigned int pos, unsigned int count,
1108 void *kbuf, void __user *ubuf)
1110 int ret;
1112 BUILD_BUG_ON(TVSO(vscr) != TVSO(vr[32]));
1114 if (!cpu_has_feature(CPU_FTR_TM))
1115 return -ENODEV;
1117 if (!MSR_TM_ACTIVE(target->thread.regs->msr))
1118 return -ENODATA;
1120 /* Flush the state */
1121 flush_tmregs_to_thread(target);
1122 flush_fp_to_thread(target);
1123 flush_altivec_to_thread(target);
1125 ret = user_regset_copyout(&pos, &count, &kbuf, &ubuf,
1126 &target->thread.ckvr_state, 0,
1127 33 * sizeof(vector128));
1128 if (!ret) {
1130 * Copy out only the low-order word of vrsave.
1132 union {
1133 elf_vrreg_t reg;
1134 u32 word;
1135 } vrsave;
1136 memset(&vrsave, 0, sizeof(vrsave));
1137 vrsave.word = target->thread.ckvrsave;
1138 ret = user_regset_copyout(&pos, &count, &kbuf, &ubuf, &vrsave,
1139 33 * sizeof(vector128), -1);
1142 return ret;
1146 * tm_cvmx_set - set CMVX registers
1147 * @target: The target task.
1148 * @regset: The user regset structure.
1149 * @pos: The buffer position.
1150 * @count: Number of bytes to copy.
1151 * @kbuf: Kernel buffer to copy into.
1152 * @ubuf: User buffer to copy from.
1154 * This function sets in transaction checkpointed VMX registers.
1156 * When the transaction is active 'ckvr_state' and 'ckvrsave' hold
1157 * the checkpointed values for the current transaction to fall
1158 * back on if it aborts in between. The userspace interface buffer
1159 * layout is as follows.
1161 * struct data {
1162 * vector128 vr[32];
1163 * vector128 vscr;
1164 * vector128 vrsave;
1167 static int tm_cvmx_set(struct task_struct *target,
1168 const struct user_regset *regset,
1169 unsigned int pos, unsigned int count,
1170 const void *kbuf, const void __user *ubuf)
1172 int ret;
1174 BUILD_BUG_ON(TVSO(vscr) != TVSO(vr[32]));
1176 if (!cpu_has_feature(CPU_FTR_TM))
1177 return -ENODEV;
1179 if (!MSR_TM_ACTIVE(target->thread.regs->msr))
1180 return -ENODATA;
1182 flush_tmregs_to_thread(target);
1183 flush_fp_to_thread(target);
1184 flush_altivec_to_thread(target);
1186 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
1187 &target->thread.ckvr_state, 0,
1188 33 * sizeof(vector128));
1189 if (!ret && count > 0) {
1191 * We use only the low-order word of vrsave.
1193 union {
1194 elf_vrreg_t reg;
1195 u32 word;
1196 } vrsave;
1197 memset(&vrsave, 0, sizeof(vrsave));
1198 vrsave.word = target->thread.ckvrsave;
1199 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, &vrsave,
1200 33 * sizeof(vector128), -1);
1201 if (!ret)
1202 target->thread.ckvrsave = vrsave.word;
1205 return ret;
1209 * tm_cvsx_active - get active number of registers in CVSX
1210 * @target: The target task.
1211 * @regset: The user regset structure.
1213 * This function checks for the active number of available
1214 * regisers in transaction checkpointed VSX category.
1216 static int tm_cvsx_active(struct task_struct *target,
1217 const struct user_regset *regset)
1219 if (!cpu_has_feature(CPU_FTR_TM))
1220 return -ENODEV;
1222 if (!MSR_TM_ACTIVE(target->thread.regs->msr))
1223 return 0;
1225 flush_vsx_to_thread(target);
1226 return target->thread.used_vsr ? regset->n : 0;
1230 * tm_cvsx_get - get CVSX registers
1231 * @target: The target task.
1232 * @regset: The user regset structure.
1233 * @pos: The buffer position.
1234 * @count: Number of bytes to copy.
1235 * @kbuf: Kernel buffer to copy from.
1236 * @ubuf: User buffer to copy into.
1238 * This function gets in transaction checkpointed VSX registers.
1240 * When the transaction is active 'ckfp_state' holds the checkpointed
1241 * values for the current transaction to fall back on if it aborts
1242 * in between. This function gets those checkpointed VSX registers.
1243 * The userspace interface buffer layout is as follows.
1245 * struct data {
1246 * u64 vsx[32];
1249 static int tm_cvsx_get(struct task_struct *target,
1250 const struct user_regset *regset,
1251 unsigned int pos, unsigned int count,
1252 void *kbuf, void __user *ubuf)
1254 u64 buf[32];
1255 int ret, i;
1257 if (!cpu_has_feature(CPU_FTR_TM))
1258 return -ENODEV;
1260 if (!MSR_TM_ACTIVE(target->thread.regs->msr))
1261 return -ENODATA;
1263 /* Flush the state */
1264 flush_tmregs_to_thread(target);
1265 flush_fp_to_thread(target);
1266 flush_altivec_to_thread(target);
1267 flush_vsx_to_thread(target);
1269 for (i = 0; i < 32 ; i++)
1270 buf[i] = target->thread.ckfp_state.fpr[i][TS_VSRLOWOFFSET];
1271 ret = user_regset_copyout(&pos, &count, &kbuf, &ubuf,
1272 buf, 0, 32 * sizeof(double));
1274 return ret;
1278 * tm_cvsx_set - set CFPR registers
1279 * @target: The target task.
1280 * @regset: The user regset structure.
1281 * @pos: The buffer position.
1282 * @count: Number of bytes to copy.
1283 * @kbuf: Kernel buffer to copy into.
1284 * @ubuf: User buffer to copy from.
1286 * This function sets in transaction checkpointed VSX registers.
1288 * When the transaction is active 'ckfp_state' holds the checkpointed
1289 * VSX register values for the current transaction to fall back on
1290 * if it aborts in between. This function sets these checkpointed
1291 * FPR registers. The userspace interface buffer layout is as follows.
1293 * struct data {
1294 * u64 vsx[32];
1297 static int tm_cvsx_set(struct task_struct *target,
1298 const struct user_regset *regset,
1299 unsigned int pos, unsigned int count,
1300 const void *kbuf, const void __user *ubuf)
1302 u64 buf[32];
1303 int ret, i;
1305 if (!cpu_has_feature(CPU_FTR_TM))
1306 return -ENODEV;
1308 if (!MSR_TM_ACTIVE(target->thread.regs->msr))
1309 return -ENODATA;
1311 /* Flush the state */
1312 flush_tmregs_to_thread(target);
1313 flush_fp_to_thread(target);
1314 flush_altivec_to_thread(target);
1315 flush_vsx_to_thread(target);
1317 for (i = 0; i < 32 ; i++)
1318 buf[i] = target->thread.ckfp_state.fpr[i][TS_VSRLOWOFFSET];
1320 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
1321 buf, 0, 32 * sizeof(double));
1322 if (!ret)
1323 for (i = 0; i < 32 ; i++)
1324 target->thread.ckfp_state.fpr[i][TS_VSRLOWOFFSET] = buf[i];
1326 return ret;
1330 * tm_spr_active - get active number of registers in TM SPR
1331 * @target: The target task.
1332 * @regset: The user regset structure.
1334 * This function checks the active number of available
1335 * regisers in the transactional memory SPR category.
1337 static int tm_spr_active(struct task_struct *target,
1338 const struct user_regset *regset)
1340 if (!cpu_has_feature(CPU_FTR_TM))
1341 return -ENODEV;
1343 return regset->n;
1347 * tm_spr_get - get the TM related SPR registers
1348 * @target: The target task.
1349 * @regset: The user regset structure.
1350 * @pos: The buffer position.
1351 * @count: Number of bytes to copy.
1352 * @kbuf: Kernel buffer to copy from.
1353 * @ubuf: User buffer to copy into.
1355 * This function gets transactional memory related SPR registers.
1356 * The userspace interface buffer layout is as follows.
1358 * struct {
1359 * u64 tm_tfhar;
1360 * u64 tm_texasr;
1361 * u64 tm_tfiar;
1362 * };
1364 static int tm_spr_get(struct task_struct *target,
1365 const struct user_regset *regset,
1366 unsigned int pos, unsigned int count,
1367 void *kbuf, void __user *ubuf)
1369 int ret;
1371 /* Build tests */
1372 BUILD_BUG_ON(TSO(tm_tfhar) + sizeof(u64) != TSO(tm_texasr));
1373 BUILD_BUG_ON(TSO(tm_texasr) + sizeof(u64) != TSO(tm_tfiar));
1374 BUILD_BUG_ON(TSO(tm_tfiar) + sizeof(u64) != TSO(ckpt_regs));
1376 if (!cpu_has_feature(CPU_FTR_TM))
1377 return -ENODEV;
1379 /* Flush the states */
1380 flush_tmregs_to_thread(target);
1381 flush_fp_to_thread(target);
1382 flush_altivec_to_thread(target);
1384 /* TFHAR register */
1385 ret = user_regset_copyout(&pos, &count, &kbuf, &ubuf,
1386 &target->thread.tm_tfhar, 0, sizeof(u64));
1388 /* TEXASR register */
1389 if (!ret)
1390 ret = user_regset_copyout(&pos, &count, &kbuf, &ubuf,
1391 &target->thread.tm_texasr, sizeof(u64),
1392 2 * sizeof(u64));
1394 /* TFIAR register */
1395 if (!ret)
1396 ret = user_regset_copyout(&pos, &count, &kbuf, &ubuf,
1397 &target->thread.tm_tfiar,
1398 2 * sizeof(u64), 3 * sizeof(u64));
1399 return ret;
1403 * tm_spr_set - set the TM related SPR registers
1404 * @target: The target task.
1405 * @regset: The user regset structure.
1406 * @pos: The buffer position.
1407 * @count: Number of bytes to copy.
1408 * @kbuf: Kernel buffer to copy into.
1409 * @ubuf: User buffer to copy from.
1411 * This function sets transactional memory related SPR registers.
1412 * The userspace interface buffer layout is as follows.
1414 * struct {
1415 * u64 tm_tfhar;
1416 * u64 tm_texasr;
1417 * u64 tm_tfiar;
1418 * };
1420 static int tm_spr_set(struct task_struct *target,
1421 const struct user_regset *regset,
1422 unsigned int pos, unsigned int count,
1423 const void *kbuf, const void __user *ubuf)
1425 int ret;
1427 /* Build tests */
1428 BUILD_BUG_ON(TSO(tm_tfhar) + sizeof(u64) != TSO(tm_texasr));
1429 BUILD_BUG_ON(TSO(tm_texasr) + sizeof(u64) != TSO(tm_tfiar));
1430 BUILD_BUG_ON(TSO(tm_tfiar) + sizeof(u64) != TSO(ckpt_regs));
1432 if (!cpu_has_feature(CPU_FTR_TM))
1433 return -ENODEV;
1435 /* Flush the states */
1436 flush_tmregs_to_thread(target);
1437 flush_fp_to_thread(target);
1438 flush_altivec_to_thread(target);
1440 /* TFHAR register */
1441 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
1442 &target->thread.tm_tfhar, 0, sizeof(u64));
1444 /* TEXASR register */
1445 if (!ret)
1446 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
1447 &target->thread.tm_texasr, sizeof(u64),
1448 2 * sizeof(u64));
1450 /* TFIAR register */
1451 if (!ret)
1452 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
1453 &target->thread.tm_tfiar,
1454 2 * sizeof(u64), 3 * sizeof(u64));
1455 return ret;
1458 static int tm_tar_active(struct task_struct *target,
1459 const struct user_regset *regset)
1461 if (!cpu_has_feature(CPU_FTR_TM))
1462 return -ENODEV;
1464 if (MSR_TM_ACTIVE(target->thread.regs->msr))
1465 return regset->n;
1467 return 0;
1470 static int tm_tar_get(struct task_struct *target,
1471 const struct user_regset *regset,
1472 unsigned int pos, unsigned int count,
1473 void *kbuf, void __user *ubuf)
1475 int ret;
1477 if (!cpu_has_feature(CPU_FTR_TM))
1478 return -ENODEV;
1480 if (!MSR_TM_ACTIVE(target->thread.regs->msr))
1481 return -ENODATA;
1483 ret = user_regset_copyout(&pos, &count, &kbuf, &ubuf,
1484 &target->thread.tm_tar, 0, sizeof(u64));
1485 return ret;
1488 static int tm_tar_set(struct task_struct *target,
1489 const struct user_regset *regset,
1490 unsigned int pos, unsigned int count,
1491 const void *kbuf, const void __user *ubuf)
1493 int ret;
1495 if (!cpu_has_feature(CPU_FTR_TM))
1496 return -ENODEV;
1498 if (!MSR_TM_ACTIVE(target->thread.regs->msr))
1499 return -ENODATA;
1501 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
1502 &target->thread.tm_tar, 0, sizeof(u64));
1503 return ret;
1506 static int tm_ppr_active(struct task_struct *target,
1507 const struct user_regset *regset)
1509 if (!cpu_has_feature(CPU_FTR_TM))
1510 return -ENODEV;
1512 if (MSR_TM_ACTIVE(target->thread.regs->msr))
1513 return regset->n;
1515 return 0;
1519 static int tm_ppr_get(struct task_struct *target,
1520 const struct user_regset *regset,
1521 unsigned int pos, unsigned int count,
1522 void *kbuf, void __user *ubuf)
1524 int ret;
1526 if (!cpu_has_feature(CPU_FTR_TM))
1527 return -ENODEV;
1529 if (!MSR_TM_ACTIVE(target->thread.regs->msr))
1530 return -ENODATA;
1532 ret = user_regset_copyout(&pos, &count, &kbuf, &ubuf,
1533 &target->thread.tm_ppr, 0, sizeof(u64));
1534 return ret;
1537 static int tm_ppr_set(struct task_struct *target,
1538 const struct user_regset *regset,
1539 unsigned int pos, unsigned int count,
1540 const void *kbuf, const void __user *ubuf)
1542 int ret;
1544 if (!cpu_has_feature(CPU_FTR_TM))
1545 return -ENODEV;
1547 if (!MSR_TM_ACTIVE(target->thread.regs->msr))
1548 return -ENODATA;
1550 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
1551 &target->thread.tm_ppr, 0, sizeof(u64));
1552 return ret;
1555 static int tm_dscr_active(struct task_struct *target,
1556 const struct user_regset *regset)
1558 if (!cpu_has_feature(CPU_FTR_TM))
1559 return -ENODEV;
1561 if (MSR_TM_ACTIVE(target->thread.regs->msr))
1562 return regset->n;
1564 return 0;
1567 static int tm_dscr_get(struct task_struct *target,
1568 const struct user_regset *regset,
1569 unsigned int pos, unsigned int count,
1570 void *kbuf, void __user *ubuf)
1572 int ret;
1574 if (!cpu_has_feature(CPU_FTR_TM))
1575 return -ENODEV;
1577 if (!MSR_TM_ACTIVE(target->thread.regs->msr))
1578 return -ENODATA;
1580 ret = user_regset_copyout(&pos, &count, &kbuf, &ubuf,
1581 &target->thread.tm_dscr, 0, sizeof(u64));
1582 return ret;
1585 static int tm_dscr_set(struct task_struct *target,
1586 const struct user_regset *regset,
1587 unsigned int pos, unsigned int count,
1588 const void *kbuf, const void __user *ubuf)
1590 int ret;
1592 if (!cpu_has_feature(CPU_FTR_TM))
1593 return -ENODEV;
1595 if (!MSR_TM_ACTIVE(target->thread.regs->msr))
1596 return -ENODATA;
1598 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
1599 &target->thread.tm_dscr, 0, sizeof(u64));
1600 return ret;
1602 #endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
1604 #ifdef CONFIG_PPC64
1605 static int ppr_get(struct task_struct *target,
1606 const struct user_regset *regset,
1607 unsigned int pos, unsigned int count,
1608 void *kbuf, void __user *ubuf)
1610 return user_regset_copyout(&pos, &count, &kbuf, &ubuf,
1611 &target->thread.ppr, 0, sizeof(u64));
1614 static int ppr_set(struct task_struct *target,
1615 const struct user_regset *regset,
1616 unsigned int pos, unsigned int count,
1617 const void *kbuf, const void __user *ubuf)
1619 return user_regset_copyin(&pos, &count, &kbuf, &ubuf,
1620 &target->thread.ppr, 0, sizeof(u64));
1623 static int dscr_get(struct task_struct *target,
1624 const struct user_regset *regset,
1625 unsigned int pos, unsigned int count,
1626 void *kbuf, void __user *ubuf)
1628 return user_regset_copyout(&pos, &count, &kbuf, &ubuf,
1629 &target->thread.dscr, 0, sizeof(u64));
1631 static int dscr_set(struct task_struct *target,
1632 const struct user_regset *regset,
1633 unsigned int pos, unsigned int count,
1634 const void *kbuf, const void __user *ubuf)
1636 return user_regset_copyin(&pos, &count, &kbuf, &ubuf,
1637 &target->thread.dscr, 0, sizeof(u64));
1639 #endif
1640 #ifdef CONFIG_PPC_BOOK3S_64
1641 static int tar_get(struct task_struct *target,
1642 const struct user_regset *regset,
1643 unsigned int pos, unsigned int count,
1644 void *kbuf, void __user *ubuf)
1646 return user_regset_copyout(&pos, &count, &kbuf, &ubuf,
1647 &target->thread.tar, 0, sizeof(u64));
1649 static int tar_set(struct task_struct *target,
1650 const struct user_regset *regset,
1651 unsigned int pos, unsigned int count,
1652 const void *kbuf, const void __user *ubuf)
1654 return user_regset_copyin(&pos, &count, &kbuf, &ubuf,
1655 &target->thread.tar, 0, sizeof(u64));
1658 static int ebb_active(struct task_struct *target,
1659 const struct user_regset *regset)
1661 if (!cpu_has_feature(CPU_FTR_ARCH_207S))
1662 return -ENODEV;
1664 if (target->thread.used_ebb)
1665 return regset->n;
1667 return 0;
1670 static int ebb_get(struct task_struct *target,
1671 const struct user_regset *regset,
1672 unsigned int pos, unsigned int count,
1673 void *kbuf, void __user *ubuf)
1675 /* Build tests */
1676 BUILD_BUG_ON(TSO(ebbrr) + sizeof(unsigned long) != TSO(ebbhr));
1677 BUILD_BUG_ON(TSO(ebbhr) + sizeof(unsigned long) != TSO(bescr));
1679 if (!cpu_has_feature(CPU_FTR_ARCH_207S))
1680 return -ENODEV;
1682 if (!target->thread.used_ebb)
1683 return -ENODATA;
1685 return user_regset_copyout(&pos, &count, &kbuf, &ubuf,
1686 &target->thread.ebbrr, 0, 3 * sizeof(unsigned long));
1689 static int ebb_set(struct task_struct *target,
1690 const struct user_regset *regset,
1691 unsigned int pos, unsigned int count,
1692 const void *kbuf, const void __user *ubuf)
1694 int ret = 0;
1696 /* Build tests */
1697 BUILD_BUG_ON(TSO(ebbrr) + sizeof(unsigned long) != TSO(ebbhr));
1698 BUILD_BUG_ON(TSO(ebbhr) + sizeof(unsigned long) != TSO(bescr));
1700 if (!cpu_has_feature(CPU_FTR_ARCH_207S))
1701 return -ENODEV;
1703 if (target->thread.used_ebb)
1704 return -ENODATA;
1706 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
1707 &target->thread.ebbrr, 0, sizeof(unsigned long));
1709 if (!ret)
1710 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
1711 &target->thread.ebbhr, sizeof(unsigned long),
1712 2 * sizeof(unsigned long));
1714 if (!ret)
1715 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
1716 &target->thread.bescr,
1717 2 * sizeof(unsigned long), 3 * sizeof(unsigned long));
1719 return ret;
1721 static int pmu_active(struct task_struct *target,
1722 const struct user_regset *regset)
1724 if (!cpu_has_feature(CPU_FTR_ARCH_207S))
1725 return -ENODEV;
1727 return regset->n;
1730 static int pmu_get(struct task_struct *target,
1731 const struct user_regset *regset,
1732 unsigned int pos, unsigned int count,
1733 void *kbuf, void __user *ubuf)
1735 /* Build tests */
1736 BUILD_BUG_ON(TSO(siar) + sizeof(unsigned long) != TSO(sdar));
1737 BUILD_BUG_ON(TSO(sdar) + sizeof(unsigned long) != TSO(sier));
1738 BUILD_BUG_ON(TSO(sier) + sizeof(unsigned long) != TSO(mmcr2));
1739 BUILD_BUG_ON(TSO(mmcr2) + sizeof(unsigned long) != TSO(mmcr0));
1741 if (!cpu_has_feature(CPU_FTR_ARCH_207S))
1742 return -ENODEV;
1744 return user_regset_copyout(&pos, &count, &kbuf, &ubuf,
1745 &target->thread.siar, 0,
1746 5 * sizeof(unsigned long));
1749 static int pmu_set(struct task_struct *target,
1750 const struct user_regset *regset,
1751 unsigned int pos, unsigned int count,
1752 const void *kbuf, const void __user *ubuf)
1754 int ret = 0;
1756 /* Build tests */
1757 BUILD_BUG_ON(TSO(siar) + sizeof(unsigned long) != TSO(sdar));
1758 BUILD_BUG_ON(TSO(sdar) + sizeof(unsigned long) != TSO(sier));
1759 BUILD_BUG_ON(TSO(sier) + sizeof(unsigned long) != TSO(mmcr2));
1760 BUILD_BUG_ON(TSO(mmcr2) + sizeof(unsigned long) != TSO(mmcr0));
1762 if (!cpu_has_feature(CPU_FTR_ARCH_207S))
1763 return -ENODEV;
1765 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
1766 &target->thread.siar, 0,
1767 sizeof(unsigned long));
1769 if (!ret)
1770 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
1771 &target->thread.sdar, sizeof(unsigned long),
1772 2 * sizeof(unsigned long));
1774 if (!ret)
1775 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
1776 &target->thread.sier, 2 * sizeof(unsigned long),
1777 3 * sizeof(unsigned long));
1779 if (!ret)
1780 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
1781 &target->thread.mmcr2, 3 * sizeof(unsigned long),
1782 4 * sizeof(unsigned long));
1784 if (!ret)
1785 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
1786 &target->thread.mmcr0, 4 * sizeof(unsigned long),
1787 5 * sizeof(unsigned long));
1788 return ret;
1790 #endif
1792 #ifdef CONFIG_PPC_MEM_KEYS
1793 static int pkey_active(struct task_struct *target,
1794 const struct user_regset *regset)
1796 if (!arch_pkeys_enabled())
1797 return -ENODEV;
1799 return regset->n;
1802 static int pkey_get(struct task_struct *target,
1803 const struct user_regset *regset,
1804 unsigned int pos, unsigned int count,
1805 void *kbuf, void __user *ubuf)
1807 BUILD_BUG_ON(TSO(amr) + sizeof(unsigned long) != TSO(iamr));
1808 BUILD_BUG_ON(TSO(iamr) + sizeof(unsigned long) != TSO(uamor));
1810 if (!arch_pkeys_enabled())
1811 return -ENODEV;
1813 return user_regset_copyout(&pos, &count, &kbuf, &ubuf,
1814 &target->thread.amr, 0,
1815 ELF_NPKEY * sizeof(unsigned long));
1818 static int pkey_set(struct task_struct *target,
1819 const struct user_regset *regset,
1820 unsigned int pos, unsigned int count,
1821 const void *kbuf, const void __user *ubuf)
1823 u64 new_amr;
1824 int ret;
1826 if (!arch_pkeys_enabled())
1827 return -ENODEV;
1829 /* Only the AMR can be set from userspace */
1830 if (pos != 0 || count != sizeof(new_amr))
1831 return -EINVAL;
1833 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
1834 &new_amr, 0, sizeof(new_amr));
1835 if (ret)
1836 return ret;
1838 /* UAMOR determines which bits of the AMR can be set from userspace. */
1839 target->thread.amr = (new_amr & target->thread.uamor) |
1840 (target->thread.amr & ~target->thread.uamor);
1842 return 0;
1844 #endif /* CONFIG_PPC_MEM_KEYS */
1847 * These are our native regset flavors.
1849 enum powerpc_regset {
1850 REGSET_GPR,
1851 REGSET_FPR,
1852 #ifdef CONFIG_ALTIVEC
1853 REGSET_VMX,
1854 #endif
1855 #ifdef CONFIG_VSX
1856 REGSET_VSX,
1857 #endif
1858 #ifdef CONFIG_SPE
1859 REGSET_SPE,
1860 #endif
1861 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1862 REGSET_TM_CGPR, /* TM checkpointed GPR registers */
1863 REGSET_TM_CFPR, /* TM checkpointed FPR registers */
1864 REGSET_TM_CVMX, /* TM checkpointed VMX registers */
1865 REGSET_TM_CVSX, /* TM checkpointed VSX registers */
1866 REGSET_TM_SPR, /* TM specific SPR registers */
1867 REGSET_TM_CTAR, /* TM checkpointed TAR register */
1868 REGSET_TM_CPPR, /* TM checkpointed PPR register */
1869 REGSET_TM_CDSCR, /* TM checkpointed DSCR register */
1870 #endif
1871 #ifdef CONFIG_PPC64
1872 REGSET_PPR, /* PPR register */
1873 REGSET_DSCR, /* DSCR register */
1874 #endif
1875 #ifdef CONFIG_PPC_BOOK3S_64
1876 REGSET_TAR, /* TAR register */
1877 REGSET_EBB, /* EBB registers */
1878 REGSET_PMR, /* Performance Monitor Registers */
1879 #endif
1880 #ifdef CONFIG_PPC_MEM_KEYS
1881 REGSET_PKEY, /* AMR register */
1882 #endif
1885 static const struct user_regset native_regsets[] = {
1886 [REGSET_GPR] = {
1887 .core_note_type = NT_PRSTATUS, .n = ELF_NGREG,
1888 .size = sizeof(long), .align = sizeof(long),
1889 .get = gpr_get, .set = gpr_set
1891 [REGSET_FPR] = {
1892 .core_note_type = NT_PRFPREG, .n = ELF_NFPREG,
1893 .size = sizeof(double), .align = sizeof(double),
1894 .get = fpr_get, .set = fpr_set
1896 #ifdef CONFIG_ALTIVEC
1897 [REGSET_VMX] = {
1898 .core_note_type = NT_PPC_VMX, .n = 34,
1899 .size = sizeof(vector128), .align = sizeof(vector128),
1900 .active = vr_active, .get = vr_get, .set = vr_set
1902 #endif
1903 #ifdef CONFIG_VSX
1904 [REGSET_VSX] = {
1905 .core_note_type = NT_PPC_VSX, .n = 32,
1906 .size = sizeof(double), .align = sizeof(double),
1907 .active = vsr_active, .get = vsr_get, .set = vsr_set
1909 #endif
1910 #ifdef CONFIG_SPE
1911 [REGSET_SPE] = {
1912 .core_note_type = NT_PPC_SPE, .n = 35,
1913 .size = sizeof(u32), .align = sizeof(u32),
1914 .active = evr_active, .get = evr_get, .set = evr_set
1916 #endif
1917 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1918 [REGSET_TM_CGPR] = {
1919 .core_note_type = NT_PPC_TM_CGPR, .n = ELF_NGREG,
1920 .size = sizeof(long), .align = sizeof(long),
1921 .active = tm_cgpr_active, .get = tm_cgpr_get, .set = tm_cgpr_set
1923 [REGSET_TM_CFPR] = {
1924 .core_note_type = NT_PPC_TM_CFPR, .n = ELF_NFPREG,
1925 .size = sizeof(double), .align = sizeof(double),
1926 .active = tm_cfpr_active, .get = tm_cfpr_get, .set = tm_cfpr_set
1928 [REGSET_TM_CVMX] = {
1929 .core_note_type = NT_PPC_TM_CVMX, .n = ELF_NVMX,
1930 .size = sizeof(vector128), .align = sizeof(vector128),
1931 .active = tm_cvmx_active, .get = tm_cvmx_get, .set = tm_cvmx_set
1933 [REGSET_TM_CVSX] = {
1934 .core_note_type = NT_PPC_TM_CVSX, .n = ELF_NVSX,
1935 .size = sizeof(double), .align = sizeof(double),
1936 .active = tm_cvsx_active, .get = tm_cvsx_get, .set = tm_cvsx_set
1938 [REGSET_TM_SPR] = {
1939 .core_note_type = NT_PPC_TM_SPR, .n = ELF_NTMSPRREG,
1940 .size = sizeof(u64), .align = sizeof(u64),
1941 .active = tm_spr_active, .get = tm_spr_get, .set = tm_spr_set
1943 [REGSET_TM_CTAR] = {
1944 .core_note_type = NT_PPC_TM_CTAR, .n = 1,
1945 .size = sizeof(u64), .align = sizeof(u64),
1946 .active = tm_tar_active, .get = tm_tar_get, .set = tm_tar_set
1948 [REGSET_TM_CPPR] = {
1949 .core_note_type = NT_PPC_TM_CPPR, .n = 1,
1950 .size = sizeof(u64), .align = sizeof(u64),
1951 .active = tm_ppr_active, .get = tm_ppr_get, .set = tm_ppr_set
1953 [REGSET_TM_CDSCR] = {
1954 .core_note_type = NT_PPC_TM_CDSCR, .n = 1,
1955 .size = sizeof(u64), .align = sizeof(u64),
1956 .active = tm_dscr_active, .get = tm_dscr_get, .set = tm_dscr_set
1958 #endif
1959 #ifdef CONFIG_PPC64
1960 [REGSET_PPR] = {
1961 .core_note_type = NT_PPC_PPR, .n = 1,
1962 .size = sizeof(u64), .align = sizeof(u64),
1963 .get = ppr_get, .set = ppr_set
1965 [REGSET_DSCR] = {
1966 .core_note_type = NT_PPC_DSCR, .n = 1,
1967 .size = sizeof(u64), .align = sizeof(u64),
1968 .get = dscr_get, .set = dscr_set
1970 #endif
1971 #ifdef CONFIG_PPC_BOOK3S_64
1972 [REGSET_TAR] = {
1973 .core_note_type = NT_PPC_TAR, .n = 1,
1974 .size = sizeof(u64), .align = sizeof(u64),
1975 .get = tar_get, .set = tar_set
1977 [REGSET_EBB] = {
1978 .core_note_type = NT_PPC_EBB, .n = ELF_NEBB,
1979 .size = sizeof(u64), .align = sizeof(u64),
1980 .active = ebb_active, .get = ebb_get, .set = ebb_set
1982 [REGSET_PMR] = {
1983 .core_note_type = NT_PPC_PMU, .n = ELF_NPMU,
1984 .size = sizeof(u64), .align = sizeof(u64),
1985 .active = pmu_active, .get = pmu_get, .set = pmu_set
1987 #endif
1988 #ifdef CONFIG_PPC_MEM_KEYS
1989 [REGSET_PKEY] = {
1990 .core_note_type = NT_PPC_PKEY, .n = ELF_NPKEY,
1991 .size = sizeof(u64), .align = sizeof(u64),
1992 .active = pkey_active, .get = pkey_get, .set = pkey_set
1994 #endif
1997 static const struct user_regset_view user_ppc_native_view = {
1998 .name = UTS_MACHINE, .e_machine = ELF_ARCH, .ei_osabi = ELF_OSABI,
1999 .regsets = native_regsets, .n = ARRAY_SIZE(native_regsets)
2002 #ifdef CONFIG_PPC64
2003 #include <linux/compat.h>
2005 static int gpr32_get_common(struct task_struct *target,
2006 const struct user_regset *regset,
2007 unsigned int pos, unsigned int count,
2008 void *kbuf, void __user *ubuf,
2009 unsigned long *regs)
2011 compat_ulong_t *k = kbuf;
2012 compat_ulong_t __user *u = ubuf;
2013 compat_ulong_t reg;
2015 pos /= sizeof(reg);
2016 count /= sizeof(reg);
2018 if (kbuf)
2019 for (; count > 0 && pos < PT_MSR; --count)
2020 *k++ = regs[pos++];
2021 else
2022 for (; count > 0 && pos < PT_MSR; --count)
2023 if (__put_user((compat_ulong_t) regs[pos++], u++))
2024 return -EFAULT;
2026 if (count > 0 && pos == PT_MSR) {
2027 reg = get_user_msr(target);
2028 if (kbuf)
2029 *k++ = reg;
2030 else if (__put_user(reg, u++))
2031 return -EFAULT;
2032 ++pos;
2033 --count;
2036 if (kbuf)
2037 for (; count > 0 && pos < PT_REGS_COUNT; --count)
2038 *k++ = regs[pos++];
2039 else
2040 for (; count > 0 && pos < PT_REGS_COUNT; --count)
2041 if (__put_user((compat_ulong_t) regs[pos++], u++))
2042 return -EFAULT;
2044 kbuf = k;
2045 ubuf = u;
2046 pos *= sizeof(reg);
2047 count *= sizeof(reg);
2048 return user_regset_copyout_zero(&pos, &count, &kbuf, &ubuf,
2049 PT_REGS_COUNT * sizeof(reg), -1);
2052 static int gpr32_set_common(struct task_struct *target,
2053 const struct user_regset *regset,
2054 unsigned int pos, unsigned int count,
2055 const void *kbuf, const void __user *ubuf,
2056 unsigned long *regs)
2058 const compat_ulong_t *k = kbuf;
2059 const compat_ulong_t __user *u = ubuf;
2060 compat_ulong_t reg;
2062 pos /= sizeof(reg);
2063 count /= sizeof(reg);
2065 if (kbuf)
2066 for (; count > 0 && pos < PT_MSR; --count)
2067 regs[pos++] = *k++;
2068 else
2069 for (; count > 0 && pos < PT_MSR; --count) {
2070 if (__get_user(reg, u++))
2071 return -EFAULT;
2072 regs[pos++] = reg;
2076 if (count > 0 && pos == PT_MSR) {
2077 if (kbuf)
2078 reg = *k++;
2079 else if (__get_user(reg, u++))
2080 return -EFAULT;
2081 set_user_msr(target, reg);
2082 ++pos;
2083 --count;
2086 if (kbuf) {
2087 for (; count > 0 && pos <= PT_MAX_PUT_REG; --count)
2088 regs[pos++] = *k++;
2089 for (; count > 0 && pos < PT_TRAP; --count, ++pos)
2090 ++k;
2091 } else {
2092 for (; count > 0 && pos <= PT_MAX_PUT_REG; --count) {
2093 if (__get_user(reg, u++))
2094 return -EFAULT;
2095 regs[pos++] = reg;
2097 for (; count > 0 && pos < PT_TRAP; --count, ++pos)
2098 if (__get_user(reg, u++))
2099 return -EFAULT;
2102 if (count > 0 && pos == PT_TRAP) {
2103 if (kbuf)
2104 reg = *k++;
2105 else if (__get_user(reg, u++))
2106 return -EFAULT;
2107 set_user_trap(target, reg);
2108 ++pos;
2109 --count;
2112 kbuf = k;
2113 ubuf = u;
2114 pos *= sizeof(reg);
2115 count *= sizeof(reg);
2116 return user_regset_copyin_ignore(&pos, &count, &kbuf, &ubuf,
2117 (PT_TRAP + 1) * sizeof(reg), -1);
2120 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
2121 static int tm_cgpr32_get(struct task_struct *target,
2122 const struct user_regset *regset,
2123 unsigned int pos, unsigned int count,
2124 void *kbuf, void __user *ubuf)
2126 return gpr32_get_common(target, regset, pos, count, kbuf, ubuf,
2127 &target->thread.ckpt_regs.gpr[0]);
2130 static int tm_cgpr32_set(struct task_struct *target,
2131 const struct user_regset *regset,
2132 unsigned int pos, unsigned int count,
2133 const void *kbuf, const void __user *ubuf)
2135 return gpr32_set_common(target, regset, pos, count, kbuf, ubuf,
2136 &target->thread.ckpt_regs.gpr[0]);
2138 #endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
2140 static int gpr32_get(struct task_struct *target,
2141 const struct user_regset *regset,
2142 unsigned int pos, unsigned int count,
2143 void *kbuf, void __user *ubuf)
2145 int i;
2147 if (target->thread.regs == NULL)
2148 return -EIO;
2150 if (!FULL_REGS(target->thread.regs)) {
2152 * We have a partial register set.
2153 * Fill 14-31 with bogus values.
2155 for (i = 14; i < 32; i++)
2156 target->thread.regs->gpr[i] = NV_REG_POISON;
2158 return gpr32_get_common(target, regset, pos, count, kbuf, ubuf,
2159 &target->thread.regs->gpr[0]);
2162 static int gpr32_set(struct task_struct *target,
2163 const struct user_regset *regset,
2164 unsigned int pos, unsigned int count,
2165 const void *kbuf, const void __user *ubuf)
2167 if (target->thread.regs == NULL)
2168 return -EIO;
2170 CHECK_FULL_REGS(target->thread.regs);
2171 return gpr32_set_common(target, regset, pos, count, kbuf, ubuf,
2172 &target->thread.regs->gpr[0]);
2176 * These are the regset flavors matching the CONFIG_PPC32 native set.
2178 static const struct user_regset compat_regsets[] = {
2179 [REGSET_GPR] = {
2180 .core_note_type = NT_PRSTATUS, .n = ELF_NGREG,
2181 .size = sizeof(compat_long_t), .align = sizeof(compat_long_t),
2182 .get = gpr32_get, .set = gpr32_set
2184 [REGSET_FPR] = {
2185 .core_note_type = NT_PRFPREG, .n = ELF_NFPREG,
2186 .size = sizeof(double), .align = sizeof(double),
2187 .get = fpr_get, .set = fpr_set
2189 #ifdef CONFIG_ALTIVEC
2190 [REGSET_VMX] = {
2191 .core_note_type = NT_PPC_VMX, .n = 34,
2192 .size = sizeof(vector128), .align = sizeof(vector128),
2193 .active = vr_active, .get = vr_get, .set = vr_set
2195 #endif
2196 #ifdef CONFIG_SPE
2197 [REGSET_SPE] = {
2198 .core_note_type = NT_PPC_SPE, .n = 35,
2199 .size = sizeof(u32), .align = sizeof(u32),
2200 .active = evr_active, .get = evr_get, .set = evr_set
2202 #endif
2203 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
2204 [REGSET_TM_CGPR] = {
2205 .core_note_type = NT_PPC_TM_CGPR, .n = ELF_NGREG,
2206 .size = sizeof(long), .align = sizeof(long),
2207 .active = tm_cgpr_active,
2208 .get = tm_cgpr32_get, .set = tm_cgpr32_set
2210 [REGSET_TM_CFPR] = {
2211 .core_note_type = NT_PPC_TM_CFPR, .n = ELF_NFPREG,
2212 .size = sizeof(double), .align = sizeof(double),
2213 .active = tm_cfpr_active, .get = tm_cfpr_get, .set = tm_cfpr_set
2215 [REGSET_TM_CVMX] = {
2216 .core_note_type = NT_PPC_TM_CVMX, .n = ELF_NVMX,
2217 .size = sizeof(vector128), .align = sizeof(vector128),
2218 .active = tm_cvmx_active, .get = tm_cvmx_get, .set = tm_cvmx_set
2220 [REGSET_TM_CVSX] = {
2221 .core_note_type = NT_PPC_TM_CVSX, .n = ELF_NVSX,
2222 .size = sizeof(double), .align = sizeof(double),
2223 .active = tm_cvsx_active, .get = tm_cvsx_get, .set = tm_cvsx_set
2225 [REGSET_TM_SPR] = {
2226 .core_note_type = NT_PPC_TM_SPR, .n = ELF_NTMSPRREG,
2227 .size = sizeof(u64), .align = sizeof(u64),
2228 .active = tm_spr_active, .get = tm_spr_get, .set = tm_spr_set
2230 [REGSET_TM_CTAR] = {
2231 .core_note_type = NT_PPC_TM_CTAR, .n = 1,
2232 .size = sizeof(u64), .align = sizeof(u64),
2233 .active = tm_tar_active, .get = tm_tar_get, .set = tm_tar_set
2235 [REGSET_TM_CPPR] = {
2236 .core_note_type = NT_PPC_TM_CPPR, .n = 1,
2237 .size = sizeof(u64), .align = sizeof(u64),
2238 .active = tm_ppr_active, .get = tm_ppr_get, .set = tm_ppr_set
2240 [REGSET_TM_CDSCR] = {
2241 .core_note_type = NT_PPC_TM_CDSCR, .n = 1,
2242 .size = sizeof(u64), .align = sizeof(u64),
2243 .active = tm_dscr_active, .get = tm_dscr_get, .set = tm_dscr_set
2245 #endif
2246 #ifdef CONFIG_PPC64
2247 [REGSET_PPR] = {
2248 .core_note_type = NT_PPC_PPR, .n = 1,
2249 .size = sizeof(u64), .align = sizeof(u64),
2250 .get = ppr_get, .set = ppr_set
2252 [REGSET_DSCR] = {
2253 .core_note_type = NT_PPC_DSCR, .n = 1,
2254 .size = sizeof(u64), .align = sizeof(u64),
2255 .get = dscr_get, .set = dscr_set
2257 #endif
2258 #ifdef CONFIG_PPC_BOOK3S_64
2259 [REGSET_TAR] = {
2260 .core_note_type = NT_PPC_TAR, .n = 1,
2261 .size = sizeof(u64), .align = sizeof(u64),
2262 .get = tar_get, .set = tar_set
2264 [REGSET_EBB] = {
2265 .core_note_type = NT_PPC_EBB, .n = ELF_NEBB,
2266 .size = sizeof(u64), .align = sizeof(u64),
2267 .active = ebb_active, .get = ebb_get, .set = ebb_set
2269 #endif
2272 static const struct user_regset_view user_ppc_compat_view = {
2273 .name = "ppc", .e_machine = EM_PPC, .ei_osabi = ELF_OSABI,
2274 .regsets = compat_regsets, .n = ARRAY_SIZE(compat_regsets)
2276 #endif /* CONFIG_PPC64 */
2278 const struct user_regset_view *task_user_regset_view(struct task_struct *task)
2280 #ifdef CONFIG_PPC64
2281 if (test_tsk_thread_flag(task, TIF_32BIT))
2282 return &user_ppc_compat_view;
2283 #endif
2284 return &user_ppc_native_view;
2288 void user_enable_single_step(struct task_struct *task)
2290 struct pt_regs *regs = task->thread.regs;
2292 if (regs != NULL) {
2293 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
2294 task->thread.debug.dbcr0 &= ~DBCR0_BT;
2295 task->thread.debug.dbcr0 |= DBCR0_IDM | DBCR0_IC;
2296 regs->msr |= MSR_DE;
2297 #else
2298 regs->msr &= ~MSR_BE;
2299 regs->msr |= MSR_SE;
2300 #endif
2302 set_tsk_thread_flag(task, TIF_SINGLESTEP);
2305 void user_enable_block_step(struct task_struct *task)
2307 struct pt_regs *regs = task->thread.regs;
2309 if (regs != NULL) {
2310 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
2311 task->thread.debug.dbcr0 &= ~DBCR0_IC;
2312 task->thread.debug.dbcr0 = DBCR0_IDM | DBCR0_BT;
2313 regs->msr |= MSR_DE;
2314 #else
2315 regs->msr &= ~MSR_SE;
2316 regs->msr |= MSR_BE;
2317 #endif
2319 set_tsk_thread_flag(task, TIF_SINGLESTEP);
2322 void user_disable_single_step(struct task_struct *task)
2324 struct pt_regs *regs = task->thread.regs;
2326 if (regs != NULL) {
2327 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
2329 * The logic to disable single stepping should be as
2330 * simple as turning off the Instruction Complete flag.
2331 * And, after doing so, if all debug flags are off, turn
2332 * off DBCR0(IDM) and MSR(DE) .... Torez
2334 task->thread.debug.dbcr0 &= ~(DBCR0_IC|DBCR0_BT);
2336 * Test to see if any of the DBCR_ACTIVE_EVENTS bits are set.
2338 if (!DBCR_ACTIVE_EVENTS(task->thread.debug.dbcr0,
2339 task->thread.debug.dbcr1)) {
2341 * All debug events were off.....
2343 task->thread.debug.dbcr0 &= ~DBCR0_IDM;
2344 regs->msr &= ~MSR_DE;
2346 #else
2347 regs->msr &= ~(MSR_SE | MSR_BE);
2348 #endif
2350 clear_tsk_thread_flag(task, TIF_SINGLESTEP);
2353 #ifdef CONFIG_HAVE_HW_BREAKPOINT
2354 void ptrace_triggered(struct perf_event *bp,
2355 struct perf_sample_data *data, struct pt_regs *regs)
2357 struct perf_event_attr attr;
2360 * Disable the breakpoint request here since ptrace has defined a
2361 * one-shot behaviour for breakpoint exceptions in PPC64.
2362 * The SIGTRAP signal is generated automatically for us in do_dabr().
2363 * We don't have to do anything about that here
2365 attr = bp->attr;
2366 attr.disabled = true;
2367 modify_user_hw_breakpoint(bp, &attr);
2369 #endif /* CONFIG_HAVE_HW_BREAKPOINT */
2371 static int ptrace_set_debugreg(struct task_struct *task, unsigned long addr,
2372 unsigned long data)
2374 #ifdef CONFIG_HAVE_HW_BREAKPOINT
2375 int ret;
2376 struct thread_struct *thread = &(task->thread);
2377 struct perf_event *bp;
2378 struct perf_event_attr attr;
2379 #endif /* CONFIG_HAVE_HW_BREAKPOINT */
2380 #ifndef CONFIG_PPC_ADV_DEBUG_REGS
2381 struct arch_hw_breakpoint hw_brk;
2382 #endif
2384 /* For ppc64 we support one DABR and no IABR's at the moment (ppc64).
2385 * For embedded processors we support one DAC and no IAC's at the
2386 * moment.
2388 if (addr > 0)
2389 return -EINVAL;
2391 /* The bottom 3 bits in dabr are flags */
2392 if ((data & ~0x7UL) >= TASK_SIZE)
2393 return -EIO;
2395 #ifndef CONFIG_PPC_ADV_DEBUG_REGS
2396 /* For processors using DABR (i.e. 970), the bottom 3 bits are flags.
2397 * It was assumed, on previous implementations, that 3 bits were
2398 * passed together with the data address, fitting the design of the
2399 * DABR register, as follows:
2401 * bit 0: Read flag
2402 * bit 1: Write flag
2403 * bit 2: Breakpoint translation
2405 * Thus, we use them here as so.
2408 /* Ensure breakpoint translation bit is set */
2409 if (data && !(data & HW_BRK_TYPE_TRANSLATE))
2410 return -EIO;
2411 hw_brk.address = data & (~HW_BRK_TYPE_DABR);
2412 hw_brk.type = (data & HW_BRK_TYPE_DABR) | HW_BRK_TYPE_PRIV_ALL;
2413 hw_brk.len = 8;
2414 #ifdef CONFIG_HAVE_HW_BREAKPOINT
2415 bp = thread->ptrace_bps[0];
2416 if ((!data) || !(hw_brk.type & HW_BRK_TYPE_RDWR)) {
2417 if (bp) {
2418 unregister_hw_breakpoint(bp);
2419 thread->ptrace_bps[0] = NULL;
2421 return 0;
2423 if (bp) {
2424 attr = bp->attr;
2425 attr.bp_addr = hw_brk.address;
2426 arch_bp_generic_fields(hw_brk.type, &attr.bp_type);
2428 /* Enable breakpoint */
2429 attr.disabled = false;
2431 ret = modify_user_hw_breakpoint(bp, &attr);
2432 if (ret) {
2433 return ret;
2435 thread->ptrace_bps[0] = bp;
2436 thread->hw_brk = hw_brk;
2437 return 0;
2440 /* Create a new breakpoint request if one doesn't exist already */
2441 hw_breakpoint_init(&attr);
2442 attr.bp_addr = hw_brk.address;
2443 arch_bp_generic_fields(hw_brk.type,
2444 &attr.bp_type);
2446 thread->ptrace_bps[0] = bp = register_user_hw_breakpoint(&attr,
2447 ptrace_triggered, NULL, task);
2448 if (IS_ERR(bp)) {
2449 thread->ptrace_bps[0] = NULL;
2450 return PTR_ERR(bp);
2453 #endif /* CONFIG_HAVE_HW_BREAKPOINT */
2454 task->thread.hw_brk = hw_brk;
2455 #else /* CONFIG_PPC_ADV_DEBUG_REGS */
2456 /* As described above, it was assumed 3 bits were passed with the data
2457 * address, but we will assume only the mode bits will be passed
2458 * as to not cause alignment restrictions for DAC-based processors.
2461 /* DAC's hold the whole address without any mode flags */
2462 task->thread.debug.dac1 = data & ~0x3UL;
2464 if (task->thread.debug.dac1 == 0) {
2465 dbcr_dac(task) &= ~(DBCR_DAC1R | DBCR_DAC1W);
2466 if (!DBCR_ACTIVE_EVENTS(task->thread.debug.dbcr0,
2467 task->thread.debug.dbcr1)) {
2468 task->thread.regs->msr &= ~MSR_DE;
2469 task->thread.debug.dbcr0 &= ~DBCR0_IDM;
2471 return 0;
2474 /* Read or Write bits must be set */
2476 if (!(data & 0x3UL))
2477 return -EINVAL;
2479 /* Set the Internal Debugging flag (IDM bit 1) for the DBCR0
2480 register */
2481 task->thread.debug.dbcr0 |= DBCR0_IDM;
2483 /* Check for write and read flags and set DBCR0
2484 accordingly */
2485 dbcr_dac(task) &= ~(DBCR_DAC1R|DBCR_DAC1W);
2486 if (data & 0x1UL)
2487 dbcr_dac(task) |= DBCR_DAC1R;
2488 if (data & 0x2UL)
2489 dbcr_dac(task) |= DBCR_DAC1W;
2490 task->thread.regs->msr |= MSR_DE;
2491 #endif /* CONFIG_PPC_ADV_DEBUG_REGS */
2492 return 0;
2496 * Called by kernel/ptrace.c when detaching..
2498 * Make sure single step bits etc are not set.
2500 void ptrace_disable(struct task_struct *child)
2502 /* make sure the single step bit is not set. */
2503 user_disable_single_step(child);
2506 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
2507 static long set_instruction_bp(struct task_struct *child,
2508 struct ppc_hw_breakpoint *bp_info)
2510 int slot;
2511 int slot1_in_use = ((child->thread.debug.dbcr0 & DBCR0_IAC1) != 0);
2512 int slot2_in_use = ((child->thread.debug.dbcr0 & DBCR0_IAC2) != 0);
2513 int slot3_in_use = ((child->thread.debug.dbcr0 & DBCR0_IAC3) != 0);
2514 int slot4_in_use = ((child->thread.debug.dbcr0 & DBCR0_IAC4) != 0);
2516 if (dbcr_iac_range(child) & DBCR_IAC12MODE)
2517 slot2_in_use = 1;
2518 if (dbcr_iac_range(child) & DBCR_IAC34MODE)
2519 slot4_in_use = 1;
2521 if (bp_info->addr >= TASK_SIZE)
2522 return -EIO;
2524 if (bp_info->addr_mode != PPC_BREAKPOINT_MODE_EXACT) {
2526 /* Make sure range is valid. */
2527 if (bp_info->addr2 >= TASK_SIZE)
2528 return -EIO;
2530 /* We need a pair of IAC regsisters */
2531 if ((!slot1_in_use) && (!slot2_in_use)) {
2532 slot = 1;
2533 child->thread.debug.iac1 = bp_info->addr;
2534 child->thread.debug.iac2 = bp_info->addr2;
2535 child->thread.debug.dbcr0 |= DBCR0_IAC1;
2536 if (bp_info->addr_mode ==
2537 PPC_BREAKPOINT_MODE_RANGE_EXCLUSIVE)
2538 dbcr_iac_range(child) |= DBCR_IAC12X;
2539 else
2540 dbcr_iac_range(child) |= DBCR_IAC12I;
2541 #if CONFIG_PPC_ADV_DEBUG_IACS > 2
2542 } else if ((!slot3_in_use) && (!slot4_in_use)) {
2543 slot = 3;
2544 child->thread.debug.iac3 = bp_info->addr;
2545 child->thread.debug.iac4 = bp_info->addr2;
2546 child->thread.debug.dbcr0 |= DBCR0_IAC3;
2547 if (bp_info->addr_mode ==
2548 PPC_BREAKPOINT_MODE_RANGE_EXCLUSIVE)
2549 dbcr_iac_range(child) |= DBCR_IAC34X;
2550 else
2551 dbcr_iac_range(child) |= DBCR_IAC34I;
2552 #endif
2553 } else
2554 return -ENOSPC;
2555 } else {
2556 /* We only need one. If possible leave a pair free in
2557 * case a range is needed later
2559 if (!slot1_in_use) {
2561 * Don't use iac1 if iac1-iac2 are free and either
2562 * iac3 or iac4 (but not both) are free
2564 if (slot2_in_use || (slot3_in_use == slot4_in_use)) {
2565 slot = 1;
2566 child->thread.debug.iac1 = bp_info->addr;
2567 child->thread.debug.dbcr0 |= DBCR0_IAC1;
2568 goto out;
2571 if (!slot2_in_use) {
2572 slot = 2;
2573 child->thread.debug.iac2 = bp_info->addr;
2574 child->thread.debug.dbcr0 |= DBCR0_IAC2;
2575 #if CONFIG_PPC_ADV_DEBUG_IACS > 2
2576 } else if (!slot3_in_use) {
2577 slot = 3;
2578 child->thread.debug.iac3 = bp_info->addr;
2579 child->thread.debug.dbcr0 |= DBCR0_IAC3;
2580 } else if (!slot4_in_use) {
2581 slot = 4;
2582 child->thread.debug.iac4 = bp_info->addr;
2583 child->thread.debug.dbcr0 |= DBCR0_IAC4;
2584 #endif
2585 } else
2586 return -ENOSPC;
2588 out:
2589 child->thread.debug.dbcr0 |= DBCR0_IDM;
2590 child->thread.regs->msr |= MSR_DE;
2592 return slot;
2595 static int del_instruction_bp(struct task_struct *child, int slot)
2597 switch (slot) {
2598 case 1:
2599 if ((child->thread.debug.dbcr0 & DBCR0_IAC1) == 0)
2600 return -ENOENT;
2602 if (dbcr_iac_range(child) & DBCR_IAC12MODE) {
2603 /* address range - clear slots 1 & 2 */
2604 child->thread.debug.iac2 = 0;
2605 dbcr_iac_range(child) &= ~DBCR_IAC12MODE;
2607 child->thread.debug.iac1 = 0;
2608 child->thread.debug.dbcr0 &= ~DBCR0_IAC1;
2609 break;
2610 case 2:
2611 if ((child->thread.debug.dbcr0 & DBCR0_IAC2) == 0)
2612 return -ENOENT;
2614 if (dbcr_iac_range(child) & DBCR_IAC12MODE)
2615 /* used in a range */
2616 return -EINVAL;
2617 child->thread.debug.iac2 = 0;
2618 child->thread.debug.dbcr0 &= ~DBCR0_IAC2;
2619 break;
2620 #if CONFIG_PPC_ADV_DEBUG_IACS > 2
2621 case 3:
2622 if ((child->thread.debug.dbcr0 & DBCR0_IAC3) == 0)
2623 return -ENOENT;
2625 if (dbcr_iac_range(child) & DBCR_IAC34MODE) {
2626 /* address range - clear slots 3 & 4 */
2627 child->thread.debug.iac4 = 0;
2628 dbcr_iac_range(child) &= ~DBCR_IAC34MODE;
2630 child->thread.debug.iac3 = 0;
2631 child->thread.debug.dbcr0 &= ~DBCR0_IAC3;
2632 break;
2633 case 4:
2634 if ((child->thread.debug.dbcr0 & DBCR0_IAC4) == 0)
2635 return -ENOENT;
2637 if (dbcr_iac_range(child) & DBCR_IAC34MODE)
2638 /* Used in a range */
2639 return -EINVAL;
2640 child->thread.debug.iac4 = 0;
2641 child->thread.debug.dbcr0 &= ~DBCR0_IAC4;
2642 break;
2643 #endif
2644 default:
2645 return -EINVAL;
2647 return 0;
2650 static int set_dac(struct task_struct *child, struct ppc_hw_breakpoint *bp_info)
2652 int byte_enable =
2653 (bp_info->condition_mode >> PPC_BREAKPOINT_CONDITION_BE_SHIFT)
2654 & 0xf;
2655 int condition_mode =
2656 bp_info->condition_mode & PPC_BREAKPOINT_CONDITION_MODE;
2657 int slot;
2659 if (byte_enable && (condition_mode == 0))
2660 return -EINVAL;
2662 if (bp_info->addr >= TASK_SIZE)
2663 return -EIO;
2665 if ((dbcr_dac(child) & (DBCR_DAC1R | DBCR_DAC1W)) == 0) {
2666 slot = 1;
2667 if (bp_info->trigger_type & PPC_BREAKPOINT_TRIGGER_READ)
2668 dbcr_dac(child) |= DBCR_DAC1R;
2669 if (bp_info->trigger_type & PPC_BREAKPOINT_TRIGGER_WRITE)
2670 dbcr_dac(child) |= DBCR_DAC1W;
2671 child->thread.debug.dac1 = (unsigned long)bp_info->addr;
2672 #if CONFIG_PPC_ADV_DEBUG_DVCS > 0
2673 if (byte_enable) {
2674 child->thread.debug.dvc1 =
2675 (unsigned long)bp_info->condition_value;
2676 child->thread.debug.dbcr2 |=
2677 ((byte_enable << DBCR2_DVC1BE_SHIFT) |
2678 (condition_mode << DBCR2_DVC1M_SHIFT));
2680 #endif
2681 #ifdef CONFIG_PPC_ADV_DEBUG_DAC_RANGE
2682 } else if (child->thread.debug.dbcr2 & DBCR2_DAC12MODE) {
2683 /* Both dac1 and dac2 are part of a range */
2684 return -ENOSPC;
2685 #endif
2686 } else if ((dbcr_dac(child) & (DBCR_DAC2R | DBCR_DAC2W)) == 0) {
2687 slot = 2;
2688 if (bp_info->trigger_type & PPC_BREAKPOINT_TRIGGER_READ)
2689 dbcr_dac(child) |= DBCR_DAC2R;
2690 if (bp_info->trigger_type & PPC_BREAKPOINT_TRIGGER_WRITE)
2691 dbcr_dac(child) |= DBCR_DAC2W;
2692 child->thread.debug.dac2 = (unsigned long)bp_info->addr;
2693 #if CONFIG_PPC_ADV_DEBUG_DVCS > 0
2694 if (byte_enable) {
2695 child->thread.debug.dvc2 =
2696 (unsigned long)bp_info->condition_value;
2697 child->thread.debug.dbcr2 |=
2698 ((byte_enable << DBCR2_DVC2BE_SHIFT) |
2699 (condition_mode << DBCR2_DVC2M_SHIFT));
2701 #endif
2702 } else
2703 return -ENOSPC;
2704 child->thread.debug.dbcr0 |= DBCR0_IDM;
2705 child->thread.regs->msr |= MSR_DE;
2707 return slot + 4;
2710 static int del_dac(struct task_struct *child, int slot)
2712 if (slot == 1) {
2713 if ((dbcr_dac(child) & (DBCR_DAC1R | DBCR_DAC1W)) == 0)
2714 return -ENOENT;
2716 child->thread.debug.dac1 = 0;
2717 dbcr_dac(child) &= ~(DBCR_DAC1R | DBCR_DAC1W);
2718 #ifdef CONFIG_PPC_ADV_DEBUG_DAC_RANGE
2719 if (child->thread.debug.dbcr2 & DBCR2_DAC12MODE) {
2720 child->thread.debug.dac2 = 0;
2721 child->thread.debug.dbcr2 &= ~DBCR2_DAC12MODE;
2723 child->thread.debug.dbcr2 &= ~(DBCR2_DVC1M | DBCR2_DVC1BE);
2724 #endif
2725 #if CONFIG_PPC_ADV_DEBUG_DVCS > 0
2726 child->thread.debug.dvc1 = 0;
2727 #endif
2728 } else if (slot == 2) {
2729 if ((dbcr_dac(child) & (DBCR_DAC2R | DBCR_DAC2W)) == 0)
2730 return -ENOENT;
2732 #ifdef CONFIG_PPC_ADV_DEBUG_DAC_RANGE
2733 if (child->thread.debug.dbcr2 & DBCR2_DAC12MODE)
2734 /* Part of a range */
2735 return -EINVAL;
2736 child->thread.debug.dbcr2 &= ~(DBCR2_DVC2M | DBCR2_DVC2BE);
2737 #endif
2738 #if CONFIG_PPC_ADV_DEBUG_DVCS > 0
2739 child->thread.debug.dvc2 = 0;
2740 #endif
2741 child->thread.debug.dac2 = 0;
2742 dbcr_dac(child) &= ~(DBCR_DAC2R | DBCR_DAC2W);
2743 } else
2744 return -EINVAL;
2746 return 0;
2748 #endif /* CONFIG_PPC_ADV_DEBUG_REGS */
2750 #ifdef CONFIG_PPC_ADV_DEBUG_DAC_RANGE
2751 static int set_dac_range(struct task_struct *child,
2752 struct ppc_hw_breakpoint *bp_info)
2754 int mode = bp_info->addr_mode & PPC_BREAKPOINT_MODE_MASK;
2756 /* We don't allow range watchpoints to be used with DVC */
2757 if (bp_info->condition_mode)
2758 return -EINVAL;
2761 * Best effort to verify the address range. The user/supervisor bits
2762 * prevent trapping in kernel space, but let's fail on an obvious bad
2763 * range. The simple test on the mask is not fool-proof, and any
2764 * exclusive range will spill over into kernel space.
2766 if (bp_info->addr >= TASK_SIZE)
2767 return -EIO;
2768 if (mode == PPC_BREAKPOINT_MODE_MASK) {
2770 * dac2 is a bitmask. Don't allow a mask that makes a
2771 * kernel space address from a valid dac1 value
2773 if (~((unsigned long)bp_info->addr2) >= TASK_SIZE)
2774 return -EIO;
2775 } else {
2777 * For range breakpoints, addr2 must also be a valid address
2779 if (bp_info->addr2 >= TASK_SIZE)
2780 return -EIO;
2783 if (child->thread.debug.dbcr0 &
2784 (DBCR0_DAC1R | DBCR0_DAC1W | DBCR0_DAC2R | DBCR0_DAC2W))
2785 return -ENOSPC;
2787 if (bp_info->trigger_type & PPC_BREAKPOINT_TRIGGER_READ)
2788 child->thread.debug.dbcr0 |= (DBCR0_DAC1R | DBCR0_IDM);
2789 if (bp_info->trigger_type & PPC_BREAKPOINT_TRIGGER_WRITE)
2790 child->thread.debug.dbcr0 |= (DBCR0_DAC1W | DBCR0_IDM);
2791 child->thread.debug.dac1 = bp_info->addr;
2792 child->thread.debug.dac2 = bp_info->addr2;
2793 if (mode == PPC_BREAKPOINT_MODE_RANGE_INCLUSIVE)
2794 child->thread.debug.dbcr2 |= DBCR2_DAC12M;
2795 else if (mode == PPC_BREAKPOINT_MODE_RANGE_EXCLUSIVE)
2796 child->thread.debug.dbcr2 |= DBCR2_DAC12MX;
2797 else /* PPC_BREAKPOINT_MODE_MASK */
2798 child->thread.debug.dbcr2 |= DBCR2_DAC12MM;
2799 child->thread.regs->msr |= MSR_DE;
2801 return 5;
2803 #endif /* CONFIG_PPC_ADV_DEBUG_DAC_RANGE */
2805 static long ppc_set_hwdebug(struct task_struct *child,
2806 struct ppc_hw_breakpoint *bp_info)
2808 #ifdef CONFIG_HAVE_HW_BREAKPOINT
2809 int len = 0;
2810 struct thread_struct *thread = &(child->thread);
2811 struct perf_event *bp;
2812 struct perf_event_attr attr;
2813 #endif /* CONFIG_HAVE_HW_BREAKPOINT */
2814 #ifndef CONFIG_PPC_ADV_DEBUG_REGS
2815 struct arch_hw_breakpoint brk;
2816 #endif
2818 if (bp_info->version != 1)
2819 return -ENOTSUPP;
2820 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
2822 * Check for invalid flags and combinations
2824 if ((bp_info->trigger_type == 0) ||
2825 (bp_info->trigger_type & ~(PPC_BREAKPOINT_TRIGGER_EXECUTE |
2826 PPC_BREAKPOINT_TRIGGER_RW)) ||
2827 (bp_info->addr_mode & ~PPC_BREAKPOINT_MODE_MASK) ||
2828 (bp_info->condition_mode &
2829 ~(PPC_BREAKPOINT_CONDITION_MODE |
2830 PPC_BREAKPOINT_CONDITION_BE_ALL)))
2831 return -EINVAL;
2832 #if CONFIG_PPC_ADV_DEBUG_DVCS == 0
2833 if (bp_info->condition_mode != PPC_BREAKPOINT_CONDITION_NONE)
2834 return -EINVAL;
2835 #endif
2837 if (bp_info->trigger_type & PPC_BREAKPOINT_TRIGGER_EXECUTE) {
2838 if ((bp_info->trigger_type != PPC_BREAKPOINT_TRIGGER_EXECUTE) ||
2839 (bp_info->condition_mode != PPC_BREAKPOINT_CONDITION_NONE))
2840 return -EINVAL;
2841 return set_instruction_bp(child, bp_info);
2843 if (bp_info->addr_mode == PPC_BREAKPOINT_MODE_EXACT)
2844 return set_dac(child, bp_info);
2846 #ifdef CONFIG_PPC_ADV_DEBUG_DAC_RANGE
2847 return set_dac_range(child, bp_info);
2848 #else
2849 return -EINVAL;
2850 #endif
2851 #else /* !CONFIG_PPC_ADV_DEBUG_DVCS */
2853 * We only support one data breakpoint
2855 if ((bp_info->trigger_type & PPC_BREAKPOINT_TRIGGER_RW) == 0 ||
2856 (bp_info->trigger_type & ~PPC_BREAKPOINT_TRIGGER_RW) != 0 ||
2857 bp_info->condition_mode != PPC_BREAKPOINT_CONDITION_NONE)
2858 return -EINVAL;
2860 if ((unsigned long)bp_info->addr >= TASK_SIZE)
2861 return -EIO;
2863 brk.address = bp_info->addr & ~7UL;
2864 brk.type = HW_BRK_TYPE_TRANSLATE;
2865 brk.len = 8;
2866 if (bp_info->trigger_type & PPC_BREAKPOINT_TRIGGER_READ)
2867 brk.type |= HW_BRK_TYPE_READ;
2868 if (bp_info->trigger_type & PPC_BREAKPOINT_TRIGGER_WRITE)
2869 brk.type |= HW_BRK_TYPE_WRITE;
2870 #ifdef CONFIG_HAVE_HW_BREAKPOINT
2872 * Check if the request is for 'range' breakpoints. We can
2873 * support it if range < 8 bytes.
2875 if (bp_info->addr_mode == PPC_BREAKPOINT_MODE_RANGE_INCLUSIVE)
2876 len = bp_info->addr2 - bp_info->addr;
2877 else if (bp_info->addr_mode == PPC_BREAKPOINT_MODE_EXACT)
2878 len = 1;
2879 else
2880 return -EINVAL;
2881 bp = thread->ptrace_bps[0];
2882 if (bp)
2883 return -ENOSPC;
2885 /* Create a new breakpoint request if one doesn't exist already */
2886 hw_breakpoint_init(&attr);
2887 attr.bp_addr = (unsigned long)bp_info->addr & ~HW_BREAKPOINT_ALIGN;
2888 attr.bp_len = len;
2889 arch_bp_generic_fields(brk.type, &attr.bp_type);
2891 thread->ptrace_bps[0] = bp = register_user_hw_breakpoint(&attr,
2892 ptrace_triggered, NULL, child);
2893 if (IS_ERR(bp)) {
2894 thread->ptrace_bps[0] = NULL;
2895 return PTR_ERR(bp);
2898 return 1;
2899 #endif /* CONFIG_HAVE_HW_BREAKPOINT */
2901 if (bp_info->addr_mode != PPC_BREAKPOINT_MODE_EXACT)
2902 return -EINVAL;
2904 if (child->thread.hw_brk.address)
2905 return -ENOSPC;
2907 child->thread.hw_brk = brk;
2909 return 1;
2910 #endif /* !CONFIG_PPC_ADV_DEBUG_DVCS */
2913 static long ppc_del_hwdebug(struct task_struct *child, long data)
2915 #ifdef CONFIG_HAVE_HW_BREAKPOINT
2916 int ret = 0;
2917 struct thread_struct *thread = &(child->thread);
2918 struct perf_event *bp;
2919 #endif /* CONFIG_HAVE_HW_BREAKPOINT */
2920 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
2921 int rc;
2923 if (data <= 4)
2924 rc = del_instruction_bp(child, (int)data);
2925 else
2926 rc = del_dac(child, (int)data - 4);
2928 if (!rc) {
2929 if (!DBCR_ACTIVE_EVENTS(child->thread.debug.dbcr0,
2930 child->thread.debug.dbcr1)) {
2931 child->thread.debug.dbcr0 &= ~DBCR0_IDM;
2932 child->thread.regs->msr &= ~MSR_DE;
2935 return rc;
2936 #else
2937 if (data != 1)
2938 return -EINVAL;
2940 #ifdef CONFIG_HAVE_HW_BREAKPOINT
2941 bp = thread->ptrace_bps[0];
2942 if (bp) {
2943 unregister_hw_breakpoint(bp);
2944 thread->ptrace_bps[0] = NULL;
2945 } else
2946 ret = -ENOENT;
2947 return ret;
2948 #else /* CONFIG_HAVE_HW_BREAKPOINT */
2949 if (child->thread.hw_brk.address == 0)
2950 return -ENOENT;
2952 child->thread.hw_brk.address = 0;
2953 child->thread.hw_brk.type = 0;
2954 #endif /* CONFIG_HAVE_HW_BREAKPOINT */
2956 return 0;
2957 #endif
2960 long arch_ptrace(struct task_struct *child, long request,
2961 unsigned long addr, unsigned long data)
2963 int ret = -EPERM;
2964 void __user *datavp = (void __user *) data;
2965 unsigned long __user *datalp = datavp;
2967 switch (request) {
2968 /* read the word at location addr in the USER area. */
2969 case PTRACE_PEEKUSR: {
2970 unsigned long index, tmp;
2972 ret = -EIO;
2973 /* convert to index and check */
2974 #ifdef CONFIG_PPC32
2975 index = addr >> 2;
2976 if ((addr & 3) || (index > PT_FPSCR)
2977 || (child->thread.regs == NULL))
2978 #else
2979 index = addr >> 3;
2980 if ((addr & 7) || (index > PT_FPSCR))
2981 #endif
2982 break;
2984 CHECK_FULL_REGS(child->thread.regs);
2985 if (index < PT_FPR0) {
2986 ret = ptrace_get_reg(child, (int) index, &tmp);
2987 if (ret)
2988 break;
2989 } else {
2990 unsigned int fpidx = index - PT_FPR0;
2992 flush_fp_to_thread(child);
2993 if (fpidx < (PT_FPSCR - PT_FPR0))
2994 memcpy(&tmp, &child->thread.TS_FPR(fpidx),
2995 sizeof(long));
2996 else
2997 tmp = child->thread.fp_state.fpscr;
2999 ret = put_user(tmp, datalp);
3000 break;
3003 /* write the word at location addr in the USER area */
3004 case PTRACE_POKEUSR: {
3005 unsigned long index;
3007 ret = -EIO;
3008 /* convert to index and check */
3009 #ifdef CONFIG_PPC32
3010 index = addr >> 2;
3011 if ((addr & 3) || (index > PT_FPSCR)
3012 || (child->thread.regs == NULL))
3013 #else
3014 index = addr >> 3;
3015 if ((addr & 7) || (index > PT_FPSCR))
3016 #endif
3017 break;
3019 CHECK_FULL_REGS(child->thread.regs);
3020 if (index < PT_FPR0) {
3021 ret = ptrace_put_reg(child, index, data);
3022 } else {
3023 unsigned int fpidx = index - PT_FPR0;
3025 flush_fp_to_thread(child);
3026 if (fpidx < (PT_FPSCR - PT_FPR0))
3027 memcpy(&child->thread.TS_FPR(fpidx), &data,
3028 sizeof(long));
3029 else
3030 child->thread.fp_state.fpscr = data;
3031 ret = 0;
3033 break;
3036 case PPC_PTRACE_GETHWDBGINFO: {
3037 struct ppc_debug_info dbginfo;
3039 dbginfo.version = 1;
3040 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
3041 dbginfo.num_instruction_bps = CONFIG_PPC_ADV_DEBUG_IACS;
3042 dbginfo.num_data_bps = CONFIG_PPC_ADV_DEBUG_DACS;
3043 dbginfo.num_condition_regs = CONFIG_PPC_ADV_DEBUG_DVCS;
3044 dbginfo.data_bp_alignment = 4;
3045 dbginfo.sizeof_condition = 4;
3046 dbginfo.features = PPC_DEBUG_FEATURE_INSN_BP_RANGE |
3047 PPC_DEBUG_FEATURE_INSN_BP_MASK;
3048 #ifdef CONFIG_PPC_ADV_DEBUG_DAC_RANGE
3049 dbginfo.features |=
3050 PPC_DEBUG_FEATURE_DATA_BP_RANGE |
3051 PPC_DEBUG_FEATURE_DATA_BP_MASK;
3052 #endif
3053 #else /* !CONFIG_PPC_ADV_DEBUG_REGS */
3054 dbginfo.num_instruction_bps = 0;
3055 dbginfo.num_data_bps = 1;
3056 dbginfo.num_condition_regs = 0;
3057 #ifdef CONFIG_PPC64
3058 dbginfo.data_bp_alignment = 8;
3059 #else
3060 dbginfo.data_bp_alignment = 4;
3061 #endif
3062 dbginfo.sizeof_condition = 0;
3063 #ifdef CONFIG_HAVE_HW_BREAKPOINT
3064 dbginfo.features = PPC_DEBUG_FEATURE_DATA_BP_RANGE;
3065 if (cpu_has_feature(CPU_FTR_DAWR))
3066 dbginfo.features |= PPC_DEBUG_FEATURE_DATA_BP_DAWR;
3067 #else
3068 dbginfo.features = 0;
3069 #endif /* CONFIG_HAVE_HW_BREAKPOINT */
3070 #endif /* CONFIG_PPC_ADV_DEBUG_REGS */
3072 if (!access_ok(VERIFY_WRITE, datavp,
3073 sizeof(struct ppc_debug_info)))
3074 return -EFAULT;
3075 ret = __copy_to_user(datavp, &dbginfo,
3076 sizeof(struct ppc_debug_info)) ?
3077 -EFAULT : 0;
3078 break;
3081 case PPC_PTRACE_SETHWDEBUG: {
3082 struct ppc_hw_breakpoint bp_info;
3084 if (!access_ok(VERIFY_READ, datavp,
3085 sizeof(struct ppc_hw_breakpoint)))
3086 return -EFAULT;
3087 ret = __copy_from_user(&bp_info, datavp,
3088 sizeof(struct ppc_hw_breakpoint)) ?
3089 -EFAULT : 0;
3090 if (!ret)
3091 ret = ppc_set_hwdebug(child, &bp_info);
3092 break;
3095 case PPC_PTRACE_DELHWDEBUG: {
3096 ret = ppc_del_hwdebug(child, data);
3097 break;
3100 case PTRACE_GET_DEBUGREG: {
3101 #ifndef CONFIG_PPC_ADV_DEBUG_REGS
3102 unsigned long dabr_fake;
3103 #endif
3104 ret = -EINVAL;
3105 /* We only support one DABR and no IABRS at the moment */
3106 if (addr > 0)
3107 break;
3108 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
3109 ret = put_user(child->thread.debug.dac1, datalp);
3110 #else
3111 dabr_fake = ((child->thread.hw_brk.address & (~HW_BRK_TYPE_DABR)) |
3112 (child->thread.hw_brk.type & HW_BRK_TYPE_DABR));
3113 ret = put_user(dabr_fake, datalp);
3114 #endif
3115 break;
3118 case PTRACE_SET_DEBUGREG:
3119 ret = ptrace_set_debugreg(child, addr, data);
3120 break;
3122 #ifdef CONFIG_PPC64
3123 case PTRACE_GETREGS64:
3124 #endif
3125 case PTRACE_GETREGS: /* Get all pt_regs from the child. */
3126 return copy_regset_to_user(child, &user_ppc_native_view,
3127 REGSET_GPR,
3128 0, sizeof(struct pt_regs),
3129 datavp);
3131 #ifdef CONFIG_PPC64
3132 case PTRACE_SETREGS64:
3133 #endif
3134 case PTRACE_SETREGS: /* Set all gp regs in the child. */
3135 return copy_regset_from_user(child, &user_ppc_native_view,
3136 REGSET_GPR,
3137 0, sizeof(struct pt_regs),
3138 datavp);
3140 case PTRACE_GETFPREGS: /* Get the child FPU state (FPR0...31 + FPSCR) */
3141 return copy_regset_to_user(child, &user_ppc_native_view,
3142 REGSET_FPR,
3143 0, sizeof(elf_fpregset_t),
3144 datavp);
3146 case PTRACE_SETFPREGS: /* Set the child FPU state (FPR0...31 + FPSCR) */
3147 return copy_regset_from_user(child, &user_ppc_native_view,
3148 REGSET_FPR,
3149 0, sizeof(elf_fpregset_t),
3150 datavp);
3152 #ifdef CONFIG_ALTIVEC
3153 case PTRACE_GETVRREGS:
3154 return copy_regset_to_user(child, &user_ppc_native_view,
3155 REGSET_VMX,
3156 0, (33 * sizeof(vector128) +
3157 sizeof(u32)),
3158 datavp);
3160 case PTRACE_SETVRREGS:
3161 return copy_regset_from_user(child, &user_ppc_native_view,
3162 REGSET_VMX,
3163 0, (33 * sizeof(vector128) +
3164 sizeof(u32)),
3165 datavp);
3166 #endif
3167 #ifdef CONFIG_VSX
3168 case PTRACE_GETVSRREGS:
3169 return copy_regset_to_user(child, &user_ppc_native_view,
3170 REGSET_VSX,
3171 0, 32 * sizeof(double),
3172 datavp);
3174 case PTRACE_SETVSRREGS:
3175 return copy_regset_from_user(child, &user_ppc_native_view,
3176 REGSET_VSX,
3177 0, 32 * sizeof(double),
3178 datavp);
3179 #endif
3180 #ifdef CONFIG_SPE
3181 case PTRACE_GETEVRREGS:
3182 /* Get the child spe register state. */
3183 return copy_regset_to_user(child, &user_ppc_native_view,
3184 REGSET_SPE, 0, 35 * sizeof(u32),
3185 datavp);
3187 case PTRACE_SETEVRREGS:
3188 /* Set the child spe register state. */
3189 return copy_regset_from_user(child, &user_ppc_native_view,
3190 REGSET_SPE, 0, 35 * sizeof(u32),
3191 datavp);
3192 #endif
3194 default:
3195 ret = ptrace_request(child, request, addr, data);
3196 break;
3198 return ret;
3201 #ifdef CONFIG_SECCOMP
3202 static int do_seccomp(struct pt_regs *regs)
3204 if (!test_thread_flag(TIF_SECCOMP))
3205 return 0;
3208 * The ABI we present to seccomp tracers is that r3 contains
3209 * the syscall return value and orig_gpr3 contains the first
3210 * syscall parameter. This is different to the ptrace ABI where
3211 * both r3 and orig_gpr3 contain the first syscall parameter.
3213 regs->gpr[3] = -ENOSYS;
3216 * We use the __ version here because we have already checked
3217 * TIF_SECCOMP. If this fails, there is nothing left to do, we
3218 * have already loaded -ENOSYS into r3, or seccomp has put
3219 * something else in r3 (via SECCOMP_RET_ERRNO/TRACE).
3221 if (__secure_computing(NULL))
3222 return -1;
3225 * The syscall was allowed by seccomp, restore the register
3226 * state to what audit expects.
3227 * Note that we use orig_gpr3, which means a seccomp tracer can
3228 * modify the first syscall parameter (in orig_gpr3) and also
3229 * allow the syscall to proceed.
3231 regs->gpr[3] = regs->orig_gpr3;
3233 return 0;
3235 #else
3236 static inline int do_seccomp(struct pt_regs *regs) { return 0; }
3237 #endif /* CONFIG_SECCOMP */
3240 * do_syscall_trace_enter() - Do syscall tracing on kernel entry.
3241 * @regs: the pt_regs of the task to trace (current)
3243 * Performs various types of tracing on syscall entry. This includes seccomp,
3244 * ptrace, syscall tracepoints and audit.
3246 * The pt_regs are potentially visible to userspace via ptrace, so their
3247 * contents is ABI.
3249 * One or more of the tracers may modify the contents of pt_regs, in particular
3250 * to modify arguments or even the syscall number itself.
3252 * It's also possible that a tracer can choose to reject the system call. In
3253 * that case this function will return an illegal syscall number, and will put
3254 * an appropriate return value in regs->r3.
3256 * Return: the (possibly changed) syscall number.
3258 long do_syscall_trace_enter(struct pt_regs *regs)
3260 user_exit();
3263 * The tracer may decide to abort the syscall, if so tracehook
3264 * will return !0. Note that the tracer may also just change
3265 * regs->gpr[0] to an invalid syscall number, that is handled
3266 * below on the exit path.
3268 if (test_thread_flag(TIF_SYSCALL_TRACE) &&
3269 tracehook_report_syscall_entry(regs))
3270 goto skip;
3272 /* Run seccomp after ptrace; allow it to set gpr[3]. */
3273 if (do_seccomp(regs))
3274 return -1;
3276 /* Avoid trace and audit when syscall is invalid. */
3277 if (regs->gpr[0] >= NR_syscalls)
3278 goto skip;
3280 if (unlikely(test_thread_flag(TIF_SYSCALL_TRACEPOINT)))
3281 trace_sys_enter(regs, regs->gpr[0]);
3283 #ifdef CONFIG_PPC64
3284 if (!is_32bit_task())
3285 audit_syscall_entry(regs->gpr[0], regs->gpr[3], regs->gpr[4],
3286 regs->gpr[5], regs->gpr[6]);
3287 else
3288 #endif
3289 audit_syscall_entry(regs->gpr[0],
3290 regs->gpr[3] & 0xffffffff,
3291 regs->gpr[4] & 0xffffffff,
3292 regs->gpr[5] & 0xffffffff,
3293 regs->gpr[6] & 0xffffffff);
3295 /* Return the possibly modified but valid syscall number */
3296 return regs->gpr[0];
3298 skip:
3300 * If we are aborting explicitly, or if the syscall number is
3301 * now invalid, set the return value to -ENOSYS.
3303 regs->gpr[3] = -ENOSYS;
3304 return -1;
3307 void do_syscall_trace_leave(struct pt_regs *regs)
3309 int step;
3311 audit_syscall_exit(regs);
3313 if (unlikely(test_thread_flag(TIF_SYSCALL_TRACEPOINT)))
3314 trace_sys_exit(regs, regs->result);
3316 step = test_thread_flag(TIF_SINGLESTEP);
3317 if (step || test_thread_flag(TIF_SYSCALL_TRACE))
3318 tracehook_report_syscall_exit(regs, step);
3320 user_enter();