Merge tag 'for_linus' of git://git.kernel.org/pub/scm/linux/kernel/git/mst/vhost
[cris-mirror.git] / arch / powerpc / platforms / powernv / pci-ioda.c
bloba6c92c78c9b20b9cc2507cfb5c3e749e05a6e19d
1 /*
2 * Support PCI/PCIe on PowerNV platforms
4 * Copyright 2011 Benjamin Herrenschmidt, IBM Corp.
6 * This program is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU General Public License
8 * as published by the Free Software Foundation; either version
9 * 2 of the License, or (at your option) any later version.
12 #undef DEBUG
14 #include <linux/kernel.h>
15 #include <linux/pci.h>
16 #include <linux/crash_dump.h>
17 #include <linux/delay.h>
18 #include <linux/string.h>
19 #include <linux/init.h>
20 #include <linux/bootmem.h>
21 #include <linux/irq.h>
22 #include <linux/io.h>
23 #include <linux/msi.h>
24 #include <linux/memblock.h>
25 #include <linux/iommu.h>
26 #include <linux/rculist.h>
27 #include <linux/sizes.h>
29 #include <asm/sections.h>
30 #include <asm/io.h>
31 #include <asm/prom.h>
32 #include <asm/pci-bridge.h>
33 #include <asm/machdep.h>
34 #include <asm/msi_bitmap.h>
35 #include <asm/ppc-pci.h>
36 #include <asm/opal.h>
37 #include <asm/iommu.h>
38 #include <asm/tce.h>
39 #include <asm/xics.h>
40 #include <asm/debugfs.h>
41 #include <asm/firmware.h>
42 #include <asm/pnv-pci.h>
43 #include <asm/mmzone.h>
45 #include <misc/cxl-base.h>
47 #include "powernv.h"
48 #include "pci.h"
50 #define PNV_IODA1_M64_NUM 16 /* Number of M64 BARs */
51 #define PNV_IODA1_M64_SEGS 8 /* Segments per M64 BAR */
52 #define PNV_IODA1_DMA32_SEGSIZE 0x10000000
54 #define POWERNV_IOMMU_DEFAULT_LEVELS 1
55 #define POWERNV_IOMMU_MAX_LEVELS 5
57 static const char * const pnv_phb_names[] = { "IODA1", "IODA2", "NPU_NVLINK",
58 "NPU_OCAPI" };
59 static void pnv_pci_ioda2_table_free_pages(struct iommu_table *tbl);
61 void pe_level_printk(const struct pnv_ioda_pe *pe, const char *level,
62 const char *fmt, ...)
64 struct va_format vaf;
65 va_list args;
66 char pfix[32];
68 va_start(args, fmt);
70 vaf.fmt = fmt;
71 vaf.va = &args;
73 if (pe->flags & PNV_IODA_PE_DEV)
74 strlcpy(pfix, dev_name(&pe->pdev->dev), sizeof(pfix));
75 else if (pe->flags & (PNV_IODA_PE_BUS | PNV_IODA_PE_BUS_ALL))
76 sprintf(pfix, "%04x:%02x ",
77 pci_domain_nr(pe->pbus), pe->pbus->number);
78 #ifdef CONFIG_PCI_IOV
79 else if (pe->flags & PNV_IODA_PE_VF)
80 sprintf(pfix, "%04x:%02x:%2x.%d",
81 pci_domain_nr(pe->parent_dev->bus),
82 (pe->rid & 0xff00) >> 8,
83 PCI_SLOT(pe->rid), PCI_FUNC(pe->rid));
84 #endif /* CONFIG_PCI_IOV*/
86 printk("%spci %s: [PE# %.2x] %pV",
87 level, pfix, pe->pe_number, &vaf);
89 va_end(args);
92 static bool pnv_iommu_bypass_disabled __read_mostly;
93 static bool pci_reset_phbs __read_mostly;
95 static int __init iommu_setup(char *str)
97 if (!str)
98 return -EINVAL;
100 while (*str) {
101 if (!strncmp(str, "nobypass", 8)) {
102 pnv_iommu_bypass_disabled = true;
103 pr_info("PowerNV: IOMMU bypass window disabled.\n");
104 break;
106 str += strcspn(str, ",");
107 if (*str == ',')
108 str++;
111 return 0;
113 early_param("iommu", iommu_setup);
115 static int __init pci_reset_phbs_setup(char *str)
117 pci_reset_phbs = true;
118 return 0;
121 early_param("ppc_pci_reset_phbs", pci_reset_phbs_setup);
123 static inline bool pnv_pci_is_m64(struct pnv_phb *phb, struct resource *r)
126 * WARNING: We cannot rely on the resource flags. The Linux PCI
127 * allocation code sometimes decides to put a 64-bit prefetchable
128 * BAR in the 32-bit window, so we have to compare the addresses.
130 * For simplicity we only test resource start.
132 return (r->start >= phb->ioda.m64_base &&
133 r->start < (phb->ioda.m64_base + phb->ioda.m64_size));
136 static inline bool pnv_pci_is_m64_flags(unsigned long resource_flags)
138 unsigned long flags = (IORESOURCE_MEM_64 | IORESOURCE_PREFETCH);
140 return (resource_flags & flags) == flags;
143 static struct pnv_ioda_pe *pnv_ioda_init_pe(struct pnv_phb *phb, int pe_no)
145 s64 rc;
147 phb->ioda.pe_array[pe_no].phb = phb;
148 phb->ioda.pe_array[pe_no].pe_number = pe_no;
151 * Clear the PE frozen state as it might be put into frozen state
152 * in the last PCI remove path. It's not harmful to do so when the
153 * PE is already in unfrozen state.
155 rc = opal_pci_eeh_freeze_clear(phb->opal_id, pe_no,
156 OPAL_EEH_ACTION_CLEAR_FREEZE_ALL);
157 if (rc != OPAL_SUCCESS && rc != OPAL_UNSUPPORTED)
158 pr_warn("%s: Error %lld unfreezing PHB#%x-PE#%x\n",
159 __func__, rc, phb->hose->global_number, pe_no);
161 return &phb->ioda.pe_array[pe_no];
164 static void pnv_ioda_reserve_pe(struct pnv_phb *phb, int pe_no)
166 if (!(pe_no >= 0 && pe_no < phb->ioda.total_pe_num)) {
167 pr_warn("%s: Invalid PE %x on PHB#%x\n",
168 __func__, pe_no, phb->hose->global_number);
169 return;
172 if (test_and_set_bit(pe_no, phb->ioda.pe_alloc))
173 pr_debug("%s: PE %x was reserved on PHB#%x\n",
174 __func__, pe_no, phb->hose->global_number);
176 pnv_ioda_init_pe(phb, pe_no);
179 static struct pnv_ioda_pe *pnv_ioda_alloc_pe(struct pnv_phb *phb)
181 long pe;
183 for (pe = phb->ioda.total_pe_num - 1; pe >= 0; pe--) {
184 if (!test_and_set_bit(pe, phb->ioda.pe_alloc))
185 return pnv_ioda_init_pe(phb, pe);
188 return NULL;
191 static void pnv_ioda_free_pe(struct pnv_ioda_pe *pe)
193 struct pnv_phb *phb = pe->phb;
194 unsigned int pe_num = pe->pe_number;
196 WARN_ON(pe->pdev);
198 memset(pe, 0, sizeof(struct pnv_ioda_pe));
199 clear_bit(pe_num, phb->ioda.pe_alloc);
202 /* The default M64 BAR is shared by all PEs */
203 static int pnv_ioda2_init_m64(struct pnv_phb *phb)
205 const char *desc;
206 struct resource *r;
207 s64 rc;
209 /* Configure the default M64 BAR */
210 rc = opal_pci_set_phb_mem_window(phb->opal_id,
211 OPAL_M64_WINDOW_TYPE,
212 phb->ioda.m64_bar_idx,
213 phb->ioda.m64_base,
214 0, /* unused */
215 phb->ioda.m64_size);
216 if (rc != OPAL_SUCCESS) {
217 desc = "configuring";
218 goto fail;
221 /* Enable the default M64 BAR */
222 rc = opal_pci_phb_mmio_enable(phb->opal_id,
223 OPAL_M64_WINDOW_TYPE,
224 phb->ioda.m64_bar_idx,
225 OPAL_ENABLE_M64_SPLIT);
226 if (rc != OPAL_SUCCESS) {
227 desc = "enabling";
228 goto fail;
232 * Exclude the segments for reserved and root bus PE, which
233 * are first or last two PEs.
235 r = &phb->hose->mem_resources[1];
236 if (phb->ioda.reserved_pe_idx == 0)
237 r->start += (2 * phb->ioda.m64_segsize);
238 else if (phb->ioda.reserved_pe_idx == (phb->ioda.total_pe_num - 1))
239 r->end -= (2 * phb->ioda.m64_segsize);
240 else
241 pr_warn(" Cannot strip M64 segment for reserved PE#%x\n",
242 phb->ioda.reserved_pe_idx);
244 return 0;
246 fail:
247 pr_warn(" Failure %lld %s M64 BAR#%d\n",
248 rc, desc, phb->ioda.m64_bar_idx);
249 opal_pci_phb_mmio_enable(phb->opal_id,
250 OPAL_M64_WINDOW_TYPE,
251 phb->ioda.m64_bar_idx,
252 OPAL_DISABLE_M64);
253 return -EIO;
256 static void pnv_ioda_reserve_dev_m64_pe(struct pci_dev *pdev,
257 unsigned long *pe_bitmap)
259 struct pci_controller *hose = pci_bus_to_host(pdev->bus);
260 struct pnv_phb *phb = hose->private_data;
261 struct resource *r;
262 resource_size_t base, sgsz, start, end;
263 int segno, i;
265 base = phb->ioda.m64_base;
266 sgsz = phb->ioda.m64_segsize;
267 for (i = 0; i <= PCI_ROM_RESOURCE; i++) {
268 r = &pdev->resource[i];
269 if (!r->parent || !pnv_pci_is_m64(phb, r))
270 continue;
272 start = _ALIGN_DOWN(r->start - base, sgsz);
273 end = _ALIGN_UP(r->end - base, sgsz);
274 for (segno = start / sgsz; segno < end / sgsz; segno++) {
275 if (pe_bitmap)
276 set_bit(segno, pe_bitmap);
277 else
278 pnv_ioda_reserve_pe(phb, segno);
283 static int pnv_ioda1_init_m64(struct pnv_phb *phb)
285 struct resource *r;
286 int index;
289 * There are 16 M64 BARs, each of which has 8 segments. So
290 * there are as many M64 segments as the maximum number of
291 * PEs, which is 128.
293 for (index = 0; index < PNV_IODA1_M64_NUM; index++) {
294 unsigned long base, segsz = phb->ioda.m64_segsize;
295 int64_t rc;
297 base = phb->ioda.m64_base +
298 index * PNV_IODA1_M64_SEGS * segsz;
299 rc = opal_pci_set_phb_mem_window(phb->opal_id,
300 OPAL_M64_WINDOW_TYPE, index, base, 0,
301 PNV_IODA1_M64_SEGS * segsz);
302 if (rc != OPAL_SUCCESS) {
303 pr_warn(" Error %lld setting M64 PHB#%x-BAR#%d\n",
304 rc, phb->hose->global_number, index);
305 goto fail;
308 rc = opal_pci_phb_mmio_enable(phb->opal_id,
309 OPAL_M64_WINDOW_TYPE, index,
310 OPAL_ENABLE_M64_SPLIT);
311 if (rc != OPAL_SUCCESS) {
312 pr_warn(" Error %lld enabling M64 PHB#%x-BAR#%d\n",
313 rc, phb->hose->global_number, index);
314 goto fail;
319 * Exclude the segments for reserved and root bus PE, which
320 * are first or last two PEs.
322 r = &phb->hose->mem_resources[1];
323 if (phb->ioda.reserved_pe_idx == 0)
324 r->start += (2 * phb->ioda.m64_segsize);
325 else if (phb->ioda.reserved_pe_idx == (phb->ioda.total_pe_num - 1))
326 r->end -= (2 * phb->ioda.m64_segsize);
327 else
328 WARN(1, "Wrong reserved PE#%x on PHB#%x\n",
329 phb->ioda.reserved_pe_idx, phb->hose->global_number);
331 return 0;
333 fail:
334 for ( ; index >= 0; index--)
335 opal_pci_phb_mmio_enable(phb->opal_id,
336 OPAL_M64_WINDOW_TYPE, index, OPAL_DISABLE_M64);
338 return -EIO;
341 static void pnv_ioda_reserve_m64_pe(struct pci_bus *bus,
342 unsigned long *pe_bitmap,
343 bool all)
345 struct pci_dev *pdev;
347 list_for_each_entry(pdev, &bus->devices, bus_list) {
348 pnv_ioda_reserve_dev_m64_pe(pdev, pe_bitmap);
350 if (all && pdev->subordinate)
351 pnv_ioda_reserve_m64_pe(pdev->subordinate,
352 pe_bitmap, all);
356 static struct pnv_ioda_pe *pnv_ioda_pick_m64_pe(struct pci_bus *bus, bool all)
358 struct pci_controller *hose = pci_bus_to_host(bus);
359 struct pnv_phb *phb = hose->private_data;
360 struct pnv_ioda_pe *master_pe, *pe;
361 unsigned long size, *pe_alloc;
362 int i;
364 /* Root bus shouldn't use M64 */
365 if (pci_is_root_bus(bus))
366 return NULL;
368 /* Allocate bitmap */
369 size = _ALIGN_UP(phb->ioda.total_pe_num / 8, sizeof(unsigned long));
370 pe_alloc = kzalloc(size, GFP_KERNEL);
371 if (!pe_alloc) {
372 pr_warn("%s: Out of memory !\n",
373 __func__);
374 return NULL;
377 /* Figure out reserved PE numbers by the PE */
378 pnv_ioda_reserve_m64_pe(bus, pe_alloc, all);
381 * the current bus might not own M64 window and that's all
382 * contributed by its child buses. For the case, we needn't
383 * pick M64 dependent PE#.
385 if (bitmap_empty(pe_alloc, phb->ioda.total_pe_num)) {
386 kfree(pe_alloc);
387 return NULL;
391 * Figure out the master PE and put all slave PEs to master
392 * PE's list to form compound PE.
394 master_pe = NULL;
395 i = -1;
396 while ((i = find_next_bit(pe_alloc, phb->ioda.total_pe_num, i + 1)) <
397 phb->ioda.total_pe_num) {
398 pe = &phb->ioda.pe_array[i];
400 phb->ioda.m64_segmap[pe->pe_number] = pe->pe_number;
401 if (!master_pe) {
402 pe->flags |= PNV_IODA_PE_MASTER;
403 INIT_LIST_HEAD(&pe->slaves);
404 master_pe = pe;
405 } else {
406 pe->flags |= PNV_IODA_PE_SLAVE;
407 pe->master = master_pe;
408 list_add_tail(&pe->list, &master_pe->slaves);
412 * P7IOC supports M64DT, which helps mapping M64 segment
413 * to one particular PE#. However, PHB3 has fixed mapping
414 * between M64 segment and PE#. In order to have same logic
415 * for P7IOC and PHB3, we enforce fixed mapping between M64
416 * segment and PE# on P7IOC.
418 if (phb->type == PNV_PHB_IODA1) {
419 int64_t rc;
421 rc = opal_pci_map_pe_mmio_window(phb->opal_id,
422 pe->pe_number, OPAL_M64_WINDOW_TYPE,
423 pe->pe_number / PNV_IODA1_M64_SEGS,
424 pe->pe_number % PNV_IODA1_M64_SEGS);
425 if (rc != OPAL_SUCCESS)
426 pr_warn("%s: Error %lld mapping M64 for PHB#%x-PE#%x\n",
427 __func__, rc, phb->hose->global_number,
428 pe->pe_number);
432 kfree(pe_alloc);
433 return master_pe;
436 static void __init pnv_ioda_parse_m64_window(struct pnv_phb *phb)
438 struct pci_controller *hose = phb->hose;
439 struct device_node *dn = hose->dn;
440 struct resource *res;
441 u32 m64_range[2], i;
442 const __be32 *r;
443 u64 pci_addr;
445 if (phb->type != PNV_PHB_IODA1 && phb->type != PNV_PHB_IODA2) {
446 pr_info(" Not support M64 window\n");
447 return;
450 if (!firmware_has_feature(FW_FEATURE_OPAL)) {
451 pr_info(" Firmware too old to support M64 window\n");
452 return;
455 r = of_get_property(dn, "ibm,opal-m64-window", NULL);
456 if (!r) {
457 pr_info(" No <ibm,opal-m64-window> on %pOF\n",
458 dn);
459 return;
463 * Find the available M64 BAR range and pickup the last one for
464 * covering the whole 64-bits space. We support only one range.
466 if (of_property_read_u32_array(dn, "ibm,opal-available-m64-ranges",
467 m64_range, 2)) {
468 /* In absence of the property, assume 0..15 */
469 m64_range[0] = 0;
470 m64_range[1] = 16;
472 /* We only support 64 bits in our allocator */
473 if (m64_range[1] > 63) {
474 pr_warn("%s: Limiting M64 range to 63 (from %d) on PHB#%x\n",
475 __func__, m64_range[1], phb->hose->global_number);
476 m64_range[1] = 63;
478 /* Empty range, no m64 */
479 if (m64_range[1] <= m64_range[0]) {
480 pr_warn("%s: M64 empty, disabling M64 usage on PHB#%x\n",
481 __func__, phb->hose->global_number);
482 return;
485 /* Configure M64 informations */
486 res = &hose->mem_resources[1];
487 res->name = dn->full_name;
488 res->start = of_translate_address(dn, r + 2);
489 res->end = res->start + of_read_number(r + 4, 2) - 1;
490 res->flags = (IORESOURCE_MEM | IORESOURCE_MEM_64 | IORESOURCE_PREFETCH);
491 pci_addr = of_read_number(r, 2);
492 hose->mem_offset[1] = res->start - pci_addr;
494 phb->ioda.m64_size = resource_size(res);
495 phb->ioda.m64_segsize = phb->ioda.m64_size / phb->ioda.total_pe_num;
496 phb->ioda.m64_base = pci_addr;
498 /* This lines up nicely with the display from processing OF ranges */
499 pr_info(" MEM 0x%016llx..0x%016llx -> 0x%016llx (M64 #%d..%d)\n",
500 res->start, res->end, pci_addr, m64_range[0],
501 m64_range[0] + m64_range[1] - 1);
503 /* Mark all M64 used up by default */
504 phb->ioda.m64_bar_alloc = (unsigned long)-1;
506 /* Use last M64 BAR to cover M64 window */
507 m64_range[1]--;
508 phb->ioda.m64_bar_idx = m64_range[0] + m64_range[1];
510 pr_info(" Using M64 #%d as default window\n", phb->ioda.m64_bar_idx);
512 /* Mark remaining ones free */
513 for (i = m64_range[0]; i < m64_range[1]; i++)
514 clear_bit(i, &phb->ioda.m64_bar_alloc);
517 * Setup init functions for M64 based on IODA version, IODA3 uses
518 * the IODA2 code.
520 if (phb->type == PNV_PHB_IODA1)
521 phb->init_m64 = pnv_ioda1_init_m64;
522 else
523 phb->init_m64 = pnv_ioda2_init_m64;
524 phb->reserve_m64_pe = pnv_ioda_reserve_m64_pe;
525 phb->pick_m64_pe = pnv_ioda_pick_m64_pe;
528 static void pnv_ioda_freeze_pe(struct pnv_phb *phb, int pe_no)
530 struct pnv_ioda_pe *pe = &phb->ioda.pe_array[pe_no];
531 struct pnv_ioda_pe *slave;
532 s64 rc;
534 /* Fetch master PE */
535 if (pe->flags & PNV_IODA_PE_SLAVE) {
536 pe = pe->master;
537 if (WARN_ON(!pe || !(pe->flags & PNV_IODA_PE_MASTER)))
538 return;
540 pe_no = pe->pe_number;
543 /* Freeze master PE */
544 rc = opal_pci_eeh_freeze_set(phb->opal_id,
545 pe_no,
546 OPAL_EEH_ACTION_SET_FREEZE_ALL);
547 if (rc != OPAL_SUCCESS) {
548 pr_warn("%s: Failure %lld freezing PHB#%x-PE#%x\n",
549 __func__, rc, phb->hose->global_number, pe_no);
550 return;
553 /* Freeze slave PEs */
554 if (!(pe->flags & PNV_IODA_PE_MASTER))
555 return;
557 list_for_each_entry(slave, &pe->slaves, list) {
558 rc = opal_pci_eeh_freeze_set(phb->opal_id,
559 slave->pe_number,
560 OPAL_EEH_ACTION_SET_FREEZE_ALL);
561 if (rc != OPAL_SUCCESS)
562 pr_warn("%s: Failure %lld freezing PHB#%x-PE#%x\n",
563 __func__, rc, phb->hose->global_number,
564 slave->pe_number);
568 static int pnv_ioda_unfreeze_pe(struct pnv_phb *phb, int pe_no, int opt)
570 struct pnv_ioda_pe *pe, *slave;
571 s64 rc;
573 /* Find master PE */
574 pe = &phb->ioda.pe_array[pe_no];
575 if (pe->flags & PNV_IODA_PE_SLAVE) {
576 pe = pe->master;
577 WARN_ON(!pe || !(pe->flags & PNV_IODA_PE_MASTER));
578 pe_no = pe->pe_number;
581 /* Clear frozen state for master PE */
582 rc = opal_pci_eeh_freeze_clear(phb->opal_id, pe_no, opt);
583 if (rc != OPAL_SUCCESS) {
584 pr_warn("%s: Failure %lld clear %d on PHB#%x-PE#%x\n",
585 __func__, rc, opt, phb->hose->global_number, pe_no);
586 return -EIO;
589 if (!(pe->flags & PNV_IODA_PE_MASTER))
590 return 0;
592 /* Clear frozen state for slave PEs */
593 list_for_each_entry(slave, &pe->slaves, list) {
594 rc = opal_pci_eeh_freeze_clear(phb->opal_id,
595 slave->pe_number,
596 opt);
597 if (rc != OPAL_SUCCESS) {
598 pr_warn("%s: Failure %lld clear %d on PHB#%x-PE#%x\n",
599 __func__, rc, opt, phb->hose->global_number,
600 slave->pe_number);
601 return -EIO;
605 return 0;
608 static int pnv_ioda_get_pe_state(struct pnv_phb *phb, int pe_no)
610 struct pnv_ioda_pe *slave, *pe;
611 u8 fstate, state;
612 __be16 pcierr;
613 s64 rc;
615 /* Sanity check on PE number */
616 if (pe_no < 0 || pe_no >= phb->ioda.total_pe_num)
617 return OPAL_EEH_STOPPED_PERM_UNAVAIL;
620 * Fetch the master PE and the PE instance might be
621 * not initialized yet.
623 pe = &phb->ioda.pe_array[pe_no];
624 if (pe->flags & PNV_IODA_PE_SLAVE) {
625 pe = pe->master;
626 WARN_ON(!pe || !(pe->flags & PNV_IODA_PE_MASTER));
627 pe_no = pe->pe_number;
630 /* Check the master PE */
631 rc = opal_pci_eeh_freeze_status(phb->opal_id, pe_no,
632 &state, &pcierr, NULL);
633 if (rc != OPAL_SUCCESS) {
634 pr_warn("%s: Failure %lld getting "
635 "PHB#%x-PE#%x state\n",
636 __func__, rc,
637 phb->hose->global_number, pe_no);
638 return OPAL_EEH_STOPPED_TEMP_UNAVAIL;
641 /* Check the slave PE */
642 if (!(pe->flags & PNV_IODA_PE_MASTER))
643 return state;
645 list_for_each_entry(slave, &pe->slaves, list) {
646 rc = opal_pci_eeh_freeze_status(phb->opal_id,
647 slave->pe_number,
648 &fstate,
649 &pcierr,
650 NULL);
651 if (rc != OPAL_SUCCESS) {
652 pr_warn("%s: Failure %lld getting "
653 "PHB#%x-PE#%x state\n",
654 __func__, rc,
655 phb->hose->global_number, slave->pe_number);
656 return OPAL_EEH_STOPPED_TEMP_UNAVAIL;
660 * Override the result based on the ascending
661 * priority.
663 if (fstate > state)
664 state = fstate;
667 return state;
670 /* Currently those 2 are only used when MSIs are enabled, this will change
671 * but in the meantime, we need to protect them to avoid warnings
673 #ifdef CONFIG_PCI_MSI
674 struct pnv_ioda_pe *pnv_ioda_get_pe(struct pci_dev *dev)
676 struct pci_controller *hose = pci_bus_to_host(dev->bus);
677 struct pnv_phb *phb = hose->private_data;
678 struct pci_dn *pdn = pci_get_pdn(dev);
680 if (!pdn)
681 return NULL;
682 if (pdn->pe_number == IODA_INVALID_PE)
683 return NULL;
684 return &phb->ioda.pe_array[pdn->pe_number];
686 #endif /* CONFIG_PCI_MSI */
688 static int pnv_ioda_set_one_peltv(struct pnv_phb *phb,
689 struct pnv_ioda_pe *parent,
690 struct pnv_ioda_pe *child,
691 bool is_add)
693 const char *desc = is_add ? "adding" : "removing";
694 uint8_t op = is_add ? OPAL_ADD_PE_TO_DOMAIN :
695 OPAL_REMOVE_PE_FROM_DOMAIN;
696 struct pnv_ioda_pe *slave;
697 long rc;
699 /* Parent PE affects child PE */
700 rc = opal_pci_set_peltv(phb->opal_id, parent->pe_number,
701 child->pe_number, op);
702 if (rc != OPAL_SUCCESS) {
703 pe_warn(child, "OPAL error %ld %s to parent PELTV\n",
704 rc, desc);
705 return -ENXIO;
708 if (!(child->flags & PNV_IODA_PE_MASTER))
709 return 0;
711 /* Compound case: parent PE affects slave PEs */
712 list_for_each_entry(slave, &child->slaves, list) {
713 rc = opal_pci_set_peltv(phb->opal_id, parent->pe_number,
714 slave->pe_number, op);
715 if (rc != OPAL_SUCCESS) {
716 pe_warn(slave, "OPAL error %ld %s to parent PELTV\n",
717 rc, desc);
718 return -ENXIO;
722 return 0;
725 static int pnv_ioda_set_peltv(struct pnv_phb *phb,
726 struct pnv_ioda_pe *pe,
727 bool is_add)
729 struct pnv_ioda_pe *slave;
730 struct pci_dev *pdev = NULL;
731 int ret;
734 * Clear PE frozen state. If it's master PE, we need
735 * clear slave PE frozen state as well.
737 if (is_add) {
738 opal_pci_eeh_freeze_clear(phb->opal_id, pe->pe_number,
739 OPAL_EEH_ACTION_CLEAR_FREEZE_ALL);
740 if (pe->flags & PNV_IODA_PE_MASTER) {
741 list_for_each_entry(slave, &pe->slaves, list)
742 opal_pci_eeh_freeze_clear(phb->opal_id,
743 slave->pe_number,
744 OPAL_EEH_ACTION_CLEAR_FREEZE_ALL);
749 * Associate PE in PELT. We need add the PE into the
750 * corresponding PELT-V as well. Otherwise, the error
751 * originated from the PE might contribute to other
752 * PEs.
754 ret = pnv_ioda_set_one_peltv(phb, pe, pe, is_add);
755 if (ret)
756 return ret;
758 /* For compound PEs, any one affects all of them */
759 if (pe->flags & PNV_IODA_PE_MASTER) {
760 list_for_each_entry(slave, &pe->slaves, list) {
761 ret = pnv_ioda_set_one_peltv(phb, slave, pe, is_add);
762 if (ret)
763 return ret;
767 if (pe->flags & (PNV_IODA_PE_BUS_ALL | PNV_IODA_PE_BUS))
768 pdev = pe->pbus->self;
769 else if (pe->flags & PNV_IODA_PE_DEV)
770 pdev = pe->pdev->bus->self;
771 #ifdef CONFIG_PCI_IOV
772 else if (pe->flags & PNV_IODA_PE_VF)
773 pdev = pe->parent_dev;
774 #endif /* CONFIG_PCI_IOV */
775 while (pdev) {
776 struct pci_dn *pdn = pci_get_pdn(pdev);
777 struct pnv_ioda_pe *parent;
779 if (pdn && pdn->pe_number != IODA_INVALID_PE) {
780 parent = &phb->ioda.pe_array[pdn->pe_number];
781 ret = pnv_ioda_set_one_peltv(phb, parent, pe, is_add);
782 if (ret)
783 return ret;
786 pdev = pdev->bus->self;
789 return 0;
792 static int pnv_ioda_deconfigure_pe(struct pnv_phb *phb, struct pnv_ioda_pe *pe)
794 struct pci_dev *parent;
795 uint8_t bcomp, dcomp, fcomp;
796 int64_t rc;
797 long rid_end, rid;
799 /* Currently, we just deconfigure VF PE. Bus PE will always there.*/
800 if (pe->pbus) {
801 int count;
803 dcomp = OPAL_IGNORE_RID_DEVICE_NUMBER;
804 fcomp = OPAL_IGNORE_RID_FUNCTION_NUMBER;
805 parent = pe->pbus->self;
806 if (pe->flags & PNV_IODA_PE_BUS_ALL)
807 count = pe->pbus->busn_res.end - pe->pbus->busn_res.start + 1;
808 else
809 count = 1;
811 switch(count) {
812 case 1: bcomp = OpalPciBusAll; break;
813 case 2: bcomp = OpalPciBus7Bits; break;
814 case 4: bcomp = OpalPciBus6Bits; break;
815 case 8: bcomp = OpalPciBus5Bits; break;
816 case 16: bcomp = OpalPciBus4Bits; break;
817 case 32: bcomp = OpalPciBus3Bits; break;
818 default:
819 dev_err(&pe->pbus->dev, "Number of subordinate buses %d unsupported\n",
820 count);
821 /* Do an exact match only */
822 bcomp = OpalPciBusAll;
824 rid_end = pe->rid + (count << 8);
825 } else {
826 #ifdef CONFIG_PCI_IOV
827 if (pe->flags & PNV_IODA_PE_VF)
828 parent = pe->parent_dev;
829 else
830 #endif
831 parent = pe->pdev->bus->self;
832 bcomp = OpalPciBusAll;
833 dcomp = OPAL_COMPARE_RID_DEVICE_NUMBER;
834 fcomp = OPAL_COMPARE_RID_FUNCTION_NUMBER;
835 rid_end = pe->rid + 1;
838 /* Clear the reverse map */
839 for (rid = pe->rid; rid < rid_end; rid++)
840 phb->ioda.pe_rmap[rid] = IODA_INVALID_PE;
842 /* Release from all parents PELT-V */
843 while (parent) {
844 struct pci_dn *pdn = pci_get_pdn(parent);
845 if (pdn && pdn->pe_number != IODA_INVALID_PE) {
846 rc = opal_pci_set_peltv(phb->opal_id, pdn->pe_number,
847 pe->pe_number, OPAL_REMOVE_PE_FROM_DOMAIN);
848 /* XXX What to do in case of error ? */
850 parent = parent->bus->self;
853 opal_pci_eeh_freeze_clear(phb->opal_id, pe->pe_number,
854 OPAL_EEH_ACTION_CLEAR_FREEZE_ALL);
856 /* Disassociate PE in PELT */
857 rc = opal_pci_set_peltv(phb->opal_id, pe->pe_number,
858 pe->pe_number, OPAL_REMOVE_PE_FROM_DOMAIN);
859 if (rc)
860 pe_warn(pe, "OPAL error %ld remove self from PELTV\n", rc);
861 rc = opal_pci_set_pe(phb->opal_id, pe->pe_number, pe->rid,
862 bcomp, dcomp, fcomp, OPAL_UNMAP_PE);
863 if (rc)
864 pe_err(pe, "OPAL error %ld trying to setup PELT table\n", rc);
866 pe->pbus = NULL;
867 pe->pdev = NULL;
868 #ifdef CONFIG_PCI_IOV
869 pe->parent_dev = NULL;
870 #endif
872 return 0;
875 static int pnv_ioda_configure_pe(struct pnv_phb *phb, struct pnv_ioda_pe *pe)
877 struct pci_dev *parent;
878 uint8_t bcomp, dcomp, fcomp;
879 long rc, rid_end, rid;
881 /* Bus validation ? */
882 if (pe->pbus) {
883 int count;
885 dcomp = OPAL_IGNORE_RID_DEVICE_NUMBER;
886 fcomp = OPAL_IGNORE_RID_FUNCTION_NUMBER;
887 parent = pe->pbus->self;
888 if (pe->flags & PNV_IODA_PE_BUS_ALL)
889 count = pe->pbus->busn_res.end - pe->pbus->busn_res.start + 1;
890 else
891 count = 1;
893 switch(count) {
894 case 1: bcomp = OpalPciBusAll; break;
895 case 2: bcomp = OpalPciBus7Bits; break;
896 case 4: bcomp = OpalPciBus6Bits; break;
897 case 8: bcomp = OpalPciBus5Bits; break;
898 case 16: bcomp = OpalPciBus4Bits; break;
899 case 32: bcomp = OpalPciBus3Bits; break;
900 default:
901 dev_err(&pe->pbus->dev, "Number of subordinate buses %d unsupported\n",
902 count);
903 /* Do an exact match only */
904 bcomp = OpalPciBusAll;
906 rid_end = pe->rid + (count << 8);
907 } else {
908 #ifdef CONFIG_PCI_IOV
909 if (pe->flags & PNV_IODA_PE_VF)
910 parent = pe->parent_dev;
911 else
912 #endif /* CONFIG_PCI_IOV */
913 parent = pe->pdev->bus->self;
914 bcomp = OpalPciBusAll;
915 dcomp = OPAL_COMPARE_RID_DEVICE_NUMBER;
916 fcomp = OPAL_COMPARE_RID_FUNCTION_NUMBER;
917 rid_end = pe->rid + 1;
921 * Associate PE in PELT. We need add the PE into the
922 * corresponding PELT-V as well. Otherwise, the error
923 * originated from the PE might contribute to other
924 * PEs.
926 rc = opal_pci_set_pe(phb->opal_id, pe->pe_number, pe->rid,
927 bcomp, dcomp, fcomp, OPAL_MAP_PE);
928 if (rc) {
929 pe_err(pe, "OPAL error %ld trying to setup PELT table\n", rc);
930 return -ENXIO;
934 * Configure PELTV. NPUs don't have a PELTV table so skip
935 * configuration on them.
937 if (phb->type != PNV_PHB_NPU_NVLINK && phb->type != PNV_PHB_NPU_OCAPI)
938 pnv_ioda_set_peltv(phb, pe, true);
940 /* Setup reverse map */
941 for (rid = pe->rid; rid < rid_end; rid++)
942 phb->ioda.pe_rmap[rid] = pe->pe_number;
944 /* Setup one MVTs on IODA1 */
945 if (phb->type != PNV_PHB_IODA1) {
946 pe->mve_number = 0;
947 goto out;
950 pe->mve_number = pe->pe_number;
951 rc = opal_pci_set_mve(phb->opal_id, pe->mve_number, pe->pe_number);
952 if (rc != OPAL_SUCCESS) {
953 pe_err(pe, "OPAL error %ld setting up MVE %x\n",
954 rc, pe->mve_number);
955 pe->mve_number = -1;
956 } else {
957 rc = opal_pci_set_mve_enable(phb->opal_id,
958 pe->mve_number, OPAL_ENABLE_MVE);
959 if (rc) {
960 pe_err(pe, "OPAL error %ld enabling MVE %x\n",
961 rc, pe->mve_number);
962 pe->mve_number = -1;
966 out:
967 return 0;
970 #ifdef CONFIG_PCI_IOV
971 static int pnv_pci_vf_resource_shift(struct pci_dev *dev, int offset)
973 struct pci_dn *pdn = pci_get_pdn(dev);
974 int i;
975 struct resource *res, res2;
976 resource_size_t size;
977 u16 num_vfs;
979 if (!dev->is_physfn)
980 return -EINVAL;
983 * "offset" is in VFs. The M64 windows are sized so that when they
984 * are segmented, each segment is the same size as the IOV BAR.
985 * Each segment is in a separate PE, and the high order bits of the
986 * address are the PE number. Therefore, each VF's BAR is in a
987 * separate PE, and changing the IOV BAR start address changes the
988 * range of PEs the VFs are in.
990 num_vfs = pdn->num_vfs;
991 for (i = 0; i < PCI_SRIOV_NUM_BARS; i++) {
992 res = &dev->resource[i + PCI_IOV_RESOURCES];
993 if (!res->flags || !res->parent)
994 continue;
997 * The actual IOV BAR range is determined by the start address
998 * and the actual size for num_vfs VFs BAR. This check is to
999 * make sure that after shifting, the range will not overlap
1000 * with another device.
1002 size = pci_iov_resource_size(dev, i + PCI_IOV_RESOURCES);
1003 res2.flags = res->flags;
1004 res2.start = res->start + (size * offset);
1005 res2.end = res2.start + (size * num_vfs) - 1;
1007 if (res2.end > res->end) {
1008 dev_err(&dev->dev, "VF BAR%d: %pR would extend past %pR (trying to enable %d VFs shifted by %d)\n",
1009 i, &res2, res, num_vfs, offset);
1010 return -EBUSY;
1015 * Since M64 BAR shares segments among all possible 256 PEs,
1016 * we have to shift the beginning of PF IOV BAR to make it start from
1017 * the segment which belongs to the PE number assigned to the first VF.
1018 * This creates a "hole" in the /proc/iomem which could be used for
1019 * allocating other resources so we reserve this area below and
1020 * release when IOV is released.
1022 for (i = 0; i < PCI_SRIOV_NUM_BARS; i++) {
1023 res = &dev->resource[i + PCI_IOV_RESOURCES];
1024 if (!res->flags || !res->parent)
1025 continue;
1027 size = pci_iov_resource_size(dev, i + PCI_IOV_RESOURCES);
1028 res2 = *res;
1029 res->start += size * offset;
1031 dev_info(&dev->dev, "VF BAR%d: %pR shifted to %pR (%sabling %d VFs shifted by %d)\n",
1032 i, &res2, res, (offset > 0) ? "En" : "Dis",
1033 num_vfs, offset);
1035 if (offset < 0) {
1036 devm_release_resource(&dev->dev, &pdn->holes[i]);
1037 memset(&pdn->holes[i], 0, sizeof(pdn->holes[i]));
1040 pci_update_resource(dev, i + PCI_IOV_RESOURCES);
1042 if (offset > 0) {
1043 pdn->holes[i].start = res2.start;
1044 pdn->holes[i].end = res2.start + size * offset - 1;
1045 pdn->holes[i].flags = IORESOURCE_BUS;
1046 pdn->holes[i].name = "pnv_iov_reserved";
1047 devm_request_resource(&dev->dev, res->parent,
1048 &pdn->holes[i]);
1051 return 0;
1053 #endif /* CONFIG_PCI_IOV */
1055 static struct pnv_ioda_pe *pnv_ioda_setup_dev_PE(struct pci_dev *dev)
1057 struct pci_controller *hose = pci_bus_to_host(dev->bus);
1058 struct pnv_phb *phb = hose->private_data;
1059 struct pci_dn *pdn = pci_get_pdn(dev);
1060 struct pnv_ioda_pe *pe;
1062 if (!pdn) {
1063 pr_err("%s: Device tree node not associated properly\n",
1064 pci_name(dev));
1065 return NULL;
1067 if (pdn->pe_number != IODA_INVALID_PE)
1068 return NULL;
1070 pe = pnv_ioda_alloc_pe(phb);
1071 if (!pe) {
1072 pr_warn("%s: Not enough PE# available, disabling device\n",
1073 pci_name(dev));
1074 return NULL;
1077 /* NOTE: We get only one ref to the pci_dev for the pdn, not for the
1078 * pointer in the PE data structure, both should be destroyed at the
1079 * same time. However, this needs to be looked at more closely again
1080 * once we actually start removing things (Hotplug, SR-IOV, ...)
1082 * At some point we want to remove the PDN completely anyways
1084 pci_dev_get(dev);
1085 pdn->pe_number = pe->pe_number;
1086 pe->flags = PNV_IODA_PE_DEV;
1087 pe->pdev = dev;
1088 pe->pbus = NULL;
1089 pe->mve_number = -1;
1090 pe->rid = dev->bus->number << 8 | pdn->devfn;
1092 pe_info(pe, "Associated device to PE\n");
1094 if (pnv_ioda_configure_pe(phb, pe)) {
1095 /* XXX What do we do here ? */
1096 pnv_ioda_free_pe(pe);
1097 pdn->pe_number = IODA_INVALID_PE;
1098 pe->pdev = NULL;
1099 pci_dev_put(dev);
1100 return NULL;
1103 /* Put PE to the list */
1104 list_add_tail(&pe->list, &phb->ioda.pe_list);
1106 return pe;
1109 static void pnv_ioda_setup_same_PE(struct pci_bus *bus, struct pnv_ioda_pe *pe)
1111 struct pci_dev *dev;
1113 list_for_each_entry(dev, &bus->devices, bus_list) {
1114 struct pci_dn *pdn = pci_get_pdn(dev);
1116 if (pdn == NULL) {
1117 pr_warn("%s: No device node associated with device !\n",
1118 pci_name(dev));
1119 continue;
1123 * In partial hotplug case, the PCI device might be still
1124 * associated with the PE and needn't attach it to the PE
1125 * again.
1127 if (pdn->pe_number != IODA_INVALID_PE)
1128 continue;
1130 pe->device_count++;
1131 pdn->pe_number = pe->pe_number;
1132 if ((pe->flags & PNV_IODA_PE_BUS_ALL) && dev->subordinate)
1133 pnv_ioda_setup_same_PE(dev->subordinate, pe);
1138 * There're 2 types of PCI bus sensitive PEs: One that is compromised of
1139 * single PCI bus. Another one that contains the primary PCI bus and its
1140 * subordinate PCI devices and buses. The second type of PE is normally
1141 * orgiriated by PCIe-to-PCI bridge or PLX switch downstream ports.
1143 static struct pnv_ioda_pe *pnv_ioda_setup_bus_PE(struct pci_bus *bus, bool all)
1145 struct pci_controller *hose = pci_bus_to_host(bus);
1146 struct pnv_phb *phb = hose->private_data;
1147 struct pnv_ioda_pe *pe = NULL;
1148 unsigned int pe_num;
1151 * In partial hotplug case, the PE instance might be still alive.
1152 * We should reuse it instead of allocating a new one.
1154 pe_num = phb->ioda.pe_rmap[bus->number << 8];
1155 if (pe_num != IODA_INVALID_PE) {
1156 pe = &phb->ioda.pe_array[pe_num];
1157 pnv_ioda_setup_same_PE(bus, pe);
1158 return NULL;
1161 /* PE number for root bus should have been reserved */
1162 if (pci_is_root_bus(bus) &&
1163 phb->ioda.root_pe_idx != IODA_INVALID_PE)
1164 pe = &phb->ioda.pe_array[phb->ioda.root_pe_idx];
1166 /* Check if PE is determined by M64 */
1167 if (!pe && phb->pick_m64_pe)
1168 pe = phb->pick_m64_pe(bus, all);
1170 /* The PE number isn't pinned by M64 */
1171 if (!pe)
1172 pe = pnv_ioda_alloc_pe(phb);
1174 if (!pe) {
1175 pr_warn("%s: Not enough PE# available for PCI bus %04x:%02x\n",
1176 __func__, pci_domain_nr(bus), bus->number);
1177 return NULL;
1180 pe->flags |= (all ? PNV_IODA_PE_BUS_ALL : PNV_IODA_PE_BUS);
1181 pe->pbus = bus;
1182 pe->pdev = NULL;
1183 pe->mve_number = -1;
1184 pe->rid = bus->busn_res.start << 8;
1186 if (all)
1187 pe_info(pe, "Secondary bus %d..%d associated with PE#%x\n",
1188 bus->busn_res.start, bus->busn_res.end, pe->pe_number);
1189 else
1190 pe_info(pe, "Secondary bus %d associated with PE#%x\n",
1191 bus->busn_res.start, pe->pe_number);
1193 if (pnv_ioda_configure_pe(phb, pe)) {
1194 /* XXX What do we do here ? */
1195 pnv_ioda_free_pe(pe);
1196 pe->pbus = NULL;
1197 return NULL;
1200 /* Associate it with all child devices */
1201 pnv_ioda_setup_same_PE(bus, pe);
1203 /* Put PE to the list */
1204 list_add_tail(&pe->list, &phb->ioda.pe_list);
1206 return pe;
1209 static struct pnv_ioda_pe *pnv_ioda_setup_npu_PE(struct pci_dev *npu_pdev)
1211 int pe_num, found_pe = false, rc;
1212 long rid;
1213 struct pnv_ioda_pe *pe;
1214 struct pci_dev *gpu_pdev;
1215 struct pci_dn *npu_pdn;
1216 struct pci_controller *hose = pci_bus_to_host(npu_pdev->bus);
1217 struct pnv_phb *phb = hose->private_data;
1220 * Due to a hardware errata PE#0 on the NPU is reserved for
1221 * error handling. This means we only have three PEs remaining
1222 * which need to be assigned to four links, implying some
1223 * links must share PEs.
1225 * To achieve this we assign PEs such that NPUs linking the
1226 * same GPU get assigned the same PE.
1228 gpu_pdev = pnv_pci_get_gpu_dev(npu_pdev);
1229 for (pe_num = 0; pe_num < phb->ioda.total_pe_num; pe_num++) {
1230 pe = &phb->ioda.pe_array[pe_num];
1231 if (!pe->pdev)
1232 continue;
1234 if (pnv_pci_get_gpu_dev(pe->pdev) == gpu_pdev) {
1236 * This device has the same peer GPU so should
1237 * be assigned the same PE as the existing
1238 * peer NPU.
1240 dev_info(&npu_pdev->dev,
1241 "Associating to existing PE %x\n", pe_num);
1242 pci_dev_get(npu_pdev);
1243 npu_pdn = pci_get_pdn(npu_pdev);
1244 rid = npu_pdev->bus->number << 8 | npu_pdn->devfn;
1245 npu_pdn->pe_number = pe_num;
1246 phb->ioda.pe_rmap[rid] = pe->pe_number;
1248 /* Map the PE to this link */
1249 rc = opal_pci_set_pe(phb->opal_id, pe_num, rid,
1250 OpalPciBusAll,
1251 OPAL_COMPARE_RID_DEVICE_NUMBER,
1252 OPAL_COMPARE_RID_FUNCTION_NUMBER,
1253 OPAL_MAP_PE);
1254 WARN_ON(rc != OPAL_SUCCESS);
1255 found_pe = true;
1256 break;
1260 if (!found_pe)
1262 * Could not find an existing PE so allocate a new
1263 * one.
1265 return pnv_ioda_setup_dev_PE(npu_pdev);
1266 else
1267 return pe;
1270 static void pnv_ioda_setup_npu_PEs(struct pci_bus *bus)
1272 struct pci_dev *pdev;
1274 list_for_each_entry(pdev, &bus->devices, bus_list)
1275 pnv_ioda_setup_npu_PE(pdev);
1278 static void pnv_pci_ioda_setup_PEs(void)
1280 struct pci_controller *hose, *tmp;
1281 struct pnv_phb *phb;
1282 struct pci_bus *bus;
1283 struct pci_dev *pdev;
1285 list_for_each_entry_safe(hose, tmp, &hose_list, list_node) {
1286 phb = hose->private_data;
1287 if (phb->type == PNV_PHB_NPU_NVLINK) {
1288 /* PE#0 is needed for error reporting */
1289 pnv_ioda_reserve_pe(phb, 0);
1290 pnv_ioda_setup_npu_PEs(hose->bus);
1291 if (phb->model == PNV_PHB_MODEL_NPU2)
1292 pnv_npu2_init(phb);
1294 if (phb->type == PNV_PHB_NPU_OCAPI) {
1295 bus = hose->bus;
1296 list_for_each_entry(pdev, &bus->devices, bus_list)
1297 pnv_ioda_setup_dev_PE(pdev);
1302 #ifdef CONFIG_PCI_IOV
1303 static int pnv_pci_vf_release_m64(struct pci_dev *pdev, u16 num_vfs)
1305 struct pci_bus *bus;
1306 struct pci_controller *hose;
1307 struct pnv_phb *phb;
1308 struct pci_dn *pdn;
1309 int i, j;
1310 int m64_bars;
1312 bus = pdev->bus;
1313 hose = pci_bus_to_host(bus);
1314 phb = hose->private_data;
1315 pdn = pci_get_pdn(pdev);
1317 if (pdn->m64_single_mode)
1318 m64_bars = num_vfs;
1319 else
1320 m64_bars = 1;
1322 for (i = 0; i < PCI_SRIOV_NUM_BARS; i++)
1323 for (j = 0; j < m64_bars; j++) {
1324 if (pdn->m64_map[j][i] == IODA_INVALID_M64)
1325 continue;
1326 opal_pci_phb_mmio_enable(phb->opal_id,
1327 OPAL_M64_WINDOW_TYPE, pdn->m64_map[j][i], 0);
1328 clear_bit(pdn->m64_map[j][i], &phb->ioda.m64_bar_alloc);
1329 pdn->m64_map[j][i] = IODA_INVALID_M64;
1332 kfree(pdn->m64_map);
1333 return 0;
1336 static int pnv_pci_vf_assign_m64(struct pci_dev *pdev, u16 num_vfs)
1338 struct pci_bus *bus;
1339 struct pci_controller *hose;
1340 struct pnv_phb *phb;
1341 struct pci_dn *pdn;
1342 unsigned int win;
1343 struct resource *res;
1344 int i, j;
1345 int64_t rc;
1346 int total_vfs;
1347 resource_size_t size, start;
1348 int pe_num;
1349 int m64_bars;
1351 bus = pdev->bus;
1352 hose = pci_bus_to_host(bus);
1353 phb = hose->private_data;
1354 pdn = pci_get_pdn(pdev);
1355 total_vfs = pci_sriov_get_totalvfs(pdev);
1357 if (pdn->m64_single_mode)
1358 m64_bars = num_vfs;
1359 else
1360 m64_bars = 1;
1362 pdn->m64_map = kmalloc_array(m64_bars,
1363 sizeof(*pdn->m64_map),
1364 GFP_KERNEL);
1365 if (!pdn->m64_map)
1366 return -ENOMEM;
1367 /* Initialize the m64_map to IODA_INVALID_M64 */
1368 for (i = 0; i < m64_bars ; i++)
1369 for (j = 0; j < PCI_SRIOV_NUM_BARS; j++)
1370 pdn->m64_map[i][j] = IODA_INVALID_M64;
1373 for (i = 0; i < PCI_SRIOV_NUM_BARS; i++) {
1374 res = &pdev->resource[i + PCI_IOV_RESOURCES];
1375 if (!res->flags || !res->parent)
1376 continue;
1378 for (j = 0; j < m64_bars; j++) {
1379 do {
1380 win = find_next_zero_bit(&phb->ioda.m64_bar_alloc,
1381 phb->ioda.m64_bar_idx + 1, 0);
1383 if (win >= phb->ioda.m64_bar_idx + 1)
1384 goto m64_failed;
1385 } while (test_and_set_bit(win, &phb->ioda.m64_bar_alloc));
1387 pdn->m64_map[j][i] = win;
1389 if (pdn->m64_single_mode) {
1390 size = pci_iov_resource_size(pdev,
1391 PCI_IOV_RESOURCES + i);
1392 start = res->start + size * j;
1393 } else {
1394 size = resource_size(res);
1395 start = res->start;
1398 /* Map the M64 here */
1399 if (pdn->m64_single_mode) {
1400 pe_num = pdn->pe_num_map[j];
1401 rc = opal_pci_map_pe_mmio_window(phb->opal_id,
1402 pe_num, OPAL_M64_WINDOW_TYPE,
1403 pdn->m64_map[j][i], 0);
1406 rc = opal_pci_set_phb_mem_window(phb->opal_id,
1407 OPAL_M64_WINDOW_TYPE,
1408 pdn->m64_map[j][i],
1409 start,
1410 0, /* unused */
1411 size);
1414 if (rc != OPAL_SUCCESS) {
1415 dev_err(&pdev->dev, "Failed to map M64 window #%d: %lld\n",
1416 win, rc);
1417 goto m64_failed;
1420 if (pdn->m64_single_mode)
1421 rc = opal_pci_phb_mmio_enable(phb->opal_id,
1422 OPAL_M64_WINDOW_TYPE, pdn->m64_map[j][i], 2);
1423 else
1424 rc = opal_pci_phb_mmio_enable(phb->opal_id,
1425 OPAL_M64_WINDOW_TYPE, pdn->m64_map[j][i], 1);
1427 if (rc != OPAL_SUCCESS) {
1428 dev_err(&pdev->dev, "Failed to enable M64 window #%d: %llx\n",
1429 win, rc);
1430 goto m64_failed;
1434 return 0;
1436 m64_failed:
1437 pnv_pci_vf_release_m64(pdev, num_vfs);
1438 return -EBUSY;
1441 static long pnv_pci_ioda2_unset_window(struct iommu_table_group *table_group,
1442 int num);
1444 static void pnv_pci_ioda2_release_dma_pe(struct pci_dev *dev, struct pnv_ioda_pe *pe)
1446 struct iommu_table *tbl;
1447 int64_t rc;
1449 tbl = pe->table_group.tables[0];
1450 rc = pnv_pci_ioda2_unset_window(&pe->table_group, 0);
1451 if (rc)
1452 pe_warn(pe, "OPAL error %ld release DMA window\n", rc);
1454 pnv_pci_ioda2_set_bypass(pe, false);
1455 if (pe->table_group.group) {
1456 iommu_group_put(pe->table_group.group);
1457 BUG_ON(pe->table_group.group);
1459 iommu_tce_table_put(tbl);
1462 static void pnv_ioda_release_vf_PE(struct pci_dev *pdev)
1464 struct pci_bus *bus;
1465 struct pci_controller *hose;
1466 struct pnv_phb *phb;
1467 struct pnv_ioda_pe *pe, *pe_n;
1468 struct pci_dn *pdn;
1470 bus = pdev->bus;
1471 hose = pci_bus_to_host(bus);
1472 phb = hose->private_data;
1473 pdn = pci_get_pdn(pdev);
1475 if (!pdev->is_physfn)
1476 return;
1478 list_for_each_entry_safe(pe, pe_n, &phb->ioda.pe_list, list) {
1479 if (pe->parent_dev != pdev)
1480 continue;
1482 pnv_pci_ioda2_release_dma_pe(pdev, pe);
1484 /* Remove from list */
1485 mutex_lock(&phb->ioda.pe_list_mutex);
1486 list_del(&pe->list);
1487 mutex_unlock(&phb->ioda.pe_list_mutex);
1489 pnv_ioda_deconfigure_pe(phb, pe);
1491 pnv_ioda_free_pe(pe);
1495 void pnv_pci_sriov_disable(struct pci_dev *pdev)
1497 struct pci_bus *bus;
1498 struct pci_controller *hose;
1499 struct pnv_phb *phb;
1500 struct pnv_ioda_pe *pe;
1501 struct pci_dn *pdn;
1502 u16 num_vfs, i;
1504 bus = pdev->bus;
1505 hose = pci_bus_to_host(bus);
1506 phb = hose->private_data;
1507 pdn = pci_get_pdn(pdev);
1508 num_vfs = pdn->num_vfs;
1510 /* Release VF PEs */
1511 pnv_ioda_release_vf_PE(pdev);
1513 if (phb->type == PNV_PHB_IODA2) {
1514 if (!pdn->m64_single_mode)
1515 pnv_pci_vf_resource_shift(pdev, -*pdn->pe_num_map);
1517 /* Release M64 windows */
1518 pnv_pci_vf_release_m64(pdev, num_vfs);
1520 /* Release PE numbers */
1521 if (pdn->m64_single_mode) {
1522 for (i = 0; i < num_vfs; i++) {
1523 if (pdn->pe_num_map[i] == IODA_INVALID_PE)
1524 continue;
1526 pe = &phb->ioda.pe_array[pdn->pe_num_map[i]];
1527 pnv_ioda_free_pe(pe);
1529 } else
1530 bitmap_clear(phb->ioda.pe_alloc, *pdn->pe_num_map, num_vfs);
1531 /* Releasing pe_num_map */
1532 kfree(pdn->pe_num_map);
1536 static void pnv_pci_ioda2_setup_dma_pe(struct pnv_phb *phb,
1537 struct pnv_ioda_pe *pe);
1538 static void pnv_ioda_setup_vf_PE(struct pci_dev *pdev, u16 num_vfs)
1540 struct pci_bus *bus;
1541 struct pci_controller *hose;
1542 struct pnv_phb *phb;
1543 struct pnv_ioda_pe *pe;
1544 int pe_num;
1545 u16 vf_index;
1546 struct pci_dn *pdn;
1548 bus = pdev->bus;
1549 hose = pci_bus_to_host(bus);
1550 phb = hose->private_data;
1551 pdn = pci_get_pdn(pdev);
1553 if (!pdev->is_physfn)
1554 return;
1556 /* Reserve PE for each VF */
1557 for (vf_index = 0; vf_index < num_vfs; vf_index++) {
1558 if (pdn->m64_single_mode)
1559 pe_num = pdn->pe_num_map[vf_index];
1560 else
1561 pe_num = *pdn->pe_num_map + vf_index;
1563 pe = &phb->ioda.pe_array[pe_num];
1564 pe->pe_number = pe_num;
1565 pe->phb = phb;
1566 pe->flags = PNV_IODA_PE_VF;
1567 pe->pbus = NULL;
1568 pe->parent_dev = pdev;
1569 pe->mve_number = -1;
1570 pe->rid = (pci_iov_virtfn_bus(pdev, vf_index) << 8) |
1571 pci_iov_virtfn_devfn(pdev, vf_index);
1573 pe_info(pe, "VF %04d:%02d:%02d.%d associated with PE#%x\n",
1574 hose->global_number, pdev->bus->number,
1575 PCI_SLOT(pci_iov_virtfn_devfn(pdev, vf_index)),
1576 PCI_FUNC(pci_iov_virtfn_devfn(pdev, vf_index)), pe_num);
1578 if (pnv_ioda_configure_pe(phb, pe)) {
1579 /* XXX What do we do here ? */
1580 pnv_ioda_free_pe(pe);
1581 pe->pdev = NULL;
1582 continue;
1585 /* Put PE to the list */
1586 mutex_lock(&phb->ioda.pe_list_mutex);
1587 list_add_tail(&pe->list, &phb->ioda.pe_list);
1588 mutex_unlock(&phb->ioda.pe_list_mutex);
1590 pnv_pci_ioda2_setup_dma_pe(phb, pe);
1594 int pnv_pci_sriov_enable(struct pci_dev *pdev, u16 num_vfs)
1596 struct pci_bus *bus;
1597 struct pci_controller *hose;
1598 struct pnv_phb *phb;
1599 struct pnv_ioda_pe *pe;
1600 struct pci_dn *pdn;
1601 int ret;
1602 u16 i;
1604 bus = pdev->bus;
1605 hose = pci_bus_to_host(bus);
1606 phb = hose->private_data;
1607 pdn = pci_get_pdn(pdev);
1609 if (phb->type == PNV_PHB_IODA2) {
1610 if (!pdn->vfs_expanded) {
1611 dev_info(&pdev->dev, "don't support this SRIOV device"
1612 " with non 64bit-prefetchable IOV BAR\n");
1613 return -ENOSPC;
1617 * When M64 BARs functions in Single PE mode, the number of VFs
1618 * could be enabled must be less than the number of M64 BARs.
1620 if (pdn->m64_single_mode && num_vfs > phb->ioda.m64_bar_idx) {
1621 dev_info(&pdev->dev, "Not enough M64 BAR for VFs\n");
1622 return -EBUSY;
1625 /* Allocating pe_num_map */
1626 if (pdn->m64_single_mode)
1627 pdn->pe_num_map = kmalloc_array(num_vfs,
1628 sizeof(*pdn->pe_num_map),
1629 GFP_KERNEL);
1630 else
1631 pdn->pe_num_map = kmalloc(sizeof(*pdn->pe_num_map), GFP_KERNEL);
1633 if (!pdn->pe_num_map)
1634 return -ENOMEM;
1636 if (pdn->m64_single_mode)
1637 for (i = 0; i < num_vfs; i++)
1638 pdn->pe_num_map[i] = IODA_INVALID_PE;
1640 /* Calculate available PE for required VFs */
1641 if (pdn->m64_single_mode) {
1642 for (i = 0; i < num_vfs; i++) {
1643 pe = pnv_ioda_alloc_pe(phb);
1644 if (!pe) {
1645 ret = -EBUSY;
1646 goto m64_failed;
1649 pdn->pe_num_map[i] = pe->pe_number;
1651 } else {
1652 mutex_lock(&phb->ioda.pe_alloc_mutex);
1653 *pdn->pe_num_map = bitmap_find_next_zero_area(
1654 phb->ioda.pe_alloc, phb->ioda.total_pe_num,
1655 0, num_vfs, 0);
1656 if (*pdn->pe_num_map >= phb->ioda.total_pe_num) {
1657 mutex_unlock(&phb->ioda.pe_alloc_mutex);
1658 dev_info(&pdev->dev, "Failed to enable VF%d\n", num_vfs);
1659 kfree(pdn->pe_num_map);
1660 return -EBUSY;
1662 bitmap_set(phb->ioda.pe_alloc, *pdn->pe_num_map, num_vfs);
1663 mutex_unlock(&phb->ioda.pe_alloc_mutex);
1665 pdn->num_vfs = num_vfs;
1667 /* Assign M64 window accordingly */
1668 ret = pnv_pci_vf_assign_m64(pdev, num_vfs);
1669 if (ret) {
1670 dev_info(&pdev->dev, "Not enough M64 window resources\n");
1671 goto m64_failed;
1675 * When using one M64 BAR to map one IOV BAR, we need to shift
1676 * the IOV BAR according to the PE# allocated to the VFs.
1677 * Otherwise, the PE# for the VF will conflict with others.
1679 if (!pdn->m64_single_mode) {
1680 ret = pnv_pci_vf_resource_shift(pdev, *pdn->pe_num_map);
1681 if (ret)
1682 goto m64_failed;
1686 /* Setup VF PEs */
1687 pnv_ioda_setup_vf_PE(pdev, num_vfs);
1689 return 0;
1691 m64_failed:
1692 if (pdn->m64_single_mode) {
1693 for (i = 0; i < num_vfs; i++) {
1694 if (pdn->pe_num_map[i] == IODA_INVALID_PE)
1695 continue;
1697 pe = &phb->ioda.pe_array[pdn->pe_num_map[i]];
1698 pnv_ioda_free_pe(pe);
1700 } else
1701 bitmap_clear(phb->ioda.pe_alloc, *pdn->pe_num_map, num_vfs);
1703 /* Releasing pe_num_map */
1704 kfree(pdn->pe_num_map);
1706 return ret;
1709 int pnv_pcibios_sriov_disable(struct pci_dev *pdev)
1711 pnv_pci_sriov_disable(pdev);
1713 /* Release PCI data */
1714 remove_dev_pci_data(pdev);
1715 return 0;
1718 int pnv_pcibios_sriov_enable(struct pci_dev *pdev, u16 num_vfs)
1720 /* Allocate PCI data */
1721 add_dev_pci_data(pdev);
1723 return pnv_pci_sriov_enable(pdev, num_vfs);
1725 #endif /* CONFIG_PCI_IOV */
1727 static void pnv_pci_ioda_dma_dev_setup(struct pnv_phb *phb, struct pci_dev *pdev)
1729 struct pci_dn *pdn = pci_get_pdn(pdev);
1730 struct pnv_ioda_pe *pe;
1733 * The function can be called while the PE#
1734 * hasn't been assigned. Do nothing for the
1735 * case.
1737 if (!pdn || pdn->pe_number == IODA_INVALID_PE)
1738 return;
1740 pe = &phb->ioda.pe_array[pdn->pe_number];
1741 WARN_ON(get_dma_ops(&pdev->dev) != &dma_iommu_ops);
1742 set_dma_offset(&pdev->dev, pe->tce_bypass_base);
1743 set_iommu_table_base(&pdev->dev, pe->table_group.tables[0]);
1745 * Note: iommu_add_device() will fail here as
1746 * for physical PE: the device is already added by now;
1747 * for virtual PE: sysfs entries are not ready yet and
1748 * tce_iommu_bus_notifier will add the device to a group later.
1752 static bool pnv_pci_ioda_pe_single_vendor(struct pnv_ioda_pe *pe)
1754 unsigned short vendor = 0;
1755 struct pci_dev *pdev;
1757 if (pe->device_count == 1)
1758 return true;
1760 /* pe->pdev should be set if it's a single device, pe->pbus if not */
1761 if (!pe->pbus)
1762 return true;
1764 list_for_each_entry(pdev, &pe->pbus->devices, bus_list) {
1765 if (!vendor) {
1766 vendor = pdev->vendor;
1767 continue;
1770 if (pdev->vendor != vendor)
1771 return false;
1774 return true;
1778 * Reconfigure TVE#0 to be usable as 64-bit DMA space.
1780 * The first 4GB of virtual memory for a PE is reserved for 32-bit accesses.
1781 * Devices can only access more than that if bit 59 of the PCI address is set
1782 * by hardware, which indicates TVE#1 should be used instead of TVE#0.
1783 * Many PCI devices are not capable of addressing that many bits, and as a
1784 * result are limited to the 4GB of virtual memory made available to 32-bit
1785 * devices in TVE#0.
1787 * In order to work around this, reconfigure TVE#0 to be suitable for 64-bit
1788 * devices by configuring the virtual memory past the first 4GB inaccessible
1789 * by 64-bit DMAs. This should only be used by devices that want more than
1790 * 4GB, and only on PEs that have no 32-bit devices.
1792 * Currently this will only work on PHB3 (POWER8).
1794 static int pnv_pci_ioda_dma_64bit_bypass(struct pnv_ioda_pe *pe)
1796 u64 window_size, table_size, tce_count, addr;
1797 struct page *table_pages;
1798 u64 tce_order = 28; /* 256MB TCEs */
1799 __be64 *tces;
1800 s64 rc;
1803 * Window size needs to be a power of two, but needs to account for
1804 * shifting memory by the 4GB offset required to skip 32bit space.
1806 window_size = roundup_pow_of_two(memory_hotplug_max() + (1ULL << 32));
1807 tce_count = window_size >> tce_order;
1808 table_size = tce_count << 3;
1810 if (table_size < PAGE_SIZE)
1811 table_size = PAGE_SIZE;
1813 table_pages = alloc_pages_node(pe->phb->hose->node, GFP_KERNEL,
1814 get_order(table_size));
1815 if (!table_pages)
1816 goto err;
1818 tces = page_address(table_pages);
1819 if (!tces)
1820 goto err;
1822 memset(tces, 0, table_size);
1824 for (addr = 0; addr < memory_hotplug_max(); addr += (1 << tce_order)) {
1825 tces[(addr + (1ULL << 32)) >> tce_order] =
1826 cpu_to_be64(addr | TCE_PCI_READ | TCE_PCI_WRITE);
1829 rc = opal_pci_map_pe_dma_window(pe->phb->opal_id,
1830 pe->pe_number,
1831 /* reconfigure window 0 */
1832 (pe->pe_number << 1) + 0,
1834 __pa(tces),
1835 table_size,
1836 1 << tce_order);
1837 if (rc == OPAL_SUCCESS) {
1838 pe_info(pe, "Using 64-bit DMA iommu bypass (through TVE#0)\n");
1839 return 0;
1841 err:
1842 pe_err(pe, "Error configuring 64-bit DMA bypass\n");
1843 return -EIO;
1846 static int pnv_pci_ioda_dma_set_mask(struct pci_dev *pdev, u64 dma_mask)
1848 struct pci_controller *hose = pci_bus_to_host(pdev->bus);
1849 struct pnv_phb *phb = hose->private_data;
1850 struct pci_dn *pdn = pci_get_pdn(pdev);
1851 struct pnv_ioda_pe *pe;
1852 uint64_t top;
1853 bool bypass = false;
1854 s64 rc;
1856 if (WARN_ON(!pdn || pdn->pe_number == IODA_INVALID_PE))
1857 return -ENODEV;
1859 pe = &phb->ioda.pe_array[pdn->pe_number];
1860 if (pe->tce_bypass_enabled) {
1861 top = pe->tce_bypass_base + memblock_end_of_DRAM() - 1;
1862 bypass = (dma_mask >= top);
1865 if (bypass) {
1866 dev_info(&pdev->dev, "Using 64-bit DMA iommu bypass\n");
1867 set_dma_ops(&pdev->dev, &dma_nommu_ops);
1868 } else {
1870 * If the device can't set the TCE bypass bit but still wants
1871 * to access 4GB or more, on PHB3 we can reconfigure TVE#0 to
1872 * bypass the 32-bit region and be usable for 64-bit DMAs.
1873 * The device needs to be able to address all of this space.
1875 if (dma_mask >> 32 &&
1876 dma_mask > (memory_hotplug_max() + (1ULL << 32)) &&
1877 pnv_pci_ioda_pe_single_vendor(pe) &&
1878 phb->model == PNV_PHB_MODEL_PHB3) {
1879 /* Configure the bypass mode */
1880 rc = pnv_pci_ioda_dma_64bit_bypass(pe);
1881 if (rc)
1882 return rc;
1883 /* 4GB offset bypasses 32-bit space */
1884 set_dma_offset(&pdev->dev, (1ULL << 32));
1885 set_dma_ops(&pdev->dev, &dma_nommu_ops);
1886 } else if (dma_mask >> 32 && dma_mask != DMA_BIT_MASK(64)) {
1888 * Fail the request if a DMA mask between 32 and 64 bits
1889 * was requested but couldn't be fulfilled. Ideally we
1890 * would do this for 64-bits but historically we have
1891 * always fallen back to 32-bits.
1893 return -ENOMEM;
1894 } else {
1895 dev_info(&pdev->dev, "Using 32-bit DMA via iommu\n");
1896 set_dma_ops(&pdev->dev, &dma_iommu_ops);
1899 *pdev->dev.dma_mask = dma_mask;
1901 /* Update peer npu devices */
1902 pnv_npu_try_dma_set_bypass(pdev, bypass);
1904 return 0;
1907 static u64 pnv_pci_ioda_dma_get_required_mask(struct pci_dev *pdev)
1909 struct pci_controller *hose = pci_bus_to_host(pdev->bus);
1910 struct pnv_phb *phb = hose->private_data;
1911 struct pci_dn *pdn = pci_get_pdn(pdev);
1912 struct pnv_ioda_pe *pe;
1913 u64 end, mask;
1915 if (WARN_ON(!pdn || pdn->pe_number == IODA_INVALID_PE))
1916 return 0;
1918 pe = &phb->ioda.pe_array[pdn->pe_number];
1919 if (!pe->tce_bypass_enabled)
1920 return __dma_get_required_mask(&pdev->dev);
1923 end = pe->tce_bypass_base + memblock_end_of_DRAM();
1924 mask = 1ULL << (fls64(end) - 1);
1925 mask += mask - 1;
1927 return mask;
1930 static void pnv_ioda_setup_bus_dma(struct pnv_ioda_pe *pe,
1931 struct pci_bus *bus,
1932 bool add_to_group)
1934 struct pci_dev *dev;
1936 list_for_each_entry(dev, &bus->devices, bus_list) {
1937 set_iommu_table_base(&dev->dev, pe->table_group.tables[0]);
1938 set_dma_offset(&dev->dev, pe->tce_bypass_base);
1939 if (add_to_group)
1940 iommu_add_device(&dev->dev);
1942 if ((pe->flags & PNV_IODA_PE_BUS_ALL) && dev->subordinate)
1943 pnv_ioda_setup_bus_dma(pe, dev->subordinate,
1944 add_to_group);
1948 static inline __be64 __iomem *pnv_ioda_get_inval_reg(struct pnv_phb *phb,
1949 bool real_mode)
1951 return real_mode ? (__be64 __iomem *)(phb->regs_phys + 0x210) :
1952 (phb->regs + 0x210);
1955 static void pnv_pci_p7ioc_tce_invalidate(struct iommu_table *tbl,
1956 unsigned long index, unsigned long npages, bool rm)
1958 struct iommu_table_group_link *tgl = list_first_entry_or_null(
1959 &tbl->it_group_list, struct iommu_table_group_link,
1960 next);
1961 struct pnv_ioda_pe *pe = container_of(tgl->table_group,
1962 struct pnv_ioda_pe, table_group);
1963 __be64 __iomem *invalidate = pnv_ioda_get_inval_reg(pe->phb, rm);
1964 unsigned long start, end, inc;
1966 start = __pa(((__be64 *)tbl->it_base) + index - tbl->it_offset);
1967 end = __pa(((__be64 *)tbl->it_base) + index - tbl->it_offset +
1968 npages - 1);
1970 /* p7ioc-style invalidation, 2 TCEs per write */
1971 start |= (1ull << 63);
1972 end |= (1ull << 63);
1973 inc = 16;
1974 end |= inc - 1; /* round up end to be different than start */
1976 mb(); /* Ensure above stores are visible */
1977 while (start <= end) {
1978 if (rm)
1979 __raw_rm_writeq(cpu_to_be64(start), invalidate);
1980 else
1981 __raw_writeq(cpu_to_be64(start), invalidate);
1982 start += inc;
1986 * The iommu layer will do another mb() for us on build()
1987 * and we don't care on free()
1991 static int pnv_ioda1_tce_build(struct iommu_table *tbl, long index,
1992 long npages, unsigned long uaddr,
1993 enum dma_data_direction direction,
1994 unsigned long attrs)
1996 int ret = pnv_tce_build(tbl, index, npages, uaddr, direction,
1997 attrs);
1999 if (!ret)
2000 pnv_pci_p7ioc_tce_invalidate(tbl, index, npages, false);
2002 return ret;
2005 #ifdef CONFIG_IOMMU_API
2006 static int pnv_ioda1_tce_xchg(struct iommu_table *tbl, long index,
2007 unsigned long *hpa, enum dma_data_direction *direction)
2009 long ret = pnv_tce_xchg(tbl, index, hpa, direction);
2011 if (!ret)
2012 pnv_pci_p7ioc_tce_invalidate(tbl, index, 1, false);
2014 return ret;
2017 static int pnv_ioda1_tce_xchg_rm(struct iommu_table *tbl, long index,
2018 unsigned long *hpa, enum dma_data_direction *direction)
2020 long ret = pnv_tce_xchg(tbl, index, hpa, direction);
2022 if (!ret)
2023 pnv_pci_p7ioc_tce_invalidate(tbl, index, 1, true);
2025 return ret;
2027 #endif
2029 static void pnv_ioda1_tce_free(struct iommu_table *tbl, long index,
2030 long npages)
2032 pnv_tce_free(tbl, index, npages);
2034 pnv_pci_p7ioc_tce_invalidate(tbl, index, npages, false);
2037 static struct iommu_table_ops pnv_ioda1_iommu_ops = {
2038 .set = pnv_ioda1_tce_build,
2039 #ifdef CONFIG_IOMMU_API
2040 .exchange = pnv_ioda1_tce_xchg,
2041 .exchange_rm = pnv_ioda1_tce_xchg_rm,
2042 #endif
2043 .clear = pnv_ioda1_tce_free,
2044 .get = pnv_tce_get,
2047 #define PHB3_TCE_KILL_INVAL_ALL PPC_BIT(0)
2048 #define PHB3_TCE_KILL_INVAL_PE PPC_BIT(1)
2049 #define PHB3_TCE_KILL_INVAL_ONE PPC_BIT(2)
2051 static void pnv_pci_phb3_tce_invalidate_entire(struct pnv_phb *phb, bool rm)
2053 __be64 __iomem *invalidate = pnv_ioda_get_inval_reg(phb, rm);
2054 const unsigned long val = PHB3_TCE_KILL_INVAL_ALL;
2056 mb(); /* Ensure previous TCE table stores are visible */
2057 if (rm)
2058 __raw_rm_writeq(cpu_to_be64(val), invalidate);
2059 else
2060 __raw_writeq(cpu_to_be64(val), invalidate);
2063 static inline void pnv_pci_phb3_tce_invalidate_pe(struct pnv_ioda_pe *pe)
2065 /* 01xb - invalidate TCEs that match the specified PE# */
2066 __be64 __iomem *invalidate = pnv_ioda_get_inval_reg(pe->phb, false);
2067 unsigned long val = PHB3_TCE_KILL_INVAL_PE | (pe->pe_number & 0xFF);
2069 mb(); /* Ensure above stores are visible */
2070 __raw_writeq(cpu_to_be64(val), invalidate);
2073 static void pnv_pci_phb3_tce_invalidate(struct pnv_ioda_pe *pe, bool rm,
2074 unsigned shift, unsigned long index,
2075 unsigned long npages)
2077 __be64 __iomem *invalidate = pnv_ioda_get_inval_reg(pe->phb, rm);
2078 unsigned long start, end, inc;
2080 /* We'll invalidate DMA address in PE scope */
2081 start = PHB3_TCE_KILL_INVAL_ONE;
2082 start |= (pe->pe_number & 0xFF);
2083 end = start;
2085 /* Figure out the start, end and step */
2086 start |= (index << shift);
2087 end |= ((index + npages - 1) << shift);
2088 inc = (0x1ull << shift);
2089 mb();
2091 while (start <= end) {
2092 if (rm)
2093 __raw_rm_writeq(cpu_to_be64(start), invalidate);
2094 else
2095 __raw_writeq(cpu_to_be64(start), invalidate);
2096 start += inc;
2100 static inline void pnv_pci_ioda2_tce_invalidate_pe(struct pnv_ioda_pe *pe)
2102 struct pnv_phb *phb = pe->phb;
2104 if (phb->model == PNV_PHB_MODEL_PHB3 && phb->regs)
2105 pnv_pci_phb3_tce_invalidate_pe(pe);
2106 else
2107 opal_pci_tce_kill(phb->opal_id, OPAL_PCI_TCE_KILL_PE,
2108 pe->pe_number, 0, 0, 0);
2111 static void pnv_pci_ioda2_tce_invalidate(struct iommu_table *tbl,
2112 unsigned long index, unsigned long npages, bool rm)
2114 struct iommu_table_group_link *tgl;
2116 list_for_each_entry_lockless(tgl, &tbl->it_group_list, next) {
2117 struct pnv_ioda_pe *pe = container_of(tgl->table_group,
2118 struct pnv_ioda_pe, table_group);
2119 struct pnv_phb *phb = pe->phb;
2120 unsigned int shift = tbl->it_page_shift;
2123 * NVLink1 can use the TCE kill register directly as
2124 * it's the same as PHB3. NVLink2 is different and
2125 * should go via the OPAL call.
2127 if (phb->model == PNV_PHB_MODEL_NPU) {
2129 * The NVLink hardware does not support TCE kill
2130 * per TCE entry so we have to invalidate
2131 * the entire cache for it.
2133 pnv_pci_phb3_tce_invalidate_entire(phb, rm);
2134 continue;
2136 if (phb->model == PNV_PHB_MODEL_PHB3 && phb->regs)
2137 pnv_pci_phb3_tce_invalidate(pe, rm, shift,
2138 index, npages);
2139 else
2140 opal_pci_tce_kill(phb->opal_id,
2141 OPAL_PCI_TCE_KILL_PAGES,
2142 pe->pe_number, 1u << shift,
2143 index << shift, npages);
2147 void pnv_pci_ioda2_tce_invalidate_entire(struct pnv_phb *phb, bool rm)
2149 if (phb->model == PNV_PHB_MODEL_NPU || phb->model == PNV_PHB_MODEL_PHB3)
2150 pnv_pci_phb3_tce_invalidate_entire(phb, rm);
2151 else
2152 opal_pci_tce_kill(phb->opal_id, OPAL_PCI_TCE_KILL, 0, 0, 0, 0);
2155 static int pnv_ioda2_tce_build(struct iommu_table *tbl, long index,
2156 long npages, unsigned long uaddr,
2157 enum dma_data_direction direction,
2158 unsigned long attrs)
2160 int ret = pnv_tce_build(tbl, index, npages, uaddr, direction,
2161 attrs);
2163 if (!ret)
2164 pnv_pci_ioda2_tce_invalidate(tbl, index, npages, false);
2166 return ret;
2169 #ifdef CONFIG_IOMMU_API
2170 static int pnv_ioda2_tce_xchg(struct iommu_table *tbl, long index,
2171 unsigned long *hpa, enum dma_data_direction *direction)
2173 long ret = pnv_tce_xchg(tbl, index, hpa, direction);
2175 if (!ret)
2176 pnv_pci_ioda2_tce_invalidate(tbl, index, 1, false);
2178 return ret;
2181 static int pnv_ioda2_tce_xchg_rm(struct iommu_table *tbl, long index,
2182 unsigned long *hpa, enum dma_data_direction *direction)
2184 long ret = pnv_tce_xchg(tbl, index, hpa, direction);
2186 if (!ret)
2187 pnv_pci_ioda2_tce_invalidate(tbl, index, 1, true);
2189 return ret;
2191 #endif
2193 static void pnv_ioda2_tce_free(struct iommu_table *tbl, long index,
2194 long npages)
2196 pnv_tce_free(tbl, index, npages);
2198 pnv_pci_ioda2_tce_invalidate(tbl, index, npages, false);
2201 static void pnv_ioda2_table_free(struct iommu_table *tbl)
2203 pnv_pci_ioda2_table_free_pages(tbl);
2206 static struct iommu_table_ops pnv_ioda2_iommu_ops = {
2207 .set = pnv_ioda2_tce_build,
2208 #ifdef CONFIG_IOMMU_API
2209 .exchange = pnv_ioda2_tce_xchg,
2210 .exchange_rm = pnv_ioda2_tce_xchg_rm,
2211 #endif
2212 .clear = pnv_ioda2_tce_free,
2213 .get = pnv_tce_get,
2214 .free = pnv_ioda2_table_free,
2217 static int pnv_pci_ioda_dev_dma_weight(struct pci_dev *dev, void *data)
2219 unsigned int *weight = (unsigned int *)data;
2221 /* This is quite simplistic. The "base" weight of a device
2222 * is 10. 0 means no DMA is to be accounted for it.
2224 if (dev->hdr_type != PCI_HEADER_TYPE_NORMAL)
2225 return 0;
2227 if (dev->class == PCI_CLASS_SERIAL_USB_UHCI ||
2228 dev->class == PCI_CLASS_SERIAL_USB_OHCI ||
2229 dev->class == PCI_CLASS_SERIAL_USB_EHCI)
2230 *weight += 3;
2231 else if ((dev->class >> 8) == PCI_CLASS_STORAGE_RAID)
2232 *weight += 15;
2233 else
2234 *weight += 10;
2236 return 0;
2239 static unsigned int pnv_pci_ioda_pe_dma_weight(struct pnv_ioda_pe *pe)
2241 unsigned int weight = 0;
2243 /* SRIOV VF has same DMA32 weight as its PF */
2244 #ifdef CONFIG_PCI_IOV
2245 if ((pe->flags & PNV_IODA_PE_VF) && pe->parent_dev) {
2246 pnv_pci_ioda_dev_dma_weight(pe->parent_dev, &weight);
2247 return weight;
2249 #endif
2251 if ((pe->flags & PNV_IODA_PE_DEV) && pe->pdev) {
2252 pnv_pci_ioda_dev_dma_weight(pe->pdev, &weight);
2253 } else if ((pe->flags & PNV_IODA_PE_BUS) && pe->pbus) {
2254 struct pci_dev *pdev;
2256 list_for_each_entry(pdev, &pe->pbus->devices, bus_list)
2257 pnv_pci_ioda_dev_dma_weight(pdev, &weight);
2258 } else if ((pe->flags & PNV_IODA_PE_BUS_ALL) && pe->pbus) {
2259 pci_walk_bus(pe->pbus, pnv_pci_ioda_dev_dma_weight, &weight);
2262 return weight;
2265 static void pnv_pci_ioda1_setup_dma_pe(struct pnv_phb *phb,
2266 struct pnv_ioda_pe *pe)
2269 struct page *tce_mem = NULL;
2270 struct iommu_table *tbl;
2271 unsigned int weight, total_weight = 0;
2272 unsigned int tce32_segsz, base, segs, avail, i;
2273 int64_t rc;
2274 void *addr;
2276 /* XXX FIXME: Handle 64-bit only DMA devices */
2277 /* XXX FIXME: Provide 64-bit DMA facilities & non-4K TCE tables etc.. */
2278 /* XXX FIXME: Allocate multi-level tables on PHB3 */
2279 weight = pnv_pci_ioda_pe_dma_weight(pe);
2280 if (!weight)
2281 return;
2283 pci_walk_bus(phb->hose->bus, pnv_pci_ioda_dev_dma_weight,
2284 &total_weight);
2285 segs = (weight * phb->ioda.dma32_count) / total_weight;
2286 if (!segs)
2287 segs = 1;
2290 * Allocate contiguous DMA32 segments. We begin with the expected
2291 * number of segments. With one more attempt, the number of DMA32
2292 * segments to be allocated is decreased by one until one segment
2293 * is allocated successfully.
2295 do {
2296 for (base = 0; base <= phb->ioda.dma32_count - segs; base++) {
2297 for (avail = 0, i = base; i < base + segs; i++) {
2298 if (phb->ioda.dma32_segmap[i] ==
2299 IODA_INVALID_PE)
2300 avail++;
2303 if (avail == segs)
2304 goto found;
2306 } while (--segs);
2308 if (!segs) {
2309 pe_warn(pe, "No available DMA32 segments\n");
2310 return;
2313 found:
2314 tbl = pnv_pci_table_alloc(phb->hose->node);
2315 if (WARN_ON(!tbl))
2316 return;
2318 iommu_register_group(&pe->table_group, phb->hose->global_number,
2319 pe->pe_number);
2320 pnv_pci_link_table_and_group(phb->hose->node, 0, tbl, &pe->table_group);
2322 /* Grab a 32-bit TCE table */
2323 pe_info(pe, "DMA weight %d (%d), assigned (%d) %d DMA32 segments\n",
2324 weight, total_weight, base, segs);
2325 pe_info(pe, " Setting up 32-bit TCE table at %08x..%08x\n",
2326 base * PNV_IODA1_DMA32_SEGSIZE,
2327 (base + segs) * PNV_IODA1_DMA32_SEGSIZE - 1);
2329 /* XXX Currently, we allocate one big contiguous table for the
2330 * TCEs. We only really need one chunk per 256M of TCE space
2331 * (ie per segment) but that's an optimization for later, it
2332 * requires some added smarts with our get/put_tce implementation
2334 * Each TCE page is 4KB in size and each TCE entry occupies 8
2335 * bytes
2337 tce32_segsz = PNV_IODA1_DMA32_SEGSIZE >> (IOMMU_PAGE_SHIFT_4K - 3);
2338 tce_mem = alloc_pages_node(phb->hose->node, GFP_KERNEL,
2339 get_order(tce32_segsz * segs));
2340 if (!tce_mem) {
2341 pe_err(pe, " Failed to allocate a 32-bit TCE memory\n");
2342 goto fail;
2344 addr = page_address(tce_mem);
2345 memset(addr, 0, tce32_segsz * segs);
2347 /* Configure HW */
2348 for (i = 0; i < segs; i++) {
2349 rc = opal_pci_map_pe_dma_window(phb->opal_id,
2350 pe->pe_number,
2351 base + i, 1,
2352 __pa(addr) + tce32_segsz * i,
2353 tce32_segsz, IOMMU_PAGE_SIZE_4K);
2354 if (rc) {
2355 pe_err(pe, " Failed to configure 32-bit TCE table,"
2356 " err %ld\n", rc);
2357 goto fail;
2361 /* Setup DMA32 segment mapping */
2362 for (i = base; i < base + segs; i++)
2363 phb->ioda.dma32_segmap[i] = pe->pe_number;
2365 /* Setup linux iommu table */
2366 pnv_pci_setup_iommu_table(tbl, addr, tce32_segsz * segs,
2367 base * PNV_IODA1_DMA32_SEGSIZE,
2368 IOMMU_PAGE_SHIFT_4K);
2370 tbl->it_ops = &pnv_ioda1_iommu_ops;
2371 pe->table_group.tce32_start = tbl->it_offset << tbl->it_page_shift;
2372 pe->table_group.tce32_size = tbl->it_size << tbl->it_page_shift;
2373 iommu_init_table(tbl, phb->hose->node);
2375 if (pe->flags & PNV_IODA_PE_DEV) {
2377 * Setting table base here only for carrying iommu_group
2378 * further down to let iommu_add_device() do the job.
2379 * pnv_pci_ioda_dma_dev_setup will override it later anyway.
2381 set_iommu_table_base(&pe->pdev->dev, tbl);
2382 iommu_add_device(&pe->pdev->dev);
2383 } else if (pe->flags & (PNV_IODA_PE_BUS | PNV_IODA_PE_BUS_ALL))
2384 pnv_ioda_setup_bus_dma(pe, pe->pbus, true);
2386 return;
2387 fail:
2388 /* XXX Failure: Try to fallback to 64-bit only ? */
2389 if (tce_mem)
2390 __free_pages(tce_mem, get_order(tce32_segsz * segs));
2391 if (tbl) {
2392 pnv_pci_unlink_table_and_group(tbl, &pe->table_group);
2393 iommu_tce_table_put(tbl);
2397 static long pnv_pci_ioda2_set_window(struct iommu_table_group *table_group,
2398 int num, struct iommu_table *tbl)
2400 struct pnv_ioda_pe *pe = container_of(table_group, struct pnv_ioda_pe,
2401 table_group);
2402 struct pnv_phb *phb = pe->phb;
2403 int64_t rc;
2404 const unsigned long size = tbl->it_indirect_levels ?
2405 tbl->it_level_size : tbl->it_size;
2406 const __u64 start_addr = tbl->it_offset << tbl->it_page_shift;
2407 const __u64 win_size = tbl->it_size << tbl->it_page_shift;
2409 pe_info(pe, "Setting up window#%d %llx..%llx pg=%x\n", num,
2410 start_addr, start_addr + win_size - 1,
2411 IOMMU_PAGE_SIZE(tbl));
2414 * Map TCE table through TVT. The TVE index is the PE number
2415 * shifted by 1 bit for 32-bits DMA space.
2417 rc = opal_pci_map_pe_dma_window(phb->opal_id,
2418 pe->pe_number,
2419 (pe->pe_number << 1) + num,
2420 tbl->it_indirect_levels + 1,
2421 __pa(tbl->it_base),
2422 size << 3,
2423 IOMMU_PAGE_SIZE(tbl));
2424 if (rc) {
2425 pe_err(pe, "Failed to configure TCE table, err %ld\n", rc);
2426 return rc;
2429 pnv_pci_link_table_and_group(phb->hose->node, num,
2430 tbl, &pe->table_group);
2431 pnv_pci_ioda2_tce_invalidate_pe(pe);
2433 return 0;
2436 void pnv_pci_ioda2_set_bypass(struct pnv_ioda_pe *pe, bool enable)
2438 uint16_t window_id = (pe->pe_number << 1 ) + 1;
2439 int64_t rc;
2441 pe_info(pe, "%sabling 64-bit DMA bypass\n", enable ? "En" : "Dis");
2442 if (enable) {
2443 phys_addr_t top = memblock_end_of_DRAM();
2445 top = roundup_pow_of_two(top);
2446 rc = opal_pci_map_pe_dma_window_real(pe->phb->opal_id,
2447 pe->pe_number,
2448 window_id,
2449 pe->tce_bypass_base,
2450 top);
2451 } else {
2452 rc = opal_pci_map_pe_dma_window_real(pe->phb->opal_id,
2453 pe->pe_number,
2454 window_id,
2455 pe->tce_bypass_base,
2458 if (rc)
2459 pe_err(pe, "OPAL error %lld configuring bypass window\n", rc);
2460 else
2461 pe->tce_bypass_enabled = enable;
2464 static long pnv_pci_ioda2_table_alloc_pages(int nid, __u64 bus_offset,
2465 __u32 page_shift, __u64 window_size, __u32 levels,
2466 struct iommu_table *tbl);
2468 static long pnv_pci_ioda2_create_table(struct iommu_table_group *table_group,
2469 int num, __u32 page_shift, __u64 window_size, __u32 levels,
2470 struct iommu_table **ptbl)
2472 struct pnv_ioda_pe *pe = container_of(table_group, struct pnv_ioda_pe,
2473 table_group);
2474 int nid = pe->phb->hose->node;
2475 __u64 bus_offset = num ? pe->tce_bypass_base : table_group->tce32_start;
2476 long ret;
2477 struct iommu_table *tbl;
2479 tbl = pnv_pci_table_alloc(nid);
2480 if (!tbl)
2481 return -ENOMEM;
2483 tbl->it_ops = &pnv_ioda2_iommu_ops;
2485 ret = pnv_pci_ioda2_table_alloc_pages(nid,
2486 bus_offset, page_shift, window_size,
2487 levels, tbl);
2488 if (ret) {
2489 iommu_tce_table_put(tbl);
2490 return ret;
2493 *ptbl = tbl;
2495 return 0;
2498 static long pnv_pci_ioda2_setup_default_config(struct pnv_ioda_pe *pe)
2500 struct iommu_table *tbl = NULL;
2501 long rc;
2504 * crashkernel= specifies the kdump kernel's maximum memory at
2505 * some offset and there is no guaranteed the result is a power
2506 * of 2, which will cause errors later.
2508 const u64 max_memory = __rounddown_pow_of_two(memory_hotplug_max());
2511 * In memory constrained environments, e.g. kdump kernel, the
2512 * DMA window can be larger than available memory, which will
2513 * cause errors later.
2515 const u64 window_size = min((u64)pe->table_group.tce32_size, max_memory);
2517 rc = pnv_pci_ioda2_create_table(&pe->table_group, 0,
2518 IOMMU_PAGE_SHIFT_4K,
2519 window_size,
2520 POWERNV_IOMMU_DEFAULT_LEVELS, &tbl);
2521 if (rc) {
2522 pe_err(pe, "Failed to create 32-bit TCE table, err %ld",
2523 rc);
2524 return rc;
2527 iommu_init_table(tbl, pe->phb->hose->node);
2529 rc = pnv_pci_ioda2_set_window(&pe->table_group, 0, tbl);
2530 if (rc) {
2531 pe_err(pe, "Failed to configure 32-bit TCE table, err %ld\n",
2532 rc);
2533 iommu_tce_table_put(tbl);
2534 return rc;
2537 if (!pnv_iommu_bypass_disabled)
2538 pnv_pci_ioda2_set_bypass(pe, true);
2541 * Setting table base here only for carrying iommu_group
2542 * further down to let iommu_add_device() do the job.
2543 * pnv_pci_ioda_dma_dev_setup will override it later anyway.
2545 if (pe->flags & PNV_IODA_PE_DEV)
2546 set_iommu_table_base(&pe->pdev->dev, tbl);
2548 return 0;
2551 #if defined(CONFIG_IOMMU_API) || defined(CONFIG_PCI_IOV)
2552 static long pnv_pci_ioda2_unset_window(struct iommu_table_group *table_group,
2553 int num)
2555 struct pnv_ioda_pe *pe = container_of(table_group, struct pnv_ioda_pe,
2556 table_group);
2557 struct pnv_phb *phb = pe->phb;
2558 long ret;
2560 pe_info(pe, "Removing DMA window #%d\n", num);
2562 ret = opal_pci_map_pe_dma_window(phb->opal_id, pe->pe_number,
2563 (pe->pe_number << 1) + num,
2564 0/* levels */, 0/* table address */,
2565 0/* table size */, 0/* page size */);
2566 if (ret)
2567 pe_warn(pe, "Unmapping failed, ret = %ld\n", ret);
2568 else
2569 pnv_pci_ioda2_tce_invalidate_pe(pe);
2571 pnv_pci_unlink_table_and_group(table_group->tables[num], table_group);
2573 return ret;
2575 #endif
2577 #ifdef CONFIG_IOMMU_API
2578 static unsigned long pnv_pci_ioda2_get_table_size(__u32 page_shift,
2579 __u64 window_size, __u32 levels)
2581 unsigned long bytes = 0;
2582 const unsigned window_shift = ilog2(window_size);
2583 unsigned entries_shift = window_shift - page_shift;
2584 unsigned table_shift = entries_shift + 3;
2585 unsigned long tce_table_size = max(0x1000UL, 1UL << table_shift);
2586 unsigned long direct_table_size;
2588 if (!levels || (levels > POWERNV_IOMMU_MAX_LEVELS) ||
2589 !is_power_of_2(window_size))
2590 return 0;
2592 /* Calculate a direct table size from window_size and levels */
2593 entries_shift = (entries_shift + levels - 1) / levels;
2594 table_shift = entries_shift + 3;
2595 table_shift = max_t(unsigned, table_shift, PAGE_SHIFT);
2596 direct_table_size = 1UL << table_shift;
2598 for ( ; levels; --levels) {
2599 bytes += _ALIGN_UP(tce_table_size, direct_table_size);
2601 tce_table_size /= direct_table_size;
2602 tce_table_size <<= 3;
2603 tce_table_size = max_t(unsigned long,
2604 tce_table_size, direct_table_size);
2607 return bytes;
2610 static void pnv_ioda2_take_ownership(struct iommu_table_group *table_group)
2612 struct pnv_ioda_pe *pe = container_of(table_group, struct pnv_ioda_pe,
2613 table_group);
2614 /* Store @tbl as pnv_pci_ioda2_unset_window() resets it */
2615 struct iommu_table *tbl = pe->table_group.tables[0];
2617 pnv_pci_ioda2_set_bypass(pe, false);
2618 pnv_pci_ioda2_unset_window(&pe->table_group, 0);
2619 if (pe->pbus)
2620 pnv_ioda_setup_bus_dma(pe, pe->pbus, false);
2621 iommu_tce_table_put(tbl);
2624 static void pnv_ioda2_release_ownership(struct iommu_table_group *table_group)
2626 struct pnv_ioda_pe *pe = container_of(table_group, struct pnv_ioda_pe,
2627 table_group);
2629 pnv_pci_ioda2_setup_default_config(pe);
2630 if (pe->pbus)
2631 pnv_ioda_setup_bus_dma(pe, pe->pbus, false);
2634 static struct iommu_table_group_ops pnv_pci_ioda2_ops = {
2635 .get_table_size = pnv_pci_ioda2_get_table_size,
2636 .create_table = pnv_pci_ioda2_create_table,
2637 .set_window = pnv_pci_ioda2_set_window,
2638 .unset_window = pnv_pci_ioda2_unset_window,
2639 .take_ownership = pnv_ioda2_take_ownership,
2640 .release_ownership = pnv_ioda2_release_ownership,
2643 static int gpe_table_group_to_npe_cb(struct device *dev, void *opaque)
2645 struct pci_controller *hose;
2646 struct pnv_phb *phb;
2647 struct pnv_ioda_pe **ptmppe = opaque;
2648 struct pci_dev *pdev = container_of(dev, struct pci_dev, dev);
2649 struct pci_dn *pdn = pci_get_pdn(pdev);
2651 if (!pdn || pdn->pe_number == IODA_INVALID_PE)
2652 return 0;
2654 hose = pci_bus_to_host(pdev->bus);
2655 phb = hose->private_data;
2656 if (phb->type != PNV_PHB_NPU_NVLINK)
2657 return 0;
2659 *ptmppe = &phb->ioda.pe_array[pdn->pe_number];
2661 return 1;
2665 * This returns PE of associated NPU.
2666 * This assumes that NPU is in the same IOMMU group with GPU and there is
2667 * no other PEs.
2669 static struct pnv_ioda_pe *gpe_table_group_to_npe(
2670 struct iommu_table_group *table_group)
2672 struct pnv_ioda_pe *npe = NULL;
2673 int ret = iommu_group_for_each_dev(table_group->group, &npe,
2674 gpe_table_group_to_npe_cb);
2676 BUG_ON(!ret || !npe);
2678 return npe;
2681 static long pnv_pci_ioda2_npu_set_window(struct iommu_table_group *table_group,
2682 int num, struct iommu_table *tbl)
2684 long ret = pnv_pci_ioda2_set_window(table_group, num, tbl);
2686 if (ret)
2687 return ret;
2689 ret = pnv_npu_set_window(gpe_table_group_to_npe(table_group), num, tbl);
2690 if (ret)
2691 pnv_pci_ioda2_unset_window(table_group, num);
2693 return ret;
2696 static long pnv_pci_ioda2_npu_unset_window(
2697 struct iommu_table_group *table_group,
2698 int num)
2700 long ret = pnv_pci_ioda2_unset_window(table_group, num);
2702 if (ret)
2703 return ret;
2705 return pnv_npu_unset_window(gpe_table_group_to_npe(table_group), num);
2708 static void pnv_ioda2_npu_take_ownership(struct iommu_table_group *table_group)
2711 * Detach NPU first as pnv_ioda2_take_ownership() will destroy
2712 * the iommu_table if 32bit DMA is enabled.
2714 pnv_npu_take_ownership(gpe_table_group_to_npe(table_group));
2715 pnv_ioda2_take_ownership(table_group);
2718 static struct iommu_table_group_ops pnv_pci_ioda2_npu_ops = {
2719 .get_table_size = pnv_pci_ioda2_get_table_size,
2720 .create_table = pnv_pci_ioda2_create_table,
2721 .set_window = pnv_pci_ioda2_npu_set_window,
2722 .unset_window = pnv_pci_ioda2_npu_unset_window,
2723 .take_ownership = pnv_ioda2_npu_take_ownership,
2724 .release_ownership = pnv_ioda2_release_ownership,
2727 static void pnv_pci_ioda_setup_iommu_api(void)
2729 struct pci_controller *hose, *tmp;
2730 struct pnv_phb *phb;
2731 struct pnv_ioda_pe *pe, *gpe;
2734 * Now we have all PHBs discovered, time to add NPU devices to
2735 * the corresponding IOMMU groups.
2737 list_for_each_entry_safe(hose, tmp, &hose_list, list_node) {
2738 phb = hose->private_data;
2740 if (phb->type != PNV_PHB_NPU_NVLINK)
2741 continue;
2743 list_for_each_entry(pe, &phb->ioda.pe_list, list) {
2744 gpe = pnv_pci_npu_setup_iommu(pe);
2745 if (gpe)
2746 gpe->table_group.ops = &pnv_pci_ioda2_npu_ops;
2750 #else /* !CONFIG_IOMMU_API */
2751 static void pnv_pci_ioda_setup_iommu_api(void) { };
2752 #endif
2754 static __be64 *pnv_pci_ioda2_table_do_alloc_pages(int nid, unsigned shift,
2755 unsigned levels, unsigned long limit,
2756 unsigned long *current_offset, unsigned long *total_allocated)
2758 struct page *tce_mem = NULL;
2759 __be64 *addr, *tmp;
2760 unsigned order = max_t(unsigned, shift, PAGE_SHIFT) - PAGE_SHIFT;
2761 unsigned long allocated = 1UL << (order + PAGE_SHIFT);
2762 unsigned entries = 1UL << (shift - 3);
2763 long i;
2765 tce_mem = alloc_pages_node(nid, GFP_KERNEL, order);
2766 if (!tce_mem) {
2767 pr_err("Failed to allocate a TCE memory, order=%d\n", order);
2768 return NULL;
2770 addr = page_address(tce_mem);
2771 memset(addr, 0, allocated);
2772 *total_allocated += allocated;
2774 --levels;
2775 if (!levels) {
2776 *current_offset += allocated;
2777 return addr;
2780 for (i = 0; i < entries; ++i) {
2781 tmp = pnv_pci_ioda2_table_do_alloc_pages(nid, shift,
2782 levels, limit, current_offset, total_allocated);
2783 if (!tmp)
2784 break;
2786 addr[i] = cpu_to_be64(__pa(tmp) |
2787 TCE_PCI_READ | TCE_PCI_WRITE);
2789 if (*current_offset >= limit)
2790 break;
2793 return addr;
2796 static void pnv_pci_ioda2_table_do_free_pages(__be64 *addr,
2797 unsigned long size, unsigned level);
2799 static long pnv_pci_ioda2_table_alloc_pages(int nid, __u64 bus_offset,
2800 __u32 page_shift, __u64 window_size, __u32 levels,
2801 struct iommu_table *tbl)
2803 void *addr;
2804 unsigned long offset = 0, level_shift, total_allocated = 0;
2805 const unsigned window_shift = ilog2(window_size);
2806 unsigned entries_shift = window_shift - page_shift;
2807 unsigned table_shift = max_t(unsigned, entries_shift + 3, PAGE_SHIFT);
2808 const unsigned long tce_table_size = 1UL << table_shift;
2810 if (!levels || (levels > POWERNV_IOMMU_MAX_LEVELS))
2811 return -EINVAL;
2813 if (!is_power_of_2(window_size))
2814 return -EINVAL;
2816 /* Adjust direct table size from window_size and levels */
2817 entries_shift = (entries_shift + levels - 1) / levels;
2818 level_shift = entries_shift + 3;
2819 level_shift = max_t(unsigned, level_shift, PAGE_SHIFT);
2821 if ((level_shift - 3) * levels + page_shift >= 60)
2822 return -EINVAL;
2824 /* Allocate TCE table */
2825 addr = pnv_pci_ioda2_table_do_alloc_pages(nid, level_shift,
2826 levels, tce_table_size, &offset, &total_allocated);
2828 /* addr==NULL means that the first level allocation failed */
2829 if (!addr)
2830 return -ENOMEM;
2833 * First level was allocated but some lower level failed as
2834 * we did not allocate as much as we wanted,
2835 * release partially allocated table.
2837 if (offset < tce_table_size) {
2838 pnv_pci_ioda2_table_do_free_pages(addr,
2839 1ULL << (level_shift - 3), levels - 1);
2840 return -ENOMEM;
2843 /* Setup linux iommu table */
2844 pnv_pci_setup_iommu_table(tbl, addr, tce_table_size, bus_offset,
2845 page_shift);
2846 tbl->it_level_size = 1ULL << (level_shift - 3);
2847 tbl->it_indirect_levels = levels - 1;
2848 tbl->it_allocated_size = total_allocated;
2850 pr_devel("Created TCE table: ws=%08llx ts=%lx @%08llx\n",
2851 window_size, tce_table_size, bus_offset);
2853 return 0;
2856 static void pnv_pci_ioda2_table_do_free_pages(__be64 *addr,
2857 unsigned long size, unsigned level)
2859 const unsigned long addr_ul = (unsigned long) addr &
2860 ~(TCE_PCI_READ | TCE_PCI_WRITE);
2862 if (level) {
2863 long i;
2864 u64 *tmp = (u64 *) addr_ul;
2866 for (i = 0; i < size; ++i) {
2867 unsigned long hpa = be64_to_cpu(tmp[i]);
2869 if (!(hpa & (TCE_PCI_READ | TCE_PCI_WRITE)))
2870 continue;
2872 pnv_pci_ioda2_table_do_free_pages(__va(hpa), size,
2873 level - 1);
2877 free_pages(addr_ul, get_order(size << 3));
2880 static void pnv_pci_ioda2_table_free_pages(struct iommu_table *tbl)
2882 const unsigned long size = tbl->it_indirect_levels ?
2883 tbl->it_level_size : tbl->it_size;
2885 if (!tbl->it_size)
2886 return;
2888 pnv_pci_ioda2_table_do_free_pages((__be64 *)tbl->it_base, size,
2889 tbl->it_indirect_levels);
2892 static void pnv_pci_ioda2_setup_dma_pe(struct pnv_phb *phb,
2893 struct pnv_ioda_pe *pe)
2895 int64_t rc;
2897 if (!pnv_pci_ioda_pe_dma_weight(pe))
2898 return;
2900 /* TVE #1 is selected by PCI address bit 59 */
2901 pe->tce_bypass_base = 1ull << 59;
2903 iommu_register_group(&pe->table_group, phb->hose->global_number,
2904 pe->pe_number);
2906 /* The PE will reserve all possible 32-bits space */
2907 pe_info(pe, "Setting up 32-bit TCE table at 0..%08x\n",
2908 phb->ioda.m32_pci_base);
2910 /* Setup linux iommu table */
2911 pe->table_group.tce32_start = 0;
2912 pe->table_group.tce32_size = phb->ioda.m32_pci_base;
2913 pe->table_group.max_dynamic_windows_supported =
2914 IOMMU_TABLE_GROUP_MAX_TABLES;
2915 pe->table_group.max_levels = POWERNV_IOMMU_MAX_LEVELS;
2916 pe->table_group.pgsizes = SZ_4K | SZ_64K | SZ_16M;
2917 #ifdef CONFIG_IOMMU_API
2918 pe->table_group.ops = &pnv_pci_ioda2_ops;
2919 #endif
2921 rc = pnv_pci_ioda2_setup_default_config(pe);
2922 if (rc)
2923 return;
2925 if (pe->flags & (PNV_IODA_PE_BUS | PNV_IODA_PE_BUS_ALL))
2926 pnv_ioda_setup_bus_dma(pe, pe->pbus, true);
2929 #ifdef CONFIG_PCI_MSI
2930 int64_t pnv_opal_pci_msi_eoi(struct irq_chip *chip, unsigned int hw_irq)
2932 struct pnv_phb *phb = container_of(chip, struct pnv_phb,
2933 ioda.irq_chip);
2935 return opal_pci_msi_eoi(phb->opal_id, hw_irq);
2938 static void pnv_ioda2_msi_eoi(struct irq_data *d)
2940 int64_t rc;
2941 unsigned int hw_irq = (unsigned int)irqd_to_hwirq(d);
2942 struct irq_chip *chip = irq_data_get_irq_chip(d);
2944 rc = pnv_opal_pci_msi_eoi(chip, hw_irq);
2945 WARN_ON_ONCE(rc);
2947 icp_native_eoi(d);
2951 void pnv_set_msi_irq_chip(struct pnv_phb *phb, unsigned int virq)
2953 struct irq_data *idata;
2954 struct irq_chip *ichip;
2956 /* The MSI EOI OPAL call is only needed on PHB3 */
2957 if (phb->model != PNV_PHB_MODEL_PHB3)
2958 return;
2960 if (!phb->ioda.irq_chip_init) {
2962 * First time we setup an MSI IRQ, we need to setup the
2963 * corresponding IRQ chip to route correctly.
2965 idata = irq_get_irq_data(virq);
2966 ichip = irq_data_get_irq_chip(idata);
2967 phb->ioda.irq_chip_init = 1;
2968 phb->ioda.irq_chip = *ichip;
2969 phb->ioda.irq_chip.irq_eoi = pnv_ioda2_msi_eoi;
2971 irq_set_chip(virq, &phb->ioda.irq_chip);
2975 * Returns true iff chip is something that we could call
2976 * pnv_opal_pci_msi_eoi for.
2978 bool is_pnv_opal_msi(struct irq_chip *chip)
2980 return chip->irq_eoi == pnv_ioda2_msi_eoi;
2982 EXPORT_SYMBOL_GPL(is_pnv_opal_msi);
2984 static int pnv_pci_ioda_msi_setup(struct pnv_phb *phb, struct pci_dev *dev,
2985 unsigned int hwirq, unsigned int virq,
2986 unsigned int is_64, struct msi_msg *msg)
2988 struct pnv_ioda_pe *pe = pnv_ioda_get_pe(dev);
2989 unsigned int xive_num = hwirq - phb->msi_base;
2990 __be32 data;
2991 int rc;
2993 /* No PE assigned ? bail out ... no MSI for you ! */
2994 if (pe == NULL)
2995 return -ENXIO;
2997 /* Check if we have an MVE */
2998 if (pe->mve_number < 0)
2999 return -ENXIO;
3001 /* Force 32-bit MSI on some broken devices */
3002 if (dev->no_64bit_msi)
3003 is_64 = 0;
3005 /* Assign XIVE to PE */
3006 rc = opal_pci_set_xive_pe(phb->opal_id, pe->pe_number, xive_num);
3007 if (rc) {
3008 pr_warn("%s: OPAL error %d setting XIVE %d PE\n",
3009 pci_name(dev), rc, xive_num);
3010 return -EIO;
3013 if (is_64) {
3014 __be64 addr64;
3016 rc = opal_get_msi_64(phb->opal_id, pe->mve_number, xive_num, 1,
3017 &addr64, &data);
3018 if (rc) {
3019 pr_warn("%s: OPAL error %d getting 64-bit MSI data\n",
3020 pci_name(dev), rc);
3021 return -EIO;
3023 msg->address_hi = be64_to_cpu(addr64) >> 32;
3024 msg->address_lo = be64_to_cpu(addr64) & 0xfffffffful;
3025 } else {
3026 __be32 addr32;
3028 rc = opal_get_msi_32(phb->opal_id, pe->mve_number, xive_num, 1,
3029 &addr32, &data);
3030 if (rc) {
3031 pr_warn("%s: OPAL error %d getting 32-bit MSI data\n",
3032 pci_name(dev), rc);
3033 return -EIO;
3035 msg->address_hi = 0;
3036 msg->address_lo = be32_to_cpu(addr32);
3038 msg->data = be32_to_cpu(data);
3040 pnv_set_msi_irq_chip(phb, virq);
3042 pr_devel("%s: %s-bit MSI on hwirq %x (xive #%d),"
3043 " address=%x_%08x data=%x PE# %x\n",
3044 pci_name(dev), is_64 ? "64" : "32", hwirq, xive_num,
3045 msg->address_hi, msg->address_lo, data, pe->pe_number);
3047 return 0;
3050 static void pnv_pci_init_ioda_msis(struct pnv_phb *phb)
3052 unsigned int count;
3053 const __be32 *prop = of_get_property(phb->hose->dn,
3054 "ibm,opal-msi-ranges", NULL);
3055 if (!prop) {
3056 /* BML Fallback */
3057 prop = of_get_property(phb->hose->dn, "msi-ranges", NULL);
3059 if (!prop)
3060 return;
3062 phb->msi_base = be32_to_cpup(prop);
3063 count = be32_to_cpup(prop + 1);
3064 if (msi_bitmap_alloc(&phb->msi_bmp, count, phb->hose->dn)) {
3065 pr_err("PCI %d: Failed to allocate MSI bitmap !\n",
3066 phb->hose->global_number);
3067 return;
3070 phb->msi_setup = pnv_pci_ioda_msi_setup;
3071 phb->msi32_support = 1;
3072 pr_info(" Allocated bitmap for %d MSIs (base IRQ 0x%x)\n",
3073 count, phb->msi_base);
3075 #else
3076 static void pnv_pci_init_ioda_msis(struct pnv_phb *phb) { }
3077 #endif /* CONFIG_PCI_MSI */
3079 #ifdef CONFIG_PCI_IOV
3080 static void pnv_pci_ioda_fixup_iov_resources(struct pci_dev *pdev)
3082 struct pci_controller *hose = pci_bus_to_host(pdev->bus);
3083 struct pnv_phb *phb = hose->private_data;
3084 const resource_size_t gate = phb->ioda.m64_segsize >> 2;
3085 struct resource *res;
3086 int i;
3087 resource_size_t size, total_vf_bar_sz;
3088 struct pci_dn *pdn;
3089 int mul, total_vfs;
3091 if (!pdev->is_physfn || pdev->is_added)
3092 return;
3094 pdn = pci_get_pdn(pdev);
3095 pdn->vfs_expanded = 0;
3096 pdn->m64_single_mode = false;
3098 total_vfs = pci_sriov_get_totalvfs(pdev);
3099 mul = phb->ioda.total_pe_num;
3100 total_vf_bar_sz = 0;
3102 for (i = 0; i < PCI_SRIOV_NUM_BARS; i++) {
3103 res = &pdev->resource[i + PCI_IOV_RESOURCES];
3104 if (!res->flags || res->parent)
3105 continue;
3106 if (!pnv_pci_is_m64_flags(res->flags)) {
3107 dev_warn(&pdev->dev, "Don't support SR-IOV with"
3108 " non M64 VF BAR%d: %pR. \n",
3109 i, res);
3110 goto truncate_iov;
3113 total_vf_bar_sz += pci_iov_resource_size(pdev,
3114 i + PCI_IOV_RESOURCES);
3117 * If bigger than quarter of M64 segment size, just round up
3118 * power of two.
3120 * Generally, one M64 BAR maps one IOV BAR. To avoid conflict
3121 * with other devices, IOV BAR size is expanded to be
3122 * (total_pe * VF_BAR_size). When VF_BAR_size is half of M64
3123 * segment size , the expanded size would equal to half of the
3124 * whole M64 space size, which will exhaust the M64 Space and
3125 * limit the system flexibility. This is a design decision to
3126 * set the boundary to quarter of the M64 segment size.
3128 if (total_vf_bar_sz > gate) {
3129 mul = roundup_pow_of_two(total_vfs);
3130 dev_info(&pdev->dev,
3131 "VF BAR Total IOV size %llx > %llx, roundup to %d VFs\n",
3132 total_vf_bar_sz, gate, mul);
3133 pdn->m64_single_mode = true;
3134 break;
3138 for (i = 0; i < PCI_SRIOV_NUM_BARS; i++) {
3139 res = &pdev->resource[i + PCI_IOV_RESOURCES];
3140 if (!res->flags || res->parent)
3141 continue;
3143 size = pci_iov_resource_size(pdev, i + PCI_IOV_RESOURCES);
3145 * On PHB3, the minimum size alignment of M64 BAR in single
3146 * mode is 32MB.
3148 if (pdn->m64_single_mode && (size < SZ_32M))
3149 goto truncate_iov;
3150 dev_dbg(&pdev->dev, " Fixing VF BAR%d: %pR to\n", i, res);
3151 res->end = res->start + size * mul - 1;
3152 dev_dbg(&pdev->dev, " %pR\n", res);
3153 dev_info(&pdev->dev, "VF BAR%d: %pR (expanded to %d VFs for PE alignment)",
3154 i, res, mul);
3156 pdn->vfs_expanded = mul;
3158 return;
3160 truncate_iov:
3161 /* To save MMIO space, IOV BAR is truncated. */
3162 for (i = 0; i < PCI_SRIOV_NUM_BARS; i++) {
3163 res = &pdev->resource[i + PCI_IOV_RESOURCES];
3164 res->flags = 0;
3165 res->end = res->start - 1;
3168 #endif /* CONFIG_PCI_IOV */
3170 static void pnv_ioda_setup_pe_res(struct pnv_ioda_pe *pe,
3171 struct resource *res)
3173 struct pnv_phb *phb = pe->phb;
3174 struct pci_bus_region region;
3175 int index;
3176 int64_t rc;
3178 if (!res || !res->flags || res->start > res->end)
3179 return;
3181 if (res->flags & IORESOURCE_IO) {
3182 region.start = res->start - phb->ioda.io_pci_base;
3183 region.end = res->end - phb->ioda.io_pci_base;
3184 index = region.start / phb->ioda.io_segsize;
3186 while (index < phb->ioda.total_pe_num &&
3187 region.start <= region.end) {
3188 phb->ioda.io_segmap[index] = pe->pe_number;
3189 rc = opal_pci_map_pe_mmio_window(phb->opal_id,
3190 pe->pe_number, OPAL_IO_WINDOW_TYPE, 0, index);
3191 if (rc != OPAL_SUCCESS) {
3192 pr_err("%s: Error %lld mapping IO segment#%d to PE#%x\n",
3193 __func__, rc, index, pe->pe_number);
3194 break;
3197 region.start += phb->ioda.io_segsize;
3198 index++;
3200 } else if ((res->flags & IORESOURCE_MEM) &&
3201 !pnv_pci_is_m64(phb, res)) {
3202 region.start = res->start -
3203 phb->hose->mem_offset[0] -
3204 phb->ioda.m32_pci_base;
3205 region.end = res->end -
3206 phb->hose->mem_offset[0] -
3207 phb->ioda.m32_pci_base;
3208 index = region.start / phb->ioda.m32_segsize;
3210 while (index < phb->ioda.total_pe_num &&
3211 region.start <= region.end) {
3212 phb->ioda.m32_segmap[index] = pe->pe_number;
3213 rc = opal_pci_map_pe_mmio_window(phb->opal_id,
3214 pe->pe_number, OPAL_M32_WINDOW_TYPE, 0, index);
3215 if (rc != OPAL_SUCCESS) {
3216 pr_err("%s: Error %lld mapping M32 segment#%d to PE#%x",
3217 __func__, rc, index, pe->pe_number);
3218 break;
3221 region.start += phb->ioda.m32_segsize;
3222 index++;
3228 * This function is supposed to be called on basis of PE from top
3229 * to bottom style. So the the I/O or MMIO segment assigned to
3230 * parent PE could be overridden by its child PEs if necessary.
3232 static void pnv_ioda_setup_pe_seg(struct pnv_ioda_pe *pe)
3234 struct pci_dev *pdev;
3235 int i;
3238 * NOTE: We only care PCI bus based PE for now. For PCI
3239 * device based PE, for example SRIOV sensitive VF should
3240 * be figured out later.
3242 BUG_ON(!(pe->flags & (PNV_IODA_PE_BUS | PNV_IODA_PE_BUS_ALL)));
3244 list_for_each_entry(pdev, &pe->pbus->devices, bus_list) {
3245 for (i = 0; i <= PCI_ROM_RESOURCE; i++)
3246 pnv_ioda_setup_pe_res(pe, &pdev->resource[i]);
3249 * If the PE contains all subordinate PCI buses, the
3250 * windows of the child bridges should be mapped to
3251 * the PE as well.
3253 if (!(pe->flags & PNV_IODA_PE_BUS_ALL) || !pci_is_bridge(pdev))
3254 continue;
3255 for (i = 0; i < PCI_BRIDGE_RESOURCE_NUM; i++)
3256 pnv_ioda_setup_pe_res(pe,
3257 &pdev->resource[PCI_BRIDGE_RESOURCES + i]);
3261 #ifdef CONFIG_DEBUG_FS
3262 static int pnv_pci_diag_data_set(void *data, u64 val)
3264 struct pci_controller *hose;
3265 struct pnv_phb *phb;
3266 s64 ret;
3268 if (val != 1ULL)
3269 return -EINVAL;
3271 hose = (struct pci_controller *)data;
3272 if (!hose || !hose->private_data)
3273 return -ENODEV;
3275 phb = hose->private_data;
3277 /* Retrieve the diag data from firmware */
3278 ret = opal_pci_get_phb_diag_data2(phb->opal_id, phb->diag_data,
3279 phb->diag_data_size);
3280 if (ret != OPAL_SUCCESS)
3281 return -EIO;
3283 /* Print the diag data to the kernel log */
3284 pnv_pci_dump_phb_diag_data(phb->hose, phb->diag_data);
3285 return 0;
3288 DEFINE_SIMPLE_ATTRIBUTE(pnv_pci_diag_data_fops, NULL,
3289 pnv_pci_diag_data_set, "%llu\n");
3291 #endif /* CONFIG_DEBUG_FS */
3293 static void pnv_pci_ioda_create_dbgfs(void)
3295 #ifdef CONFIG_DEBUG_FS
3296 struct pci_controller *hose, *tmp;
3297 struct pnv_phb *phb;
3298 char name[16];
3300 list_for_each_entry_safe(hose, tmp, &hose_list, list_node) {
3301 phb = hose->private_data;
3303 /* Notify initialization of PHB done */
3304 phb->initialized = 1;
3306 sprintf(name, "PCI%04x", hose->global_number);
3307 phb->dbgfs = debugfs_create_dir(name, powerpc_debugfs_root);
3308 if (!phb->dbgfs) {
3309 pr_warn("%s: Error on creating debugfs on PHB#%x\n",
3310 __func__, hose->global_number);
3311 continue;
3314 debugfs_create_file("dump_diag_regs", 0200, phb->dbgfs, hose,
3315 &pnv_pci_diag_data_fops);
3317 #endif /* CONFIG_DEBUG_FS */
3320 static void pnv_pci_ioda_fixup(void)
3322 pnv_pci_ioda_setup_PEs();
3323 pnv_pci_ioda_setup_iommu_api();
3324 pnv_pci_ioda_create_dbgfs();
3326 #ifdef CONFIG_EEH
3327 pnv_eeh_post_init();
3328 #endif
3332 * Returns the alignment for I/O or memory windows for P2P
3333 * bridges. That actually depends on how PEs are segmented.
3334 * For now, we return I/O or M32 segment size for PE sensitive
3335 * P2P bridges. Otherwise, the default values (4KiB for I/O,
3336 * 1MiB for memory) will be returned.
3338 * The current PCI bus might be put into one PE, which was
3339 * create against the parent PCI bridge. For that case, we
3340 * needn't enlarge the alignment so that we can save some
3341 * resources.
3343 static resource_size_t pnv_pci_window_alignment(struct pci_bus *bus,
3344 unsigned long type)
3346 struct pci_dev *bridge;
3347 struct pci_controller *hose = pci_bus_to_host(bus);
3348 struct pnv_phb *phb = hose->private_data;
3349 int num_pci_bridges = 0;
3351 bridge = bus->self;
3352 while (bridge) {
3353 if (pci_pcie_type(bridge) == PCI_EXP_TYPE_PCI_BRIDGE) {
3354 num_pci_bridges++;
3355 if (num_pci_bridges >= 2)
3356 return 1;
3359 bridge = bridge->bus->self;
3363 * We fall back to M32 if M64 isn't supported. We enforce the M64
3364 * alignment for any 64-bit resource, PCIe doesn't care and
3365 * bridges only do 64-bit prefetchable anyway.
3367 if (phb->ioda.m64_segsize && pnv_pci_is_m64_flags(type))
3368 return phb->ioda.m64_segsize;
3369 if (type & IORESOURCE_MEM)
3370 return phb->ioda.m32_segsize;
3372 return phb->ioda.io_segsize;
3376 * We are updating root port or the upstream port of the
3377 * bridge behind the root port with PHB's windows in order
3378 * to accommodate the changes on required resources during
3379 * PCI (slot) hotplug, which is connected to either root
3380 * port or the downstream ports of PCIe switch behind the
3381 * root port.
3383 static void pnv_pci_fixup_bridge_resources(struct pci_bus *bus,
3384 unsigned long type)
3386 struct pci_controller *hose = pci_bus_to_host(bus);
3387 struct pnv_phb *phb = hose->private_data;
3388 struct pci_dev *bridge = bus->self;
3389 struct resource *r, *w;
3390 bool msi_region = false;
3391 int i;
3393 /* Check if we need apply fixup to the bridge's windows */
3394 if (!pci_is_root_bus(bridge->bus) &&
3395 !pci_is_root_bus(bridge->bus->self->bus))
3396 return;
3398 /* Fixup the resources */
3399 for (i = 0; i < PCI_BRIDGE_RESOURCE_NUM; i++) {
3400 r = &bridge->resource[PCI_BRIDGE_RESOURCES + i];
3401 if (!r->flags || !r->parent)
3402 continue;
3404 w = NULL;
3405 if (r->flags & type & IORESOURCE_IO)
3406 w = &hose->io_resource;
3407 else if (pnv_pci_is_m64(phb, r) &&
3408 (type & IORESOURCE_PREFETCH) &&
3409 phb->ioda.m64_segsize)
3410 w = &hose->mem_resources[1];
3411 else if (r->flags & type & IORESOURCE_MEM) {
3412 w = &hose->mem_resources[0];
3413 msi_region = true;
3416 r->start = w->start;
3417 r->end = w->end;
3419 /* The 64KB 32-bits MSI region shouldn't be included in
3420 * the 32-bits bridge window. Otherwise, we can see strange
3421 * issues. One of them is EEH error observed on Garrison.
3423 * Exclude top 1MB region which is the minimal alignment of
3424 * 32-bits bridge window.
3426 if (msi_region) {
3427 r->end += 0x10000;
3428 r->end -= 0x100000;
3433 static void pnv_pci_setup_bridge(struct pci_bus *bus, unsigned long type)
3435 struct pci_controller *hose = pci_bus_to_host(bus);
3436 struct pnv_phb *phb = hose->private_data;
3437 struct pci_dev *bridge = bus->self;
3438 struct pnv_ioda_pe *pe;
3439 bool all = (pci_pcie_type(bridge) == PCI_EXP_TYPE_PCI_BRIDGE);
3441 /* Extend bridge's windows if necessary */
3442 pnv_pci_fixup_bridge_resources(bus, type);
3444 /* The PE for root bus should be realized before any one else */
3445 if (!phb->ioda.root_pe_populated) {
3446 pe = pnv_ioda_setup_bus_PE(phb->hose->bus, false);
3447 if (pe) {
3448 phb->ioda.root_pe_idx = pe->pe_number;
3449 phb->ioda.root_pe_populated = true;
3453 /* Don't assign PE to PCI bus, which doesn't have subordinate devices */
3454 if (list_empty(&bus->devices))
3455 return;
3457 /* Reserve PEs according to used M64 resources */
3458 if (phb->reserve_m64_pe)
3459 phb->reserve_m64_pe(bus, NULL, all);
3462 * Assign PE. We might run here because of partial hotplug.
3463 * For the case, we just pick up the existing PE and should
3464 * not allocate resources again.
3466 pe = pnv_ioda_setup_bus_PE(bus, all);
3467 if (!pe)
3468 return;
3470 pnv_ioda_setup_pe_seg(pe);
3471 switch (phb->type) {
3472 case PNV_PHB_IODA1:
3473 pnv_pci_ioda1_setup_dma_pe(phb, pe);
3474 break;
3475 case PNV_PHB_IODA2:
3476 pnv_pci_ioda2_setup_dma_pe(phb, pe);
3477 break;
3478 default:
3479 pr_warn("%s: No DMA for PHB#%x (type %d)\n",
3480 __func__, phb->hose->global_number, phb->type);
3484 static resource_size_t pnv_pci_default_alignment(void)
3486 return PAGE_SIZE;
3489 #ifdef CONFIG_PCI_IOV
3490 static resource_size_t pnv_pci_iov_resource_alignment(struct pci_dev *pdev,
3491 int resno)
3493 struct pci_controller *hose = pci_bus_to_host(pdev->bus);
3494 struct pnv_phb *phb = hose->private_data;
3495 struct pci_dn *pdn = pci_get_pdn(pdev);
3496 resource_size_t align;
3499 * On PowerNV platform, IOV BAR is mapped by M64 BAR to enable the
3500 * SR-IOV. While from hardware perspective, the range mapped by M64
3501 * BAR should be size aligned.
3503 * When IOV BAR is mapped with M64 BAR in Single PE mode, the extra
3504 * powernv-specific hardware restriction is gone. But if just use the
3505 * VF BAR size as the alignment, PF BAR / VF BAR may be allocated with
3506 * in one segment of M64 #15, which introduces the PE conflict between
3507 * PF and VF. Based on this, the minimum alignment of an IOV BAR is
3508 * m64_segsize.
3510 * This function returns the total IOV BAR size if M64 BAR is in
3511 * Shared PE mode or just VF BAR size if not.
3512 * If the M64 BAR is in Single PE mode, return the VF BAR size or
3513 * M64 segment size if IOV BAR size is less.
3515 align = pci_iov_resource_size(pdev, resno);
3516 if (!pdn->vfs_expanded)
3517 return align;
3518 if (pdn->m64_single_mode)
3519 return max(align, (resource_size_t)phb->ioda.m64_segsize);
3521 return pdn->vfs_expanded * align;
3523 #endif /* CONFIG_PCI_IOV */
3525 /* Prevent enabling devices for which we couldn't properly
3526 * assign a PE
3528 bool pnv_pci_enable_device_hook(struct pci_dev *dev)
3530 struct pci_controller *hose = pci_bus_to_host(dev->bus);
3531 struct pnv_phb *phb = hose->private_data;
3532 struct pci_dn *pdn;
3534 /* The function is probably called while the PEs have
3535 * not be created yet. For example, resource reassignment
3536 * during PCI probe period. We just skip the check if
3537 * PEs isn't ready.
3539 if (!phb->initialized)
3540 return true;
3542 pdn = pci_get_pdn(dev);
3543 if (!pdn || pdn->pe_number == IODA_INVALID_PE)
3544 return false;
3546 return true;
3549 static long pnv_pci_ioda1_unset_window(struct iommu_table_group *table_group,
3550 int num)
3552 struct pnv_ioda_pe *pe = container_of(table_group,
3553 struct pnv_ioda_pe, table_group);
3554 struct pnv_phb *phb = pe->phb;
3555 unsigned int idx;
3556 long rc;
3558 pe_info(pe, "Removing DMA window #%d\n", num);
3559 for (idx = 0; idx < phb->ioda.dma32_count; idx++) {
3560 if (phb->ioda.dma32_segmap[idx] != pe->pe_number)
3561 continue;
3563 rc = opal_pci_map_pe_dma_window(phb->opal_id, pe->pe_number,
3564 idx, 0, 0ul, 0ul, 0ul);
3565 if (rc != OPAL_SUCCESS) {
3566 pe_warn(pe, "Failure %ld unmapping DMA32 segment#%d\n",
3567 rc, idx);
3568 return rc;
3571 phb->ioda.dma32_segmap[idx] = IODA_INVALID_PE;
3574 pnv_pci_unlink_table_and_group(table_group->tables[num], table_group);
3575 return OPAL_SUCCESS;
3578 static void pnv_pci_ioda1_release_pe_dma(struct pnv_ioda_pe *pe)
3580 unsigned int weight = pnv_pci_ioda_pe_dma_weight(pe);
3581 struct iommu_table *tbl = pe->table_group.tables[0];
3582 int64_t rc;
3584 if (!weight)
3585 return;
3587 rc = pnv_pci_ioda1_unset_window(&pe->table_group, 0);
3588 if (rc != OPAL_SUCCESS)
3589 return;
3591 pnv_pci_p7ioc_tce_invalidate(tbl, tbl->it_offset, tbl->it_size, false);
3592 if (pe->table_group.group) {
3593 iommu_group_put(pe->table_group.group);
3594 WARN_ON(pe->table_group.group);
3597 free_pages(tbl->it_base, get_order(tbl->it_size << 3));
3598 iommu_tce_table_put(tbl);
3601 static void pnv_pci_ioda2_release_pe_dma(struct pnv_ioda_pe *pe)
3603 struct iommu_table *tbl = pe->table_group.tables[0];
3604 unsigned int weight = pnv_pci_ioda_pe_dma_weight(pe);
3605 #ifdef CONFIG_IOMMU_API
3606 int64_t rc;
3607 #endif
3609 if (!weight)
3610 return;
3612 #ifdef CONFIG_IOMMU_API
3613 rc = pnv_pci_ioda2_unset_window(&pe->table_group, 0);
3614 if (rc)
3615 pe_warn(pe, "OPAL error %ld release DMA window\n", rc);
3616 #endif
3618 pnv_pci_ioda2_set_bypass(pe, false);
3619 if (pe->table_group.group) {
3620 iommu_group_put(pe->table_group.group);
3621 WARN_ON(pe->table_group.group);
3624 pnv_pci_ioda2_table_free_pages(tbl);
3625 iommu_tce_table_put(tbl);
3628 static void pnv_ioda_free_pe_seg(struct pnv_ioda_pe *pe,
3629 unsigned short win,
3630 unsigned int *map)
3632 struct pnv_phb *phb = pe->phb;
3633 int idx;
3634 int64_t rc;
3636 for (idx = 0; idx < phb->ioda.total_pe_num; idx++) {
3637 if (map[idx] != pe->pe_number)
3638 continue;
3640 if (win == OPAL_M64_WINDOW_TYPE)
3641 rc = opal_pci_map_pe_mmio_window(phb->opal_id,
3642 phb->ioda.reserved_pe_idx, win,
3643 idx / PNV_IODA1_M64_SEGS,
3644 idx % PNV_IODA1_M64_SEGS);
3645 else
3646 rc = opal_pci_map_pe_mmio_window(phb->opal_id,
3647 phb->ioda.reserved_pe_idx, win, 0, idx);
3649 if (rc != OPAL_SUCCESS)
3650 pe_warn(pe, "Error %ld unmapping (%d) segment#%d\n",
3651 rc, win, idx);
3653 map[idx] = IODA_INVALID_PE;
3657 static void pnv_ioda_release_pe_seg(struct pnv_ioda_pe *pe)
3659 struct pnv_phb *phb = pe->phb;
3661 if (phb->type == PNV_PHB_IODA1) {
3662 pnv_ioda_free_pe_seg(pe, OPAL_IO_WINDOW_TYPE,
3663 phb->ioda.io_segmap);
3664 pnv_ioda_free_pe_seg(pe, OPAL_M32_WINDOW_TYPE,
3665 phb->ioda.m32_segmap);
3666 pnv_ioda_free_pe_seg(pe, OPAL_M64_WINDOW_TYPE,
3667 phb->ioda.m64_segmap);
3668 } else if (phb->type == PNV_PHB_IODA2) {
3669 pnv_ioda_free_pe_seg(pe, OPAL_M32_WINDOW_TYPE,
3670 phb->ioda.m32_segmap);
3674 static void pnv_ioda_release_pe(struct pnv_ioda_pe *pe)
3676 struct pnv_phb *phb = pe->phb;
3677 struct pnv_ioda_pe *slave, *tmp;
3679 list_del(&pe->list);
3680 switch (phb->type) {
3681 case PNV_PHB_IODA1:
3682 pnv_pci_ioda1_release_pe_dma(pe);
3683 break;
3684 case PNV_PHB_IODA2:
3685 pnv_pci_ioda2_release_pe_dma(pe);
3686 break;
3687 default:
3688 WARN_ON(1);
3691 pnv_ioda_release_pe_seg(pe);
3692 pnv_ioda_deconfigure_pe(pe->phb, pe);
3694 /* Release slave PEs in the compound PE */
3695 if (pe->flags & PNV_IODA_PE_MASTER) {
3696 list_for_each_entry_safe(slave, tmp, &pe->slaves, list) {
3697 list_del(&slave->list);
3698 pnv_ioda_free_pe(slave);
3703 * The PE for root bus can be removed because of hotplug in EEH
3704 * recovery for fenced PHB error. We need to mark the PE dead so
3705 * that it can be populated again in PCI hot add path. The PE
3706 * shouldn't be destroyed as it's the global reserved resource.
3708 if (phb->ioda.root_pe_populated &&
3709 phb->ioda.root_pe_idx == pe->pe_number)
3710 phb->ioda.root_pe_populated = false;
3711 else
3712 pnv_ioda_free_pe(pe);
3715 static void pnv_pci_release_device(struct pci_dev *pdev)
3717 struct pci_controller *hose = pci_bus_to_host(pdev->bus);
3718 struct pnv_phb *phb = hose->private_data;
3719 struct pci_dn *pdn = pci_get_pdn(pdev);
3720 struct pnv_ioda_pe *pe;
3722 if (pdev->is_virtfn)
3723 return;
3725 if (!pdn || pdn->pe_number == IODA_INVALID_PE)
3726 return;
3729 * PCI hotplug can happen as part of EEH error recovery. The @pdn
3730 * isn't removed and added afterwards in this scenario. We should
3731 * set the PE number in @pdn to an invalid one. Otherwise, the PE's
3732 * device count is decreased on removing devices while failing to
3733 * be increased on adding devices. It leads to unbalanced PE's device
3734 * count and eventually make normal PCI hotplug path broken.
3736 pe = &phb->ioda.pe_array[pdn->pe_number];
3737 pdn->pe_number = IODA_INVALID_PE;
3739 WARN_ON(--pe->device_count < 0);
3740 if (pe->device_count == 0)
3741 pnv_ioda_release_pe(pe);
3744 static void pnv_pci_ioda_shutdown(struct pci_controller *hose)
3746 struct pnv_phb *phb = hose->private_data;
3748 opal_pci_reset(phb->opal_id, OPAL_RESET_PCI_IODA_TABLE,
3749 OPAL_ASSERT_RESET);
3752 static const struct pci_controller_ops pnv_pci_ioda_controller_ops = {
3753 .dma_dev_setup = pnv_pci_dma_dev_setup,
3754 .dma_bus_setup = pnv_pci_dma_bus_setup,
3755 #ifdef CONFIG_PCI_MSI
3756 .setup_msi_irqs = pnv_setup_msi_irqs,
3757 .teardown_msi_irqs = pnv_teardown_msi_irqs,
3758 #endif
3759 .enable_device_hook = pnv_pci_enable_device_hook,
3760 .release_device = pnv_pci_release_device,
3761 .window_alignment = pnv_pci_window_alignment,
3762 .setup_bridge = pnv_pci_setup_bridge,
3763 .reset_secondary_bus = pnv_pci_reset_secondary_bus,
3764 .dma_set_mask = pnv_pci_ioda_dma_set_mask,
3765 .dma_get_required_mask = pnv_pci_ioda_dma_get_required_mask,
3766 .shutdown = pnv_pci_ioda_shutdown,
3769 static int pnv_npu_dma_set_mask(struct pci_dev *npdev, u64 dma_mask)
3771 dev_err_once(&npdev->dev,
3772 "%s operation unsupported for NVLink devices\n",
3773 __func__);
3774 return -EPERM;
3777 static const struct pci_controller_ops pnv_npu_ioda_controller_ops = {
3778 .dma_dev_setup = pnv_pci_dma_dev_setup,
3779 #ifdef CONFIG_PCI_MSI
3780 .setup_msi_irqs = pnv_setup_msi_irqs,
3781 .teardown_msi_irqs = pnv_teardown_msi_irqs,
3782 #endif
3783 .enable_device_hook = pnv_pci_enable_device_hook,
3784 .window_alignment = pnv_pci_window_alignment,
3785 .reset_secondary_bus = pnv_pci_reset_secondary_bus,
3786 .dma_set_mask = pnv_npu_dma_set_mask,
3787 .shutdown = pnv_pci_ioda_shutdown,
3790 static const struct pci_controller_ops pnv_npu_ocapi_ioda_controller_ops = {
3791 .enable_device_hook = pnv_pci_enable_device_hook,
3792 .window_alignment = pnv_pci_window_alignment,
3793 .reset_secondary_bus = pnv_pci_reset_secondary_bus,
3794 .shutdown = pnv_pci_ioda_shutdown,
3797 #ifdef CONFIG_CXL_BASE
3798 const struct pci_controller_ops pnv_cxl_cx4_ioda_controller_ops = {
3799 .dma_dev_setup = pnv_pci_dma_dev_setup,
3800 .dma_bus_setup = pnv_pci_dma_bus_setup,
3801 #ifdef CONFIG_PCI_MSI
3802 .setup_msi_irqs = pnv_cxl_cx4_setup_msi_irqs,
3803 .teardown_msi_irqs = pnv_cxl_cx4_teardown_msi_irqs,
3804 #endif
3805 .enable_device_hook = pnv_cxl_enable_device_hook,
3806 .disable_device = pnv_cxl_disable_device,
3807 .release_device = pnv_pci_release_device,
3808 .window_alignment = pnv_pci_window_alignment,
3809 .setup_bridge = pnv_pci_setup_bridge,
3810 .reset_secondary_bus = pnv_pci_reset_secondary_bus,
3811 .dma_set_mask = pnv_pci_ioda_dma_set_mask,
3812 .dma_get_required_mask = pnv_pci_ioda_dma_get_required_mask,
3813 .shutdown = pnv_pci_ioda_shutdown,
3815 #endif
3817 static void __init pnv_pci_init_ioda_phb(struct device_node *np,
3818 u64 hub_id, int ioda_type)
3820 struct pci_controller *hose;
3821 struct pnv_phb *phb;
3822 unsigned long size, m64map_off, m32map_off, pemap_off;
3823 unsigned long iomap_off = 0, dma32map_off = 0;
3824 struct resource r;
3825 const __be64 *prop64;
3826 const __be32 *prop32;
3827 int len;
3828 unsigned int segno;
3829 u64 phb_id;
3830 void *aux;
3831 long rc;
3833 if (!of_device_is_available(np))
3834 return;
3836 pr_info("Initializing %s PHB (%pOF)\n", pnv_phb_names[ioda_type], np);
3838 prop64 = of_get_property(np, "ibm,opal-phbid", NULL);
3839 if (!prop64) {
3840 pr_err(" Missing \"ibm,opal-phbid\" property !\n");
3841 return;
3843 phb_id = be64_to_cpup(prop64);
3844 pr_debug(" PHB-ID : 0x%016llx\n", phb_id);
3846 phb = memblock_virt_alloc(sizeof(struct pnv_phb), 0);
3848 /* Allocate PCI controller */
3849 phb->hose = hose = pcibios_alloc_controller(np);
3850 if (!phb->hose) {
3851 pr_err(" Can't allocate PCI controller for %pOF\n",
3852 np);
3853 memblock_free(__pa(phb), sizeof(struct pnv_phb));
3854 return;
3857 spin_lock_init(&phb->lock);
3858 prop32 = of_get_property(np, "bus-range", &len);
3859 if (prop32 && len == 8) {
3860 hose->first_busno = be32_to_cpu(prop32[0]);
3861 hose->last_busno = be32_to_cpu(prop32[1]);
3862 } else {
3863 pr_warn(" Broken <bus-range> on %pOF\n", np);
3864 hose->first_busno = 0;
3865 hose->last_busno = 0xff;
3867 hose->private_data = phb;
3868 phb->hub_id = hub_id;
3869 phb->opal_id = phb_id;
3870 phb->type = ioda_type;
3871 mutex_init(&phb->ioda.pe_alloc_mutex);
3873 /* Detect specific models for error handling */
3874 if (of_device_is_compatible(np, "ibm,p7ioc-pciex"))
3875 phb->model = PNV_PHB_MODEL_P7IOC;
3876 else if (of_device_is_compatible(np, "ibm,power8-pciex"))
3877 phb->model = PNV_PHB_MODEL_PHB3;
3878 else if (of_device_is_compatible(np, "ibm,power8-npu-pciex"))
3879 phb->model = PNV_PHB_MODEL_NPU;
3880 else if (of_device_is_compatible(np, "ibm,power9-npu-pciex"))
3881 phb->model = PNV_PHB_MODEL_NPU2;
3882 else
3883 phb->model = PNV_PHB_MODEL_UNKNOWN;
3885 /* Initialize diagnostic data buffer */
3886 prop32 = of_get_property(np, "ibm,phb-diag-data-size", NULL);
3887 if (prop32)
3888 phb->diag_data_size = be32_to_cpup(prop32);
3889 else
3890 phb->diag_data_size = PNV_PCI_DIAG_BUF_SIZE;
3892 phb->diag_data = memblock_virt_alloc(phb->diag_data_size, 0);
3894 /* Parse 32-bit and IO ranges (if any) */
3895 pci_process_bridge_OF_ranges(hose, np, !hose->global_number);
3897 /* Get registers */
3898 if (!of_address_to_resource(np, 0, &r)) {
3899 phb->regs_phys = r.start;
3900 phb->regs = ioremap(r.start, resource_size(&r));
3901 if (phb->regs == NULL)
3902 pr_err(" Failed to map registers !\n");
3905 /* Initialize more IODA stuff */
3906 phb->ioda.total_pe_num = 1;
3907 prop32 = of_get_property(np, "ibm,opal-num-pes", NULL);
3908 if (prop32)
3909 phb->ioda.total_pe_num = be32_to_cpup(prop32);
3910 prop32 = of_get_property(np, "ibm,opal-reserved-pe", NULL);
3911 if (prop32)
3912 phb->ioda.reserved_pe_idx = be32_to_cpup(prop32);
3914 /* Invalidate RID to PE# mapping */
3915 for (segno = 0; segno < ARRAY_SIZE(phb->ioda.pe_rmap); segno++)
3916 phb->ioda.pe_rmap[segno] = IODA_INVALID_PE;
3918 /* Parse 64-bit MMIO range */
3919 pnv_ioda_parse_m64_window(phb);
3921 phb->ioda.m32_size = resource_size(&hose->mem_resources[0]);
3922 /* FW Has already off top 64k of M32 space (MSI space) */
3923 phb->ioda.m32_size += 0x10000;
3925 phb->ioda.m32_segsize = phb->ioda.m32_size / phb->ioda.total_pe_num;
3926 phb->ioda.m32_pci_base = hose->mem_resources[0].start - hose->mem_offset[0];
3927 phb->ioda.io_size = hose->pci_io_size;
3928 phb->ioda.io_segsize = phb->ioda.io_size / phb->ioda.total_pe_num;
3929 phb->ioda.io_pci_base = 0; /* XXX calculate this ? */
3931 /* Calculate how many 32-bit TCE segments we have */
3932 phb->ioda.dma32_count = phb->ioda.m32_pci_base /
3933 PNV_IODA1_DMA32_SEGSIZE;
3935 /* Allocate aux data & arrays. We don't have IO ports on PHB3 */
3936 size = _ALIGN_UP(max_t(unsigned, phb->ioda.total_pe_num, 8) / 8,
3937 sizeof(unsigned long));
3938 m64map_off = size;
3939 size += phb->ioda.total_pe_num * sizeof(phb->ioda.m64_segmap[0]);
3940 m32map_off = size;
3941 size += phb->ioda.total_pe_num * sizeof(phb->ioda.m32_segmap[0]);
3942 if (phb->type == PNV_PHB_IODA1) {
3943 iomap_off = size;
3944 size += phb->ioda.total_pe_num * sizeof(phb->ioda.io_segmap[0]);
3945 dma32map_off = size;
3946 size += phb->ioda.dma32_count *
3947 sizeof(phb->ioda.dma32_segmap[0]);
3949 pemap_off = size;
3950 size += phb->ioda.total_pe_num * sizeof(struct pnv_ioda_pe);
3951 aux = memblock_virt_alloc(size, 0);
3952 phb->ioda.pe_alloc = aux;
3953 phb->ioda.m64_segmap = aux + m64map_off;
3954 phb->ioda.m32_segmap = aux + m32map_off;
3955 for (segno = 0; segno < phb->ioda.total_pe_num; segno++) {
3956 phb->ioda.m64_segmap[segno] = IODA_INVALID_PE;
3957 phb->ioda.m32_segmap[segno] = IODA_INVALID_PE;
3959 if (phb->type == PNV_PHB_IODA1) {
3960 phb->ioda.io_segmap = aux + iomap_off;
3961 for (segno = 0; segno < phb->ioda.total_pe_num; segno++)
3962 phb->ioda.io_segmap[segno] = IODA_INVALID_PE;
3964 phb->ioda.dma32_segmap = aux + dma32map_off;
3965 for (segno = 0; segno < phb->ioda.dma32_count; segno++)
3966 phb->ioda.dma32_segmap[segno] = IODA_INVALID_PE;
3968 phb->ioda.pe_array = aux + pemap_off;
3971 * Choose PE number for root bus, which shouldn't have
3972 * M64 resources consumed by its child devices. To pick
3973 * the PE number adjacent to the reserved one if possible.
3975 pnv_ioda_reserve_pe(phb, phb->ioda.reserved_pe_idx);
3976 if (phb->ioda.reserved_pe_idx == 0) {
3977 phb->ioda.root_pe_idx = 1;
3978 pnv_ioda_reserve_pe(phb, phb->ioda.root_pe_idx);
3979 } else if (phb->ioda.reserved_pe_idx == (phb->ioda.total_pe_num - 1)) {
3980 phb->ioda.root_pe_idx = phb->ioda.reserved_pe_idx - 1;
3981 pnv_ioda_reserve_pe(phb, phb->ioda.root_pe_idx);
3982 } else {
3983 phb->ioda.root_pe_idx = IODA_INVALID_PE;
3986 INIT_LIST_HEAD(&phb->ioda.pe_list);
3987 mutex_init(&phb->ioda.pe_list_mutex);
3989 /* Calculate how many 32-bit TCE segments we have */
3990 phb->ioda.dma32_count = phb->ioda.m32_pci_base /
3991 PNV_IODA1_DMA32_SEGSIZE;
3993 #if 0 /* We should really do that ... */
3994 rc = opal_pci_set_phb_mem_window(opal->phb_id,
3995 window_type,
3996 window_num,
3997 starting_real_address,
3998 starting_pci_address,
3999 segment_size);
4000 #endif
4002 pr_info(" %03d (%03d) PE's M32: 0x%x [segment=0x%x]\n",
4003 phb->ioda.total_pe_num, phb->ioda.reserved_pe_idx,
4004 phb->ioda.m32_size, phb->ioda.m32_segsize);
4005 if (phb->ioda.m64_size)
4006 pr_info(" M64: 0x%lx [segment=0x%lx]\n",
4007 phb->ioda.m64_size, phb->ioda.m64_segsize);
4008 if (phb->ioda.io_size)
4009 pr_info(" IO: 0x%x [segment=0x%x]\n",
4010 phb->ioda.io_size, phb->ioda.io_segsize);
4013 phb->hose->ops = &pnv_pci_ops;
4014 phb->get_pe_state = pnv_ioda_get_pe_state;
4015 phb->freeze_pe = pnv_ioda_freeze_pe;
4016 phb->unfreeze_pe = pnv_ioda_unfreeze_pe;
4018 /* Setup MSI support */
4019 pnv_pci_init_ioda_msis(phb);
4022 * We pass the PCI probe flag PCI_REASSIGN_ALL_RSRC here
4023 * to let the PCI core do resource assignment. It's supposed
4024 * that the PCI core will do correct I/O and MMIO alignment
4025 * for the P2P bridge bars so that each PCI bus (excluding
4026 * the child P2P bridges) can form individual PE.
4028 ppc_md.pcibios_fixup = pnv_pci_ioda_fixup;
4030 switch (phb->type) {
4031 case PNV_PHB_NPU_NVLINK:
4032 hose->controller_ops = pnv_npu_ioda_controller_ops;
4033 break;
4034 case PNV_PHB_NPU_OCAPI:
4035 hose->controller_ops = pnv_npu_ocapi_ioda_controller_ops;
4036 break;
4037 default:
4038 phb->dma_dev_setup = pnv_pci_ioda_dma_dev_setup;
4039 hose->controller_ops = pnv_pci_ioda_controller_ops;
4042 ppc_md.pcibios_default_alignment = pnv_pci_default_alignment;
4044 #ifdef CONFIG_PCI_IOV
4045 ppc_md.pcibios_fixup_sriov = pnv_pci_ioda_fixup_iov_resources;
4046 ppc_md.pcibios_iov_resource_alignment = pnv_pci_iov_resource_alignment;
4047 ppc_md.pcibios_sriov_enable = pnv_pcibios_sriov_enable;
4048 ppc_md.pcibios_sriov_disable = pnv_pcibios_sriov_disable;
4049 #endif
4051 pci_add_flags(PCI_REASSIGN_ALL_RSRC);
4053 /* Reset IODA tables to a clean state */
4054 rc = opal_pci_reset(phb_id, OPAL_RESET_PCI_IODA_TABLE, OPAL_ASSERT_RESET);
4055 if (rc)
4056 pr_warn(" OPAL Error %ld performing IODA table reset !\n", rc);
4059 * If we're running in kdump kernel, the previous kernel never
4060 * shutdown PCI devices correctly. We already got IODA table
4061 * cleaned out. So we have to issue PHB reset to stop all PCI
4062 * transactions from previous kernel. The ppc_pci_reset_phbs
4063 * kernel parameter will force this reset too.
4065 if (is_kdump_kernel() || pci_reset_phbs) {
4066 pr_info(" Issue PHB reset ...\n");
4067 pnv_eeh_phb_reset(hose, EEH_RESET_FUNDAMENTAL);
4068 pnv_eeh_phb_reset(hose, EEH_RESET_DEACTIVATE);
4071 /* Remove M64 resource if we can't configure it successfully */
4072 if (!phb->init_m64 || phb->init_m64(phb))
4073 hose->mem_resources[1].flags = 0;
4076 void __init pnv_pci_init_ioda2_phb(struct device_node *np)
4078 pnv_pci_init_ioda_phb(np, 0, PNV_PHB_IODA2);
4081 void __init pnv_pci_init_npu_phb(struct device_node *np)
4083 pnv_pci_init_ioda_phb(np, 0, PNV_PHB_NPU_NVLINK);
4086 void __init pnv_pci_init_npu2_opencapi_phb(struct device_node *np)
4088 pnv_pci_init_ioda_phb(np, 0, PNV_PHB_NPU_OCAPI);
4091 static void pnv_npu2_opencapi_cfg_size_fixup(struct pci_dev *dev)
4093 struct pci_controller *hose = pci_bus_to_host(dev->bus);
4094 struct pnv_phb *phb = hose->private_data;
4096 if (!machine_is(powernv))
4097 return;
4099 if (phb->type == PNV_PHB_NPU_OCAPI)
4100 dev->cfg_size = PCI_CFG_SPACE_EXP_SIZE;
4102 DECLARE_PCI_FIXUP_EARLY(PCI_ANY_ID, PCI_ANY_ID, pnv_npu2_opencapi_cfg_size_fixup);
4104 void __init pnv_pci_init_ioda_hub(struct device_node *np)
4106 struct device_node *phbn;
4107 const __be64 *prop64;
4108 u64 hub_id;
4110 pr_info("Probing IODA IO-Hub %pOF\n", np);
4112 prop64 = of_get_property(np, "ibm,opal-hubid", NULL);
4113 if (!prop64) {
4114 pr_err(" Missing \"ibm,opal-hubid\" property !\n");
4115 return;
4117 hub_id = be64_to_cpup(prop64);
4118 pr_devel(" HUB-ID : 0x%016llx\n", hub_id);
4120 /* Count child PHBs */
4121 for_each_child_of_node(np, phbn) {
4122 /* Look for IODA1 PHBs */
4123 if (of_device_is_compatible(phbn, "ibm,ioda-phb"))
4124 pnv_pci_init_ioda_phb(phbn, hub_id, PNV_PHB_IODA1);