1 // SPDX-License-Identifier: GPL-2.0
3 * Routines to emulate some Altivec/VMX instructions, specifically
4 * those that can trap when given denormalized operands in Java mode.
6 #include <linux/kernel.h>
7 #include <linux/errno.h>
8 #include <linux/sched.h>
9 #include <asm/ptrace.h>
10 #include <asm/processor.h>
11 #include <linux/uaccess.h>
13 /* Functions in vector.S */
14 extern void vaddfp(vector128
*dst
, vector128
*a
, vector128
*b
);
15 extern void vsubfp(vector128
*dst
, vector128
*a
, vector128
*b
);
16 extern void vmaddfp(vector128
*dst
, vector128
*a
, vector128
*b
, vector128
*c
);
17 extern void vnmsubfp(vector128
*dst
, vector128
*a
, vector128
*b
, vector128
*c
);
18 extern void vrefp(vector128
*dst
, vector128
*src
);
19 extern void vrsqrtefp(vector128
*dst
, vector128
*src
);
20 extern void vexptep(vector128
*dst
, vector128
*src
);
22 static unsigned int exp2s
[8] = {
34 * Computes an estimate of 2^x. The `s' argument is the 32-bit
35 * single-precision floating-point representation of x.
37 static unsigned int eexp2(unsigned int s
)
40 unsigned int mant
, frac
;
42 /* extract exponent field from input */
43 exp
= ((s
>> 23) & 0xff) - 127;
45 /* check for NaN input */
46 if (exp
== 128 && (s
& 0x7fffff) != 0)
47 return s
| 0x400000; /* return QNaN */
48 /* 2^-big = 0, 2^+big = +Inf */
49 return (s
& 0x80000000)? 0: 0x7f800000; /* 0 or +Inf */
52 return 0x3f800000; /* 1.0 */
54 /* convert to fixed point integer in 9.23 representation */
55 pwr
= (s
& 0x7fffff) | 0x800000;
63 /* extract integer part, which becomes exponent part of result */
64 exp
= (pwr
>> 23) + 126;
70 /* table lookup on top 3 bits of fraction to get mantissa */
71 mant
= exp2s
[(pwr
>> 20) & 7];
73 /* linear interpolation using remaining 20 bits of fraction */
74 asm("mulhwu %0,%1,%2" : "=r" (frac
)
75 : "r" (pwr
<< 12), "r" (0x172b83ff));
76 asm("mulhwu %0,%1,%2" : "=r" (frac
) : "r" (frac
), "r" (mant
));
80 return mant
+ (exp
<< 23);
82 /* denormalized result */
84 mant
+= 1 << (exp
- 1);
89 * Computes an estimate of log_2(x). The `s' argument is the 32-bit
90 * single-precision floating-point representation of x.
92 static unsigned int elog2(unsigned int s
)
94 int exp
, mant
, lz
, frac
;
98 if (exp
== 0x7f800000) { /* Inf or NaN */
100 s
|= 0x400000; /* turn NaN into QNaN */
103 if ((exp
| mant
) == 0) /* +0 or -0 */
104 return 0xff800000; /* return -Inf */
108 asm("cntlzw %0,%1" : "=r" (lz
) : "r" (mant
));
110 exp
= (-118 - lz
) << 23;
116 if (mant
>= 0xb504f3) { /* 2^0.5 * 2^23 */
117 exp
|= 0x400000; /* 0.5 * 2^23 */
118 asm("mulhwu %0,%1,%2" : "=r" (mant
)
119 : "r" (mant
), "r" (0xb504f334)); /* 2^-0.5 * 2^32 */
121 if (mant
>= 0x9837f0) { /* 2^0.25 * 2^23 */
122 exp
|= 0x200000; /* 0.25 * 2^23 */
123 asm("mulhwu %0,%1,%2" : "=r" (mant
)
124 : "r" (mant
), "r" (0xd744fccb)); /* 2^-0.25 * 2^32 */
126 if (mant
>= 0x8b95c2) { /* 2^0.125 * 2^23 */
127 exp
|= 0x100000; /* 0.125 * 2^23 */
128 asm("mulhwu %0,%1,%2" : "=r" (mant
)
129 : "r" (mant
), "r" (0xeac0c6e8)); /* 2^-0.125 * 2^32 */
131 if (mant
> 0x800000) { /* 1.0 * 2^23 */
132 /* calculate (mant - 1) * 1.381097463 */
133 /* 1.381097463 == 0.125 / (2^0.125 - 1) */
134 asm("mulhwu %0,%1,%2" : "=r" (frac
)
135 : "r" ((mant
- 0x800000) << 1), "r" (0xb0c7cd3a));
138 s
= exp
& 0x80000000;
142 asm("cntlzw %0,%1" : "=r" (lz
) : "r" (exp
));
148 s
+= ((lz
+ 126) << 23) + exp
;
155 static int ctsxs(unsigned int x
, int scale
, unsigned int *vscrp
)
159 exp
= (x
>> 23) & 0xff;
161 if (exp
== 255 && mant
!= 0)
162 return 0; /* NaN -> 0 */
163 exp
= exp
- 127 + scale
;
165 return 0; /* round towards zero */
167 /* saturate, unless the result would be -2^31 */
168 if (x
+ (scale
<< 23) != 0xcf000000)
170 return (x
& 0x80000000)? 0x80000000: 0x7fffffff;
173 mant
= (mant
<< 7) >> (30 - exp
);
174 return (x
& 0x80000000)? -mant
: mant
;
177 static unsigned int ctuxs(unsigned int x
, int scale
, unsigned int *vscrp
)
182 exp
= (x
>> 23) & 0xff;
184 if (exp
== 255 && mant
!= 0)
185 return 0; /* NaN -> 0 */
186 exp
= exp
- 127 + scale
;
188 return 0; /* round towards zero */
189 if (x
& 0x80000000) {
190 /* negative => saturate to 0 */
200 mant
= (mant
<< 8) >> (31 - exp
);
204 /* Round to floating integer, towards 0 */
205 static unsigned int rfiz(unsigned int x
)
209 exp
= ((x
>> 23) & 0xff) - 127;
210 if (exp
== 128 && (x
& 0x7fffff) != 0)
211 return x
| 0x400000; /* NaN -> make it a QNaN */
213 return x
; /* it's an integer already (or Inf) */
215 return x
& 0x80000000; /* |x| < 1.0 rounds to 0 */
216 return x
& ~(0x7fffff >> exp
);
219 /* Round to floating integer, towards +/- Inf */
220 static unsigned int rfii(unsigned int x
)
224 exp
= ((x
>> 23) & 0xff) - 127;
225 if (exp
== 128 && (x
& 0x7fffff) != 0)
226 return x
| 0x400000; /* NaN -> make it a QNaN */
228 return x
; /* it's an integer already (or Inf) */
229 if ((x
& 0x7fffffff) == 0)
230 return x
; /* +/-0 -> +/-0 */
232 /* 0 < |x| < 1.0 rounds to +/- 1.0 */
233 return (x
& 0x80000000) | 0x3f800000;
234 mask
= 0x7fffff >> exp
;
235 /* mantissa overflows into exponent - that's OK,
236 it can't overflow into the sign bit */
237 return (x
+ mask
) & ~mask
;
240 /* Round to floating integer, to nearest */
241 static unsigned int rfin(unsigned int x
)
245 exp
= ((x
>> 23) & 0xff) - 127;
246 if (exp
== 128 && (x
& 0x7fffff) != 0)
247 return x
| 0x400000; /* NaN -> make it a QNaN */
249 return x
; /* it's an integer already (or Inf) */
251 return x
& 0x80000000; /* |x| < 0.5 -> +/-0 */
253 /* 0.5 <= |x| < 1.0 rounds to +/- 1.0 */
254 return (x
& 0x80000000) | 0x3f800000;
255 half
= 0x400000 >> exp
;
256 /* add 0.5 to the magnitude and chop off the fraction bits */
257 return (x
+ half
) & ~(0x7fffff >> exp
);
260 int emulate_altivec(struct pt_regs
*regs
)
262 unsigned int instr
, i
;
263 unsigned int va
, vb
, vc
, vd
;
266 if (get_user(instr
, (unsigned int __user
*) regs
->nip
))
268 if ((instr
>> 26) != 4)
269 return -EINVAL
; /* not an altivec instruction */
270 vd
= (instr
>> 21) & 0x1f;
271 va
= (instr
>> 16) & 0x1f;
272 vb
= (instr
>> 11) & 0x1f;
273 vc
= (instr
>> 6) & 0x1f;
275 vrs
= current
->thread
.vr_state
.vr
;
276 switch (instr
& 0x3f) {
280 vaddfp(&vrs
[vd
], &vrs
[va
], &vrs
[vb
]);
283 vsubfp(&vrs
[vd
], &vrs
[va
], &vrs
[vb
]);
286 vrefp(&vrs
[vd
], &vrs
[vb
]);
288 case 5: /* vrsqrtefp */
289 vrsqrtefp(&vrs
[vd
], &vrs
[vb
]);
291 case 6: /* vexptefp */
292 for (i
= 0; i
< 4; ++i
)
293 vrs
[vd
].u
[i
] = eexp2(vrs
[vb
].u
[i
]);
295 case 7: /* vlogefp */
296 for (i
= 0; i
< 4; ++i
)
297 vrs
[vd
].u
[i
] = elog2(vrs
[vb
].u
[i
]);
300 for (i
= 0; i
< 4; ++i
)
301 vrs
[vd
].u
[i
] = rfin(vrs
[vb
].u
[i
]);
304 for (i
= 0; i
< 4; ++i
)
305 vrs
[vd
].u
[i
] = rfiz(vrs
[vb
].u
[i
]);
308 for (i
= 0; i
< 4; ++i
) {
309 u32 x
= vrs
[vb
].u
[i
];
310 x
= (x
& 0x80000000)? rfiz(x
): rfii(x
);
315 for (i
= 0; i
< 4; ++i
) {
316 u32 x
= vrs
[vb
].u
[i
];
317 x
= (x
& 0x80000000)? rfii(x
): rfiz(x
);
321 case 14: /* vctuxs */
322 for (i
= 0; i
< 4; ++i
)
323 vrs
[vd
].u
[i
] = ctuxs(vrs
[vb
].u
[i
], va
,
324 ¤t
->thread
.vr_state
.vscr
.u
[3]);
326 case 15: /* vctsxs */
327 for (i
= 0; i
< 4; ++i
)
328 vrs
[vd
].u
[i
] = ctsxs(vrs
[vb
].u
[i
], va
,
329 ¤t
->thread
.vr_state
.vscr
.u
[3]);
335 case 46: /* vmaddfp */
336 vmaddfp(&vrs
[vd
], &vrs
[va
], &vrs
[vb
], &vrs
[vc
]);
338 case 47: /* vnmsubfp */
339 vnmsubfp(&vrs
[vd
], &vrs
[va
], &vrs
[vb
], &vrs
[vc
]);