Merge tag 'for_linus' of git://git.kernel.org/pub/scm/linux/kernel/git/mst/vhost
[cris-mirror.git] / arch / powerpc / mm / numa.c
blobedd8d0bc9364f2843688498b221d90f53647390d
1 /*
2 * pSeries NUMA support
4 * Copyright (C) 2002 Anton Blanchard <anton@au.ibm.com>, IBM
6 * This program is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU General Public License
8 * as published by the Free Software Foundation; either version
9 * 2 of the License, or (at your option) any later version.
11 #define pr_fmt(fmt) "numa: " fmt
13 #include <linux/threads.h>
14 #include <linux/bootmem.h>
15 #include <linux/init.h>
16 #include <linux/mm.h>
17 #include <linux/mmzone.h>
18 #include <linux/export.h>
19 #include <linux/nodemask.h>
20 #include <linux/cpu.h>
21 #include <linux/notifier.h>
22 #include <linux/memblock.h>
23 #include <linux/of.h>
24 #include <linux/pfn.h>
25 #include <linux/cpuset.h>
26 #include <linux/node.h>
27 #include <linux/stop_machine.h>
28 #include <linux/proc_fs.h>
29 #include <linux/seq_file.h>
30 #include <linux/uaccess.h>
31 #include <linux/slab.h>
32 #include <asm/cputhreads.h>
33 #include <asm/sparsemem.h>
34 #include <asm/prom.h>
35 #include <asm/smp.h>
36 #include <asm/cputhreads.h>
37 #include <asm/topology.h>
38 #include <asm/firmware.h>
39 #include <asm/paca.h>
40 #include <asm/hvcall.h>
41 #include <asm/setup.h>
42 #include <asm/vdso.h>
43 #include <asm/drmem.h>
45 static int numa_enabled = 1;
47 static char *cmdline __initdata;
49 static int numa_debug;
50 #define dbg(args...) if (numa_debug) { printk(KERN_INFO args); }
52 int numa_cpu_lookup_table[NR_CPUS];
53 cpumask_var_t node_to_cpumask_map[MAX_NUMNODES];
54 struct pglist_data *node_data[MAX_NUMNODES];
56 EXPORT_SYMBOL(numa_cpu_lookup_table);
57 EXPORT_SYMBOL(node_to_cpumask_map);
58 EXPORT_SYMBOL(node_data);
60 static int min_common_depth;
61 static int n_mem_addr_cells, n_mem_size_cells;
62 static int form1_affinity;
64 #define MAX_DISTANCE_REF_POINTS 4
65 static int distance_ref_points_depth;
66 static const __be32 *distance_ref_points;
67 static int distance_lookup_table[MAX_NUMNODES][MAX_DISTANCE_REF_POINTS];
70 * Allocate node_to_cpumask_map based on number of available nodes
71 * Requires node_possible_map to be valid.
73 * Note: cpumask_of_node() is not valid until after this is done.
75 static void __init setup_node_to_cpumask_map(void)
77 unsigned int node;
79 /* setup nr_node_ids if not done yet */
80 if (nr_node_ids == MAX_NUMNODES)
81 setup_nr_node_ids();
83 /* allocate the map */
84 for_each_node(node)
85 alloc_bootmem_cpumask_var(&node_to_cpumask_map[node]);
87 /* cpumask_of_node() will now work */
88 dbg("Node to cpumask map for %d nodes\n", nr_node_ids);
91 static int __init fake_numa_create_new_node(unsigned long end_pfn,
92 unsigned int *nid)
94 unsigned long long mem;
95 char *p = cmdline;
96 static unsigned int fake_nid;
97 static unsigned long long curr_boundary;
100 * Modify node id, iff we started creating NUMA nodes
101 * We want to continue from where we left of the last time
103 if (fake_nid)
104 *nid = fake_nid;
106 * In case there are no more arguments to parse, the
107 * node_id should be the same as the last fake node id
108 * (we've handled this above).
110 if (!p)
111 return 0;
113 mem = memparse(p, &p);
114 if (!mem)
115 return 0;
117 if (mem < curr_boundary)
118 return 0;
120 curr_boundary = mem;
122 if ((end_pfn << PAGE_SHIFT) > mem) {
124 * Skip commas and spaces
126 while (*p == ',' || *p == ' ' || *p == '\t')
127 p++;
129 cmdline = p;
130 fake_nid++;
131 *nid = fake_nid;
132 dbg("created new fake_node with id %d\n", fake_nid);
133 return 1;
135 return 0;
138 static void reset_numa_cpu_lookup_table(void)
140 unsigned int cpu;
142 for_each_possible_cpu(cpu)
143 numa_cpu_lookup_table[cpu] = -1;
146 static void map_cpu_to_node(int cpu, int node)
148 update_numa_cpu_lookup_table(cpu, node);
150 dbg("adding cpu %d to node %d\n", cpu, node);
152 if (!(cpumask_test_cpu(cpu, node_to_cpumask_map[node])))
153 cpumask_set_cpu(cpu, node_to_cpumask_map[node]);
156 #if defined(CONFIG_HOTPLUG_CPU) || defined(CONFIG_PPC_SPLPAR)
157 static void unmap_cpu_from_node(unsigned long cpu)
159 int node = numa_cpu_lookup_table[cpu];
161 dbg("removing cpu %lu from node %d\n", cpu, node);
163 if (cpumask_test_cpu(cpu, node_to_cpumask_map[node])) {
164 cpumask_clear_cpu(cpu, node_to_cpumask_map[node]);
165 } else {
166 printk(KERN_ERR "WARNING: cpu %lu not found in node %d\n",
167 cpu, node);
170 #endif /* CONFIG_HOTPLUG_CPU || CONFIG_PPC_SPLPAR */
172 /* must hold reference to node during call */
173 static const __be32 *of_get_associativity(struct device_node *dev)
175 return of_get_property(dev, "ibm,associativity", NULL);
178 int __node_distance(int a, int b)
180 int i;
181 int distance = LOCAL_DISTANCE;
183 if (!form1_affinity)
184 return ((a == b) ? LOCAL_DISTANCE : REMOTE_DISTANCE);
186 for (i = 0; i < distance_ref_points_depth; i++) {
187 if (distance_lookup_table[a][i] == distance_lookup_table[b][i])
188 break;
190 /* Double the distance for each NUMA level */
191 distance *= 2;
194 return distance;
196 EXPORT_SYMBOL(__node_distance);
198 static void initialize_distance_lookup_table(int nid,
199 const __be32 *associativity)
201 int i;
203 if (!form1_affinity)
204 return;
206 for (i = 0; i < distance_ref_points_depth; i++) {
207 const __be32 *entry;
209 entry = &associativity[be32_to_cpu(distance_ref_points[i]) - 1];
210 distance_lookup_table[nid][i] = of_read_number(entry, 1);
214 /* Returns nid in the range [0..MAX_NUMNODES-1], or -1 if no useful numa
215 * info is found.
217 static int associativity_to_nid(const __be32 *associativity)
219 int nid = -1;
221 if (min_common_depth == -1)
222 goto out;
224 if (of_read_number(associativity, 1) >= min_common_depth)
225 nid = of_read_number(&associativity[min_common_depth], 1);
227 /* POWER4 LPAR uses 0xffff as invalid node */
228 if (nid == 0xffff || nid >= MAX_NUMNODES)
229 nid = -1;
231 if (nid > 0 &&
232 of_read_number(associativity, 1) >= distance_ref_points_depth) {
234 * Skip the length field and send start of associativity array
236 initialize_distance_lookup_table(nid, associativity + 1);
239 out:
240 return nid;
243 /* Returns the nid associated with the given device tree node,
244 * or -1 if not found.
246 static int of_node_to_nid_single(struct device_node *device)
248 int nid = -1;
249 const __be32 *tmp;
251 tmp = of_get_associativity(device);
252 if (tmp)
253 nid = associativity_to_nid(tmp);
254 return nid;
257 /* Walk the device tree upwards, looking for an associativity id */
258 int of_node_to_nid(struct device_node *device)
260 int nid = -1;
262 of_node_get(device);
263 while (device) {
264 nid = of_node_to_nid_single(device);
265 if (nid != -1)
266 break;
268 device = of_get_next_parent(device);
270 of_node_put(device);
272 return nid;
274 EXPORT_SYMBOL(of_node_to_nid);
276 static int __init find_min_common_depth(void)
278 int depth;
279 struct device_node *root;
281 if (firmware_has_feature(FW_FEATURE_OPAL))
282 root = of_find_node_by_path("/ibm,opal");
283 else
284 root = of_find_node_by_path("/rtas");
285 if (!root)
286 root = of_find_node_by_path("/");
289 * This property is a set of 32-bit integers, each representing
290 * an index into the ibm,associativity nodes.
292 * With form 0 affinity the first integer is for an SMP configuration
293 * (should be all 0's) and the second is for a normal NUMA
294 * configuration. We have only one level of NUMA.
296 * With form 1 affinity the first integer is the most significant
297 * NUMA boundary and the following are progressively less significant
298 * boundaries. There can be more than one level of NUMA.
300 distance_ref_points = of_get_property(root,
301 "ibm,associativity-reference-points",
302 &distance_ref_points_depth);
304 if (!distance_ref_points) {
305 dbg("NUMA: ibm,associativity-reference-points not found.\n");
306 goto err;
309 distance_ref_points_depth /= sizeof(int);
311 if (firmware_has_feature(FW_FEATURE_OPAL) ||
312 firmware_has_feature(FW_FEATURE_TYPE1_AFFINITY)) {
313 dbg("Using form 1 affinity\n");
314 form1_affinity = 1;
317 if (form1_affinity) {
318 depth = of_read_number(distance_ref_points, 1);
319 } else {
320 if (distance_ref_points_depth < 2) {
321 printk(KERN_WARNING "NUMA: "
322 "short ibm,associativity-reference-points\n");
323 goto err;
326 depth = of_read_number(&distance_ref_points[1], 1);
330 * Warn and cap if the hardware supports more than
331 * MAX_DISTANCE_REF_POINTS domains.
333 if (distance_ref_points_depth > MAX_DISTANCE_REF_POINTS) {
334 printk(KERN_WARNING "NUMA: distance array capped at "
335 "%d entries\n", MAX_DISTANCE_REF_POINTS);
336 distance_ref_points_depth = MAX_DISTANCE_REF_POINTS;
339 of_node_put(root);
340 return depth;
342 err:
343 of_node_put(root);
344 return -1;
347 static void __init get_n_mem_cells(int *n_addr_cells, int *n_size_cells)
349 struct device_node *memory = NULL;
351 memory = of_find_node_by_type(memory, "memory");
352 if (!memory)
353 panic("numa.c: No memory nodes found!");
355 *n_addr_cells = of_n_addr_cells(memory);
356 *n_size_cells = of_n_size_cells(memory);
357 of_node_put(memory);
360 static unsigned long read_n_cells(int n, const __be32 **buf)
362 unsigned long result = 0;
364 while (n--) {
365 result = (result << 32) | of_read_number(*buf, 1);
366 (*buf)++;
368 return result;
371 struct assoc_arrays {
372 u32 n_arrays;
373 u32 array_sz;
374 const __be32 *arrays;
378 * Retrieve and validate the list of associativity arrays for drconf
379 * memory from the ibm,associativity-lookup-arrays property of the
380 * device tree..
382 * The layout of the ibm,associativity-lookup-arrays property is a number N
383 * indicating the number of associativity arrays, followed by a number M
384 * indicating the size of each associativity array, followed by a list
385 * of N associativity arrays.
387 static int of_get_assoc_arrays(struct assoc_arrays *aa)
389 struct device_node *memory;
390 const __be32 *prop;
391 u32 len;
393 memory = of_find_node_by_path("/ibm,dynamic-reconfiguration-memory");
394 if (!memory)
395 return -1;
397 prop = of_get_property(memory, "ibm,associativity-lookup-arrays", &len);
398 if (!prop || len < 2 * sizeof(unsigned int)) {
399 of_node_put(memory);
400 return -1;
403 aa->n_arrays = of_read_number(prop++, 1);
404 aa->array_sz = of_read_number(prop++, 1);
406 of_node_put(memory);
408 /* Now that we know the number of arrays and size of each array,
409 * revalidate the size of the property read in.
411 if (len < (aa->n_arrays * aa->array_sz + 2) * sizeof(unsigned int))
412 return -1;
414 aa->arrays = prop;
415 return 0;
419 * This is like of_node_to_nid_single() for memory represented in the
420 * ibm,dynamic-reconfiguration-memory node.
422 static int of_drconf_to_nid_single(struct drmem_lmb *lmb)
424 struct assoc_arrays aa = { .arrays = NULL };
425 int default_nid = 0;
426 int nid = default_nid;
427 int rc, index;
429 rc = of_get_assoc_arrays(&aa);
430 if (rc)
431 return default_nid;
433 if (min_common_depth > 0 && min_common_depth <= aa.array_sz &&
434 !(lmb->flags & DRCONF_MEM_AI_INVALID) &&
435 lmb->aa_index < aa.n_arrays) {
436 index = lmb->aa_index * aa.array_sz + min_common_depth - 1;
437 nid = of_read_number(&aa.arrays[index], 1);
439 if (nid == 0xffff || nid >= MAX_NUMNODES)
440 nid = default_nid;
442 if (nid > 0) {
443 index = lmb->aa_index * aa.array_sz;
444 initialize_distance_lookup_table(nid,
445 &aa.arrays[index]);
449 return nid;
453 * Figure out to which domain a cpu belongs and stick it there.
454 * Return the id of the domain used.
456 static int numa_setup_cpu(unsigned long lcpu)
458 int nid = -1;
459 struct device_node *cpu;
462 * If a valid cpu-to-node mapping is already available, use it
463 * directly instead of querying the firmware, since it represents
464 * the most recent mapping notified to us by the platform (eg: VPHN).
466 if ((nid = numa_cpu_lookup_table[lcpu]) >= 0) {
467 map_cpu_to_node(lcpu, nid);
468 return nid;
471 cpu = of_get_cpu_node(lcpu, NULL);
473 if (!cpu) {
474 WARN_ON(1);
475 if (cpu_present(lcpu))
476 goto out_present;
477 else
478 goto out;
481 nid = of_node_to_nid_single(cpu);
483 out_present:
484 if (nid < 0 || !node_possible(nid))
485 nid = first_online_node;
487 map_cpu_to_node(lcpu, nid);
488 of_node_put(cpu);
489 out:
490 return nid;
493 static void verify_cpu_node_mapping(int cpu, int node)
495 int base, sibling, i;
497 /* Verify that all the threads in the core belong to the same node */
498 base = cpu_first_thread_sibling(cpu);
500 for (i = 0; i < threads_per_core; i++) {
501 sibling = base + i;
503 if (sibling == cpu || cpu_is_offline(sibling))
504 continue;
506 if (cpu_to_node(sibling) != node) {
507 WARN(1, "CPU thread siblings %d and %d don't belong"
508 " to the same node!\n", cpu, sibling);
509 break;
514 /* Must run before sched domains notifier. */
515 static int ppc_numa_cpu_prepare(unsigned int cpu)
517 int nid;
519 nid = numa_setup_cpu(cpu);
520 verify_cpu_node_mapping(cpu, nid);
521 return 0;
524 static int ppc_numa_cpu_dead(unsigned int cpu)
526 #ifdef CONFIG_HOTPLUG_CPU
527 unmap_cpu_from_node(cpu);
528 #endif
529 return 0;
533 * Check and possibly modify a memory region to enforce the memory limit.
535 * Returns the size the region should have to enforce the memory limit.
536 * This will either be the original value of size, a truncated value,
537 * or zero. If the returned value of size is 0 the region should be
538 * discarded as it lies wholly above the memory limit.
540 static unsigned long __init numa_enforce_memory_limit(unsigned long start,
541 unsigned long size)
544 * We use memblock_end_of_DRAM() in here instead of memory_limit because
545 * we've already adjusted it for the limit and it takes care of
546 * having memory holes below the limit. Also, in the case of
547 * iommu_is_off, memory_limit is not set but is implicitly enforced.
550 if (start + size <= memblock_end_of_DRAM())
551 return size;
553 if (start >= memblock_end_of_DRAM())
554 return 0;
556 return memblock_end_of_DRAM() - start;
560 * Reads the counter for a given entry in
561 * linux,drconf-usable-memory property
563 static inline int __init read_usm_ranges(const __be32 **usm)
566 * For each lmb in ibm,dynamic-memory a corresponding
567 * entry in linux,drconf-usable-memory property contains
568 * a counter followed by that many (base, size) duple.
569 * read the counter from linux,drconf-usable-memory
571 return read_n_cells(n_mem_size_cells, usm);
575 * Extract NUMA information from the ibm,dynamic-reconfiguration-memory
576 * node. This assumes n_mem_{addr,size}_cells have been set.
578 static void __init numa_setup_drmem_lmb(struct drmem_lmb *lmb,
579 const __be32 **usm)
581 unsigned int ranges, is_kexec_kdump = 0;
582 unsigned long base, size, sz;
583 int nid;
586 * Skip this block if the reserved bit is set in flags (0x80)
587 * or if the block is not assigned to this partition (0x8)
589 if ((lmb->flags & DRCONF_MEM_RESERVED)
590 || !(lmb->flags & DRCONF_MEM_ASSIGNED))
591 return;
593 if (*usm)
594 is_kexec_kdump = 1;
596 base = lmb->base_addr;
597 size = drmem_lmb_size();
598 ranges = 1;
600 if (is_kexec_kdump) {
601 ranges = read_usm_ranges(usm);
602 if (!ranges) /* there are no (base, size) duple */
603 return;
606 do {
607 if (is_kexec_kdump) {
608 base = read_n_cells(n_mem_addr_cells, usm);
609 size = read_n_cells(n_mem_size_cells, usm);
612 nid = of_drconf_to_nid_single(lmb);
613 fake_numa_create_new_node(((base + size) >> PAGE_SHIFT),
614 &nid);
615 node_set_online(nid);
616 sz = numa_enforce_memory_limit(base, size);
617 if (sz)
618 memblock_set_node(base, sz, &memblock.memory, nid);
619 } while (--ranges);
622 static int __init parse_numa_properties(void)
624 struct device_node *memory;
625 int default_nid = 0;
626 unsigned long i;
628 if (numa_enabled == 0) {
629 printk(KERN_WARNING "NUMA disabled by user\n");
630 return -1;
633 min_common_depth = find_min_common_depth();
635 if (min_common_depth < 0)
636 return min_common_depth;
638 dbg("NUMA associativity depth for CPU/Memory: %d\n", min_common_depth);
641 * Even though we connect cpus to numa domains later in SMP
642 * init, we need to know the node ids now. This is because
643 * each node to be onlined must have NODE_DATA etc backing it.
645 for_each_present_cpu(i) {
646 struct device_node *cpu;
647 int nid;
649 cpu = of_get_cpu_node(i, NULL);
650 BUG_ON(!cpu);
651 nid = of_node_to_nid_single(cpu);
652 of_node_put(cpu);
655 * Don't fall back to default_nid yet -- we will plug
656 * cpus into nodes once the memory scan has discovered
657 * the topology.
659 if (nid < 0)
660 continue;
661 node_set_online(nid);
664 get_n_mem_cells(&n_mem_addr_cells, &n_mem_size_cells);
666 for_each_node_by_type(memory, "memory") {
667 unsigned long start;
668 unsigned long size;
669 int nid;
670 int ranges;
671 const __be32 *memcell_buf;
672 unsigned int len;
674 memcell_buf = of_get_property(memory,
675 "linux,usable-memory", &len);
676 if (!memcell_buf || len <= 0)
677 memcell_buf = of_get_property(memory, "reg", &len);
678 if (!memcell_buf || len <= 0)
679 continue;
681 /* ranges in cell */
682 ranges = (len >> 2) / (n_mem_addr_cells + n_mem_size_cells);
683 new_range:
684 /* these are order-sensitive, and modify the buffer pointer */
685 start = read_n_cells(n_mem_addr_cells, &memcell_buf);
686 size = read_n_cells(n_mem_size_cells, &memcell_buf);
689 * Assumption: either all memory nodes or none will
690 * have associativity properties. If none, then
691 * everything goes to default_nid.
693 nid = of_node_to_nid_single(memory);
694 if (nid < 0)
695 nid = default_nid;
697 fake_numa_create_new_node(((start + size) >> PAGE_SHIFT), &nid);
698 node_set_online(nid);
700 size = numa_enforce_memory_limit(start, size);
701 if (size)
702 memblock_set_node(start, size, &memblock.memory, nid);
704 if (--ranges)
705 goto new_range;
709 * Now do the same thing for each MEMBLOCK listed in the
710 * ibm,dynamic-memory property in the
711 * ibm,dynamic-reconfiguration-memory node.
713 memory = of_find_node_by_path("/ibm,dynamic-reconfiguration-memory");
714 if (memory) {
715 walk_drmem_lmbs(memory, numa_setup_drmem_lmb);
716 of_node_put(memory);
719 return 0;
722 static void __init setup_nonnuma(void)
724 unsigned long top_of_ram = memblock_end_of_DRAM();
725 unsigned long total_ram = memblock_phys_mem_size();
726 unsigned long start_pfn, end_pfn;
727 unsigned int nid = 0;
728 struct memblock_region *reg;
730 printk(KERN_DEBUG "Top of RAM: 0x%lx, Total RAM: 0x%lx\n",
731 top_of_ram, total_ram);
732 printk(KERN_DEBUG "Memory hole size: %ldMB\n",
733 (top_of_ram - total_ram) >> 20);
735 for_each_memblock(memory, reg) {
736 start_pfn = memblock_region_memory_base_pfn(reg);
737 end_pfn = memblock_region_memory_end_pfn(reg);
739 fake_numa_create_new_node(end_pfn, &nid);
740 memblock_set_node(PFN_PHYS(start_pfn),
741 PFN_PHYS(end_pfn - start_pfn),
742 &memblock.memory, nid);
743 node_set_online(nid);
747 void __init dump_numa_cpu_topology(void)
749 unsigned int node;
750 unsigned int cpu, count;
752 if (min_common_depth == -1 || !numa_enabled)
753 return;
755 for_each_online_node(node) {
756 pr_info("Node %d CPUs:", node);
758 count = 0;
760 * If we used a CPU iterator here we would miss printing
761 * the holes in the cpumap.
763 for (cpu = 0; cpu < nr_cpu_ids; cpu++) {
764 if (cpumask_test_cpu(cpu,
765 node_to_cpumask_map[node])) {
766 if (count == 0)
767 pr_cont(" %u", cpu);
768 ++count;
769 } else {
770 if (count > 1)
771 pr_cont("-%u", cpu - 1);
772 count = 0;
776 if (count > 1)
777 pr_cont("-%u", nr_cpu_ids - 1);
778 pr_cont("\n");
782 /* Initialize NODE_DATA for a node on the local memory */
783 static void __init setup_node_data(int nid, u64 start_pfn, u64 end_pfn)
785 u64 spanned_pages = end_pfn - start_pfn;
786 const size_t nd_size = roundup(sizeof(pg_data_t), SMP_CACHE_BYTES);
787 u64 nd_pa;
788 void *nd;
789 int tnid;
791 nd_pa = memblock_alloc_try_nid(nd_size, SMP_CACHE_BYTES, nid);
792 nd = __va(nd_pa);
794 /* report and initialize */
795 pr_info(" NODE_DATA [mem %#010Lx-%#010Lx]\n",
796 nd_pa, nd_pa + nd_size - 1);
797 tnid = early_pfn_to_nid(nd_pa >> PAGE_SHIFT);
798 if (tnid != nid)
799 pr_info(" NODE_DATA(%d) on node %d\n", nid, tnid);
801 node_data[nid] = nd;
802 memset(NODE_DATA(nid), 0, sizeof(pg_data_t));
803 NODE_DATA(nid)->node_id = nid;
804 NODE_DATA(nid)->node_start_pfn = start_pfn;
805 NODE_DATA(nid)->node_spanned_pages = spanned_pages;
808 static void __init find_possible_nodes(void)
810 struct device_node *rtas;
811 u32 numnodes, i;
813 if (min_common_depth <= 0)
814 return;
816 rtas = of_find_node_by_path("/rtas");
817 if (!rtas)
818 return;
820 if (of_property_read_u32_index(rtas,
821 "ibm,max-associativity-domains",
822 min_common_depth, &numnodes))
823 goto out;
825 for (i = 0; i < numnodes; i++) {
826 if (!node_possible(i))
827 node_set(i, node_possible_map);
830 out:
831 of_node_put(rtas);
834 void __init initmem_init(void)
836 int nid, cpu;
838 max_low_pfn = memblock_end_of_DRAM() >> PAGE_SHIFT;
839 max_pfn = max_low_pfn;
841 if (parse_numa_properties())
842 setup_nonnuma();
844 memblock_dump_all();
847 * Modify the set of possible NUMA nodes to reflect information
848 * available about the set of online nodes, and the set of nodes
849 * that we expect to make use of for this platform's affinity
850 * calculations.
852 nodes_and(node_possible_map, node_possible_map, node_online_map);
854 find_possible_nodes();
856 for_each_online_node(nid) {
857 unsigned long start_pfn, end_pfn;
859 get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
860 setup_node_data(nid, start_pfn, end_pfn);
861 sparse_memory_present_with_active_regions(nid);
864 sparse_init();
866 setup_node_to_cpumask_map();
868 reset_numa_cpu_lookup_table();
871 * We need the numa_cpu_lookup_table to be accurate for all CPUs,
872 * even before we online them, so that we can use cpu_to_{node,mem}
873 * early in boot, cf. smp_prepare_cpus().
874 * _nocalls() + manual invocation is used because cpuhp is not yet
875 * initialized for the boot CPU.
877 cpuhp_setup_state_nocalls(CPUHP_POWER_NUMA_PREPARE, "powerpc/numa:prepare",
878 ppc_numa_cpu_prepare, ppc_numa_cpu_dead);
879 for_each_present_cpu(cpu)
880 numa_setup_cpu(cpu);
883 static int __init early_numa(char *p)
885 if (!p)
886 return 0;
888 if (strstr(p, "off"))
889 numa_enabled = 0;
891 if (strstr(p, "debug"))
892 numa_debug = 1;
894 p = strstr(p, "fake=");
895 if (p)
896 cmdline = p + strlen("fake=");
898 return 0;
900 early_param("numa", early_numa);
902 static bool topology_updates_enabled = true;
904 static int __init early_topology_updates(char *p)
906 if (!p)
907 return 0;
909 if (!strcmp(p, "off")) {
910 pr_info("Disabling topology updates\n");
911 topology_updates_enabled = false;
914 return 0;
916 early_param("topology_updates", early_topology_updates);
918 #ifdef CONFIG_MEMORY_HOTPLUG
920 * Find the node associated with a hot added memory section for
921 * memory represented in the device tree by the property
922 * ibm,dynamic-reconfiguration-memory/ibm,dynamic-memory.
924 static int hot_add_drconf_scn_to_nid(unsigned long scn_addr)
926 struct drmem_lmb *lmb;
927 unsigned long lmb_size;
928 int nid = -1;
930 lmb_size = drmem_lmb_size();
932 for_each_drmem_lmb(lmb) {
933 /* skip this block if it is reserved or not assigned to
934 * this partition */
935 if ((lmb->flags & DRCONF_MEM_RESERVED)
936 || !(lmb->flags & DRCONF_MEM_ASSIGNED))
937 continue;
939 if ((scn_addr < lmb->base_addr)
940 || (scn_addr >= (lmb->base_addr + lmb_size)))
941 continue;
943 nid = of_drconf_to_nid_single(lmb);
944 break;
947 return nid;
951 * Find the node associated with a hot added memory section for memory
952 * represented in the device tree as a node (i.e. memory@XXXX) for
953 * each memblock.
955 static int hot_add_node_scn_to_nid(unsigned long scn_addr)
957 struct device_node *memory;
958 int nid = -1;
960 for_each_node_by_type(memory, "memory") {
961 unsigned long start, size;
962 int ranges;
963 const __be32 *memcell_buf;
964 unsigned int len;
966 memcell_buf = of_get_property(memory, "reg", &len);
967 if (!memcell_buf || len <= 0)
968 continue;
970 /* ranges in cell */
971 ranges = (len >> 2) / (n_mem_addr_cells + n_mem_size_cells);
973 while (ranges--) {
974 start = read_n_cells(n_mem_addr_cells, &memcell_buf);
975 size = read_n_cells(n_mem_size_cells, &memcell_buf);
977 if ((scn_addr < start) || (scn_addr >= (start + size)))
978 continue;
980 nid = of_node_to_nid_single(memory);
981 break;
984 if (nid >= 0)
985 break;
988 of_node_put(memory);
990 return nid;
994 * Find the node associated with a hot added memory section. Section
995 * corresponds to a SPARSEMEM section, not an MEMBLOCK. It is assumed that
996 * sections are fully contained within a single MEMBLOCK.
998 int hot_add_scn_to_nid(unsigned long scn_addr)
1000 struct device_node *memory = NULL;
1001 int nid;
1003 if (!numa_enabled || (min_common_depth < 0))
1004 return first_online_node;
1006 memory = of_find_node_by_path("/ibm,dynamic-reconfiguration-memory");
1007 if (memory) {
1008 nid = hot_add_drconf_scn_to_nid(scn_addr);
1009 of_node_put(memory);
1010 } else {
1011 nid = hot_add_node_scn_to_nid(scn_addr);
1014 if (nid < 0 || !node_possible(nid))
1015 nid = first_online_node;
1017 return nid;
1020 static u64 hot_add_drconf_memory_max(void)
1022 struct device_node *memory = NULL;
1023 struct device_node *dn = NULL;
1024 const __be64 *lrdr = NULL;
1026 dn = of_find_node_by_path("/rtas");
1027 if (dn) {
1028 lrdr = of_get_property(dn, "ibm,lrdr-capacity", NULL);
1029 of_node_put(dn);
1030 if (lrdr)
1031 return be64_to_cpup(lrdr);
1034 memory = of_find_node_by_path("/ibm,dynamic-reconfiguration-memory");
1035 if (memory) {
1036 of_node_put(memory);
1037 return drmem_lmb_memory_max();
1039 return 0;
1043 * memory_hotplug_max - return max address of memory that may be added
1045 * This is currently only used on systems that support drconfig memory
1046 * hotplug.
1048 u64 memory_hotplug_max(void)
1050 return max(hot_add_drconf_memory_max(), memblock_end_of_DRAM());
1052 #endif /* CONFIG_MEMORY_HOTPLUG */
1054 /* Virtual Processor Home Node (VPHN) support */
1055 #ifdef CONFIG_PPC_SPLPAR
1057 #include "vphn.h"
1059 struct topology_update_data {
1060 struct topology_update_data *next;
1061 unsigned int cpu;
1062 int old_nid;
1063 int new_nid;
1066 #define TOPOLOGY_DEF_TIMER_SECS 60
1068 static u8 vphn_cpu_change_counts[NR_CPUS][MAX_DISTANCE_REF_POINTS];
1069 static cpumask_t cpu_associativity_changes_mask;
1070 static int vphn_enabled;
1071 static int prrn_enabled;
1072 static void reset_topology_timer(void);
1073 static int topology_timer_secs = 1;
1074 static int topology_inited;
1075 static int topology_update_needed;
1078 * Change polling interval for associativity changes.
1080 int timed_topology_update(int nsecs)
1082 if (vphn_enabled) {
1083 if (nsecs > 0)
1084 topology_timer_secs = nsecs;
1085 else
1086 topology_timer_secs = TOPOLOGY_DEF_TIMER_SECS;
1088 reset_topology_timer();
1091 return 0;
1095 * Store the current values of the associativity change counters in the
1096 * hypervisor.
1098 static void setup_cpu_associativity_change_counters(void)
1100 int cpu;
1102 /* The VPHN feature supports a maximum of 8 reference points */
1103 BUILD_BUG_ON(MAX_DISTANCE_REF_POINTS > 8);
1105 for_each_possible_cpu(cpu) {
1106 int i;
1107 u8 *counts = vphn_cpu_change_counts[cpu];
1108 volatile u8 *hypervisor_counts = lppaca[cpu].vphn_assoc_counts;
1110 for (i = 0; i < distance_ref_points_depth; i++)
1111 counts[i] = hypervisor_counts[i];
1116 * The hypervisor maintains a set of 8 associativity change counters in
1117 * the VPA of each cpu that correspond to the associativity levels in the
1118 * ibm,associativity-reference-points property. When an associativity
1119 * level changes, the corresponding counter is incremented.
1121 * Set a bit in cpu_associativity_changes_mask for each cpu whose home
1122 * node associativity levels have changed.
1124 * Returns the number of cpus with unhandled associativity changes.
1126 static int update_cpu_associativity_changes_mask(void)
1128 int cpu;
1129 cpumask_t *changes = &cpu_associativity_changes_mask;
1131 for_each_possible_cpu(cpu) {
1132 int i, changed = 0;
1133 u8 *counts = vphn_cpu_change_counts[cpu];
1134 volatile u8 *hypervisor_counts = lppaca[cpu].vphn_assoc_counts;
1136 for (i = 0; i < distance_ref_points_depth; i++) {
1137 if (hypervisor_counts[i] != counts[i]) {
1138 counts[i] = hypervisor_counts[i];
1139 changed = 1;
1142 if (changed) {
1143 cpumask_or(changes, changes, cpu_sibling_mask(cpu));
1144 cpu = cpu_last_thread_sibling(cpu);
1148 return cpumask_weight(changes);
1152 * Retrieve the new associativity information for a virtual processor's
1153 * home node.
1155 static long hcall_vphn(unsigned long cpu, __be32 *associativity)
1157 long rc;
1158 long retbuf[PLPAR_HCALL9_BUFSIZE] = {0};
1159 u64 flags = 1;
1160 int hwcpu = get_hard_smp_processor_id(cpu);
1162 rc = plpar_hcall9(H_HOME_NODE_ASSOCIATIVITY, retbuf, flags, hwcpu);
1163 vphn_unpack_associativity(retbuf, associativity);
1165 return rc;
1168 static long vphn_get_associativity(unsigned long cpu,
1169 __be32 *associativity)
1171 long rc;
1173 rc = hcall_vphn(cpu, associativity);
1175 switch (rc) {
1176 case H_FUNCTION:
1177 printk(KERN_INFO
1178 "VPHN is not supported. Disabling polling...\n");
1179 stop_topology_update();
1180 break;
1181 case H_HARDWARE:
1182 printk(KERN_ERR
1183 "hcall_vphn() experienced a hardware fault "
1184 "preventing VPHN. Disabling polling...\n");
1185 stop_topology_update();
1186 break;
1187 case H_SUCCESS:
1188 dbg("VPHN hcall succeeded. Reset polling...\n");
1189 timed_topology_update(0);
1190 break;
1193 return rc;
1196 int find_and_online_cpu_nid(int cpu)
1198 __be32 associativity[VPHN_ASSOC_BUFSIZE] = {0};
1199 int new_nid;
1201 /* Use associativity from first thread for all siblings */
1202 vphn_get_associativity(cpu, associativity);
1203 new_nid = associativity_to_nid(associativity);
1204 if (new_nid < 0 || !node_possible(new_nid))
1205 new_nid = first_online_node;
1207 if (NODE_DATA(new_nid) == NULL) {
1208 #ifdef CONFIG_MEMORY_HOTPLUG
1210 * Need to ensure that NODE_DATA is initialized for a node from
1211 * available memory (see memblock_alloc_try_nid). If unable to
1212 * init the node, then default to nearest node that has memory
1213 * installed.
1215 if (try_online_node(new_nid))
1216 new_nid = first_online_node;
1217 #else
1219 * Default to using the nearest node that has memory installed.
1220 * Otherwise, it would be necessary to patch the kernel MM code
1221 * to deal with more memoryless-node error conditions.
1223 new_nid = first_online_node;
1224 #endif
1227 pr_debug("%s:%d cpu %d nid %d\n", __FUNCTION__, __LINE__,
1228 cpu, new_nid);
1229 return new_nid;
1233 * Update the CPU maps and sysfs entries for a single CPU when its NUMA
1234 * characteristics change. This function doesn't perform any locking and is
1235 * only safe to call from stop_machine().
1237 static int update_cpu_topology(void *data)
1239 struct topology_update_data *update;
1240 unsigned long cpu;
1242 if (!data)
1243 return -EINVAL;
1245 cpu = smp_processor_id();
1247 for (update = data; update; update = update->next) {
1248 int new_nid = update->new_nid;
1249 if (cpu != update->cpu)
1250 continue;
1252 unmap_cpu_from_node(cpu);
1253 map_cpu_to_node(cpu, new_nid);
1254 set_cpu_numa_node(cpu, new_nid);
1255 set_cpu_numa_mem(cpu, local_memory_node(new_nid));
1256 vdso_getcpu_init();
1259 return 0;
1262 static int update_lookup_table(void *data)
1264 struct topology_update_data *update;
1266 if (!data)
1267 return -EINVAL;
1270 * Upon topology update, the numa-cpu lookup table needs to be updated
1271 * for all threads in the core, including offline CPUs, to ensure that
1272 * future hotplug operations respect the cpu-to-node associativity
1273 * properly.
1275 for (update = data; update; update = update->next) {
1276 int nid, base, j;
1278 nid = update->new_nid;
1279 base = cpu_first_thread_sibling(update->cpu);
1281 for (j = 0; j < threads_per_core; j++) {
1282 update_numa_cpu_lookup_table(base + j, nid);
1286 return 0;
1290 * Update the node maps and sysfs entries for each cpu whose home node
1291 * has changed. Returns 1 when the topology has changed, and 0 otherwise.
1293 * cpus_locked says whether we already hold cpu_hotplug_lock.
1295 int numa_update_cpu_topology(bool cpus_locked)
1297 unsigned int cpu, sibling, changed = 0;
1298 struct topology_update_data *updates, *ud;
1299 cpumask_t updated_cpus;
1300 struct device *dev;
1301 int weight, new_nid, i = 0;
1303 if (!prrn_enabled && !vphn_enabled) {
1304 if (!topology_inited)
1305 topology_update_needed = 1;
1306 return 0;
1309 weight = cpumask_weight(&cpu_associativity_changes_mask);
1310 if (!weight)
1311 return 0;
1313 updates = kzalloc(weight * (sizeof(*updates)), GFP_KERNEL);
1314 if (!updates)
1315 return 0;
1317 cpumask_clear(&updated_cpus);
1319 for_each_cpu(cpu, &cpu_associativity_changes_mask) {
1321 * If siblings aren't flagged for changes, updates list
1322 * will be too short. Skip on this update and set for next
1323 * update.
1325 if (!cpumask_subset(cpu_sibling_mask(cpu),
1326 &cpu_associativity_changes_mask)) {
1327 pr_info("Sibling bits not set for associativity "
1328 "change, cpu%d\n", cpu);
1329 cpumask_or(&cpu_associativity_changes_mask,
1330 &cpu_associativity_changes_mask,
1331 cpu_sibling_mask(cpu));
1332 cpu = cpu_last_thread_sibling(cpu);
1333 continue;
1336 new_nid = find_and_online_cpu_nid(cpu);
1338 if (new_nid == numa_cpu_lookup_table[cpu]) {
1339 cpumask_andnot(&cpu_associativity_changes_mask,
1340 &cpu_associativity_changes_mask,
1341 cpu_sibling_mask(cpu));
1342 dbg("Assoc chg gives same node %d for cpu%d\n",
1343 new_nid, cpu);
1344 cpu = cpu_last_thread_sibling(cpu);
1345 continue;
1348 for_each_cpu(sibling, cpu_sibling_mask(cpu)) {
1349 ud = &updates[i++];
1350 ud->next = &updates[i];
1351 ud->cpu = sibling;
1352 ud->new_nid = new_nid;
1353 ud->old_nid = numa_cpu_lookup_table[sibling];
1354 cpumask_set_cpu(sibling, &updated_cpus);
1356 cpu = cpu_last_thread_sibling(cpu);
1360 * Prevent processing of 'updates' from overflowing array
1361 * where last entry filled in a 'next' pointer.
1363 if (i)
1364 updates[i-1].next = NULL;
1366 pr_debug("Topology update for the following CPUs:\n");
1367 if (cpumask_weight(&updated_cpus)) {
1368 for (ud = &updates[0]; ud; ud = ud->next) {
1369 pr_debug("cpu %d moving from node %d "
1370 "to %d\n", ud->cpu,
1371 ud->old_nid, ud->new_nid);
1376 * In cases where we have nothing to update (because the updates list
1377 * is too short or because the new topology is same as the old one),
1378 * skip invoking update_cpu_topology() via stop-machine(). This is
1379 * necessary (and not just a fast-path optimization) since stop-machine
1380 * can end up electing a random CPU to run update_cpu_topology(), and
1381 * thus trick us into setting up incorrect cpu-node mappings (since
1382 * 'updates' is kzalloc()'ed).
1384 * And for the similar reason, we will skip all the following updating.
1386 if (!cpumask_weight(&updated_cpus))
1387 goto out;
1389 if (cpus_locked)
1390 stop_machine_cpuslocked(update_cpu_topology, &updates[0],
1391 &updated_cpus);
1392 else
1393 stop_machine(update_cpu_topology, &updates[0], &updated_cpus);
1396 * Update the numa-cpu lookup table with the new mappings, even for
1397 * offline CPUs. It is best to perform this update from the stop-
1398 * machine context.
1400 if (cpus_locked)
1401 stop_machine_cpuslocked(update_lookup_table, &updates[0],
1402 cpumask_of(raw_smp_processor_id()));
1403 else
1404 stop_machine(update_lookup_table, &updates[0],
1405 cpumask_of(raw_smp_processor_id()));
1407 for (ud = &updates[0]; ud; ud = ud->next) {
1408 unregister_cpu_under_node(ud->cpu, ud->old_nid);
1409 register_cpu_under_node(ud->cpu, ud->new_nid);
1411 dev = get_cpu_device(ud->cpu);
1412 if (dev)
1413 kobject_uevent(&dev->kobj, KOBJ_CHANGE);
1414 cpumask_clear_cpu(ud->cpu, &cpu_associativity_changes_mask);
1415 changed = 1;
1418 out:
1419 kfree(updates);
1420 topology_update_needed = 0;
1421 return changed;
1424 int arch_update_cpu_topology(void)
1426 return numa_update_cpu_topology(true);
1429 static void topology_work_fn(struct work_struct *work)
1431 rebuild_sched_domains();
1433 static DECLARE_WORK(topology_work, topology_work_fn);
1435 static void topology_schedule_update(void)
1437 schedule_work(&topology_work);
1440 static void topology_timer_fn(struct timer_list *unused)
1442 if (prrn_enabled && cpumask_weight(&cpu_associativity_changes_mask))
1443 topology_schedule_update();
1444 else if (vphn_enabled) {
1445 if (update_cpu_associativity_changes_mask() > 0)
1446 topology_schedule_update();
1447 reset_topology_timer();
1450 static struct timer_list topology_timer;
1452 static void reset_topology_timer(void)
1454 mod_timer(&topology_timer, jiffies + topology_timer_secs * HZ);
1457 #ifdef CONFIG_SMP
1459 static void stage_topology_update(int core_id)
1461 cpumask_or(&cpu_associativity_changes_mask,
1462 &cpu_associativity_changes_mask, cpu_sibling_mask(core_id));
1463 reset_topology_timer();
1466 static int dt_update_callback(struct notifier_block *nb,
1467 unsigned long action, void *data)
1469 struct of_reconfig_data *update = data;
1470 int rc = NOTIFY_DONE;
1472 switch (action) {
1473 case OF_RECONFIG_UPDATE_PROPERTY:
1474 if (!of_prop_cmp(update->dn->type, "cpu") &&
1475 !of_prop_cmp(update->prop->name, "ibm,associativity")) {
1476 u32 core_id;
1477 of_property_read_u32(update->dn, "reg", &core_id);
1478 stage_topology_update(core_id);
1479 rc = NOTIFY_OK;
1481 break;
1484 return rc;
1487 static struct notifier_block dt_update_nb = {
1488 .notifier_call = dt_update_callback,
1491 #endif
1494 * Start polling for associativity changes.
1496 int start_topology_update(void)
1498 int rc = 0;
1500 if (firmware_has_feature(FW_FEATURE_PRRN)) {
1501 if (!prrn_enabled) {
1502 prrn_enabled = 1;
1503 #ifdef CONFIG_SMP
1504 rc = of_reconfig_notifier_register(&dt_update_nb);
1505 #endif
1508 if (firmware_has_feature(FW_FEATURE_VPHN) &&
1509 lppaca_shared_proc(get_lppaca())) {
1510 if (!vphn_enabled) {
1511 vphn_enabled = 1;
1512 setup_cpu_associativity_change_counters();
1513 timer_setup(&topology_timer, topology_timer_fn,
1514 TIMER_DEFERRABLE);
1515 reset_topology_timer();
1519 return rc;
1523 * Disable polling for VPHN associativity changes.
1525 int stop_topology_update(void)
1527 int rc = 0;
1529 if (prrn_enabled) {
1530 prrn_enabled = 0;
1531 #ifdef CONFIG_SMP
1532 rc = of_reconfig_notifier_unregister(&dt_update_nb);
1533 #endif
1535 if (vphn_enabled) {
1536 vphn_enabled = 0;
1537 rc = del_timer_sync(&topology_timer);
1540 return rc;
1543 int prrn_is_enabled(void)
1545 return prrn_enabled;
1548 static int topology_read(struct seq_file *file, void *v)
1550 if (vphn_enabled || prrn_enabled)
1551 seq_puts(file, "on\n");
1552 else
1553 seq_puts(file, "off\n");
1555 return 0;
1558 static int topology_open(struct inode *inode, struct file *file)
1560 return single_open(file, topology_read, NULL);
1563 static ssize_t topology_write(struct file *file, const char __user *buf,
1564 size_t count, loff_t *off)
1566 char kbuf[4]; /* "on" or "off" plus null. */
1567 int read_len;
1569 read_len = count < 3 ? count : 3;
1570 if (copy_from_user(kbuf, buf, read_len))
1571 return -EINVAL;
1573 kbuf[read_len] = '\0';
1575 if (!strncmp(kbuf, "on", 2))
1576 start_topology_update();
1577 else if (!strncmp(kbuf, "off", 3))
1578 stop_topology_update();
1579 else
1580 return -EINVAL;
1582 return count;
1585 static const struct file_operations topology_ops = {
1586 .read = seq_read,
1587 .write = topology_write,
1588 .open = topology_open,
1589 .release = single_release
1592 static int topology_update_init(void)
1594 /* Do not poll for changes if disabled at boot */
1595 if (topology_updates_enabled)
1596 start_topology_update();
1598 if (vphn_enabled)
1599 topology_schedule_update();
1601 if (!proc_create("powerpc/topology_updates", 0644, NULL, &topology_ops))
1602 return -ENOMEM;
1604 topology_inited = 1;
1605 if (topology_update_needed)
1606 bitmap_fill(cpumask_bits(&cpu_associativity_changes_mask),
1607 nr_cpumask_bits);
1609 return 0;
1611 device_initcall(topology_update_init);
1612 #endif /* CONFIG_PPC_SPLPAR */