Merge tag 'for_linus' of git://git.kernel.org/pub/scm/linux/kernel/git/mst/vhost
[cris-mirror.git] / arch / sh / include / asm / io.h
blob98cb8c802b1a8cccafb1cd52d4717a149490792c
1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef __ASM_SH_IO_H
3 #define __ASM_SH_IO_H
5 /*
6 * Convention:
7 * read{b,w,l,q}/write{b,w,l,q} are for PCI,
8 * while in{b,w,l}/out{b,w,l} are for ISA
10 * In addition we have 'pausing' versions: in{b,w,l}_p/out{b,w,l}_p
11 * and 'string' versions: ins{b,w,l}/outs{b,w,l}
13 * While read{b,w,l,q} and write{b,w,l,q} contain memory barriers
14 * automatically, there are also __raw versions, which do not.
16 #include <linux/errno.h>
17 #include <asm/cache.h>
18 #include <asm/addrspace.h>
19 #include <asm/machvec.h>
20 #include <asm/pgtable.h>
21 #include <asm-generic/iomap.h>
23 #ifdef __KERNEL__
24 #define __IO_PREFIX generic
25 #include <asm/io_generic.h>
26 #include <asm/io_trapped.h>
27 #include <mach/mangle-port.h>
29 #define __raw_writeb(v,a) (__chk_io_ptr(a), *(volatile u8 __force *)(a) = (v))
30 #define __raw_writew(v,a) (__chk_io_ptr(a), *(volatile u16 __force *)(a) = (v))
31 #define __raw_writel(v,a) (__chk_io_ptr(a), *(volatile u32 __force *)(a) = (v))
32 #define __raw_writeq(v,a) (__chk_io_ptr(a), *(volatile u64 __force *)(a) = (v))
34 #define __raw_readb(a) (__chk_io_ptr(a), *(volatile u8 __force *)(a))
35 #define __raw_readw(a) (__chk_io_ptr(a), *(volatile u16 __force *)(a))
36 #define __raw_readl(a) (__chk_io_ptr(a), *(volatile u32 __force *)(a))
37 #define __raw_readq(a) (__chk_io_ptr(a), *(volatile u64 __force *)(a))
39 #define readb_relaxed(c) ({ u8 __v = ioswabb(__raw_readb(c)); __v; })
40 #define readw_relaxed(c) ({ u16 __v = ioswabw(__raw_readw(c)); __v; })
41 #define readl_relaxed(c) ({ u32 __v = ioswabl(__raw_readl(c)); __v; })
42 #define readq_relaxed(c) ({ u64 __v = ioswabq(__raw_readq(c)); __v; })
44 #define writeb_relaxed(v,c) ((void)__raw_writeb((__force u8)ioswabb(v),c))
45 #define writew_relaxed(v,c) ((void)__raw_writew((__force u16)ioswabw(v),c))
46 #define writel_relaxed(v,c) ((void)__raw_writel((__force u32)ioswabl(v),c))
47 #define writeq_relaxed(v,c) ((void)__raw_writeq((__force u64)ioswabq(v),c))
49 #define readb(a) ({ u8 r_ = readb_relaxed(a); rmb(); r_; })
50 #define readw(a) ({ u16 r_ = readw_relaxed(a); rmb(); r_; })
51 #define readl(a) ({ u32 r_ = readl_relaxed(a); rmb(); r_; })
52 #define readq(a) ({ u64 r_ = readq_relaxed(a); rmb(); r_; })
54 #define writeb(v,a) ({ wmb(); writeb_relaxed((v),(a)); })
55 #define writew(v,a) ({ wmb(); writew_relaxed((v),(a)); })
56 #define writel(v,a) ({ wmb(); writel_relaxed((v),(a)); })
57 #define writeq(v,a) ({ wmb(); writeq_relaxed((v),(a)); })
59 #define readsb(p,d,l) __raw_readsb(p,d,l)
60 #define readsw(p,d,l) __raw_readsw(p,d,l)
61 #define readsl(p,d,l) __raw_readsl(p,d,l)
63 #define writesb(p,d,l) __raw_writesb(p,d,l)
64 #define writesw(p,d,l) __raw_writesw(p,d,l)
65 #define writesl(p,d,l) __raw_writesl(p,d,l)
67 #define __BUILD_UNCACHED_IO(bwlq, type) \
68 static inline type read##bwlq##_uncached(unsigned long addr) \
69 { \
70 type ret; \
71 jump_to_uncached(); \
72 ret = __raw_read##bwlq(addr); \
73 back_to_cached(); \
74 return ret; \
75 } \
77 static inline void write##bwlq##_uncached(type v, unsigned long addr) \
78 { \
79 jump_to_uncached(); \
80 __raw_write##bwlq(v, addr); \
81 back_to_cached(); \
84 __BUILD_UNCACHED_IO(b, u8)
85 __BUILD_UNCACHED_IO(w, u16)
86 __BUILD_UNCACHED_IO(l, u32)
87 __BUILD_UNCACHED_IO(q, u64)
89 #define __BUILD_MEMORY_STRING(pfx, bwlq, type) \
91 static inline void \
92 pfx##writes##bwlq(volatile void __iomem *mem, const void *addr, \
93 unsigned int count) \
94 { \
95 const volatile type *__addr = addr; \
97 while (count--) { \
98 __raw_write##bwlq(*__addr, mem); \
99 __addr++; \
103 static inline void pfx##reads##bwlq(volatile void __iomem *mem, \
104 void *addr, unsigned int count) \
106 volatile type *__addr = addr; \
108 while (count--) { \
109 *__addr = __raw_read##bwlq(mem); \
110 __addr++; \
114 __BUILD_MEMORY_STRING(__raw_, b, u8)
115 __BUILD_MEMORY_STRING(__raw_, w, u16)
117 #ifdef CONFIG_SUPERH32
118 void __raw_writesl(void __iomem *addr, const void *data, int longlen);
119 void __raw_readsl(const void __iomem *addr, void *data, int longlen);
120 #else
121 __BUILD_MEMORY_STRING(__raw_, l, u32)
122 #endif
124 __BUILD_MEMORY_STRING(__raw_, q, u64)
126 #ifdef CONFIG_HAS_IOPORT_MAP
129 * Slowdown I/O port space accesses for antique hardware.
131 #undef CONF_SLOWDOWN_IO
134 * On SuperH I/O ports are memory mapped, so we access them using normal
135 * load/store instructions. sh_io_port_base is the virtual address to
136 * which all ports are being mapped.
138 extern unsigned long sh_io_port_base;
140 static inline void __set_io_port_base(unsigned long pbase)
142 *(unsigned long *)&sh_io_port_base = pbase;
143 barrier();
146 #ifdef CONFIG_GENERIC_IOMAP
147 #define __ioport_map ioport_map
148 #else
149 extern void __iomem *__ioport_map(unsigned long addr, unsigned int size);
150 #endif
152 #ifdef CONF_SLOWDOWN_IO
153 #define SLOW_DOWN_IO __raw_readw(sh_io_port_base)
154 #else
155 #define SLOW_DOWN_IO
156 #endif
158 #define __BUILD_IOPORT_SINGLE(pfx, bwlq, type, p, slow) \
160 static inline void pfx##out##bwlq##p(type val, unsigned long port) \
162 volatile type *__addr; \
164 __addr = __ioport_map(port, sizeof(type)); \
165 *__addr = val; \
166 slow; \
169 static inline type pfx##in##bwlq##p(unsigned long port) \
171 volatile type *__addr; \
172 type __val; \
174 __addr = __ioport_map(port, sizeof(type)); \
175 __val = *__addr; \
176 slow; \
178 return __val; \
181 #define __BUILD_IOPORT_PFX(bus, bwlq, type) \
182 __BUILD_IOPORT_SINGLE(bus, bwlq, type, ,) \
183 __BUILD_IOPORT_SINGLE(bus, bwlq, type, _p, SLOW_DOWN_IO)
185 #define BUILDIO_IOPORT(bwlq, type) \
186 __BUILD_IOPORT_PFX(, bwlq, type)
188 BUILDIO_IOPORT(b, u8)
189 BUILDIO_IOPORT(w, u16)
190 BUILDIO_IOPORT(l, u32)
191 BUILDIO_IOPORT(q, u64)
193 #define __BUILD_IOPORT_STRING(bwlq, type) \
195 static inline void outs##bwlq(unsigned long port, const void *addr, \
196 unsigned int count) \
198 const volatile type *__addr = addr; \
200 while (count--) { \
201 out##bwlq(*__addr, port); \
202 __addr++; \
206 static inline void ins##bwlq(unsigned long port, void *addr, \
207 unsigned int count) \
209 volatile type *__addr = addr; \
211 while (count--) { \
212 *__addr = in##bwlq(port); \
213 __addr++; \
217 __BUILD_IOPORT_STRING(b, u8)
218 __BUILD_IOPORT_STRING(w, u16)
219 __BUILD_IOPORT_STRING(l, u32)
220 __BUILD_IOPORT_STRING(q, u64)
222 #else /* !CONFIG_HAS_IOPORT_MAP */
224 #include <asm/io_noioport.h>
226 #endif
229 #define IO_SPACE_LIMIT 0xffffffff
231 /* synco on SH-4A, otherwise a nop */
232 #define mmiowb() wmb()
234 /* We really want to try and get these to memcpy etc */
235 void memcpy_fromio(void *, const volatile void __iomem *, unsigned long);
236 void memcpy_toio(volatile void __iomem *, const void *, unsigned long);
237 void memset_io(volatile void __iomem *, int, unsigned long);
239 /* Quad-word real-mode I/O, don't ask.. */
240 unsigned long long peek_real_address_q(unsigned long long addr);
241 unsigned long long poke_real_address_q(unsigned long long addr,
242 unsigned long long val);
244 #if !defined(CONFIG_MMU)
245 #define virt_to_phys(address) ((unsigned long)(address))
246 #define phys_to_virt(address) ((void *)(address))
247 #else
248 #define virt_to_phys(address) (__pa(address))
249 #define phys_to_virt(address) (__va(address))
250 #endif
253 * On 32-bit SH, we traditionally have the whole physical address space
254 * mapped at all times (as MIPS does), so "ioremap()" and "iounmap()" do
255 * not need to do anything but place the address in the proper segment.
256 * This is true for P1 and P2 addresses, as well as some P3 ones.
257 * However, most of the P3 addresses and newer cores using extended
258 * addressing need to map through page tables, so the ioremap()
259 * implementation becomes a bit more complicated.
261 * See arch/sh/mm/ioremap.c for additional notes on this.
263 * We cheat a bit and always return uncachable areas until we've fixed
264 * the drivers to handle caching properly.
266 * On the SH-5 the concept of segmentation in the 1:1 PXSEG sense simply
267 * doesn't exist, so everything must go through page tables.
269 #ifdef CONFIG_MMU
270 void __iomem *__ioremap_caller(phys_addr_t offset, unsigned long size,
271 pgprot_t prot, void *caller);
272 void __iounmap(void __iomem *addr);
274 static inline void __iomem *
275 __ioremap(phys_addr_t offset, unsigned long size, pgprot_t prot)
277 return __ioremap_caller(offset, size, prot, __builtin_return_address(0));
280 static inline void __iomem *
281 __ioremap_29bit(phys_addr_t offset, unsigned long size, pgprot_t prot)
283 #ifdef CONFIG_29BIT
284 phys_addr_t last_addr = offset + size - 1;
287 * For P1 and P2 space this is trivial, as everything is already
288 * mapped. Uncached access for P1 addresses are done through P2.
289 * In the P3 case or for addresses outside of the 29-bit space,
290 * mapping must be done by the PMB or by using page tables.
292 if (likely(PXSEG(offset) < P3SEG && PXSEG(last_addr) < P3SEG)) {
293 u64 flags = pgprot_val(prot);
296 * Anything using the legacy PTEA space attributes needs
297 * to be kicked down to page table mappings.
299 if (unlikely(flags & _PAGE_PCC_MASK))
300 return NULL;
301 if (unlikely(flags & _PAGE_CACHABLE))
302 return (void __iomem *)P1SEGADDR(offset);
304 return (void __iomem *)P2SEGADDR(offset);
307 /* P4 above the store queues are always mapped. */
308 if (unlikely(offset >= P3_ADDR_MAX))
309 return (void __iomem *)P4SEGADDR(offset);
310 #endif
312 return NULL;
315 static inline void __iomem *
316 __ioremap_mode(phys_addr_t offset, unsigned long size, pgprot_t prot)
318 void __iomem *ret;
320 ret = __ioremap_trapped(offset, size);
321 if (ret)
322 return ret;
324 ret = __ioremap_29bit(offset, size, prot);
325 if (ret)
326 return ret;
328 return __ioremap(offset, size, prot);
330 #else
331 #define __ioremap(offset, size, prot) ((void __iomem *)(offset))
332 #define __ioremap_mode(offset, size, prot) ((void __iomem *)(offset))
333 #define __iounmap(addr) do { } while (0)
334 #endif /* CONFIG_MMU */
336 static inline void __iomem *ioremap(phys_addr_t offset, unsigned long size)
338 return __ioremap_mode(offset, size, PAGE_KERNEL_NOCACHE);
341 static inline void __iomem *
342 ioremap_cache(phys_addr_t offset, unsigned long size)
344 return __ioremap_mode(offset, size, PAGE_KERNEL);
346 #define ioremap_cache ioremap_cache
348 #ifdef CONFIG_HAVE_IOREMAP_PROT
349 static inline void __iomem *
350 ioremap_prot(phys_addr_t offset, unsigned long size, unsigned long flags)
352 return __ioremap_mode(offset, size, __pgprot(flags));
354 #endif
356 #ifdef CONFIG_IOREMAP_FIXED
357 extern void __iomem *ioremap_fixed(phys_addr_t, unsigned long, pgprot_t);
358 extern int iounmap_fixed(void __iomem *);
359 extern void ioremap_fixed_init(void);
360 #else
361 static inline void __iomem *
362 ioremap_fixed(phys_addr_t phys_addr, unsigned long size, pgprot_t prot)
364 BUG();
365 return NULL;
368 static inline void ioremap_fixed_init(void) { }
369 static inline int iounmap_fixed(void __iomem *addr) { return -EINVAL; }
370 #endif
372 #define ioremap_nocache ioremap
373 #define ioremap_uc ioremap
374 #define iounmap __iounmap
377 * Convert a physical pointer to a virtual kernel pointer for /dev/mem
378 * access
380 #define xlate_dev_mem_ptr(p) __va(p)
383 * Convert a virtual cached pointer to an uncached pointer
385 #define xlate_dev_kmem_ptr(p) p
387 #define ARCH_HAS_VALID_PHYS_ADDR_RANGE
388 int valid_phys_addr_range(phys_addr_t addr, size_t size);
389 int valid_mmap_phys_addr_range(unsigned long pfn, size_t size);
391 #endif /* __KERNEL__ */
393 #endif /* __ASM_SH_IO_H */