1 /* SPDX-License-Identifier: GPL-2.0 */
3 * linux/arch/x86_64/entry.S
5 * Copyright (C) 1991, 1992 Linus Torvalds
6 * Copyright (C) 2000, 2001, 2002 Andi Kleen SuSE Labs
7 * Copyright (C) 2000 Pavel Machek <pavel@suse.cz>
9 * entry.S contains the system-call and fault low-level handling routines.
11 * Some of this is documented in Documentation/x86/entry_64.txt
13 * A note on terminology:
14 * - iret frame: Architecture defined interrupt frame from SS to RIP
15 * at the top of the kernel process stack.
18 * - ENTRY/END: Define functions in the symbol table.
19 * - TRACE_IRQ_*: Trace hardirq state for lock debugging.
20 * - idtentry: Define exception entry points.
22 #include <linux/linkage.h>
23 #include <asm/segment.h>
24 #include <asm/cache.h>
25 #include <asm/errno.h>
26 #include <asm/asm-offsets.h>
28 #include <asm/unistd.h>
29 #include <asm/thread_info.h>
30 #include <asm/hw_irq.h>
31 #include <asm/page_types.h>
32 #include <asm/irqflags.h>
33 #include <asm/paravirt.h>
34 #include <asm/percpu.h>
37 #include <asm/pgtable_types.h>
38 #include <asm/export.h>
39 #include <asm/frame.h>
40 #include <asm/nospec-branch.h>
41 #include <linux/err.h>
46 .section .entry.text, "ax"
48 #ifdef CONFIG_PARAVIRT
49 ENTRY(native_usergs_sysret64)
53 END(native_usergs_sysret64)
54 #endif /* CONFIG_PARAVIRT */
56 .macro TRACE_IRQS_FLAGS flags:req
57 #ifdef CONFIG_TRACE_IRQFLAGS
58 btl $9, \flags /* interrupts off? */
65 .macro TRACE_IRQS_IRETQ
66 TRACE_IRQS_FLAGS EFLAGS(%rsp)
70 * When dynamic function tracer is enabled it will add a breakpoint
71 * to all locations that it is about to modify, sync CPUs, update
72 * all the code, sync CPUs, then remove the breakpoints. In this time
73 * if lockdep is enabled, it might jump back into the debug handler
74 * outside the updating of the IST protection. (TRACE_IRQS_ON/OFF).
76 * We need to change the IDT table before calling TRACE_IRQS_ON/OFF to
77 * make sure the stack pointer does not get reset back to the top
78 * of the debug stack, and instead just reuses the current stack.
80 #if defined(CONFIG_DYNAMIC_FTRACE) && defined(CONFIG_TRACE_IRQFLAGS)
82 .macro TRACE_IRQS_OFF_DEBUG
83 call debug_stack_set_zero
85 call debug_stack_reset
88 .macro TRACE_IRQS_ON_DEBUG
89 call debug_stack_set_zero
91 call debug_stack_reset
94 .macro TRACE_IRQS_IRETQ_DEBUG
95 bt $9, EFLAGS(%rsp) /* interrupts off? */
102 # define TRACE_IRQS_OFF_DEBUG TRACE_IRQS_OFF
103 # define TRACE_IRQS_ON_DEBUG TRACE_IRQS_ON
104 # define TRACE_IRQS_IRETQ_DEBUG TRACE_IRQS_IRETQ
108 * 64-bit SYSCALL instruction entry. Up to 6 arguments in registers.
110 * This is the only entry point used for 64-bit system calls. The
111 * hardware interface is reasonably well designed and the register to
112 * argument mapping Linux uses fits well with the registers that are
113 * available when SYSCALL is used.
115 * SYSCALL instructions can be found inlined in libc implementations as
116 * well as some other programs and libraries. There are also a handful
117 * of SYSCALL instructions in the vDSO used, for example, as a
118 * clock_gettimeofday fallback.
120 * 64-bit SYSCALL saves rip to rcx, clears rflags.RF, then saves rflags to r11,
121 * then loads new ss, cs, and rip from previously programmed MSRs.
122 * rflags gets masked by a value from another MSR (so CLD and CLAC
123 * are not needed). SYSCALL does not save anything on the stack
124 * and does not change rsp.
126 * Registers on entry:
127 * rax system call number
129 * r11 saved rflags (note: r11 is callee-clobbered register in C ABI)
133 * r10 arg3 (needs to be moved to rcx to conform to C ABI)
136 * (note: r12-r15, rbp, rbx are callee-preserved in C ABI)
138 * Only called from user space.
140 * When user can change pt_regs->foo always force IRET. That is because
141 * it deals with uncanonical addresses better. SYSRET has trouble
142 * with them due to bugs in both AMD and Intel CPUs.
145 .pushsection .entry_trampoline, "ax"
148 * The code in here gets remapped into cpu_entry_area's trampoline. This means
149 * that the assembler and linker have the wrong idea as to where this code
150 * lives (and, in fact, it's mapped more than once, so it's not even at a
151 * fixed address). So we can't reference any symbols outside the entry
152 * trampoline and expect it to work.
154 * Instead, we carefully abuse %rip-relative addressing.
155 * _entry_trampoline(%rip) refers to the start of the remapped) entry
156 * trampoline. We can thus find cpu_entry_area with this macro:
159 #define CPU_ENTRY_AREA \
160 _entry_trampoline - CPU_ENTRY_AREA_entry_trampoline(%rip)
162 /* The top word of the SYSENTER stack is hot and is usable as scratch space. */
163 #define RSP_SCRATCH CPU_ENTRY_AREA_entry_stack + \
164 SIZEOF_entry_stack - 8 + CPU_ENTRY_AREA
166 ENTRY(entry_SYSCALL_64_trampoline)
170 /* Stash the user RSP. */
171 movq %rsp, RSP_SCRATCH
173 /* Note: using %rsp as a scratch reg. */
174 SWITCH_TO_KERNEL_CR3 scratch_reg=%rsp
176 /* Load the top of the task stack into RSP */
177 movq CPU_ENTRY_AREA_tss + TSS_sp1 + CPU_ENTRY_AREA, %rsp
179 /* Start building the simulated IRET frame. */
180 pushq $__USER_DS /* pt_regs->ss */
181 pushq RSP_SCRATCH /* pt_regs->sp */
182 pushq %r11 /* pt_regs->flags */
183 pushq $__USER_CS /* pt_regs->cs */
184 pushq %rcx /* pt_regs->ip */
187 * x86 lacks a near absolute jump, and we can't jump to the real
188 * entry text with a relative jump. We could push the target
189 * address and then use retq, but this destroys the pipeline on
190 * many CPUs (wasting over 20 cycles on Sandy Bridge). Instead,
191 * spill RDI and restore it in a second-stage trampoline.
194 movq $entry_SYSCALL_64_stage2, %rdi
196 END(entry_SYSCALL_64_trampoline)
200 ENTRY(entry_SYSCALL_64_stage2)
203 jmp entry_SYSCALL_64_after_hwframe
204 END(entry_SYSCALL_64_stage2)
206 ENTRY(entry_SYSCALL_64)
209 * Interrupts are off on entry.
210 * We do not frame this tiny irq-off block with TRACE_IRQS_OFF/ON,
211 * it is too small to ever cause noticeable irq latency.
216 * This path is only taken when PAGE_TABLE_ISOLATION is disabled so it
217 * is not required to switch CR3.
219 movq %rsp, PER_CPU_VAR(rsp_scratch)
220 movq PER_CPU_VAR(cpu_current_top_of_stack), %rsp
222 /* Construct struct pt_regs on stack */
223 pushq $__USER_DS /* pt_regs->ss */
224 pushq PER_CPU_VAR(rsp_scratch) /* pt_regs->sp */
225 pushq %r11 /* pt_regs->flags */
226 pushq $__USER_CS /* pt_regs->cs */
227 pushq %rcx /* pt_regs->ip */
228 GLOBAL(entry_SYSCALL_64_after_hwframe)
229 pushq %rax /* pt_regs->orig_ax */
231 PUSH_AND_CLEAR_REGS rax=$-ENOSYS
237 call do_syscall_64 /* returns with IRQs disabled */
239 TRACE_IRQS_IRETQ /* we're about to change IF */
242 * Try to use SYSRET instead of IRET if we're returning to
243 * a completely clean 64-bit userspace context. If we're not,
244 * go to the slow exit path.
249 cmpq %rcx, %r11 /* SYSRET requires RCX == RIP */
250 jne swapgs_restore_regs_and_return_to_usermode
253 * On Intel CPUs, SYSRET with non-canonical RCX/RIP will #GP
254 * in kernel space. This essentially lets the user take over
255 * the kernel, since userspace controls RSP.
257 * If width of "canonical tail" ever becomes variable, this will need
258 * to be updated to remain correct on both old and new CPUs.
260 * Change top bits to match most significant bit (47th or 56th bit
261 * depending on paging mode) in the address.
263 shl $(64 - (__VIRTUAL_MASK_SHIFT+1)), %rcx
264 sar $(64 - (__VIRTUAL_MASK_SHIFT+1)), %rcx
266 /* If this changed %rcx, it was not canonical */
268 jne swapgs_restore_regs_and_return_to_usermode
270 cmpq $__USER_CS, CS(%rsp) /* CS must match SYSRET */
271 jne swapgs_restore_regs_and_return_to_usermode
274 cmpq %r11, EFLAGS(%rsp) /* R11 == RFLAGS */
275 jne swapgs_restore_regs_and_return_to_usermode
278 * SYSCALL clears RF when it saves RFLAGS in R11 and SYSRET cannot
279 * restore RF properly. If the slowpath sets it for whatever reason, we
280 * need to restore it correctly.
282 * SYSRET can restore TF, but unlike IRET, restoring TF results in a
283 * trap from userspace immediately after SYSRET. This would cause an
284 * infinite loop whenever #DB happens with register state that satisfies
285 * the opportunistic SYSRET conditions. For example, single-stepping
288 * movq $stuck_here, %rcx
293 * would never get past 'stuck_here'.
295 testq $(X86_EFLAGS_RF|X86_EFLAGS_TF), %r11
296 jnz swapgs_restore_regs_and_return_to_usermode
298 /* nothing to check for RSP */
300 cmpq $__USER_DS, SS(%rsp) /* SS must match SYSRET */
301 jne swapgs_restore_regs_and_return_to_usermode
304 * We win! This label is here just for ease of understanding
305 * perf profiles. Nothing jumps here.
307 syscall_return_via_sysret:
308 /* rcx and r11 are already restored (see code above) */
310 POP_REGS pop_rdi=0 skip_r11rcx=1
313 * Now all regs are restored except RSP and RDI.
314 * Save old stack pointer and switch to trampoline stack.
317 movq PER_CPU_VAR(cpu_tss_rw + TSS_sp0), %rsp
319 pushq RSP-RDI(%rdi) /* RSP */
320 pushq (%rdi) /* RDI */
323 * We are on the trampoline stack. All regs except RDI are live.
324 * We can do future final exit work right here.
326 SWITCH_TO_USER_CR3_STACK scratch_reg=%rdi
331 END(entry_SYSCALL_64)
337 ENTRY(__switch_to_asm)
340 * Save callee-saved registers
341 * This must match the order in inactive_task_frame
351 movq %rsp, TASK_threadsp(%rdi)
352 movq TASK_threadsp(%rsi), %rsp
354 #ifdef CONFIG_CC_STACKPROTECTOR
355 movq TASK_stack_canary(%rsi), %rbx
356 movq %rbx, PER_CPU_VAR(irq_stack_union)+stack_canary_offset
359 #ifdef CONFIG_RETPOLINE
361 * When switching from a shallower to a deeper call stack
362 * the RSB may either underflow or use entries populated
363 * with userspace addresses. On CPUs where those concerns
364 * exist, overwrite the RSB with entries which capture
365 * speculative execution to prevent attack.
367 FILL_RETURN_BUFFER %r12, RSB_CLEAR_LOOPS, X86_FEATURE_RSB_CTXSW
370 /* restore callee-saved registers */
382 * A newly forked process directly context switches into this address.
384 * rax: prev task we switched from
385 * rbx: kernel thread func (NULL for user thread)
386 * r12: kernel thread arg
391 call schedule_tail /* rdi: 'prev' task parameter */
393 testq %rbx, %rbx /* from kernel_thread? */
394 jnz 1f /* kernel threads are uncommon */
399 call syscall_return_slowpath /* returns with IRQs disabled */
400 TRACE_IRQS_ON /* user mode is traced as IRQS on */
401 jmp swapgs_restore_regs_and_return_to_usermode
408 * A kernel thread is allowed to return here after successfully
409 * calling do_execve(). Exit to userspace to complete the execve()
417 * Build the entry stubs with some assembler magic.
418 * We pack 1 stub into every 8-byte block.
421 ENTRY(irq_entries_start)
422 vector=FIRST_EXTERNAL_VECTOR
423 .rept (FIRST_SYSTEM_VECTOR - FIRST_EXTERNAL_VECTOR)
424 UNWIND_HINT_IRET_REGS
425 pushq $(~vector+0x80) /* Note: always in signed byte range */
430 END(irq_entries_start)
432 .macro DEBUG_ENTRY_ASSERT_IRQS_OFF
433 #ifdef CONFIG_DEBUG_ENTRY
436 testl $X86_EFLAGS_IF, %eax
445 * Enters the IRQ stack if we're not already using it. NMI-safe. Clobbers
446 * flags and puts old RSP into old_rsp, and leaves all other GPRs alone.
447 * Requires kernel GSBASE.
449 * The invariant is that, if irq_count != -1, then the IRQ stack is in use.
451 .macro ENTER_IRQ_STACK regs=1 old_rsp save_ret=0
452 DEBUG_ENTRY_ASSERT_IRQS_OFF
456 * If save_ret is set, the original stack contains one additional
457 * entry -- the return address. Therefore, move the address one
458 * entry below %rsp to \old_rsp.
460 leaq 8(%rsp), \old_rsp
466 UNWIND_HINT_REGS base=\old_rsp
469 incl PER_CPU_VAR(irq_count)
470 jnz .Lirq_stack_push_old_rsp_\@
473 * Right now, if we just incremented irq_count to zero, we've
474 * claimed the IRQ stack but we haven't switched to it yet.
476 * If anything is added that can interrupt us here without using IST,
477 * it must be *extremely* careful to limit its stack usage. This
478 * could include kprobes and a hypothetical future IST-less #DB
481 * The OOPS unwinder relies on the word at the top of the IRQ
482 * stack linking back to the previous RSP for the entire time we're
483 * on the IRQ stack. For this to work reliably, we need to write
484 * it before we actually move ourselves to the IRQ stack.
487 movq \old_rsp, PER_CPU_VAR(irq_stack_union + IRQ_STACK_SIZE - 8)
488 movq PER_CPU_VAR(irq_stack_ptr), %rsp
490 #ifdef CONFIG_DEBUG_ENTRY
492 * If the first movq above becomes wrong due to IRQ stack layout
493 * changes, the only way we'll notice is if we try to unwind right
494 * here. Assert that we set up the stack right to catch this type
497 cmpq -8(%rsp), \old_rsp
498 je .Lirq_stack_okay\@
503 .Lirq_stack_push_old_rsp_\@:
507 UNWIND_HINT_REGS indirect=1
512 * Push the return address to the stack. This return address can
513 * be found at the "real" original RSP, which was offset by 8 at
514 * the beginning of this macro.
521 * Undoes ENTER_IRQ_STACK.
523 .macro LEAVE_IRQ_STACK regs=1
524 DEBUG_ENTRY_ASSERT_IRQS_OFF
525 /* We need to be off the IRQ stack before decrementing irq_count. */
533 * As in ENTER_IRQ_STACK, irq_count == 0, we are still claiming
534 * the irq stack but we're not on it.
537 decl PER_CPU_VAR(irq_count)
541 * Interrupt entry helper function.
543 * Entry runs with interrupts off. Stack layout at entry:
544 * +----------------------------------------------------+
550 * +----------------------------------------------------+
551 * | regs->orig_ax = ~(interrupt number) |
552 * +----------------------------------------------------+
554 * +----------------------------------------------------+
556 ENTRY(interrupt_entry)
561 testb $3, CS-ORIG_RAX+8(%rsp)
566 * Switch to the thread stack. The IRET frame and orig_ax are
567 * on the stack, as well as the return address. RDI..R12 are
568 * not (yet) on the stack and space has not (yet) been
569 * allocated for them.
573 /* Need to switch before accessing the thread stack. */
574 SWITCH_TO_KERNEL_CR3 scratch_reg=%rdi
576 movq PER_CPU_VAR(cpu_current_top_of_stack), %rsp
579 * We have RDI, return address, and orig_ax on the stack on
580 * top of the IRET frame. That means offset=24
582 UNWIND_HINT_IRET_REGS base=%rdi offset=24
584 pushq 7*8(%rdi) /* regs->ss */
585 pushq 6*8(%rdi) /* regs->rsp */
586 pushq 5*8(%rdi) /* regs->eflags */
587 pushq 4*8(%rdi) /* regs->cs */
588 pushq 3*8(%rdi) /* regs->ip */
589 pushq 2*8(%rdi) /* regs->orig_ax */
590 pushq 8(%rdi) /* return address */
596 PUSH_AND_CLEAR_REGS save_ret=1
597 ENCODE_FRAME_POINTER 8
603 * IRQ from user mode.
605 * We need to tell lockdep that IRQs are off. We can't do this until
606 * we fix gsbase, and we should do it before enter_from_user_mode
607 * (which can take locks). Since TRACE_IRQS_OFF is idempotent,
608 * the simplest way to handle it is to just call it twice if
609 * we enter from user mode. There's no reason to optimize this since
610 * TRACE_IRQS_OFF is a no-op if lockdep is off.
614 CALL_enter_from_user_mode
617 ENTER_IRQ_STACK old_rsp=%rdi save_ret=1
618 /* We entered an interrupt context - irqs are off: */
625 /* Interrupt entry/exit. */
628 * The interrupt stubs push (~vector+0x80) onto the stack and
629 * then jump to common_interrupt.
631 .p2align CONFIG_X86_L1_CACHE_SHIFT
633 addq $-0x80, (%rsp) /* Adjust vector to [-256, -1] range */
635 UNWIND_HINT_REGS indirect=1
636 call do_IRQ /* rdi points to pt_regs */
637 /* 0(%rsp): old RSP */
639 DISABLE_INTERRUPTS(CLBR_ANY)
647 /* Interrupt came from user space */
650 call prepare_exit_to_usermode
653 GLOBAL(swapgs_restore_regs_and_return_to_usermode)
654 #ifdef CONFIG_DEBUG_ENTRY
655 /* Assert that pt_regs indicates user mode. */
664 * The stack is now user RDI, orig_ax, RIP, CS, EFLAGS, RSP, SS.
665 * Save old stack pointer and switch to trampoline stack.
668 movq PER_CPU_VAR(cpu_tss_rw + TSS_sp0), %rsp
670 /* Copy the IRET frame to the trampoline stack. */
671 pushq 6*8(%rdi) /* SS */
672 pushq 5*8(%rdi) /* RSP */
673 pushq 4*8(%rdi) /* EFLAGS */
674 pushq 3*8(%rdi) /* CS */
675 pushq 2*8(%rdi) /* RIP */
677 /* Push user RDI on the trampoline stack. */
681 * We are on the trampoline stack. All regs except RDI are live.
682 * We can do future final exit work right here.
685 SWITCH_TO_USER_CR3_STACK scratch_reg=%rdi
693 /* Returning to kernel space */
695 #ifdef CONFIG_PREEMPT
696 /* Interrupts are off */
697 /* Check if we need preemption */
698 bt $9, EFLAGS(%rsp) /* were interrupts off? */
700 0: cmpl $0, PER_CPU_VAR(__preempt_count)
702 call preempt_schedule_irq
707 * The iretq could re-enable interrupts:
711 GLOBAL(restore_regs_and_return_to_kernel)
712 #ifdef CONFIG_DEBUG_ENTRY
713 /* Assert that pt_regs indicates kernel mode. */
720 addq $8, %rsp /* skip regs->orig_ax */
722 * ARCH_HAS_MEMBARRIER_SYNC_CORE rely on IRET core serialization
723 * when returning from IPI handler.
728 UNWIND_HINT_IRET_REGS
730 * Are we returning to a stack segment from the LDT? Note: in
731 * 64-bit mode SS:RSP on the exception stack is always valid.
733 #ifdef CONFIG_X86_ESPFIX64
734 testb $4, (SS-RIP)(%rsp)
735 jnz native_irq_return_ldt
738 .global native_irq_return_iret
739 native_irq_return_iret:
741 * This may fault. Non-paranoid faults on return to userspace are
742 * handled by fixup_bad_iret. These include #SS, #GP, and #NP.
743 * Double-faults due to espfix64 are handled in do_double_fault.
744 * Other faults here are fatal.
748 #ifdef CONFIG_X86_ESPFIX64
749 native_irq_return_ldt:
751 * We are running with user GSBASE. All GPRs contain their user
752 * values. We have a percpu ESPFIX stack that is eight slots
753 * long (see ESPFIX_STACK_SIZE). espfix_waddr points to the bottom
754 * of the ESPFIX stack.
756 * We clobber RAX and RDI in this code. We stash RDI on the
757 * normal stack and RAX on the ESPFIX stack.
759 * The ESPFIX stack layout we set up looks like this:
761 * --- top of ESPFIX stack ---
766 * RIP <-- RSP points here when we're done
767 * RAX <-- espfix_waddr points here
768 * --- bottom of ESPFIX stack ---
771 pushq %rdi /* Stash user RDI */
772 SWAPGS /* to kernel GS */
773 SWITCH_TO_KERNEL_CR3 scratch_reg=%rdi /* to kernel CR3 */
775 movq PER_CPU_VAR(espfix_waddr), %rdi
776 movq %rax, (0*8)(%rdi) /* user RAX */
777 movq (1*8)(%rsp), %rax /* user RIP */
778 movq %rax, (1*8)(%rdi)
779 movq (2*8)(%rsp), %rax /* user CS */
780 movq %rax, (2*8)(%rdi)
781 movq (3*8)(%rsp), %rax /* user RFLAGS */
782 movq %rax, (3*8)(%rdi)
783 movq (5*8)(%rsp), %rax /* user SS */
784 movq %rax, (5*8)(%rdi)
785 movq (4*8)(%rsp), %rax /* user RSP */
786 movq %rax, (4*8)(%rdi)
787 /* Now RAX == RSP. */
789 andl $0xffff0000, %eax /* RAX = (RSP & 0xffff0000) */
792 * espfix_stack[31:16] == 0. The page tables are set up such that
793 * (espfix_stack | (X & 0xffff0000)) points to a read-only alias of
794 * espfix_waddr for any X. That is, there are 65536 RO aliases of
795 * the same page. Set up RSP so that RSP[31:16] contains the
796 * respective 16 bits of the /userspace/ RSP and RSP nonetheless
797 * still points to an RO alias of the ESPFIX stack.
799 orq PER_CPU_VAR(espfix_stack), %rax
801 SWITCH_TO_USER_CR3_STACK scratch_reg=%rdi
802 SWAPGS /* to user GS */
803 popq %rdi /* Restore user RDI */
806 UNWIND_HINT_IRET_REGS offset=8
809 * At this point, we cannot write to the stack any more, but we can
812 popq %rax /* Restore user RAX */
815 * RSP now points to an ordinary IRET frame, except that the page
816 * is read-only and RSP[31:16] are preloaded with the userspace
817 * values. We can now IRET back to userspace.
819 jmp native_irq_return_iret
821 END(common_interrupt)
826 .macro apicinterrupt3 num sym do_sym
828 UNWIND_HINT_IRET_REGS
832 UNWIND_HINT_REGS indirect=1
833 call \do_sym /* rdi points to pt_regs */
838 /* Make sure APIC interrupt handlers end up in the irqentry section: */
839 #define PUSH_SECTION_IRQENTRY .pushsection .irqentry.text, "ax"
840 #define POP_SECTION_IRQENTRY .popsection
842 .macro apicinterrupt num sym do_sym
843 PUSH_SECTION_IRQENTRY
844 apicinterrupt3 \num \sym \do_sym
849 apicinterrupt3 IRQ_MOVE_CLEANUP_VECTOR irq_move_cleanup_interrupt smp_irq_move_cleanup_interrupt
850 apicinterrupt3 REBOOT_VECTOR reboot_interrupt smp_reboot_interrupt
854 apicinterrupt3 UV_BAU_MESSAGE uv_bau_message_intr1 uv_bau_message_interrupt
857 apicinterrupt LOCAL_TIMER_VECTOR apic_timer_interrupt smp_apic_timer_interrupt
858 apicinterrupt X86_PLATFORM_IPI_VECTOR x86_platform_ipi smp_x86_platform_ipi
860 #ifdef CONFIG_HAVE_KVM
861 apicinterrupt3 POSTED_INTR_VECTOR kvm_posted_intr_ipi smp_kvm_posted_intr_ipi
862 apicinterrupt3 POSTED_INTR_WAKEUP_VECTOR kvm_posted_intr_wakeup_ipi smp_kvm_posted_intr_wakeup_ipi
863 apicinterrupt3 POSTED_INTR_NESTED_VECTOR kvm_posted_intr_nested_ipi smp_kvm_posted_intr_nested_ipi
866 #ifdef CONFIG_X86_MCE_THRESHOLD
867 apicinterrupt THRESHOLD_APIC_VECTOR threshold_interrupt smp_threshold_interrupt
870 #ifdef CONFIG_X86_MCE_AMD
871 apicinterrupt DEFERRED_ERROR_VECTOR deferred_error_interrupt smp_deferred_error_interrupt
874 #ifdef CONFIG_X86_THERMAL_VECTOR
875 apicinterrupt THERMAL_APIC_VECTOR thermal_interrupt smp_thermal_interrupt
879 apicinterrupt CALL_FUNCTION_SINGLE_VECTOR call_function_single_interrupt smp_call_function_single_interrupt
880 apicinterrupt CALL_FUNCTION_VECTOR call_function_interrupt smp_call_function_interrupt
881 apicinterrupt RESCHEDULE_VECTOR reschedule_interrupt smp_reschedule_interrupt
884 apicinterrupt ERROR_APIC_VECTOR error_interrupt smp_error_interrupt
885 apicinterrupt SPURIOUS_APIC_VECTOR spurious_interrupt smp_spurious_interrupt
887 #ifdef CONFIG_IRQ_WORK
888 apicinterrupt IRQ_WORK_VECTOR irq_work_interrupt smp_irq_work_interrupt
892 * Exception entry points.
894 #define CPU_TSS_IST(x) PER_CPU_VAR(cpu_tss_rw) + (TSS_ist + ((x) - 1) * 8)
896 .macro idtentry sym do_sym has_error_code:req paranoid=0 shift_ist=-1
898 UNWIND_HINT_IRET_REGS offset=\has_error_code*8
901 .if \shift_ist != -1 && \paranoid == 0
902 .error "using shift_ist requires paranoid=1"
907 .if \has_error_code == 0
908 pushq $-1 /* ORIG_RAX: no syscall to restart */
912 testb $3, CS-ORIG_RAX(%rsp) /* If coming from userspace, switch stacks */
913 jnz .Lfrom_usermode_switch_stack_\@
922 /* returned flag: ebx=0: need swapgs on exit, ebx=1: don't need it */
926 TRACE_IRQS_OFF_DEBUG /* reload IDT in case of recursion */
932 movq %rsp, %rdi /* pt_regs pointer */
935 movq ORIG_RAX(%rsp), %rsi /* get error code */
936 movq $-1, ORIG_RAX(%rsp) /* no syscall to restart */
938 xorl %esi, %esi /* no error code */
942 subq $EXCEPTION_STKSZ, CPU_TSS_IST(\shift_ist)
948 addq $EXCEPTION_STKSZ, CPU_TSS_IST(\shift_ist)
951 /* these procedures expect "no swapgs" flag in ebx */
960 * Entry from userspace. Switch stacks and treat it
961 * as a normal entry. This means that paranoid handlers
962 * run in real process context if user_mode(regs).
964 .Lfrom_usermode_switch_stack_\@:
967 movq %rsp, %rdi /* pt_regs pointer */
970 movq ORIG_RAX(%rsp), %rsi /* get error code */
971 movq $-1, ORIG_RAX(%rsp) /* no syscall to restart */
973 xorl %esi, %esi /* no error code */
978 jmp error_exit /* %ebx: no swapgs flag */
983 idtentry divide_error do_divide_error has_error_code=0
984 idtentry overflow do_overflow has_error_code=0
985 idtentry bounds do_bounds has_error_code=0
986 idtentry invalid_op do_invalid_op has_error_code=0
987 idtentry device_not_available do_device_not_available has_error_code=0
988 idtentry double_fault do_double_fault has_error_code=1 paranoid=2
989 idtentry coprocessor_segment_overrun do_coprocessor_segment_overrun has_error_code=0
990 idtentry invalid_TSS do_invalid_TSS has_error_code=1
991 idtentry segment_not_present do_segment_not_present has_error_code=1
992 idtentry spurious_interrupt_bug do_spurious_interrupt_bug has_error_code=0
993 idtentry coprocessor_error do_coprocessor_error has_error_code=0
994 idtentry alignment_check do_alignment_check has_error_code=1
995 idtentry simd_coprocessor_error do_simd_coprocessor_error has_error_code=0
999 * Reload gs selector with exception handling
1002 ENTRY(native_load_gs_index)
1005 DISABLE_INTERRUPTS(CLBR_ANY & ~CLBR_RDI)
1010 2: ALTERNATIVE "", "mfence", X86_BUG_SWAPGS_FENCE
1012 TRACE_IRQS_FLAGS (%rsp)
1016 ENDPROC(native_load_gs_index)
1017 EXPORT_SYMBOL(native_load_gs_index)
1019 _ASM_EXTABLE(.Lgs_change, bad_gs)
1020 .section .fixup, "ax"
1021 /* running with kernelgs */
1023 SWAPGS /* switch back to user gs */
1025 /* This can't be a string because the preprocessor needs to see it. */
1026 movl $__USER_DS, %eax
1029 ALTERNATIVE "", "ZAP_GS", X86_BUG_NULL_SEG
1035 /* Call softirq on interrupt stack. Interrupts are off. */
1036 ENTRY(do_softirq_own_stack)
1039 ENTER_IRQ_STACK regs=0 old_rsp=%r11
1041 LEAVE_IRQ_STACK regs=0
1044 ENDPROC(do_softirq_own_stack)
1047 idtentry hypervisor_callback xen_do_hypervisor_callback has_error_code=0
1050 * A note on the "critical region" in our callback handler.
1051 * We want to avoid stacking callback handlers due to events occurring
1052 * during handling of the last event. To do this, we keep events disabled
1053 * until we've done all processing. HOWEVER, we must enable events before
1054 * popping the stack frame (can't be done atomically) and so it would still
1055 * be possible to get enough handler activations to overflow the stack.
1056 * Although unlikely, bugs of that kind are hard to track down, so we'd
1057 * like to avoid the possibility.
1058 * So, on entry to the handler we detect whether we interrupted an
1059 * existing activation in its critical region -- if so, we pop the current
1060 * activation and restart the handler using the previous one.
1062 ENTRY(xen_do_hypervisor_callback) /* do_hypervisor_callback(struct *pt_regs) */
1065 * Since we don't modify %rdi, evtchn_do_upall(struct *pt_regs) will
1066 * see the correct pointer to the pt_regs
1069 movq %rdi, %rsp /* we don't return, adjust the stack frame */
1072 ENTER_IRQ_STACK old_rsp=%r10
1073 call xen_evtchn_do_upcall
1076 #ifndef CONFIG_PREEMPT
1077 call xen_maybe_preempt_hcall
1080 END(xen_do_hypervisor_callback)
1083 * Hypervisor uses this for application faults while it executes.
1084 * We get here for two reasons:
1085 * 1. Fault while reloading DS, ES, FS or GS
1086 * 2. Fault while executing IRET
1087 * Category 1 we do not need to fix up as Xen has already reloaded all segment
1088 * registers that could be reloaded and zeroed the others.
1089 * Category 2 we fix up by killing the current process. We cannot use the
1090 * normal Linux return path in this case because if we use the IRET hypercall
1091 * to pop the stack frame we end up in an infinite loop of failsafe callbacks.
1092 * We distinguish between categories by comparing each saved segment register
1093 * with its current contents: any discrepancy means we in category 1.
1095 ENTRY(xen_failsafe_callback)
1098 cmpw %cx, 0x10(%rsp)
1101 cmpw %cx, 0x18(%rsp)
1104 cmpw %cx, 0x20(%rsp)
1107 cmpw %cx, 0x28(%rsp)
1109 /* All segments match their saved values => Category 2 (Bad IRET). */
1114 UNWIND_HINT_IRET_REGS offset=8
1115 jmp general_protection
1116 1: /* Segment mismatch => Category 1 (Bad segment). Retry the IRET. */
1120 UNWIND_HINT_IRET_REGS
1121 pushq $-1 /* orig_ax = -1 => not a system call */
1123 ENCODE_FRAME_POINTER
1125 END(xen_failsafe_callback)
1127 apicinterrupt3 HYPERVISOR_CALLBACK_VECTOR \
1128 xen_hvm_callback_vector xen_evtchn_do_upcall
1130 #endif /* CONFIG_XEN */
1132 #if IS_ENABLED(CONFIG_HYPERV)
1133 apicinterrupt3 HYPERVISOR_CALLBACK_VECTOR \
1134 hyperv_callback_vector hyperv_vector_handler
1136 apicinterrupt3 HYPERV_REENLIGHTENMENT_VECTOR \
1137 hyperv_reenlightenment_vector hyperv_reenlightenment_intr
1138 #endif /* CONFIG_HYPERV */
1140 idtentry debug do_debug has_error_code=0 paranoid=1 shift_ist=DEBUG_STACK
1141 idtentry int3 do_int3 has_error_code=0 paranoid=1 shift_ist=DEBUG_STACK
1142 idtentry stack_segment do_stack_segment has_error_code=1
1145 idtentry xennmi do_nmi has_error_code=0
1146 idtentry xendebug do_debug has_error_code=0
1147 idtentry xenint3 do_int3 has_error_code=0
1150 idtentry general_protection do_general_protection has_error_code=1
1151 idtentry page_fault do_page_fault has_error_code=1
1153 #ifdef CONFIG_KVM_GUEST
1154 idtentry async_page_fault do_async_page_fault has_error_code=1
1157 #ifdef CONFIG_X86_MCE
1158 idtentry machine_check do_mce has_error_code=0 paranoid=1
1162 * Save all registers in pt_regs, and switch gs if needed.
1163 * Use slow, but surefire "are we in kernel?" check.
1164 * Return: ebx=0: need swapgs on exit, ebx=1: otherwise
1166 ENTRY(paranoid_entry)
1169 PUSH_AND_CLEAR_REGS save_ret=1
1170 ENCODE_FRAME_POINTER 8
1172 movl $MSR_GS_BASE, %ecx
1175 js 1f /* negative -> in kernel */
1180 SAVE_AND_SWITCH_TO_KERNEL_CR3 scratch_reg=%rax save_reg=%r14
1186 * "Paranoid" exit path from exception stack. This is invoked
1187 * only on return from non-NMI IST interrupts that came
1188 * from kernel space.
1190 * We may be returning to very strange contexts (e.g. very early
1191 * in syscall entry), so checking for preemption here would
1192 * be complicated. Fortunately, we there's no good reason
1193 * to try to handle preemption here.
1195 * On entry, ebx is "no swapgs" flag (1: don't need swapgs, 0: need it)
1197 ENTRY(paranoid_exit)
1199 DISABLE_INTERRUPTS(CLBR_ANY)
1200 TRACE_IRQS_OFF_DEBUG
1201 testl %ebx, %ebx /* swapgs needed? */
1202 jnz .Lparanoid_exit_no_swapgs
1204 RESTORE_CR3 scratch_reg=%rbx save_reg=%r14
1206 jmp .Lparanoid_exit_restore
1207 .Lparanoid_exit_no_swapgs:
1208 TRACE_IRQS_IRETQ_DEBUG
1209 RESTORE_CR3 scratch_reg=%rbx save_reg=%r14
1210 .Lparanoid_exit_restore:
1211 jmp restore_regs_and_return_to_kernel
1215 * Save all registers in pt_regs, and switch GS if needed.
1216 * Return: EBX=0: came from user mode; EBX=1: otherwise
1221 PUSH_AND_CLEAR_REGS save_ret=1
1222 ENCODE_FRAME_POINTER 8
1223 testb $3, CS+8(%rsp)
1224 jz .Lerror_kernelspace
1227 * We entered from user mode or we're pretending to have entered
1228 * from user mode due to an IRET fault.
1231 /* We have user CR3. Change to kernel CR3. */
1232 SWITCH_TO_KERNEL_CR3 scratch_reg=%rax
1234 .Lerror_entry_from_usermode_after_swapgs:
1235 /* Put us onto the real thread stack. */
1236 popq %r12 /* save return addr in %12 */
1237 movq %rsp, %rdi /* arg0 = pt_regs pointer */
1239 movq %rax, %rsp /* switch stack */
1240 ENCODE_FRAME_POINTER
1244 * We need to tell lockdep that IRQs are off. We can't do this until
1245 * we fix gsbase, and we should do it before enter_from_user_mode
1246 * (which can take locks).
1249 CALL_enter_from_user_mode
1257 * There are two places in the kernel that can potentially fault with
1258 * usergs. Handle them here. B stepping K8s sometimes report a
1259 * truncated RIP for IRET exceptions returning to compat mode. Check
1260 * for these here too.
1262 .Lerror_kernelspace:
1264 leaq native_irq_return_iret(%rip), %rcx
1265 cmpq %rcx, RIP+8(%rsp)
1267 movl %ecx, %eax /* zero extend */
1268 cmpq %rax, RIP+8(%rsp)
1270 cmpq $.Lgs_change, RIP+8(%rsp)
1271 jne .Lerror_entry_done
1274 * hack: .Lgs_change can fail with user gsbase. If this happens, fix up
1275 * gsbase and proceed. We'll fix up the exception and land in
1276 * .Lgs_change's error handler with kernel gsbase.
1279 SWITCH_TO_KERNEL_CR3 scratch_reg=%rax
1280 jmp .Lerror_entry_done
1283 /* Fix truncated RIP */
1284 movq %rcx, RIP+8(%rsp)
1289 * We came from an IRET to user mode, so we have user
1290 * gsbase and CR3. Switch to kernel gsbase and CR3:
1293 SWITCH_TO_KERNEL_CR3 scratch_reg=%rax
1296 * Pretend that the exception came from user mode: set up pt_regs
1297 * as if we faulted immediately after IRET and clear EBX so that
1298 * error_exit knows that we will be returning to user mode.
1304 jmp .Lerror_entry_from_usermode_after_swapgs
1309 * On entry, EBX is a "return to kernel mode" flag:
1310 * 1: already in kernel mode, don't need SWAPGS
1311 * 0: user gsbase is loaded, we need SWAPGS and standard preparation for return to usermode
1315 DISABLE_INTERRUPTS(CLBR_ANY)
1323 * Runs on exception stack. Xen PV does not go through this path at all,
1324 * so we can use real assembly here.
1327 * %r14: Used to save/restore the CR3 of the interrupted context
1328 * when PAGE_TABLE_ISOLATION is in use. Do not clobber.
1331 UNWIND_HINT_IRET_REGS
1334 * We allow breakpoints in NMIs. If a breakpoint occurs, then
1335 * the iretq it performs will take us out of NMI context.
1336 * This means that we can have nested NMIs where the next
1337 * NMI is using the top of the stack of the previous NMI. We
1338 * can't let it execute because the nested NMI will corrupt the
1339 * stack of the previous NMI. NMI handlers are not re-entrant
1342 * To handle this case we do the following:
1343 * Check the a special location on the stack that contains
1344 * a variable that is set when NMIs are executing.
1345 * The interrupted task's stack is also checked to see if it
1347 * If the variable is not set and the stack is not the NMI
1349 * o Set the special variable on the stack
1350 * o Copy the interrupt frame into an "outermost" location on the
1352 * o Copy the interrupt frame into an "iret" location on the stack
1353 * o Continue processing the NMI
1354 * If the variable is set or the previous stack is the NMI stack:
1355 * o Modify the "iret" location to jump to the repeat_nmi
1356 * o return back to the first NMI
1358 * Now on exit of the first NMI, we first clear the stack variable
1359 * The NMI stack will tell any nested NMIs at that point that it is
1360 * nested. Then we pop the stack normally with iret, and if there was
1361 * a nested NMI that updated the copy interrupt stack frame, a
1362 * jump will be made to the repeat_nmi code that will handle the second
1365 * However, espfix prevents us from directly returning to userspace
1366 * with a single IRET instruction. Similarly, IRET to user mode
1367 * can fault. We therefore handle NMIs from user space like
1368 * other IST entries.
1373 /* Use %rdx as our temp variable throughout */
1376 testb $3, CS-RIP+8(%rsp)
1377 jz .Lnmi_from_kernel
1380 * NMI from user mode. We need to run on the thread stack, but we
1381 * can't go through the normal entry paths: NMIs are masked, and
1382 * we don't want to enable interrupts, because then we'll end
1383 * up in an awkward situation in which IRQs are on but NMIs
1386 * We also must not push anything to the stack before switching
1387 * stacks lest we corrupt the "NMI executing" variable.
1392 SWITCH_TO_KERNEL_CR3 scratch_reg=%rdx
1394 movq PER_CPU_VAR(cpu_current_top_of_stack), %rsp
1395 UNWIND_HINT_IRET_REGS base=%rdx offset=8
1396 pushq 5*8(%rdx) /* pt_regs->ss */
1397 pushq 4*8(%rdx) /* pt_regs->rsp */
1398 pushq 3*8(%rdx) /* pt_regs->flags */
1399 pushq 2*8(%rdx) /* pt_regs->cs */
1400 pushq 1*8(%rdx) /* pt_regs->rip */
1401 UNWIND_HINT_IRET_REGS
1402 pushq $-1 /* pt_regs->orig_ax */
1403 PUSH_AND_CLEAR_REGS rdx=(%rdx)
1404 ENCODE_FRAME_POINTER
1407 * At this point we no longer need to worry about stack damage
1408 * due to nesting -- we're on the normal thread stack and we're
1409 * done with the NMI stack.
1417 * Return back to user mode. We must *not* do the normal exit
1418 * work, because we don't want to enable interrupts.
1420 jmp swapgs_restore_regs_and_return_to_usermode
1424 * Here's what our stack frame will look like:
1425 * +---------------------------------------------------------+
1427 * | original Return RSP |
1428 * | original RFLAGS |
1431 * +---------------------------------------------------------+
1432 * | temp storage for rdx |
1433 * +---------------------------------------------------------+
1434 * | "NMI executing" variable |
1435 * +---------------------------------------------------------+
1436 * | iret SS } Copied from "outermost" frame |
1437 * | iret Return RSP } on each loop iteration; overwritten |
1438 * | iret RFLAGS } by a nested NMI to force another |
1439 * | iret CS } iteration if needed. |
1441 * +---------------------------------------------------------+
1442 * | outermost SS } initialized in first_nmi; |
1443 * | outermost Return RSP } will not be changed before |
1444 * | outermost RFLAGS } NMI processing is done. |
1445 * | outermost CS } Copied to "iret" frame on each |
1446 * | outermost RIP } iteration. |
1447 * +---------------------------------------------------------+
1449 * +---------------------------------------------------------+
1451 * The "original" frame is used by hardware. Before re-enabling
1452 * NMIs, we need to be done with it, and we need to leave enough
1453 * space for the asm code here.
1455 * We return by executing IRET while RSP points to the "iret" frame.
1456 * That will either return for real or it will loop back into NMI
1459 * The "outermost" frame is copied to the "iret" frame on each
1460 * iteration of the loop, so each iteration starts with the "iret"
1461 * frame pointing to the final return target.
1465 * Determine whether we're a nested NMI.
1467 * If we interrupted kernel code between repeat_nmi and
1468 * end_repeat_nmi, then we are a nested NMI. We must not
1469 * modify the "iret" frame because it's being written by
1470 * the outer NMI. That's okay; the outer NMI handler is
1471 * about to about to call do_nmi anyway, so we can just
1472 * resume the outer NMI.
1475 movq $repeat_nmi, %rdx
1478 movq $end_repeat_nmi, %rdx
1484 * Now check "NMI executing". If it's set, then we're nested.
1485 * This will not detect if we interrupted an outer NMI just
1492 * Now test if the previous stack was an NMI stack. This covers
1493 * the case where we interrupt an outer NMI after it clears
1494 * "NMI executing" but before IRET. We need to be careful, though:
1495 * there is one case in which RSP could point to the NMI stack
1496 * despite there being no NMI active: naughty userspace controls
1497 * RSP at the very beginning of the SYSCALL targets. We can
1498 * pull a fast one on naughty userspace, though: we program
1499 * SYSCALL to mask DF, so userspace cannot cause DF to be set
1500 * if it controls the kernel's RSP. We set DF before we clear
1504 /* Compare the NMI stack (rdx) with the stack we came from (4*8(%rsp)) */
1505 cmpq %rdx, 4*8(%rsp)
1506 /* If the stack pointer is above the NMI stack, this is a normal NMI */
1509 subq $EXCEPTION_STKSZ, %rdx
1510 cmpq %rdx, 4*8(%rsp)
1511 /* If it is below the NMI stack, it is a normal NMI */
1514 /* Ah, it is within the NMI stack. */
1516 testb $(X86_EFLAGS_DF >> 8), (3*8 + 1)(%rsp)
1517 jz first_nmi /* RSP was user controlled. */
1519 /* This is a nested NMI. */
1523 * Modify the "iret" frame to point to repeat_nmi, forcing another
1524 * iteration of NMI handling.
1527 leaq -10*8(%rsp), %rdx
1534 /* Put stack back */
1540 /* We are returning to kernel mode, so this cannot result in a fault. */
1547 /* Make room for "NMI executing". */
1550 /* Leave room for the "iret" frame */
1553 /* Copy the "original" frame to the "outermost" frame */
1557 UNWIND_HINT_IRET_REGS
1559 /* Everything up to here is safe from nested NMIs */
1561 #ifdef CONFIG_DEBUG_ENTRY
1563 * For ease of testing, unmask NMIs right away. Disabled by
1564 * default because IRET is very expensive.
1567 pushq %rsp /* RSP (minus 8 because of the previous push) */
1568 addq $8, (%rsp) /* Fix up RSP */
1570 pushq $__KERNEL_CS /* CS */
1572 iretq /* continues at repeat_nmi below */
1573 UNWIND_HINT_IRET_REGS
1579 * If there was a nested NMI, the first NMI's iret will return
1580 * here. But NMIs are still enabled and we can take another
1581 * nested NMI. The nested NMI checks the interrupted RIP to see
1582 * if it is between repeat_nmi and end_repeat_nmi, and if so
1583 * it will just return, as we are about to repeat an NMI anyway.
1584 * This makes it safe to copy to the stack frame that a nested
1587 * RSP is pointing to "outermost RIP". gsbase is unknown, but, if
1588 * we're repeating an NMI, gsbase has the same value that it had on
1589 * the first iteration. paranoid_entry will load the kernel
1590 * gsbase if needed before we call do_nmi. "NMI executing"
1593 movq $1, 10*8(%rsp) /* Set "NMI executing". */
1596 * Copy the "outermost" frame to the "iret" frame. NMIs that nest
1597 * here must not modify the "iret" frame while we're writing to
1598 * it or it will end up containing garbage.
1608 * Everything below this point can be preempted by a nested NMI.
1609 * If this happens, then the inner NMI will change the "iret"
1610 * frame to point back to repeat_nmi.
1612 pushq $-1 /* ORIG_RAX: no syscall to restart */
1615 * Use paranoid_entry to handle SWAPGS, but no need to use paranoid_exit
1616 * as we should not be calling schedule in NMI context.
1617 * Even with normal interrupts enabled. An NMI should not be
1618 * setting NEED_RESCHED or anything that normal interrupts and
1619 * exceptions might do.
1624 /* paranoidentry do_nmi, 0; without TRACE_IRQS_OFF */
1629 RESTORE_CR3 scratch_reg=%r15 save_reg=%r14
1631 testl %ebx, %ebx /* swapgs needed? */
1639 * Skip orig_ax and the "outermost" frame to point RSP at the "iret"
1640 * at the "iret" frame.
1645 * Clear "NMI executing". Set DF first so that we can easily
1646 * distinguish the remaining code between here and IRET from
1647 * the SYSCALL entry and exit paths.
1649 * We arguably should just inspect RIP instead, but I (Andy) wrote
1650 * this code when I had the misapprehension that Xen PV supported
1651 * NMIs, and Xen PV would break that approach.
1654 movq $0, 5*8(%rsp) /* clear "NMI executing" */
1657 * iretq reads the "iret" frame and exits the NMI stack in a
1658 * single instruction. We are returning to kernel mode, so this
1659 * cannot result in a fault. Similarly, we don't need to worry
1660 * about espfix64 on the way back to kernel mode.
1665 ENTRY(ignore_sysret)
1671 ENTRY(rewind_stack_do_exit)
1673 /* Prevent any naive code from trying to unwind to our caller. */
1676 movq PER_CPU_VAR(cpu_current_top_of_stack), %rax
1677 leaq -PTREGS_SIZE(%rax), %rsp
1678 UNWIND_HINT_FUNC sp_offset=PTREGS_SIZE
1681 END(rewind_stack_do_exit)