3 * Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org)
5 * Derived from "arch/i386/mm/fault.c"
6 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
8 * Modified by Cort Dougan and Paul Mackerras.
10 * Modified for PPC64 by Dave Engebretsen (engebret@ibm.com)
12 * This program is free software; you can redistribute it and/or
13 * modify it under the terms of the GNU General Public License
14 * as published by the Free Software Foundation; either version
15 * 2 of the License, or (at your option) any later version.
18 #include <linux/signal.h>
19 #include <linux/sched.h>
20 #include <linux/sched/task_stack.h>
21 #include <linux/kernel.h>
22 #include <linux/errno.h>
23 #include <linux/string.h>
24 #include <linux/types.h>
25 #include <linux/ptrace.h>
26 #include <linux/mman.h>
28 #include <linux/interrupt.h>
29 #include <linux/highmem.h>
30 #include <linux/extable.h>
31 #include <linux/kprobes.h>
32 #include <linux/kdebug.h>
33 #include <linux/perf_event.h>
34 #include <linux/ratelimit.h>
35 #include <linux/context_tracking.h>
36 #include <linux/hugetlb.h>
37 #include <linux/uaccess.h>
39 #include <asm/firmware.h>
41 #include <asm/pgtable.h>
43 #include <asm/mmu_context.h>
44 #include <asm/tlbflush.h>
45 #include <asm/siginfo.h>
46 #include <asm/debug.h>
48 static inline bool notify_page_fault(struct pt_regs
*regs
)
53 /* kprobe_running() needs smp_processor_id() */
54 if (!user_mode(regs
)) {
56 if (kprobe_running() && kprobe_fault_handler(regs
, 11))
60 #endif /* CONFIG_KPROBES */
62 if (unlikely(debugger_fault_handler(regs
)))
69 * Check whether the instruction at regs->nip is a store using
70 * an update addressing form which will update r1.
72 static bool store_updates_sp(struct pt_regs
*regs
)
76 if (get_user(inst
, (unsigned int __user
*)regs
->nip
))
78 /* check for 1 in the rA field */
79 if (((inst
>> 16) & 0x1f) != 1)
81 /* check major opcode */
89 case 62: /* std or stdu */
90 return (inst
& 3) == 1;
92 /* check minor opcode */
93 switch ((inst
>> 1) & 0x3ff) {
98 case 695: /* stfsux */
99 case 759: /* stfdux */
106 * do_page_fault error handling helpers
110 __bad_area_nosemaphore(struct pt_regs
*regs
, unsigned long address
, int si_code
,
114 * If we are in kernel mode, bail out with a SEGV, this will
115 * be caught by the assembly which will restore the non-volatile
116 * registers before calling bad_page_fault()
118 if (!user_mode(regs
))
121 _exception_pkey(SIGSEGV
, regs
, si_code
, address
, pkey
);
126 static noinline
int bad_area_nosemaphore(struct pt_regs
*regs
, unsigned long address
)
128 return __bad_area_nosemaphore(regs
, address
, SEGV_MAPERR
, 0);
131 static int __bad_area(struct pt_regs
*regs
, unsigned long address
, int si_code
,
134 struct mm_struct
*mm
= current
->mm
;
137 * Something tried to access memory that isn't in our memory map..
138 * Fix it, but check if it's kernel or user first..
140 up_read(&mm
->mmap_sem
);
142 return __bad_area_nosemaphore(regs
, address
, si_code
, pkey
);
145 static noinline
int bad_area(struct pt_regs
*regs
, unsigned long address
)
147 return __bad_area(regs
, address
, SEGV_MAPERR
, 0);
150 static int bad_key_fault_exception(struct pt_regs
*regs
, unsigned long address
,
153 return __bad_area_nosemaphore(regs
, address
, SEGV_PKUERR
, pkey
);
156 static noinline
int bad_access(struct pt_regs
*regs
, unsigned long address
)
158 return __bad_area(regs
, address
, SEGV_ACCERR
, 0);
161 static int do_sigbus(struct pt_regs
*regs
, unsigned long address
,
165 unsigned int lsb
= 0;
167 if (!user_mode(regs
))
170 current
->thread
.trap_nr
= BUS_ADRERR
;
171 info
.si_signo
= SIGBUS
;
173 info
.si_code
= BUS_ADRERR
;
174 info
.si_addr
= (void __user
*)address
;
175 #ifdef CONFIG_MEMORY_FAILURE
176 if (fault
& (VM_FAULT_HWPOISON
|VM_FAULT_HWPOISON_LARGE
)) {
177 pr_err("MCE: Killing %s:%d due to hardware memory corruption fault at %lx\n",
178 current
->comm
, current
->pid
, address
);
179 info
.si_code
= BUS_MCEERR_AR
;
182 if (fault
& VM_FAULT_HWPOISON_LARGE
)
183 lsb
= hstate_index_to_shift(VM_FAULT_GET_HINDEX(fault
));
184 if (fault
& VM_FAULT_HWPOISON
)
187 info
.si_addr_lsb
= lsb
;
188 force_sig_info(SIGBUS
, &info
, current
);
192 static int mm_fault_error(struct pt_regs
*regs
, unsigned long addr
, int fault
)
195 * Kernel page fault interrupted by SIGKILL. We have no reason to
196 * continue processing.
198 if (fatal_signal_pending(current
) && !user_mode(regs
))
202 if (fault
& VM_FAULT_OOM
) {
204 * We ran out of memory, or some other thing happened to us that
205 * made us unable to handle the page fault gracefully.
207 if (!user_mode(regs
))
209 pagefault_out_of_memory();
211 if (fault
& (VM_FAULT_SIGBUS
|VM_FAULT_HWPOISON
|
212 VM_FAULT_HWPOISON_LARGE
))
213 return do_sigbus(regs
, addr
, fault
);
214 else if (fault
& VM_FAULT_SIGSEGV
)
215 return bad_area_nosemaphore(regs
, addr
);
222 /* Is this a bad kernel fault ? */
223 static bool bad_kernel_fault(bool is_exec
, unsigned long error_code
,
224 unsigned long address
)
226 if (is_exec
&& (error_code
& (DSISR_NOEXEC_OR_G
| DSISR_KEYFAULT
))) {
227 printk_ratelimited(KERN_CRIT
"kernel tried to execute"
228 " exec-protected page (%lx) -"
229 "exploit attempt? (uid: %d)\n",
230 address
, from_kuid(&init_user_ns
,
233 return is_exec
|| (address
>= TASK_SIZE
);
236 static bool bad_stack_expansion(struct pt_regs
*regs
, unsigned long address
,
237 struct vm_area_struct
*vma
,
238 bool store_update_sp
)
241 * N.B. The POWER/Open ABI allows programs to access up to
242 * 288 bytes below the stack pointer.
243 * The kernel signal delivery code writes up to about 1.5kB
244 * below the stack pointer (r1) before decrementing it.
245 * The exec code can write slightly over 640kB to the stack
246 * before setting the user r1. Thus we allow the stack to
247 * expand to 1MB without further checks.
249 if (address
+ 0x100000 < vma
->vm_end
) {
250 /* get user regs even if this fault is in kernel mode */
251 struct pt_regs
*uregs
= current
->thread
.regs
;
256 * A user-mode access to an address a long way below
257 * the stack pointer is only valid if the instruction
258 * is one which would update the stack pointer to the
259 * address accessed if the instruction completed,
260 * i.e. either stwu rs,n(r1) or stwux rs,r1,rb
261 * (or the byte, halfword, float or double forms).
263 * If we don't check this then any write to the area
264 * between the last mapped region and the stack will
265 * expand the stack rather than segfaulting.
267 if (address
+ 2048 < uregs
->gpr
[1] && !store_update_sp
)
273 static bool access_error(bool is_write
, bool is_exec
,
274 struct vm_area_struct
*vma
)
277 * Allow execution from readable areas if the MMU does not
278 * provide separate controls over reading and executing.
280 * Note: That code used to not be enabled for 4xx/BookE.
281 * It is now as I/D cache coherency for these is done at
282 * set_pte_at() time and I see no reason why the test
283 * below wouldn't be valid on those processors. This -may-
284 * break programs compiled with a really old ABI though.
287 return !(vma
->vm_flags
& VM_EXEC
) &&
288 (cpu_has_feature(CPU_FTR_NOEXECUTE
) ||
289 !(vma
->vm_flags
& (VM_READ
| VM_WRITE
)));
293 if (unlikely(!(vma
->vm_flags
& VM_WRITE
)))
298 if (unlikely(!(vma
->vm_flags
& (VM_READ
| VM_EXEC
| VM_WRITE
))))
304 #ifdef CONFIG_PPC_SMLPAR
305 static inline void cmo_account_page_fault(void)
307 if (firmware_has_feature(FW_FEATURE_CMO
)) {
311 page_ins
= be32_to_cpu(get_lppaca()->page_ins
);
312 page_ins
+= 1 << PAGE_FACTOR
;
313 get_lppaca()->page_ins
= cpu_to_be32(page_ins
);
318 static inline void cmo_account_page_fault(void) { }
319 #endif /* CONFIG_PPC_SMLPAR */
321 #ifdef CONFIG_PPC_STD_MMU
322 static void sanity_check_fault(bool is_write
, unsigned long error_code
)
325 * For hash translation mode, we should never get a
326 * PROTFAULT. Any update to pte to reduce access will result in us
327 * removing the hash page table entry, thus resulting in a DSISR_NOHPTE
328 * fault instead of DSISR_PROTFAULT.
330 * A pte update to relax the access will not result in a hash page table
331 * entry invalidate and hence can result in DSISR_PROTFAULT.
332 * ptep_set_access_flags() doesn't do a hpte flush. This is why we have
333 * the special !is_write in the below conditional.
335 * For platforms that doesn't supports coherent icache and do support
336 * per page noexec bit, we do setup things such that we do the
337 * sync between D/I cache via fault. But that is handled via low level
338 * hash fault code (hash_page_do_lazy_icache()) and we should not reach
341 * For wrong access that can result in PROTFAULT, the above vma->vm_flags
342 * check should handle those and hence we should fall to the bad_area
343 * handling correctly.
345 * For embedded with per page exec support that doesn't support coherent
346 * icache we do get PROTFAULT and we handle that D/I cache sync in
347 * set_pte_at while taking the noexec/prot fault. Hence this is WARN_ON
348 * is conditional for server MMU.
350 * For radix, we can get prot fault for autonuma case, because radix
351 * page table will have them marked noaccess for user.
353 if (!radix_enabled() && !is_write
)
354 WARN_ON_ONCE(error_code
& DSISR_PROTFAULT
);
357 static void sanity_check_fault(bool is_write
, unsigned long error_code
) { }
358 #endif /* CONFIG_PPC_STD_MMU */
361 * Define the correct "is_write" bit in error_code based
362 * on the processor family
364 #if (defined(CONFIG_4xx) || defined(CONFIG_BOOKE))
365 #define page_fault_is_write(__err) ((__err) & ESR_DST)
366 #define page_fault_is_bad(__err) (0)
368 #define page_fault_is_write(__err) ((__err) & DSISR_ISSTORE)
369 #if defined(CONFIG_PPC_8xx)
370 #define page_fault_is_bad(__err) ((__err) & DSISR_NOEXEC_OR_G)
371 #elif defined(CONFIG_PPC64)
372 #define page_fault_is_bad(__err) ((__err) & DSISR_BAD_FAULT_64S)
374 #define page_fault_is_bad(__err) ((__err) & DSISR_BAD_FAULT_32S)
379 * For 600- and 800-family processors, the error_code parameter is DSISR
380 * for a data fault, SRR1 for an instruction fault. For 400-family processors
381 * the error_code parameter is ESR for a data fault, 0 for an instruction
383 * For 64-bit processors, the error_code parameter is
384 * - DSISR for a non-SLB data access fault,
385 * - SRR1 & 0x08000000 for a non-SLB instruction access fault
388 * The return value is 0 if the fault was handled, or the signal
389 * number if this is a kernel fault that can't be handled here.
391 static int __do_page_fault(struct pt_regs
*regs
, unsigned long address
,
392 unsigned long error_code
)
394 struct vm_area_struct
* vma
;
395 struct mm_struct
*mm
= current
->mm
;
396 unsigned int flags
= FAULT_FLAG_ALLOW_RETRY
| FAULT_FLAG_KILLABLE
;
397 int is_exec
= TRAP(regs
) == 0x400;
398 int is_user
= user_mode(regs
);
399 int is_write
= page_fault_is_write(error_code
);
400 int fault
, major
= 0;
401 bool store_update_sp
= false;
403 if (notify_page_fault(regs
))
406 if (unlikely(page_fault_is_bad(error_code
))) {
408 _exception(SIGBUS
, regs
, BUS_OBJERR
, address
);
414 /* Additional sanity check(s) */
415 sanity_check_fault(is_write
, error_code
);
418 * The kernel should never take an execute fault nor should it
419 * take a page fault to a kernel address.
421 if (unlikely(!is_user
&& bad_kernel_fault(is_exec
, error_code
, address
)))
425 * If we're in an interrupt, have no user context or are running
426 * in a region with pagefaults disabled then we must not take the fault
428 if (unlikely(faulthandler_disabled() || !mm
)) {
430 printk_ratelimited(KERN_ERR
"Page fault in user mode"
431 " with faulthandler_disabled()=%d"
433 faulthandler_disabled(), mm
);
434 return bad_area_nosemaphore(regs
, address
);
437 /* We restore the interrupt state now */
438 if (!arch_irq_disabled_regs(regs
))
441 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS
, 1, regs
, address
);
443 if (error_code
& DSISR_KEYFAULT
)
444 return bad_key_fault_exception(regs
, address
,
445 get_mm_addr_key(mm
, address
));
448 * We want to do this outside mmap_sem, because reading code around nip
449 * can result in fault, which will cause a deadlock when called with
452 if (is_write
&& is_user
)
453 store_update_sp
= store_updates_sp(regs
);
456 flags
|= FAULT_FLAG_USER
;
458 flags
|= FAULT_FLAG_WRITE
;
460 flags
|= FAULT_FLAG_INSTRUCTION
;
462 /* When running in the kernel we expect faults to occur only to
463 * addresses in user space. All other faults represent errors in the
464 * kernel and should generate an OOPS. Unfortunately, in the case of an
465 * erroneous fault occurring in a code path which already holds mmap_sem
466 * we will deadlock attempting to validate the fault against the
467 * address space. Luckily the kernel only validly references user
468 * space from well defined areas of code, which are listed in the
471 * As the vast majority of faults will be valid we will only perform
472 * the source reference check when there is a possibility of a deadlock.
473 * Attempt to lock the address space, if we cannot we then validate the
474 * source. If this is invalid we can skip the address space check,
475 * thus avoiding the deadlock.
477 if (unlikely(!down_read_trylock(&mm
->mmap_sem
))) {
478 if (!is_user
&& !search_exception_tables(regs
->nip
))
479 return bad_area_nosemaphore(regs
, address
);
482 down_read(&mm
->mmap_sem
);
485 * The above down_read_trylock() might have succeeded in
486 * which case we'll have missed the might_sleep() from
492 vma
= find_vma(mm
, address
);
494 return bad_area(regs
, address
);
495 if (likely(vma
->vm_start
<= address
))
497 if (unlikely(!(vma
->vm_flags
& VM_GROWSDOWN
)))
498 return bad_area(regs
, address
);
500 /* The stack is being expanded, check if it's valid */
501 if (unlikely(bad_stack_expansion(regs
, address
, vma
, store_update_sp
)))
502 return bad_area(regs
, address
);
504 /* Try to expand it */
505 if (unlikely(expand_stack(vma
, address
)))
506 return bad_area(regs
, address
);
509 if (unlikely(access_error(is_write
, is_exec
, vma
)))
510 return bad_access(regs
, address
);
513 * If for any reason at all we couldn't handle the fault,
514 * make sure we exit gracefully rather than endlessly redo
517 fault
= handle_mm_fault(vma
, address
, flags
);
519 #ifdef CONFIG_PPC_MEM_KEYS
521 * if the HPTE is not hashed, hardware will not detect
522 * a key fault. Lets check if we failed because of a
523 * software detected key fault.
525 if (unlikely(fault
& VM_FAULT_SIGSEGV
) &&
526 !arch_vma_access_permitted(vma
, flags
& FAULT_FLAG_WRITE
,
529 * The PGD-PDT...PMD-PTE tree may not have been fully setup.
530 * Hence we cannot walk the tree to locate the PTE, to locate
531 * the key. Hence let's use vma_pkey() to get the key; instead
532 * of get_mm_addr_key().
534 int pkey
= vma_pkey(vma
);
537 up_read(&mm
->mmap_sem
);
538 return bad_key_fault_exception(regs
, address
, pkey
);
541 #endif /* CONFIG_PPC_MEM_KEYS */
543 major
|= fault
& VM_FAULT_MAJOR
;
546 * Handle the retry right now, the mmap_sem has been released in that
549 if (unlikely(fault
& VM_FAULT_RETRY
)) {
550 /* We retry only once */
551 if (flags
& FAULT_FLAG_ALLOW_RETRY
) {
553 * Clear FAULT_FLAG_ALLOW_RETRY to avoid any risk
556 flags
&= ~FAULT_FLAG_ALLOW_RETRY
;
557 flags
|= FAULT_FLAG_TRIED
;
558 if (!fatal_signal_pending(current
))
563 * User mode? Just return to handle the fatal exception otherwise
564 * return to bad_page_fault
566 return is_user
? 0 : SIGBUS
;
569 up_read(¤t
->mm
->mmap_sem
);
571 if (unlikely(fault
& VM_FAULT_ERROR
))
572 return mm_fault_error(regs
, address
, fault
);
575 * Major/minor page fault accounting.
579 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MAJ
, 1, regs
, address
);
580 cmo_account_page_fault();
583 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MIN
, 1, regs
, address
);
587 NOKPROBE_SYMBOL(__do_page_fault
);
589 int do_page_fault(struct pt_regs
*regs
, unsigned long address
,
590 unsigned long error_code
)
592 enum ctx_state prev_state
= exception_enter();
593 int rc
= __do_page_fault(regs
, address
, error_code
);
594 exception_exit(prev_state
);
597 NOKPROBE_SYMBOL(do_page_fault
);
600 * bad_page_fault is called when we have a bad access from the kernel.
601 * It is called from the DSI and ISI handlers in head.S and from some
602 * of the procedures in traps.c.
604 void bad_page_fault(struct pt_regs
*regs
, unsigned long address
, int sig
)
606 const struct exception_table_entry
*entry
;
608 /* Are we prepared to handle this fault? */
609 if ((entry
= search_exception_tables(regs
->nip
)) != NULL
) {
610 regs
->nip
= extable_fixup(entry
);
614 /* kernel has accessed a bad area */
616 switch (TRAP(regs
)) {
619 printk(KERN_ALERT
"Unable to handle kernel paging request for "
620 "data at address 0x%08lx\n", regs
->dar
);
624 printk(KERN_ALERT
"Unable to handle kernel paging request for "
625 "instruction fetch\n");
628 printk(KERN_ALERT
"Unable to handle kernel paging request for "
629 "unaligned access at address 0x%08lx\n", regs
->dar
);
632 printk(KERN_ALERT
"Unable to handle kernel paging request for "
636 printk(KERN_ALERT
"Faulting instruction address: 0x%08lx\n",
639 if (task_stack_end_corrupted(current
))
640 printk(KERN_ALERT
"Thread overran stack, or stack corrupted\n");
642 die("Kernel access of bad area", regs
, sig
);