2 * Copyright 2016,2017 IBM Corporation.
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public License
6 * as published by the Free Software Foundation; either version
7 * 2 of the License, or (at your option) any later version.
10 #define pr_fmt(fmt) "xive: " fmt
12 #include <linux/types.h>
13 #include <linux/threads.h>
14 #include <linux/kernel.h>
15 #include <linux/irq.h>
16 #include <linux/debugfs.h>
17 #include <linux/smp.h>
18 #include <linux/interrupt.h>
19 #include <linux/seq_file.h>
20 #include <linux/init.h>
21 #include <linux/cpu.h>
23 #include <linux/slab.h>
24 #include <linux/spinlock.h>
25 #include <linux/msi.h>
30 #include <asm/machdep.h>
32 #include <asm/errno.h>
34 #include <asm/xive-regs.h>
37 #include "xive-internal.h"
43 #define DBG_VERBOSE(fmt, ...) pr_devel("cpu %d - " fmt, \
44 smp_processor_id(), ## __VA_ARGS__)
46 #define DBG_VERBOSE(fmt...) do { } while(0)
50 EXPORT_SYMBOL_GPL(__xive_enabled
);
51 bool xive_cmdline_disabled
;
53 /* We use only one priority for now */
54 static u8 xive_irq_priority
;
56 /* TIMA exported to KVM */
57 void __iomem
*xive_tima
;
58 EXPORT_SYMBOL_GPL(xive_tima
);
62 static const struct xive_ops
*xive_ops
;
64 /* Our global interrupt domain */
65 static struct irq_domain
*xive_irq_domain
;
68 /* The IPIs all use the same logical irq number */
69 static u32 xive_ipi_irq
;
72 /* Xive state for each CPU */
73 static DEFINE_PER_CPU(struct xive_cpu
*, xive_cpu
);
76 * A "disabled" interrupt should never fire, to catch problems
77 * we set its logical number to this
79 #define XIVE_BAD_IRQ 0x7fffffff
80 #define XIVE_MAX_IRQ (XIVE_BAD_IRQ - 1)
82 /* An invalid CPU target */
83 #define XIVE_INVALID_TARGET (-1)
86 * Read the next entry in a queue, return its content if it's valid
87 * or 0 if there is no new entry.
89 * The queue pointer is moved forward unless "just_peek" is set
91 static u32
xive_read_eq(struct xive_q
*q
, bool just_peek
)
97 cur
= be32_to_cpup(q
->qpage
+ q
->idx
);
99 /* Check valid bit (31) vs current toggle polarity */
100 if ((cur
>> 31) == q
->toggle
)
103 /* If consuming from the queue ... */
106 q
->idx
= (q
->idx
+ 1) & q
->msk
;
108 /* Wrap around: flip valid toggle */
112 /* Mask out the valid bit (31) */
113 return cur
& 0x7fffffff;
117 * Scans all the queue that may have interrupts in them
118 * (based on "pending_prio") in priority order until an
119 * interrupt is found or all the queues are empty.
121 * Then updates the CPPR (Current Processor Priority
122 * Register) based on the most favored interrupt found
123 * (0xff if none) and return what was found (0 if none).
125 * If just_peek is set, return the most favored pending
126 * interrupt if any but don't update the queue pointers.
128 * Note: This function can operate generically on any number
129 * of queues (up to 8). The current implementation of the XIVE
130 * driver only uses a single queue however.
132 * Note2: This will also "flush" "the pending_count" of a queue
133 * into the "count" when that queue is observed to be empty.
134 * This is used to keep track of the amount of interrupts
135 * targetting a queue. When an interrupt is moved away from
136 * a queue, we only decrement that queue count once the queue
137 * has been observed empty to avoid races.
139 static u32
xive_scan_interrupts(struct xive_cpu
*xc
, bool just_peek
)
144 /* Find highest pending priority */
145 while (xc
->pending_prio
!= 0) {
148 prio
= ffs(xc
->pending_prio
) - 1;
149 DBG_VERBOSE("scan_irq: trying prio %d\n", prio
);
152 irq
= xive_read_eq(&xc
->queue
[prio
], just_peek
);
154 /* Found something ? That's it */
158 /* Clear pending bits */
159 xc
->pending_prio
&= ~(1 << prio
);
162 * Check if the queue count needs adjusting due to
163 * interrupts being moved away. See description of
164 * xive_dec_target_count()
166 q
= &xc
->queue
[prio
];
167 if (atomic_read(&q
->pending_count
)) {
168 int p
= atomic_xchg(&q
->pending_count
, 0);
170 WARN_ON(p
> atomic_read(&q
->count
));
171 atomic_sub(p
, &q
->count
);
176 /* If nothing was found, set CPPR to 0xff */
180 /* Update HW CPPR to match if necessary */
181 if (prio
!= xc
->cppr
) {
182 DBG_VERBOSE("scan_irq: adjusting CPPR to %d\n", prio
);
184 out_8(xive_tima
+ xive_tima_offset
+ TM_CPPR
, prio
);
191 * This is used to perform the magic loads from an ESB
192 * described in xive.h
194 static notrace u8
xive_esb_read(struct xive_irq_data
*xd
, u32 offset
)
198 /* Handle HW errata */
199 if (xd
->flags
& XIVE_IRQ_FLAG_SHIFT_BUG
)
200 offset
|= offset
<< 4;
202 if ((xd
->flags
& XIVE_IRQ_FLAG_H_INT_ESB
) && xive_ops
->esb_rw
)
203 val
= xive_ops
->esb_rw(xd
->hw_irq
, offset
, 0, 0);
205 val
= in_be64(xd
->eoi_mmio
+ offset
);
210 static void xive_esb_write(struct xive_irq_data
*xd
, u32 offset
, u64 data
)
212 /* Handle HW errata */
213 if (xd
->flags
& XIVE_IRQ_FLAG_SHIFT_BUG
)
214 offset
|= offset
<< 4;
216 if ((xd
->flags
& XIVE_IRQ_FLAG_H_INT_ESB
) && xive_ops
->esb_rw
)
217 xive_ops
->esb_rw(xd
->hw_irq
, offset
, data
, 1);
219 out_be64(xd
->eoi_mmio
+ offset
, data
);
223 static notrace
void xive_dump_eq(const char *name
, struct xive_q
*q
)
230 i0
= be32_to_cpup(q
->qpage
+ idx
);
231 idx
= (idx
+ 1) & q
->msk
;
232 i1
= be32_to_cpup(q
->qpage
+ idx
);
233 xmon_printf(" %s Q T=%d %08x %08x ...\n", name
,
237 notrace
void xmon_xive_do_dump(int cpu
)
239 struct xive_cpu
*xc
= per_cpu(xive_cpu
, cpu
);
241 xmon_printf("XIVE state for CPU %d:\n", cpu
);
242 xmon_printf(" pp=%02x cppr=%02x\n", xc
->pending_prio
, xc
->cppr
);
243 xive_dump_eq("IRQ", &xc
->queue
[xive_irq_priority
]);
246 u64 val
= xive_esb_read(&xc
->ipi_data
, XIVE_ESB_GET
);
247 xmon_printf(" IPI state: %x:%c%c\n", xc
->hw_ipi
,
248 val
& XIVE_ESB_VAL_P
? 'P' : 'p',
249 val
& XIVE_ESB_VAL_P
? 'Q' : 'q');
253 #endif /* CONFIG_XMON */
255 static unsigned int xive_get_irq(void)
257 struct xive_cpu
*xc
= __this_cpu_read(xive_cpu
);
261 * This can be called either as a result of a HW interrupt or
262 * as a "replay" because EOI decided there was still something
263 * in one of the queues.
265 * First we perform an ACK cycle in order to update our mask
266 * of pending priorities. This will also have the effect of
267 * updating the CPPR to the most favored pending interrupts.
269 * In the future, if we have a way to differenciate a first
270 * entry (on HW interrupt) from a replay triggered by EOI,
271 * we could skip this on replays unless we soft-mask tells us
272 * that a new HW interrupt occurred.
274 xive_ops
->update_pending(xc
);
276 DBG_VERBOSE("get_irq: pending=%02x\n", xc
->pending_prio
);
278 /* Scan our queue(s) for interrupts */
279 irq
= xive_scan_interrupts(xc
, false);
281 DBG_VERBOSE("get_irq: got irq 0x%x, new pending=0x%02x\n",
282 irq
, xc
->pending_prio
);
284 /* Return pending interrupt if any */
285 if (irq
== XIVE_BAD_IRQ
)
291 * After EOI'ing an interrupt, we need to re-check the queue
292 * to see if another interrupt is pending since multiple
293 * interrupts can coalesce into a single notification to the
296 * If we find that there is indeed more in there, we call
297 * force_external_irq_replay() to make Linux synthetize an
298 * external interrupt on the next call to local_irq_restore().
300 static void xive_do_queue_eoi(struct xive_cpu
*xc
)
302 if (xive_scan_interrupts(xc
, true) != 0) {
303 DBG_VERBOSE("eoi: pending=0x%02x\n", xc
->pending_prio
);
304 force_external_irq_replay();
309 * EOI an interrupt at the source. There are several methods
310 * to do this depending on the HW version and source type
312 void xive_do_source_eoi(u32 hw_irq
, struct xive_irq_data
*xd
)
314 /* If the XIVE supports the new "store EOI facility, use it */
315 if (xd
->flags
& XIVE_IRQ_FLAG_STORE_EOI
)
316 xive_esb_write(xd
, XIVE_ESB_STORE_EOI
, 0);
317 else if (hw_irq
&& xd
->flags
& XIVE_IRQ_FLAG_EOI_FW
) {
319 * The FW told us to call it. This happens for some
320 * interrupt sources that need additional HW whacking
321 * beyond the ESB manipulation. For example LPC interrupts
322 * on P9 DD1.0 need a latch to be clared in the LPC bridge
323 * itself. The Firmware will take care of it.
325 if (WARN_ON_ONCE(!xive_ops
->eoi
))
327 xive_ops
->eoi(hw_irq
);
332 * Otherwise for EOI, we use the special MMIO that does
333 * a clear of both P and Q and returns the old Q,
334 * except for LSIs where we use the "EOI cycle" special
337 * This allows us to then do a re-trigger if Q was set
338 * rather than synthesizing an interrupt in software
340 * For LSIs, using the HW EOI cycle works around a problem
341 * on P9 DD1 PHBs where the other ESB accesses don't work
344 if (xd
->flags
& XIVE_IRQ_FLAG_LSI
)
345 xive_esb_read(xd
, XIVE_ESB_LOAD_EOI
);
347 eoi_val
= xive_esb_read(xd
, XIVE_ESB_SET_PQ_00
);
348 DBG_VERBOSE("eoi_val=%x\n", eoi_val
);
350 /* Re-trigger if needed */
351 if ((eoi_val
& XIVE_ESB_VAL_Q
) && xd
->trig_mmio
)
352 out_be64(xd
->trig_mmio
, 0);
357 /* irq_chip eoi callback */
358 static void xive_irq_eoi(struct irq_data
*d
)
360 struct xive_irq_data
*xd
= irq_data_get_irq_handler_data(d
);
361 struct xive_cpu
*xc
= __this_cpu_read(xive_cpu
);
363 DBG_VERBOSE("eoi_irq: irq=%d [0x%lx] pending=%02x\n",
364 d
->irq
, irqd_to_hwirq(d
), xc
->pending_prio
);
367 * EOI the source if it hasn't been disabled and hasn't
368 * been passed-through to a KVM guest
370 if (!irqd_irq_disabled(d
) && !irqd_is_forwarded_to_vcpu(d
) &&
371 !(xd
->flags
& XIVE_IRQ_NO_EOI
))
372 xive_do_source_eoi(irqd_to_hwirq(d
), xd
);
375 * Clear saved_p to indicate that it's no longer occupying
376 * a queue slot on the target queue
380 /* Check for more work in the queue */
381 xive_do_queue_eoi(xc
);
385 * Helper used to mask and unmask an interrupt source. This
386 * is only called for normal interrupts that do not require
387 * masking/unmasking via firmware.
389 static void xive_do_source_set_mask(struct xive_irq_data
*xd
,
395 * If the interrupt had P set, it may be in a queue.
397 * We need to make sure we don't re-enable it until it
398 * has been fetched from that queue and EOId. We keep
399 * a copy of that P state and use it to restore the
400 * ESB accordingly on unmask.
403 val
= xive_esb_read(xd
, XIVE_ESB_SET_PQ_01
);
404 xd
->saved_p
= !!(val
& XIVE_ESB_VAL_P
);
405 } else if (xd
->saved_p
)
406 xive_esb_read(xd
, XIVE_ESB_SET_PQ_10
);
408 xive_esb_read(xd
, XIVE_ESB_SET_PQ_00
);
412 * Try to chose "cpu" as a new interrupt target. Increments
413 * the queue accounting for that target if it's not already
416 static bool xive_try_pick_target(int cpu
)
418 struct xive_cpu
*xc
= per_cpu(xive_cpu
, cpu
);
419 struct xive_q
*q
= &xc
->queue
[xive_irq_priority
];
423 * Calculate max number of interrupts in that queue.
425 * We leave a gap of 1 just in case...
427 max
= (q
->msk
+ 1) - 1;
428 return !!atomic_add_unless(&q
->count
, 1, max
);
432 * Un-account an interrupt for a target CPU. We don't directly
433 * decrement q->count since the interrupt might still be present
436 * Instead increment a separate counter "pending_count" which
437 * will be substracted from "count" later when that CPU observes
438 * the queue to be empty.
440 static void xive_dec_target_count(int cpu
)
442 struct xive_cpu
*xc
= per_cpu(xive_cpu
, cpu
);
443 struct xive_q
*q
= &xc
->queue
[xive_irq_priority
];
445 if (unlikely(WARN_ON(cpu
< 0 || !xc
))) {
446 pr_err("%s: cpu=%d xc=%p\n", __func__
, cpu
, xc
);
451 * We increment the "pending count" which will be used
452 * to decrement the target queue count whenever it's next
453 * processed and found empty. This ensure that we don't
454 * decrement while we still have the interrupt there
457 atomic_inc(&q
->pending_count
);
460 /* Find a tentative CPU target in a CPU mask */
461 static int xive_find_target_in_mask(const struct cpumask
*mask
,
464 int cpu
, first
, num
, i
;
466 /* Pick up a starting point CPU in the mask based on fuzz */
467 num
= min_t(int, cpumask_weight(mask
), nr_cpu_ids
);
471 cpu
= cpumask_first(mask
);
472 for (i
= 0; i
< first
&& cpu
< nr_cpu_ids
; i
++)
473 cpu
= cpumask_next(cpu
, mask
);
476 if (WARN_ON(cpu
>= nr_cpu_ids
))
477 cpu
= cpumask_first(cpu_online_mask
);
479 /* Remember first one to handle wrap-around */
483 * Now go through the entire mask until we find a valid
488 * We re-check online as the fallback case passes us
489 * an untested affinity mask
491 if (cpu_online(cpu
) && xive_try_pick_target(cpu
))
493 cpu
= cpumask_next(cpu
, mask
);
497 if (cpu
>= nr_cpu_ids
)
498 cpu
= cpumask_first(mask
);
504 * Pick a target CPU for an interrupt. This is done at
505 * startup or if the affinity is changed in a way that
506 * invalidates the current target.
508 static int xive_pick_irq_target(struct irq_data
*d
,
509 const struct cpumask
*affinity
)
511 static unsigned int fuzz
;
512 struct xive_irq_data
*xd
= irq_data_get_irq_handler_data(d
);
517 * If we have chip IDs, first we try to build a mask of
518 * CPUs matching the CPU and find a target in there
520 if (xd
->src_chip
!= XIVE_INVALID_CHIP_ID
&&
521 zalloc_cpumask_var(&mask
, GFP_ATOMIC
)) {
522 /* Build a mask of matching chip IDs */
523 for_each_cpu_and(cpu
, affinity
, cpu_online_mask
) {
524 struct xive_cpu
*xc
= per_cpu(xive_cpu
, cpu
);
525 if (xc
->chip_id
== xd
->src_chip
)
526 cpumask_set_cpu(cpu
, mask
);
528 /* Try to find a target */
529 if (cpumask_empty(mask
))
532 cpu
= xive_find_target_in_mask(mask
, fuzz
++);
533 free_cpumask_var(mask
);
539 /* No chip IDs, fallback to using the affinity mask */
540 return xive_find_target_in_mask(affinity
, fuzz
++);
543 static unsigned int xive_irq_startup(struct irq_data
*d
)
545 struct xive_irq_data
*xd
= irq_data_get_irq_handler_data(d
);
546 unsigned int hw_irq
= (unsigned int)irqd_to_hwirq(d
);
549 pr_devel("xive_irq_startup: irq %d [0x%x] data @%p\n",
552 #ifdef CONFIG_PCI_MSI
554 * The generic MSI code returns with the interrupt disabled on the
555 * card, using the MSI mask bits. Firmware doesn't appear to unmask
556 * at that level, so we do it here by hand.
558 if (irq_data_get_msi_desc(d
))
559 pci_msi_unmask_irq(d
);
563 target
= xive_pick_irq_target(d
, irq_data_get_affinity_mask(d
));
564 if (target
== XIVE_INVALID_TARGET
) {
565 /* Try again breaking affinity */
566 target
= xive_pick_irq_target(d
, cpu_online_mask
);
567 if (target
== XIVE_INVALID_TARGET
)
569 pr_warn("irq %d started with broken affinity\n", d
->irq
);
573 if (WARN_ON(target
== XIVE_INVALID_TARGET
||
574 target
>= nr_cpu_ids
))
575 target
= smp_processor_id();
580 * Configure the logical number to be the Linux IRQ number
581 * and set the target queue
583 rc
= xive_ops
->configure_irq(hw_irq
,
584 get_hard_smp_processor_id(target
),
585 xive_irq_priority
, d
->irq
);
590 xive_do_source_set_mask(xd
, false);
595 static void xive_irq_shutdown(struct irq_data
*d
)
597 struct xive_irq_data
*xd
= irq_data_get_irq_handler_data(d
);
598 unsigned int hw_irq
= (unsigned int)irqd_to_hwirq(d
);
600 pr_devel("xive_irq_shutdown: irq %d [0x%x] data @%p\n",
603 if (WARN_ON(xd
->target
== XIVE_INVALID_TARGET
))
606 /* Mask the interrupt at the source */
607 xive_do_source_set_mask(xd
, true);
610 * The above may have set saved_p. We clear it otherwise it
611 * will prevent re-enabling later on. It is ok to forget the
612 * fact that the interrupt might be in a queue because we are
613 * accounting that already in xive_dec_target_count() and will
614 * be re-routing it to a new queue with proper accounting when
615 * it's started up again
620 * Mask the interrupt in HW in the IVT/EAS and set the number
621 * to be the "bad" IRQ number
623 xive_ops
->configure_irq(hw_irq
,
624 get_hard_smp_processor_id(xd
->target
),
627 xive_dec_target_count(xd
->target
);
628 xd
->target
= XIVE_INVALID_TARGET
;
631 static void xive_irq_unmask(struct irq_data
*d
)
633 struct xive_irq_data
*xd
= irq_data_get_irq_handler_data(d
);
635 pr_devel("xive_irq_unmask: irq %d data @%p\n", d
->irq
, xd
);
638 * This is a workaround for PCI LSI problems on P9, for
639 * these, we call FW to set the mask. The problems might
640 * be fixed by P9 DD2.0, if that is the case, firmware
641 * will no longer set that flag.
643 if (xd
->flags
& XIVE_IRQ_FLAG_MASK_FW
) {
644 unsigned int hw_irq
= (unsigned int)irqd_to_hwirq(d
);
645 xive_ops
->configure_irq(hw_irq
,
646 get_hard_smp_processor_id(xd
->target
),
647 xive_irq_priority
, d
->irq
);
651 xive_do_source_set_mask(xd
, false);
654 static void xive_irq_mask(struct irq_data
*d
)
656 struct xive_irq_data
*xd
= irq_data_get_irq_handler_data(d
);
658 pr_devel("xive_irq_mask: irq %d data @%p\n", d
->irq
, xd
);
661 * This is a workaround for PCI LSI problems on P9, for
662 * these, we call OPAL to set the mask. The problems might
663 * be fixed by P9 DD2.0, if that is the case, firmware
664 * will no longer set that flag.
666 if (xd
->flags
& XIVE_IRQ_FLAG_MASK_FW
) {
667 unsigned int hw_irq
= (unsigned int)irqd_to_hwirq(d
);
668 xive_ops
->configure_irq(hw_irq
,
669 get_hard_smp_processor_id(xd
->target
),
674 xive_do_source_set_mask(xd
, true);
677 static int xive_irq_set_affinity(struct irq_data
*d
,
678 const struct cpumask
*cpumask
,
681 struct xive_irq_data
*xd
= irq_data_get_irq_handler_data(d
);
682 unsigned int hw_irq
= (unsigned int)irqd_to_hwirq(d
);
683 u32 target
, old_target
;
686 pr_devel("xive_irq_set_affinity: irq %d\n", d
->irq
);
688 /* Is this valid ? */
689 if (cpumask_any_and(cpumask
, cpu_online_mask
) >= nr_cpu_ids
)
692 /* Don't do anything if the interrupt isn't started */
693 if (!irqd_is_started(d
))
694 return IRQ_SET_MASK_OK
;
697 * If existing target is already in the new mask, and is
698 * online then do nothing.
700 if (xd
->target
!= XIVE_INVALID_TARGET
&&
701 cpu_online(xd
->target
) &&
702 cpumask_test_cpu(xd
->target
, cpumask
))
703 return IRQ_SET_MASK_OK
;
705 /* Pick a new target */
706 target
= xive_pick_irq_target(d
, cpumask
);
708 /* No target found */
709 if (target
== XIVE_INVALID_TARGET
)
713 if (WARN_ON(target
>= nr_cpu_ids
))
714 target
= smp_processor_id();
716 old_target
= xd
->target
;
719 * Only configure the irq if it's not currently passed-through to
722 if (!irqd_is_forwarded_to_vcpu(d
))
723 rc
= xive_ops
->configure_irq(hw_irq
,
724 get_hard_smp_processor_id(target
),
725 xive_irq_priority
, d
->irq
);
727 pr_err("Error %d reconfiguring irq %d\n", rc
, d
->irq
);
731 pr_devel(" target: 0x%x\n", target
);
734 /* Give up previous target */
735 if (old_target
!= XIVE_INVALID_TARGET
)
736 xive_dec_target_count(old_target
);
738 return IRQ_SET_MASK_OK
;
741 static int xive_irq_set_type(struct irq_data
*d
, unsigned int flow_type
)
743 struct xive_irq_data
*xd
= irq_data_get_irq_handler_data(d
);
746 * We only support these. This has really no effect other than setting
747 * the corresponding descriptor bits mind you but those will in turn
748 * affect the resend function when re-enabling an edge interrupt.
750 * Set set the default to edge as explained in map().
752 if (flow_type
== IRQ_TYPE_DEFAULT
|| flow_type
== IRQ_TYPE_NONE
)
753 flow_type
= IRQ_TYPE_EDGE_RISING
;
755 if (flow_type
!= IRQ_TYPE_EDGE_RISING
&&
756 flow_type
!= IRQ_TYPE_LEVEL_LOW
)
759 irqd_set_trigger_type(d
, flow_type
);
762 * Double check it matches what the FW thinks
764 * NOTE: We don't know yet if the PAPR interface will provide
765 * the LSI vs MSI information apart from the device-tree so
766 * this check might have to move into an optional backend call
767 * that is specific to the native backend
769 if ((flow_type
== IRQ_TYPE_LEVEL_LOW
) !=
770 !!(xd
->flags
& XIVE_IRQ_FLAG_LSI
)) {
771 pr_warn("Interrupt %d (HW 0x%x) type mismatch, Linux says %s, FW says %s\n",
772 d
->irq
, (u32
)irqd_to_hwirq(d
),
773 (flow_type
== IRQ_TYPE_LEVEL_LOW
) ? "Level" : "Edge",
774 (xd
->flags
& XIVE_IRQ_FLAG_LSI
) ? "Level" : "Edge");
777 return IRQ_SET_MASK_OK_NOCOPY
;
780 static int xive_irq_retrigger(struct irq_data
*d
)
782 struct xive_irq_data
*xd
= irq_data_get_irq_handler_data(d
);
784 /* This should be only for MSIs */
785 if (WARN_ON(xd
->flags
& XIVE_IRQ_FLAG_LSI
))
789 * To perform a retrigger, we first set the PQ bits to
790 * 11, then perform an EOI.
792 xive_esb_read(xd
, XIVE_ESB_SET_PQ_11
);
795 * Note: We pass "0" to the hw_irq argument in order to
796 * avoid calling into the backend EOI code which we don't
797 * want to do in the case of a re-trigger. Backends typically
798 * only do EOI for LSIs anyway.
800 xive_do_source_eoi(0, xd
);
805 static int xive_irq_set_vcpu_affinity(struct irq_data
*d
, void *state
)
807 struct xive_irq_data
*xd
= irq_data_get_irq_handler_data(d
);
808 unsigned int hw_irq
= (unsigned int)irqd_to_hwirq(d
);
813 * We only support this on interrupts that do not require
814 * firmware calls for masking and unmasking
816 if (xd
->flags
& XIVE_IRQ_FLAG_MASK_FW
)
820 * This is called by KVM with state non-NULL for enabling
821 * pass-through or NULL for disabling it
824 irqd_set_forwarded_to_vcpu(d
);
826 /* Set it to PQ=10 state to prevent further sends */
827 pq
= xive_esb_read(xd
, XIVE_ESB_SET_PQ_10
);
829 /* No target ? nothing to do */
830 if (xd
->target
== XIVE_INVALID_TARGET
) {
832 * An untargetted interrupt should have been
833 * also masked at the source
841 * If P was set, adjust state to PQ=11 to indicate
842 * that a resend is needed for the interrupt to reach
843 * the guest. Also remember the value of P.
845 * This also tells us that it's in flight to a host queue
846 * or has already been fetched but hasn't been EOIed yet
847 * by the host. This it's potentially using up a host
848 * queue slot. This is important to know because as long
849 * as this is the case, we must not hard-unmask it when
850 * "returning" that interrupt to the host.
852 * This saved_p is cleared by the host EOI, when we know
853 * for sure the queue slot is no longer in use.
856 pq
= xive_esb_read(xd
, XIVE_ESB_SET_PQ_11
);
860 * Sync the XIVE source HW to ensure the interrupt
861 * has gone through the EAS before we change its
862 * target to the guest. That should guarantee us
863 * that we *will* eventually get an EOI for it on
864 * the host. Otherwise there would be a small window
865 * for P to be seen here but the interrupt going
866 * to the guest queue.
868 if (xive_ops
->sync_source
)
869 xive_ops
->sync_source(hw_irq
);
873 irqd_clr_forwarded_to_vcpu(d
);
875 /* No host target ? hard mask and return */
876 if (xd
->target
== XIVE_INVALID_TARGET
) {
877 xive_do_source_set_mask(xd
, true);
882 * Sync the XIVE source HW to ensure the interrupt
883 * has gone through the EAS before we change its
884 * target to the host.
886 if (xive_ops
->sync_source
)
887 xive_ops
->sync_source(hw_irq
);
890 * By convention we are called with the interrupt in
891 * a PQ=10 or PQ=11 state, ie, it won't fire and will
892 * have latched in Q whether there's a pending HW
895 * First reconfigure the target.
897 rc
= xive_ops
->configure_irq(hw_irq
,
898 get_hard_smp_processor_id(xd
->target
),
899 xive_irq_priority
, d
->irq
);
904 * Then if saved_p is not set, effectively re-enable the
905 * interrupt with an EOI. If it is set, we know there is
906 * still a message in a host queue somewhere that will be
909 * Note: We don't check irqd_irq_disabled(). Effectively,
910 * we *will* let the irq get through even if masked if the
911 * HW is still firing it in order to deal with the whole
912 * saved_p business properly. If the interrupt triggers
913 * while masked, the generic code will re-mask it anyway.
916 xive_do_source_eoi(hw_irq
, xd
);
922 static struct irq_chip xive_irq_chip
= {
924 .irq_startup
= xive_irq_startup
,
925 .irq_shutdown
= xive_irq_shutdown
,
926 .irq_eoi
= xive_irq_eoi
,
927 .irq_mask
= xive_irq_mask
,
928 .irq_unmask
= xive_irq_unmask
,
929 .irq_set_affinity
= xive_irq_set_affinity
,
930 .irq_set_type
= xive_irq_set_type
,
931 .irq_retrigger
= xive_irq_retrigger
,
932 .irq_set_vcpu_affinity
= xive_irq_set_vcpu_affinity
,
935 bool is_xive_irq(struct irq_chip
*chip
)
937 return chip
== &xive_irq_chip
;
939 EXPORT_SYMBOL_GPL(is_xive_irq
);
941 void xive_cleanup_irq_data(struct xive_irq_data
*xd
)
944 iounmap(xd
->eoi_mmio
);
945 if (xd
->eoi_mmio
== xd
->trig_mmio
)
946 xd
->trig_mmio
= NULL
;
950 iounmap(xd
->trig_mmio
);
951 xd
->trig_mmio
= NULL
;
954 EXPORT_SYMBOL_GPL(xive_cleanup_irq_data
);
956 static int xive_irq_alloc_data(unsigned int virq
, irq_hw_number_t hw
)
958 struct xive_irq_data
*xd
;
961 xd
= kzalloc(sizeof(struct xive_irq_data
), GFP_KERNEL
);
964 rc
= xive_ops
->populate_irq_data(hw
, xd
);
969 xd
->target
= XIVE_INVALID_TARGET
;
970 irq_set_handler_data(virq
, xd
);
975 static void xive_irq_free_data(unsigned int virq
)
977 struct xive_irq_data
*xd
= irq_get_handler_data(virq
);
981 irq_set_handler_data(virq
, NULL
);
982 xive_cleanup_irq_data(xd
);
988 static void xive_cause_ipi(int cpu
)
991 struct xive_irq_data
*xd
;
993 xc
= per_cpu(xive_cpu
, cpu
);
995 DBG_VERBOSE("IPI CPU %d -> %d (HW IRQ 0x%x)\n",
996 smp_processor_id(), cpu
, xc
->hw_ipi
);
999 if (WARN_ON(!xd
->trig_mmio
))
1001 out_be64(xd
->trig_mmio
, 0);
1004 static irqreturn_t
xive_muxed_ipi_action(int irq
, void *dev_id
)
1006 return smp_ipi_demux();
1009 static void xive_ipi_eoi(struct irq_data
*d
)
1011 struct xive_cpu
*xc
= __this_cpu_read(xive_cpu
);
1013 DBG_VERBOSE("IPI eoi: irq=%d [0x%lx] (HW IRQ 0x%x) pending=%02x\n",
1014 d
->irq
, irqd_to_hwirq(d
), xc
->hw_ipi
, xc
->pending_prio
);
1016 /* Handle possible race with unplug and drop stale IPIs */
1019 xive_do_source_eoi(xc
->hw_ipi
, &xc
->ipi_data
);
1020 xive_do_queue_eoi(xc
);
1023 static void xive_ipi_do_nothing(struct irq_data
*d
)
1026 * Nothing to do, we never mask/unmask IPIs, but the callback
1027 * has to exist for the struct irq_chip.
1031 static struct irq_chip xive_ipi_chip
= {
1033 .irq_eoi
= xive_ipi_eoi
,
1034 .irq_mask
= xive_ipi_do_nothing
,
1035 .irq_unmask
= xive_ipi_do_nothing
,
1038 static void __init
xive_request_ipi(void)
1043 * Initialization failed, move on, we might manage to
1044 * reach the point where we display our errors before
1045 * the system falls appart
1047 if (!xive_irq_domain
)
1051 virq
= irq_create_mapping(xive_irq_domain
, 0);
1052 xive_ipi_irq
= virq
;
1054 WARN_ON(request_irq(virq
, xive_muxed_ipi_action
,
1055 IRQF_PERCPU
| IRQF_NO_THREAD
, "IPI", NULL
));
1058 static int xive_setup_cpu_ipi(unsigned int cpu
)
1060 struct xive_cpu
*xc
;
1063 pr_debug("Setting up IPI for CPU %d\n", cpu
);
1065 xc
= per_cpu(xive_cpu
, cpu
);
1067 /* Check if we are already setup */
1068 if (xc
->hw_ipi
!= 0)
1071 /* Grab an IPI from the backend, this will populate xc->hw_ipi */
1072 if (xive_ops
->get_ipi(cpu
, xc
))
1076 * Populate the IRQ data in the xive_cpu structure and
1077 * configure the HW / enable the IPIs.
1079 rc
= xive_ops
->populate_irq_data(xc
->hw_ipi
, &xc
->ipi_data
);
1081 pr_err("Failed to populate IPI data on CPU %d\n", cpu
);
1084 rc
= xive_ops
->configure_irq(xc
->hw_ipi
,
1085 get_hard_smp_processor_id(cpu
),
1086 xive_irq_priority
, xive_ipi_irq
);
1088 pr_err("Failed to map IPI CPU %d\n", cpu
);
1091 pr_devel("CPU %d HW IPI %x, virq %d, trig_mmio=%p\n", cpu
,
1092 xc
->hw_ipi
, xive_ipi_irq
, xc
->ipi_data
.trig_mmio
);
1095 xive_do_source_set_mask(&xc
->ipi_data
, false);
1100 static void xive_cleanup_cpu_ipi(unsigned int cpu
, struct xive_cpu
*xc
)
1102 /* Disable the IPI and free the IRQ data */
1104 /* Already cleaned up ? */
1105 if (xc
->hw_ipi
== 0)
1109 xive_do_source_set_mask(&xc
->ipi_data
, true);
1112 * Note: We don't call xive_cleanup_irq_data() to free
1113 * the mappings as this is called from an IPI on kexec
1114 * which is not a safe environment to call iounmap()
1117 /* Deconfigure/mask in the backend */
1118 xive_ops
->configure_irq(xc
->hw_ipi
, hard_smp_processor_id(),
1119 0xff, xive_ipi_irq
);
1121 /* Free the IPIs in the backend */
1122 xive_ops
->put_ipi(cpu
, xc
);
1125 void __init
xive_smp_probe(void)
1127 smp_ops
->cause_ipi
= xive_cause_ipi
;
1129 /* Register the IPI */
1132 /* Allocate and setup IPI for the boot CPU */
1133 xive_setup_cpu_ipi(smp_processor_id());
1136 #endif /* CONFIG_SMP */
1138 static int xive_irq_domain_map(struct irq_domain
*h
, unsigned int virq
,
1144 * Mark interrupts as edge sensitive by default so that resend
1145 * actually works. Will fix that up below if needed.
1147 irq_clear_status_flags(virq
, IRQ_LEVEL
);
1150 /* IPIs are special and come up with HW number 0 */
1153 * IPIs are marked per-cpu. We use separate HW interrupts under
1154 * the hood but associated with the same "linux" interrupt
1156 irq_set_chip_and_handler(virq
, &xive_ipi_chip
,
1162 rc
= xive_irq_alloc_data(virq
, hw
);
1166 irq_set_chip_and_handler(virq
, &xive_irq_chip
, handle_fasteoi_irq
);
1171 static void xive_irq_domain_unmap(struct irq_domain
*d
, unsigned int virq
)
1173 struct irq_data
*data
= irq_get_irq_data(virq
);
1174 unsigned int hw_irq
;
1176 /* XXX Assign BAD number */
1179 hw_irq
= (unsigned int)irqd_to_hwirq(data
);
1181 xive_irq_free_data(virq
);
1184 static int xive_irq_domain_xlate(struct irq_domain
*h
, struct device_node
*ct
,
1185 const u32
*intspec
, unsigned int intsize
,
1186 irq_hw_number_t
*out_hwirq
, unsigned int *out_flags
)
1189 *out_hwirq
= intspec
[0];
1192 * If intsize is at least 2, we look for the type in the second cell,
1193 * we assume the LSB indicates a level interrupt.
1197 *out_flags
= IRQ_TYPE_LEVEL_LOW
;
1199 *out_flags
= IRQ_TYPE_EDGE_RISING
;
1201 *out_flags
= IRQ_TYPE_LEVEL_LOW
;
1206 static int xive_irq_domain_match(struct irq_domain
*h
, struct device_node
*node
,
1207 enum irq_domain_bus_token bus_token
)
1209 return xive_ops
->match(node
);
1212 static const struct irq_domain_ops xive_irq_domain_ops
= {
1213 .match
= xive_irq_domain_match
,
1214 .map
= xive_irq_domain_map
,
1215 .unmap
= xive_irq_domain_unmap
,
1216 .xlate
= xive_irq_domain_xlate
,
1219 static void __init
xive_init_host(void)
1221 xive_irq_domain
= irq_domain_add_nomap(NULL
, XIVE_MAX_IRQ
,
1222 &xive_irq_domain_ops
, NULL
);
1223 if (WARN_ON(xive_irq_domain
== NULL
))
1225 irq_set_default_host(xive_irq_domain
);
1228 static void xive_cleanup_cpu_queues(unsigned int cpu
, struct xive_cpu
*xc
)
1230 if (xc
->queue
[xive_irq_priority
].qpage
)
1231 xive_ops
->cleanup_queue(cpu
, xc
, xive_irq_priority
);
1234 static int xive_setup_cpu_queues(unsigned int cpu
, struct xive_cpu
*xc
)
1238 /* We setup 1 queues for now with a 64k page */
1239 if (!xc
->queue
[xive_irq_priority
].qpage
)
1240 rc
= xive_ops
->setup_queue(cpu
, xc
, xive_irq_priority
);
1245 static int xive_prepare_cpu(unsigned int cpu
)
1247 struct xive_cpu
*xc
;
1249 xc
= per_cpu(xive_cpu
, cpu
);
1251 struct device_node
*np
;
1253 xc
= kzalloc_node(sizeof(struct xive_cpu
),
1254 GFP_KERNEL
, cpu_to_node(cpu
));
1257 np
= of_get_cpu_node(cpu
, NULL
);
1259 xc
->chip_id
= of_get_ibm_chip_id(np
);
1262 per_cpu(xive_cpu
, cpu
) = xc
;
1265 /* Setup EQs if not already */
1266 return xive_setup_cpu_queues(cpu
, xc
);
1269 static void xive_setup_cpu(void)
1271 struct xive_cpu
*xc
= __this_cpu_read(xive_cpu
);
1273 /* The backend might have additional things to do */
1274 if (xive_ops
->setup_cpu
)
1275 xive_ops
->setup_cpu(smp_processor_id(), xc
);
1277 /* Set CPPR to 0xff to enable flow of interrupts */
1279 out_8(xive_tima
+ xive_tima_offset
+ TM_CPPR
, 0xff);
1283 void xive_smp_setup_cpu(void)
1285 pr_devel("SMP setup CPU %d\n", smp_processor_id());
1287 /* This will have already been done on the boot CPU */
1288 if (smp_processor_id() != boot_cpuid
)
1293 int xive_smp_prepare_cpu(unsigned int cpu
)
1297 /* Allocate per-CPU data and queues */
1298 rc
= xive_prepare_cpu(cpu
);
1302 /* Allocate and setup IPI for the new CPU */
1303 return xive_setup_cpu_ipi(cpu
);
1306 #ifdef CONFIG_HOTPLUG_CPU
1307 static void xive_flush_cpu_queue(unsigned int cpu
, struct xive_cpu
*xc
)
1311 /* We assume local irqs are disabled */
1312 WARN_ON(!irqs_disabled());
1314 /* Check what's already in the CPU queue */
1315 while ((irq
= xive_scan_interrupts(xc
, false)) != 0) {
1317 * We need to re-route that interrupt to its new destination.
1318 * First get and lock the descriptor
1320 struct irq_desc
*desc
= irq_to_desc(irq
);
1321 struct irq_data
*d
= irq_desc_get_irq_data(desc
);
1322 struct xive_irq_data
*xd
;
1323 unsigned int hw_irq
= (unsigned int)irqd_to_hwirq(d
);
1326 * Ignore anything that isn't a XIVE irq and ignore
1327 * IPIs, so can just be dropped.
1329 if (d
->domain
!= xive_irq_domain
|| hw_irq
== 0)
1333 * The IRQ should have already been re-routed, it's just a
1334 * stale in the old queue, so re-trigger it in order to make
1335 * it reach is new destination.
1338 pr_info("CPU %d: Got irq %d while offline, re-sending...\n",
1341 raw_spin_lock(&desc
->lock
);
1342 xd
= irq_desc_get_handler_data(desc
);
1345 * For LSIs, we EOI, this will cause a resend if it's
1346 * still asserted. Otherwise do an MSI retrigger.
1348 if (xd
->flags
& XIVE_IRQ_FLAG_LSI
)
1349 xive_do_source_eoi(irqd_to_hwirq(d
), xd
);
1351 xive_irq_retrigger(d
);
1353 raw_spin_unlock(&desc
->lock
);
1357 void xive_smp_disable_cpu(void)
1359 struct xive_cpu
*xc
= __this_cpu_read(xive_cpu
);
1360 unsigned int cpu
= smp_processor_id();
1362 /* Migrate interrupts away from the CPU */
1363 irq_migrate_all_off_this_cpu();
1365 /* Set CPPR to 0 to disable flow of interrupts */
1367 out_8(xive_tima
+ xive_tima_offset
+ TM_CPPR
, 0);
1369 /* Flush everything still in the queue */
1370 xive_flush_cpu_queue(cpu
, xc
);
1372 /* Re-enable CPPR */
1374 out_8(xive_tima
+ xive_tima_offset
+ TM_CPPR
, 0xff);
1377 void xive_flush_interrupt(void)
1379 struct xive_cpu
*xc
= __this_cpu_read(xive_cpu
);
1380 unsigned int cpu
= smp_processor_id();
1382 /* Called if an interrupt occurs while the CPU is hot unplugged */
1383 xive_flush_cpu_queue(cpu
, xc
);
1386 #endif /* CONFIG_HOTPLUG_CPU */
1388 #endif /* CONFIG_SMP */
1390 void xive_teardown_cpu(void)
1392 struct xive_cpu
*xc
= __this_cpu_read(xive_cpu
);
1393 unsigned int cpu
= smp_processor_id();
1395 /* Set CPPR to 0 to disable flow of interrupts */
1397 out_8(xive_tima
+ xive_tima_offset
+ TM_CPPR
, 0);
1399 if (xive_ops
->teardown_cpu
)
1400 xive_ops
->teardown_cpu(cpu
, xc
);
1403 /* Get rid of IPI */
1404 xive_cleanup_cpu_ipi(cpu
, xc
);
1407 /* Disable and free the queues */
1408 xive_cleanup_cpu_queues(cpu
, xc
);
1411 void xive_kexec_teardown_cpu(int secondary
)
1413 struct xive_cpu
*xc
= __this_cpu_read(xive_cpu
);
1414 unsigned int cpu
= smp_processor_id();
1416 /* Set CPPR to 0 to disable flow of interrupts */
1418 out_8(xive_tima
+ xive_tima_offset
+ TM_CPPR
, 0);
1420 /* Backend cleanup if any */
1421 if (xive_ops
->teardown_cpu
)
1422 xive_ops
->teardown_cpu(cpu
, xc
);
1425 /* Get rid of IPI */
1426 xive_cleanup_cpu_ipi(cpu
, xc
);
1429 /* Disable and free the queues */
1430 xive_cleanup_cpu_queues(cpu
, xc
);
1433 void xive_shutdown(void)
1435 xive_ops
->shutdown();
1438 bool __init
xive_core_init(const struct xive_ops
*ops
, void __iomem
*area
, u32 offset
,
1442 xive_tima_offset
= offset
;
1444 xive_irq_priority
= max_prio
;
1446 ppc_md
.get_irq
= xive_get_irq
;
1447 __xive_enabled
= true;
1449 pr_devel("Initializing host..\n");
1452 pr_devel("Initializing boot CPU..\n");
1454 /* Allocate per-CPU data and queues */
1455 xive_prepare_cpu(smp_processor_id());
1457 /* Get ready for interrupts */
1460 pr_info("Interrupt handling initialized with %s backend\n",
1462 pr_info("Using priority %d for all interrupts\n", max_prio
);
1467 __be32
*xive_queue_page_alloc(unsigned int cpu
, u32 queue_shift
)
1469 unsigned int alloc_order
;
1473 alloc_order
= xive_alloc_order(queue_shift
);
1474 pages
= alloc_pages_node(cpu_to_node(cpu
), GFP_KERNEL
, alloc_order
);
1476 return ERR_PTR(-ENOMEM
);
1477 qpage
= (__be32
*)page_address(pages
);
1478 memset(qpage
, 0, 1 << queue_shift
);
1483 static int __init
xive_off(char *arg
)
1485 xive_cmdline_disabled
= true;
1488 __setup("xive=off", xive_off
);