2 * PowerPC64 port by Mike Corrigan and Dave Engebretsen
3 * {mikejc|engebret}@us.ibm.com
5 * Copyright (c) 2000 Mike Corrigan <mikejc@us.ibm.com>
7 * SMP scalability work:
8 * Copyright (C) 2001 Anton Blanchard <anton@au.ibm.com>, IBM
13 * PowerPC Hashed Page Table functions
15 * This program is free software; you can redistribute it and/or
16 * modify it under the terms of the GNU General Public License
17 * as published by the Free Software Foundation; either version
18 * 2 of the License, or (at your option) any later version.
24 #define pr_fmt(fmt) "hash-mmu: " fmt
25 #include <linux/spinlock.h>
26 #include <linux/errno.h>
27 #include <linux/sched/mm.h>
28 #include <linux/proc_fs.h>
29 #include <linux/stat.h>
30 #include <linux/sysctl.h>
31 #include <linux/export.h>
32 #include <linux/ctype.h>
33 #include <linux/cache.h>
34 #include <linux/init.h>
35 #include <linux/signal.h>
36 #include <linux/memblock.h>
37 #include <linux/context_tracking.h>
38 #include <linux/libfdt.h>
39 #include <linux/pkeys.h>
41 #include <asm/debugfs.h>
42 #include <asm/processor.h>
43 #include <asm/pgtable.h>
45 #include <asm/mmu_context.h>
47 #include <asm/types.h>
48 #include <linux/uaccess.h>
49 #include <asm/machdep.h>
51 #include <asm/tlbflush.h>
55 #include <asm/cacheflush.h>
56 #include <asm/cputable.h>
57 #include <asm/sections.h>
58 #include <asm/copro.h>
60 #include <asm/code-patching.h>
61 #include <asm/fadump.h>
62 #include <asm/firmware.h>
64 #include <asm/trace.h>
66 #include <asm/pte-walk.h>
69 #define DBG(fmt...) udbg_printf(fmt)
75 #define DBG_LOW(fmt...) udbg_printf(fmt)
77 #define DBG_LOW(fmt...)
85 * Note: pte --> Linux PTE
86 * HPTE --> PowerPC Hashed Page Table Entry
89 * htab_initialize is called with the MMU off (of course), but
90 * the kernel has been copied down to zero so it can directly
91 * reference global data. At this point it is very difficult
92 * to print debug info.
96 static unsigned long _SDR1
;
97 struct mmu_psize_def mmu_psize_defs
[MMU_PAGE_COUNT
];
98 EXPORT_SYMBOL_GPL(mmu_psize_defs
);
100 u8 hpte_page_sizes
[1 << LP_BITS
];
101 EXPORT_SYMBOL_GPL(hpte_page_sizes
);
103 struct hash_pte
*htab_address
;
104 unsigned long htab_size_bytes
;
105 unsigned long htab_hash_mask
;
106 EXPORT_SYMBOL_GPL(htab_hash_mask
);
107 int mmu_linear_psize
= MMU_PAGE_4K
;
108 EXPORT_SYMBOL_GPL(mmu_linear_psize
);
109 int mmu_virtual_psize
= MMU_PAGE_4K
;
110 int mmu_vmalloc_psize
= MMU_PAGE_4K
;
111 #ifdef CONFIG_SPARSEMEM_VMEMMAP
112 int mmu_vmemmap_psize
= MMU_PAGE_4K
;
114 int mmu_io_psize
= MMU_PAGE_4K
;
115 int mmu_kernel_ssize
= MMU_SEGSIZE_256M
;
116 EXPORT_SYMBOL_GPL(mmu_kernel_ssize
);
117 int mmu_highuser_ssize
= MMU_SEGSIZE_256M
;
118 u16 mmu_slb_size
= 64;
119 EXPORT_SYMBOL_GPL(mmu_slb_size
);
120 #ifdef CONFIG_PPC_64K_PAGES
121 int mmu_ci_restrictions
;
123 #ifdef CONFIG_DEBUG_PAGEALLOC
124 static u8
*linear_map_hash_slots
;
125 static unsigned long linear_map_hash_count
;
126 static DEFINE_SPINLOCK(linear_map_hash_lock
);
127 #endif /* CONFIG_DEBUG_PAGEALLOC */
128 struct mmu_hash_ops mmu_hash_ops
;
129 EXPORT_SYMBOL(mmu_hash_ops
);
131 /* There are definitions of page sizes arrays to be used when none
132 * is provided by the firmware.
135 /* Pre-POWER4 CPUs (4k pages only)
137 static struct mmu_psize_def mmu_psize_defaults_old
[] = {
141 .penc
= {[MMU_PAGE_4K
] = 0, [1 ... MMU_PAGE_COUNT
- 1] = -1},
147 /* POWER4, GPUL, POWER5
149 * Support for 16Mb large pages
151 static struct mmu_psize_def mmu_psize_defaults_gp
[] = {
155 .penc
= {[MMU_PAGE_4K
] = 0, [1 ... MMU_PAGE_COUNT
- 1] = -1},
162 .penc
= {[0 ... MMU_PAGE_16M
- 1] = -1, [MMU_PAGE_16M
] = 0,
163 [MMU_PAGE_16M
+ 1 ... MMU_PAGE_COUNT
- 1] = -1 },
170 * 'R' and 'C' update notes:
171 * - Under pHyp or KVM, the updatepp path will not set C, thus it *will*
172 * create writeable HPTEs without C set, because the hcall H_PROTECT
173 * that we use in that case will not update C
174 * - The above is however not a problem, because we also don't do that
175 * fancy "no flush" variant of eviction and we use H_REMOVE which will
176 * do the right thing and thus we don't have the race I described earlier
178 * - Under bare metal, we do have the race, so we need R and C set
179 * - We make sure R is always set and never lost
180 * - C is _PAGE_DIRTY, and *should* always be set for a writeable mapping
182 unsigned long htab_convert_pte_flags(unsigned long pteflags
)
184 unsigned long rflags
= 0;
186 /* _PAGE_EXEC -> NOEXEC */
187 if ((pteflags
& _PAGE_EXEC
) == 0)
191 * Linux uses slb key 0 for kernel and 1 for user.
192 * kernel RW areas are mapped with PPP=0b000
193 * User area is mapped with PPP=0b010 for read/write
194 * or PPP=0b011 for read-only (including writeable but clean pages).
196 if (pteflags
& _PAGE_PRIVILEGED
) {
198 * Kernel read only mapped with ppp bits 0b110
200 if (!(pteflags
& _PAGE_WRITE
)) {
201 if (mmu_has_feature(MMU_FTR_KERNEL_RO
))
202 rflags
|= (HPTE_R_PP0
| 0x2);
207 if (pteflags
& _PAGE_RWX
)
209 if (!((pteflags
& _PAGE_WRITE
) && (pteflags
& _PAGE_DIRTY
)))
213 * We can't allow hardware to update hpte bits. Hence always
214 * set 'R' bit and set 'C' if it is a write fault
218 if (pteflags
& _PAGE_DIRTY
)
224 if ((pteflags
& _PAGE_CACHE_CTL
) == _PAGE_TOLERANT
)
226 else if ((pteflags
& _PAGE_CACHE_CTL
) == _PAGE_NON_IDEMPOTENT
)
227 rflags
|= (HPTE_R_I
| HPTE_R_G
);
228 else if ((pteflags
& _PAGE_CACHE_CTL
) == _PAGE_SAO
)
229 rflags
|= (HPTE_R_W
| HPTE_R_I
| HPTE_R_M
);
232 * Add memory coherence if cache inhibited is not set
236 rflags
|= pte_to_hpte_pkey_bits(pteflags
);
240 int htab_bolt_mapping(unsigned long vstart
, unsigned long vend
,
241 unsigned long pstart
, unsigned long prot
,
242 int psize
, int ssize
)
244 unsigned long vaddr
, paddr
;
245 unsigned int step
, shift
;
248 shift
= mmu_psize_defs
[psize
].shift
;
251 prot
= htab_convert_pte_flags(prot
);
253 DBG("htab_bolt_mapping(%lx..%lx -> %lx (%lx,%d,%d)\n",
254 vstart
, vend
, pstart
, prot
, psize
, ssize
);
256 for (vaddr
= vstart
, paddr
= pstart
; vaddr
< vend
;
257 vaddr
+= step
, paddr
+= step
) {
258 unsigned long hash
, hpteg
;
259 unsigned long vsid
= get_kernel_vsid(vaddr
, ssize
);
260 unsigned long vpn
= hpt_vpn(vaddr
, vsid
, ssize
);
261 unsigned long tprot
= prot
;
264 * If we hit a bad address return error.
268 /* Make kernel text executable */
269 if (overlaps_kernel_text(vaddr
, vaddr
+ step
))
272 /* Make kvm guest trampolines executable */
273 if (overlaps_kvm_tmp(vaddr
, vaddr
+ step
))
277 * If relocatable, check if it overlaps interrupt vectors that
278 * are copied down to real 0. For relocatable kernel
279 * (e.g. kdump case) we copy interrupt vectors down to real
280 * address 0. Mark that region as executable. This is
281 * because on p8 system with relocation on exception feature
282 * enabled, exceptions are raised with MMU (IR=DR=1) ON. Hence
283 * in order to execute the interrupt handlers in virtual
284 * mode the vector region need to be marked as executable.
286 if ((PHYSICAL_START
> MEMORY_START
) &&
287 overlaps_interrupt_vector_text(vaddr
, vaddr
+ step
))
290 hash
= hpt_hash(vpn
, shift
, ssize
);
291 hpteg
= ((hash
& htab_hash_mask
) * HPTES_PER_GROUP
);
293 BUG_ON(!mmu_hash_ops
.hpte_insert
);
294 ret
= mmu_hash_ops
.hpte_insert(hpteg
, vpn
, paddr
, tprot
,
295 HPTE_V_BOLTED
, psize
, psize
,
301 #ifdef CONFIG_DEBUG_PAGEALLOC
302 if (debug_pagealloc_enabled() &&
303 (paddr
>> PAGE_SHIFT
) < linear_map_hash_count
)
304 linear_map_hash_slots
[paddr
>> PAGE_SHIFT
] = ret
| 0x80;
305 #endif /* CONFIG_DEBUG_PAGEALLOC */
307 return ret
< 0 ? ret
: 0;
310 int htab_remove_mapping(unsigned long vstart
, unsigned long vend
,
311 int psize
, int ssize
)
314 unsigned int step
, shift
;
318 shift
= mmu_psize_defs
[psize
].shift
;
321 if (!mmu_hash_ops
.hpte_removebolted
)
324 for (vaddr
= vstart
; vaddr
< vend
; vaddr
+= step
) {
325 rc
= mmu_hash_ops
.hpte_removebolted(vaddr
, psize
, ssize
);
337 static bool disable_1tb_segments
= false;
339 static int __init
parse_disable_1tb_segments(char *p
)
341 disable_1tb_segments
= true;
344 early_param("disable_1tb_segments", parse_disable_1tb_segments
);
346 static int __init
htab_dt_scan_seg_sizes(unsigned long node
,
347 const char *uname
, int depth
,
350 const char *type
= of_get_flat_dt_prop(node
, "device_type", NULL
);
354 /* We are scanning "cpu" nodes only */
355 if (type
== NULL
|| strcmp(type
, "cpu") != 0)
358 prop
= of_get_flat_dt_prop(node
, "ibm,processor-segment-sizes", &size
);
361 for (; size
>= 4; size
-= 4, ++prop
) {
362 if (be32_to_cpu(prop
[0]) == 40) {
363 DBG("1T segment support detected\n");
365 if (disable_1tb_segments
) {
366 DBG("1T segments disabled by command line\n");
370 cur_cpu_spec
->mmu_features
|= MMU_FTR_1T_SEGMENT
;
374 cur_cpu_spec
->mmu_features
&= ~MMU_FTR_NO_SLBIE_B
;
378 static int __init
get_idx_from_shift(unsigned int shift
)
402 static int __init
htab_dt_scan_page_sizes(unsigned long node
,
403 const char *uname
, int depth
,
406 const char *type
= of_get_flat_dt_prop(node
, "device_type", NULL
);
410 /* We are scanning "cpu" nodes only */
411 if (type
== NULL
|| strcmp(type
, "cpu") != 0)
414 prop
= of_get_flat_dt_prop(node
, "ibm,segment-page-sizes", &size
);
418 pr_info("Page sizes from device-tree:\n");
420 cur_cpu_spec
->mmu_features
&= ~(MMU_FTR_16M_PAGE
);
422 unsigned int base_shift
= be32_to_cpu(prop
[0]);
423 unsigned int slbenc
= be32_to_cpu(prop
[1]);
424 unsigned int lpnum
= be32_to_cpu(prop
[2]);
425 struct mmu_psize_def
*def
;
428 size
-= 3; prop
+= 3;
429 base_idx
= get_idx_from_shift(base_shift
);
431 /* skip the pte encoding also */
432 prop
+= lpnum
* 2; size
-= lpnum
* 2;
435 def
= &mmu_psize_defs
[base_idx
];
436 if (base_idx
== MMU_PAGE_16M
)
437 cur_cpu_spec
->mmu_features
|= MMU_FTR_16M_PAGE
;
439 def
->shift
= base_shift
;
440 if (base_shift
<= 23)
443 def
->avpnm
= (1 << (base_shift
- 23)) - 1;
446 * We don't know for sure what's up with tlbiel, so
447 * for now we only set it for 4K and 64K pages
449 if (base_idx
== MMU_PAGE_4K
|| base_idx
== MMU_PAGE_64K
)
454 while (size
> 0 && lpnum
) {
455 unsigned int shift
= be32_to_cpu(prop
[0]);
456 int penc
= be32_to_cpu(prop
[1]);
458 prop
+= 2; size
-= 2;
461 idx
= get_idx_from_shift(shift
);
466 pr_err("Invalid penc for base_shift=%d "
467 "shift=%d\n", base_shift
, shift
);
469 def
->penc
[idx
] = penc
;
470 pr_info("base_shift=%d: shift=%d, sllp=0x%04lx,"
471 " avpnm=0x%08lx, tlbiel=%d, penc=%d\n",
472 base_shift
, shift
, def
->sllp
,
473 def
->avpnm
, def
->tlbiel
, def
->penc
[idx
]);
480 #ifdef CONFIG_HUGETLB_PAGE
481 /* Scan for 16G memory blocks that have been set aside for huge pages
482 * and reserve those blocks for 16G huge pages.
484 static int __init
htab_dt_scan_hugepage_blocks(unsigned long node
,
485 const char *uname
, int depth
,
487 const char *type
= of_get_flat_dt_prop(node
, "device_type", NULL
);
488 const __be64
*addr_prop
;
489 const __be32
*page_count_prop
;
490 unsigned int expected_pages
;
491 long unsigned int phys_addr
;
492 long unsigned int block_size
;
494 /* We are scanning "memory" nodes only */
495 if (type
== NULL
|| strcmp(type
, "memory") != 0)
498 /* This property is the log base 2 of the number of virtual pages that
499 * will represent this memory block. */
500 page_count_prop
= of_get_flat_dt_prop(node
, "ibm,expected#pages", NULL
);
501 if (page_count_prop
== NULL
)
503 expected_pages
= (1 << be32_to_cpu(page_count_prop
[0]));
504 addr_prop
= of_get_flat_dt_prop(node
, "reg", NULL
);
505 if (addr_prop
== NULL
)
507 phys_addr
= be64_to_cpu(addr_prop
[0]);
508 block_size
= be64_to_cpu(addr_prop
[1]);
509 if (block_size
!= (16 * GB
))
511 printk(KERN_INFO
"Huge page(16GB) memory: "
512 "addr = 0x%lX size = 0x%lX pages = %d\n",
513 phys_addr
, block_size
, expected_pages
);
514 if (phys_addr
+ block_size
* expected_pages
<= memblock_end_of_DRAM()) {
515 memblock_reserve(phys_addr
, block_size
* expected_pages
);
516 pseries_add_gpage(phys_addr
, block_size
, expected_pages
);
520 #endif /* CONFIG_HUGETLB_PAGE */
522 static void mmu_psize_set_default_penc(void)
525 for (bpsize
= 0; bpsize
< MMU_PAGE_COUNT
; bpsize
++)
526 for (apsize
= 0; apsize
< MMU_PAGE_COUNT
; apsize
++)
527 mmu_psize_defs
[bpsize
].penc
[apsize
] = -1;
530 #ifdef CONFIG_PPC_64K_PAGES
532 static bool might_have_hea(void)
535 * The HEA ethernet adapter requires awareness of the
536 * GX bus. Without that awareness we can easily assume
537 * we will never see an HEA ethernet device.
539 #ifdef CONFIG_IBMEBUS
540 return !cpu_has_feature(CPU_FTR_ARCH_207S
) &&
541 firmware_has_feature(FW_FEATURE_SPLPAR
);
547 #endif /* #ifdef CONFIG_PPC_64K_PAGES */
549 static void __init
htab_scan_page_sizes(void)
553 /* se the invalid penc to -1 */
554 mmu_psize_set_default_penc();
556 /* Default to 4K pages only */
557 memcpy(mmu_psize_defs
, mmu_psize_defaults_old
,
558 sizeof(mmu_psize_defaults_old
));
561 * Try to find the available page sizes in the device-tree
563 rc
= of_scan_flat_dt(htab_dt_scan_page_sizes
, NULL
);
564 if (rc
== 0 && early_mmu_has_feature(MMU_FTR_16M_PAGE
)) {
566 * Nothing in the device-tree, but the CPU supports 16M pages,
567 * so let's fallback on a known size list for 16M capable CPUs.
569 memcpy(mmu_psize_defs
, mmu_psize_defaults_gp
,
570 sizeof(mmu_psize_defaults_gp
));
573 #ifdef CONFIG_HUGETLB_PAGE
574 /* Reserve 16G huge page memory sections for huge pages */
575 of_scan_flat_dt(htab_dt_scan_hugepage_blocks
, NULL
);
576 #endif /* CONFIG_HUGETLB_PAGE */
580 * Fill in the hpte_page_sizes[] array.
581 * We go through the mmu_psize_defs[] array looking for all the
582 * supported base/actual page size combinations. Each combination
583 * has a unique pagesize encoding (penc) value in the low bits of
584 * the LP field of the HPTE. For actual page sizes less than 1MB,
585 * some of the upper LP bits are used for RPN bits, meaning that
586 * we need to fill in several entries in hpte_page_sizes[].
588 * In diagrammatic form, with r = RPN bits and z = page size bits:
589 * PTE LP actual page size
596 * The zzzz bits are implementation-specific but are chosen so that
597 * no encoding for a larger page size uses the same value in its
598 * low-order N bits as the encoding for the 2^(12+N) byte page size
601 static void init_hpte_page_sizes(void)
604 long int shift
, penc
;
606 for (bp
= 0; bp
< MMU_PAGE_COUNT
; ++bp
) {
607 if (!mmu_psize_defs
[bp
].shift
)
608 continue; /* not a supported page size */
609 for (ap
= bp
; ap
< MMU_PAGE_COUNT
; ++ap
) {
610 penc
= mmu_psize_defs
[bp
].penc
[ap
];
611 if (penc
== -1 || !mmu_psize_defs
[ap
].shift
)
613 shift
= mmu_psize_defs
[ap
].shift
- LP_SHIFT
;
615 continue; /* should never happen */
617 * For page sizes less than 1MB, this loop
618 * replicates the entry for all possible values
621 while (penc
< (1 << LP_BITS
)) {
622 hpte_page_sizes
[penc
] = (ap
<< 4) | bp
;
629 static void __init
htab_init_page_sizes(void)
631 init_hpte_page_sizes();
633 if (!debug_pagealloc_enabled()) {
635 * Pick a size for the linear mapping. Currently, we only
636 * support 16M, 1M and 4K which is the default
638 if (mmu_psize_defs
[MMU_PAGE_16M
].shift
)
639 mmu_linear_psize
= MMU_PAGE_16M
;
640 else if (mmu_psize_defs
[MMU_PAGE_1M
].shift
)
641 mmu_linear_psize
= MMU_PAGE_1M
;
644 #ifdef CONFIG_PPC_64K_PAGES
646 * Pick a size for the ordinary pages. Default is 4K, we support
647 * 64K for user mappings and vmalloc if supported by the processor.
648 * We only use 64k for ioremap if the processor
649 * (and firmware) support cache-inhibited large pages.
650 * If not, we use 4k and set mmu_ci_restrictions so that
651 * hash_page knows to switch processes that use cache-inhibited
652 * mappings to 4k pages.
654 if (mmu_psize_defs
[MMU_PAGE_64K
].shift
) {
655 mmu_virtual_psize
= MMU_PAGE_64K
;
656 mmu_vmalloc_psize
= MMU_PAGE_64K
;
657 if (mmu_linear_psize
== MMU_PAGE_4K
)
658 mmu_linear_psize
= MMU_PAGE_64K
;
659 if (mmu_has_feature(MMU_FTR_CI_LARGE_PAGE
)) {
661 * When running on pSeries using 64k pages for ioremap
662 * would stop us accessing the HEA ethernet. So if we
663 * have the chance of ever seeing one, stay at 4k.
665 if (!might_have_hea())
666 mmu_io_psize
= MMU_PAGE_64K
;
668 mmu_ci_restrictions
= 1;
670 #endif /* CONFIG_PPC_64K_PAGES */
672 #ifdef CONFIG_SPARSEMEM_VMEMMAP
673 /* We try to use 16M pages for vmemmap if that is supported
674 * and we have at least 1G of RAM at boot
676 if (mmu_psize_defs
[MMU_PAGE_16M
].shift
&&
677 memblock_phys_mem_size() >= 0x40000000)
678 mmu_vmemmap_psize
= MMU_PAGE_16M
;
679 else if (mmu_psize_defs
[MMU_PAGE_64K
].shift
)
680 mmu_vmemmap_psize
= MMU_PAGE_64K
;
682 mmu_vmemmap_psize
= MMU_PAGE_4K
;
683 #endif /* CONFIG_SPARSEMEM_VMEMMAP */
685 printk(KERN_DEBUG
"Page orders: linear mapping = %d, "
686 "virtual = %d, io = %d"
687 #ifdef CONFIG_SPARSEMEM_VMEMMAP
691 mmu_psize_defs
[mmu_linear_psize
].shift
,
692 mmu_psize_defs
[mmu_virtual_psize
].shift
,
693 mmu_psize_defs
[mmu_io_psize
].shift
694 #ifdef CONFIG_SPARSEMEM_VMEMMAP
695 ,mmu_psize_defs
[mmu_vmemmap_psize
].shift
700 static int __init
htab_dt_scan_pftsize(unsigned long node
,
701 const char *uname
, int depth
,
704 const char *type
= of_get_flat_dt_prop(node
, "device_type", NULL
);
707 /* We are scanning "cpu" nodes only */
708 if (type
== NULL
|| strcmp(type
, "cpu") != 0)
711 prop
= of_get_flat_dt_prop(node
, "ibm,pft-size", NULL
);
713 /* pft_size[0] is the NUMA CEC cookie */
714 ppc64_pft_size
= be32_to_cpu(prop
[1]);
720 unsigned htab_shift_for_mem_size(unsigned long mem_size
)
722 unsigned memshift
= __ilog2(mem_size
);
723 unsigned pshift
= mmu_psize_defs
[mmu_virtual_psize
].shift
;
726 /* round mem_size up to next power of 2 */
727 if ((1UL << memshift
) < mem_size
)
730 /* aim for 2 pages / pteg */
731 pteg_shift
= memshift
- (pshift
+ 1);
734 * 2^11 PTEGS of 128 bytes each, ie. 2^18 bytes is the minimum htab
735 * size permitted by the architecture.
737 return max(pteg_shift
+ 7, 18U);
740 static unsigned long __init
htab_get_table_size(void)
742 /* If hash size isn't already provided by the platform, we try to
743 * retrieve it from the device-tree. If it's not there neither, we
744 * calculate it now based on the total RAM size
746 if (ppc64_pft_size
== 0)
747 of_scan_flat_dt(htab_dt_scan_pftsize
, NULL
);
749 return 1UL << ppc64_pft_size
;
751 return 1UL << htab_shift_for_mem_size(memblock_phys_mem_size());
754 #ifdef CONFIG_MEMORY_HOTPLUG
755 void resize_hpt_for_hotplug(unsigned long new_mem_size
)
757 unsigned target_hpt_shift
;
759 if (!mmu_hash_ops
.resize_hpt
)
762 target_hpt_shift
= htab_shift_for_mem_size(new_mem_size
);
765 * To avoid lots of HPT resizes if memory size is fluctuating
766 * across a boundary, we deliberately have some hysterisis
767 * here: we immediately increase the HPT size if the target
768 * shift exceeds the current shift, but we won't attempt to
769 * reduce unless the target shift is at least 2 below the
772 if ((target_hpt_shift
> ppc64_pft_size
)
773 || (target_hpt_shift
< (ppc64_pft_size
- 1))) {
776 rc
= mmu_hash_ops
.resize_hpt(target_hpt_shift
);
777 if (rc
&& (rc
!= -ENODEV
))
779 "Unable to resize hash page table to target order %d: %d\n",
780 target_hpt_shift
, rc
);
784 int hash__create_section_mapping(unsigned long start
, unsigned long end
)
786 int rc
= htab_bolt_mapping(start
, end
, __pa(start
),
787 pgprot_val(PAGE_KERNEL
), mmu_linear_psize
,
791 int rc2
= htab_remove_mapping(start
, end
, mmu_linear_psize
,
793 BUG_ON(rc2
&& (rc2
!= -ENOENT
));
798 int hash__remove_section_mapping(unsigned long start
, unsigned long end
)
800 int rc
= htab_remove_mapping(start
, end
, mmu_linear_psize
,
805 #endif /* CONFIG_MEMORY_HOTPLUG */
807 static void update_hid_for_hash(void)
810 unsigned long rb
= 3UL << PPC_BITLSHIFT(53); /* IS = 3 */
812 asm volatile("ptesync": : :"memory");
813 /* prs = 0, ric = 2, rs = 0, r = 1 is = 3 */
814 asm volatile(PPC_TLBIE_5(%0, %4, %3, %2, %1)
815 : : "r"(rb
), "i"(0), "i"(0), "i"(2), "r"(0) : "memory");
816 asm volatile("eieio; tlbsync; ptesync; isync; slbia": : :"memory");
817 trace_tlbie(0, 0, rb
, 0, 2, 0, 0);
822 hid0
= mfspr(SPRN_HID0
);
823 hid0
&= ~HID0_POWER9_RADIX
;
824 mtspr(SPRN_HID0
, hid0
);
825 asm volatile("isync": : :"memory");
827 /* Wait for it to happen */
828 while ((mfspr(SPRN_HID0
) & HID0_POWER9_RADIX
))
832 static void __init
hash_init_partition_table(phys_addr_t hash_table
,
833 unsigned long htab_size
)
835 mmu_partition_table_init();
838 * PS field (VRMA page size) is not used for LPID 0, hence set to 0.
839 * For now, UPRT is 0 and we have no segment table.
841 htab_size
= __ilog2(htab_size
) - 18;
842 mmu_partition_table_set_entry(0, hash_table
| htab_size
, 0);
843 pr_info("Partition table %p\n", partition_tb
);
844 if (cpu_has_feature(CPU_FTR_POWER9_DD1
))
845 update_hid_for_hash();
848 static void __init
htab_initialize(void)
851 unsigned long pteg_count
;
853 unsigned long base
= 0, size
= 0;
854 struct memblock_region
*reg
;
856 DBG(" -> htab_initialize()\n");
858 if (mmu_has_feature(MMU_FTR_1T_SEGMENT
)) {
859 mmu_kernel_ssize
= MMU_SEGSIZE_1T
;
860 mmu_highuser_ssize
= MMU_SEGSIZE_1T
;
861 printk(KERN_INFO
"Using 1TB segments\n");
865 * Calculate the required size of the htab. We want the number of
866 * PTEGs to equal one half the number of real pages.
868 htab_size_bytes
= htab_get_table_size();
869 pteg_count
= htab_size_bytes
>> 7;
871 htab_hash_mask
= pteg_count
- 1;
873 if (firmware_has_feature(FW_FEATURE_LPAR
) ||
874 firmware_has_feature(FW_FEATURE_PS3_LV1
)) {
875 /* Using a hypervisor which owns the htab */
878 #ifdef CONFIG_FA_DUMP
880 * If firmware assisted dump is active firmware preserves
881 * the contents of htab along with entire partition memory.
882 * Clear the htab if firmware assisted dump is active so
883 * that we dont end up using old mappings.
885 if (is_fadump_active() && mmu_hash_ops
.hpte_clear_all
)
886 mmu_hash_ops
.hpte_clear_all();
889 unsigned long limit
= MEMBLOCK_ALLOC_ANYWHERE
;
891 #ifdef CONFIG_PPC_CELL
893 * Cell may require the hash table down low when using the
894 * Axon IOMMU in order to fit the dynamic region over it, see
895 * comments in cell/iommu.c
897 if (fdt_subnode_offset(initial_boot_params
, 0, "axon") > 0) {
899 pr_info("Hash table forced below 2G for Axon IOMMU\n");
901 #endif /* CONFIG_PPC_CELL */
903 table
= memblock_alloc_base(htab_size_bytes
, htab_size_bytes
,
906 DBG("Hash table allocated at %lx, size: %lx\n", table
,
909 htab_address
= __va(table
);
911 /* htab absolute addr + encoded htabsize */
912 _SDR1
= table
+ __ilog2(htab_size_bytes
) - 18;
914 /* Initialize the HPT with no entries */
915 memset((void *)table
, 0, htab_size_bytes
);
917 if (!cpu_has_feature(CPU_FTR_ARCH_300
))
919 mtspr(SPRN_SDR1
, _SDR1
);
921 hash_init_partition_table(table
, htab_size_bytes
);
924 prot
= pgprot_val(PAGE_KERNEL
);
926 #ifdef CONFIG_DEBUG_PAGEALLOC
927 if (debug_pagealloc_enabled()) {
928 linear_map_hash_count
= memblock_end_of_DRAM() >> PAGE_SHIFT
;
929 linear_map_hash_slots
= __va(memblock_alloc_base(
930 linear_map_hash_count
, 1, ppc64_rma_size
));
931 memset(linear_map_hash_slots
, 0, linear_map_hash_count
);
933 #endif /* CONFIG_DEBUG_PAGEALLOC */
935 /* create bolted the linear mapping in the hash table */
936 for_each_memblock(memory
, reg
) {
937 base
= (unsigned long)__va(reg
->base
);
940 DBG("creating mapping for region: %lx..%lx (prot: %lx)\n",
943 BUG_ON(htab_bolt_mapping(base
, base
+ size
, __pa(base
),
944 prot
, mmu_linear_psize
, mmu_kernel_ssize
));
946 memblock_set_current_limit(MEMBLOCK_ALLOC_ANYWHERE
);
949 * If we have a memory_limit and we've allocated TCEs then we need to
950 * explicitly map the TCE area at the top of RAM. We also cope with the
951 * case that the TCEs start below memory_limit.
952 * tce_alloc_start/end are 16MB aligned so the mapping should work
953 * for either 4K or 16MB pages.
955 if (tce_alloc_start
) {
956 tce_alloc_start
= (unsigned long)__va(tce_alloc_start
);
957 tce_alloc_end
= (unsigned long)__va(tce_alloc_end
);
959 if (base
+ size
>= tce_alloc_start
)
960 tce_alloc_start
= base
+ size
+ 1;
962 BUG_ON(htab_bolt_mapping(tce_alloc_start
, tce_alloc_end
,
963 __pa(tce_alloc_start
), prot
,
964 mmu_linear_psize
, mmu_kernel_ssize
));
968 DBG(" <- htab_initialize()\n");
973 void __init
hash__early_init_devtree(void)
975 /* Initialize segment sizes */
976 of_scan_flat_dt(htab_dt_scan_seg_sizes
, NULL
);
978 /* Initialize page sizes */
979 htab_scan_page_sizes();
982 void __init
hash__early_init_mmu(void)
984 #ifndef CONFIG_PPC_64K_PAGES
986 * We have code in __hash_page_4K() and elsewhere, which assumes it can
988 * new_pte |= (slot << H_PAGE_F_GIX_SHIFT) & (H_PAGE_F_SECOND | H_PAGE_F_GIX);
990 * Where the slot number is between 0-15, and values of 8-15 indicate
991 * the secondary bucket. For that code to work H_PAGE_F_SECOND and
992 * H_PAGE_F_GIX must occupy four contiguous bits in the PTE, and
993 * H_PAGE_F_SECOND must be placed above H_PAGE_F_GIX. Assert that here
994 * with a BUILD_BUG_ON().
996 BUILD_BUG_ON(H_PAGE_F_SECOND
!= (1ul << (H_PAGE_F_GIX_SHIFT
+ 3)));
997 #endif /* CONFIG_PPC_64K_PAGES */
999 htab_init_page_sizes();
1002 * initialize page table size
1004 __pte_frag_nr
= H_PTE_FRAG_NR
;
1005 __pte_frag_size_shift
= H_PTE_FRAG_SIZE_SHIFT
;
1007 __pte_index_size
= H_PTE_INDEX_SIZE
;
1008 __pmd_index_size
= H_PMD_INDEX_SIZE
;
1009 __pud_index_size
= H_PUD_INDEX_SIZE
;
1010 __pgd_index_size
= H_PGD_INDEX_SIZE
;
1011 __pud_cache_index
= H_PUD_CACHE_INDEX
;
1012 __pmd_cache_index
= H_PMD_CACHE_INDEX
;
1013 __pte_table_size
= H_PTE_TABLE_SIZE
;
1014 __pmd_table_size
= H_PMD_TABLE_SIZE
;
1015 __pud_table_size
= H_PUD_TABLE_SIZE
;
1016 __pgd_table_size
= H_PGD_TABLE_SIZE
;
1018 * 4k use hugepd format, so for hash set then to
1025 __kernel_virt_start
= H_KERN_VIRT_START
;
1026 __kernel_virt_size
= H_KERN_VIRT_SIZE
;
1027 __vmalloc_start
= H_VMALLOC_START
;
1028 __vmalloc_end
= H_VMALLOC_END
;
1029 __kernel_io_start
= H_KERN_IO_START
;
1030 vmemmap
= (struct page
*)H_VMEMMAP_BASE
;
1031 ioremap_bot
= IOREMAP_BASE
;
1034 pci_io_base
= ISA_IO_BASE
;
1037 /* Select appropriate backend */
1038 if (firmware_has_feature(FW_FEATURE_PS3_LV1
))
1039 ps3_early_mm_init();
1040 else if (firmware_has_feature(FW_FEATURE_LPAR
))
1041 hpte_init_pseries();
1042 else if (IS_ENABLED(CONFIG_PPC_NATIVE
))
1045 if (!mmu_hash_ops
.hpte_insert
)
1046 panic("hash__early_init_mmu: No MMU hash ops defined!\n");
1048 /* Initialize the MMU Hash table and create the linear mapping
1049 * of memory. Has to be done before SLB initialization as this is
1050 * currently where the page size encoding is obtained.
1054 pr_info("Initializing hash mmu with SLB\n");
1055 /* Initialize SLB management */
1058 if (cpu_has_feature(CPU_FTR_ARCH_206
)
1059 && cpu_has_feature(CPU_FTR_HVMODE
))
1064 void hash__early_init_mmu_secondary(void)
1066 /* Initialize hash table for that CPU */
1067 if (!firmware_has_feature(FW_FEATURE_LPAR
)) {
1069 if (cpu_has_feature(CPU_FTR_POWER9_DD1
))
1070 update_hid_for_hash();
1072 if (!cpu_has_feature(CPU_FTR_ARCH_300
))
1073 mtspr(SPRN_SDR1
, _SDR1
);
1076 __pa(partition_tb
) | (PATB_SIZE_SHIFT
- 12));
1078 /* Initialize SLB */
1081 if (cpu_has_feature(CPU_FTR_ARCH_206
)
1082 && cpu_has_feature(CPU_FTR_HVMODE
))
1085 #endif /* CONFIG_SMP */
1088 * Called by asm hashtable.S for doing lazy icache flush
1090 unsigned int hash_page_do_lazy_icache(unsigned int pp
, pte_t pte
, int trap
)
1094 if (!pfn_valid(pte_pfn(pte
)))
1097 page
= pte_page(pte
);
1100 if (!test_bit(PG_arch_1
, &page
->flags
) && !PageReserved(page
)) {
1101 if (trap
== 0x400) {
1102 flush_dcache_icache_page(page
);
1103 set_bit(PG_arch_1
, &page
->flags
);
1110 #ifdef CONFIG_PPC_MM_SLICES
1111 static unsigned int get_paca_psize(unsigned long addr
)
1114 unsigned char *hpsizes
;
1115 unsigned long index
, mask_index
;
1117 if (addr
< SLICE_LOW_TOP
) {
1118 lpsizes
= get_paca()->mm_ctx_low_slices_psize
;
1119 index
= GET_LOW_SLICE_INDEX(addr
);
1120 return (lpsizes
>> (index
* 4)) & 0xF;
1122 hpsizes
= get_paca()->mm_ctx_high_slices_psize
;
1123 index
= GET_HIGH_SLICE_INDEX(addr
);
1124 mask_index
= index
& 0x1;
1125 return (hpsizes
[index
>> 1] >> (mask_index
* 4)) & 0xF;
1129 unsigned int get_paca_psize(unsigned long addr
)
1131 return get_paca()->mm_ctx_user_psize
;
1136 * Demote a segment to using 4k pages.
1137 * For now this makes the whole process use 4k pages.
1139 #ifdef CONFIG_PPC_64K_PAGES
1140 void demote_segment_4k(struct mm_struct
*mm
, unsigned long addr
)
1142 if (get_slice_psize(mm
, addr
) == MMU_PAGE_4K
)
1144 slice_set_range_psize(mm
, addr
, 1, MMU_PAGE_4K
);
1145 copro_flush_all_slbs(mm
);
1146 if ((get_paca_psize(addr
) != MMU_PAGE_4K
) && (current
->mm
== mm
)) {
1148 copy_mm_to_paca(mm
);
1149 slb_flush_and_rebolt();
1152 #endif /* CONFIG_PPC_64K_PAGES */
1154 #ifdef CONFIG_PPC_SUBPAGE_PROT
1156 * This looks up a 2-bit protection code for a 4k subpage of a 64k page.
1157 * Userspace sets the subpage permissions using the subpage_prot system call.
1159 * Result is 0: full permissions, _PAGE_RW: read-only,
1160 * _PAGE_RWX: no access.
1162 static int subpage_protection(struct mm_struct
*mm
, unsigned long ea
)
1164 struct subpage_prot_table
*spt
= &mm
->context
.spt
;
1168 if (ea
>= spt
->maxaddr
)
1170 if (ea
< 0x100000000UL
) {
1171 /* addresses below 4GB use spt->low_prot */
1172 sbpm
= spt
->low_prot
;
1174 sbpm
= spt
->protptrs
[ea
>> SBP_L3_SHIFT
];
1178 sbpp
= sbpm
[(ea
>> SBP_L2_SHIFT
) & (SBP_L2_COUNT
- 1)];
1181 spp
= sbpp
[(ea
>> PAGE_SHIFT
) & (SBP_L1_COUNT
- 1)];
1183 /* extract 2-bit bitfield for this 4k subpage */
1184 spp
>>= 30 - 2 * ((ea
>> 12) & 0xf);
1187 * 0 -> full premission
1190 * We return the flag that need to be cleared.
1192 spp
= ((spp
& 2) ? _PAGE_RWX
: 0) | ((spp
& 1) ? _PAGE_WRITE
: 0);
1196 #else /* CONFIG_PPC_SUBPAGE_PROT */
1197 static inline int subpage_protection(struct mm_struct
*mm
, unsigned long ea
)
1203 void hash_failure_debug(unsigned long ea
, unsigned long access
,
1204 unsigned long vsid
, unsigned long trap
,
1205 int ssize
, int psize
, int lpsize
, unsigned long pte
)
1207 if (!printk_ratelimit())
1209 pr_info("mm: Hashing failure ! EA=0x%lx access=0x%lx current=%s\n",
1210 ea
, access
, current
->comm
);
1211 pr_info(" trap=0x%lx vsid=0x%lx ssize=%d base psize=%d psize %d pte=0x%lx\n",
1212 trap
, vsid
, ssize
, psize
, lpsize
, pte
);
1215 static void check_paca_psize(unsigned long ea
, struct mm_struct
*mm
,
1216 int psize
, bool user_region
)
1219 if (psize
!= get_paca_psize(ea
)) {
1220 copy_mm_to_paca(mm
);
1221 slb_flush_and_rebolt();
1223 } else if (get_paca()->vmalloc_sllp
!=
1224 mmu_psize_defs
[mmu_vmalloc_psize
].sllp
) {
1225 get_paca()->vmalloc_sllp
=
1226 mmu_psize_defs
[mmu_vmalloc_psize
].sllp
;
1227 slb_vmalloc_update();
1233 * 1 - normal page fault
1234 * -1 - critical hash insertion error
1235 * -2 - access not permitted by subpage protection mechanism
1237 int hash_page_mm(struct mm_struct
*mm
, unsigned long ea
,
1238 unsigned long access
, unsigned long trap
,
1239 unsigned long flags
)
1242 enum ctx_state prev_state
= exception_enter();
1247 int rc
, user_region
= 0;
1250 DBG_LOW("hash_page(ea=%016lx, access=%lx, trap=%lx\n",
1252 trace_hash_fault(ea
, access
, trap
);
1254 /* Get region & vsid */
1255 switch (REGION_ID(ea
)) {
1256 case USER_REGION_ID
:
1259 DBG_LOW(" user region with no mm !\n");
1263 psize
= get_slice_psize(mm
, ea
);
1264 ssize
= user_segment_size(ea
);
1265 vsid
= get_vsid(mm
->context
.id
, ea
, ssize
);
1267 case VMALLOC_REGION_ID
:
1268 vsid
= get_kernel_vsid(ea
, mmu_kernel_ssize
);
1269 if (ea
< VMALLOC_END
)
1270 psize
= mmu_vmalloc_psize
;
1272 psize
= mmu_io_psize
;
1273 ssize
= mmu_kernel_ssize
;
1276 /* Not a valid range
1277 * Send the problem up to do_page_fault
1282 DBG_LOW(" mm=%p, mm->pgdir=%p, vsid=%016lx\n", mm
, mm
->pgd
, vsid
);
1286 DBG_LOW("Bad address!\n");
1292 if (pgdir
== NULL
) {
1297 /* Check CPU locality */
1298 if (user_region
&& mm_is_thread_local(mm
))
1299 flags
|= HPTE_LOCAL_UPDATE
;
1301 #ifndef CONFIG_PPC_64K_PAGES
1302 /* If we use 4K pages and our psize is not 4K, then we might
1303 * be hitting a special driver mapping, and need to align the
1304 * address before we fetch the PTE.
1306 * It could also be a hugepage mapping, in which case this is
1307 * not necessary, but it's not harmful, either.
1309 if (psize
!= MMU_PAGE_4K
)
1310 ea
&= ~((1ul << mmu_psize_defs
[psize
].shift
) - 1);
1311 #endif /* CONFIG_PPC_64K_PAGES */
1313 /* Get PTE and page size from page tables */
1314 ptep
= find_linux_pte(pgdir
, ea
, &is_thp
, &hugeshift
);
1315 if (ptep
== NULL
|| !pte_present(*ptep
)) {
1316 DBG_LOW(" no PTE !\n");
1321 /* Add _PAGE_PRESENT to the required access perm */
1322 access
|= _PAGE_PRESENT
;
1324 /* Pre-check access permissions (will be re-checked atomically
1325 * in __hash_page_XX but this pre-check is a fast path
1327 if (!check_pte_access(access
, pte_val(*ptep
))) {
1328 DBG_LOW(" no access !\n");
1335 rc
= __hash_page_thp(ea
, access
, vsid
, (pmd_t
*)ptep
,
1336 trap
, flags
, ssize
, psize
);
1337 #ifdef CONFIG_HUGETLB_PAGE
1339 rc
= __hash_page_huge(ea
, access
, vsid
, ptep
, trap
,
1340 flags
, ssize
, hugeshift
, psize
);
1344 * if we have hugeshift, and is not transhuge with
1345 * hugetlb disabled, something is really wrong.
1351 if (current
->mm
== mm
)
1352 check_paca_psize(ea
, mm
, psize
, user_region
);
1357 #ifndef CONFIG_PPC_64K_PAGES
1358 DBG_LOW(" i-pte: %016lx\n", pte_val(*ptep
));
1360 DBG_LOW(" i-pte: %016lx %016lx\n", pte_val(*ptep
),
1361 pte_val(*(ptep
+ PTRS_PER_PTE
)));
1363 /* Do actual hashing */
1364 #ifdef CONFIG_PPC_64K_PAGES
1365 /* If H_PAGE_4K_PFN is set, make sure this is a 4k segment */
1366 if ((pte_val(*ptep
) & H_PAGE_4K_PFN
) && psize
== MMU_PAGE_64K
) {
1367 demote_segment_4k(mm
, ea
);
1368 psize
= MMU_PAGE_4K
;
1371 /* If this PTE is non-cacheable and we have restrictions on
1372 * using non cacheable large pages, then we switch to 4k
1374 if (mmu_ci_restrictions
&& psize
== MMU_PAGE_64K
&& pte_ci(*ptep
)) {
1376 demote_segment_4k(mm
, ea
);
1377 psize
= MMU_PAGE_4K
;
1378 } else if (ea
< VMALLOC_END
) {
1380 * some driver did a non-cacheable mapping
1381 * in vmalloc space, so switch vmalloc
1384 printk(KERN_ALERT
"Reducing vmalloc segment "
1385 "to 4kB pages because of "
1386 "non-cacheable mapping\n");
1387 psize
= mmu_vmalloc_psize
= MMU_PAGE_4K
;
1388 copro_flush_all_slbs(mm
);
1392 #endif /* CONFIG_PPC_64K_PAGES */
1394 if (current
->mm
== mm
)
1395 check_paca_psize(ea
, mm
, psize
, user_region
);
1397 #ifdef CONFIG_PPC_64K_PAGES
1398 if (psize
== MMU_PAGE_64K
)
1399 rc
= __hash_page_64K(ea
, access
, vsid
, ptep
, trap
,
1402 #endif /* CONFIG_PPC_64K_PAGES */
1404 int spp
= subpage_protection(mm
, ea
);
1408 rc
= __hash_page_4K(ea
, access
, vsid
, ptep
, trap
,
1412 /* Dump some info in case of hash insertion failure, they should
1413 * never happen so it is really useful to know if/when they do
1416 hash_failure_debug(ea
, access
, vsid
, trap
, ssize
, psize
,
1417 psize
, pte_val(*ptep
));
1418 #ifndef CONFIG_PPC_64K_PAGES
1419 DBG_LOW(" o-pte: %016lx\n", pte_val(*ptep
));
1421 DBG_LOW(" o-pte: %016lx %016lx\n", pte_val(*ptep
),
1422 pte_val(*(ptep
+ PTRS_PER_PTE
)));
1424 DBG_LOW(" -> rc=%d\n", rc
);
1427 exception_exit(prev_state
);
1430 EXPORT_SYMBOL_GPL(hash_page_mm
);
1432 int hash_page(unsigned long ea
, unsigned long access
, unsigned long trap
,
1433 unsigned long dsisr
)
1435 unsigned long flags
= 0;
1436 struct mm_struct
*mm
= current
->mm
;
1438 if (REGION_ID(ea
) == VMALLOC_REGION_ID
)
1441 if (dsisr
& DSISR_NOHPTE
)
1442 flags
|= HPTE_NOHPTE_UPDATE
;
1444 return hash_page_mm(mm
, ea
, access
, trap
, flags
);
1446 EXPORT_SYMBOL_GPL(hash_page
);
1448 int __hash_page(unsigned long ea
, unsigned long msr
, unsigned long trap
,
1449 unsigned long dsisr
)
1451 unsigned long access
= _PAGE_PRESENT
| _PAGE_READ
;
1452 unsigned long flags
= 0;
1453 struct mm_struct
*mm
= current
->mm
;
1455 if (REGION_ID(ea
) == VMALLOC_REGION_ID
)
1458 if (dsisr
& DSISR_NOHPTE
)
1459 flags
|= HPTE_NOHPTE_UPDATE
;
1461 if (dsisr
& DSISR_ISSTORE
)
1462 access
|= _PAGE_WRITE
;
1464 * We set _PAGE_PRIVILEGED only when
1465 * kernel mode access kernel space.
1467 * _PAGE_PRIVILEGED is NOT set
1468 * 1) when kernel mode access user space
1469 * 2) user space access kernel space.
1471 access
|= _PAGE_PRIVILEGED
;
1472 if ((msr
& MSR_PR
) || (REGION_ID(ea
) == USER_REGION_ID
))
1473 access
&= ~_PAGE_PRIVILEGED
;
1476 access
|= _PAGE_EXEC
;
1478 return hash_page_mm(mm
, ea
, access
, trap
, flags
);
1481 #ifdef CONFIG_PPC_MM_SLICES
1482 static bool should_hash_preload(struct mm_struct
*mm
, unsigned long ea
)
1484 int psize
= get_slice_psize(mm
, ea
);
1486 /* We only prefault standard pages for now */
1487 if (unlikely(psize
!= mm
->context
.user_psize
))
1491 * Don't prefault if subpage protection is enabled for the EA.
1493 if (unlikely((psize
== MMU_PAGE_4K
) && subpage_protection(mm
, ea
)))
1499 static bool should_hash_preload(struct mm_struct
*mm
, unsigned long ea
)
1505 void hash_preload(struct mm_struct
*mm
, unsigned long ea
,
1506 unsigned long access
, unsigned long trap
)
1512 unsigned long flags
;
1513 int rc
, ssize
, update_flags
= 0;
1515 BUG_ON(REGION_ID(ea
) != USER_REGION_ID
);
1517 if (!should_hash_preload(mm
, ea
))
1520 DBG_LOW("hash_preload(mm=%p, mm->pgdir=%p, ea=%016lx, access=%lx,"
1521 " trap=%lx\n", mm
, mm
->pgd
, ea
, access
, trap
);
1523 /* Get Linux PTE if available */
1529 ssize
= user_segment_size(ea
);
1530 vsid
= get_vsid(mm
->context
.id
, ea
, ssize
);
1534 * Hash doesn't like irqs. Walking linux page table with irq disabled
1535 * saves us from holding multiple locks.
1537 local_irq_save(flags
);
1540 * THP pages use update_mmu_cache_pmd. We don't do
1541 * hash preload there. Hence can ignore THP here
1543 ptep
= find_current_mm_pte(pgdir
, ea
, NULL
, &hugepage_shift
);
1547 WARN_ON(hugepage_shift
);
1548 #ifdef CONFIG_PPC_64K_PAGES
1549 /* If either H_PAGE_4K_PFN or cache inhibited is set (and we are on
1550 * a 64K kernel), then we don't preload, hash_page() will take
1551 * care of it once we actually try to access the page.
1552 * That way we don't have to duplicate all of the logic for segment
1553 * page size demotion here
1555 if ((pte_val(*ptep
) & H_PAGE_4K_PFN
) || pte_ci(*ptep
))
1557 #endif /* CONFIG_PPC_64K_PAGES */
1559 /* Is that local to this CPU ? */
1560 if (mm_is_thread_local(mm
))
1561 update_flags
|= HPTE_LOCAL_UPDATE
;
1564 #ifdef CONFIG_PPC_64K_PAGES
1565 if (mm
->context
.user_psize
== MMU_PAGE_64K
)
1566 rc
= __hash_page_64K(ea
, access
, vsid
, ptep
, trap
,
1567 update_flags
, ssize
);
1569 #endif /* CONFIG_PPC_64K_PAGES */
1570 rc
= __hash_page_4K(ea
, access
, vsid
, ptep
, trap
, update_flags
,
1571 ssize
, subpage_protection(mm
, ea
));
1573 /* Dump some info in case of hash insertion failure, they should
1574 * never happen so it is really useful to know if/when they do
1577 hash_failure_debug(ea
, access
, vsid
, trap
, ssize
,
1578 mm
->context
.user_psize
,
1579 mm
->context
.user_psize
,
1582 local_irq_restore(flags
);
1585 #ifdef CONFIG_PPC_MEM_KEYS
1587 * Return the protection key associated with the given address and the
1590 u16
get_mm_addr_key(struct mm_struct
*mm
, unsigned long address
)
1594 unsigned long flags
;
1596 if (!mm
|| !mm
->pgd
)
1599 local_irq_save(flags
);
1600 ptep
= find_linux_pte(mm
->pgd
, address
, NULL
, NULL
);
1602 pkey
= pte_to_pkey_bits(pte_val(READ_ONCE(*ptep
)));
1603 local_irq_restore(flags
);
1607 #endif /* CONFIG_PPC_MEM_KEYS */
1609 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1610 static inline void tm_flush_hash_page(int local
)
1613 * Transactions are not aborted by tlbiel, only tlbie. Without, syncing a
1614 * page back to a block device w/PIO could pick up transactional data
1615 * (bad!) so we force an abort here. Before the sync the page will be
1616 * made read-only, which will flush_hash_page. BIG ISSUE here: if the
1617 * kernel uses a page from userspace without unmapping it first, it may
1618 * see the speculated version.
1620 if (local
&& cpu_has_feature(CPU_FTR_TM
) && current
->thread
.regs
&&
1621 MSR_TM_ACTIVE(current
->thread
.regs
->msr
)) {
1623 tm_abort(TM_CAUSE_TLBI
);
1627 static inline void tm_flush_hash_page(int local
)
1633 * Return the global hash slot, corresponding to the given PTE, which contains
1636 unsigned long pte_get_hash_gslot(unsigned long vpn
, unsigned long shift
,
1637 int ssize
, real_pte_t rpte
, unsigned int subpg_index
)
1639 unsigned long hash
, gslot
, hidx
;
1641 hash
= hpt_hash(vpn
, shift
, ssize
);
1642 hidx
= __rpte_to_hidx(rpte
, subpg_index
);
1643 if (hidx
& _PTEIDX_SECONDARY
)
1645 gslot
= (hash
& htab_hash_mask
) * HPTES_PER_GROUP
;
1646 gslot
+= hidx
& _PTEIDX_GROUP_IX
;
1650 /* WARNING: This is called from hash_low_64.S, if you change this prototype,
1651 * do not forget to update the assembly call site !
1653 void flush_hash_page(unsigned long vpn
, real_pte_t pte
, int psize
, int ssize
,
1654 unsigned long flags
)
1656 unsigned long index
, shift
, gslot
;
1657 int local
= flags
& HPTE_LOCAL_UPDATE
;
1659 DBG_LOW("flush_hash_page(vpn=%016lx)\n", vpn
);
1660 pte_iterate_hashed_subpages(pte
, psize
, vpn
, index
, shift
) {
1661 gslot
= pte_get_hash_gslot(vpn
, shift
, ssize
, pte
, index
);
1662 DBG_LOW(" sub %ld: gslot=%lx\n", index
, gslot
);
1664 * We use same base page size and actual psize, because we don't
1665 * use these functions for hugepage
1667 mmu_hash_ops
.hpte_invalidate(gslot
, vpn
, psize
, psize
,
1669 } pte_iterate_hashed_end();
1671 tm_flush_hash_page(local
);
1674 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1675 void flush_hash_hugepage(unsigned long vsid
, unsigned long addr
,
1676 pmd_t
*pmdp
, unsigned int psize
, int ssize
,
1677 unsigned long flags
)
1679 int i
, max_hpte_count
, valid
;
1680 unsigned long s_addr
;
1681 unsigned char *hpte_slot_array
;
1682 unsigned long hidx
, shift
, vpn
, hash
, slot
;
1683 int local
= flags
& HPTE_LOCAL_UPDATE
;
1685 s_addr
= addr
& HPAGE_PMD_MASK
;
1686 hpte_slot_array
= get_hpte_slot_array(pmdp
);
1688 * IF we try to do a HUGE PTE update after a withdraw is done.
1689 * we will find the below NULL. This happens when we do
1690 * split_huge_page_pmd
1692 if (!hpte_slot_array
)
1695 if (mmu_hash_ops
.hugepage_invalidate
) {
1696 mmu_hash_ops
.hugepage_invalidate(vsid
, s_addr
, hpte_slot_array
,
1697 psize
, ssize
, local
);
1701 * No bluk hpte removal support, invalidate each entry
1703 shift
= mmu_psize_defs
[psize
].shift
;
1704 max_hpte_count
= HPAGE_PMD_SIZE
>> shift
;
1705 for (i
= 0; i
< max_hpte_count
; i
++) {
1707 * 8 bits per each hpte entries
1708 * 000| [ secondary group (one bit) | hidx (3 bits) | valid bit]
1710 valid
= hpte_valid(hpte_slot_array
, i
);
1713 hidx
= hpte_hash_index(hpte_slot_array
, i
);
1716 addr
= s_addr
+ (i
* (1ul << shift
));
1717 vpn
= hpt_vpn(addr
, vsid
, ssize
);
1718 hash
= hpt_hash(vpn
, shift
, ssize
);
1719 if (hidx
& _PTEIDX_SECONDARY
)
1722 slot
= (hash
& htab_hash_mask
) * HPTES_PER_GROUP
;
1723 slot
+= hidx
& _PTEIDX_GROUP_IX
;
1724 mmu_hash_ops
.hpte_invalidate(slot
, vpn
, psize
,
1725 MMU_PAGE_16M
, ssize
, local
);
1728 tm_flush_hash_page(local
);
1730 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
1732 void flush_hash_range(unsigned long number
, int local
)
1734 if (mmu_hash_ops
.flush_hash_range
)
1735 mmu_hash_ops
.flush_hash_range(number
, local
);
1738 struct ppc64_tlb_batch
*batch
=
1739 this_cpu_ptr(&ppc64_tlb_batch
);
1741 for (i
= 0; i
< number
; i
++)
1742 flush_hash_page(batch
->vpn
[i
], batch
->pte
[i
],
1743 batch
->psize
, batch
->ssize
, local
);
1748 * low_hash_fault is called when we the low level hash code failed
1749 * to instert a PTE due to an hypervisor error
1751 void low_hash_fault(struct pt_regs
*regs
, unsigned long address
, int rc
)
1753 enum ctx_state prev_state
= exception_enter();
1755 if (user_mode(regs
)) {
1756 #ifdef CONFIG_PPC_SUBPAGE_PROT
1758 _exception(SIGSEGV
, regs
, SEGV_ACCERR
, address
);
1761 _exception(SIGBUS
, regs
, BUS_ADRERR
, address
);
1763 bad_page_fault(regs
, address
, SIGBUS
);
1765 exception_exit(prev_state
);
1768 long hpte_insert_repeating(unsigned long hash
, unsigned long vpn
,
1769 unsigned long pa
, unsigned long rflags
,
1770 unsigned long vflags
, int psize
, int ssize
)
1772 unsigned long hpte_group
;
1776 hpte_group
= ((hash
& htab_hash_mask
) *
1777 HPTES_PER_GROUP
) & ~0x7UL
;
1779 /* Insert into the hash table, primary slot */
1780 slot
= mmu_hash_ops
.hpte_insert(hpte_group
, vpn
, pa
, rflags
, vflags
,
1781 psize
, psize
, ssize
);
1783 /* Primary is full, try the secondary */
1784 if (unlikely(slot
== -1)) {
1785 hpte_group
= ((~hash
& htab_hash_mask
) *
1786 HPTES_PER_GROUP
) & ~0x7UL
;
1787 slot
= mmu_hash_ops
.hpte_insert(hpte_group
, vpn
, pa
, rflags
,
1788 vflags
| HPTE_V_SECONDARY
,
1789 psize
, psize
, ssize
);
1792 hpte_group
= ((hash
& htab_hash_mask
) *
1793 HPTES_PER_GROUP
)&~0x7UL
;
1795 mmu_hash_ops
.hpte_remove(hpte_group
);
1803 #ifdef CONFIG_DEBUG_PAGEALLOC
1804 static void kernel_map_linear_page(unsigned long vaddr
, unsigned long lmi
)
1807 unsigned long vsid
= get_kernel_vsid(vaddr
, mmu_kernel_ssize
);
1808 unsigned long vpn
= hpt_vpn(vaddr
, vsid
, mmu_kernel_ssize
);
1809 unsigned long mode
= htab_convert_pte_flags(pgprot_val(PAGE_KERNEL
));
1812 hash
= hpt_hash(vpn
, PAGE_SHIFT
, mmu_kernel_ssize
);
1814 /* Don't create HPTE entries for bad address */
1818 ret
= hpte_insert_repeating(hash
, vpn
, __pa(vaddr
), mode
,
1820 mmu_linear_psize
, mmu_kernel_ssize
);
1823 spin_lock(&linear_map_hash_lock
);
1824 BUG_ON(linear_map_hash_slots
[lmi
] & 0x80);
1825 linear_map_hash_slots
[lmi
] = ret
| 0x80;
1826 spin_unlock(&linear_map_hash_lock
);
1829 static void kernel_unmap_linear_page(unsigned long vaddr
, unsigned long lmi
)
1831 unsigned long hash
, hidx
, slot
;
1832 unsigned long vsid
= get_kernel_vsid(vaddr
, mmu_kernel_ssize
);
1833 unsigned long vpn
= hpt_vpn(vaddr
, vsid
, mmu_kernel_ssize
);
1835 hash
= hpt_hash(vpn
, PAGE_SHIFT
, mmu_kernel_ssize
);
1836 spin_lock(&linear_map_hash_lock
);
1837 BUG_ON(!(linear_map_hash_slots
[lmi
] & 0x80));
1838 hidx
= linear_map_hash_slots
[lmi
] & 0x7f;
1839 linear_map_hash_slots
[lmi
] = 0;
1840 spin_unlock(&linear_map_hash_lock
);
1841 if (hidx
& _PTEIDX_SECONDARY
)
1843 slot
= (hash
& htab_hash_mask
) * HPTES_PER_GROUP
;
1844 slot
+= hidx
& _PTEIDX_GROUP_IX
;
1845 mmu_hash_ops
.hpte_invalidate(slot
, vpn
, mmu_linear_psize
,
1847 mmu_kernel_ssize
, 0);
1850 void __kernel_map_pages(struct page
*page
, int numpages
, int enable
)
1852 unsigned long flags
, vaddr
, lmi
;
1855 local_irq_save(flags
);
1856 for (i
= 0; i
< numpages
; i
++, page
++) {
1857 vaddr
= (unsigned long)page_address(page
);
1858 lmi
= __pa(vaddr
) >> PAGE_SHIFT
;
1859 if (lmi
>= linear_map_hash_count
)
1862 kernel_map_linear_page(vaddr
, lmi
);
1864 kernel_unmap_linear_page(vaddr
, lmi
);
1866 local_irq_restore(flags
);
1868 #endif /* CONFIG_DEBUG_PAGEALLOC */
1870 void hash__setup_initial_memory_limit(phys_addr_t first_memblock_base
,
1871 phys_addr_t first_memblock_size
)
1873 /* We don't currently support the first MEMBLOCK not mapping 0
1874 * physical on those processors
1876 BUG_ON(first_memblock_base
!= 0);
1879 * On virtualized systems the first entry is our RMA region aka VRMA,
1880 * non-virtualized 64-bit hash MMU systems don't have a limitation
1881 * on real mode access.
1883 * For guests on platforms before POWER9, we clamp the it limit to 1G
1884 * to avoid some funky things such as RTAS bugs etc...
1886 if (!early_cpu_has_feature(CPU_FTR_HVMODE
)) {
1887 ppc64_rma_size
= first_memblock_size
;
1888 if (!early_cpu_has_feature(CPU_FTR_ARCH_300
))
1889 ppc64_rma_size
= min_t(u64
, ppc64_rma_size
, 0x40000000);
1891 /* Finally limit subsequent allocations */
1892 memblock_set_current_limit(ppc64_rma_size
);
1894 ppc64_rma_size
= ULONG_MAX
;
1898 #ifdef CONFIG_DEBUG_FS
1900 static int hpt_order_get(void *data
, u64
*val
)
1902 *val
= ppc64_pft_size
;
1906 static int hpt_order_set(void *data
, u64 val
)
1908 if (!mmu_hash_ops
.resize_hpt
)
1911 return mmu_hash_ops
.resize_hpt(val
);
1914 DEFINE_SIMPLE_ATTRIBUTE(fops_hpt_order
, hpt_order_get
, hpt_order_set
, "%llu\n");
1916 static int __init
hash64_debugfs(void)
1918 if (!debugfs_create_file("hpt_order", 0600, powerpc_debugfs_root
,
1919 NULL
, &fops_hpt_order
)) {
1920 pr_err("lpar: unable to create hpt_order debugsfs file\n");
1925 machine_device_initcall(pseries
, hash64_debugfs
);
1926 #endif /* CONFIG_DEBUG_FS */