1 /* SPDX-License-Identifier: GPL-2.0 */
3 * Copyright (C) 1991,1992 Linus Torvalds
5 * entry_32.S contains the system-call and low-level fault and trap handling routines.
7 * Stack layout while running C code:
8 * ptrace needs to have all registers on the stack.
9 * If the order here is changed, it needs to be
10 * updated in fork.c:copy_process(), signal.c:do_signal(),
11 * ptrace.c and ptrace.h
23 * 28(%esp) - %gs saved iff !CONFIG_X86_32_LAZY_GS
32 #include <linux/linkage.h>
33 #include <linux/err.h>
34 #include <asm/thread_info.h>
35 #include <asm/irqflags.h>
36 #include <asm/errno.h>
37 #include <asm/segment.h>
39 #include <asm/percpu.h>
40 #include <asm/processor-flags.h>
41 #include <asm/irq_vectors.h>
42 #include <asm/cpufeatures.h>
43 #include <asm/alternative-asm.h>
46 #include <asm/frame.h>
47 #include <asm/nospec-branch.h>
49 .section .entry.text, "ax"
52 * We use macros for low-level operations which need to be overridden
53 * for paravirtualization. The following will never clobber any registers:
54 * INTERRUPT_RETURN (aka. "iret")
55 * GET_CR0_INTO_EAX (aka. "movl %cr0, %eax")
56 * ENABLE_INTERRUPTS_SYSEXIT (aka "sti; sysexit").
58 * For DISABLE_INTERRUPTS/ENABLE_INTERRUPTS (aka "cli"/"sti"), you must
59 * specify what registers can be overwritten (CLBR_NONE, CLBR_EAX/EDX/ECX/ANY).
60 * Allowing a register to be clobbered can shrink the paravirt replacement
61 * enough to patch inline, increasing performance.
65 # define preempt_stop(clobbers) DISABLE_INTERRUPTS(clobbers); TRACE_IRQS_OFF
67 # define preempt_stop(clobbers)
68 # define resume_kernel restore_all
71 .macro TRACE_IRQS_IRET
72 #ifdef CONFIG_TRACE_IRQFLAGS
73 testl $X86_EFLAGS_IF, PT_EFLAGS(%esp) # interrupts off?
81 * User gs save/restore
83 * %gs is used for userland TLS and kernel only uses it for stack
84 * canary which is required to be at %gs:20 by gcc. Read the comment
85 * at the top of stackprotector.h for more info.
87 * Local labels 98 and 99 are used.
89 #ifdef CONFIG_X86_32_LAZY_GS
91 /* unfortunately push/pop can't be no-op */
96 addl $(4 + \pop), %esp
101 /* all the rest are no-op */
108 .macro REG_TO_PTGS reg
110 .macro SET_KERNEL_GS reg
113 #else /* CONFIG_X86_32_LAZY_GS */
126 .pushsection .fixup, "ax"
130 _ASM_EXTABLE(98b, 99b)
134 98: mov PT_GS(%esp), %gs
137 .pushsection .fixup, "ax"
138 99: movl $0, PT_GS(%esp)
141 _ASM_EXTABLE(98b, 99b)
147 .macro REG_TO_PTGS reg
148 movl \reg, PT_GS(%esp)
150 .macro SET_KERNEL_GS reg
151 movl $(__KERNEL_STACK_CANARY), \reg
155 #endif /* CONFIG_X86_32_LAZY_GS */
157 .macro SAVE_ALL pt_regs_ax=%eax
170 movl $(__USER_DS), %edx
173 movl $(__KERNEL_PERCPU), %edx
179 * This is a sneaky trick to help the unwinder find pt_regs on the stack. The
180 * frame pointer is replaced with an encoded pointer to pt_regs. The encoding
181 * is just clearing the MSB, which makes it an invalid stack address and is also
182 * a signal to the unwinder that it's a pt_regs pointer in disguise.
184 * NOTE: This macro must be used *after* SAVE_ALL because it corrupts the
187 .macro ENCODE_FRAME_POINTER
188 #ifdef CONFIG_FRAME_POINTER
190 andl $0x7fffffff, %ebp
194 .macro RESTORE_INT_REGS
204 .macro RESTORE_REGS pop=0
210 .pushsection .fixup, "ax"
228 ENTRY(__switch_to_asm)
230 * Save callee-saved registers
231 * This must match the order in struct inactive_task_frame
239 movl %esp, TASK_threadsp(%eax)
240 movl TASK_threadsp(%edx), %esp
242 #ifdef CONFIG_CC_STACKPROTECTOR
243 movl TASK_stack_canary(%edx), %ebx
244 movl %ebx, PER_CPU_VAR(stack_canary)+stack_canary_offset
247 #ifdef CONFIG_RETPOLINE
249 * When switching from a shallower to a deeper call stack
250 * the RSB may either underflow or use entries populated
251 * with userspace addresses. On CPUs where those concerns
252 * exist, overwrite the RSB with entries which capture
253 * speculative execution to prevent attack.
255 FILL_RETURN_BUFFER %ebx, RSB_CLEAR_LOOPS, X86_FEATURE_RSB_CTXSW
258 /* restore callee-saved registers */
268 * The unwinder expects the last frame on the stack to always be at the same
269 * offset from the end of the page, which allows it to validate the stack.
270 * Calling schedule_tail() directly would break that convention because its an
271 * asmlinkage function so its argument has to be pushed on the stack. This
272 * wrapper creates a proper "end of stack" frame header before the call.
274 ENTRY(schedule_tail_wrapper)
283 ENDPROC(schedule_tail_wrapper)
285 * A newly forked process directly context switches into this address.
287 * eax: prev task we switched from
288 * ebx: kernel thread func (NULL for user thread)
289 * edi: kernel thread arg
292 call schedule_tail_wrapper
295 jnz 1f /* kernel threads are uncommon */
298 /* When we fork, we trace the syscall return in the child, too. */
300 call syscall_return_slowpath
307 * A kernel thread is allowed to return here after successfully
308 * calling do_execve(). Exit to userspace to complete the execve()
311 movl $0, PT_EAX(%esp)
316 * Return to user mode is not as complex as all this looks,
317 * but we want the default path for a system call return to
318 * go as quickly as possible which is why some of this is
319 * less clear than it otherwise should be.
322 # userspace resumption stub bypassing syscall exit tracing
325 preempt_stop(CLBR_ANY)
328 movl PT_EFLAGS(%esp), %eax # mix EFLAGS and CS
329 movb PT_CS(%esp), %al
330 andl $(X86_EFLAGS_VM | SEGMENT_RPL_MASK), %eax
333 * We can be coming here from child spawned by kernel_thread().
335 movl PT_CS(%esp), %eax
336 andl $SEGMENT_RPL_MASK, %eax
339 jb resume_kernel # not returning to v8086 or userspace
341 ENTRY(resume_userspace)
342 DISABLE_INTERRUPTS(CLBR_ANY)
345 call prepare_exit_to_usermode
347 END(ret_from_exception)
349 #ifdef CONFIG_PREEMPT
351 DISABLE_INTERRUPTS(CLBR_ANY)
353 cmpl $0, PER_CPU_VAR(__preempt_count)
355 testl $X86_EFLAGS_IF, PT_EFLAGS(%esp) # interrupts off (exception path) ?
357 call preempt_schedule_irq
362 GLOBAL(__begin_SYSENTER_singlestep_region)
364 * All code from here through __end_SYSENTER_singlestep_region is subject
365 * to being single-stepped if a user program sets TF and executes SYSENTER.
366 * There is absolutely nothing that we can do to prevent this from happening
367 * (thanks Intel!). To keep our handling of this situation as simple as
368 * possible, we handle TF just like AC and NT, except that our #DB handler
369 * will ignore all of the single-step traps generated in this range.
374 * Xen doesn't set %esp to be precisely what the normal SYSENTER
375 * entry point expects, so fix it up before using the normal path.
377 ENTRY(xen_sysenter_target)
378 addl $5*4, %esp /* remove xen-provided frame */
379 jmp .Lsysenter_past_esp
383 * 32-bit SYSENTER entry.
385 * 32-bit system calls through the vDSO's __kernel_vsyscall enter here
386 * if X86_FEATURE_SEP is available. This is the preferred system call
387 * entry on 32-bit systems.
389 * The SYSENTER instruction, in principle, should *only* occur in the
390 * vDSO. In practice, a small number of Android devices were shipped
391 * with a copy of Bionic that inlined a SYSENTER instruction. This
392 * never happened in any of Google's Bionic versions -- it only happened
393 * in a narrow range of Intel-provided versions.
395 * SYSENTER loads SS, ESP, CS, and EIP from previously programmed MSRs.
396 * IF and VM in RFLAGS are cleared (IOW: interrupts are off).
397 * SYSENTER does not save anything on the stack,
398 * and does not save old EIP (!!!), ESP, or EFLAGS.
400 * To avoid losing track of EFLAGS.VM (and thus potentially corrupting
401 * user and/or vm86 state), we explicitly disable the SYSENTER
402 * instruction in vm86 mode by reprogramming the MSRs.
405 * eax system call number
414 ENTRY(entry_SYSENTER_32)
415 movl TSS_sysenter_sp0(%esp), %esp
417 pushl $__USER_DS /* pt_regs->ss */
418 pushl %ebp /* pt_regs->sp (stashed in bp) */
419 pushfl /* pt_regs->flags (except IF = 0) */
420 orl $X86_EFLAGS_IF, (%esp) /* Fix IF */
421 pushl $__USER_CS /* pt_regs->cs */
422 pushl $0 /* pt_regs->ip = 0 (placeholder) */
423 pushl %eax /* pt_regs->orig_ax */
424 SAVE_ALL pt_regs_ax=$-ENOSYS /* save rest */
427 * SYSENTER doesn't filter flags, so we need to clear NT, AC
428 * and TF ourselves. To save a few cycles, we can check whether
429 * either was set instead of doing an unconditional popfq.
430 * This needs to happen before enabling interrupts so that
431 * we don't get preempted with NT set.
433 * If TF is set, we will single-step all the way to here -- do_debug
434 * will ignore all the traps. (Yes, this is slow, but so is
435 * single-stepping in general. This allows us to avoid having
436 * a more complicated code to handle the case where a user program
437 * forces us to single-step through the SYSENTER entry code.)
439 * NB.: .Lsysenter_fix_flags is a label with the code under it moved
440 * out-of-line as an optimization: NT is unlikely to be set in the
441 * majority of the cases and instead of polluting the I$ unnecessarily,
442 * we're keeping that code behind a branch which will predict as
443 * not-taken and therefore its instructions won't be fetched.
445 testl $X86_EFLAGS_NT|X86_EFLAGS_AC|X86_EFLAGS_TF, PT_EFLAGS(%esp)
446 jnz .Lsysenter_fix_flags
447 .Lsysenter_flags_fixed:
450 * User mode is traced as though IRQs are on, and SYSENTER
456 call do_fast_syscall_32
457 /* XEN PV guests always use IRET path */
458 ALTERNATIVE "testl %eax, %eax; jz .Lsyscall_32_done", \
459 "jmp .Lsyscall_32_done", X86_FEATURE_XENPV
461 /* Opportunistic SYSEXIT */
462 TRACE_IRQS_ON /* User mode traces as IRQs on. */
463 movl PT_EIP(%esp), %edx /* pt_regs->ip */
464 movl PT_OLDESP(%esp), %ecx /* pt_regs->sp */
465 1: mov PT_FS(%esp), %fs
467 popl %ebx /* pt_regs->bx */
468 addl $2*4, %esp /* skip pt_regs->cx and pt_regs->dx */
469 popl %esi /* pt_regs->si */
470 popl %edi /* pt_regs->di */
471 popl %ebp /* pt_regs->bp */
472 popl %eax /* pt_regs->ax */
475 * Restore all flags except IF. (We restore IF separately because
476 * STI gives a one-instruction window in which we won't be interrupted,
477 * whereas POPF does not.)
479 addl $PT_EFLAGS-PT_DS, %esp /* point esp at pt_regs->flags */
480 btr $X86_EFLAGS_IF_BIT, (%esp)
484 * Return back to the vDSO, which will pop ecx and edx.
485 * Don't bother with DS and ES (they already contain __USER_DS).
490 .pushsection .fixup, "ax"
491 2: movl $0, PT_FS(%esp)
497 .Lsysenter_fix_flags:
498 pushl $X86_EFLAGS_FIXED
500 jmp .Lsysenter_flags_fixed
501 GLOBAL(__end_SYSENTER_singlestep_region)
502 ENDPROC(entry_SYSENTER_32)
505 * 32-bit legacy system call entry.
507 * 32-bit x86 Linux system calls traditionally used the INT $0x80
508 * instruction. INT $0x80 lands here.
510 * This entry point can be used by any 32-bit perform system calls.
511 * Instances of INT $0x80 can be found inline in various programs and
512 * libraries. It is also used by the vDSO's __kernel_vsyscall
513 * fallback for hardware that doesn't support a faster entry method.
514 * Restarted 32-bit system calls also fall back to INT $0x80
515 * regardless of what instruction was originally used to do the system
516 * call. (64-bit programs can use INT $0x80 as well, but they can
517 * only run on 64-bit kernels and therefore land in
518 * entry_INT80_compat.)
520 * This is considered a slow path. It is not used by most libc
521 * implementations on modern hardware except during process startup.
524 * eax system call number
532 ENTRY(entry_INT80_32)
534 pushl %eax /* pt_regs->orig_ax */
535 SAVE_ALL pt_regs_ax=$-ENOSYS /* save rest */
538 * User mode is traced as though IRQs are on, and the interrupt gate
544 call do_int80_syscall_32
549 .Lrestore_all_notrace:
550 #ifdef CONFIG_X86_ESPFIX32
551 ALTERNATIVE "jmp .Lrestore_nocheck", "", X86_BUG_ESPFIX
553 movl PT_EFLAGS(%esp), %eax # mix EFLAGS, SS and CS
555 * Warning: PT_OLDSS(%esp) contains the wrong/random values if we
556 * are returning to the kernel.
557 * See comments in process.c:copy_thread() for details.
559 movb PT_OLDSS(%esp), %ah
560 movb PT_CS(%esp), %al
561 andl $(X86_EFLAGS_VM | (SEGMENT_TI_MASK << 8) | SEGMENT_RPL_MASK), %eax
562 cmpl $((SEGMENT_LDT << 8) | USER_RPL), %eax
563 je .Lldt_ss # returning to user-space with LDT SS
566 RESTORE_REGS 4 # skip orig_eax/error_code
569 * ARCH_HAS_MEMBARRIER_SYNC_CORE rely on IRET core serialization
570 * when returning from IPI handler and when returning from
571 * scheduler to user-space.
575 .section .fixup, "ax"
577 pushl $0 # no error code
581 _ASM_EXTABLE(.Lirq_return, iret_exc)
583 #ifdef CONFIG_X86_ESPFIX32
586 * Setup and switch to ESPFIX stack
588 * We're returning to userspace with a 16 bit stack. The CPU will not
589 * restore the high word of ESP for us on executing iret... This is an
590 * "official" bug of all the x86-compatible CPUs, which we can work
591 * around to make dosemu and wine happy. We do this by preloading the
592 * high word of ESP with the high word of the userspace ESP while
593 * compensating for the offset by changing to the ESPFIX segment with
594 * a base address that matches for the difference.
596 #define GDT_ESPFIX_SS PER_CPU_VAR(gdt_page) + (GDT_ENTRY_ESPFIX_SS * 8)
597 mov %esp, %edx /* load kernel esp */
598 mov PT_OLDESP(%esp), %eax /* load userspace esp */
599 mov %dx, %ax /* eax: new kernel esp */
600 sub %eax, %edx /* offset (low word is 0) */
602 mov %dl, GDT_ESPFIX_SS + 4 /* bits 16..23 */
603 mov %dh, GDT_ESPFIX_SS + 7 /* bits 24..31 */
605 pushl %eax /* new kernel esp */
607 * Disable interrupts, but do not irqtrace this section: we
608 * will soon execute iret and the tracer was already set to
609 * the irqstate after the IRET:
611 DISABLE_INTERRUPTS(CLBR_ANY)
612 lss (%esp), %esp /* switch to espfix segment */
613 jmp .Lrestore_nocheck
615 ENDPROC(entry_INT80_32)
617 .macro FIXUP_ESPFIX_STACK
619 * Switch back for ESPFIX stack to the normal zerobased stack
621 * We can't call C functions using the ESPFIX stack. This code reads
622 * the high word of the segment base from the GDT and swiches to the
623 * normal stack and adjusts ESP with the matching offset.
625 #ifdef CONFIG_X86_ESPFIX32
626 /* fixup the stack */
627 mov GDT_ESPFIX_SS + 4, %al /* bits 16..23 */
628 mov GDT_ESPFIX_SS + 7, %ah /* bits 24..31 */
630 addl %esp, %eax /* the adjusted stack pointer */
633 lss (%esp), %esp /* switch to the normal stack segment */
636 .macro UNWIND_ESPFIX_STACK
637 #ifdef CONFIG_X86_ESPFIX32
639 /* see if on espfix stack */
640 cmpw $__ESPFIX_SS, %ax
642 movl $__KERNEL_DS, %eax
645 /* switch to normal stack */
652 * Build the entry stubs with some assembler magic.
653 * We pack 1 stub into every 8-byte block.
656 ENTRY(irq_entries_start)
657 vector=FIRST_EXTERNAL_VECTOR
658 .rept (FIRST_SYSTEM_VECTOR - FIRST_EXTERNAL_VECTOR)
659 pushl $(~vector+0x80) /* Note: always in signed byte range */
664 END(irq_entries_start)
667 * the CPU automatically disables interrupts when executing an IRQ vector,
668 * so IRQ-flags tracing has to follow that:
670 .p2align CONFIG_X86_L1_CACHE_SHIFT
673 addl $-0x80, (%esp) /* Adjust vector into the [-256, -1] range */
680 ENDPROC(common_interrupt)
682 #define BUILD_INTERRUPT3(name, nr, fn) \
687 ENCODE_FRAME_POINTER; \
694 #define BUILD_INTERRUPT(name, nr) \
695 BUILD_INTERRUPT3(name, nr, smp_##name); \
697 /* The include is where all of the SMP etc. interrupts come from */
698 #include <asm/entry_arch.h>
700 ENTRY(coprocessor_error)
703 pushl $do_coprocessor_error
705 END(coprocessor_error)
707 ENTRY(simd_coprocessor_error)
710 #ifdef CONFIG_X86_INVD_BUG
711 /* AMD 486 bug: invd from userspace calls exception 19 instead of #GP */
712 ALTERNATIVE "pushl $do_general_protection", \
713 "pushl $do_simd_coprocessor_error", \
716 pushl $do_simd_coprocessor_error
719 END(simd_coprocessor_error)
721 ENTRY(device_not_available)
723 pushl $-1 # mark this as an int
724 pushl $do_device_not_available
726 END(device_not_available)
728 #ifdef CONFIG_PARAVIRT
731 _ASM_EXTABLE(native_iret, iret_exc)
756 ENTRY(coprocessor_segment_overrun)
759 pushl $do_coprocessor_segment_overrun
761 END(coprocessor_segment_overrun)
765 pushl $do_invalid_TSS
769 ENTRY(segment_not_present)
771 pushl $do_segment_not_present
773 END(segment_not_present)
777 pushl $do_stack_segment
781 ENTRY(alignment_check)
783 pushl $do_alignment_check
789 pushl $0 # no error code
790 pushl $do_divide_error
794 #ifdef CONFIG_X86_MCE
798 pushl machine_check_vector
803 ENTRY(spurious_interrupt_bug)
806 pushl $do_spurious_interrupt_bug
808 END(spurious_interrupt_bug)
811 ENTRY(xen_hypervisor_callback)
812 pushl $-1 /* orig_ax = -1 => not a system call */
818 * Check to see if we got the event in the critical
819 * region in xen_iret_direct, after we've reenabled
820 * events and checked for pending events. This simulates
821 * iret instruction's behaviour where it delivers a
822 * pending interrupt when enabling interrupts:
824 movl PT_EIP(%esp), %eax
825 cmpl $xen_iret_start_crit, %eax
827 cmpl $xen_iret_end_crit, %eax
830 jmp xen_iret_crit_fixup
834 call xen_evtchn_do_upcall
835 #ifndef CONFIG_PREEMPT
836 call xen_maybe_preempt_hcall
839 ENDPROC(xen_hypervisor_callback)
842 * Hypervisor uses this for application faults while it executes.
843 * We get here for two reasons:
844 * 1. Fault while reloading DS, ES, FS or GS
845 * 2. Fault while executing IRET
846 * Category 1 we fix up by reattempting the load, and zeroing the segment
847 * register if the load fails.
848 * Category 2 we fix up by jumping to do_iret_error. We cannot use the
849 * normal Linux return path in this case because if we use the IRET hypercall
850 * to pop the stack frame we end up in an infinite loop of failsafe callbacks.
851 * We distinguish between categories by maintaining a status value in EAX.
853 ENTRY(xen_failsafe_callback)
860 /* EAX == 0 => Category 1 (Bad segment)
861 EAX != 0 => Category 2 (Bad IRET) */
867 5: pushl $-1 /* orig_ax = -1 => not a system call */
870 jmp ret_from_exception
872 .section .fixup, "ax"
890 ENDPROC(xen_failsafe_callback)
892 BUILD_INTERRUPT3(xen_hvm_callback_vector, HYPERVISOR_CALLBACK_VECTOR,
893 xen_evtchn_do_upcall)
895 #endif /* CONFIG_XEN */
897 #if IS_ENABLED(CONFIG_HYPERV)
899 BUILD_INTERRUPT3(hyperv_callback_vector, HYPERVISOR_CALLBACK_VECTOR,
900 hyperv_vector_handler)
902 BUILD_INTERRUPT3(hyperv_reenlightenment_vector, HYPERV_REENLIGHTENMENT_VECTOR,
903 hyperv_reenlightenment_intr)
905 #endif /* CONFIG_HYPERV */
915 /* the function address is in %gs's slot on the stack */
928 movl $(__KERNEL_PERCPU), %ecx
932 movl PT_GS(%esp), %edi # get the function address
933 movl PT_ORIG_EAX(%esp), %edx # get the error code
934 movl $-1, PT_ORIG_EAX(%esp) # no syscall to restart
937 movl $(__USER_DS), %ecx
941 movl %esp, %eax # pt_regs pointer
943 jmp ret_from_exception
944 END(common_exception)
948 * #DB can happen at the first instruction of
949 * entry_SYSENTER_32 or in Xen's SYSENTER prologue. If this
950 * happens, then we will be running on a very small stack. We
951 * need to detect this condition and switch to the thread
952 * stack before calling any C code at all.
954 * If you edit this code, keep in mind that NMIs can happen in here.
957 pushl $-1 # mark this as an int
960 xorl %edx, %edx # error code 0
961 movl %esp, %eax # pt_regs pointer
963 /* Are we currently on the SYSENTER stack? */
964 movl PER_CPU_VAR(cpu_entry_area), %ecx
965 addl $CPU_ENTRY_AREA_entry_stack + SIZEOF_entry_stack, %ecx
966 subl %eax, %ecx /* ecx = (end of entry_stack) - esp */
967 cmpl $SIZEOF_entry_stack, %ecx
968 jb .Ldebug_from_sysenter_stack
972 jmp ret_from_exception
974 .Ldebug_from_sysenter_stack:
975 /* We're on the SYSENTER stack. Switch off. */
977 movl PER_CPU_VAR(cpu_current_top_of_stack), %esp
981 jmp ret_from_exception
985 * NMI is doubly nasty. It can happen on the first instruction of
986 * entry_SYSENTER_32 (just like #DB), but it can also interrupt the beginning
987 * of the #DB handler even if that #DB in turn hit before entry_SYSENTER_32
988 * switched stacks. We handle both conditions by simply checking whether we
989 * interrupted kernel code running on the SYSENTER stack.
993 #ifdef CONFIG_X86_ESPFIX32
996 cmpw $__ESPFIX_SS, %ax
998 je .Lnmi_espfix_stack
1001 pushl %eax # pt_regs->orig_ax
1003 ENCODE_FRAME_POINTER
1004 xorl %edx, %edx # zero error code
1005 movl %esp, %eax # pt_regs pointer
1007 /* Are we currently on the SYSENTER stack? */
1008 movl PER_CPU_VAR(cpu_entry_area), %ecx
1009 addl $CPU_ENTRY_AREA_entry_stack + SIZEOF_entry_stack, %ecx
1010 subl %eax, %ecx /* ecx = (end of entry_stack) - esp */
1011 cmpl $SIZEOF_entry_stack, %ecx
1012 jb .Lnmi_from_sysenter_stack
1014 /* Not on SYSENTER stack. */
1016 jmp .Lrestore_all_notrace
1018 .Lnmi_from_sysenter_stack:
1020 * We're on the SYSENTER stack. Switch off. No one (not even debug)
1021 * is using the thread stack right now, so it's safe for us to use it.
1024 movl PER_CPU_VAR(cpu_current_top_of_stack), %esp
1027 jmp .Lrestore_all_notrace
1029 #ifdef CONFIG_X86_ESPFIX32
1032 * create the pointer to lss back
1037 /* copy the iret frame of 12 bytes */
1043 ENCODE_FRAME_POINTER
1044 FIXUP_ESPFIX_STACK # %eax == %esp
1045 xorl %edx, %edx # zero error code
1048 lss 12+4(%esp), %esp # back to espfix stack
1055 pushl $-1 # mark this as an int
1057 ENCODE_FRAME_POINTER
1059 xorl %edx, %edx # zero error code
1060 movl %esp, %eax # pt_regs pointer
1062 jmp ret_from_exception
1065 ENTRY(general_protection)
1066 pushl $do_general_protection
1067 jmp common_exception
1068 END(general_protection)
1070 #ifdef CONFIG_KVM_GUEST
1071 ENTRY(async_page_fault)
1073 pushl $do_async_page_fault
1074 jmp common_exception
1075 END(async_page_fault)
1078 ENTRY(rewind_stack_do_exit)
1079 /* Prevent any naive code from trying to unwind to our caller. */
1082 movl PER_CPU_VAR(cpu_current_top_of_stack), %esi
1083 leal -TOP_OF_KERNEL_STACK_PADDING-PTREGS_SIZE(%esi), %esp
1087 END(rewind_stack_do_exit)