2 * Multi buffer SHA256 algorithm Glue Code
4 * This file is provided under a dual BSD/GPLv2 license. When using or
5 * redistributing this file, you may do so under either license.
9 * Copyright(c) 2016 Intel Corporation.
11 * This program is free software; you can redistribute it and/or modify
12 * it under the terms of version 2 of the GNU General Public License as
13 * published by the Free Software Foundation.
15 * This program is distributed in the hope that it will be useful, but
16 * WITHOUT ANY WARRANTY; without even the implied warranty of
17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
18 * General Public License for more details.
20 * Contact Information:
21 * Megha Dey <megha.dey@linux.intel.com>
25 * Copyright(c) 2016 Intel Corporation.
27 * Redistribution and use in source and binary forms, with or without
28 * modification, are permitted provided that the following conditions
31 * * Redistributions of source code must retain the above copyright
32 * notice, this list of conditions and the following disclaimer.
33 * * Redistributions in binary form must reproduce the above copyright
34 * notice, this list of conditions and the following disclaimer in
35 * the documentation and/or other materials provided with the
37 * * Neither the name of Intel Corporation nor the names of its
38 * contributors may be used to endorse or promote products derived
39 * from this software without specific prior written permission.
41 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
42 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
43 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
44 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
45 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
46 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
47 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
48 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
49 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
50 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
51 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
54 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
56 #include <crypto/internal/hash.h>
57 #include <linux/init.h>
58 #include <linux/module.h>
60 #include <linux/cryptohash.h>
61 #include <linux/types.h>
62 #include <linux/list.h>
63 #include <crypto/scatterwalk.h>
64 #include <crypto/sha.h>
65 #include <crypto/mcryptd.h>
66 #include <crypto/crypto_wq.h>
67 #include <asm/byteorder.h>
68 #include <linux/hardirq.h>
69 #include <asm/fpu/api.h>
70 #include "sha256_mb_ctx.h"
72 #define FLUSH_INTERVAL 1000 /* in usec */
74 static struct mcryptd_alg_state sha256_mb_alg_state
;
76 struct sha256_mb_ctx
{
77 struct mcryptd_ahash
*mcryptd_tfm
;
80 static inline struct mcryptd_hash_request_ctx
81 *cast_hash_to_mcryptd_ctx(struct sha256_hash_ctx
*hash_ctx
)
83 struct ahash_request
*areq
;
85 areq
= container_of((void *) hash_ctx
, struct ahash_request
, __ctx
);
86 return container_of(areq
, struct mcryptd_hash_request_ctx
, areq
);
89 static inline struct ahash_request
90 *cast_mcryptd_ctx_to_req(struct mcryptd_hash_request_ctx
*ctx
)
92 return container_of((void *) ctx
, struct ahash_request
, __ctx
);
95 static void req_ctx_init(struct mcryptd_hash_request_ctx
*rctx
,
96 struct ahash_request
*areq
)
98 rctx
->flag
= HASH_UPDATE
;
101 static asmlinkage
void (*sha256_job_mgr_init
)(struct sha256_mb_mgr
*state
);
102 static asmlinkage
struct job_sha256
* (*sha256_job_mgr_submit
)
103 (struct sha256_mb_mgr
*state
, struct job_sha256
*job
);
104 static asmlinkage
struct job_sha256
* (*sha256_job_mgr_flush
)
105 (struct sha256_mb_mgr
*state
);
106 static asmlinkage
struct job_sha256
* (*sha256_job_mgr_get_comp_job
)
107 (struct sha256_mb_mgr
*state
);
109 inline void sha256_init_digest(uint32_t *digest
)
111 static const uint32_t initial_digest
[SHA256_DIGEST_LENGTH
] = {
112 SHA256_H0
, SHA256_H1
, SHA256_H2
, SHA256_H3
,
113 SHA256_H4
, SHA256_H5
, SHA256_H6
, SHA256_H7
};
114 memcpy(digest
, initial_digest
, sizeof(initial_digest
));
117 inline uint32_t sha256_pad(uint8_t padblock
[SHA256_BLOCK_SIZE
* 2],
120 uint32_t i
= total_len
& (SHA256_BLOCK_SIZE
- 1);
122 memset(&padblock
[i
], 0, SHA256_BLOCK_SIZE
);
125 i
+= ((SHA256_BLOCK_SIZE
- 1) &
126 (0 - (total_len
+ SHA256_PADLENGTHFIELD_SIZE
+ 1)))
127 + 1 + SHA256_PADLENGTHFIELD_SIZE
;
129 #if SHA256_PADLENGTHFIELD_SIZE == 16
130 *((uint64_t *) &padblock
[i
- 16]) = 0;
133 *((uint64_t *) &padblock
[i
- 8]) = cpu_to_be64(total_len
<< 3);
135 /* Number of extra blocks to hash */
136 return i
>> SHA256_LOG2_BLOCK_SIZE
;
139 static struct sha256_hash_ctx
140 *sha256_ctx_mgr_resubmit(struct sha256_ctx_mgr
*mgr
,
141 struct sha256_hash_ctx
*ctx
)
144 if (ctx
->status
& HASH_CTX_STS_COMPLETE
) {
145 /* Clear PROCESSING bit */
146 ctx
->status
= HASH_CTX_STS_COMPLETE
;
151 * If the extra blocks are empty, begin hashing what remains
152 * in the user's buffer.
154 if (ctx
->partial_block_buffer_length
== 0 &&
155 ctx
->incoming_buffer_length
) {
157 const void *buffer
= ctx
->incoming_buffer
;
158 uint32_t len
= ctx
->incoming_buffer_length
;
162 * Only entire blocks can be hashed.
163 * Copy remainder to extra blocks buffer.
165 copy_len
= len
& (SHA256_BLOCK_SIZE
-1);
169 memcpy(ctx
->partial_block_buffer
,
170 ((const char *) buffer
+ len
),
172 ctx
->partial_block_buffer_length
= copy_len
;
175 ctx
->incoming_buffer_length
= 0;
177 /* len should be a multiple of the block size now */
178 assert((len
% SHA256_BLOCK_SIZE
) == 0);
180 /* Set len to the number of blocks to be hashed */
181 len
>>= SHA256_LOG2_BLOCK_SIZE
;
185 ctx
->job
.buffer
= (uint8_t *) buffer
;
187 ctx
= (struct sha256_hash_ctx
*)
188 sha256_job_mgr_submit(&mgr
->mgr
, &ctx
->job
);
194 * If the extra blocks are not empty, then we are
195 * either on the last block(s) or we need more
196 * user input before continuing.
198 if (ctx
->status
& HASH_CTX_STS_LAST
) {
200 uint8_t *buf
= ctx
->partial_block_buffer
;
201 uint32_t n_extra_blocks
=
202 sha256_pad(buf
, ctx
->total_length
);
204 ctx
->status
= (HASH_CTX_STS_PROCESSING
|
205 HASH_CTX_STS_COMPLETE
);
206 ctx
->job
.buffer
= buf
;
207 ctx
->job
.len
= (uint32_t) n_extra_blocks
;
208 ctx
= (struct sha256_hash_ctx
*)
209 sha256_job_mgr_submit(&mgr
->mgr
, &ctx
->job
);
213 ctx
->status
= HASH_CTX_STS_IDLE
;
220 static struct sha256_hash_ctx
221 *sha256_ctx_mgr_get_comp_ctx(struct sha256_ctx_mgr
*mgr
)
224 * If get_comp_job returns NULL, there are no jobs complete.
225 * If get_comp_job returns a job, verify that it is safe to return to
226 * the user. If it is not ready, resubmit the job to finish processing.
227 * If sha256_ctx_mgr_resubmit returned a job, it is ready to be
228 * returned. Otherwise, all jobs currently being managed by the
229 * hash_ctx_mgr still need processing.
231 struct sha256_hash_ctx
*ctx
;
233 ctx
= (struct sha256_hash_ctx
*) sha256_job_mgr_get_comp_job(&mgr
->mgr
);
234 return sha256_ctx_mgr_resubmit(mgr
, ctx
);
237 static void sha256_ctx_mgr_init(struct sha256_ctx_mgr
*mgr
)
239 sha256_job_mgr_init(&mgr
->mgr
);
242 static struct sha256_hash_ctx
*sha256_ctx_mgr_submit(struct sha256_ctx_mgr
*mgr
,
243 struct sha256_hash_ctx
*ctx
,
248 if (flags
& (~HASH_ENTIRE
)) {
249 /* User should not pass anything other than FIRST, UPDATE
252 ctx
->error
= HASH_CTX_ERROR_INVALID_FLAGS
;
256 if (ctx
->status
& HASH_CTX_STS_PROCESSING
) {
257 /* Cannot submit to a currently processing job. */
258 ctx
->error
= HASH_CTX_ERROR_ALREADY_PROCESSING
;
262 if ((ctx
->status
& HASH_CTX_STS_COMPLETE
) && !(flags
& HASH_FIRST
)) {
263 /* Cannot update a finished job. */
264 ctx
->error
= HASH_CTX_ERROR_ALREADY_COMPLETED
;
268 if (flags
& HASH_FIRST
) {
270 sha256_init_digest(ctx
->job
.result_digest
);
272 /* Reset byte counter */
273 ctx
->total_length
= 0;
275 /* Clear extra blocks */
276 ctx
->partial_block_buffer_length
= 0;
279 /* If we made it here, there was no error during this call to submit */
280 ctx
->error
= HASH_CTX_ERROR_NONE
;
282 /* Store buffer ptr info from user */
283 ctx
->incoming_buffer
= buffer
;
284 ctx
->incoming_buffer_length
= len
;
287 * Store the user's request flags and mark this ctx as currently
290 ctx
->status
= (flags
& HASH_LAST
) ?
291 (HASH_CTX_STS_PROCESSING
| HASH_CTX_STS_LAST
) :
292 HASH_CTX_STS_PROCESSING
;
294 /* Advance byte counter */
295 ctx
->total_length
+= len
;
298 * If there is anything currently buffered in the extra blocks,
299 * append to it until it contains a whole block.
300 * Or if the user's buffer contains less than a whole block,
301 * append as much as possible to the extra block.
303 if (ctx
->partial_block_buffer_length
|| len
< SHA256_BLOCK_SIZE
) {
305 * Compute how many bytes to copy from user buffer into
308 uint32_t copy_len
= SHA256_BLOCK_SIZE
-
309 ctx
->partial_block_buffer_length
;
314 /* Copy and update relevant pointers and counters */
316 &ctx
->partial_block_buffer
[ctx
->partial_block_buffer_length
],
319 ctx
->partial_block_buffer_length
+= copy_len
;
320 ctx
->incoming_buffer
= (const void *)
321 ((const char *)buffer
+ copy_len
);
322 ctx
->incoming_buffer_length
= len
- copy_len
;
325 /* The extra block should never contain more than 1 block */
326 assert(ctx
->partial_block_buffer_length
<= SHA256_BLOCK_SIZE
);
329 * If the extra block buffer contains exactly 1 block,
332 if (ctx
->partial_block_buffer_length
>= SHA256_BLOCK_SIZE
) {
333 ctx
->partial_block_buffer_length
= 0;
335 ctx
->job
.buffer
= ctx
->partial_block_buffer
;
337 ctx
= (struct sha256_hash_ctx
*)
338 sha256_job_mgr_submit(&mgr
->mgr
, &ctx
->job
);
342 return sha256_ctx_mgr_resubmit(mgr
, ctx
);
345 static struct sha256_hash_ctx
*sha256_ctx_mgr_flush(struct sha256_ctx_mgr
*mgr
)
347 struct sha256_hash_ctx
*ctx
;
350 ctx
= (struct sha256_hash_ctx
*)
351 sha256_job_mgr_flush(&mgr
->mgr
);
353 /* If flush returned 0, there are no more jobs in flight. */
358 * If flush returned a job, resubmit the job to finish
361 ctx
= sha256_ctx_mgr_resubmit(mgr
, ctx
);
364 * If sha256_ctx_mgr_resubmit returned a job, it is ready to
365 * be returned. Otherwise, all jobs currently being managed by
366 * the sha256_ctx_mgr still need processing. Loop.
373 static int sha256_mb_init(struct ahash_request
*areq
)
375 struct sha256_hash_ctx
*sctx
= ahash_request_ctx(areq
);
378 sctx
->job
.result_digest
[0] = SHA256_H0
;
379 sctx
->job
.result_digest
[1] = SHA256_H1
;
380 sctx
->job
.result_digest
[2] = SHA256_H2
;
381 sctx
->job
.result_digest
[3] = SHA256_H3
;
382 sctx
->job
.result_digest
[4] = SHA256_H4
;
383 sctx
->job
.result_digest
[5] = SHA256_H5
;
384 sctx
->job
.result_digest
[6] = SHA256_H6
;
385 sctx
->job
.result_digest
[7] = SHA256_H7
;
386 sctx
->total_length
= 0;
387 sctx
->partial_block_buffer_length
= 0;
388 sctx
->status
= HASH_CTX_STS_IDLE
;
393 static int sha256_mb_set_results(struct mcryptd_hash_request_ctx
*rctx
)
396 struct sha256_hash_ctx
*sctx
= ahash_request_ctx(&rctx
->areq
);
397 __be32
*dst
= (__be32
*) rctx
->out
;
399 for (i
= 0; i
< 8; ++i
)
400 dst
[i
] = cpu_to_be32(sctx
->job
.result_digest
[i
]);
405 static int sha_finish_walk(struct mcryptd_hash_request_ctx
**ret_rctx
,
406 struct mcryptd_alg_cstate
*cstate
, bool flush
)
408 int flag
= HASH_UPDATE
;
410 struct mcryptd_hash_request_ctx
*rctx
= *ret_rctx
;
411 struct sha256_hash_ctx
*sha_ctx
;
414 while (!(rctx
->flag
& HASH_DONE
)) {
415 nbytes
= crypto_ahash_walk_done(&rctx
->walk
, 0);
420 /* check if the walk is done */
421 if (crypto_ahash_walk_last(&rctx
->walk
)) {
422 rctx
->flag
|= HASH_DONE
;
423 if (rctx
->flag
& HASH_FINAL
)
427 sha_ctx
= (struct sha256_hash_ctx
*)
428 ahash_request_ctx(&rctx
->areq
);
430 sha_ctx
= sha256_ctx_mgr_submit(cstate
->mgr
, sha_ctx
,
431 rctx
->walk
.data
, nbytes
, flag
);
434 sha_ctx
= sha256_ctx_mgr_flush(cstate
->mgr
);
438 rctx
= cast_hash_to_mcryptd_ctx(sha_ctx
);
445 /* copy the results */
446 if (rctx
->flag
& HASH_FINAL
)
447 sha256_mb_set_results(rctx
);
454 static int sha_complete_job(struct mcryptd_hash_request_ctx
*rctx
,
455 struct mcryptd_alg_cstate
*cstate
,
458 struct ahash_request
*req
= cast_mcryptd_ctx_to_req(rctx
);
459 struct sha256_hash_ctx
*sha_ctx
;
460 struct mcryptd_hash_request_ctx
*req_ctx
;
463 /* remove from work list */
464 spin_lock(&cstate
->work_lock
);
465 list_del(&rctx
->waiter
);
466 spin_unlock(&cstate
->work_lock
);
469 rctx
->complete(&req
->base
, err
);
472 rctx
->complete(&req
->base
, err
);
476 /* check to see if there are other jobs that are done */
477 sha_ctx
= sha256_ctx_mgr_get_comp_ctx(cstate
->mgr
);
479 req_ctx
= cast_hash_to_mcryptd_ctx(sha_ctx
);
480 ret
= sha_finish_walk(&req_ctx
, cstate
, false);
482 spin_lock(&cstate
->work_lock
);
483 list_del(&req_ctx
->waiter
);
484 spin_unlock(&cstate
->work_lock
);
486 req
= cast_mcryptd_ctx_to_req(req_ctx
);
488 req_ctx
->complete(&req
->base
, ret
);
491 req_ctx
->complete(&req
->base
, ret
);
495 sha_ctx
= sha256_ctx_mgr_get_comp_ctx(cstate
->mgr
);
501 static void sha256_mb_add_list(struct mcryptd_hash_request_ctx
*rctx
,
502 struct mcryptd_alg_cstate
*cstate
)
504 unsigned long next_flush
;
505 unsigned long delay
= usecs_to_jiffies(FLUSH_INTERVAL
);
508 rctx
->tag
.arrival
= jiffies
; /* tag the arrival time */
509 rctx
->tag
.seq_num
= cstate
->next_seq_num
++;
510 next_flush
= rctx
->tag
.arrival
+ delay
;
511 rctx
->tag
.expire
= next_flush
;
513 spin_lock(&cstate
->work_lock
);
514 list_add_tail(&rctx
->waiter
, &cstate
->work_list
);
515 spin_unlock(&cstate
->work_lock
);
517 mcryptd_arm_flusher(cstate
, delay
);
520 static int sha256_mb_update(struct ahash_request
*areq
)
522 struct mcryptd_hash_request_ctx
*rctx
=
523 container_of(areq
, struct mcryptd_hash_request_ctx
, areq
);
524 struct mcryptd_alg_cstate
*cstate
=
525 this_cpu_ptr(sha256_mb_alg_state
.alg_cstate
);
527 struct ahash_request
*req
= cast_mcryptd_ctx_to_req(rctx
);
528 struct sha256_hash_ctx
*sha_ctx
;
532 if (rctx
->tag
.cpu
!= smp_processor_id()) {
533 pr_err("mcryptd error: cpu clash\n");
537 /* need to init context */
538 req_ctx_init(rctx
, areq
);
540 nbytes
= crypto_ahash_walk_first(req
, &rctx
->walk
);
547 if (crypto_ahash_walk_last(&rctx
->walk
))
548 rctx
->flag
|= HASH_DONE
;
551 sha_ctx
= (struct sha256_hash_ctx
*) ahash_request_ctx(areq
);
552 sha256_mb_add_list(rctx
, cstate
);
554 sha_ctx
= sha256_ctx_mgr_submit(cstate
->mgr
, sha_ctx
, rctx
->walk
.data
,
555 nbytes
, HASH_UPDATE
);
558 /* check if anything is returned */
562 if (sha_ctx
->error
) {
563 ret
= sha_ctx
->error
;
564 rctx
= cast_hash_to_mcryptd_ctx(sha_ctx
);
568 rctx
= cast_hash_to_mcryptd_ctx(sha_ctx
);
569 ret
= sha_finish_walk(&rctx
, cstate
, false);
574 sha_complete_job(rctx
, cstate
, ret
);
578 static int sha256_mb_finup(struct ahash_request
*areq
)
580 struct mcryptd_hash_request_ctx
*rctx
=
581 container_of(areq
, struct mcryptd_hash_request_ctx
, areq
);
582 struct mcryptd_alg_cstate
*cstate
=
583 this_cpu_ptr(sha256_mb_alg_state
.alg_cstate
);
585 struct ahash_request
*req
= cast_mcryptd_ctx_to_req(rctx
);
586 struct sha256_hash_ctx
*sha_ctx
;
587 int ret
= 0, flag
= HASH_UPDATE
, nbytes
;
590 if (rctx
->tag
.cpu
!= smp_processor_id()) {
591 pr_err("mcryptd error: cpu clash\n");
595 /* need to init context */
596 req_ctx_init(rctx
, areq
);
598 nbytes
= crypto_ahash_walk_first(req
, &rctx
->walk
);
605 if (crypto_ahash_walk_last(&rctx
->walk
)) {
606 rctx
->flag
|= HASH_DONE
;
611 rctx
->flag
|= HASH_FINAL
;
612 sha_ctx
= (struct sha256_hash_ctx
*) ahash_request_ctx(areq
);
613 sha256_mb_add_list(rctx
, cstate
);
616 sha_ctx
= sha256_ctx_mgr_submit(cstate
->mgr
, sha_ctx
, rctx
->walk
.data
,
620 /* check if anything is returned */
624 if (sha_ctx
->error
) {
625 ret
= sha_ctx
->error
;
629 rctx
= cast_hash_to_mcryptd_ctx(sha_ctx
);
630 ret
= sha_finish_walk(&rctx
, cstate
, false);
634 sha_complete_job(rctx
, cstate
, ret
);
638 static int sha256_mb_final(struct ahash_request
*areq
)
640 struct mcryptd_hash_request_ctx
*rctx
=
641 container_of(areq
, struct mcryptd_hash_request_ctx
,
643 struct mcryptd_alg_cstate
*cstate
=
644 this_cpu_ptr(sha256_mb_alg_state
.alg_cstate
);
646 struct sha256_hash_ctx
*sha_ctx
;
651 if (rctx
->tag
.cpu
!= smp_processor_id()) {
652 pr_err("mcryptd error: cpu clash\n");
656 /* need to init context */
657 req_ctx_init(rctx
, areq
);
659 rctx
->flag
|= HASH_DONE
| HASH_FINAL
;
661 sha_ctx
= (struct sha256_hash_ctx
*) ahash_request_ctx(areq
);
662 /* flag HASH_FINAL and 0 data size */
663 sha256_mb_add_list(rctx
, cstate
);
665 sha_ctx
= sha256_ctx_mgr_submit(cstate
->mgr
, sha_ctx
, &data
, 0,
669 /* check if anything is returned */
673 if (sha_ctx
->error
) {
674 ret
= sha_ctx
->error
;
675 rctx
= cast_hash_to_mcryptd_ctx(sha_ctx
);
679 rctx
= cast_hash_to_mcryptd_ctx(sha_ctx
);
680 ret
= sha_finish_walk(&rctx
, cstate
, false);
684 sha_complete_job(rctx
, cstate
, ret
);
688 static int sha256_mb_export(struct ahash_request
*areq
, void *out
)
690 struct sha256_hash_ctx
*sctx
= ahash_request_ctx(areq
);
692 memcpy(out
, sctx
, sizeof(*sctx
));
697 static int sha256_mb_import(struct ahash_request
*areq
, const void *in
)
699 struct sha256_hash_ctx
*sctx
= ahash_request_ctx(areq
);
701 memcpy(sctx
, in
, sizeof(*sctx
));
706 static int sha256_mb_async_init_tfm(struct crypto_tfm
*tfm
)
708 struct mcryptd_ahash
*mcryptd_tfm
;
709 struct sha256_mb_ctx
*ctx
= crypto_tfm_ctx(tfm
);
710 struct mcryptd_hash_ctx
*mctx
;
712 mcryptd_tfm
= mcryptd_alloc_ahash("__intel_sha256-mb",
714 CRYPTO_ALG_INTERNAL
);
715 if (IS_ERR(mcryptd_tfm
))
716 return PTR_ERR(mcryptd_tfm
);
717 mctx
= crypto_ahash_ctx(&mcryptd_tfm
->base
);
718 mctx
->alg_state
= &sha256_mb_alg_state
;
719 ctx
->mcryptd_tfm
= mcryptd_tfm
;
720 crypto_ahash_set_reqsize(__crypto_ahash_cast(tfm
),
721 sizeof(struct ahash_request
) +
722 crypto_ahash_reqsize(&mcryptd_tfm
->base
));
727 static void sha256_mb_async_exit_tfm(struct crypto_tfm
*tfm
)
729 struct sha256_mb_ctx
*ctx
= crypto_tfm_ctx(tfm
);
731 mcryptd_free_ahash(ctx
->mcryptd_tfm
);
734 static int sha256_mb_areq_init_tfm(struct crypto_tfm
*tfm
)
736 crypto_ahash_set_reqsize(__crypto_ahash_cast(tfm
),
737 sizeof(struct ahash_request
) +
738 sizeof(struct sha256_hash_ctx
));
743 static void sha256_mb_areq_exit_tfm(struct crypto_tfm
*tfm
)
745 struct sha256_mb_ctx
*ctx
= crypto_tfm_ctx(tfm
);
747 mcryptd_free_ahash(ctx
->mcryptd_tfm
);
750 static struct ahash_alg sha256_mb_areq_alg
= {
751 .init
= sha256_mb_init
,
752 .update
= sha256_mb_update
,
753 .final
= sha256_mb_final
,
754 .finup
= sha256_mb_finup
,
755 .export
= sha256_mb_export
,
756 .import
= sha256_mb_import
,
758 .digestsize
= SHA256_DIGEST_SIZE
,
759 .statesize
= sizeof(struct sha256_hash_ctx
),
761 .cra_name
= "__sha256-mb",
762 .cra_driver_name
= "__intel_sha256-mb",
765 * use ASYNC flag as some buffers in multi-buffer
766 * algo may not have completed before hashing thread
769 .cra_flags
= CRYPTO_ALG_TYPE_AHASH
|
772 .cra_blocksize
= SHA256_BLOCK_SIZE
,
773 .cra_module
= THIS_MODULE
,
774 .cra_list
= LIST_HEAD_INIT
775 (sha256_mb_areq_alg
.halg
.base
.cra_list
),
776 .cra_init
= sha256_mb_areq_init_tfm
,
777 .cra_exit
= sha256_mb_areq_exit_tfm
,
778 .cra_ctxsize
= sizeof(struct sha256_hash_ctx
),
783 static int sha256_mb_async_init(struct ahash_request
*req
)
785 struct crypto_ahash
*tfm
= crypto_ahash_reqtfm(req
);
786 struct sha256_mb_ctx
*ctx
= crypto_ahash_ctx(tfm
);
787 struct ahash_request
*mcryptd_req
= ahash_request_ctx(req
);
788 struct mcryptd_ahash
*mcryptd_tfm
= ctx
->mcryptd_tfm
;
790 memcpy(mcryptd_req
, req
, sizeof(*req
));
791 ahash_request_set_tfm(mcryptd_req
, &mcryptd_tfm
->base
);
792 return crypto_ahash_init(mcryptd_req
);
795 static int sha256_mb_async_update(struct ahash_request
*req
)
797 struct ahash_request
*mcryptd_req
= ahash_request_ctx(req
);
799 struct crypto_ahash
*tfm
= crypto_ahash_reqtfm(req
);
800 struct sha256_mb_ctx
*ctx
= crypto_ahash_ctx(tfm
);
801 struct mcryptd_ahash
*mcryptd_tfm
= ctx
->mcryptd_tfm
;
803 memcpy(mcryptd_req
, req
, sizeof(*req
));
804 ahash_request_set_tfm(mcryptd_req
, &mcryptd_tfm
->base
);
805 return crypto_ahash_update(mcryptd_req
);
808 static int sha256_mb_async_finup(struct ahash_request
*req
)
810 struct ahash_request
*mcryptd_req
= ahash_request_ctx(req
);
812 struct crypto_ahash
*tfm
= crypto_ahash_reqtfm(req
);
813 struct sha256_mb_ctx
*ctx
= crypto_ahash_ctx(tfm
);
814 struct mcryptd_ahash
*mcryptd_tfm
= ctx
->mcryptd_tfm
;
816 memcpy(mcryptd_req
, req
, sizeof(*req
));
817 ahash_request_set_tfm(mcryptd_req
, &mcryptd_tfm
->base
);
818 return crypto_ahash_finup(mcryptd_req
);
821 static int sha256_mb_async_final(struct ahash_request
*req
)
823 struct ahash_request
*mcryptd_req
= ahash_request_ctx(req
);
825 struct crypto_ahash
*tfm
= crypto_ahash_reqtfm(req
);
826 struct sha256_mb_ctx
*ctx
= crypto_ahash_ctx(tfm
);
827 struct mcryptd_ahash
*mcryptd_tfm
= ctx
->mcryptd_tfm
;
829 memcpy(mcryptd_req
, req
, sizeof(*req
));
830 ahash_request_set_tfm(mcryptd_req
, &mcryptd_tfm
->base
);
831 return crypto_ahash_final(mcryptd_req
);
834 static int sha256_mb_async_digest(struct ahash_request
*req
)
836 struct crypto_ahash
*tfm
= crypto_ahash_reqtfm(req
);
837 struct sha256_mb_ctx
*ctx
= crypto_ahash_ctx(tfm
);
838 struct ahash_request
*mcryptd_req
= ahash_request_ctx(req
);
839 struct mcryptd_ahash
*mcryptd_tfm
= ctx
->mcryptd_tfm
;
841 memcpy(mcryptd_req
, req
, sizeof(*req
));
842 ahash_request_set_tfm(mcryptd_req
, &mcryptd_tfm
->base
);
843 return crypto_ahash_digest(mcryptd_req
);
846 static int sha256_mb_async_export(struct ahash_request
*req
, void *out
)
848 struct ahash_request
*mcryptd_req
= ahash_request_ctx(req
);
849 struct crypto_ahash
*tfm
= crypto_ahash_reqtfm(req
);
850 struct sha256_mb_ctx
*ctx
= crypto_ahash_ctx(tfm
);
851 struct mcryptd_ahash
*mcryptd_tfm
= ctx
->mcryptd_tfm
;
853 memcpy(mcryptd_req
, req
, sizeof(*req
));
854 ahash_request_set_tfm(mcryptd_req
, &mcryptd_tfm
->base
);
855 return crypto_ahash_export(mcryptd_req
, out
);
858 static int sha256_mb_async_import(struct ahash_request
*req
, const void *in
)
860 struct ahash_request
*mcryptd_req
= ahash_request_ctx(req
);
861 struct crypto_ahash
*tfm
= crypto_ahash_reqtfm(req
);
862 struct sha256_mb_ctx
*ctx
= crypto_ahash_ctx(tfm
);
863 struct mcryptd_ahash
*mcryptd_tfm
= ctx
->mcryptd_tfm
;
864 struct crypto_ahash
*child
= mcryptd_ahash_child(mcryptd_tfm
);
865 struct mcryptd_hash_request_ctx
*rctx
;
866 struct ahash_request
*areq
;
868 memcpy(mcryptd_req
, req
, sizeof(*req
));
869 ahash_request_set_tfm(mcryptd_req
, &mcryptd_tfm
->base
);
870 rctx
= ahash_request_ctx(mcryptd_req
);
873 ahash_request_set_tfm(areq
, child
);
874 ahash_request_set_callback(areq
, CRYPTO_TFM_REQ_MAY_SLEEP
,
875 rctx
->complete
, req
);
877 return crypto_ahash_import(mcryptd_req
, in
);
880 static struct ahash_alg sha256_mb_async_alg
= {
881 .init
= sha256_mb_async_init
,
882 .update
= sha256_mb_async_update
,
883 .final
= sha256_mb_async_final
,
884 .finup
= sha256_mb_async_finup
,
885 .export
= sha256_mb_async_export
,
886 .import
= sha256_mb_async_import
,
887 .digest
= sha256_mb_async_digest
,
889 .digestsize
= SHA256_DIGEST_SIZE
,
890 .statesize
= sizeof(struct sha256_hash_ctx
),
892 .cra_name
= "sha256",
893 .cra_driver_name
= "sha256_mb",
895 .cra_flags
= CRYPTO_ALG_TYPE_AHASH
|
897 .cra_blocksize
= SHA256_BLOCK_SIZE
,
898 .cra_type
= &crypto_ahash_type
,
899 .cra_module
= THIS_MODULE
,
900 .cra_list
= LIST_HEAD_INIT
901 (sha256_mb_async_alg
.halg
.base
.cra_list
),
902 .cra_init
= sha256_mb_async_init_tfm
,
903 .cra_exit
= sha256_mb_async_exit_tfm
,
904 .cra_ctxsize
= sizeof(struct sha256_mb_ctx
),
910 static unsigned long sha256_mb_flusher(struct mcryptd_alg_cstate
*cstate
)
912 struct mcryptd_hash_request_ctx
*rctx
;
913 unsigned long cur_time
;
914 unsigned long next_flush
= 0;
915 struct sha256_hash_ctx
*sha_ctx
;
920 while (!list_empty(&cstate
->work_list
)) {
921 rctx
= list_entry(cstate
->work_list
.next
,
922 struct mcryptd_hash_request_ctx
, waiter
);
923 if (time_before(cur_time
, rctx
->tag
.expire
))
926 sha_ctx
= (struct sha256_hash_ctx
*)
927 sha256_ctx_mgr_flush(cstate
->mgr
);
930 pr_err("sha256_mb error: nothing got"
931 " flushed for non-empty list\n");
934 rctx
= cast_hash_to_mcryptd_ctx(sha_ctx
);
935 sha_finish_walk(&rctx
, cstate
, true);
936 sha_complete_job(rctx
, cstate
, 0);
939 if (!list_empty(&cstate
->work_list
)) {
940 rctx
= list_entry(cstate
->work_list
.next
,
941 struct mcryptd_hash_request_ctx
, waiter
);
942 /* get the hash context and then flush time */
943 next_flush
= rctx
->tag
.expire
;
944 mcryptd_arm_flusher(cstate
, get_delay(next_flush
));
949 static int __init
sha256_mb_mod_init(void)
954 struct mcryptd_alg_cstate
*cpu_state
;
956 /* check for dependent cpu features */
957 if (!boot_cpu_has(X86_FEATURE_AVX2
) ||
958 !boot_cpu_has(X86_FEATURE_BMI2
))
961 /* initialize multibuffer structures */
962 sha256_mb_alg_state
.alg_cstate
= alloc_percpu
963 (struct mcryptd_alg_cstate
);
965 sha256_job_mgr_init
= sha256_mb_mgr_init_avx2
;
966 sha256_job_mgr_submit
= sha256_mb_mgr_submit_avx2
;
967 sha256_job_mgr_flush
= sha256_mb_mgr_flush_avx2
;
968 sha256_job_mgr_get_comp_job
= sha256_mb_mgr_get_comp_job_avx2
;
970 if (!sha256_mb_alg_state
.alg_cstate
)
972 for_each_possible_cpu(cpu
) {
973 cpu_state
= per_cpu_ptr(sha256_mb_alg_state
.alg_cstate
, cpu
);
974 cpu_state
->next_flush
= 0;
975 cpu_state
->next_seq_num
= 0;
976 cpu_state
->flusher_engaged
= false;
977 INIT_DELAYED_WORK(&cpu_state
->flush
, mcryptd_flusher
);
978 cpu_state
->cpu
= cpu
;
979 cpu_state
->alg_state
= &sha256_mb_alg_state
;
980 cpu_state
->mgr
= kzalloc(sizeof(struct sha256_ctx_mgr
),
984 sha256_ctx_mgr_init(cpu_state
->mgr
);
985 INIT_LIST_HEAD(&cpu_state
->work_list
);
986 spin_lock_init(&cpu_state
->work_lock
);
988 sha256_mb_alg_state
.flusher
= &sha256_mb_flusher
;
990 err
= crypto_register_ahash(&sha256_mb_areq_alg
);
993 err
= crypto_register_ahash(&sha256_mb_async_alg
);
1000 crypto_unregister_ahash(&sha256_mb_areq_alg
);
1002 for_each_possible_cpu(cpu
) {
1003 cpu_state
= per_cpu_ptr(sha256_mb_alg_state
.alg_cstate
, cpu
);
1004 kfree(cpu_state
->mgr
);
1006 free_percpu(sha256_mb_alg_state
.alg_cstate
);
1010 static void __exit
sha256_mb_mod_fini(void)
1013 struct mcryptd_alg_cstate
*cpu_state
;
1015 crypto_unregister_ahash(&sha256_mb_async_alg
);
1016 crypto_unregister_ahash(&sha256_mb_areq_alg
);
1017 for_each_possible_cpu(cpu
) {
1018 cpu_state
= per_cpu_ptr(sha256_mb_alg_state
.alg_cstate
, cpu
);
1019 kfree(cpu_state
->mgr
);
1021 free_percpu(sha256_mb_alg_state
.alg_cstate
);
1024 module_init(sha256_mb_mod_init
);
1025 module_exit(sha256_mb_mod_fini
);
1027 MODULE_LICENSE("GPL");
1028 MODULE_DESCRIPTION("SHA256 Secure Hash Algorithm, multi buffer accelerated");
1030 MODULE_ALIAS_CRYPTO("sha256");