1 // SPDX-License-Identifier: GPL-2.0
3 * srmmu.c: SRMMU specific routines for memory management.
5 * Copyright (C) 1995 David S. Miller (davem@caip.rutgers.edu)
6 * Copyright (C) 1995,2002 Pete Zaitcev (zaitcev@yahoo.com)
7 * Copyright (C) 1996 Eddie C. Dost (ecd@skynet.be)
8 * Copyright (C) 1997,1998 Jakub Jelinek (jj@sunsite.mff.cuni.cz)
9 * Copyright (C) 1999,2000 Anton Blanchard (anton@samba.org)
12 #include <linux/seq_file.h>
13 #include <linux/spinlock.h>
14 #include <linux/bootmem.h>
15 #include <linux/pagemap.h>
16 #include <linux/vmalloc.h>
17 #include <linux/kdebug.h>
18 #include <linux/export.h>
19 #include <linux/kernel.h>
20 #include <linux/init.h>
21 #include <linux/log2.h>
22 #include <linux/gfp.h>
26 #include <asm/mmu_context.h>
27 #include <asm/cacheflush.h>
28 #include <asm/tlbflush.h>
29 #include <asm/io-unit.h>
30 #include <asm/pgalloc.h>
31 #include <asm/pgtable.h>
32 #include <asm/bitext.h>
33 #include <asm/vaddrs.h>
34 #include <asm/cache.h>
35 #include <asm/traps.h>
36 #include <asm/oplib.h>
44 /* Now the cpu specific definitions. */
45 #include <asm/turbosparc.h>
46 #include <asm/tsunami.h>
47 #include <asm/viking.h>
48 #include <asm/swift.h>
55 enum mbus_module srmmu_modtype
;
56 static unsigned int hwbug_bitmask
;
58 EXPORT_SYMBOL(vac_cache_size
);
61 extern struct resource sparc_iomap
;
63 extern unsigned long last_valid_pfn
;
65 static pgd_t
*srmmu_swapper_pg_dir
;
67 const struct sparc32_cachetlb_ops
*sparc32_cachetlb_ops
;
68 EXPORT_SYMBOL(sparc32_cachetlb_ops
);
71 const struct sparc32_cachetlb_ops
*local_ops
;
73 #define FLUSH_BEGIN(mm)
76 #define FLUSH_BEGIN(mm) if ((mm)->context != NO_CONTEXT) {
80 int flush_page_for_dma_global
= 1;
84 ctxd_t
*srmmu_ctx_table_phys
;
85 static ctxd_t
*srmmu_context_table
;
87 int viking_mxcc_present
;
88 static DEFINE_SPINLOCK(srmmu_context_spinlock
);
90 static int is_hypersparc
;
92 static int srmmu_cache_pagetables
;
94 /* these will be initialized in srmmu_nocache_calcsize() */
95 static unsigned long srmmu_nocache_size
;
96 static unsigned long srmmu_nocache_end
;
98 /* 1 bit <=> 256 bytes of nocache <=> 64 PTEs */
99 #define SRMMU_NOCACHE_BITMAP_SHIFT (PAGE_SHIFT - 4)
101 /* The context table is a nocache user with the biggest alignment needs. */
102 #define SRMMU_NOCACHE_ALIGN_MAX (sizeof(ctxd_t)*SRMMU_MAX_CONTEXTS)
104 void *srmmu_nocache_pool
;
105 static struct bit_map srmmu_nocache_map
;
107 static inline int srmmu_pmd_none(pmd_t pmd
)
108 { return !(pmd_val(pmd
) & 0xFFFFFFF); }
110 /* XXX should we hyper_flush_whole_icache here - Anton */
111 static inline void srmmu_ctxd_set(ctxd_t
*ctxp
, pgd_t
*pgdp
)
115 pte
= __pte((SRMMU_ET_PTD
| (__nocache_pa(pgdp
) >> 4)));
116 set_pte((pte_t
*)ctxp
, pte
);
119 void pmd_set(pmd_t
*pmdp
, pte_t
*ptep
)
121 unsigned long ptp
; /* Physical address, shifted right by 4 */
124 ptp
= __nocache_pa(ptep
) >> 4;
125 for (i
= 0; i
< PTRS_PER_PTE
/SRMMU_REAL_PTRS_PER_PTE
; i
++) {
126 set_pte((pte_t
*)&pmdp
->pmdv
[i
], __pte(SRMMU_ET_PTD
| ptp
));
127 ptp
+= (SRMMU_REAL_PTRS_PER_PTE
* sizeof(pte_t
) >> 4);
131 void pmd_populate(struct mm_struct
*mm
, pmd_t
*pmdp
, struct page
*ptep
)
133 unsigned long ptp
; /* Physical address, shifted right by 4 */
136 ptp
= page_to_pfn(ptep
) << (PAGE_SHIFT
-4); /* watch for overflow */
137 for (i
= 0; i
< PTRS_PER_PTE
/SRMMU_REAL_PTRS_PER_PTE
; i
++) {
138 set_pte((pte_t
*)&pmdp
->pmdv
[i
], __pte(SRMMU_ET_PTD
| ptp
));
139 ptp
+= (SRMMU_REAL_PTRS_PER_PTE
* sizeof(pte_t
) >> 4);
143 /* Find an entry in the third-level page table.. */
144 pte_t
*pte_offset_kernel(pmd_t
*dir
, unsigned long address
)
148 pte
= __nocache_va((dir
->pmdv
[0] & SRMMU_PTD_PMASK
) << 4);
149 return (pte_t
*) pte
+
150 ((address
>> PAGE_SHIFT
) & (PTRS_PER_PTE
- 1));
154 * size: bytes to allocate in the nocache area.
155 * align: bytes, number to align at.
156 * Returns the virtual address of the allocated area.
158 static void *__srmmu_get_nocache(int size
, int align
)
163 if (size
< SRMMU_NOCACHE_BITMAP_SHIFT
) {
164 printk(KERN_ERR
"Size 0x%x too small for nocache request\n",
166 size
= SRMMU_NOCACHE_BITMAP_SHIFT
;
168 if (size
& (SRMMU_NOCACHE_BITMAP_SHIFT
- 1)) {
169 printk(KERN_ERR
"Size 0x%x unaligned int nocache request\n",
171 size
+= SRMMU_NOCACHE_BITMAP_SHIFT
- 1;
173 BUG_ON(align
> SRMMU_NOCACHE_ALIGN_MAX
);
175 offset
= bit_map_string_get(&srmmu_nocache_map
,
176 size
>> SRMMU_NOCACHE_BITMAP_SHIFT
,
177 align
>> SRMMU_NOCACHE_BITMAP_SHIFT
);
179 printk(KERN_ERR
"srmmu: out of nocache %d: %d/%d\n",
180 size
, (int) srmmu_nocache_size
,
181 srmmu_nocache_map
.used
<< SRMMU_NOCACHE_BITMAP_SHIFT
);
185 addr
= SRMMU_NOCACHE_VADDR
+ (offset
<< SRMMU_NOCACHE_BITMAP_SHIFT
);
189 void *srmmu_get_nocache(int size
, int align
)
193 tmp
= __srmmu_get_nocache(size
, align
);
196 memset(tmp
, 0, size
);
201 void srmmu_free_nocache(void *addr
, int size
)
206 vaddr
= (unsigned long)addr
;
207 if (vaddr
< SRMMU_NOCACHE_VADDR
) {
208 printk("Vaddr %lx is smaller than nocache base 0x%lx\n",
209 vaddr
, (unsigned long)SRMMU_NOCACHE_VADDR
);
212 if (vaddr
+ size
> srmmu_nocache_end
) {
213 printk("Vaddr %lx is bigger than nocache end 0x%lx\n",
214 vaddr
, srmmu_nocache_end
);
217 if (!is_power_of_2(size
)) {
218 printk("Size 0x%x is not a power of 2\n", size
);
221 if (size
< SRMMU_NOCACHE_BITMAP_SHIFT
) {
222 printk("Size 0x%x is too small\n", size
);
225 if (vaddr
& (size
- 1)) {
226 printk("Vaddr %lx is not aligned to size 0x%x\n", vaddr
, size
);
230 offset
= (vaddr
- SRMMU_NOCACHE_VADDR
) >> SRMMU_NOCACHE_BITMAP_SHIFT
;
231 size
= size
>> SRMMU_NOCACHE_BITMAP_SHIFT
;
233 bit_map_clear(&srmmu_nocache_map
, offset
, size
);
236 static void srmmu_early_allocate_ptable_skeleton(unsigned long start
,
239 /* Return how much physical memory we have. */
240 static unsigned long __init
probe_memory(void)
242 unsigned long total
= 0;
245 for (i
= 0; sp_banks
[i
].num_bytes
; i
++)
246 total
+= sp_banks
[i
].num_bytes
;
252 * Reserve nocache dynamically proportionally to the amount of
253 * system RAM. -- Tomas Szepe <szepe@pinerecords.com>, June 2002
255 static void __init
srmmu_nocache_calcsize(void)
257 unsigned long sysmemavail
= probe_memory() / 1024;
258 int srmmu_nocache_npages
;
260 srmmu_nocache_npages
=
261 sysmemavail
/ SRMMU_NOCACHE_ALCRATIO
/ 1024 * 256;
263 /* P3 XXX The 4x overuse: corroborated by /proc/meminfo. */
264 // if (srmmu_nocache_npages < 256) srmmu_nocache_npages = 256;
265 if (srmmu_nocache_npages
< SRMMU_MIN_NOCACHE_PAGES
)
266 srmmu_nocache_npages
= SRMMU_MIN_NOCACHE_PAGES
;
268 /* anything above 1280 blows up */
269 if (srmmu_nocache_npages
> SRMMU_MAX_NOCACHE_PAGES
)
270 srmmu_nocache_npages
= SRMMU_MAX_NOCACHE_PAGES
;
272 srmmu_nocache_size
= srmmu_nocache_npages
* PAGE_SIZE
;
273 srmmu_nocache_end
= SRMMU_NOCACHE_VADDR
+ srmmu_nocache_size
;
276 static void __init
srmmu_nocache_init(void)
278 void *srmmu_nocache_bitmap
;
279 unsigned int bitmap_bits
;
283 unsigned long paddr
, vaddr
;
284 unsigned long pteval
;
286 bitmap_bits
= srmmu_nocache_size
>> SRMMU_NOCACHE_BITMAP_SHIFT
;
288 srmmu_nocache_pool
= __alloc_bootmem(srmmu_nocache_size
,
289 SRMMU_NOCACHE_ALIGN_MAX
, 0UL);
290 memset(srmmu_nocache_pool
, 0, srmmu_nocache_size
);
292 srmmu_nocache_bitmap
=
293 __alloc_bootmem(BITS_TO_LONGS(bitmap_bits
) * sizeof(long),
294 SMP_CACHE_BYTES
, 0UL);
295 bit_map_init(&srmmu_nocache_map
, srmmu_nocache_bitmap
, bitmap_bits
);
297 srmmu_swapper_pg_dir
= __srmmu_get_nocache(SRMMU_PGD_TABLE_SIZE
, SRMMU_PGD_TABLE_SIZE
);
298 memset(__nocache_fix(srmmu_swapper_pg_dir
), 0, SRMMU_PGD_TABLE_SIZE
);
299 init_mm
.pgd
= srmmu_swapper_pg_dir
;
301 srmmu_early_allocate_ptable_skeleton(SRMMU_NOCACHE_VADDR
, srmmu_nocache_end
);
303 paddr
= __pa((unsigned long)srmmu_nocache_pool
);
304 vaddr
= SRMMU_NOCACHE_VADDR
;
306 while (vaddr
< srmmu_nocache_end
) {
307 pgd
= pgd_offset_k(vaddr
);
308 pmd
= pmd_offset(__nocache_fix(pgd
), vaddr
);
309 pte
= pte_offset_kernel(__nocache_fix(pmd
), vaddr
);
311 pteval
= ((paddr
>> 4) | SRMMU_ET_PTE
| SRMMU_PRIV
);
313 if (srmmu_cache_pagetables
)
314 pteval
|= SRMMU_CACHE
;
316 set_pte(__nocache_fix(pte
), __pte(pteval
));
326 pgd_t
*get_pgd_fast(void)
330 pgd
= __srmmu_get_nocache(SRMMU_PGD_TABLE_SIZE
, SRMMU_PGD_TABLE_SIZE
);
332 pgd_t
*init
= pgd_offset_k(0);
333 memset(pgd
, 0, USER_PTRS_PER_PGD
* sizeof(pgd_t
));
334 memcpy(pgd
+ USER_PTRS_PER_PGD
, init
+ USER_PTRS_PER_PGD
,
335 (PTRS_PER_PGD
- USER_PTRS_PER_PGD
) * sizeof(pgd_t
));
342 * Hardware needs alignment to 256 only, but we align to whole page size
343 * to reduce fragmentation problems due to the buddy principle.
344 * XXX Provide actual fragmentation statistics in /proc.
346 * Alignments up to the page size are the same for physical and virtual
347 * addresses of the nocache area.
349 pgtable_t
pte_alloc_one(struct mm_struct
*mm
, unsigned long address
)
354 if ((pte
= (unsigned long)pte_alloc_one_kernel(mm
, address
)) == 0)
356 page
= pfn_to_page(__nocache_pa(pte
) >> PAGE_SHIFT
);
357 if (!pgtable_page_ctor(page
)) {
364 void pte_free(struct mm_struct
*mm
, pgtable_t pte
)
368 pgtable_page_dtor(pte
);
369 p
= (unsigned long)page_address(pte
); /* Cached address (for test) */
372 p
= page_to_pfn(pte
) << PAGE_SHIFT
; /* Physical address */
374 /* free non cached virtual address*/
375 srmmu_free_nocache(__nocache_va(p
), PTE_SIZE
);
378 /* context handling - a dynamically sized pool is used */
379 #define NO_CONTEXT -1
382 struct ctx_list
*next
;
383 struct ctx_list
*prev
;
384 unsigned int ctx_number
;
385 struct mm_struct
*ctx_mm
;
388 static struct ctx_list
*ctx_list_pool
;
389 static struct ctx_list ctx_free
;
390 static struct ctx_list ctx_used
;
392 /* At boot time we determine the number of contexts */
393 static int num_contexts
;
395 static inline void remove_from_ctx_list(struct ctx_list
*entry
)
397 entry
->next
->prev
= entry
->prev
;
398 entry
->prev
->next
= entry
->next
;
401 static inline void add_to_ctx_list(struct ctx_list
*head
, struct ctx_list
*entry
)
404 (entry
->prev
= head
->prev
)->next
= entry
;
407 #define add_to_free_ctxlist(entry) add_to_ctx_list(&ctx_free, entry)
408 #define add_to_used_ctxlist(entry) add_to_ctx_list(&ctx_used, entry)
411 static inline void alloc_context(struct mm_struct
*old_mm
, struct mm_struct
*mm
)
413 struct ctx_list
*ctxp
;
415 ctxp
= ctx_free
.next
;
416 if (ctxp
!= &ctx_free
) {
417 remove_from_ctx_list(ctxp
);
418 add_to_used_ctxlist(ctxp
);
419 mm
->context
= ctxp
->ctx_number
;
423 ctxp
= ctx_used
.next
;
424 if (ctxp
->ctx_mm
== old_mm
)
426 if (ctxp
== &ctx_used
)
427 panic("out of mmu contexts");
428 flush_cache_mm(ctxp
->ctx_mm
);
429 flush_tlb_mm(ctxp
->ctx_mm
);
430 remove_from_ctx_list(ctxp
);
431 add_to_used_ctxlist(ctxp
);
432 ctxp
->ctx_mm
->context
= NO_CONTEXT
;
434 mm
->context
= ctxp
->ctx_number
;
437 static inline void free_context(int context
)
439 struct ctx_list
*ctx_old
;
441 ctx_old
= ctx_list_pool
+ context
;
442 remove_from_ctx_list(ctx_old
);
443 add_to_free_ctxlist(ctx_old
);
446 static void __init
sparc_context_init(int numctx
)
451 size
= numctx
* sizeof(struct ctx_list
);
452 ctx_list_pool
= __alloc_bootmem(size
, SMP_CACHE_BYTES
, 0UL);
454 for (ctx
= 0; ctx
< numctx
; ctx
++) {
455 struct ctx_list
*clist
;
457 clist
= (ctx_list_pool
+ ctx
);
458 clist
->ctx_number
= ctx
;
459 clist
->ctx_mm
= NULL
;
461 ctx_free
.next
= ctx_free
.prev
= &ctx_free
;
462 ctx_used
.next
= ctx_used
.prev
= &ctx_used
;
463 for (ctx
= 0; ctx
< numctx
; ctx
++)
464 add_to_free_ctxlist(ctx_list_pool
+ ctx
);
467 void switch_mm(struct mm_struct
*old_mm
, struct mm_struct
*mm
,
468 struct task_struct
*tsk
)
472 if (mm
->context
== NO_CONTEXT
) {
473 spin_lock_irqsave(&srmmu_context_spinlock
, flags
);
474 alloc_context(old_mm
, mm
);
475 spin_unlock_irqrestore(&srmmu_context_spinlock
, flags
);
476 srmmu_ctxd_set(&srmmu_context_table
[mm
->context
], mm
->pgd
);
479 if (sparc_cpu_model
== sparc_leon
)
483 hyper_flush_whole_icache();
485 srmmu_set_context(mm
->context
);
488 /* Low level IO area allocation on the SRMMU. */
489 static inline void srmmu_mapioaddr(unsigned long physaddr
,
490 unsigned long virt_addr
, int bus_type
)
497 physaddr
&= PAGE_MASK
;
498 pgdp
= pgd_offset_k(virt_addr
);
499 pmdp
= pmd_offset(pgdp
, virt_addr
);
500 ptep
= pte_offset_kernel(pmdp
, virt_addr
);
501 tmp
= (physaddr
>> 4) | SRMMU_ET_PTE
;
503 /* I need to test whether this is consistent over all
504 * sun4m's. The bus_type represents the upper 4 bits of
505 * 36-bit physical address on the I/O space lines...
507 tmp
|= (bus_type
<< 28);
509 __flush_page_to_ram(virt_addr
);
510 set_pte(ptep
, __pte(tmp
));
513 void srmmu_mapiorange(unsigned int bus
, unsigned long xpa
,
514 unsigned long xva
, unsigned int len
)
518 srmmu_mapioaddr(xpa
, xva
, bus
);
525 static inline void srmmu_unmapioaddr(unsigned long virt_addr
)
531 pgdp
= pgd_offset_k(virt_addr
);
532 pmdp
= pmd_offset(pgdp
, virt_addr
);
533 ptep
= pte_offset_kernel(pmdp
, virt_addr
);
535 /* No need to flush uncacheable page. */
539 void srmmu_unmapiorange(unsigned long virt_addr
, unsigned int len
)
543 srmmu_unmapioaddr(virt_addr
);
544 virt_addr
+= PAGE_SIZE
;
550 extern void tsunami_flush_cache_all(void);
551 extern void tsunami_flush_cache_mm(struct mm_struct
*mm
);
552 extern void tsunami_flush_cache_range(struct vm_area_struct
*vma
, unsigned long start
, unsigned long end
);
553 extern void tsunami_flush_cache_page(struct vm_area_struct
*vma
, unsigned long page
);
554 extern void tsunami_flush_page_to_ram(unsigned long page
);
555 extern void tsunami_flush_page_for_dma(unsigned long page
);
556 extern void tsunami_flush_sig_insns(struct mm_struct
*mm
, unsigned long insn_addr
);
557 extern void tsunami_flush_tlb_all(void);
558 extern void tsunami_flush_tlb_mm(struct mm_struct
*mm
);
559 extern void tsunami_flush_tlb_range(struct vm_area_struct
*vma
, unsigned long start
, unsigned long end
);
560 extern void tsunami_flush_tlb_page(struct vm_area_struct
*vma
, unsigned long page
);
561 extern void tsunami_setup_blockops(void);
564 extern void swift_flush_cache_all(void);
565 extern void swift_flush_cache_mm(struct mm_struct
*mm
);
566 extern void swift_flush_cache_range(struct vm_area_struct
*vma
,
567 unsigned long start
, unsigned long end
);
568 extern void swift_flush_cache_page(struct vm_area_struct
*vma
, unsigned long page
);
569 extern void swift_flush_page_to_ram(unsigned long page
);
570 extern void swift_flush_page_for_dma(unsigned long page
);
571 extern void swift_flush_sig_insns(struct mm_struct
*mm
, unsigned long insn_addr
);
572 extern void swift_flush_tlb_all(void);
573 extern void swift_flush_tlb_mm(struct mm_struct
*mm
);
574 extern void swift_flush_tlb_range(struct vm_area_struct
*vma
,
575 unsigned long start
, unsigned long end
);
576 extern void swift_flush_tlb_page(struct vm_area_struct
*vma
, unsigned long page
);
578 #if 0 /* P3: deadwood to debug precise flushes on Swift. */
579 void swift_flush_tlb_page(struct vm_area_struct
*vma
, unsigned long page
)
584 if ((ctx1
= vma
->vm_mm
->context
) != -1) {
585 cctx
= srmmu_get_context();
586 /* Is context # ever different from current context? P3 */
588 printk("flush ctx %02x curr %02x\n", ctx1
, cctx
);
589 srmmu_set_context(ctx1
);
590 swift_flush_page(page
);
591 __asm__
__volatile__("sta %%g0, [%0] %1\n\t" : :
592 "r" (page
), "i" (ASI_M_FLUSH_PROBE
));
593 srmmu_set_context(cctx
);
595 /* Rm. prot. bits from virt. c. */
596 /* swift_flush_cache_all(); */
597 /* swift_flush_cache_page(vma, page); */
598 swift_flush_page(page
);
600 __asm__
__volatile__("sta %%g0, [%0] %1\n\t" : :
601 "r" (page
), "i" (ASI_M_FLUSH_PROBE
));
602 /* same as above: srmmu_flush_tlb_page() */
609 * The following are all MBUS based SRMMU modules, and therefore could
610 * be found in a multiprocessor configuration. On the whole, these
611 * chips seems to be much more touchy about DVMA and page tables
612 * with respect to cache coherency.
616 extern void viking_flush_cache_all(void);
617 extern void viking_flush_cache_mm(struct mm_struct
*mm
);
618 extern void viking_flush_cache_range(struct vm_area_struct
*vma
, unsigned long start
,
620 extern void viking_flush_cache_page(struct vm_area_struct
*vma
, unsigned long page
);
621 extern void viking_flush_page_to_ram(unsigned long page
);
622 extern void viking_flush_page_for_dma(unsigned long page
);
623 extern void viking_flush_sig_insns(struct mm_struct
*mm
, unsigned long addr
);
624 extern void viking_flush_page(unsigned long page
);
625 extern void viking_mxcc_flush_page(unsigned long page
);
626 extern void viking_flush_tlb_all(void);
627 extern void viking_flush_tlb_mm(struct mm_struct
*mm
);
628 extern void viking_flush_tlb_range(struct vm_area_struct
*vma
, unsigned long start
,
630 extern void viking_flush_tlb_page(struct vm_area_struct
*vma
,
632 extern void sun4dsmp_flush_tlb_all(void);
633 extern void sun4dsmp_flush_tlb_mm(struct mm_struct
*mm
);
634 extern void sun4dsmp_flush_tlb_range(struct vm_area_struct
*vma
, unsigned long start
,
636 extern void sun4dsmp_flush_tlb_page(struct vm_area_struct
*vma
,
640 extern void hypersparc_flush_cache_all(void);
641 extern void hypersparc_flush_cache_mm(struct mm_struct
*mm
);
642 extern void hypersparc_flush_cache_range(struct vm_area_struct
*vma
, unsigned long start
, unsigned long end
);
643 extern void hypersparc_flush_cache_page(struct vm_area_struct
*vma
, unsigned long page
);
644 extern void hypersparc_flush_page_to_ram(unsigned long page
);
645 extern void hypersparc_flush_page_for_dma(unsigned long page
);
646 extern void hypersparc_flush_sig_insns(struct mm_struct
*mm
, unsigned long insn_addr
);
647 extern void hypersparc_flush_tlb_all(void);
648 extern void hypersparc_flush_tlb_mm(struct mm_struct
*mm
);
649 extern void hypersparc_flush_tlb_range(struct vm_area_struct
*vma
, unsigned long start
, unsigned long end
);
650 extern void hypersparc_flush_tlb_page(struct vm_area_struct
*vma
, unsigned long page
);
651 extern void hypersparc_setup_blockops(void);
654 * NOTE: All of this startup code assumes the low 16mb (approx.) of
655 * kernel mappings are done with one single contiguous chunk of
656 * ram. On small ram machines (classics mainly) we only get
657 * around 8mb mapped for us.
660 static void __init
early_pgtable_allocfail(char *type
)
662 prom_printf("inherit_prom_mappings: Cannot alloc kernel %s.\n", type
);
666 static void __init
srmmu_early_allocate_ptable_skeleton(unsigned long start
,
673 while (start
< end
) {
674 pgdp
= pgd_offset_k(start
);
675 if (pgd_none(*(pgd_t
*)__nocache_fix(pgdp
))) {
676 pmdp
= __srmmu_get_nocache(
677 SRMMU_PMD_TABLE_SIZE
, SRMMU_PMD_TABLE_SIZE
);
679 early_pgtable_allocfail("pmd");
680 memset(__nocache_fix(pmdp
), 0, SRMMU_PMD_TABLE_SIZE
);
681 pgd_set(__nocache_fix(pgdp
), pmdp
);
683 pmdp
= pmd_offset(__nocache_fix(pgdp
), start
);
684 if (srmmu_pmd_none(*(pmd_t
*)__nocache_fix(pmdp
))) {
685 ptep
= __srmmu_get_nocache(PTE_SIZE
, PTE_SIZE
);
687 early_pgtable_allocfail("pte");
688 memset(__nocache_fix(ptep
), 0, PTE_SIZE
);
689 pmd_set(__nocache_fix(pmdp
), ptep
);
691 if (start
> (0xffffffffUL
- PMD_SIZE
))
693 start
= (start
+ PMD_SIZE
) & PMD_MASK
;
697 static void __init
srmmu_allocate_ptable_skeleton(unsigned long start
,
704 while (start
< end
) {
705 pgdp
= pgd_offset_k(start
);
706 if (pgd_none(*pgdp
)) {
707 pmdp
= __srmmu_get_nocache(SRMMU_PMD_TABLE_SIZE
, SRMMU_PMD_TABLE_SIZE
);
709 early_pgtable_allocfail("pmd");
710 memset(pmdp
, 0, SRMMU_PMD_TABLE_SIZE
);
713 pmdp
= pmd_offset(pgdp
, start
);
714 if (srmmu_pmd_none(*pmdp
)) {
715 ptep
= __srmmu_get_nocache(PTE_SIZE
,
718 early_pgtable_allocfail("pte");
719 memset(ptep
, 0, PTE_SIZE
);
722 if (start
> (0xffffffffUL
- PMD_SIZE
))
724 start
= (start
+ PMD_SIZE
) & PMD_MASK
;
728 /* These flush types are not available on all chips... */
729 static inline unsigned long srmmu_probe(unsigned long vaddr
)
731 unsigned long retval
;
733 if (sparc_cpu_model
!= sparc_leon
) {
736 __asm__
__volatile__("lda [%1] %2, %0\n\t" :
738 "r" (vaddr
| 0x400), "i" (ASI_M_FLUSH_PROBE
));
740 retval
= leon_swprobe(vaddr
, NULL
);
746 * This is much cleaner than poking around physical address space
747 * looking at the prom's page table directly which is what most
748 * other OS's do. Yuck... this is much better.
750 static void __init
srmmu_inherit_prom_mappings(unsigned long start
,
753 unsigned long probed
;
758 int what
; /* 0 = normal-pte, 1 = pmd-level pte, 2 = pgd-level pte */
760 while (start
<= end
) {
762 break; /* probably wrap around */
763 if (start
== 0xfef00000)
764 start
= KADB_DEBUGGER_BEGVM
;
765 probed
= srmmu_probe(start
);
767 /* continue probing until we find an entry */
772 /* A red snapper, see what it really is. */
774 addr
= start
- PAGE_SIZE
;
776 if (!(start
& ~(SRMMU_REAL_PMD_MASK
))) {
777 if (srmmu_probe(addr
+ SRMMU_REAL_PMD_SIZE
) == probed
)
781 if (!(start
& ~(SRMMU_PGDIR_MASK
))) {
782 if (srmmu_probe(addr
+ SRMMU_PGDIR_SIZE
) == probed
)
786 pgdp
= pgd_offset_k(start
);
788 *(pgd_t
*)__nocache_fix(pgdp
) = __pgd(probed
);
789 start
+= SRMMU_PGDIR_SIZE
;
792 if (pgd_none(*(pgd_t
*)__nocache_fix(pgdp
))) {
793 pmdp
= __srmmu_get_nocache(SRMMU_PMD_TABLE_SIZE
,
794 SRMMU_PMD_TABLE_SIZE
);
796 early_pgtable_allocfail("pmd");
797 memset(__nocache_fix(pmdp
), 0, SRMMU_PMD_TABLE_SIZE
);
798 pgd_set(__nocache_fix(pgdp
), pmdp
);
800 pmdp
= pmd_offset(__nocache_fix(pgdp
), start
);
801 if (srmmu_pmd_none(*(pmd_t
*)__nocache_fix(pmdp
))) {
802 ptep
= __srmmu_get_nocache(PTE_SIZE
, PTE_SIZE
);
804 early_pgtable_allocfail("pte");
805 memset(__nocache_fix(ptep
), 0, PTE_SIZE
);
806 pmd_set(__nocache_fix(pmdp
), ptep
);
809 /* We bend the rule where all 16 PTPs in a pmd_t point
810 * inside the same PTE page, and we leak a perfectly
811 * good hardware PTE piece. Alternatives seem worse.
813 unsigned int x
; /* Index of HW PMD in soft cluster */
815 x
= (start
>> PMD_SHIFT
) & 15;
816 val
= &pmdp
->pmdv
[x
];
817 *(unsigned long *)__nocache_fix(val
) = probed
;
818 start
+= SRMMU_REAL_PMD_SIZE
;
821 ptep
= pte_offset_kernel(__nocache_fix(pmdp
), start
);
822 *(pte_t
*)__nocache_fix(ptep
) = __pte(probed
);
827 #define KERNEL_PTE(page_shifted) ((page_shifted)|SRMMU_CACHE|SRMMU_PRIV|SRMMU_VALID)
829 /* Create a third-level SRMMU 16MB page mapping. */
830 static void __init
do_large_mapping(unsigned long vaddr
, unsigned long phys_base
)
832 pgd_t
*pgdp
= pgd_offset_k(vaddr
);
833 unsigned long big_pte
;
835 big_pte
= KERNEL_PTE(phys_base
>> 4);
836 *(pgd_t
*)__nocache_fix(pgdp
) = __pgd(big_pte
);
839 /* Map sp_bank entry SP_ENTRY, starting at virtual address VBASE. */
840 static unsigned long __init
map_spbank(unsigned long vbase
, int sp_entry
)
842 unsigned long pstart
= (sp_banks
[sp_entry
].base_addr
& SRMMU_PGDIR_MASK
);
843 unsigned long vstart
= (vbase
& SRMMU_PGDIR_MASK
);
844 unsigned long vend
= SRMMU_PGDIR_ALIGN(vbase
+ sp_banks
[sp_entry
].num_bytes
);
845 /* Map "low" memory only */
846 const unsigned long min_vaddr
= PAGE_OFFSET
;
847 const unsigned long max_vaddr
= PAGE_OFFSET
+ SRMMU_MAXMEM
;
849 if (vstart
< min_vaddr
|| vstart
>= max_vaddr
)
852 if (vend
> max_vaddr
|| vend
< min_vaddr
)
855 while (vstart
< vend
) {
856 do_large_mapping(vstart
, pstart
);
857 vstart
+= SRMMU_PGDIR_SIZE
; pstart
+= SRMMU_PGDIR_SIZE
;
862 static void __init
map_kernel(void)
867 do_large_mapping(PAGE_OFFSET
, phys_base
);
870 for (i
= 0; sp_banks
[i
].num_bytes
!= 0; i
++) {
871 map_spbank((unsigned long)__va(sp_banks
[i
].base_addr
), i
);
875 void (*poke_srmmu
)(void) = NULL
;
877 void __init
srmmu_paging_init(void)
885 unsigned long pages_avail
;
887 init_mm
.context
= (unsigned long) NO_CONTEXT
;
888 sparc_iomap
.start
= SUN4M_IOBASE_VADDR
; /* 16MB of IOSPACE on all sun4m's. */
890 if (sparc_cpu_model
== sun4d
)
891 num_contexts
= 65536; /* We know it is Viking */
893 /* Find the number of contexts on the srmmu. */
894 cpunode
= prom_getchild(prom_root_node
);
896 while (cpunode
!= 0) {
897 prom_getstring(cpunode
, "device_type", node_str
, sizeof(node_str
));
898 if (!strcmp(node_str
, "cpu")) {
899 num_contexts
= prom_getintdefault(cpunode
, "mmu-nctx", 0x8);
902 cpunode
= prom_getsibling(cpunode
);
907 prom_printf("Something wrong, can't find cpu node in paging_init.\n");
912 last_valid_pfn
= bootmem_init(&pages_avail
);
914 srmmu_nocache_calcsize();
915 srmmu_nocache_init();
916 srmmu_inherit_prom_mappings(0xfe400000, (LINUX_OPPROM_ENDVM
- PAGE_SIZE
));
919 /* ctx table has to be physically aligned to its size */
920 srmmu_context_table
= __srmmu_get_nocache(num_contexts
* sizeof(ctxd_t
), num_contexts
* sizeof(ctxd_t
));
921 srmmu_ctx_table_phys
= (ctxd_t
*)__nocache_pa(srmmu_context_table
);
923 for (i
= 0; i
< num_contexts
; i
++)
924 srmmu_ctxd_set((ctxd_t
*)__nocache_fix(&srmmu_context_table
[i
]), srmmu_swapper_pg_dir
);
927 srmmu_set_ctable_ptr((unsigned long)srmmu_ctx_table_phys
);
929 /* Stop from hanging here... */
930 local_ops
->tlb_all();
936 srmmu_allocate_ptable_skeleton(sparc_iomap
.start
, IOBASE_END
);
937 srmmu_allocate_ptable_skeleton(DVMA_VADDR
, DVMA_END
);
939 srmmu_allocate_ptable_skeleton(
940 __fix_to_virt(__end_of_fixed_addresses
- 1), FIXADDR_TOP
);
941 srmmu_allocate_ptable_skeleton(PKMAP_BASE
, PKMAP_END
);
943 pgd
= pgd_offset_k(PKMAP_BASE
);
944 pmd
= pmd_offset(pgd
, PKMAP_BASE
);
945 pte
= pte_offset_kernel(pmd
, PKMAP_BASE
);
946 pkmap_page_table
= pte
;
951 sparc_context_init(num_contexts
);
956 unsigned long zones_size
[MAX_NR_ZONES
];
957 unsigned long zholes_size
[MAX_NR_ZONES
];
958 unsigned long npages
;
961 for (znum
= 0; znum
< MAX_NR_ZONES
; znum
++)
962 zones_size
[znum
] = zholes_size
[znum
] = 0;
964 npages
= max_low_pfn
- pfn_base
;
966 zones_size
[ZONE_DMA
] = npages
;
967 zholes_size
[ZONE_DMA
] = npages
- pages_avail
;
969 npages
= highend_pfn
- max_low_pfn
;
970 zones_size
[ZONE_HIGHMEM
] = npages
;
971 zholes_size
[ZONE_HIGHMEM
] = npages
- calc_highpages();
973 free_area_init_node(0, zones_size
, pfn_base
, zholes_size
);
977 void mmu_info(struct seq_file
*m
)
982 "nocache total\t: %ld\n"
983 "nocache used\t: %d\n",
987 srmmu_nocache_map
.used
<< SRMMU_NOCACHE_BITMAP_SHIFT
);
990 int init_new_context(struct task_struct
*tsk
, struct mm_struct
*mm
)
992 mm
->context
= NO_CONTEXT
;
996 void destroy_context(struct mm_struct
*mm
)
1000 if (mm
->context
!= NO_CONTEXT
) {
1002 srmmu_ctxd_set(&srmmu_context_table
[mm
->context
], srmmu_swapper_pg_dir
);
1004 spin_lock_irqsave(&srmmu_context_spinlock
, flags
);
1005 free_context(mm
->context
);
1006 spin_unlock_irqrestore(&srmmu_context_spinlock
, flags
);
1007 mm
->context
= NO_CONTEXT
;
1011 /* Init various srmmu chip types. */
1012 static void __init
srmmu_is_bad(void)
1014 prom_printf("Could not determine SRMMU chip type.\n");
1018 static void __init
init_vac_layout(void)
1025 unsigned long max_size
= 0;
1026 unsigned long min_line_size
= 0x10000000;
1029 nd
= prom_getchild(prom_root_node
);
1030 while ((nd
= prom_getsibling(nd
)) != 0) {
1031 prom_getstring(nd
, "device_type", node_str
, sizeof(node_str
));
1032 if (!strcmp(node_str
, "cpu")) {
1033 vac_line_size
= prom_getint(nd
, "cache-line-size");
1034 if (vac_line_size
== -1) {
1035 prom_printf("can't determine cache-line-size, halting.\n");
1038 cache_lines
= prom_getint(nd
, "cache-nlines");
1039 if (cache_lines
== -1) {
1040 prom_printf("can't determine cache-nlines, halting.\n");
1044 vac_cache_size
= cache_lines
* vac_line_size
;
1046 if (vac_cache_size
> max_size
)
1047 max_size
= vac_cache_size
;
1048 if (vac_line_size
< min_line_size
)
1049 min_line_size
= vac_line_size
;
1050 //FIXME: cpus not contiguous!!
1052 if (cpu
>= nr_cpu_ids
|| !cpu_online(cpu
))
1060 prom_printf("No CPU nodes found, halting.\n");
1064 vac_cache_size
= max_size
;
1065 vac_line_size
= min_line_size
;
1067 printk("SRMMU: Using VAC size of %d bytes, line size %d bytes.\n",
1068 (int)vac_cache_size
, (int)vac_line_size
);
1071 static void poke_hypersparc(void)
1073 volatile unsigned long clear
;
1074 unsigned long mreg
= srmmu_get_mmureg();
1076 hyper_flush_unconditional_combined();
1078 mreg
&= ~(HYPERSPARC_CWENABLE
);
1079 mreg
|= (HYPERSPARC_CENABLE
| HYPERSPARC_WBENABLE
);
1080 mreg
|= (HYPERSPARC_CMODE
);
1082 srmmu_set_mmureg(mreg
);
1084 #if 0 /* XXX I think this is bad news... -DaveM */
1085 hyper_clear_all_tags();
1088 put_ross_icr(HYPERSPARC_ICCR_FTD
| HYPERSPARC_ICCR_ICE
);
1089 hyper_flush_whole_icache();
1090 clear
= srmmu_get_faddr();
1091 clear
= srmmu_get_fstatus();
1094 static const struct sparc32_cachetlb_ops hypersparc_ops
= {
1095 .cache_all
= hypersparc_flush_cache_all
,
1096 .cache_mm
= hypersparc_flush_cache_mm
,
1097 .cache_page
= hypersparc_flush_cache_page
,
1098 .cache_range
= hypersparc_flush_cache_range
,
1099 .tlb_all
= hypersparc_flush_tlb_all
,
1100 .tlb_mm
= hypersparc_flush_tlb_mm
,
1101 .tlb_page
= hypersparc_flush_tlb_page
,
1102 .tlb_range
= hypersparc_flush_tlb_range
,
1103 .page_to_ram
= hypersparc_flush_page_to_ram
,
1104 .sig_insns
= hypersparc_flush_sig_insns
,
1105 .page_for_dma
= hypersparc_flush_page_for_dma
,
1108 static void __init
init_hypersparc(void)
1110 srmmu_name
= "ROSS HyperSparc";
1111 srmmu_modtype
= HyperSparc
;
1116 sparc32_cachetlb_ops
= &hypersparc_ops
;
1118 poke_srmmu
= poke_hypersparc
;
1120 hypersparc_setup_blockops();
1123 static void poke_swift(void)
1127 /* Clear any crap from the cache or else... */
1128 swift_flush_cache_all();
1130 /* Enable I & D caches */
1131 mreg
= srmmu_get_mmureg();
1132 mreg
|= (SWIFT_IE
| SWIFT_DE
);
1134 * The Swift branch folding logic is completely broken. At
1135 * trap time, if things are just right, if can mistakenly
1136 * think that a trap is coming from kernel mode when in fact
1137 * it is coming from user mode (it mis-executes the branch in
1138 * the trap code). So you see things like crashme completely
1139 * hosing your machine which is completely unacceptable. Turn
1140 * this shit off... nice job Fujitsu.
1142 mreg
&= ~(SWIFT_BF
);
1143 srmmu_set_mmureg(mreg
);
1146 static const struct sparc32_cachetlb_ops swift_ops
= {
1147 .cache_all
= swift_flush_cache_all
,
1148 .cache_mm
= swift_flush_cache_mm
,
1149 .cache_page
= swift_flush_cache_page
,
1150 .cache_range
= swift_flush_cache_range
,
1151 .tlb_all
= swift_flush_tlb_all
,
1152 .tlb_mm
= swift_flush_tlb_mm
,
1153 .tlb_page
= swift_flush_tlb_page
,
1154 .tlb_range
= swift_flush_tlb_range
,
1155 .page_to_ram
= swift_flush_page_to_ram
,
1156 .sig_insns
= swift_flush_sig_insns
,
1157 .page_for_dma
= swift_flush_page_for_dma
,
1160 #define SWIFT_MASKID_ADDR 0x10003018
1161 static void __init
init_swift(void)
1163 unsigned long swift_rev
;
1165 __asm__
__volatile__("lda [%1] %2, %0\n\t"
1166 "srl %0, 0x18, %0\n\t" :
1168 "r" (SWIFT_MASKID_ADDR
), "i" (ASI_M_BYPASS
));
1169 srmmu_name
= "Fujitsu Swift";
1170 switch (swift_rev
) {
1175 srmmu_modtype
= Swift_lots_o_bugs
;
1176 hwbug_bitmask
|= (HWBUG_KERN_ACCBROKEN
| HWBUG_KERN_CBITBROKEN
);
1178 * Gee george, I wonder why Sun is so hush hush about
1179 * this hardware bug... really braindamage stuff going
1180 * on here. However I think we can find a way to avoid
1181 * all of the workaround overhead under Linux. Basically,
1182 * any page fault can cause kernel pages to become user
1183 * accessible (the mmu gets confused and clears some of
1184 * the ACC bits in kernel ptes). Aha, sounds pretty
1185 * horrible eh? But wait, after extensive testing it appears
1186 * that if you use pgd_t level large kernel pte's (like the
1187 * 4MB pages on the Pentium) the bug does not get tripped
1188 * at all. This avoids almost all of the major overhead.
1189 * Welcome to a world where your vendor tells you to,
1190 * "apply this kernel patch" instead of "sorry for the
1191 * broken hardware, send it back and we'll give you
1192 * properly functioning parts"
1197 srmmu_modtype
= Swift_bad_c
;
1198 hwbug_bitmask
|= HWBUG_KERN_CBITBROKEN
;
1200 * You see Sun allude to this hardware bug but never
1201 * admit things directly, they'll say things like,
1202 * "the Swift chip cache problems" or similar.
1206 srmmu_modtype
= Swift_ok
;
1210 sparc32_cachetlb_ops
= &swift_ops
;
1211 flush_page_for_dma_global
= 0;
1214 * Are you now convinced that the Swift is one of the
1215 * biggest VLSI abortions of all time? Bravo Fujitsu!
1216 * Fujitsu, the !#?!%$'d up processor people. I bet if
1217 * you examined the microcode of the Swift you'd find
1218 * XXX's all over the place.
1220 poke_srmmu
= poke_swift
;
1223 static void turbosparc_flush_cache_all(void)
1225 flush_user_windows();
1226 turbosparc_idflash_clear();
1229 static void turbosparc_flush_cache_mm(struct mm_struct
*mm
)
1232 flush_user_windows();
1233 turbosparc_idflash_clear();
1237 static void turbosparc_flush_cache_range(struct vm_area_struct
*vma
, unsigned long start
, unsigned long end
)
1239 FLUSH_BEGIN(vma
->vm_mm
)
1240 flush_user_windows();
1241 turbosparc_idflash_clear();
1245 static void turbosparc_flush_cache_page(struct vm_area_struct
*vma
, unsigned long page
)
1247 FLUSH_BEGIN(vma
->vm_mm
)
1248 flush_user_windows();
1249 if (vma
->vm_flags
& VM_EXEC
)
1250 turbosparc_flush_icache();
1251 turbosparc_flush_dcache();
1255 /* TurboSparc is copy-back, if we turn it on, but this does not work. */
1256 static void turbosparc_flush_page_to_ram(unsigned long page
)
1258 #ifdef TURBOSPARC_WRITEBACK
1259 volatile unsigned long clear
;
1261 if (srmmu_probe(page
))
1262 turbosparc_flush_page_cache(page
);
1263 clear
= srmmu_get_fstatus();
1267 static void turbosparc_flush_sig_insns(struct mm_struct
*mm
, unsigned long insn_addr
)
1271 static void turbosparc_flush_page_for_dma(unsigned long page
)
1273 turbosparc_flush_dcache();
1276 static void turbosparc_flush_tlb_all(void)
1278 srmmu_flush_whole_tlb();
1281 static void turbosparc_flush_tlb_mm(struct mm_struct
*mm
)
1284 srmmu_flush_whole_tlb();
1288 static void turbosparc_flush_tlb_range(struct vm_area_struct
*vma
, unsigned long start
, unsigned long end
)
1290 FLUSH_BEGIN(vma
->vm_mm
)
1291 srmmu_flush_whole_tlb();
1295 static void turbosparc_flush_tlb_page(struct vm_area_struct
*vma
, unsigned long page
)
1297 FLUSH_BEGIN(vma
->vm_mm
)
1298 srmmu_flush_whole_tlb();
1303 static void poke_turbosparc(void)
1305 unsigned long mreg
= srmmu_get_mmureg();
1306 unsigned long ccreg
;
1308 /* Clear any crap from the cache or else... */
1309 turbosparc_flush_cache_all();
1310 /* Temporarily disable I & D caches */
1311 mreg
&= ~(TURBOSPARC_ICENABLE
| TURBOSPARC_DCENABLE
);
1312 mreg
&= ~(TURBOSPARC_PCENABLE
); /* Don't check parity */
1313 srmmu_set_mmureg(mreg
);
1315 ccreg
= turbosparc_get_ccreg();
1317 #ifdef TURBOSPARC_WRITEBACK
1318 ccreg
|= (TURBOSPARC_SNENABLE
); /* Do DVMA snooping in Dcache */
1319 ccreg
&= ~(TURBOSPARC_uS2
| TURBOSPARC_WTENABLE
);
1320 /* Write-back D-cache, emulate VLSI
1321 * abortion number three, not number one */
1323 /* For now let's play safe, optimize later */
1324 ccreg
|= (TURBOSPARC_SNENABLE
| TURBOSPARC_WTENABLE
);
1325 /* Do DVMA snooping in Dcache, Write-thru D-cache */
1326 ccreg
&= ~(TURBOSPARC_uS2
);
1327 /* Emulate VLSI abortion number three, not number one */
1330 switch (ccreg
& 7) {
1331 case 0: /* No SE cache */
1332 case 7: /* Test mode */
1335 ccreg
|= (TURBOSPARC_SCENABLE
);
1337 turbosparc_set_ccreg(ccreg
);
1339 mreg
|= (TURBOSPARC_ICENABLE
| TURBOSPARC_DCENABLE
); /* I & D caches on */
1340 mreg
|= (TURBOSPARC_ICSNOOP
); /* Icache snooping on */
1341 srmmu_set_mmureg(mreg
);
1344 static const struct sparc32_cachetlb_ops turbosparc_ops
= {
1345 .cache_all
= turbosparc_flush_cache_all
,
1346 .cache_mm
= turbosparc_flush_cache_mm
,
1347 .cache_page
= turbosparc_flush_cache_page
,
1348 .cache_range
= turbosparc_flush_cache_range
,
1349 .tlb_all
= turbosparc_flush_tlb_all
,
1350 .tlb_mm
= turbosparc_flush_tlb_mm
,
1351 .tlb_page
= turbosparc_flush_tlb_page
,
1352 .tlb_range
= turbosparc_flush_tlb_range
,
1353 .page_to_ram
= turbosparc_flush_page_to_ram
,
1354 .sig_insns
= turbosparc_flush_sig_insns
,
1355 .page_for_dma
= turbosparc_flush_page_for_dma
,
1358 static void __init
init_turbosparc(void)
1360 srmmu_name
= "Fujitsu TurboSparc";
1361 srmmu_modtype
= TurboSparc
;
1362 sparc32_cachetlb_ops
= &turbosparc_ops
;
1363 poke_srmmu
= poke_turbosparc
;
1366 static void poke_tsunami(void)
1368 unsigned long mreg
= srmmu_get_mmureg();
1370 tsunami_flush_icache();
1371 tsunami_flush_dcache();
1372 mreg
&= ~TSUNAMI_ITD
;
1373 mreg
|= (TSUNAMI_IENAB
| TSUNAMI_DENAB
);
1374 srmmu_set_mmureg(mreg
);
1377 static const struct sparc32_cachetlb_ops tsunami_ops
= {
1378 .cache_all
= tsunami_flush_cache_all
,
1379 .cache_mm
= tsunami_flush_cache_mm
,
1380 .cache_page
= tsunami_flush_cache_page
,
1381 .cache_range
= tsunami_flush_cache_range
,
1382 .tlb_all
= tsunami_flush_tlb_all
,
1383 .tlb_mm
= tsunami_flush_tlb_mm
,
1384 .tlb_page
= tsunami_flush_tlb_page
,
1385 .tlb_range
= tsunami_flush_tlb_range
,
1386 .page_to_ram
= tsunami_flush_page_to_ram
,
1387 .sig_insns
= tsunami_flush_sig_insns
,
1388 .page_for_dma
= tsunami_flush_page_for_dma
,
1391 static void __init
init_tsunami(void)
1394 * Tsunami's pretty sane, Sun and TI actually got it
1395 * somewhat right this time. Fujitsu should have
1396 * taken some lessons from them.
1399 srmmu_name
= "TI Tsunami";
1400 srmmu_modtype
= Tsunami
;
1401 sparc32_cachetlb_ops
= &tsunami_ops
;
1402 poke_srmmu
= poke_tsunami
;
1404 tsunami_setup_blockops();
1407 static void poke_viking(void)
1409 unsigned long mreg
= srmmu_get_mmureg();
1410 static int smp_catch
;
1412 if (viking_mxcc_present
) {
1413 unsigned long mxcc_control
= mxcc_get_creg();
1415 mxcc_control
|= (MXCC_CTL_ECE
| MXCC_CTL_PRE
| MXCC_CTL_MCE
);
1416 mxcc_control
&= ~(MXCC_CTL_RRC
);
1417 mxcc_set_creg(mxcc_control
);
1420 * We don't need memory parity checks.
1421 * XXX This is a mess, have to dig out later. ecd.
1422 viking_mxcc_turn_off_parity(&mreg, &mxcc_control);
1425 /* We do cache ptables on MXCC. */
1426 mreg
|= VIKING_TCENABLE
;
1428 unsigned long bpreg
;
1430 mreg
&= ~(VIKING_TCENABLE
);
1432 /* Must disable mixed-cmd mode here for other cpu's. */
1433 bpreg
= viking_get_bpreg();
1434 bpreg
&= ~(VIKING_ACTION_MIX
);
1435 viking_set_bpreg(bpreg
);
1437 /* Just in case PROM does something funny. */
1442 mreg
|= VIKING_SPENABLE
;
1443 mreg
|= (VIKING_ICENABLE
| VIKING_DCENABLE
);
1444 mreg
|= VIKING_SBENABLE
;
1445 mreg
&= ~(VIKING_ACENABLE
);
1446 srmmu_set_mmureg(mreg
);
1449 static struct sparc32_cachetlb_ops viking_ops __ro_after_init
= {
1450 .cache_all
= viking_flush_cache_all
,
1451 .cache_mm
= viking_flush_cache_mm
,
1452 .cache_page
= viking_flush_cache_page
,
1453 .cache_range
= viking_flush_cache_range
,
1454 .tlb_all
= viking_flush_tlb_all
,
1455 .tlb_mm
= viking_flush_tlb_mm
,
1456 .tlb_page
= viking_flush_tlb_page
,
1457 .tlb_range
= viking_flush_tlb_range
,
1458 .page_to_ram
= viking_flush_page_to_ram
,
1459 .sig_insns
= viking_flush_sig_insns
,
1460 .page_for_dma
= viking_flush_page_for_dma
,
1464 /* On sun4d the cpu broadcasts local TLB flushes, so we can just
1465 * perform the local TLB flush and all the other cpus will see it.
1466 * But, unfortunately, there is a bug in the sun4d XBUS backplane
1467 * that requires that we add some synchronization to these flushes.
1469 * The bug is that the fifo which keeps track of all the pending TLB
1470 * broadcasts in the system is an entry or two too small, so if we
1471 * have too many going at once we'll overflow that fifo and lose a TLB
1472 * flush resulting in corruption.
1474 * Our workaround is to take a global spinlock around the TLB flushes,
1475 * which guarentees we won't ever have too many pending. It's a big
1476 * hammer, but a semaphore like system to make sure we only have N TLB
1477 * flushes going at once will require SMP locking anyways so there's
1478 * no real value in trying any harder than this.
1480 static struct sparc32_cachetlb_ops viking_sun4d_smp_ops __ro_after_init
= {
1481 .cache_all
= viking_flush_cache_all
,
1482 .cache_mm
= viking_flush_cache_mm
,
1483 .cache_page
= viking_flush_cache_page
,
1484 .cache_range
= viking_flush_cache_range
,
1485 .tlb_all
= sun4dsmp_flush_tlb_all
,
1486 .tlb_mm
= sun4dsmp_flush_tlb_mm
,
1487 .tlb_page
= sun4dsmp_flush_tlb_page
,
1488 .tlb_range
= sun4dsmp_flush_tlb_range
,
1489 .page_to_ram
= viking_flush_page_to_ram
,
1490 .sig_insns
= viking_flush_sig_insns
,
1491 .page_for_dma
= viking_flush_page_for_dma
,
1495 static void __init
init_viking(void)
1497 unsigned long mreg
= srmmu_get_mmureg();
1499 /* Ahhh, the viking. SRMMU VLSI abortion number two... */
1500 if (mreg
& VIKING_MMODE
) {
1501 srmmu_name
= "TI Viking";
1502 viking_mxcc_present
= 0;
1506 * We need this to make sure old viking takes no hits
1507 * on it's cache for dma snoops to workaround the
1508 * "load from non-cacheable memory" interrupt bug.
1509 * This is only necessary because of the new way in
1510 * which we use the IOMMU.
1512 viking_ops
.page_for_dma
= viking_flush_page
;
1514 viking_sun4d_smp_ops
.page_for_dma
= viking_flush_page
;
1516 flush_page_for_dma_global
= 0;
1518 srmmu_name
= "TI Viking/MXCC";
1519 viking_mxcc_present
= 1;
1520 srmmu_cache_pagetables
= 1;
1523 sparc32_cachetlb_ops
= (const struct sparc32_cachetlb_ops
*)
1526 if (sparc_cpu_model
== sun4d
)
1527 sparc32_cachetlb_ops
= (const struct sparc32_cachetlb_ops
*)
1528 &viking_sun4d_smp_ops
;
1531 poke_srmmu
= poke_viking
;
1534 /* Probe for the srmmu chip version. */
1535 static void __init
get_srmmu_type(void)
1537 unsigned long mreg
, psr
;
1538 unsigned long mod_typ
, mod_rev
, psr_typ
, psr_vers
;
1540 srmmu_modtype
= SRMMU_INVAL_MOD
;
1543 mreg
= srmmu_get_mmureg(); psr
= get_psr();
1544 mod_typ
= (mreg
& 0xf0000000) >> 28;
1545 mod_rev
= (mreg
& 0x0f000000) >> 24;
1546 psr_typ
= (psr
>> 28) & 0xf;
1547 psr_vers
= (psr
>> 24) & 0xf;
1549 /* First, check for sparc-leon. */
1550 if (sparc_cpu_model
== sparc_leon
) {
1555 /* Second, check for HyperSparc or Cypress. */
1559 /* UP or MP Hypersparc */
1571 prom_printf("Sparc-Linux Cypress support does not longer exit.\n");
1578 /* Now Fujitsu TurboSparc. It might happen that it is
1579 * in Swift emulation mode, so we will check later...
1581 if (psr_typ
== 0 && psr_vers
== 5) {
1586 /* Next check for Fujitsu Swift. */
1587 if (psr_typ
== 0 && psr_vers
== 4) {
1591 /* Look if it is not a TurboSparc emulating Swift... */
1592 cpunode
= prom_getchild(prom_root_node
);
1593 while ((cpunode
= prom_getsibling(cpunode
)) != 0) {
1594 prom_getstring(cpunode
, "device_type", node_str
, sizeof(node_str
));
1595 if (!strcmp(node_str
, "cpu")) {
1596 if (!prom_getintdefault(cpunode
, "psr-implementation", 1) &&
1597 prom_getintdefault(cpunode
, "psr-version", 1) == 5) {
1609 /* Now the Viking family of srmmu. */
1612 ((psr_vers
== 1) && (mod_typ
== 0) && (mod_rev
== 0)))) {
1617 /* Finally the Tsunami. */
1618 if (psr_typ
== 4 && psr_vers
== 1 && (mod_typ
|| mod_rev
)) {
1628 /* Local cross-calls. */
1629 static void smp_flush_page_for_dma(unsigned long page
)
1631 xc1((smpfunc_t
) local_ops
->page_for_dma
, page
);
1632 local_ops
->page_for_dma(page
);
1635 static void smp_flush_cache_all(void)
1637 xc0((smpfunc_t
) local_ops
->cache_all
);
1638 local_ops
->cache_all();
1641 static void smp_flush_tlb_all(void)
1643 xc0((smpfunc_t
) local_ops
->tlb_all
);
1644 local_ops
->tlb_all();
1647 static void smp_flush_cache_mm(struct mm_struct
*mm
)
1649 if (mm
->context
!= NO_CONTEXT
) {
1651 cpumask_copy(&cpu_mask
, mm_cpumask(mm
));
1652 cpumask_clear_cpu(smp_processor_id(), &cpu_mask
);
1653 if (!cpumask_empty(&cpu_mask
))
1654 xc1((smpfunc_t
) local_ops
->cache_mm
, (unsigned long) mm
);
1655 local_ops
->cache_mm(mm
);
1659 static void smp_flush_tlb_mm(struct mm_struct
*mm
)
1661 if (mm
->context
!= NO_CONTEXT
) {
1663 cpumask_copy(&cpu_mask
, mm_cpumask(mm
));
1664 cpumask_clear_cpu(smp_processor_id(), &cpu_mask
);
1665 if (!cpumask_empty(&cpu_mask
)) {
1666 xc1((smpfunc_t
) local_ops
->tlb_mm
, (unsigned long) mm
);
1667 if (atomic_read(&mm
->mm_users
) == 1 && current
->active_mm
== mm
)
1668 cpumask_copy(mm_cpumask(mm
),
1669 cpumask_of(smp_processor_id()));
1671 local_ops
->tlb_mm(mm
);
1675 static void smp_flush_cache_range(struct vm_area_struct
*vma
,
1676 unsigned long start
,
1679 struct mm_struct
*mm
= vma
->vm_mm
;
1681 if (mm
->context
!= NO_CONTEXT
) {
1683 cpumask_copy(&cpu_mask
, mm_cpumask(mm
));
1684 cpumask_clear_cpu(smp_processor_id(), &cpu_mask
);
1685 if (!cpumask_empty(&cpu_mask
))
1686 xc3((smpfunc_t
) local_ops
->cache_range
,
1687 (unsigned long) vma
, start
, end
);
1688 local_ops
->cache_range(vma
, start
, end
);
1692 static void smp_flush_tlb_range(struct vm_area_struct
*vma
,
1693 unsigned long start
,
1696 struct mm_struct
*mm
= vma
->vm_mm
;
1698 if (mm
->context
!= NO_CONTEXT
) {
1700 cpumask_copy(&cpu_mask
, mm_cpumask(mm
));
1701 cpumask_clear_cpu(smp_processor_id(), &cpu_mask
);
1702 if (!cpumask_empty(&cpu_mask
))
1703 xc3((smpfunc_t
) local_ops
->tlb_range
,
1704 (unsigned long) vma
, start
, end
);
1705 local_ops
->tlb_range(vma
, start
, end
);
1709 static void smp_flush_cache_page(struct vm_area_struct
*vma
, unsigned long page
)
1711 struct mm_struct
*mm
= vma
->vm_mm
;
1713 if (mm
->context
!= NO_CONTEXT
) {
1715 cpumask_copy(&cpu_mask
, mm_cpumask(mm
));
1716 cpumask_clear_cpu(smp_processor_id(), &cpu_mask
);
1717 if (!cpumask_empty(&cpu_mask
))
1718 xc2((smpfunc_t
) local_ops
->cache_page
,
1719 (unsigned long) vma
, page
);
1720 local_ops
->cache_page(vma
, page
);
1724 static void smp_flush_tlb_page(struct vm_area_struct
*vma
, unsigned long page
)
1726 struct mm_struct
*mm
= vma
->vm_mm
;
1728 if (mm
->context
!= NO_CONTEXT
) {
1730 cpumask_copy(&cpu_mask
, mm_cpumask(mm
));
1731 cpumask_clear_cpu(smp_processor_id(), &cpu_mask
);
1732 if (!cpumask_empty(&cpu_mask
))
1733 xc2((smpfunc_t
) local_ops
->tlb_page
,
1734 (unsigned long) vma
, page
);
1735 local_ops
->tlb_page(vma
, page
);
1739 static void smp_flush_page_to_ram(unsigned long page
)
1741 /* Current theory is that those who call this are the one's
1742 * who have just dirtied their cache with the pages contents
1743 * in kernel space, therefore we only run this on local cpu.
1745 * XXX This experiment failed, research further... -DaveM
1748 xc1((smpfunc_t
) local_ops
->page_to_ram
, page
);
1750 local_ops
->page_to_ram(page
);
1753 static void smp_flush_sig_insns(struct mm_struct
*mm
, unsigned long insn_addr
)
1756 cpumask_copy(&cpu_mask
, mm_cpumask(mm
));
1757 cpumask_clear_cpu(smp_processor_id(), &cpu_mask
);
1758 if (!cpumask_empty(&cpu_mask
))
1759 xc2((smpfunc_t
) local_ops
->sig_insns
,
1760 (unsigned long) mm
, insn_addr
);
1761 local_ops
->sig_insns(mm
, insn_addr
);
1764 static struct sparc32_cachetlb_ops smp_cachetlb_ops __ro_after_init
= {
1765 .cache_all
= smp_flush_cache_all
,
1766 .cache_mm
= smp_flush_cache_mm
,
1767 .cache_page
= smp_flush_cache_page
,
1768 .cache_range
= smp_flush_cache_range
,
1769 .tlb_all
= smp_flush_tlb_all
,
1770 .tlb_mm
= smp_flush_tlb_mm
,
1771 .tlb_page
= smp_flush_tlb_page
,
1772 .tlb_range
= smp_flush_tlb_range
,
1773 .page_to_ram
= smp_flush_page_to_ram
,
1774 .sig_insns
= smp_flush_sig_insns
,
1775 .page_for_dma
= smp_flush_page_for_dma
,
1779 /* Load up routines and constants for sun4m and sun4d mmu */
1780 void __init
load_mmu(void)
1786 /* El switcheroo... */
1787 local_ops
= sparc32_cachetlb_ops
;
1789 if (sparc_cpu_model
== sun4d
|| sparc_cpu_model
== sparc_leon
) {
1790 smp_cachetlb_ops
.tlb_all
= local_ops
->tlb_all
;
1791 smp_cachetlb_ops
.tlb_mm
= local_ops
->tlb_mm
;
1792 smp_cachetlb_ops
.tlb_range
= local_ops
->tlb_range
;
1793 smp_cachetlb_ops
.tlb_page
= local_ops
->tlb_page
;
1796 if (poke_srmmu
== poke_viking
) {
1797 /* Avoid unnecessary cross calls. */
1798 smp_cachetlb_ops
.cache_all
= local_ops
->cache_all
;
1799 smp_cachetlb_ops
.cache_mm
= local_ops
->cache_mm
;
1800 smp_cachetlb_ops
.cache_range
= local_ops
->cache_range
;
1801 smp_cachetlb_ops
.cache_page
= local_ops
->cache_page
;
1803 smp_cachetlb_ops
.page_to_ram
= local_ops
->page_to_ram
;
1804 smp_cachetlb_ops
.sig_insns
= local_ops
->sig_insns
;
1805 smp_cachetlb_ops
.page_for_dma
= local_ops
->page_for_dma
;
1808 /* It really is const after this point. */
1809 sparc32_cachetlb_ops
= (const struct sparc32_cachetlb_ops
*)
1813 if (sparc_cpu_model
== sun4d
)
1818 if (sparc_cpu_model
== sun4d
)
1820 else if (sparc_cpu_model
== sparc_leon
)