2 * Copyright (C) 2008-2013 Freescale Semiconductor, Inc. All rights reserved.
4 * Author: Yu Liu, yu.liu@freescale.com
5 * Scott Wood, scottwood@freescale.com
6 * Ashish Kalra, ashish.kalra@freescale.com
7 * Varun Sethi, varun.sethi@freescale.com
8 * Alexander Graf, agraf@suse.de
11 * This file is based on arch/powerpc/kvm/44x_tlb.c,
12 * by Hollis Blanchard <hollisb@us.ibm.com>.
14 * This program is free software; you can redistribute it and/or modify
15 * it under the terms of the GNU General Public License, version 2, as
16 * published by the Free Software Foundation.
19 #include <linux/kernel.h>
20 #include <linux/types.h>
21 #include <linux/slab.h>
22 #include <linux/string.h>
23 #include <linux/kvm.h>
24 #include <linux/kvm_host.h>
25 #include <linux/highmem.h>
26 #include <linux/log2.h>
27 #include <linux/uaccess.h>
28 #include <linux/sched/mm.h>
29 #include <linux/rwsem.h>
30 #include <linux/vmalloc.h>
31 #include <linux/hugetlb.h>
32 #include <asm/kvm_ppc.h>
33 #include <asm/pte-walk.h>
37 #include "e500_mmu_host.h"
39 #include "trace_booke.h"
41 #define to_htlb1_esel(esel) (host_tlb_params[1].entries - (esel) - 1)
43 static struct kvmppc_e500_tlb_params host_tlb_params
[E500_TLB_NUM
];
45 static inline unsigned int tlb1_max_shadow_size(void)
47 /* reserve one entry for magic page */
48 return host_tlb_params
[1].entries
- tlbcam_index
- 1;
51 static inline u32
e500_shadow_mas3_attrib(u32 mas3
, int usermode
)
53 /* Mask off reserved bits. */
54 mas3
&= MAS3_ATTRIB_MASK
;
56 #ifndef CONFIG_KVM_BOOKE_HV
58 /* Guest is in supervisor mode,
59 * so we need to translate guest
60 * supervisor permissions into user permissions. */
61 mas3
&= ~E500_TLB_USER_PERM_MASK
;
62 mas3
|= (mas3
& E500_TLB_SUPER_PERM_MASK
) << 1;
64 mas3
|= E500_TLB_SUPER_PERM_MASK
;
70 * writing shadow tlb entry to host TLB
72 static inline void __write_host_tlbe(struct kvm_book3e_206_tlb_entry
*stlbe
,
78 local_irq_save(flags
);
79 mtspr(SPRN_MAS0
, mas0
);
80 mtspr(SPRN_MAS1
, stlbe
->mas1
);
81 mtspr(SPRN_MAS2
, (unsigned long)stlbe
->mas2
);
82 mtspr(SPRN_MAS3
, (u32
)stlbe
->mas7_3
);
83 mtspr(SPRN_MAS7
, (u32
)(stlbe
->mas7_3
>> 32));
84 #ifdef CONFIG_KVM_BOOKE_HV
85 mtspr(SPRN_MAS8
, MAS8_TGS
| get_thread_specific_lpid(lpid
));
87 asm volatile("isync; tlbwe" : : : "memory");
89 #ifdef CONFIG_KVM_BOOKE_HV
90 /* Must clear mas8 for other host tlbwe's */
94 local_irq_restore(flags
);
96 trace_kvm_booke206_stlb_write(mas0
, stlbe
->mas8
, stlbe
->mas1
,
97 stlbe
->mas2
, stlbe
->mas7_3
);
101 * Acquire a mas0 with victim hint, as if we just took a TLB miss.
103 * We don't care about the address we're searching for, other than that it's
104 * in the right set and is not present in the TLB. Using a zero PID and a
105 * userspace address means we don't have to set and then restore MAS5, or
106 * calculate a proper MAS6 value.
108 static u32
get_host_mas0(unsigned long eaddr
)
114 local_irq_save(flags
);
116 mas4
= mfspr(SPRN_MAS4
);
117 mtspr(SPRN_MAS4
, mas4
& ~MAS4_TLBSEL_MASK
);
118 asm volatile("tlbsx 0, %0" : : "b" (eaddr
& ~CONFIG_PAGE_OFFSET
));
119 mas0
= mfspr(SPRN_MAS0
);
120 mtspr(SPRN_MAS4
, mas4
);
121 local_irq_restore(flags
);
126 /* sesel is for tlb1 only */
127 static inline void write_host_tlbe(struct kvmppc_vcpu_e500
*vcpu_e500
,
128 int tlbsel
, int sesel
, struct kvm_book3e_206_tlb_entry
*stlbe
)
133 mas0
= get_host_mas0(stlbe
->mas2
);
134 __write_host_tlbe(stlbe
, mas0
, vcpu_e500
->vcpu
.kvm
->arch
.lpid
);
136 __write_host_tlbe(stlbe
,
138 MAS0_ESEL(to_htlb1_esel(sesel
)),
139 vcpu_e500
->vcpu
.kvm
->arch
.lpid
);
143 /* sesel is for tlb1 only */
144 static void write_stlbe(struct kvmppc_vcpu_e500
*vcpu_e500
,
145 struct kvm_book3e_206_tlb_entry
*gtlbe
,
146 struct kvm_book3e_206_tlb_entry
*stlbe
,
147 int stlbsel
, int sesel
)
152 stid
= kvmppc_e500_get_tlb_stid(&vcpu_e500
->vcpu
, gtlbe
);
154 stlbe
->mas1
|= MAS1_TID(stid
);
155 write_host_tlbe(vcpu_e500
, stlbsel
, sesel
, stlbe
);
159 #ifdef CONFIG_KVM_E500V2
160 /* XXX should be a hook in the gva2hpa translation */
161 void kvmppc_map_magic(struct kvm_vcpu
*vcpu
)
163 struct kvmppc_vcpu_e500
*vcpu_e500
= to_e500(vcpu
);
164 struct kvm_book3e_206_tlb_entry magic
;
165 ulong shared_page
= ((ulong
)vcpu
->arch
.shared
) & PAGE_MASK
;
169 pfn
= (kvm_pfn_t
)virt_to_phys((void *)shared_page
) >> PAGE_SHIFT
;
170 get_page(pfn_to_page(pfn
));
173 stid
= kvmppc_e500_get_sid(vcpu_e500
, 0, 0, 0, 0);
175 magic
.mas1
= MAS1_VALID
| MAS1_TS
| MAS1_TID(stid
) |
176 MAS1_TSIZE(BOOK3E_PAGESZ_4K
);
177 magic
.mas2
= vcpu
->arch
.magic_page_ea
| MAS2_M
;
178 magic
.mas7_3
= ((u64
)pfn
<< PAGE_SHIFT
) |
179 MAS3_SW
| MAS3_SR
| MAS3_UW
| MAS3_UR
;
182 __write_host_tlbe(&magic
, MAS0_TLBSEL(1) | MAS0_ESEL(tlbcam_index
), 0);
187 void inval_gtlbe_on_host(struct kvmppc_vcpu_e500
*vcpu_e500
, int tlbsel
,
190 struct kvm_book3e_206_tlb_entry
*gtlbe
=
191 get_entry(vcpu_e500
, tlbsel
, esel
);
192 struct tlbe_ref
*ref
= &vcpu_e500
->gtlb_priv
[tlbsel
][esel
].ref
;
194 /* Don't bother with unmapped entries */
195 if (!(ref
->flags
& E500_TLB_VALID
)) {
196 WARN(ref
->flags
& (E500_TLB_BITMAP
| E500_TLB_TLB0
),
197 "%s: flags %x\n", __func__
, ref
->flags
);
198 WARN_ON(tlbsel
== 1 && vcpu_e500
->g2h_tlb1_map
[esel
]);
201 if (tlbsel
== 1 && ref
->flags
& E500_TLB_BITMAP
) {
202 u64 tmp
= vcpu_e500
->g2h_tlb1_map
[esel
];
206 local_irq_save(flags
);
208 hw_tlb_indx
= __ilog2_u64(tmp
& -tmp
);
211 MAS0_ESEL(to_htlb1_esel(hw_tlb_indx
)));
213 asm volatile("tlbwe");
214 vcpu_e500
->h2g_tlb1_rmap
[hw_tlb_indx
] = 0;
218 vcpu_e500
->g2h_tlb1_map
[esel
] = 0;
219 ref
->flags
&= ~(E500_TLB_BITMAP
| E500_TLB_VALID
);
220 local_irq_restore(flags
);
223 if (tlbsel
== 1 && ref
->flags
& E500_TLB_TLB0
) {
225 * TLB1 entry is backed by 4k pages. This should happen
226 * rarely and is not worth optimizing. Invalidate everything.
228 kvmppc_e500_tlbil_all(vcpu_e500
);
229 ref
->flags
&= ~(E500_TLB_TLB0
| E500_TLB_VALID
);
233 * If TLB entry is still valid then it's a TLB0 entry, and thus
234 * backed by at most one host tlbe per shadow pid
236 if (ref
->flags
& E500_TLB_VALID
)
237 kvmppc_e500_tlbil_one(vcpu_e500
, gtlbe
);
239 /* Mark the TLB as not backed by the host anymore */
243 static inline int tlbe_is_writable(struct kvm_book3e_206_tlb_entry
*tlbe
)
245 return tlbe
->mas7_3
& (MAS3_SW
|MAS3_UW
);
248 static inline void kvmppc_e500_ref_setup(struct tlbe_ref
*ref
,
249 struct kvm_book3e_206_tlb_entry
*gtlbe
,
250 kvm_pfn_t pfn
, unsigned int wimg
)
253 ref
->flags
= E500_TLB_VALID
;
255 /* Use guest supplied MAS2_G and MAS2_E */
256 ref
->flags
|= (gtlbe
->mas2
& MAS2_ATTRIB_MASK
) | wimg
;
258 /* Mark the page accessed */
259 kvm_set_pfn_accessed(pfn
);
261 if (tlbe_is_writable(gtlbe
))
262 kvm_set_pfn_dirty(pfn
);
265 static inline void kvmppc_e500_ref_release(struct tlbe_ref
*ref
)
267 if (ref
->flags
& E500_TLB_VALID
) {
268 /* FIXME: don't log bogus pfn for TLB1 */
269 trace_kvm_booke206_ref_release(ref
->pfn
, ref
->flags
);
274 static void clear_tlb1_bitmap(struct kvmppc_vcpu_e500
*vcpu_e500
)
276 if (vcpu_e500
->g2h_tlb1_map
)
277 memset(vcpu_e500
->g2h_tlb1_map
, 0,
278 sizeof(u64
) * vcpu_e500
->gtlb_params
[1].entries
);
279 if (vcpu_e500
->h2g_tlb1_rmap
)
280 memset(vcpu_e500
->h2g_tlb1_rmap
, 0,
281 sizeof(unsigned int) * host_tlb_params
[1].entries
);
284 static void clear_tlb_privs(struct kvmppc_vcpu_e500
*vcpu_e500
)
289 for (tlbsel
= 0; tlbsel
<= 1; tlbsel
++) {
290 for (i
= 0; i
< vcpu_e500
->gtlb_params
[tlbsel
].entries
; i
++) {
291 struct tlbe_ref
*ref
=
292 &vcpu_e500
->gtlb_priv
[tlbsel
][i
].ref
;
293 kvmppc_e500_ref_release(ref
);
298 void kvmppc_core_flush_tlb(struct kvm_vcpu
*vcpu
)
300 struct kvmppc_vcpu_e500
*vcpu_e500
= to_e500(vcpu
);
301 kvmppc_e500_tlbil_all(vcpu_e500
);
302 clear_tlb_privs(vcpu_e500
);
303 clear_tlb1_bitmap(vcpu_e500
);
306 /* TID must be supplied by the caller */
307 static void kvmppc_e500_setup_stlbe(
308 struct kvm_vcpu
*vcpu
,
309 struct kvm_book3e_206_tlb_entry
*gtlbe
,
310 int tsize
, struct tlbe_ref
*ref
, u64 gvaddr
,
311 struct kvm_book3e_206_tlb_entry
*stlbe
)
313 kvm_pfn_t pfn
= ref
->pfn
;
314 u32 pr
= vcpu
->arch
.shared
->msr
& MSR_PR
;
316 BUG_ON(!(ref
->flags
& E500_TLB_VALID
));
318 /* Force IPROT=0 for all guest mappings. */
319 stlbe
->mas1
= MAS1_TSIZE(tsize
) | get_tlb_sts(gtlbe
) | MAS1_VALID
;
320 stlbe
->mas2
= (gvaddr
& MAS2_EPN
) | (ref
->flags
& E500_TLB_MAS2_ATTR
);
321 stlbe
->mas7_3
= ((u64
)pfn
<< PAGE_SHIFT
) |
322 e500_shadow_mas3_attrib(gtlbe
->mas7_3
, pr
);
325 static inline int kvmppc_e500_shadow_map(struct kvmppc_vcpu_e500
*vcpu_e500
,
326 u64 gvaddr
, gfn_t gfn
, struct kvm_book3e_206_tlb_entry
*gtlbe
,
327 int tlbsel
, struct kvm_book3e_206_tlb_entry
*stlbe
,
328 struct tlbe_ref
*ref
)
330 struct kvm_memory_slot
*slot
;
331 unsigned long pfn
= 0; /* silence GCC warning */
334 int tsize
= BOOK3E_PAGESZ_4K
;
336 unsigned long mmu_seq
;
337 struct kvm
*kvm
= vcpu_e500
->vcpu
.kvm
;
338 unsigned long tsize_pages
= 0;
340 unsigned int wimg
= 0;
344 /* used to check for invalidations in progress */
345 mmu_seq
= kvm
->mmu_notifier_seq
;
349 * Translate guest physical to true physical, acquiring
350 * a page reference if it is normal, non-reserved memory.
352 * gfn_to_memslot() must succeed because otherwise we wouldn't
353 * have gotten this far. Eventually we should just pass the slot
354 * pointer through from the first lookup.
356 slot
= gfn_to_memslot(vcpu_e500
->vcpu
.kvm
, gfn
);
357 hva
= gfn_to_hva_memslot(slot
, gfn
);
360 struct vm_area_struct
*vma
;
361 down_read(¤t
->mm
->mmap_sem
);
363 vma
= find_vma(current
->mm
, hva
);
364 if (vma
&& hva
>= vma
->vm_start
&&
365 (vma
->vm_flags
& VM_PFNMAP
)) {
367 * This VMA is a physically contiguous region (e.g.
368 * /dev/mem) that bypasses normal Linux page
369 * management. Find the overlap between the
370 * vma and the memslot.
373 unsigned long start
, end
;
374 unsigned long slot_start
, slot_end
;
378 start
= vma
->vm_pgoff
;
382 pfn
= start
+ ((hva
- vma
->vm_start
) >> PAGE_SHIFT
);
384 slot_start
= pfn
- (gfn
- slot
->base_gfn
);
385 slot_end
= slot_start
+ slot
->npages
;
387 if (start
< slot_start
)
392 tsize
= (gtlbe
->mas1
& MAS1_TSIZE_MASK
) >>
396 * e500 doesn't implement the lowest tsize bit,
399 tsize
= max(BOOK3E_PAGESZ_4K
, tsize
& ~1);
402 * Now find the largest tsize (up to what the guest
403 * requested) that will cover gfn, stay within the
404 * range, and for which gfn and pfn are mutually
408 for (; tsize
> BOOK3E_PAGESZ_4K
; tsize
-= 2) {
409 unsigned long gfn_start
, gfn_end
;
410 tsize_pages
= 1UL << (tsize
- 2);
412 gfn_start
= gfn
& ~(tsize_pages
- 1);
413 gfn_end
= gfn_start
+ tsize_pages
;
415 if (gfn_start
+ pfn
- gfn
< start
)
417 if (gfn_end
+ pfn
- gfn
> end
)
419 if ((gfn
& (tsize_pages
- 1)) !=
420 (pfn
& (tsize_pages
- 1)))
423 gvaddr
&= ~((tsize_pages
<< PAGE_SHIFT
) - 1);
424 pfn
&= ~(tsize_pages
- 1);
427 } else if (vma
&& hva
>= vma
->vm_start
&&
428 (vma
->vm_flags
& VM_HUGETLB
)) {
429 unsigned long psize
= vma_kernel_pagesize(vma
);
431 tsize
= (gtlbe
->mas1
& MAS1_TSIZE_MASK
) >>
435 * Take the largest page size that satisfies both host
438 tsize
= min(__ilog2(psize
) - 10, tsize
);
441 * e500 doesn't implement the lowest tsize bit,
444 tsize
= max(BOOK3E_PAGESZ_4K
, tsize
& ~1);
447 up_read(¤t
->mm
->mmap_sem
);
450 if (likely(!pfnmap
)) {
451 tsize_pages
= 1UL << (tsize
+ 10 - PAGE_SHIFT
);
452 pfn
= gfn_to_pfn_memslot(slot
, gfn
);
453 if (is_error_noslot_pfn(pfn
)) {
454 if (printk_ratelimit())
455 pr_err("%s: real page not found for gfn %lx\n",
456 __func__
, (long)gfn
);
460 /* Align guest and physical address to page map boundaries */
461 pfn
&= ~(tsize_pages
- 1);
462 gvaddr
&= ~((tsize_pages
<< PAGE_SHIFT
) - 1);
465 spin_lock(&kvm
->mmu_lock
);
466 if (mmu_notifier_retry(kvm
, mmu_seq
)) {
472 pgdir
= vcpu_e500
->vcpu
.arch
.pgdir
;
474 * We are just looking at the wimg bits, so we don't
475 * care much about the trans splitting bit.
476 * We are holding kvm->mmu_lock so a notifier invalidate
477 * can't run hence pfn won't change.
479 local_irq_save(flags
);
480 ptep
= find_linux_pte(pgdir
, hva
, NULL
, NULL
);
482 pte_t pte
= READ_ONCE(*ptep
);
484 if (pte_present(pte
)) {
485 wimg
= (pte_val(pte
) >> PTE_WIMGE_SHIFT
) &
487 local_irq_restore(flags
);
489 local_irq_restore(flags
);
490 pr_err_ratelimited("%s: pte not present: gfn %lx,pfn %lx\n",
491 __func__
, (long)gfn
, pfn
);
496 kvmppc_e500_ref_setup(ref
, gtlbe
, pfn
, wimg
);
498 kvmppc_e500_setup_stlbe(&vcpu_e500
->vcpu
, gtlbe
, tsize
,
501 /* Clear i-cache for new pages */
502 kvmppc_mmu_flush_icache(pfn
);
505 spin_unlock(&kvm
->mmu_lock
);
507 /* Drop refcount on page, so that mmu notifiers can clear it */
508 kvm_release_pfn_clean(pfn
);
513 /* XXX only map the one-one case, for now use TLB0 */
514 static int kvmppc_e500_tlb0_map(struct kvmppc_vcpu_e500
*vcpu_e500
, int esel
,
515 struct kvm_book3e_206_tlb_entry
*stlbe
)
517 struct kvm_book3e_206_tlb_entry
*gtlbe
;
518 struct tlbe_ref
*ref
;
523 gtlbe
= get_entry(vcpu_e500
, 0, esel
);
524 ref
= &vcpu_e500
->gtlb_priv
[0][esel
].ref
;
526 r
= kvmppc_e500_shadow_map(vcpu_e500
, get_tlb_eaddr(gtlbe
),
527 get_tlb_raddr(gtlbe
) >> PAGE_SHIFT
,
528 gtlbe
, 0, stlbe
, ref
);
532 write_stlbe(vcpu_e500
, gtlbe
, stlbe
, stlbsel
, sesel
);
537 static int kvmppc_e500_tlb1_map_tlb1(struct kvmppc_vcpu_e500
*vcpu_e500
,
538 struct tlbe_ref
*ref
,
541 unsigned int sesel
= vcpu_e500
->host_tlb1_nv
++;
543 if (unlikely(vcpu_e500
->host_tlb1_nv
>= tlb1_max_shadow_size()))
544 vcpu_e500
->host_tlb1_nv
= 0;
546 if (vcpu_e500
->h2g_tlb1_rmap
[sesel
]) {
547 unsigned int idx
= vcpu_e500
->h2g_tlb1_rmap
[sesel
] - 1;
548 vcpu_e500
->g2h_tlb1_map
[idx
] &= ~(1ULL << sesel
);
551 vcpu_e500
->gtlb_priv
[1][esel
].ref
.flags
|= E500_TLB_BITMAP
;
552 vcpu_e500
->g2h_tlb1_map
[esel
] |= (u64
)1 << sesel
;
553 vcpu_e500
->h2g_tlb1_rmap
[sesel
] = esel
+ 1;
554 WARN_ON(!(ref
->flags
& E500_TLB_VALID
));
559 /* Caller must ensure that the specified guest TLB entry is safe to insert into
561 /* For both one-one and one-to-many */
562 static int kvmppc_e500_tlb1_map(struct kvmppc_vcpu_e500
*vcpu_e500
,
563 u64 gvaddr
, gfn_t gfn
, struct kvm_book3e_206_tlb_entry
*gtlbe
,
564 struct kvm_book3e_206_tlb_entry
*stlbe
, int esel
)
566 struct tlbe_ref
*ref
= &vcpu_e500
->gtlb_priv
[1][esel
].ref
;
570 r
= kvmppc_e500_shadow_map(vcpu_e500
, gvaddr
, gfn
, gtlbe
, 1, stlbe
,
575 /* Use TLB0 when we can only map a page with 4k */
576 if (get_tlb_tsize(stlbe
) == BOOK3E_PAGESZ_4K
) {
577 vcpu_e500
->gtlb_priv
[1][esel
].ref
.flags
|= E500_TLB_TLB0
;
578 write_stlbe(vcpu_e500
, gtlbe
, stlbe
, 0, 0);
582 /* Otherwise map into TLB1 */
583 sesel
= kvmppc_e500_tlb1_map_tlb1(vcpu_e500
, ref
, esel
);
584 write_stlbe(vcpu_e500
, gtlbe
, stlbe
, 1, sesel
);
589 void kvmppc_mmu_map(struct kvm_vcpu
*vcpu
, u64 eaddr
, gpa_t gpaddr
,
592 struct kvmppc_vcpu_e500
*vcpu_e500
= to_e500(vcpu
);
593 struct tlbe_priv
*priv
;
594 struct kvm_book3e_206_tlb_entry
*gtlbe
, stlbe
;
595 int tlbsel
= tlbsel_of(index
);
596 int esel
= esel_of(index
);
598 gtlbe
= get_entry(vcpu_e500
, tlbsel
, esel
);
602 priv
= &vcpu_e500
->gtlb_priv
[tlbsel
][esel
];
604 /* Triggers after clear_tlb_privs or on initial mapping */
605 if (!(priv
->ref
.flags
& E500_TLB_VALID
)) {
606 kvmppc_e500_tlb0_map(vcpu_e500
, esel
, &stlbe
);
608 kvmppc_e500_setup_stlbe(vcpu
, gtlbe
, BOOK3E_PAGESZ_4K
,
609 &priv
->ref
, eaddr
, &stlbe
);
610 write_stlbe(vcpu_e500
, gtlbe
, &stlbe
, 0, 0);
615 gfn_t gfn
= gpaddr
>> PAGE_SHIFT
;
616 kvmppc_e500_tlb1_map(vcpu_e500
, eaddr
, gfn
, gtlbe
, &stlbe
,
627 #ifdef CONFIG_KVM_BOOKE_HV
628 int kvmppc_load_last_inst(struct kvm_vcpu
*vcpu
, enum instruction_type type
,
635 u32 mas1
, mas2
, mas3
;
638 unsigned int addr_space
, psize_shift
;
642 /* Search TLB for guest pc to get the real address */
643 geaddr
= kvmppc_get_pc(vcpu
);
645 addr_space
= (vcpu
->arch
.shared
->msr
& MSR_IS
) >> MSR_IR_LG
;
647 local_irq_save(flags
);
648 mtspr(SPRN_MAS6
, (vcpu
->arch
.pid
<< MAS6_SPID_SHIFT
) | addr_space
);
649 mtspr(SPRN_MAS5
, MAS5_SGS
| get_lpid(vcpu
));
650 asm volatile("tlbsx 0, %[geaddr]\n" : :
651 [geaddr
] "r" (geaddr
));
654 mas1
= mfspr(SPRN_MAS1
);
655 mas2
= mfspr(SPRN_MAS2
);
656 mas3
= mfspr(SPRN_MAS3
);
658 mas7_mas3
= mfspr(SPRN_MAS7_MAS3
);
660 mas7_mas3
= ((u64
)mfspr(SPRN_MAS7
) << 32) | mas3
;
662 local_irq_restore(flags
);
665 * If the TLB entry for guest pc was evicted, return to the guest.
666 * There are high chances to find a valid TLB entry next time.
668 if (!(mas1
& MAS1_VALID
))
669 return EMULATE_AGAIN
;
672 * Another thread may rewrite the TLB entry in parallel, don't
673 * execute from the address if the execute permission is not set
675 pr
= vcpu
->arch
.shared
->msr
& MSR_PR
;
676 if (unlikely((pr
&& !(mas3
& MAS3_UX
)) ||
677 (!pr
&& !(mas3
& MAS3_SX
)))) {
679 "%s: Instruction emulation from guest address %08lx without execute permission\n",
681 return EMULATE_AGAIN
;
685 * The real address will be mapped by a cacheable, memory coherent,
686 * write-back page. Check for mismatches when LRAT is used.
688 if (has_feature(vcpu
, VCPU_FTR_MMU_V2
) &&
689 unlikely((mas2
& MAS2_I
) || (mas2
& MAS2_W
) || !(mas2
& MAS2_M
))) {
691 "%s: Instruction emulation from guest address %08lx mismatches storage attributes\n",
693 return EMULATE_AGAIN
;
697 psize_shift
= MAS1_GET_TSIZE(mas1
) + 10;
698 addr
= (mas7_mas3
& (~0ULL << psize_shift
)) |
699 (geaddr
& ((1ULL << psize_shift
) - 1ULL));
700 pfn
= addr
>> PAGE_SHIFT
;
702 /* Guard against emulation from devices area */
703 if (unlikely(!page_is_ram(pfn
))) {
704 pr_err_ratelimited("%s: Instruction emulation from non-RAM host address %08llx is not supported\n",
706 return EMULATE_AGAIN
;
709 /* Map a page and get guest's instruction */
710 page
= pfn_to_page(pfn
);
711 eaddr
= (unsigned long)kmap_atomic(page
);
712 *instr
= *(u32
*)(eaddr
| (unsigned long)(addr
& ~PAGE_MASK
));
713 kunmap_atomic((u32
*)eaddr
);
718 int kvmppc_load_last_inst(struct kvm_vcpu
*vcpu
, enum instruction_type type
,
721 return EMULATE_AGAIN
;
725 /************* MMU Notifiers *************/
727 int kvm_unmap_hva(struct kvm
*kvm
, unsigned long hva
)
729 trace_kvm_unmap_hva(hva
);
732 * Flush all shadow tlb entries everywhere. This is slow, but
733 * we are 100% sure that we catch the to be unmapped page
735 kvm_flush_remote_tlbs(kvm
);
740 int kvm_unmap_hva_range(struct kvm
*kvm
, unsigned long start
, unsigned long end
)
742 /* kvm_unmap_hva flushes everything anyways */
743 kvm_unmap_hva(kvm
, start
);
748 int kvm_age_hva(struct kvm
*kvm
, unsigned long start
, unsigned long end
)
750 /* XXX could be more clever ;) */
754 int kvm_test_age_hva(struct kvm
*kvm
, unsigned long hva
)
756 /* XXX could be more clever ;) */
760 void kvm_set_spte_hva(struct kvm
*kvm
, unsigned long hva
, pte_t pte
)
762 /* The page will get remapped properly on its next fault */
763 kvm_unmap_hva(kvm
, hva
);
766 /*****************************************/
768 int e500_mmu_host_init(struct kvmppc_vcpu_e500
*vcpu_e500
)
770 host_tlb_params
[0].entries
= mfspr(SPRN_TLB0CFG
) & TLBnCFG_N_ENTRY
;
771 host_tlb_params
[1].entries
= mfspr(SPRN_TLB1CFG
) & TLBnCFG_N_ENTRY
;
774 * This should never happen on real e500 hardware, but is
775 * architecturally possible -- e.g. in some weird nested
776 * virtualization case.
778 if (host_tlb_params
[0].entries
== 0 ||
779 host_tlb_params
[1].entries
== 0) {
780 pr_err("%s: need to know host tlb size\n", __func__
);
784 host_tlb_params
[0].ways
= (mfspr(SPRN_TLB0CFG
) & TLBnCFG_ASSOC
) >>
786 host_tlb_params
[1].ways
= host_tlb_params
[1].entries
;
788 if (!is_power_of_2(host_tlb_params
[0].entries
) ||
789 !is_power_of_2(host_tlb_params
[0].ways
) ||
790 host_tlb_params
[0].entries
< host_tlb_params
[0].ways
||
791 host_tlb_params
[0].ways
== 0) {
792 pr_err("%s: bad tlb0 host config: %u entries %u ways\n",
793 __func__
, host_tlb_params
[0].entries
,
794 host_tlb_params
[0].ways
);
798 host_tlb_params
[0].sets
=
799 host_tlb_params
[0].entries
/ host_tlb_params
[0].ways
;
800 host_tlb_params
[1].sets
= 1;
801 vcpu_e500
->h2g_tlb1_rmap
= kcalloc(host_tlb_params
[1].entries
,
802 sizeof(*vcpu_e500
->h2g_tlb1_rmap
),
804 if (!vcpu_e500
->h2g_tlb1_rmap
)
810 void e500_mmu_host_uninit(struct kvmppc_vcpu_e500
*vcpu_e500
)
812 kfree(vcpu_e500
->h2g_tlb1_rmap
);