4 * Used to coordinate shared registers between HT threads or
5 * among events on a single PMU.
8 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
10 #include <linux/stddef.h>
11 #include <linux/types.h>
12 #include <linux/init.h>
13 #include <linux/slab.h>
14 #include <linux/export.h>
15 #include <linux/nmi.h>
17 #include <asm/cpufeature.h>
18 #include <asm/hardirq.h>
19 #include <asm/intel-family.h>
22 #include "../perf_event.h"
25 * Intel PerfMon, used on Core and later.
27 static u64 intel_perfmon_event_map
[PERF_COUNT_HW_MAX
] __read_mostly
=
29 [PERF_COUNT_HW_CPU_CYCLES
] = 0x003c,
30 [PERF_COUNT_HW_INSTRUCTIONS
] = 0x00c0,
31 [PERF_COUNT_HW_CACHE_REFERENCES
] = 0x4f2e,
32 [PERF_COUNT_HW_CACHE_MISSES
] = 0x412e,
33 [PERF_COUNT_HW_BRANCH_INSTRUCTIONS
] = 0x00c4,
34 [PERF_COUNT_HW_BRANCH_MISSES
] = 0x00c5,
35 [PERF_COUNT_HW_BUS_CYCLES
] = 0x013c,
36 [PERF_COUNT_HW_REF_CPU_CYCLES
] = 0x0300, /* pseudo-encoding */
39 static struct event_constraint intel_core_event_constraints
[] __read_mostly
=
41 INTEL_EVENT_CONSTRAINT(0x11, 0x2), /* FP_ASSIST */
42 INTEL_EVENT_CONSTRAINT(0x12, 0x2), /* MUL */
43 INTEL_EVENT_CONSTRAINT(0x13, 0x2), /* DIV */
44 INTEL_EVENT_CONSTRAINT(0x14, 0x1), /* CYCLES_DIV_BUSY */
45 INTEL_EVENT_CONSTRAINT(0x19, 0x2), /* DELAYED_BYPASS */
46 INTEL_EVENT_CONSTRAINT(0xc1, 0x1), /* FP_COMP_INSTR_RET */
50 static struct event_constraint intel_core2_event_constraints
[] __read_mostly
=
52 FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
53 FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
54 FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
55 INTEL_EVENT_CONSTRAINT(0x10, 0x1), /* FP_COMP_OPS_EXE */
56 INTEL_EVENT_CONSTRAINT(0x11, 0x2), /* FP_ASSIST */
57 INTEL_EVENT_CONSTRAINT(0x12, 0x2), /* MUL */
58 INTEL_EVENT_CONSTRAINT(0x13, 0x2), /* DIV */
59 INTEL_EVENT_CONSTRAINT(0x14, 0x1), /* CYCLES_DIV_BUSY */
60 INTEL_EVENT_CONSTRAINT(0x18, 0x1), /* IDLE_DURING_DIV */
61 INTEL_EVENT_CONSTRAINT(0x19, 0x2), /* DELAYED_BYPASS */
62 INTEL_EVENT_CONSTRAINT(0xa1, 0x1), /* RS_UOPS_DISPATCH_CYCLES */
63 INTEL_EVENT_CONSTRAINT(0xc9, 0x1), /* ITLB_MISS_RETIRED (T30-9) */
64 INTEL_EVENT_CONSTRAINT(0xcb, 0x1), /* MEM_LOAD_RETIRED */
68 static struct event_constraint intel_nehalem_event_constraints
[] __read_mostly
=
70 FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
71 FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
72 FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
73 INTEL_EVENT_CONSTRAINT(0x40, 0x3), /* L1D_CACHE_LD */
74 INTEL_EVENT_CONSTRAINT(0x41, 0x3), /* L1D_CACHE_ST */
75 INTEL_EVENT_CONSTRAINT(0x42, 0x3), /* L1D_CACHE_LOCK */
76 INTEL_EVENT_CONSTRAINT(0x43, 0x3), /* L1D_ALL_REF */
77 INTEL_EVENT_CONSTRAINT(0x48, 0x3), /* L1D_PEND_MISS */
78 INTEL_EVENT_CONSTRAINT(0x4e, 0x3), /* L1D_PREFETCH */
79 INTEL_EVENT_CONSTRAINT(0x51, 0x3), /* L1D */
80 INTEL_EVENT_CONSTRAINT(0x63, 0x3), /* CACHE_LOCK_CYCLES */
84 static struct extra_reg intel_nehalem_extra_regs
[] __read_mostly
=
86 /* must define OFFCORE_RSP_X first, see intel_fixup_er() */
87 INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0
, 0xffff, RSP_0
),
88 INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x100b),
92 static struct event_constraint intel_westmere_event_constraints
[] __read_mostly
=
94 FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
95 FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
96 FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
97 INTEL_EVENT_CONSTRAINT(0x51, 0x3), /* L1D */
98 INTEL_EVENT_CONSTRAINT(0x60, 0x1), /* OFFCORE_REQUESTS_OUTSTANDING */
99 INTEL_EVENT_CONSTRAINT(0x63, 0x3), /* CACHE_LOCK_CYCLES */
100 INTEL_EVENT_CONSTRAINT(0xb3, 0x1), /* SNOOPQ_REQUEST_OUTSTANDING */
104 static struct event_constraint intel_snb_event_constraints
[] __read_mostly
=
106 FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
107 FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
108 FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
109 INTEL_UEVENT_CONSTRAINT(0x04a3, 0xf), /* CYCLE_ACTIVITY.CYCLES_NO_DISPATCH */
110 INTEL_UEVENT_CONSTRAINT(0x05a3, 0xf), /* CYCLE_ACTIVITY.STALLS_L2_PENDING */
111 INTEL_UEVENT_CONSTRAINT(0x02a3, 0x4), /* CYCLE_ACTIVITY.CYCLES_L1D_PENDING */
112 INTEL_UEVENT_CONSTRAINT(0x06a3, 0x4), /* CYCLE_ACTIVITY.STALLS_L1D_PENDING */
113 INTEL_EVENT_CONSTRAINT(0x48, 0x4), /* L1D_PEND_MISS.PENDING */
114 INTEL_UEVENT_CONSTRAINT(0x01c0, 0x2), /* INST_RETIRED.PREC_DIST */
115 INTEL_EVENT_CONSTRAINT(0xcd, 0x8), /* MEM_TRANS_RETIRED.LOAD_LATENCY */
116 INTEL_UEVENT_CONSTRAINT(0x04a3, 0xf), /* CYCLE_ACTIVITY.CYCLES_NO_DISPATCH */
117 INTEL_UEVENT_CONSTRAINT(0x02a3, 0x4), /* CYCLE_ACTIVITY.CYCLES_L1D_PENDING */
120 * When HT is off these events can only run on the bottom 4 counters
121 * When HT is on, they are impacted by the HT bug and require EXCL access
123 INTEL_EXCLEVT_CONSTRAINT(0xd0, 0xf), /* MEM_UOPS_RETIRED.* */
124 INTEL_EXCLEVT_CONSTRAINT(0xd1, 0xf), /* MEM_LOAD_UOPS_RETIRED.* */
125 INTEL_EXCLEVT_CONSTRAINT(0xd2, 0xf), /* MEM_LOAD_UOPS_LLC_HIT_RETIRED.* */
126 INTEL_EXCLEVT_CONSTRAINT(0xd3, 0xf), /* MEM_LOAD_UOPS_LLC_MISS_RETIRED.* */
131 static struct event_constraint intel_ivb_event_constraints
[] __read_mostly
=
133 FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
134 FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
135 FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
136 INTEL_UEVENT_CONSTRAINT(0x0148, 0x4), /* L1D_PEND_MISS.PENDING */
137 INTEL_UEVENT_CONSTRAINT(0x0279, 0xf), /* IDQ.EMTPY */
138 INTEL_UEVENT_CONSTRAINT(0x019c, 0xf), /* IDQ_UOPS_NOT_DELIVERED.CORE */
139 INTEL_UEVENT_CONSTRAINT(0x02a3, 0xf), /* CYCLE_ACTIVITY.CYCLES_LDM_PENDING */
140 INTEL_UEVENT_CONSTRAINT(0x04a3, 0xf), /* CYCLE_ACTIVITY.CYCLES_NO_EXECUTE */
141 INTEL_UEVENT_CONSTRAINT(0x05a3, 0xf), /* CYCLE_ACTIVITY.STALLS_L2_PENDING */
142 INTEL_UEVENT_CONSTRAINT(0x06a3, 0xf), /* CYCLE_ACTIVITY.STALLS_LDM_PENDING */
143 INTEL_UEVENT_CONSTRAINT(0x08a3, 0x4), /* CYCLE_ACTIVITY.CYCLES_L1D_PENDING */
144 INTEL_UEVENT_CONSTRAINT(0x0ca3, 0x4), /* CYCLE_ACTIVITY.STALLS_L1D_PENDING */
145 INTEL_UEVENT_CONSTRAINT(0x01c0, 0x2), /* INST_RETIRED.PREC_DIST */
148 * When HT is off these events can only run on the bottom 4 counters
149 * When HT is on, they are impacted by the HT bug and require EXCL access
151 INTEL_EXCLEVT_CONSTRAINT(0xd0, 0xf), /* MEM_UOPS_RETIRED.* */
152 INTEL_EXCLEVT_CONSTRAINT(0xd1, 0xf), /* MEM_LOAD_UOPS_RETIRED.* */
153 INTEL_EXCLEVT_CONSTRAINT(0xd2, 0xf), /* MEM_LOAD_UOPS_LLC_HIT_RETIRED.* */
154 INTEL_EXCLEVT_CONSTRAINT(0xd3, 0xf), /* MEM_LOAD_UOPS_LLC_MISS_RETIRED.* */
159 static struct extra_reg intel_westmere_extra_regs
[] __read_mostly
=
161 /* must define OFFCORE_RSP_X first, see intel_fixup_er() */
162 INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0
, 0xffff, RSP_0
),
163 INTEL_UEVENT_EXTRA_REG(0x01bb, MSR_OFFCORE_RSP_1
, 0xffff, RSP_1
),
164 INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x100b),
168 static struct event_constraint intel_v1_event_constraints
[] __read_mostly
=
173 static struct event_constraint intel_gen_event_constraints
[] __read_mostly
=
175 FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
176 FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
177 FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
181 static struct event_constraint intel_slm_event_constraints
[] __read_mostly
=
183 FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
184 FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
185 FIXED_EVENT_CONSTRAINT(0x0300, 2), /* pseudo CPU_CLK_UNHALTED.REF */
189 static struct event_constraint intel_skl_event_constraints
[] = {
190 FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
191 FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
192 FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
193 INTEL_UEVENT_CONSTRAINT(0x1c0, 0x2), /* INST_RETIRED.PREC_DIST */
196 * when HT is off, these can only run on the bottom 4 counters
198 INTEL_EVENT_CONSTRAINT(0xd0, 0xf), /* MEM_INST_RETIRED.* */
199 INTEL_EVENT_CONSTRAINT(0xd1, 0xf), /* MEM_LOAD_RETIRED.* */
200 INTEL_EVENT_CONSTRAINT(0xd2, 0xf), /* MEM_LOAD_L3_HIT_RETIRED.* */
201 INTEL_EVENT_CONSTRAINT(0xcd, 0xf), /* MEM_TRANS_RETIRED.* */
202 INTEL_EVENT_CONSTRAINT(0xc6, 0xf), /* FRONTEND_RETIRED.* */
207 static struct extra_reg intel_knl_extra_regs
[] __read_mostly
= {
208 INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0
, 0x799ffbb6e7ull
, RSP_0
),
209 INTEL_UEVENT_EXTRA_REG(0x02b7, MSR_OFFCORE_RSP_1
, 0x399ffbffe7ull
, RSP_1
),
213 static struct extra_reg intel_snb_extra_regs
[] __read_mostly
= {
214 /* must define OFFCORE_RSP_X first, see intel_fixup_er() */
215 INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0
, 0x3f807f8fffull
, RSP_0
),
216 INTEL_UEVENT_EXTRA_REG(0x01bb, MSR_OFFCORE_RSP_1
, 0x3f807f8fffull
, RSP_1
),
217 INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x01cd),
221 static struct extra_reg intel_snbep_extra_regs
[] __read_mostly
= {
222 /* must define OFFCORE_RSP_X first, see intel_fixup_er() */
223 INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0
, 0x3fffff8fffull
, RSP_0
),
224 INTEL_UEVENT_EXTRA_REG(0x01bb, MSR_OFFCORE_RSP_1
, 0x3fffff8fffull
, RSP_1
),
225 INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x01cd),
229 static struct extra_reg intel_skl_extra_regs
[] __read_mostly
= {
230 INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0
, 0x3fffff8fffull
, RSP_0
),
231 INTEL_UEVENT_EXTRA_REG(0x01bb, MSR_OFFCORE_RSP_1
, 0x3fffff8fffull
, RSP_1
),
232 INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x01cd),
234 * Note the low 8 bits eventsel code is not a continuous field, containing
235 * some #GPing bits. These are masked out.
237 INTEL_UEVENT_EXTRA_REG(0x01c6, MSR_PEBS_FRONTEND
, 0x7fff17, FE
),
241 EVENT_ATTR_STR(mem
-loads
, mem_ld_nhm
, "event=0x0b,umask=0x10,ldlat=3");
242 EVENT_ATTR_STR(mem
-loads
, mem_ld_snb
, "event=0xcd,umask=0x1,ldlat=3");
243 EVENT_ATTR_STR(mem
-stores
, mem_st_snb
, "event=0xcd,umask=0x2");
245 static struct attribute
*nhm_events_attrs
[] = {
246 EVENT_PTR(mem_ld_nhm
),
251 * topdown events for Intel Core CPUs.
253 * The events are all in slots, which is a free slot in a 4 wide
254 * pipeline. Some events are already reported in slots, for cycle
255 * events we multiply by the pipeline width (4).
257 * With Hyper Threading on, topdown metrics are either summed or averaged
258 * between the threads of a core: (count_t0 + count_t1).
260 * For the average case the metric is always scaled to pipeline width,
261 * so we use factor 2 ((count_t0 + count_t1) / 2 * 4)
264 EVENT_ATTR_STR_HT(topdown
-total
-slots
, td_total_slots
,
265 "event=0x3c,umask=0x0", /* cpu_clk_unhalted.thread */
266 "event=0x3c,umask=0x0,any=1"); /* cpu_clk_unhalted.thread_any */
267 EVENT_ATTR_STR_HT(topdown
-total
-slots
.scale
, td_total_slots_scale
, "4", "2");
268 EVENT_ATTR_STR(topdown
-slots
-issued
, td_slots_issued
,
269 "event=0xe,umask=0x1"); /* uops_issued.any */
270 EVENT_ATTR_STR(topdown
-slots
-retired
, td_slots_retired
,
271 "event=0xc2,umask=0x2"); /* uops_retired.retire_slots */
272 EVENT_ATTR_STR(topdown
-fetch
-bubbles
, td_fetch_bubbles
,
273 "event=0x9c,umask=0x1"); /* idq_uops_not_delivered_core */
274 EVENT_ATTR_STR_HT(topdown
-recovery
-bubbles
, td_recovery_bubbles
,
275 "event=0xd,umask=0x3,cmask=1", /* int_misc.recovery_cycles */
276 "event=0xd,umask=0x3,cmask=1,any=1"); /* int_misc.recovery_cycles_any */
277 EVENT_ATTR_STR_HT(topdown
-recovery
-bubbles
.scale
, td_recovery_bubbles_scale
,
280 static struct attribute
*snb_events_attrs
[] = {
281 EVENT_PTR(mem_ld_snb
),
282 EVENT_PTR(mem_st_snb
),
283 EVENT_PTR(td_slots_issued
),
284 EVENT_PTR(td_slots_retired
),
285 EVENT_PTR(td_fetch_bubbles
),
286 EVENT_PTR(td_total_slots
),
287 EVENT_PTR(td_total_slots_scale
),
288 EVENT_PTR(td_recovery_bubbles
),
289 EVENT_PTR(td_recovery_bubbles_scale
),
293 static struct event_constraint intel_hsw_event_constraints
[] = {
294 FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
295 FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
296 FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
297 INTEL_UEVENT_CONSTRAINT(0x148, 0x4), /* L1D_PEND_MISS.PENDING */
298 INTEL_UEVENT_CONSTRAINT(0x01c0, 0x2), /* INST_RETIRED.PREC_DIST */
299 INTEL_EVENT_CONSTRAINT(0xcd, 0x8), /* MEM_TRANS_RETIRED.LOAD_LATENCY */
300 /* CYCLE_ACTIVITY.CYCLES_L1D_PENDING */
301 INTEL_UEVENT_CONSTRAINT(0x08a3, 0x4),
302 /* CYCLE_ACTIVITY.STALLS_L1D_PENDING */
303 INTEL_UEVENT_CONSTRAINT(0x0ca3, 0x4),
304 /* CYCLE_ACTIVITY.CYCLES_NO_EXECUTE */
305 INTEL_UEVENT_CONSTRAINT(0x04a3, 0xf),
308 * When HT is off these events can only run on the bottom 4 counters
309 * When HT is on, they are impacted by the HT bug and require EXCL access
311 INTEL_EXCLEVT_CONSTRAINT(0xd0, 0xf), /* MEM_UOPS_RETIRED.* */
312 INTEL_EXCLEVT_CONSTRAINT(0xd1, 0xf), /* MEM_LOAD_UOPS_RETIRED.* */
313 INTEL_EXCLEVT_CONSTRAINT(0xd2, 0xf), /* MEM_LOAD_UOPS_LLC_HIT_RETIRED.* */
314 INTEL_EXCLEVT_CONSTRAINT(0xd3, 0xf), /* MEM_LOAD_UOPS_LLC_MISS_RETIRED.* */
319 static struct event_constraint intel_bdw_event_constraints
[] = {
320 FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
321 FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
322 FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
323 INTEL_UEVENT_CONSTRAINT(0x148, 0x4), /* L1D_PEND_MISS.PENDING */
324 INTEL_UBIT_EVENT_CONSTRAINT(0x8a3, 0x4), /* CYCLE_ACTIVITY.CYCLES_L1D_MISS */
326 * when HT is off, these can only run on the bottom 4 counters
328 INTEL_EVENT_CONSTRAINT(0xd0, 0xf), /* MEM_INST_RETIRED.* */
329 INTEL_EVENT_CONSTRAINT(0xd1, 0xf), /* MEM_LOAD_RETIRED.* */
330 INTEL_EVENT_CONSTRAINT(0xd2, 0xf), /* MEM_LOAD_L3_HIT_RETIRED.* */
331 INTEL_EVENT_CONSTRAINT(0xcd, 0xf), /* MEM_TRANS_RETIRED.* */
335 static u64
intel_pmu_event_map(int hw_event
)
337 return intel_perfmon_event_map
[hw_event
];
341 * Notes on the events:
342 * - data reads do not include code reads (comparable to earlier tables)
343 * - data counts include speculative execution (except L1 write, dtlb, bpu)
344 * - remote node access includes remote memory, remote cache, remote mmio.
345 * - prefetches are not included in the counts.
346 * - icache miss does not include decoded icache
349 #define SKL_DEMAND_DATA_RD BIT_ULL(0)
350 #define SKL_DEMAND_RFO BIT_ULL(1)
351 #define SKL_ANY_RESPONSE BIT_ULL(16)
352 #define SKL_SUPPLIER_NONE BIT_ULL(17)
353 #define SKL_L3_MISS_LOCAL_DRAM BIT_ULL(26)
354 #define SKL_L3_MISS_REMOTE_HOP0_DRAM BIT_ULL(27)
355 #define SKL_L3_MISS_REMOTE_HOP1_DRAM BIT_ULL(28)
356 #define SKL_L3_MISS_REMOTE_HOP2P_DRAM BIT_ULL(29)
357 #define SKL_L3_MISS (SKL_L3_MISS_LOCAL_DRAM| \
358 SKL_L3_MISS_REMOTE_HOP0_DRAM| \
359 SKL_L3_MISS_REMOTE_HOP1_DRAM| \
360 SKL_L3_MISS_REMOTE_HOP2P_DRAM)
361 #define SKL_SPL_HIT BIT_ULL(30)
362 #define SKL_SNOOP_NONE BIT_ULL(31)
363 #define SKL_SNOOP_NOT_NEEDED BIT_ULL(32)
364 #define SKL_SNOOP_MISS BIT_ULL(33)
365 #define SKL_SNOOP_HIT_NO_FWD BIT_ULL(34)
366 #define SKL_SNOOP_HIT_WITH_FWD BIT_ULL(35)
367 #define SKL_SNOOP_HITM BIT_ULL(36)
368 #define SKL_SNOOP_NON_DRAM BIT_ULL(37)
369 #define SKL_ANY_SNOOP (SKL_SPL_HIT|SKL_SNOOP_NONE| \
370 SKL_SNOOP_NOT_NEEDED|SKL_SNOOP_MISS| \
371 SKL_SNOOP_HIT_NO_FWD|SKL_SNOOP_HIT_WITH_FWD| \
372 SKL_SNOOP_HITM|SKL_SNOOP_NON_DRAM)
373 #define SKL_DEMAND_READ SKL_DEMAND_DATA_RD
374 #define SKL_SNOOP_DRAM (SKL_SNOOP_NONE| \
375 SKL_SNOOP_NOT_NEEDED|SKL_SNOOP_MISS| \
376 SKL_SNOOP_HIT_NO_FWD|SKL_SNOOP_HIT_WITH_FWD| \
377 SKL_SNOOP_HITM|SKL_SPL_HIT)
378 #define SKL_DEMAND_WRITE SKL_DEMAND_RFO
379 #define SKL_LLC_ACCESS SKL_ANY_RESPONSE
380 #define SKL_L3_MISS_REMOTE (SKL_L3_MISS_REMOTE_HOP0_DRAM| \
381 SKL_L3_MISS_REMOTE_HOP1_DRAM| \
382 SKL_L3_MISS_REMOTE_HOP2P_DRAM)
384 static __initconst
const u64 skl_hw_cache_event_ids
385 [PERF_COUNT_HW_CACHE_MAX
]
386 [PERF_COUNT_HW_CACHE_OP_MAX
]
387 [PERF_COUNT_HW_CACHE_RESULT_MAX
] =
391 [ C(RESULT_ACCESS
) ] = 0x81d0, /* MEM_INST_RETIRED.ALL_LOADS */
392 [ C(RESULT_MISS
) ] = 0x151, /* L1D.REPLACEMENT */
395 [ C(RESULT_ACCESS
) ] = 0x82d0, /* MEM_INST_RETIRED.ALL_STORES */
396 [ C(RESULT_MISS
) ] = 0x0,
398 [ C(OP_PREFETCH
) ] = {
399 [ C(RESULT_ACCESS
) ] = 0x0,
400 [ C(RESULT_MISS
) ] = 0x0,
405 [ C(RESULT_ACCESS
) ] = 0x0,
406 [ C(RESULT_MISS
) ] = 0x283, /* ICACHE_64B.MISS */
409 [ C(RESULT_ACCESS
) ] = -1,
410 [ C(RESULT_MISS
) ] = -1,
412 [ C(OP_PREFETCH
) ] = {
413 [ C(RESULT_ACCESS
) ] = 0x0,
414 [ C(RESULT_MISS
) ] = 0x0,
419 [ C(RESULT_ACCESS
) ] = 0x1b7, /* OFFCORE_RESPONSE */
420 [ C(RESULT_MISS
) ] = 0x1b7, /* OFFCORE_RESPONSE */
423 [ C(RESULT_ACCESS
) ] = 0x1b7, /* OFFCORE_RESPONSE */
424 [ C(RESULT_MISS
) ] = 0x1b7, /* OFFCORE_RESPONSE */
426 [ C(OP_PREFETCH
) ] = {
427 [ C(RESULT_ACCESS
) ] = 0x0,
428 [ C(RESULT_MISS
) ] = 0x0,
433 [ C(RESULT_ACCESS
) ] = 0x81d0, /* MEM_INST_RETIRED.ALL_LOADS */
434 [ C(RESULT_MISS
) ] = 0xe08, /* DTLB_LOAD_MISSES.WALK_COMPLETED */
437 [ C(RESULT_ACCESS
) ] = 0x82d0, /* MEM_INST_RETIRED.ALL_STORES */
438 [ C(RESULT_MISS
) ] = 0xe49, /* DTLB_STORE_MISSES.WALK_COMPLETED */
440 [ C(OP_PREFETCH
) ] = {
441 [ C(RESULT_ACCESS
) ] = 0x0,
442 [ C(RESULT_MISS
) ] = 0x0,
447 [ C(RESULT_ACCESS
) ] = 0x2085, /* ITLB_MISSES.STLB_HIT */
448 [ C(RESULT_MISS
) ] = 0xe85, /* ITLB_MISSES.WALK_COMPLETED */
451 [ C(RESULT_ACCESS
) ] = -1,
452 [ C(RESULT_MISS
) ] = -1,
454 [ C(OP_PREFETCH
) ] = {
455 [ C(RESULT_ACCESS
) ] = -1,
456 [ C(RESULT_MISS
) ] = -1,
461 [ C(RESULT_ACCESS
) ] = 0xc4, /* BR_INST_RETIRED.ALL_BRANCHES */
462 [ C(RESULT_MISS
) ] = 0xc5, /* BR_MISP_RETIRED.ALL_BRANCHES */
465 [ C(RESULT_ACCESS
) ] = -1,
466 [ C(RESULT_MISS
) ] = -1,
468 [ C(OP_PREFETCH
) ] = {
469 [ C(RESULT_ACCESS
) ] = -1,
470 [ C(RESULT_MISS
) ] = -1,
475 [ C(RESULT_ACCESS
) ] = 0x1b7, /* OFFCORE_RESPONSE */
476 [ C(RESULT_MISS
) ] = 0x1b7, /* OFFCORE_RESPONSE */
479 [ C(RESULT_ACCESS
) ] = 0x1b7, /* OFFCORE_RESPONSE */
480 [ C(RESULT_MISS
) ] = 0x1b7, /* OFFCORE_RESPONSE */
482 [ C(OP_PREFETCH
) ] = {
483 [ C(RESULT_ACCESS
) ] = 0x0,
484 [ C(RESULT_MISS
) ] = 0x0,
489 static __initconst
const u64 skl_hw_cache_extra_regs
490 [PERF_COUNT_HW_CACHE_MAX
]
491 [PERF_COUNT_HW_CACHE_OP_MAX
]
492 [PERF_COUNT_HW_CACHE_RESULT_MAX
] =
496 [ C(RESULT_ACCESS
) ] = SKL_DEMAND_READ
|
497 SKL_LLC_ACCESS
|SKL_ANY_SNOOP
,
498 [ C(RESULT_MISS
) ] = SKL_DEMAND_READ
|
499 SKL_L3_MISS
|SKL_ANY_SNOOP
|
503 [ C(RESULT_ACCESS
) ] = SKL_DEMAND_WRITE
|
504 SKL_LLC_ACCESS
|SKL_ANY_SNOOP
,
505 [ C(RESULT_MISS
) ] = SKL_DEMAND_WRITE
|
506 SKL_L3_MISS
|SKL_ANY_SNOOP
|
509 [ C(OP_PREFETCH
) ] = {
510 [ C(RESULT_ACCESS
) ] = 0x0,
511 [ C(RESULT_MISS
) ] = 0x0,
516 [ C(RESULT_ACCESS
) ] = SKL_DEMAND_READ
|
517 SKL_L3_MISS_LOCAL_DRAM
|SKL_SNOOP_DRAM
,
518 [ C(RESULT_MISS
) ] = SKL_DEMAND_READ
|
519 SKL_L3_MISS_REMOTE
|SKL_SNOOP_DRAM
,
522 [ C(RESULT_ACCESS
) ] = SKL_DEMAND_WRITE
|
523 SKL_L3_MISS_LOCAL_DRAM
|SKL_SNOOP_DRAM
,
524 [ C(RESULT_MISS
) ] = SKL_DEMAND_WRITE
|
525 SKL_L3_MISS_REMOTE
|SKL_SNOOP_DRAM
,
527 [ C(OP_PREFETCH
) ] = {
528 [ C(RESULT_ACCESS
) ] = 0x0,
529 [ C(RESULT_MISS
) ] = 0x0,
534 #define SNB_DMND_DATA_RD (1ULL << 0)
535 #define SNB_DMND_RFO (1ULL << 1)
536 #define SNB_DMND_IFETCH (1ULL << 2)
537 #define SNB_DMND_WB (1ULL << 3)
538 #define SNB_PF_DATA_RD (1ULL << 4)
539 #define SNB_PF_RFO (1ULL << 5)
540 #define SNB_PF_IFETCH (1ULL << 6)
541 #define SNB_LLC_DATA_RD (1ULL << 7)
542 #define SNB_LLC_RFO (1ULL << 8)
543 #define SNB_LLC_IFETCH (1ULL << 9)
544 #define SNB_BUS_LOCKS (1ULL << 10)
545 #define SNB_STRM_ST (1ULL << 11)
546 #define SNB_OTHER (1ULL << 15)
547 #define SNB_RESP_ANY (1ULL << 16)
548 #define SNB_NO_SUPP (1ULL << 17)
549 #define SNB_LLC_HITM (1ULL << 18)
550 #define SNB_LLC_HITE (1ULL << 19)
551 #define SNB_LLC_HITS (1ULL << 20)
552 #define SNB_LLC_HITF (1ULL << 21)
553 #define SNB_LOCAL (1ULL << 22)
554 #define SNB_REMOTE (0xffULL << 23)
555 #define SNB_SNP_NONE (1ULL << 31)
556 #define SNB_SNP_NOT_NEEDED (1ULL << 32)
557 #define SNB_SNP_MISS (1ULL << 33)
558 #define SNB_NO_FWD (1ULL << 34)
559 #define SNB_SNP_FWD (1ULL << 35)
560 #define SNB_HITM (1ULL << 36)
561 #define SNB_NON_DRAM (1ULL << 37)
563 #define SNB_DMND_READ (SNB_DMND_DATA_RD|SNB_LLC_DATA_RD)
564 #define SNB_DMND_WRITE (SNB_DMND_RFO|SNB_LLC_RFO)
565 #define SNB_DMND_PREFETCH (SNB_PF_DATA_RD|SNB_PF_RFO)
567 #define SNB_SNP_ANY (SNB_SNP_NONE|SNB_SNP_NOT_NEEDED| \
568 SNB_SNP_MISS|SNB_NO_FWD|SNB_SNP_FWD| \
571 #define SNB_DRAM_ANY (SNB_LOCAL|SNB_REMOTE|SNB_SNP_ANY)
572 #define SNB_DRAM_REMOTE (SNB_REMOTE|SNB_SNP_ANY)
574 #define SNB_L3_ACCESS SNB_RESP_ANY
575 #define SNB_L3_MISS (SNB_DRAM_ANY|SNB_NON_DRAM)
577 static __initconst
const u64 snb_hw_cache_extra_regs
578 [PERF_COUNT_HW_CACHE_MAX
]
579 [PERF_COUNT_HW_CACHE_OP_MAX
]
580 [PERF_COUNT_HW_CACHE_RESULT_MAX
] =
584 [ C(RESULT_ACCESS
) ] = SNB_DMND_READ
|SNB_L3_ACCESS
,
585 [ C(RESULT_MISS
) ] = SNB_DMND_READ
|SNB_L3_MISS
,
588 [ C(RESULT_ACCESS
) ] = SNB_DMND_WRITE
|SNB_L3_ACCESS
,
589 [ C(RESULT_MISS
) ] = SNB_DMND_WRITE
|SNB_L3_MISS
,
591 [ C(OP_PREFETCH
) ] = {
592 [ C(RESULT_ACCESS
) ] = SNB_DMND_PREFETCH
|SNB_L3_ACCESS
,
593 [ C(RESULT_MISS
) ] = SNB_DMND_PREFETCH
|SNB_L3_MISS
,
598 [ C(RESULT_ACCESS
) ] = SNB_DMND_READ
|SNB_DRAM_ANY
,
599 [ C(RESULT_MISS
) ] = SNB_DMND_READ
|SNB_DRAM_REMOTE
,
602 [ C(RESULT_ACCESS
) ] = SNB_DMND_WRITE
|SNB_DRAM_ANY
,
603 [ C(RESULT_MISS
) ] = SNB_DMND_WRITE
|SNB_DRAM_REMOTE
,
605 [ C(OP_PREFETCH
) ] = {
606 [ C(RESULT_ACCESS
) ] = SNB_DMND_PREFETCH
|SNB_DRAM_ANY
,
607 [ C(RESULT_MISS
) ] = SNB_DMND_PREFETCH
|SNB_DRAM_REMOTE
,
612 static __initconst
const u64 snb_hw_cache_event_ids
613 [PERF_COUNT_HW_CACHE_MAX
]
614 [PERF_COUNT_HW_CACHE_OP_MAX
]
615 [PERF_COUNT_HW_CACHE_RESULT_MAX
] =
619 [ C(RESULT_ACCESS
) ] = 0xf1d0, /* MEM_UOP_RETIRED.LOADS */
620 [ C(RESULT_MISS
) ] = 0x0151, /* L1D.REPLACEMENT */
623 [ C(RESULT_ACCESS
) ] = 0xf2d0, /* MEM_UOP_RETIRED.STORES */
624 [ C(RESULT_MISS
) ] = 0x0851, /* L1D.ALL_M_REPLACEMENT */
626 [ C(OP_PREFETCH
) ] = {
627 [ C(RESULT_ACCESS
) ] = 0x0,
628 [ C(RESULT_MISS
) ] = 0x024e, /* HW_PRE_REQ.DL1_MISS */
633 [ C(RESULT_ACCESS
) ] = 0x0,
634 [ C(RESULT_MISS
) ] = 0x0280, /* ICACHE.MISSES */
637 [ C(RESULT_ACCESS
) ] = -1,
638 [ C(RESULT_MISS
) ] = -1,
640 [ C(OP_PREFETCH
) ] = {
641 [ C(RESULT_ACCESS
) ] = 0x0,
642 [ C(RESULT_MISS
) ] = 0x0,
647 /* OFFCORE_RESPONSE.ANY_DATA.LOCAL_CACHE */
648 [ C(RESULT_ACCESS
) ] = 0x01b7,
649 /* OFFCORE_RESPONSE.ANY_DATA.ANY_LLC_MISS */
650 [ C(RESULT_MISS
) ] = 0x01b7,
653 /* OFFCORE_RESPONSE.ANY_RFO.LOCAL_CACHE */
654 [ C(RESULT_ACCESS
) ] = 0x01b7,
655 /* OFFCORE_RESPONSE.ANY_RFO.ANY_LLC_MISS */
656 [ C(RESULT_MISS
) ] = 0x01b7,
658 [ C(OP_PREFETCH
) ] = {
659 /* OFFCORE_RESPONSE.PREFETCH.LOCAL_CACHE */
660 [ C(RESULT_ACCESS
) ] = 0x01b7,
661 /* OFFCORE_RESPONSE.PREFETCH.ANY_LLC_MISS */
662 [ C(RESULT_MISS
) ] = 0x01b7,
667 [ C(RESULT_ACCESS
) ] = 0x81d0, /* MEM_UOP_RETIRED.ALL_LOADS */
668 [ C(RESULT_MISS
) ] = 0x0108, /* DTLB_LOAD_MISSES.CAUSES_A_WALK */
671 [ C(RESULT_ACCESS
) ] = 0x82d0, /* MEM_UOP_RETIRED.ALL_STORES */
672 [ C(RESULT_MISS
) ] = 0x0149, /* DTLB_STORE_MISSES.MISS_CAUSES_A_WALK */
674 [ C(OP_PREFETCH
) ] = {
675 [ C(RESULT_ACCESS
) ] = 0x0,
676 [ C(RESULT_MISS
) ] = 0x0,
681 [ C(RESULT_ACCESS
) ] = 0x1085, /* ITLB_MISSES.STLB_HIT */
682 [ C(RESULT_MISS
) ] = 0x0185, /* ITLB_MISSES.CAUSES_A_WALK */
685 [ C(RESULT_ACCESS
) ] = -1,
686 [ C(RESULT_MISS
) ] = -1,
688 [ C(OP_PREFETCH
) ] = {
689 [ C(RESULT_ACCESS
) ] = -1,
690 [ C(RESULT_MISS
) ] = -1,
695 [ C(RESULT_ACCESS
) ] = 0x00c4, /* BR_INST_RETIRED.ALL_BRANCHES */
696 [ C(RESULT_MISS
) ] = 0x00c5, /* BR_MISP_RETIRED.ALL_BRANCHES */
699 [ C(RESULT_ACCESS
) ] = -1,
700 [ C(RESULT_MISS
) ] = -1,
702 [ C(OP_PREFETCH
) ] = {
703 [ C(RESULT_ACCESS
) ] = -1,
704 [ C(RESULT_MISS
) ] = -1,
709 [ C(RESULT_ACCESS
) ] = 0x01b7,
710 [ C(RESULT_MISS
) ] = 0x01b7,
713 [ C(RESULT_ACCESS
) ] = 0x01b7,
714 [ C(RESULT_MISS
) ] = 0x01b7,
716 [ C(OP_PREFETCH
) ] = {
717 [ C(RESULT_ACCESS
) ] = 0x01b7,
718 [ C(RESULT_MISS
) ] = 0x01b7,
725 * Notes on the events:
726 * - data reads do not include code reads (comparable to earlier tables)
727 * - data counts include speculative execution (except L1 write, dtlb, bpu)
728 * - remote node access includes remote memory, remote cache, remote mmio.
729 * - prefetches are not included in the counts because they are not
733 #define HSW_DEMAND_DATA_RD BIT_ULL(0)
734 #define HSW_DEMAND_RFO BIT_ULL(1)
735 #define HSW_ANY_RESPONSE BIT_ULL(16)
736 #define HSW_SUPPLIER_NONE BIT_ULL(17)
737 #define HSW_L3_MISS_LOCAL_DRAM BIT_ULL(22)
738 #define HSW_L3_MISS_REMOTE_HOP0 BIT_ULL(27)
739 #define HSW_L3_MISS_REMOTE_HOP1 BIT_ULL(28)
740 #define HSW_L3_MISS_REMOTE_HOP2P BIT_ULL(29)
741 #define HSW_L3_MISS (HSW_L3_MISS_LOCAL_DRAM| \
742 HSW_L3_MISS_REMOTE_HOP0|HSW_L3_MISS_REMOTE_HOP1| \
743 HSW_L3_MISS_REMOTE_HOP2P)
744 #define HSW_SNOOP_NONE BIT_ULL(31)
745 #define HSW_SNOOP_NOT_NEEDED BIT_ULL(32)
746 #define HSW_SNOOP_MISS BIT_ULL(33)
747 #define HSW_SNOOP_HIT_NO_FWD BIT_ULL(34)
748 #define HSW_SNOOP_HIT_WITH_FWD BIT_ULL(35)
749 #define HSW_SNOOP_HITM BIT_ULL(36)
750 #define HSW_SNOOP_NON_DRAM BIT_ULL(37)
751 #define HSW_ANY_SNOOP (HSW_SNOOP_NONE| \
752 HSW_SNOOP_NOT_NEEDED|HSW_SNOOP_MISS| \
753 HSW_SNOOP_HIT_NO_FWD|HSW_SNOOP_HIT_WITH_FWD| \
754 HSW_SNOOP_HITM|HSW_SNOOP_NON_DRAM)
755 #define HSW_SNOOP_DRAM (HSW_ANY_SNOOP & ~HSW_SNOOP_NON_DRAM)
756 #define HSW_DEMAND_READ HSW_DEMAND_DATA_RD
757 #define HSW_DEMAND_WRITE HSW_DEMAND_RFO
758 #define HSW_L3_MISS_REMOTE (HSW_L3_MISS_REMOTE_HOP0|\
759 HSW_L3_MISS_REMOTE_HOP1|HSW_L3_MISS_REMOTE_HOP2P)
760 #define HSW_LLC_ACCESS HSW_ANY_RESPONSE
762 #define BDW_L3_MISS_LOCAL BIT(26)
763 #define BDW_L3_MISS (BDW_L3_MISS_LOCAL| \
764 HSW_L3_MISS_REMOTE_HOP0|HSW_L3_MISS_REMOTE_HOP1| \
765 HSW_L3_MISS_REMOTE_HOP2P)
768 static __initconst
const u64 hsw_hw_cache_event_ids
769 [PERF_COUNT_HW_CACHE_MAX
]
770 [PERF_COUNT_HW_CACHE_OP_MAX
]
771 [PERF_COUNT_HW_CACHE_RESULT_MAX
] =
775 [ C(RESULT_ACCESS
) ] = 0x81d0, /* MEM_UOPS_RETIRED.ALL_LOADS */
776 [ C(RESULT_MISS
) ] = 0x151, /* L1D.REPLACEMENT */
779 [ C(RESULT_ACCESS
) ] = 0x82d0, /* MEM_UOPS_RETIRED.ALL_STORES */
780 [ C(RESULT_MISS
) ] = 0x0,
782 [ C(OP_PREFETCH
) ] = {
783 [ C(RESULT_ACCESS
) ] = 0x0,
784 [ C(RESULT_MISS
) ] = 0x0,
789 [ C(RESULT_ACCESS
) ] = 0x0,
790 [ C(RESULT_MISS
) ] = 0x280, /* ICACHE.MISSES */
793 [ C(RESULT_ACCESS
) ] = -1,
794 [ C(RESULT_MISS
) ] = -1,
796 [ C(OP_PREFETCH
) ] = {
797 [ C(RESULT_ACCESS
) ] = 0x0,
798 [ C(RESULT_MISS
) ] = 0x0,
803 [ C(RESULT_ACCESS
) ] = 0x1b7, /* OFFCORE_RESPONSE */
804 [ C(RESULT_MISS
) ] = 0x1b7, /* OFFCORE_RESPONSE */
807 [ C(RESULT_ACCESS
) ] = 0x1b7, /* OFFCORE_RESPONSE */
808 [ C(RESULT_MISS
) ] = 0x1b7, /* OFFCORE_RESPONSE */
810 [ C(OP_PREFETCH
) ] = {
811 [ C(RESULT_ACCESS
) ] = 0x0,
812 [ C(RESULT_MISS
) ] = 0x0,
817 [ C(RESULT_ACCESS
) ] = 0x81d0, /* MEM_UOPS_RETIRED.ALL_LOADS */
818 [ C(RESULT_MISS
) ] = 0x108, /* DTLB_LOAD_MISSES.MISS_CAUSES_A_WALK */
821 [ C(RESULT_ACCESS
) ] = 0x82d0, /* MEM_UOPS_RETIRED.ALL_STORES */
822 [ C(RESULT_MISS
) ] = 0x149, /* DTLB_STORE_MISSES.MISS_CAUSES_A_WALK */
824 [ C(OP_PREFETCH
) ] = {
825 [ C(RESULT_ACCESS
) ] = 0x0,
826 [ C(RESULT_MISS
) ] = 0x0,
831 [ C(RESULT_ACCESS
) ] = 0x6085, /* ITLB_MISSES.STLB_HIT */
832 [ C(RESULT_MISS
) ] = 0x185, /* ITLB_MISSES.MISS_CAUSES_A_WALK */
835 [ C(RESULT_ACCESS
) ] = -1,
836 [ C(RESULT_MISS
) ] = -1,
838 [ C(OP_PREFETCH
) ] = {
839 [ C(RESULT_ACCESS
) ] = -1,
840 [ C(RESULT_MISS
) ] = -1,
845 [ C(RESULT_ACCESS
) ] = 0xc4, /* BR_INST_RETIRED.ALL_BRANCHES */
846 [ C(RESULT_MISS
) ] = 0xc5, /* BR_MISP_RETIRED.ALL_BRANCHES */
849 [ C(RESULT_ACCESS
) ] = -1,
850 [ C(RESULT_MISS
) ] = -1,
852 [ C(OP_PREFETCH
) ] = {
853 [ C(RESULT_ACCESS
) ] = -1,
854 [ C(RESULT_MISS
) ] = -1,
859 [ C(RESULT_ACCESS
) ] = 0x1b7, /* OFFCORE_RESPONSE */
860 [ C(RESULT_MISS
) ] = 0x1b7, /* OFFCORE_RESPONSE */
863 [ C(RESULT_ACCESS
) ] = 0x1b7, /* OFFCORE_RESPONSE */
864 [ C(RESULT_MISS
) ] = 0x1b7, /* OFFCORE_RESPONSE */
866 [ C(OP_PREFETCH
) ] = {
867 [ C(RESULT_ACCESS
) ] = 0x0,
868 [ C(RESULT_MISS
) ] = 0x0,
873 static __initconst
const u64 hsw_hw_cache_extra_regs
874 [PERF_COUNT_HW_CACHE_MAX
]
875 [PERF_COUNT_HW_CACHE_OP_MAX
]
876 [PERF_COUNT_HW_CACHE_RESULT_MAX
] =
880 [ C(RESULT_ACCESS
) ] = HSW_DEMAND_READ
|
882 [ C(RESULT_MISS
) ] = HSW_DEMAND_READ
|
883 HSW_L3_MISS
|HSW_ANY_SNOOP
,
886 [ C(RESULT_ACCESS
) ] = HSW_DEMAND_WRITE
|
888 [ C(RESULT_MISS
) ] = HSW_DEMAND_WRITE
|
889 HSW_L3_MISS
|HSW_ANY_SNOOP
,
891 [ C(OP_PREFETCH
) ] = {
892 [ C(RESULT_ACCESS
) ] = 0x0,
893 [ C(RESULT_MISS
) ] = 0x0,
898 [ C(RESULT_ACCESS
) ] = HSW_DEMAND_READ
|
899 HSW_L3_MISS_LOCAL_DRAM
|
901 [ C(RESULT_MISS
) ] = HSW_DEMAND_READ
|
906 [ C(RESULT_ACCESS
) ] = HSW_DEMAND_WRITE
|
907 HSW_L3_MISS_LOCAL_DRAM
|
909 [ C(RESULT_MISS
) ] = HSW_DEMAND_WRITE
|
913 [ C(OP_PREFETCH
) ] = {
914 [ C(RESULT_ACCESS
) ] = 0x0,
915 [ C(RESULT_MISS
) ] = 0x0,
920 static __initconst
const u64 westmere_hw_cache_event_ids
921 [PERF_COUNT_HW_CACHE_MAX
]
922 [PERF_COUNT_HW_CACHE_OP_MAX
]
923 [PERF_COUNT_HW_CACHE_RESULT_MAX
] =
927 [ C(RESULT_ACCESS
) ] = 0x010b, /* MEM_INST_RETIRED.LOADS */
928 [ C(RESULT_MISS
) ] = 0x0151, /* L1D.REPL */
931 [ C(RESULT_ACCESS
) ] = 0x020b, /* MEM_INST_RETURED.STORES */
932 [ C(RESULT_MISS
) ] = 0x0251, /* L1D.M_REPL */
934 [ C(OP_PREFETCH
) ] = {
935 [ C(RESULT_ACCESS
) ] = 0x014e, /* L1D_PREFETCH.REQUESTS */
936 [ C(RESULT_MISS
) ] = 0x024e, /* L1D_PREFETCH.MISS */
941 [ C(RESULT_ACCESS
) ] = 0x0380, /* L1I.READS */
942 [ C(RESULT_MISS
) ] = 0x0280, /* L1I.MISSES */
945 [ C(RESULT_ACCESS
) ] = -1,
946 [ C(RESULT_MISS
) ] = -1,
948 [ C(OP_PREFETCH
) ] = {
949 [ C(RESULT_ACCESS
) ] = 0x0,
950 [ C(RESULT_MISS
) ] = 0x0,
955 /* OFFCORE_RESPONSE.ANY_DATA.LOCAL_CACHE */
956 [ C(RESULT_ACCESS
) ] = 0x01b7,
957 /* OFFCORE_RESPONSE.ANY_DATA.ANY_LLC_MISS */
958 [ C(RESULT_MISS
) ] = 0x01b7,
961 * Use RFO, not WRITEBACK, because a write miss would typically occur
965 /* OFFCORE_RESPONSE.ANY_RFO.LOCAL_CACHE */
966 [ C(RESULT_ACCESS
) ] = 0x01b7,
967 /* OFFCORE_RESPONSE.ANY_RFO.ANY_LLC_MISS */
968 [ C(RESULT_MISS
) ] = 0x01b7,
970 [ C(OP_PREFETCH
) ] = {
971 /* OFFCORE_RESPONSE.PREFETCH.LOCAL_CACHE */
972 [ C(RESULT_ACCESS
) ] = 0x01b7,
973 /* OFFCORE_RESPONSE.PREFETCH.ANY_LLC_MISS */
974 [ C(RESULT_MISS
) ] = 0x01b7,
979 [ C(RESULT_ACCESS
) ] = 0x010b, /* MEM_INST_RETIRED.LOADS */
980 [ C(RESULT_MISS
) ] = 0x0108, /* DTLB_LOAD_MISSES.ANY */
983 [ C(RESULT_ACCESS
) ] = 0x020b, /* MEM_INST_RETURED.STORES */
984 [ C(RESULT_MISS
) ] = 0x010c, /* MEM_STORE_RETIRED.DTLB_MISS */
986 [ C(OP_PREFETCH
) ] = {
987 [ C(RESULT_ACCESS
) ] = 0x0,
988 [ C(RESULT_MISS
) ] = 0x0,
993 [ C(RESULT_ACCESS
) ] = 0x01c0, /* INST_RETIRED.ANY_P */
994 [ C(RESULT_MISS
) ] = 0x0185, /* ITLB_MISSES.ANY */
997 [ C(RESULT_ACCESS
) ] = -1,
998 [ C(RESULT_MISS
) ] = -1,
1000 [ C(OP_PREFETCH
) ] = {
1001 [ C(RESULT_ACCESS
) ] = -1,
1002 [ C(RESULT_MISS
) ] = -1,
1007 [ C(RESULT_ACCESS
) ] = 0x00c4, /* BR_INST_RETIRED.ALL_BRANCHES */
1008 [ C(RESULT_MISS
) ] = 0x03e8, /* BPU_CLEARS.ANY */
1011 [ C(RESULT_ACCESS
) ] = -1,
1012 [ C(RESULT_MISS
) ] = -1,
1014 [ C(OP_PREFETCH
) ] = {
1015 [ C(RESULT_ACCESS
) ] = -1,
1016 [ C(RESULT_MISS
) ] = -1,
1021 [ C(RESULT_ACCESS
) ] = 0x01b7,
1022 [ C(RESULT_MISS
) ] = 0x01b7,
1025 [ C(RESULT_ACCESS
) ] = 0x01b7,
1026 [ C(RESULT_MISS
) ] = 0x01b7,
1028 [ C(OP_PREFETCH
) ] = {
1029 [ C(RESULT_ACCESS
) ] = 0x01b7,
1030 [ C(RESULT_MISS
) ] = 0x01b7,
1036 * Nehalem/Westmere MSR_OFFCORE_RESPONSE bits;
1037 * See IA32 SDM Vol 3B 30.6.1.3
1040 #define NHM_DMND_DATA_RD (1 << 0)
1041 #define NHM_DMND_RFO (1 << 1)
1042 #define NHM_DMND_IFETCH (1 << 2)
1043 #define NHM_DMND_WB (1 << 3)
1044 #define NHM_PF_DATA_RD (1 << 4)
1045 #define NHM_PF_DATA_RFO (1 << 5)
1046 #define NHM_PF_IFETCH (1 << 6)
1047 #define NHM_OFFCORE_OTHER (1 << 7)
1048 #define NHM_UNCORE_HIT (1 << 8)
1049 #define NHM_OTHER_CORE_HIT_SNP (1 << 9)
1050 #define NHM_OTHER_CORE_HITM (1 << 10)
1052 #define NHM_REMOTE_CACHE_FWD (1 << 12)
1053 #define NHM_REMOTE_DRAM (1 << 13)
1054 #define NHM_LOCAL_DRAM (1 << 14)
1055 #define NHM_NON_DRAM (1 << 15)
1057 #define NHM_LOCAL (NHM_LOCAL_DRAM|NHM_REMOTE_CACHE_FWD)
1058 #define NHM_REMOTE (NHM_REMOTE_DRAM)
1060 #define NHM_DMND_READ (NHM_DMND_DATA_RD)
1061 #define NHM_DMND_WRITE (NHM_DMND_RFO|NHM_DMND_WB)
1062 #define NHM_DMND_PREFETCH (NHM_PF_DATA_RD|NHM_PF_DATA_RFO)
1064 #define NHM_L3_HIT (NHM_UNCORE_HIT|NHM_OTHER_CORE_HIT_SNP|NHM_OTHER_CORE_HITM)
1065 #define NHM_L3_MISS (NHM_NON_DRAM|NHM_LOCAL_DRAM|NHM_REMOTE_DRAM|NHM_REMOTE_CACHE_FWD)
1066 #define NHM_L3_ACCESS (NHM_L3_HIT|NHM_L3_MISS)
1068 static __initconst
const u64 nehalem_hw_cache_extra_regs
1069 [PERF_COUNT_HW_CACHE_MAX
]
1070 [PERF_COUNT_HW_CACHE_OP_MAX
]
1071 [PERF_COUNT_HW_CACHE_RESULT_MAX
] =
1075 [ C(RESULT_ACCESS
) ] = NHM_DMND_READ
|NHM_L3_ACCESS
,
1076 [ C(RESULT_MISS
) ] = NHM_DMND_READ
|NHM_L3_MISS
,
1079 [ C(RESULT_ACCESS
) ] = NHM_DMND_WRITE
|NHM_L3_ACCESS
,
1080 [ C(RESULT_MISS
) ] = NHM_DMND_WRITE
|NHM_L3_MISS
,
1082 [ C(OP_PREFETCH
) ] = {
1083 [ C(RESULT_ACCESS
) ] = NHM_DMND_PREFETCH
|NHM_L3_ACCESS
,
1084 [ C(RESULT_MISS
) ] = NHM_DMND_PREFETCH
|NHM_L3_MISS
,
1089 [ C(RESULT_ACCESS
) ] = NHM_DMND_READ
|NHM_LOCAL
|NHM_REMOTE
,
1090 [ C(RESULT_MISS
) ] = NHM_DMND_READ
|NHM_REMOTE
,
1093 [ C(RESULT_ACCESS
) ] = NHM_DMND_WRITE
|NHM_LOCAL
|NHM_REMOTE
,
1094 [ C(RESULT_MISS
) ] = NHM_DMND_WRITE
|NHM_REMOTE
,
1096 [ C(OP_PREFETCH
) ] = {
1097 [ C(RESULT_ACCESS
) ] = NHM_DMND_PREFETCH
|NHM_LOCAL
|NHM_REMOTE
,
1098 [ C(RESULT_MISS
) ] = NHM_DMND_PREFETCH
|NHM_REMOTE
,
1103 static __initconst
const u64 nehalem_hw_cache_event_ids
1104 [PERF_COUNT_HW_CACHE_MAX
]
1105 [PERF_COUNT_HW_CACHE_OP_MAX
]
1106 [PERF_COUNT_HW_CACHE_RESULT_MAX
] =
1110 [ C(RESULT_ACCESS
) ] = 0x010b, /* MEM_INST_RETIRED.LOADS */
1111 [ C(RESULT_MISS
) ] = 0x0151, /* L1D.REPL */
1114 [ C(RESULT_ACCESS
) ] = 0x020b, /* MEM_INST_RETURED.STORES */
1115 [ C(RESULT_MISS
) ] = 0x0251, /* L1D.M_REPL */
1117 [ C(OP_PREFETCH
) ] = {
1118 [ C(RESULT_ACCESS
) ] = 0x014e, /* L1D_PREFETCH.REQUESTS */
1119 [ C(RESULT_MISS
) ] = 0x024e, /* L1D_PREFETCH.MISS */
1124 [ C(RESULT_ACCESS
) ] = 0x0380, /* L1I.READS */
1125 [ C(RESULT_MISS
) ] = 0x0280, /* L1I.MISSES */
1128 [ C(RESULT_ACCESS
) ] = -1,
1129 [ C(RESULT_MISS
) ] = -1,
1131 [ C(OP_PREFETCH
) ] = {
1132 [ C(RESULT_ACCESS
) ] = 0x0,
1133 [ C(RESULT_MISS
) ] = 0x0,
1138 /* OFFCORE_RESPONSE.ANY_DATA.LOCAL_CACHE */
1139 [ C(RESULT_ACCESS
) ] = 0x01b7,
1140 /* OFFCORE_RESPONSE.ANY_DATA.ANY_LLC_MISS */
1141 [ C(RESULT_MISS
) ] = 0x01b7,
1144 * Use RFO, not WRITEBACK, because a write miss would typically occur
1148 /* OFFCORE_RESPONSE.ANY_RFO.LOCAL_CACHE */
1149 [ C(RESULT_ACCESS
) ] = 0x01b7,
1150 /* OFFCORE_RESPONSE.ANY_RFO.ANY_LLC_MISS */
1151 [ C(RESULT_MISS
) ] = 0x01b7,
1153 [ C(OP_PREFETCH
) ] = {
1154 /* OFFCORE_RESPONSE.PREFETCH.LOCAL_CACHE */
1155 [ C(RESULT_ACCESS
) ] = 0x01b7,
1156 /* OFFCORE_RESPONSE.PREFETCH.ANY_LLC_MISS */
1157 [ C(RESULT_MISS
) ] = 0x01b7,
1162 [ C(RESULT_ACCESS
) ] = 0x0f40, /* L1D_CACHE_LD.MESI (alias) */
1163 [ C(RESULT_MISS
) ] = 0x0108, /* DTLB_LOAD_MISSES.ANY */
1166 [ C(RESULT_ACCESS
) ] = 0x0f41, /* L1D_CACHE_ST.MESI (alias) */
1167 [ C(RESULT_MISS
) ] = 0x010c, /* MEM_STORE_RETIRED.DTLB_MISS */
1169 [ C(OP_PREFETCH
) ] = {
1170 [ C(RESULT_ACCESS
) ] = 0x0,
1171 [ C(RESULT_MISS
) ] = 0x0,
1176 [ C(RESULT_ACCESS
) ] = 0x01c0, /* INST_RETIRED.ANY_P */
1177 [ C(RESULT_MISS
) ] = 0x20c8, /* ITLB_MISS_RETIRED */
1180 [ C(RESULT_ACCESS
) ] = -1,
1181 [ C(RESULT_MISS
) ] = -1,
1183 [ C(OP_PREFETCH
) ] = {
1184 [ C(RESULT_ACCESS
) ] = -1,
1185 [ C(RESULT_MISS
) ] = -1,
1190 [ C(RESULT_ACCESS
) ] = 0x00c4, /* BR_INST_RETIRED.ALL_BRANCHES */
1191 [ C(RESULT_MISS
) ] = 0x03e8, /* BPU_CLEARS.ANY */
1194 [ C(RESULT_ACCESS
) ] = -1,
1195 [ C(RESULT_MISS
) ] = -1,
1197 [ C(OP_PREFETCH
) ] = {
1198 [ C(RESULT_ACCESS
) ] = -1,
1199 [ C(RESULT_MISS
) ] = -1,
1204 [ C(RESULT_ACCESS
) ] = 0x01b7,
1205 [ C(RESULT_MISS
) ] = 0x01b7,
1208 [ C(RESULT_ACCESS
) ] = 0x01b7,
1209 [ C(RESULT_MISS
) ] = 0x01b7,
1211 [ C(OP_PREFETCH
) ] = {
1212 [ C(RESULT_ACCESS
) ] = 0x01b7,
1213 [ C(RESULT_MISS
) ] = 0x01b7,
1218 static __initconst
const u64 core2_hw_cache_event_ids
1219 [PERF_COUNT_HW_CACHE_MAX
]
1220 [PERF_COUNT_HW_CACHE_OP_MAX
]
1221 [PERF_COUNT_HW_CACHE_RESULT_MAX
] =
1225 [ C(RESULT_ACCESS
) ] = 0x0f40, /* L1D_CACHE_LD.MESI */
1226 [ C(RESULT_MISS
) ] = 0x0140, /* L1D_CACHE_LD.I_STATE */
1229 [ C(RESULT_ACCESS
) ] = 0x0f41, /* L1D_CACHE_ST.MESI */
1230 [ C(RESULT_MISS
) ] = 0x0141, /* L1D_CACHE_ST.I_STATE */
1232 [ C(OP_PREFETCH
) ] = {
1233 [ C(RESULT_ACCESS
) ] = 0x104e, /* L1D_PREFETCH.REQUESTS */
1234 [ C(RESULT_MISS
) ] = 0,
1239 [ C(RESULT_ACCESS
) ] = 0x0080, /* L1I.READS */
1240 [ C(RESULT_MISS
) ] = 0x0081, /* L1I.MISSES */
1243 [ C(RESULT_ACCESS
) ] = -1,
1244 [ C(RESULT_MISS
) ] = -1,
1246 [ C(OP_PREFETCH
) ] = {
1247 [ C(RESULT_ACCESS
) ] = 0,
1248 [ C(RESULT_MISS
) ] = 0,
1253 [ C(RESULT_ACCESS
) ] = 0x4f29, /* L2_LD.MESI */
1254 [ C(RESULT_MISS
) ] = 0x4129, /* L2_LD.ISTATE */
1257 [ C(RESULT_ACCESS
) ] = 0x4f2A, /* L2_ST.MESI */
1258 [ C(RESULT_MISS
) ] = 0x412A, /* L2_ST.ISTATE */
1260 [ C(OP_PREFETCH
) ] = {
1261 [ C(RESULT_ACCESS
) ] = 0,
1262 [ C(RESULT_MISS
) ] = 0,
1267 [ C(RESULT_ACCESS
) ] = 0x0f40, /* L1D_CACHE_LD.MESI (alias) */
1268 [ C(RESULT_MISS
) ] = 0x0208, /* DTLB_MISSES.MISS_LD */
1271 [ C(RESULT_ACCESS
) ] = 0x0f41, /* L1D_CACHE_ST.MESI (alias) */
1272 [ C(RESULT_MISS
) ] = 0x0808, /* DTLB_MISSES.MISS_ST */
1274 [ C(OP_PREFETCH
) ] = {
1275 [ C(RESULT_ACCESS
) ] = 0,
1276 [ C(RESULT_MISS
) ] = 0,
1281 [ C(RESULT_ACCESS
) ] = 0x00c0, /* INST_RETIRED.ANY_P */
1282 [ C(RESULT_MISS
) ] = 0x1282, /* ITLBMISSES */
1285 [ C(RESULT_ACCESS
) ] = -1,
1286 [ C(RESULT_MISS
) ] = -1,
1288 [ C(OP_PREFETCH
) ] = {
1289 [ C(RESULT_ACCESS
) ] = -1,
1290 [ C(RESULT_MISS
) ] = -1,
1295 [ C(RESULT_ACCESS
) ] = 0x00c4, /* BR_INST_RETIRED.ANY */
1296 [ C(RESULT_MISS
) ] = 0x00c5, /* BP_INST_RETIRED.MISPRED */
1299 [ C(RESULT_ACCESS
) ] = -1,
1300 [ C(RESULT_MISS
) ] = -1,
1302 [ C(OP_PREFETCH
) ] = {
1303 [ C(RESULT_ACCESS
) ] = -1,
1304 [ C(RESULT_MISS
) ] = -1,
1309 static __initconst
const u64 atom_hw_cache_event_ids
1310 [PERF_COUNT_HW_CACHE_MAX
]
1311 [PERF_COUNT_HW_CACHE_OP_MAX
]
1312 [PERF_COUNT_HW_CACHE_RESULT_MAX
] =
1316 [ C(RESULT_ACCESS
) ] = 0x2140, /* L1D_CACHE.LD */
1317 [ C(RESULT_MISS
) ] = 0,
1320 [ C(RESULT_ACCESS
) ] = 0x2240, /* L1D_CACHE.ST */
1321 [ C(RESULT_MISS
) ] = 0,
1323 [ C(OP_PREFETCH
) ] = {
1324 [ C(RESULT_ACCESS
) ] = 0x0,
1325 [ C(RESULT_MISS
) ] = 0,
1330 [ C(RESULT_ACCESS
) ] = 0x0380, /* L1I.READS */
1331 [ C(RESULT_MISS
) ] = 0x0280, /* L1I.MISSES */
1334 [ C(RESULT_ACCESS
) ] = -1,
1335 [ C(RESULT_MISS
) ] = -1,
1337 [ C(OP_PREFETCH
) ] = {
1338 [ C(RESULT_ACCESS
) ] = 0,
1339 [ C(RESULT_MISS
) ] = 0,
1344 [ C(RESULT_ACCESS
) ] = 0x4f29, /* L2_LD.MESI */
1345 [ C(RESULT_MISS
) ] = 0x4129, /* L2_LD.ISTATE */
1348 [ C(RESULT_ACCESS
) ] = 0x4f2A, /* L2_ST.MESI */
1349 [ C(RESULT_MISS
) ] = 0x412A, /* L2_ST.ISTATE */
1351 [ C(OP_PREFETCH
) ] = {
1352 [ C(RESULT_ACCESS
) ] = 0,
1353 [ C(RESULT_MISS
) ] = 0,
1358 [ C(RESULT_ACCESS
) ] = 0x2140, /* L1D_CACHE_LD.MESI (alias) */
1359 [ C(RESULT_MISS
) ] = 0x0508, /* DTLB_MISSES.MISS_LD */
1362 [ C(RESULT_ACCESS
) ] = 0x2240, /* L1D_CACHE_ST.MESI (alias) */
1363 [ C(RESULT_MISS
) ] = 0x0608, /* DTLB_MISSES.MISS_ST */
1365 [ C(OP_PREFETCH
) ] = {
1366 [ C(RESULT_ACCESS
) ] = 0,
1367 [ C(RESULT_MISS
) ] = 0,
1372 [ C(RESULT_ACCESS
) ] = 0x00c0, /* INST_RETIRED.ANY_P */
1373 [ C(RESULT_MISS
) ] = 0x0282, /* ITLB.MISSES */
1376 [ C(RESULT_ACCESS
) ] = -1,
1377 [ C(RESULT_MISS
) ] = -1,
1379 [ C(OP_PREFETCH
) ] = {
1380 [ C(RESULT_ACCESS
) ] = -1,
1381 [ C(RESULT_MISS
) ] = -1,
1386 [ C(RESULT_ACCESS
) ] = 0x00c4, /* BR_INST_RETIRED.ANY */
1387 [ C(RESULT_MISS
) ] = 0x00c5, /* BP_INST_RETIRED.MISPRED */
1390 [ C(RESULT_ACCESS
) ] = -1,
1391 [ C(RESULT_MISS
) ] = -1,
1393 [ C(OP_PREFETCH
) ] = {
1394 [ C(RESULT_ACCESS
) ] = -1,
1395 [ C(RESULT_MISS
) ] = -1,
1400 EVENT_ATTR_STR(topdown
-total
-slots
, td_total_slots_slm
, "event=0x3c");
1401 EVENT_ATTR_STR(topdown
-total
-slots
.scale
, td_total_slots_scale_slm
, "2");
1402 /* no_alloc_cycles.not_delivered */
1403 EVENT_ATTR_STR(topdown
-fetch
-bubbles
, td_fetch_bubbles_slm
,
1404 "event=0xca,umask=0x50");
1405 EVENT_ATTR_STR(topdown
-fetch
-bubbles
.scale
, td_fetch_bubbles_scale_slm
, "2");
1406 /* uops_retired.all */
1407 EVENT_ATTR_STR(topdown
-slots
-issued
, td_slots_issued_slm
,
1408 "event=0xc2,umask=0x10");
1409 /* uops_retired.all */
1410 EVENT_ATTR_STR(topdown
-slots
-retired
, td_slots_retired_slm
,
1411 "event=0xc2,umask=0x10");
1413 static struct attribute
*slm_events_attrs
[] = {
1414 EVENT_PTR(td_total_slots_slm
),
1415 EVENT_PTR(td_total_slots_scale_slm
),
1416 EVENT_PTR(td_fetch_bubbles_slm
),
1417 EVENT_PTR(td_fetch_bubbles_scale_slm
),
1418 EVENT_PTR(td_slots_issued_slm
),
1419 EVENT_PTR(td_slots_retired_slm
),
1423 static struct extra_reg intel_slm_extra_regs
[] __read_mostly
=
1425 /* must define OFFCORE_RSP_X first, see intel_fixup_er() */
1426 INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0
, 0x768005ffffull
, RSP_0
),
1427 INTEL_UEVENT_EXTRA_REG(0x02b7, MSR_OFFCORE_RSP_1
, 0x368005ffffull
, RSP_1
),
1431 #define SLM_DMND_READ SNB_DMND_DATA_RD
1432 #define SLM_DMND_WRITE SNB_DMND_RFO
1433 #define SLM_DMND_PREFETCH (SNB_PF_DATA_RD|SNB_PF_RFO)
1435 #define SLM_SNP_ANY (SNB_SNP_NONE|SNB_SNP_MISS|SNB_NO_FWD|SNB_HITM)
1436 #define SLM_LLC_ACCESS SNB_RESP_ANY
1437 #define SLM_LLC_MISS (SLM_SNP_ANY|SNB_NON_DRAM)
1439 static __initconst
const u64 slm_hw_cache_extra_regs
1440 [PERF_COUNT_HW_CACHE_MAX
]
1441 [PERF_COUNT_HW_CACHE_OP_MAX
]
1442 [PERF_COUNT_HW_CACHE_RESULT_MAX
] =
1446 [ C(RESULT_ACCESS
) ] = SLM_DMND_READ
|SLM_LLC_ACCESS
,
1447 [ C(RESULT_MISS
) ] = 0,
1450 [ C(RESULT_ACCESS
) ] = SLM_DMND_WRITE
|SLM_LLC_ACCESS
,
1451 [ C(RESULT_MISS
) ] = SLM_DMND_WRITE
|SLM_LLC_MISS
,
1453 [ C(OP_PREFETCH
) ] = {
1454 [ C(RESULT_ACCESS
) ] = SLM_DMND_PREFETCH
|SLM_LLC_ACCESS
,
1455 [ C(RESULT_MISS
) ] = SLM_DMND_PREFETCH
|SLM_LLC_MISS
,
1460 static __initconst
const u64 slm_hw_cache_event_ids
1461 [PERF_COUNT_HW_CACHE_MAX
]
1462 [PERF_COUNT_HW_CACHE_OP_MAX
]
1463 [PERF_COUNT_HW_CACHE_RESULT_MAX
] =
1467 [ C(RESULT_ACCESS
) ] = 0,
1468 [ C(RESULT_MISS
) ] = 0x0104, /* LD_DCU_MISS */
1471 [ C(RESULT_ACCESS
) ] = 0,
1472 [ C(RESULT_MISS
) ] = 0,
1474 [ C(OP_PREFETCH
) ] = {
1475 [ C(RESULT_ACCESS
) ] = 0,
1476 [ C(RESULT_MISS
) ] = 0,
1481 [ C(RESULT_ACCESS
) ] = 0x0380, /* ICACHE.ACCESSES */
1482 [ C(RESULT_MISS
) ] = 0x0280, /* ICACGE.MISSES */
1485 [ C(RESULT_ACCESS
) ] = -1,
1486 [ C(RESULT_MISS
) ] = -1,
1488 [ C(OP_PREFETCH
) ] = {
1489 [ C(RESULT_ACCESS
) ] = 0,
1490 [ C(RESULT_MISS
) ] = 0,
1495 /* OFFCORE_RESPONSE.ANY_DATA.LOCAL_CACHE */
1496 [ C(RESULT_ACCESS
) ] = 0x01b7,
1497 [ C(RESULT_MISS
) ] = 0,
1500 /* OFFCORE_RESPONSE.ANY_RFO.LOCAL_CACHE */
1501 [ C(RESULT_ACCESS
) ] = 0x01b7,
1502 /* OFFCORE_RESPONSE.ANY_RFO.ANY_LLC_MISS */
1503 [ C(RESULT_MISS
) ] = 0x01b7,
1505 [ C(OP_PREFETCH
) ] = {
1506 /* OFFCORE_RESPONSE.PREFETCH.LOCAL_CACHE */
1507 [ C(RESULT_ACCESS
) ] = 0x01b7,
1508 /* OFFCORE_RESPONSE.PREFETCH.ANY_LLC_MISS */
1509 [ C(RESULT_MISS
) ] = 0x01b7,
1514 [ C(RESULT_ACCESS
) ] = 0,
1515 [ C(RESULT_MISS
) ] = 0x0804, /* LD_DTLB_MISS */
1518 [ C(RESULT_ACCESS
) ] = 0,
1519 [ C(RESULT_MISS
) ] = 0,
1521 [ C(OP_PREFETCH
) ] = {
1522 [ C(RESULT_ACCESS
) ] = 0,
1523 [ C(RESULT_MISS
) ] = 0,
1528 [ C(RESULT_ACCESS
) ] = 0x00c0, /* INST_RETIRED.ANY_P */
1529 [ C(RESULT_MISS
) ] = 0x40205, /* PAGE_WALKS.I_SIDE_WALKS */
1532 [ C(RESULT_ACCESS
) ] = -1,
1533 [ C(RESULT_MISS
) ] = -1,
1535 [ C(OP_PREFETCH
) ] = {
1536 [ C(RESULT_ACCESS
) ] = -1,
1537 [ C(RESULT_MISS
) ] = -1,
1542 [ C(RESULT_ACCESS
) ] = 0x00c4, /* BR_INST_RETIRED.ANY */
1543 [ C(RESULT_MISS
) ] = 0x00c5, /* BP_INST_RETIRED.MISPRED */
1546 [ C(RESULT_ACCESS
) ] = -1,
1547 [ C(RESULT_MISS
) ] = -1,
1549 [ C(OP_PREFETCH
) ] = {
1550 [ C(RESULT_ACCESS
) ] = -1,
1551 [ C(RESULT_MISS
) ] = -1,
1556 EVENT_ATTR_STR(topdown
-total
-slots
, td_total_slots_glm
, "event=0x3c");
1557 EVENT_ATTR_STR(topdown
-total
-slots
.scale
, td_total_slots_scale_glm
, "3");
1558 /* UOPS_NOT_DELIVERED.ANY */
1559 EVENT_ATTR_STR(topdown
-fetch
-bubbles
, td_fetch_bubbles_glm
, "event=0x9c");
1560 /* ISSUE_SLOTS_NOT_CONSUMED.RECOVERY */
1561 EVENT_ATTR_STR(topdown
-recovery
-bubbles
, td_recovery_bubbles_glm
, "event=0xca,umask=0x02");
1562 /* UOPS_RETIRED.ANY */
1563 EVENT_ATTR_STR(topdown
-slots
-retired
, td_slots_retired_glm
, "event=0xc2");
1564 /* UOPS_ISSUED.ANY */
1565 EVENT_ATTR_STR(topdown
-slots
-issued
, td_slots_issued_glm
, "event=0x0e");
1567 static struct attribute
*glm_events_attrs
[] = {
1568 EVENT_PTR(td_total_slots_glm
),
1569 EVENT_PTR(td_total_slots_scale_glm
),
1570 EVENT_PTR(td_fetch_bubbles_glm
),
1571 EVENT_PTR(td_recovery_bubbles_glm
),
1572 EVENT_PTR(td_slots_issued_glm
),
1573 EVENT_PTR(td_slots_retired_glm
),
1577 static struct extra_reg intel_glm_extra_regs
[] __read_mostly
= {
1578 /* must define OFFCORE_RSP_X first, see intel_fixup_er() */
1579 INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0
, 0x760005ffbfull
, RSP_0
),
1580 INTEL_UEVENT_EXTRA_REG(0x02b7, MSR_OFFCORE_RSP_1
, 0x360005ffbfull
, RSP_1
),
1584 #define GLM_DEMAND_DATA_RD BIT_ULL(0)
1585 #define GLM_DEMAND_RFO BIT_ULL(1)
1586 #define GLM_ANY_RESPONSE BIT_ULL(16)
1587 #define GLM_SNP_NONE_OR_MISS BIT_ULL(33)
1588 #define GLM_DEMAND_READ GLM_DEMAND_DATA_RD
1589 #define GLM_DEMAND_WRITE GLM_DEMAND_RFO
1590 #define GLM_DEMAND_PREFETCH (SNB_PF_DATA_RD|SNB_PF_RFO)
1591 #define GLM_LLC_ACCESS GLM_ANY_RESPONSE
1592 #define GLM_SNP_ANY (GLM_SNP_NONE_OR_MISS|SNB_NO_FWD|SNB_HITM)
1593 #define GLM_LLC_MISS (GLM_SNP_ANY|SNB_NON_DRAM)
1595 static __initconst
const u64 glm_hw_cache_event_ids
1596 [PERF_COUNT_HW_CACHE_MAX
]
1597 [PERF_COUNT_HW_CACHE_OP_MAX
]
1598 [PERF_COUNT_HW_CACHE_RESULT_MAX
] = {
1601 [C(RESULT_ACCESS
)] = 0x81d0, /* MEM_UOPS_RETIRED.ALL_LOADS */
1602 [C(RESULT_MISS
)] = 0x0,
1605 [C(RESULT_ACCESS
)] = 0x82d0, /* MEM_UOPS_RETIRED.ALL_STORES */
1606 [C(RESULT_MISS
)] = 0x0,
1608 [C(OP_PREFETCH
)] = {
1609 [C(RESULT_ACCESS
)] = 0x0,
1610 [C(RESULT_MISS
)] = 0x0,
1615 [C(RESULT_ACCESS
)] = 0x0380, /* ICACHE.ACCESSES */
1616 [C(RESULT_MISS
)] = 0x0280, /* ICACHE.MISSES */
1619 [C(RESULT_ACCESS
)] = -1,
1620 [C(RESULT_MISS
)] = -1,
1622 [C(OP_PREFETCH
)] = {
1623 [C(RESULT_ACCESS
)] = 0x0,
1624 [C(RESULT_MISS
)] = 0x0,
1629 [C(RESULT_ACCESS
)] = 0x1b7, /* OFFCORE_RESPONSE */
1630 [C(RESULT_MISS
)] = 0x1b7, /* OFFCORE_RESPONSE */
1633 [C(RESULT_ACCESS
)] = 0x1b7, /* OFFCORE_RESPONSE */
1634 [C(RESULT_MISS
)] = 0x1b7, /* OFFCORE_RESPONSE */
1636 [C(OP_PREFETCH
)] = {
1637 [C(RESULT_ACCESS
)] = 0x1b7, /* OFFCORE_RESPONSE */
1638 [C(RESULT_MISS
)] = 0x1b7, /* OFFCORE_RESPONSE */
1643 [C(RESULT_ACCESS
)] = 0x81d0, /* MEM_UOPS_RETIRED.ALL_LOADS */
1644 [C(RESULT_MISS
)] = 0x0,
1647 [C(RESULT_ACCESS
)] = 0x82d0, /* MEM_UOPS_RETIRED.ALL_STORES */
1648 [C(RESULT_MISS
)] = 0x0,
1650 [C(OP_PREFETCH
)] = {
1651 [C(RESULT_ACCESS
)] = 0x0,
1652 [C(RESULT_MISS
)] = 0x0,
1657 [C(RESULT_ACCESS
)] = 0x00c0, /* INST_RETIRED.ANY_P */
1658 [C(RESULT_MISS
)] = 0x0481, /* ITLB.MISS */
1661 [C(RESULT_ACCESS
)] = -1,
1662 [C(RESULT_MISS
)] = -1,
1664 [C(OP_PREFETCH
)] = {
1665 [C(RESULT_ACCESS
)] = -1,
1666 [C(RESULT_MISS
)] = -1,
1671 [C(RESULT_ACCESS
)] = 0x00c4, /* BR_INST_RETIRED.ALL_BRANCHES */
1672 [C(RESULT_MISS
)] = 0x00c5, /* BR_MISP_RETIRED.ALL_BRANCHES */
1675 [C(RESULT_ACCESS
)] = -1,
1676 [C(RESULT_MISS
)] = -1,
1678 [C(OP_PREFETCH
)] = {
1679 [C(RESULT_ACCESS
)] = -1,
1680 [C(RESULT_MISS
)] = -1,
1685 static __initconst
const u64 glm_hw_cache_extra_regs
1686 [PERF_COUNT_HW_CACHE_MAX
]
1687 [PERF_COUNT_HW_CACHE_OP_MAX
]
1688 [PERF_COUNT_HW_CACHE_RESULT_MAX
] = {
1691 [C(RESULT_ACCESS
)] = GLM_DEMAND_READ
|
1693 [C(RESULT_MISS
)] = GLM_DEMAND_READ
|
1697 [C(RESULT_ACCESS
)] = GLM_DEMAND_WRITE
|
1699 [C(RESULT_MISS
)] = GLM_DEMAND_WRITE
|
1702 [C(OP_PREFETCH
)] = {
1703 [C(RESULT_ACCESS
)] = GLM_DEMAND_PREFETCH
|
1705 [C(RESULT_MISS
)] = GLM_DEMAND_PREFETCH
|
1711 static __initconst
const u64 glp_hw_cache_event_ids
1712 [PERF_COUNT_HW_CACHE_MAX
]
1713 [PERF_COUNT_HW_CACHE_OP_MAX
]
1714 [PERF_COUNT_HW_CACHE_RESULT_MAX
] = {
1717 [C(RESULT_ACCESS
)] = 0x81d0, /* MEM_UOPS_RETIRED.ALL_LOADS */
1718 [C(RESULT_MISS
)] = 0x0,
1721 [C(RESULT_ACCESS
)] = 0x82d0, /* MEM_UOPS_RETIRED.ALL_STORES */
1722 [C(RESULT_MISS
)] = 0x0,
1724 [C(OP_PREFETCH
)] = {
1725 [C(RESULT_ACCESS
)] = 0x0,
1726 [C(RESULT_MISS
)] = 0x0,
1731 [C(RESULT_ACCESS
)] = 0x0380, /* ICACHE.ACCESSES */
1732 [C(RESULT_MISS
)] = 0x0280, /* ICACHE.MISSES */
1735 [C(RESULT_ACCESS
)] = -1,
1736 [C(RESULT_MISS
)] = -1,
1738 [C(OP_PREFETCH
)] = {
1739 [C(RESULT_ACCESS
)] = 0x0,
1740 [C(RESULT_MISS
)] = 0x0,
1745 [C(RESULT_ACCESS
)] = 0x1b7, /* OFFCORE_RESPONSE */
1746 [C(RESULT_MISS
)] = 0x1b7, /* OFFCORE_RESPONSE */
1749 [C(RESULT_ACCESS
)] = 0x1b7, /* OFFCORE_RESPONSE */
1750 [C(RESULT_MISS
)] = 0x1b7, /* OFFCORE_RESPONSE */
1752 [C(OP_PREFETCH
)] = {
1753 [C(RESULT_ACCESS
)] = 0x0,
1754 [C(RESULT_MISS
)] = 0x0,
1759 [C(RESULT_ACCESS
)] = 0x81d0, /* MEM_UOPS_RETIRED.ALL_LOADS */
1760 [C(RESULT_MISS
)] = 0xe08, /* DTLB_LOAD_MISSES.WALK_COMPLETED */
1763 [C(RESULT_ACCESS
)] = 0x82d0, /* MEM_UOPS_RETIRED.ALL_STORES */
1764 [C(RESULT_MISS
)] = 0xe49, /* DTLB_STORE_MISSES.WALK_COMPLETED */
1766 [C(OP_PREFETCH
)] = {
1767 [C(RESULT_ACCESS
)] = 0x0,
1768 [C(RESULT_MISS
)] = 0x0,
1773 [C(RESULT_ACCESS
)] = 0x00c0, /* INST_RETIRED.ANY_P */
1774 [C(RESULT_MISS
)] = 0x0481, /* ITLB.MISS */
1777 [C(RESULT_ACCESS
)] = -1,
1778 [C(RESULT_MISS
)] = -1,
1780 [C(OP_PREFETCH
)] = {
1781 [C(RESULT_ACCESS
)] = -1,
1782 [C(RESULT_MISS
)] = -1,
1787 [C(RESULT_ACCESS
)] = 0x00c4, /* BR_INST_RETIRED.ALL_BRANCHES */
1788 [C(RESULT_MISS
)] = 0x00c5, /* BR_MISP_RETIRED.ALL_BRANCHES */
1791 [C(RESULT_ACCESS
)] = -1,
1792 [C(RESULT_MISS
)] = -1,
1794 [C(OP_PREFETCH
)] = {
1795 [C(RESULT_ACCESS
)] = -1,
1796 [C(RESULT_MISS
)] = -1,
1801 static __initconst
const u64 glp_hw_cache_extra_regs
1802 [PERF_COUNT_HW_CACHE_MAX
]
1803 [PERF_COUNT_HW_CACHE_OP_MAX
]
1804 [PERF_COUNT_HW_CACHE_RESULT_MAX
] = {
1807 [C(RESULT_ACCESS
)] = GLM_DEMAND_READ
|
1809 [C(RESULT_MISS
)] = GLM_DEMAND_READ
|
1813 [C(RESULT_ACCESS
)] = GLM_DEMAND_WRITE
|
1815 [C(RESULT_MISS
)] = GLM_DEMAND_WRITE
|
1818 [C(OP_PREFETCH
)] = {
1819 [C(RESULT_ACCESS
)] = 0x0,
1820 [C(RESULT_MISS
)] = 0x0,
1825 #define KNL_OT_L2_HITE BIT_ULL(19) /* Other Tile L2 Hit */
1826 #define KNL_OT_L2_HITF BIT_ULL(20) /* Other Tile L2 Hit */
1827 #define KNL_MCDRAM_LOCAL BIT_ULL(21)
1828 #define KNL_MCDRAM_FAR BIT_ULL(22)
1829 #define KNL_DDR_LOCAL BIT_ULL(23)
1830 #define KNL_DDR_FAR BIT_ULL(24)
1831 #define KNL_DRAM_ANY (KNL_MCDRAM_LOCAL | KNL_MCDRAM_FAR | \
1832 KNL_DDR_LOCAL | KNL_DDR_FAR)
1833 #define KNL_L2_READ SLM_DMND_READ
1834 #define KNL_L2_WRITE SLM_DMND_WRITE
1835 #define KNL_L2_PREFETCH SLM_DMND_PREFETCH
1836 #define KNL_L2_ACCESS SLM_LLC_ACCESS
1837 #define KNL_L2_MISS (KNL_OT_L2_HITE | KNL_OT_L2_HITF | \
1838 KNL_DRAM_ANY | SNB_SNP_ANY | \
1841 static __initconst
const u64 knl_hw_cache_extra_regs
1842 [PERF_COUNT_HW_CACHE_MAX
]
1843 [PERF_COUNT_HW_CACHE_OP_MAX
]
1844 [PERF_COUNT_HW_CACHE_RESULT_MAX
] = {
1847 [C(RESULT_ACCESS
)] = KNL_L2_READ
| KNL_L2_ACCESS
,
1848 [C(RESULT_MISS
)] = 0,
1851 [C(RESULT_ACCESS
)] = KNL_L2_WRITE
| KNL_L2_ACCESS
,
1852 [C(RESULT_MISS
)] = KNL_L2_WRITE
| KNL_L2_MISS
,
1854 [C(OP_PREFETCH
)] = {
1855 [C(RESULT_ACCESS
)] = KNL_L2_PREFETCH
| KNL_L2_ACCESS
,
1856 [C(RESULT_MISS
)] = KNL_L2_PREFETCH
| KNL_L2_MISS
,
1862 * Used from PMIs where the LBRs are already disabled.
1864 * This function could be called consecutively. It is required to remain in
1865 * disabled state if called consecutively.
1867 * During consecutive calls, the same disable value will be written to related
1868 * registers, so the PMU state remains unchanged.
1870 * intel_bts events don't coexist with intel PMU's BTS events because of
1871 * x86_add_exclusive(x86_lbr_exclusive_lbr); there's no need to keep them
1872 * disabled around intel PMU's event batching etc, only inside the PMI handler.
1874 static void __intel_pmu_disable_all(void)
1876 struct cpu_hw_events
*cpuc
= this_cpu_ptr(&cpu_hw_events
);
1878 wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL
, 0);
1880 if (test_bit(INTEL_PMC_IDX_FIXED_BTS
, cpuc
->active_mask
))
1881 intel_pmu_disable_bts();
1883 intel_pmu_pebs_disable_all();
1886 static void intel_pmu_disable_all(void)
1888 __intel_pmu_disable_all();
1889 intel_pmu_lbr_disable_all();
1892 static void __intel_pmu_enable_all(int added
, bool pmi
)
1894 struct cpu_hw_events
*cpuc
= this_cpu_ptr(&cpu_hw_events
);
1896 intel_pmu_pebs_enable_all();
1897 intel_pmu_lbr_enable_all(pmi
);
1898 wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL
,
1899 x86_pmu
.intel_ctrl
& ~cpuc
->intel_ctrl_guest_mask
);
1901 if (test_bit(INTEL_PMC_IDX_FIXED_BTS
, cpuc
->active_mask
)) {
1902 struct perf_event
*event
=
1903 cpuc
->events
[INTEL_PMC_IDX_FIXED_BTS
];
1905 if (WARN_ON_ONCE(!event
))
1908 intel_pmu_enable_bts(event
->hw
.config
);
1912 static void intel_pmu_enable_all(int added
)
1914 __intel_pmu_enable_all(added
, false);
1919 * Intel Errata AAK100 (model 26)
1920 * Intel Errata AAP53 (model 30)
1921 * Intel Errata BD53 (model 44)
1923 * The official story:
1924 * These chips need to be 'reset' when adding counters by programming the
1925 * magic three (non-counting) events 0x4300B5, 0x4300D2, and 0x4300B1 either
1926 * in sequence on the same PMC or on different PMCs.
1928 * In practise it appears some of these events do in fact count, and
1929 * we need to programm all 4 events.
1931 static void intel_pmu_nhm_workaround(void)
1933 struct cpu_hw_events
*cpuc
= this_cpu_ptr(&cpu_hw_events
);
1934 static const unsigned long nhm_magic
[4] = {
1940 struct perf_event
*event
;
1944 * The Errata requires below steps:
1945 * 1) Clear MSR_IA32_PEBS_ENABLE and MSR_CORE_PERF_GLOBAL_CTRL;
1946 * 2) Configure 4 PERFEVTSELx with the magic events and clear
1947 * the corresponding PMCx;
1948 * 3) set bit0~bit3 of MSR_CORE_PERF_GLOBAL_CTRL;
1949 * 4) Clear MSR_CORE_PERF_GLOBAL_CTRL;
1950 * 5) Clear 4 pairs of ERFEVTSELx and PMCx;
1954 * The real steps we choose are a little different from above.
1955 * A) To reduce MSR operations, we don't run step 1) as they
1956 * are already cleared before this function is called;
1957 * B) Call x86_perf_event_update to save PMCx before configuring
1958 * PERFEVTSELx with magic number;
1959 * C) With step 5), we do clear only when the PERFEVTSELx is
1960 * not used currently.
1961 * D) Call x86_perf_event_set_period to restore PMCx;
1964 /* We always operate 4 pairs of PERF Counters */
1965 for (i
= 0; i
< 4; i
++) {
1966 event
= cpuc
->events
[i
];
1968 x86_perf_event_update(event
);
1971 for (i
= 0; i
< 4; i
++) {
1972 wrmsrl(MSR_ARCH_PERFMON_EVENTSEL0
+ i
, nhm_magic
[i
]);
1973 wrmsrl(MSR_ARCH_PERFMON_PERFCTR0
+ i
, 0x0);
1976 wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL
, 0xf);
1977 wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL
, 0x0);
1979 for (i
= 0; i
< 4; i
++) {
1980 event
= cpuc
->events
[i
];
1983 x86_perf_event_set_period(event
);
1984 __x86_pmu_enable_event(&event
->hw
,
1985 ARCH_PERFMON_EVENTSEL_ENABLE
);
1987 wrmsrl(MSR_ARCH_PERFMON_EVENTSEL0
+ i
, 0x0);
1991 static void intel_pmu_nhm_enable_all(int added
)
1994 intel_pmu_nhm_workaround();
1995 intel_pmu_enable_all(added
);
1998 static inline u64
intel_pmu_get_status(void)
2002 rdmsrl(MSR_CORE_PERF_GLOBAL_STATUS
, status
);
2007 static inline void intel_pmu_ack_status(u64 ack
)
2009 wrmsrl(MSR_CORE_PERF_GLOBAL_OVF_CTRL
, ack
);
2012 static void intel_pmu_disable_fixed(struct hw_perf_event
*hwc
)
2014 int idx
= hwc
->idx
- INTEL_PMC_IDX_FIXED
;
2017 mask
= 0xfULL
<< (idx
* 4);
2019 rdmsrl(hwc
->config_base
, ctrl_val
);
2021 wrmsrl(hwc
->config_base
, ctrl_val
);
2024 static inline bool event_is_checkpointed(struct perf_event
*event
)
2026 return (event
->hw
.config
& HSW_IN_TX_CHECKPOINTED
) != 0;
2029 static void intel_pmu_disable_event(struct perf_event
*event
)
2031 struct hw_perf_event
*hwc
= &event
->hw
;
2032 struct cpu_hw_events
*cpuc
= this_cpu_ptr(&cpu_hw_events
);
2034 if (unlikely(hwc
->idx
== INTEL_PMC_IDX_FIXED_BTS
)) {
2035 intel_pmu_disable_bts();
2036 intel_pmu_drain_bts_buffer();
2040 cpuc
->intel_ctrl_guest_mask
&= ~(1ull << hwc
->idx
);
2041 cpuc
->intel_ctrl_host_mask
&= ~(1ull << hwc
->idx
);
2042 cpuc
->intel_cp_status
&= ~(1ull << hwc
->idx
);
2044 if (unlikely(hwc
->config_base
== MSR_ARCH_PERFMON_FIXED_CTR_CTRL
)) {
2045 intel_pmu_disable_fixed(hwc
);
2049 x86_pmu_disable_event(event
);
2051 if (unlikely(event
->attr
.precise_ip
))
2052 intel_pmu_pebs_disable(event
);
2055 static void intel_pmu_del_event(struct perf_event
*event
)
2057 if (needs_branch_stack(event
))
2058 intel_pmu_lbr_del(event
);
2059 if (event
->attr
.precise_ip
)
2060 intel_pmu_pebs_del(event
);
2063 static void intel_pmu_enable_fixed(struct hw_perf_event
*hwc
)
2065 int idx
= hwc
->idx
- INTEL_PMC_IDX_FIXED
;
2066 u64 ctrl_val
, bits
, mask
;
2069 * Enable IRQ generation (0x8),
2070 * and enable ring-3 counting (0x2) and ring-0 counting (0x1)
2074 if (hwc
->config
& ARCH_PERFMON_EVENTSEL_USR
)
2076 if (hwc
->config
& ARCH_PERFMON_EVENTSEL_OS
)
2080 * ANY bit is supported in v3 and up
2082 if (x86_pmu
.version
> 2 && hwc
->config
& ARCH_PERFMON_EVENTSEL_ANY
)
2086 mask
= 0xfULL
<< (idx
* 4);
2088 rdmsrl(hwc
->config_base
, ctrl_val
);
2091 wrmsrl(hwc
->config_base
, ctrl_val
);
2094 static void intel_pmu_enable_event(struct perf_event
*event
)
2096 struct hw_perf_event
*hwc
= &event
->hw
;
2097 struct cpu_hw_events
*cpuc
= this_cpu_ptr(&cpu_hw_events
);
2099 if (unlikely(hwc
->idx
== INTEL_PMC_IDX_FIXED_BTS
)) {
2100 if (!__this_cpu_read(cpu_hw_events
.enabled
))
2103 intel_pmu_enable_bts(hwc
->config
);
2107 if (event
->attr
.exclude_host
)
2108 cpuc
->intel_ctrl_guest_mask
|= (1ull << hwc
->idx
);
2109 if (event
->attr
.exclude_guest
)
2110 cpuc
->intel_ctrl_host_mask
|= (1ull << hwc
->idx
);
2112 if (unlikely(event_is_checkpointed(event
)))
2113 cpuc
->intel_cp_status
|= (1ull << hwc
->idx
);
2115 if (unlikely(hwc
->config_base
== MSR_ARCH_PERFMON_FIXED_CTR_CTRL
)) {
2116 intel_pmu_enable_fixed(hwc
);
2120 if (unlikely(event
->attr
.precise_ip
))
2121 intel_pmu_pebs_enable(event
);
2123 __x86_pmu_enable_event(hwc
, ARCH_PERFMON_EVENTSEL_ENABLE
);
2126 static void intel_pmu_add_event(struct perf_event
*event
)
2128 if (event
->attr
.precise_ip
)
2129 intel_pmu_pebs_add(event
);
2130 if (needs_branch_stack(event
))
2131 intel_pmu_lbr_add(event
);
2135 * Save and restart an expired event. Called by NMI contexts,
2136 * so it has to be careful about preempting normal event ops:
2138 int intel_pmu_save_and_restart(struct perf_event
*event
)
2140 x86_perf_event_update(event
);
2142 * For a checkpointed counter always reset back to 0. This
2143 * avoids a situation where the counter overflows, aborts the
2144 * transaction and is then set back to shortly before the
2145 * overflow, and overflows and aborts again.
2147 if (unlikely(event_is_checkpointed(event
))) {
2148 /* No race with NMIs because the counter should not be armed */
2149 wrmsrl(event
->hw
.event_base
, 0);
2150 local64_set(&event
->hw
.prev_count
, 0);
2152 return x86_perf_event_set_period(event
);
2155 static void intel_pmu_reset(void)
2157 struct debug_store
*ds
= __this_cpu_read(cpu_hw_events
.ds
);
2158 unsigned long flags
;
2161 if (!x86_pmu
.num_counters
)
2164 local_irq_save(flags
);
2166 pr_info("clearing PMU state on CPU#%d\n", smp_processor_id());
2168 for (idx
= 0; idx
< x86_pmu
.num_counters
; idx
++) {
2169 wrmsrl_safe(x86_pmu_config_addr(idx
), 0ull);
2170 wrmsrl_safe(x86_pmu_event_addr(idx
), 0ull);
2172 for (idx
= 0; idx
< x86_pmu
.num_counters_fixed
; idx
++)
2173 wrmsrl_safe(MSR_ARCH_PERFMON_FIXED_CTR0
+ idx
, 0ull);
2176 ds
->bts_index
= ds
->bts_buffer_base
;
2178 /* Ack all overflows and disable fixed counters */
2179 if (x86_pmu
.version
>= 2) {
2180 intel_pmu_ack_status(intel_pmu_get_status());
2181 wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL
, 0);
2184 /* Reset LBRs and LBR freezing */
2185 if (x86_pmu
.lbr_nr
) {
2186 update_debugctlmsr(get_debugctlmsr() &
2187 ~(DEBUGCTLMSR_FREEZE_LBRS_ON_PMI
|DEBUGCTLMSR_LBR
));
2190 local_irq_restore(flags
);
2194 * This handler is triggered by the local APIC, so the APIC IRQ handling
2197 static int intel_pmu_handle_irq(struct pt_regs
*regs
)
2199 struct perf_sample_data data
;
2200 struct cpu_hw_events
*cpuc
;
2205 cpuc
= this_cpu_ptr(&cpu_hw_events
);
2208 * No known reason to not always do late ACK,
2209 * but just in case do it opt-in.
2211 if (!x86_pmu
.late_ack
)
2212 apic_write(APIC_LVTPC
, APIC_DM_NMI
);
2213 intel_bts_disable_local();
2214 __intel_pmu_disable_all();
2215 handled
= intel_pmu_drain_bts_buffer();
2216 handled
+= intel_bts_interrupt();
2217 status
= intel_pmu_get_status();
2223 intel_pmu_lbr_read();
2224 intel_pmu_ack_status(status
);
2225 if (++loops
> 100) {
2226 static bool warned
= false;
2228 WARN(1, "perfevents: irq loop stuck!\n");
2229 perf_event_print_debug();
2236 inc_irq_stat(apic_perf_irqs
);
2240 * Ignore a range of extra bits in status that do not indicate
2241 * overflow by themselves.
2243 status
&= ~(GLOBAL_STATUS_COND_CHG
|
2244 GLOBAL_STATUS_ASIF
|
2245 GLOBAL_STATUS_LBRS_FROZEN
);
2249 * In case multiple PEBS events are sampled at the same time,
2250 * it is possible to have GLOBAL_STATUS bit 62 set indicating
2251 * PEBS buffer overflow and also seeing at most 3 PEBS counters
2252 * having their bits set in the status register. This is a sign
2253 * that there was at least one PEBS record pending at the time
2254 * of the PMU interrupt. PEBS counters must only be processed
2255 * via the drain_pebs() calls and not via the regular sample
2256 * processing loop coming after that the function, otherwise
2257 * phony regular samples may be generated in the sampling buffer
2258 * not marked with the EXACT tag. Another possibility is to have
2259 * one PEBS event and at least one non-PEBS event whic hoverflows
2260 * while PEBS has armed. In this case, bit 62 of GLOBAL_STATUS will
2261 * not be set, yet the overflow status bit for the PEBS counter will
2264 * To avoid this problem, we systematically ignore the PEBS-enabled
2265 * counters from the GLOBAL_STATUS mask and we always process PEBS
2266 * events via drain_pebs().
2268 status
&= ~(cpuc
->pebs_enabled
& PEBS_COUNTER_MASK
);
2271 * PEBS overflow sets bit 62 in the global status register
2273 if (__test_and_clear_bit(62, (unsigned long *)&status
)) {
2275 x86_pmu
.drain_pebs(regs
);
2276 status
&= x86_pmu
.intel_ctrl
| GLOBAL_STATUS_TRACE_TOPAPMI
;
2282 if (__test_and_clear_bit(55, (unsigned long *)&status
)) {
2284 intel_pt_interrupt();
2288 * Checkpointed counters can lead to 'spurious' PMIs because the
2289 * rollback caused by the PMI will have cleared the overflow status
2290 * bit. Therefore always force probe these counters.
2292 status
|= cpuc
->intel_cp_status
;
2294 for_each_set_bit(bit
, (unsigned long *)&status
, X86_PMC_IDX_MAX
) {
2295 struct perf_event
*event
= cpuc
->events
[bit
];
2299 if (!test_bit(bit
, cpuc
->active_mask
))
2302 if (!intel_pmu_save_and_restart(event
))
2305 perf_sample_data_init(&data
, 0, event
->hw
.last_period
);
2307 if (has_branch_stack(event
))
2308 data
.br_stack
= &cpuc
->lbr_stack
;
2310 if (perf_event_overflow(event
, &data
, regs
))
2311 x86_pmu_stop(event
, 0);
2315 * Repeat if there is more work to be done:
2317 status
= intel_pmu_get_status();
2322 /* Only restore PMU state when it's active. See x86_pmu_disable(). */
2324 __intel_pmu_enable_all(0, true);
2325 intel_bts_enable_local();
2328 * Only unmask the NMI after the overflow counters
2329 * have been reset. This avoids spurious NMIs on
2332 if (x86_pmu
.late_ack
)
2333 apic_write(APIC_LVTPC
, APIC_DM_NMI
);
2337 static struct event_constraint
*
2338 intel_bts_constraints(struct perf_event
*event
)
2340 struct hw_perf_event
*hwc
= &event
->hw
;
2341 unsigned int hw_event
, bts_event
;
2343 if (event
->attr
.freq
)
2346 hw_event
= hwc
->config
& INTEL_ARCH_EVENT_MASK
;
2347 bts_event
= x86_pmu
.event_map(PERF_COUNT_HW_BRANCH_INSTRUCTIONS
);
2349 if (unlikely(hw_event
== bts_event
&& hwc
->sample_period
== 1))
2350 return &bts_constraint
;
2355 static int intel_alt_er(int idx
, u64 config
)
2359 if (!(x86_pmu
.flags
& PMU_FL_HAS_RSP_1
))
2362 if (idx
== EXTRA_REG_RSP_0
)
2363 alt_idx
= EXTRA_REG_RSP_1
;
2365 if (idx
== EXTRA_REG_RSP_1
)
2366 alt_idx
= EXTRA_REG_RSP_0
;
2368 if (config
& ~x86_pmu
.extra_regs
[alt_idx
].valid_mask
)
2374 static void intel_fixup_er(struct perf_event
*event
, int idx
)
2376 event
->hw
.extra_reg
.idx
= idx
;
2378 if (idx
== EXTRA_REG_RSP_0
) {
2379 event
->hw
.config
&= ~INTEL_ARCH_EVENT_MASK
;
2380 event
->hw
.config
|= x86_pmu
.extra_regs
[EXTRA_REG_RSP_0
].event
;
2381 event
->hw
.extra_reg
.reg
= MSR_OFFCORE_RSP_0
;
2382 } else if (idx
== EXTRA_REG_RSP_1
) {
2383 event
->hw
.config
&= ~INTEL_ARCH_EVENT_MASK
;
2384 event
->hw
.config
|= x86_pmu
.extra_regs
[EXTRA_REG_RSP_1
].event
;
2385 event
->hw
.extra_reg
.reg
= MSR_OFFCORE_RSP_1
;
2390 * manage allocation of shared extra msr for certain events
2393 * per-cpu: to be shared between the various events on a single PMU
2394 * per-core: per-cpu + shared by HT threads
2396 static struct event_constraint
*
2397 __intel_shared_reg_get_constraints(struct cpu_hw_events
*cpuc
,
2398 struct perf_event
*event
,
2399 struct hw_perf_event_extra
*reg
)
2401 struct event_constraint
*c
= &emptyconstraint
;
2402 struct er_account
*era
;
2403 unsigned long flags
;
2407 * reg->alloc can be set due to existing state, so for fake cpuc we
2408 * need to ignore this, otherwise we might fail to allocate proper fake
2409 * state for this extra reg constraint. Also see the comment below.
2411 if (reg
->alloc
&& !cpuc
->is_fake
)
2412 return NULL
; /* call x86_get_event_constraint() */
2415 era
= &cpuc
->shared_regs
->regs
[idx
];
2417 * we use spin_lock_irqsave() to avoid lockdep issues when
2418 * passing a fake cpuc
2420 raw_spin_lock_irqsave(&era
->lock
, flags
);
2422 if (!atomic_read(&era
->ref
) || era
->config
== reg
->config
) {
2425 * If its a fake cpuc -- as per validate_{group,event}() we
2426 * shouldn't touch event state and we can avoid doing so
2427 * since both will only call get_event_constraints() once
2428 * on each event, this avoids the need for reg->alloc.
2430 * Not doing the ER fixup will only result in era->reg being
2431 * wrong, but since we won't actually try and program hardware
2432 * this isn't a problem either.
2434 if (!cpuc
->is_fake
) {
2435 if (idx
!= reg
->idx
)
2436 intel_fixup_er(event
, idx
);
2439 * x86_schedule_events() can call get_event_constraints()
2440 * multiple times on events in the case of incremental
2441 * scheduling(). reg->alloc ensures we only do the ER
2447 /* lock in msr value */
2448 era
->config
= reg
->config
;
2449 era
->reg
= reg
->reg
;
2452 atomic_inc(&era
->ref
);
2455 * need to call x86_get_event_constraint()
2456 * to check if associated event has constraints
2460 idx
= intel_alt_er(idx
, reg
->config
);
2461 if (idx
!= reg
->idx
) {
2462 raw_spin_unlock_irqrestore(&era
->lock
, flags
);
2466 raw_spin_unlock_irqrestore(&era
->lock
, flags
);
2472 __intel_shared_reg_put_constraints(struct cpu_hw_events
*cpuc
,
2473 struct hw_perf_event_extra
*reg
)
2475 struct er_account
*era
;
2478 * Only put constraint if extra reg was actually allocated. Also takes
2479 * care of event which do not use an extra shared reg.
2481 * Also, if this is a fake cpuc we shouldn't touch any event state
2482 * (reg->alloc) and we don't care about leaving inconsistent cpuc state
2483 * either since it'll be thrown out.
2485 if (!reg
->alloc
|| cpuc
->is_fake
)
2488 era
= &cpuc
->shared_regs
->regs
[reg
->idx
];
2490 /* one fewer user */
2491 atomic_dec(&era
->ref
);
2493 /* allocate again next time */
2497 static struct event_constraint
*
2498 intel_shared_regs_constraints(struct cpu_hw_events
*cpuc
,
2499 struct perf_event
*event
)
2501 struct event_constraint
*c
= NULL
, *d
;
2502 struct hw_perf_event_extra
*xreg
, *breg
;
2504 xreg
= &event
->hw
.extra_reg
;
2505 if (xreg
->idx
!= EXTRA_REG_NONE
) {
2506 c
= __intel_shared_reg_get_constraints(cpuc
, event
, xreg
);
2507 if (c
== &emptyconstraint
)
2510 breg
= &event
->hw
.branch_reg
;
2511 if (breg
->idx
!= EXTRA_REG_NONE
) {
2512 d
= __intel_shared_reg_get_constraints(cpuc
, event
, breg
);
2513 if (d
== &emptyconstraint
) {
2514 __intel_shared_reg_put_constraints(cpuc
, xreg
);
2521 struct event_constraint
*
2522 x86_get_event_constraints(struct cpu_hw_events
*cpuc
, int idx
,
2523 struct perf_event
*event
)
2525 struct event_constraint
*c
;
2527 if (x86_pmu
.event_constraints
) {
2528 for_each_event_constraint(c
, x86_pmu
.event_constraints
) {
2529 if ((event
->hw
.config
& c
->cmask
) == c
->code
) {
2530 event
->hw
.flags
|= c
->flags
;
2536 return &unconstrained
;
2539 static struct event_constraint
*
2540 __intel_get_event_constraints(struct cpu_hw_events
*cpuc
, int idx
,
2541 struct perf_event
*event
)
2543 struct event_constraint
*c
;
2545 c
= intel_bts_constraints(event
);
2549 c
= intel_shared_regs_constraints(cpuc
, event
);
2553 c
= intel_pebs_constraints(event
);
2557 return x86_get_event_constraints(cpuc
, idx
, event
);
2561 intel_start_scheduling(struct cpu_hw_events
*cpuc
)
2563 struct intel_excl_cntrs
*excl_cntrs
= cpuc
->excl_cntrs
;
2564 struct intel_excl_states
*xl
;
2565 int tid
= cpuc
->excl_thread_id
;
2568 * nothing needed if in group validation mode
2570 if (cpuc
->is_fake
|| !is_ht_workaround_enabled())
2574 * no exclusion needed
2576 if (WARN_ON_ONCE(!excl_cntrs
))
2579 xl
= &excl_cntrs
->states
[tid
];
2581 xl
->sched_started
= true;
2583 * lock shared state until we are done scheduling
2584 * in stop_event_scheduling()
2585 * makes scheduling appear as a transaction
2587 raw_spin_lock(&excl_cntrs
->lock
);
2590 static void intel_commit_scheduling(struct cpu_hw_events
*cpuc
, int idx
, int cntr
)
2592 struct intel_excl_cntrs
*excl_cntrs
= cpuc
->excl_cntrs
;
2593 struct event_constraint
*c
= cpuc
->event_constraint
[idx
];
2594 struct intel_excl_states
*xl
;
2595 int tid
= cpuc
->excl_thread_id
;
2597 if (cpuc
->is_fake
|| !is_ht_workaround_enabled())
2600 if (WARN_ON_ONCE(!excl_cntrs
))
2603 if (!(c
->flags
& PERF_X86_EVENT_DYNAMIC
))
2606 xl
= &excl_cntrs
->states
[tid
];
2608 lockdep_assert_held(&excl_cntrs
->lock
);
2610 if (c
->flags
& PERF_X86_EVENT_EXCL
)
2611 xl
->state
[cntr
] = INTEL_EXCL_EXCLUSIVE
;
2613 xl
->state
[cntr
] = INTEL_EXCL_SHARED
;
2617 intel_stop_scheduling(struct cpu_hw_events
*cpuc
)
2619 struct intel_excl_cntrs
*excl_cntrs
= cpuc
->excl_cntrs
;
2620 struct intel_excl_states
*xl
;
2621 int tid
= cpuc
->excl_thread_id
;
2624 * nothing needed if in group validation mode
2626 if (cpuc
->is_fake
|| !is_ht_workaround_enabled())
2629 * no exclusion needed
2631 if (WARN_ON_ONCE(!excl_cntrs
))
2634 xl
= &excl_cntrs
->states
[tid
];
2636 xl
->sched_started
= false;
2638 * release shared state lock (acquired in intel_start_scheduling())
2640 raw_spin_unlock(&excl_cntrs
->lock
);
2643 static struct event_constraint
*
2644 intel_get_excl_constraints(struct cpu_hw_events
*cpuc
, struct perf_event
*event
,
2645 int idx
, struct event_constraint
*c
)
2647 struct intel_excl_cntrs
*excl_cntrs
= cpuc
->excl_cntrs
;
2648 struct intel_excl_states
*xlo
;
2649 int tid
= cpuc
->excl_thread_id
;
2653 * validating a group does not require
2654 * enforcing cross-thread exclusion
2656 if (cpuc
->is_fake
|| !is_ht_workaround_enabled())
2660 * no exclusion needed
2662 if (WARN_ON_ONCE(!excl_cntrs
))
2666 * because we modify the constraint, we need
2667 * to make a copy. Static constraints come
2668 * from static const tables.
2670 * only needed when constraint has not yet
2671 * been cloned (marked dynamic)
2673 if (!(c
->flags
& PERF_X86_EVENT_DYNAMIC
)) {
2674 struct event_constraint
*cx
;
2677 * grab pre-allocated constraint entry
2679 cx
= &cpuc
->constraint_list
[idx
];
2682 * initialize dynamic constraint
2683 * with static constraint
2688 * mark constraint as dynamic, so we
2689 * can free it later on
2691 cx
->flags
|= PERF_X86_EVENT_DYNAMIC
;
2696 * From here on, the constraint is dynamic.
2697 * Either it was just allocated above, or it
2698 * was allocated during a earlier invocation
2703 * state of sibling HT
2705 xlo
= &excl_cntrs
->states
[tid
^ 1];
2708 * event requires exclusive counter access
2711 is_excl
= c
->flags
& PERF_X86_EVENT_EXCL
;
2712 if (is_excl
&& !(event
->hw
.flags
& PERF_X86_EVENT_EXCL_ACCT
)) {
2713 event
->hw
.flags
|= PERF_X86_EVENT_EXCL_ACCT
;
2714 if (!cpuc
->n_excl
++)
2715 WRITE_ONCE(excl_cntrs
->has_exclusive
[tid
], 1);
2719 * Modify static constraint with current dynamic
2722 * EXCLUSIVE: sibling counter measuring exclusive event
2723 * SHARED : sibling counter measuring non-exclusive event
2724 * UNUSED : sibling counter unused
2726 for_each_set_bit(i
, c
->idxmsk
, X86_PMC_IDX_MAX
) {
2728 * exclusive event in sibling counter
2729 * our corresponding counter cannot be used
2730 * regardless of our event
2732 if (xlo
->state
[i
] == INTEL_EXCL_EXCLUSIVE
)
2733 __clear_bit(i
, c
->idxmsk
);
2735 * if measuring an exclusive event, sibling
2736 * measuring non-exclusive, then counter cannot
2739 if (is_excl
&& xlo
->state
[i
] == INTEL_EXCL_SHARED
)
2740 __clear_bit(i
, c
->idxmsk
);
2744 * recompute actual bit weight for scheduling algorithm
2746 c
->weight
= hweight64(c
->idxmsk64
);
2749 * if we return an empty mask, then switch
2750 * back to static empty constraint to avoid
2751 * the cost of freeing later on
2754 c
= &emptyconstraint
;
2759 static struct event_constraint
*
2760 intel_get_event_constraints(struct cpu_hw_events
*cpuc
, int idx
,
2761 struct perf_event
*event
)
2763 struct event_constraint
*c1
= NULL
;
2764 struct event_constraint
*c2
;
2766 if (idx
>= 0) /* fake does < 0 */
2767 c1
= cpuc
->event_constraint
[idx
];
2771 * - static constraint: no change across incremental scheduling calls
2772 * - dynamic constraint: handled by intel_get_excl_constraints()
2774 c2
= __intel_get_event_constraints(cpuc
, idx
, event
);
2775 if (c1
&& (c1
->flags
& PERF_X86_EVENT_DYNAMIC
)) {
2776 bitmap_copy(c1
->idxmsk
, c2
->idxmsk
, X86_PMC_IDX_MAX
);
2777 c1
->weight
= c2
->weight
;
2781 if (cpuc
->excl_cntrs
)
2782 return intel_get_excl_constraints(cpuc
, event
, idx
, c2
);
2787 static void intel_put_excl_constraints(struct cpu_hw_events
*cpuc
,
2788 struct perf_event
*event
)
2790 struct hw_perf_event
*hwc
= &event
->hw
;
2791 struct intel_excl_cntrs
*excl_cntrs
= cpuc
->excl_cntrs
;
2792 int tid
= cpuc
->excl_thread_id
;
2793 struct intel_excl_states
*xl
;
2796 * nothing needed if in group validation mode
2801 if (WARN_ON_ONCE(!excl_cntrs
))
2804 if (hwc
->flags
& PERF_X86_EVENT_EXCL_ACCT
) {
2805 hwc
->flags
&= ~PERF_X86_EVENT_EXCL_ACCT
;
2806 if (!--cpuc
->n_excl
)
2807 WRITE_ONCE(excl_cntrs
->has_exclusive
[tid
], 0);
2811 * If event was actually assigned, then mark the counter state as
2814 if (hwc
->idx
>= 0) {
2815 xl
= &excl_cntrs
->states
[tid
];
2818 * put_constraint may be called from x86_schedule_events()
2819 * which already has the lock held so here make locking
2822 if (!xl
->sched_started
)
2823 raw_spin_lock(&excl_cntrs
->lock
);
2825 xl
->state
[hwc
->idx
] = INTEL_EXCL_UNUSED
;
2827 if (!xl
->sched_started
)
2828 raw_spin_unlock(&excl_cntrs
->lock
);
2833 intel_put_shared_regs_event_constraints(struct cpu_hw_events
*cpuc
,
2834 struct perf_event
*event
)
2836 struct hw_perf_event_extra
*reg
;
2838 reg
= &event
->hw
.extra_reg
;
2839 if (reg
->idx
!= EXTRA_REG_NONE
)
2840 __intel_shared_reg_put_constraints(cpuc
, reg
);
2842 reg
= &event
->hw
.branch_reg
;
2843 if (reg
->idx
!= EXTRA_REG_NONE
)
2844 __intel_shared_reg_put_constraints(cpuc
, reg
);
2847 static void intel_put_event_constraints(struct cpu_hw_events
*cpuc
,
2848 struct perf_event
*event
)
2850 intel_put_shared_regs_event_constraints(cpuc
, event
);
2853 * is PMU has exclusive counter restrictions, then
2854 * all events are subject to and must call the
2855 * put_excl_constraints() routine
2857 if (cpuc
->excl_cntrs
)
2858 intel_put_excl_constraints(cpuc
, event
);
2861 static void intel_pebs_aliases_core2(struct perf_event
*event
)
2863 if ((event
->hw
.config
& X86_RAW_EVENT_MASK
) == 0x003c) {
2865 * Use an alternative encoding for CPU_CLK_UNHALTED.THREAD_P
2866 * (0x003c) so that we can use it with PEBS.
2868 * The regular CPU_CLK_UNHALTED.THREAD_P event (0x003c) isn't
2869 * PEBS capable. However we can use INST_RETIRED.ANY_P
2870 * (0x00c0), which is a PEBS capable event, to get the same
2873 * INST_RETIRED.ANY_P counts the number of cycles that retires
2874 * CNTMASK instructions. By setting CNTMASK to a value (16)
2875 * larger than the maximum number of instructions that can be
2876 * retired per cycle (4) and then inverting the condition, we
2877 * count all cycles that retire 16 or less instructions, which
2880 * Thereby we gain a PEBS capable cycle counter.
2882 u64 alt_config
= X86_CONFIG(.event
=0xc0, .inv
=1, .cmask
=16);
2884 alt_config
|= (event
->hw
.config
& ~X86_RAW_EVENT_MASK
);
2885 event
->hw
.config
= alt_config
;
2889 static void intel_pebs_aliases_snb(struct perf_event
*event
)
2891 if ((event
->hw
.config
& X86_RAW_EVENT_MASK
) == 0x003c) {
2893 * Use an alternative encoding for CPU_CLK_UNHALTED.THREAD_P
2894 * (0x003c) so that we can use it with PEBS.
2896 * The regular CPU_CLK_UNHALTED.THREAD_P event (0x003c) isn't
2897 * PEBS capable. However we can use UOPS_RETIRED.ALL
2898 * (0x01c2), which is a PEBS capable event, to get the same
2901 * UOPS_RETIRED.ALL counts the number of cycles that retires
2902 * CNTMASK micro-ops. By setting CNTMASK to a value (16)
2903 * larger than the maximum number of micro-ops that can be
2904 * retired per cycle (4) and then inverting the condition, we
2905 * count all cycles that retire 16 or less micro-ops, which
2908 * Thereby we gain a PEBS capable cycle counter.
2910 u64 alt_config
= X86_CONFIG(.event
=0xc2, .umask
=0x01, .inv
=1, .cmask
=16);
2912 alt_config
|= (event
->hw
.config
& ~X86_RAW_EVENT_MASK
);
2913 event
->hw
.config
= alt_config
;
2917 static void intel_pebs_aliases_precdist(struct perf_event
*event
)
2919 if ((event
->hw
.config
& X86_RAW_EVENT_MASK
) == 0x003c) {
2921 * Use an alternative encoding for CPU_CLK_UNHALTED.THREAD_P
2922 * (0x003c) so that we can use it with PEBS.
2924 * The regular CPU_CLK_UNHALTED.THREAD_P event (0x003c) isn't
2925 * PEBS capable. However we can use INST_RETIRED.PREC_DIST
2926 * (0x01c0), which is a PEBS capable event, to get the same
2929 * The PREC_DIST event has special support to minimize sample
2930 * shadowing effects. One drawback is that it can be
2931 * only programmed on counter 1, but that seems like an
2932 * acceptable trade off.
2934 u64 alt_config
= X86_CONFIG(.event
=0xc0, .umask
=0x01, .inv
=1, .cmask
=16);
2936 alt_config
|= (event
->hw
.config
& ~X86_RAW_EVENT_MASK
);
2937 event
->hw
.config
= alt_config
;
2941 static void intel_pebs_aliases_ivb(struct perf_event
*event
)
2943 if (event
->attr
.precise_ip
< 3)
2944 return intel_pebs_aliases_snb(event
);
2945 return intel_pebs_aliases_precdist(event
);
2948 static void intel_pebs_aliases_skl(struct perf_event
*event
)
2950 if (event
->attr
.precise_ip
< 3)
2951 return intel_pebs_aliases_core2(event
);
2952 return intel_pebs_aliases_precdist(event
);
2955 static unsigned long intel_pmu_free_running_flags(struct perf_event
*event
)
2957 unsigned long flags
= x86_pmu
.free_running_flags
;
2959 if (event
->attr
.use_clockid
)
2960 flags
&= ~PERF_SAMPLE_TIME
;
2961 if (!event
->attr
.exclude_kernel
)
2962 flags
&= ~PERF_SAMPLE_REGS_USER
;
2963 if (event
->attr
.sample_regs_user
& ~PEBS_REGS
)
2964 flags
&= ~(PERF_SAMPLE_REGS_USER
| PERF_SAMPLE_REGS_INTR
);
2968 static int intel_pmu_hw_config(struct perf_event
*event
)
2970 int ret
= x86_pmu_hw_config(event
);
2975 if (event
->attr
.precise_ip
) {
2976 if (!event
->attr
.freq
) {
2977 event
->hw
.flags
|= PERF_X86_EVENT_AUTO_RELOAD
;
2978 if (!(event
->attr
.sample_type
&
2979 ~intel_pmu_free_running_flags(event
)))
2980 event
->hw
.flags
|= PERF_X86_EVENT_FREERUNNING
;
2982 if (x86_pmu
.pebs_aliases
)
2983 x86_pmu
.pebs_aliases(event
);
2986 if (needs_branch_stack(event
)) {
2987 ret
= intel_pmu_setup_lbr_filter(event
);
2992 * BTS is set up earlier in this path, so don't account twice
2994 if (!intel_pmu_has_bts(event
)) {
2995 /* disallow lbr if conflicting events are present */
2996 if (x86_add_exclusive(x86_lbr_exclusive_lbr
))
2999 event
->destroy
= hw_perf_lbr_event_destroy
;
3003 if (event
->attr
.type
!= PERF_TYPE_RAW
)
3006 if (!(event
->attr
.config
& ARCH_PERFMON_EVENTSEL_ANY
))
3009 if (x86_pmu
.version
< 3)
3012 if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN
))
3015 event
->hw
.config
|= ARCH_PERFMON_EVENTSEL_ANY
;
3020 struct perf_guest_switch_msr
*perf_guest_get_msrs(int *nr
)
3022 if (x86_pmu
.guest_get_msrs
)
3023 return x86_pmu
.guest_get_msrs(nr
);
3027 EXPORT_SYMBOL_GPL(perf_guest_get_msrs
);
3029 static struct perf_guest_switch_msr
*intel_guest_get_msrs(int *nr
)
3031 struct cpu_hw_events
*cpuc
= this_cpu_ptr(&cpu_hw_events
);
3032 struct perf_guest_switch_msr
*arr
= cpuc
->guest_switch_msrs
;
3034 arr
[0].msr
= MSR_CORE_PERF_GLOBAL_CTRL
;
3035 arr
[0].host
= x86_pmu
.intel_ctrl
& ~cpuc
->intel_ctrl_guest_mask
;
3036 arr
[0].guest
= x86_pmu
.intel_ctrl
& ~cpuc
->intel_ctrl_host_mask
;
3038 * If PMU counter has PEBS enabled it is not enough to disable counter
3039 * on a guest entry since PEBS memory write can overshoot guest entry
3040 * and corrupt guest memory. Disabling PEBS solves the problem.
3042 arr
[1].msr
= MSR_IA32_PEBS_ENABLE
;
3043 arr
[1].host
= cpuc
->pebs_enabled
;
3050 static struct perf_guest_switch_msr
*core_guest_get_msrs(int *nr
)
3052 struct cpu_hw_events
*cpuc
= this_cpu_ptr(&cpu_hw_events
);
3053 struct perf_guest_switch_msr
*arr
= cpuc
->guest_switch_msrs
;
3056 for (idx
= 0; idx
< x86_pmu
.num_counters
; idx
++) {
3057 struct perf_event
*event
= cpuc
->events
[idx
];
3059 arr
[idx
].msr
= x86_pmu_config_addr(idx
);
3060 arr
[idx
].host
= arr
[idx
].guest
= 0;
3062 if (!test_bit(idx
, cpuc
->active_mask
))
3065 arr
[idx
].host
= arr
[idx
].guest
=
3066 event
->hw
.config
| ARCH_PERFMON_EVENTSEL_ENABLE
;
3068 if (event
->attr
.exclude_host
)
3069 arr
[idx
].host
&= ~ARCH_PERFMON_EVENTSEL_ENABLE
;
3070 else if (event
->attr
.exclude_guest
)
3071 arr
[idx
].guest
&= ~ARCH_PERFMON_EVENTSEL_ENABLE
;
3074 *nr
= x86_pmu
.num_counters
;
3078 static void core_pmu_enable_event(struct perf_event
*event
)
3080 if (!event
->attr
.exclude_host
)
3081 x86_pmu_enable_event(event
);
3084 static void core_pmu_enable_all(int added
)
3086 struct cpu_hw_events
*cpuc
= this_cpu_ptr(&cpu_hw_events
);
3089 for (idx
= 0; idx
< x86_pmu
.num_counters
; idx
++) {
3090 struct hw_perf_event
*hwc
= &cpuc
->events
[idx
]->hw
;
3092 if (!test_bit(idx
, cpuc
->active_mask
) ||
3093 cpuc
->events
[idx
]->attr
.exclude_host
)
3096 __x86_pmu_enable_event(hwc
, ARCH_PERFMON_EVENTSEL_ENABLE
);
3100 static int hsw_hw_config(struct perf_event
*event
)
3102 int ret
= intel_pmu_hw_config(event
);
3106 if (!boot_cpu_has(X86_FEATURE_RTM
) && !boot_cpu_has(X86_FEATURE_HLE
))
3108 event
->hw
.config
|= event
->attr
.config
& (HSW_IN_TX
|HSW_IN_TX_CHECKPOINTED
);
3111 * IN_TX/IN_TX-CP filters are not supported by the Haswell PMU with
3112 * PEBS or in ANY thread mode. Since the results are non-sensical forbid
3115 if ((event
->hw
.config
& (HSW_IN_TX
|HSW_IN_TX_CHECKPOINTED
)) &&
3116 ((event
->hw
.config
& ARCH_PERFMON_EVENTSEL_ANY
) ||
3117 event
->attr
.precise_ip
> 0))
3120 if (event_is_checkpointed(event
)) {
3122 * Sampling of checkpointed events can cause situations where
3123 * the CPU constantly aborts because of a overflow, which is
3124 * then checkpointed back and ignored. Forbid checkpointing
3127 * But still allow a long sampling period, so that perf stat
3130 if (event
->attr
.sample_period
> 0 &&
3131 event
->attr
.sample_period
< 0x7fffffff)
3137 static struct event_constraint counter0_constraint
=
3138 INTEL_ALL_EVENT_CONSTRAINT(0, 0x1);
3140 static struct event_constraint counter2_constraint
=
3141 EVENT_CONSTRAINT(0, 0x4, 0);
3143 static struct event_constraint
*
3144 hsw_get_event_constraints(struct cpu_hw_events
*cpuc
, int idx
,
3145 struct perf_event
*event
)
3147 struct event_constraint
*c
;
3149 c
= intel_get_event_constraints(cpuc
, idx
, event
);
3151 /* Handle special quirk on in_tx_checkpointed only in counter 2 */
3152 if (event
->hw
.config
& HSW_IN_TX_CHECKPOINTED
) {
3153 if (c
->idxmsk64
& (1U << 2))
3154 return &counter2_constraint
;
3155 return &emptyconstraint
;
3161 static struct event_constraint
*
3162 glp_get_event_constraints(struct cpu_hw_events
*cpuc
, int idx
,
3163 struct perf_event
*event
)
3165 struct event_constraint
*c
;
3167 /* :ppp means to do reduced skid PEBS which is PMC0 only. */
3168 if (event
->attr
.precise_ip
== 3)
3169 return &counter0_constraint
;
3171 c
= intel_get_event_constraints(cpuc
, idx
, event
);
3179 * The INST_RETIRED.ALL period always needs to have lowest 6 bits cleared
3180 * (BDM55) and it must not use a period smaller than 100 (BDM11). We combine
3181 * the two to enforce a minimum period of 128 (the smallest value that has bits
3182 * 0-5 cleared and >= 100).
3184 * Because of how the code in x86_perf_event_set_period() works, the truncation
3185 * of the lower 6 bits is 'harmless' as we'll occasionally add a longer period
3186 * to make up for the 'lost' events due to carrying the 'error' in period_left.
3188 * Therefore the effective (average) period matches the requested period,
3189 * despite coarser hardware granularity.
3191 static unsigned bdw_limit_period(struct perf_event
*event
, unsigned left
)
3193 if ((event
->hw
.config
& INTEL_ARCH_EVENT_MASK
) ==
3194 X86_CONFIG(.event
=0xc0, .umask
=0x01)) {
3202 PMU_FORMAT_ATTR(event
, "config:0-7" );
3203 PMU_FORMAT_ATTR(umask
, "config:8-15" );
3204 PMU_FORMAT_ATTR(edge
, "config:18" );
3205 PMU_FORMAT_ATTR(pc
, "config:19" );
3206 PMU_FORMAT_ATTR(any
, "config:21" ); /* v3 + */
3207 PMU_FORMAT_ATTR(inv
, "config:23" );
3208 PMU_FORMAT_ATTR(cmask
, "config:24-31" );
3209 PMU_FORMAT_ATTR(in_tx
, "config:32");
3210 PMU_FORMAT_ATTR(in_tx_cp
, "config:33");
3212 static struct attribute
*intel_arch_formats_attr
[] = {
3213 &format_attr_event
.attr
,
3214 &format_attr_umask
.attr
,
3215 &format_attr_edge
.attr
,
3216 &format_attr_pc
.attr
,
3217 &format_attr_inv
.attr
,
3218 &format_attr_cmask
.attr
,
3222 ssize_t
intel_event_sysfs_show(char *page
, u64 config
)
3224 u64 event
= (config
& ARCH_PERFMON_EVENTSEL_EVENT
);
3226 return x86_event_sysfs_show(page
, config
, event
);
3229 struct intel_shared_regs
*allocate_shared_regs(int cpu
)
3231 struct intel_shared_regs
*regs
;
3234 regs
= kzalloc_node(sizeof(struct intel_shared_regs
),
3235 GFP_KERNEL
, cpu_to_node(cpu
));
3238 * initialize the locks to keep lockdep happy
3240 for (i
= 0; i
< EXTRA_REG_MAX
; i
++)
3241 raw_spin_lock_init(®s
->regs
[i
].lock
);
3248 static struct intel_excl_cntrs
*allocate_excl_cntrs(int cpu
)
3250 struct intel_excl_cntrs
*c
;
3252 c
= kzalloc_node(sizeof(struct intel_excl_cntrs
),
3253 GFP_KERNEL
, cpu_to_node(cpu
));
3255 raw_spin_lock_init(&c
->lock
);
3261 static int intel_pmu_cpu_prepare(int cpu
)
3263 struct cpu_hw_events
*cpuc
= &per_cpu(cpu_hw_events
, cpu
);
3265 if (x86_pmu
.extra_regs
|| x86_pmu
.lbr_sel_map
) {
3266 cpuc
->shared_regs
= allocate_shared_regs(cpu
);
3267 if (!cpuc
->shared_regs
)
3271 if (x86_pmu
.flags
& PMU_FL_EXCL_CNTRS
) {
3272 size_t sz
= X86_PMC_IDX_MAX
* sizeof(struct event_constraint
);
3274 cpuc
->constraint_list
= kzalloc(sz
, GFP_KERNEL
);
3275 if (!cpuc
->constraint_list
)
3276 goto err_shared_regs
;
3278 cpuc
->excl_cntrs
= allocate_excl_cntrs(cpu
);
3279 if (!cpuc
->excl_cntrs
)
3280 goto err_constraint_list
;
3282 cpuc
->excl_thread_id
= 0;
3287 err_constraint_list
:
3288 kfree(cpuc
->constraint_list
);
3289 cpuc
->constraint_list
= NULL
;
3292 kfree(cpuc
->shared_regs
);
3293 cpuc
->shared_regs
= NULL
;
3299 static void flip_smm_bit(void *data
)
3301 unsigned long set
= *(unsigned long *)data
;
3304 msr_set_bit(MSR_IA32_DEBUGCTLMSR
,
3305 DEBUGCTLMSR_FREEZE_IN_SMM_BIT
);
3307 msr_clear_bit(MSR_IA32_DEBUGCTLMSR
,
3308 DEBUGCTLMSR_FREEZE_IN_SMM_BIT
);
3312 static void intel_pmu_cpu_starting(int cpu
)
3314 struct cpu_hw_events
*cpuc
= &per_cpu(cpu_hw_events
, cpu
);
3315 int core_id
= topology_core_id(cpu
);
3318 init_debug_store_on_cpu(cpu
);
3320 * Deal with CPUs that don't clear their LBRs on power-up.
3322 intel_pmu_lbr_reset();
3324 cpuc
->lbr_sel
= NULL
;
3326 flip_smm_bit(&x86_pmu
.attr_freeze_on_smi
);
3328 if (!cpuc
->shared_regs
)
3331 if (!(x86_pmu
.flags
& PMU_FL_NO_HT_SHARING
)) {
3332 for_each_cpu(i
, topology_sibling_cpumask(cpu
)) {
3333 struct intel_shared_regs
*pc
;
3335 pc
= per_cpu(cpu_hw_events
, i
).shared_regs
;
3336 if (pc
&& pc
->core_id
== core_id
) {
3337 cpuc
->kfree_on_online
[0] = cpuc
->shared_regs
;
3338 cpuc
->shared_regs
= pc
;
3342 cpuc
->shared_regs
->core_id
= core_id
;
3343 cpuc
->shared_regs
->refcnt
++;
3346 if (x86_pmu
.lbr_sel_map
)
3347 cpuc
->lbr_sel
= &cpuc
->shared_regs
->regs
[EXTRA_REG_LBR
];
3349 if (x86_pmu
.flags
& PMU_FL_EXCL_CNTRS
) {
3350 for_each_cpu(i
, topology_sibling_cpumask(cpu
)) {
3351 struct cpu_hw_events
*sibling
;
3352 struct intel_excl_cntrs
*c
;
3354 sibling
= &per_cpu(cpu_hw_events
, i
);
3355 c
= sibling
->excl_cntrs
;
3356 if (c
&& c
->core_id
== core_id
) {
3357 cpuc
->kfree_on_online
[1] = cpuc
->excl_cntrs
;
3358 cpuc
->excl_cntrs
= c
;
3359 if (!sibling
->excl_thread_id
)
3360 cpuc
->excl_thread_id
= 1;
3364 cpuc
->excl_cntrs
->core_id
= core_id
;
3365 cpuc
->excl_cntrs
->refcnt
++;
3369 static void free_excl_cntrs(int cpu
)
3371 struct cpu_hw_events
*cpuc
= &per_cpu(cpu_hw_events
, cpu
);
3372 struct intel_excl_cntrs
*c
;
3374 c
= cpuc
->excl_cntrs
;
3376 if (c
->core_id
== -1 || --c
->refcnt
== 0)
3378 cpuc
->excl_cntrs
= NULL
;
3379 kfree(cpuc
->constraint_list
);
3380 cpuc
->constraint_list
= NULL
;
3384 static void intel_pmu_cpu_dying(int cpu
)
3386 struct cpu_hw_events
*cpuc
= &per_cpu(cpu_hw_events
, cpu
);
3387 struct intel_shared_regs
*pc
;
3389 pc
= cpuc
->shared_regs
;
3391 if (pc
->core_id
== -1 || --pc
->refcnt
== 0)
3393 cpuc
->shared_regs
= NULL
;
3396 free_excl_cntrs(cpu
);
3398 fini_debug_store_on_cpu(cpu
);
3401 static void intel_pmu_sched_task(struct perf_event_context
*ctx
,
3404 intel_pmu_pebs_sched_task(ctx
, sched_in
);
3405 intel_pmu_lbr_sched_task(ctx
, sched_in
);
3408 PMU_FORMAT_ATTR(offcore_rsp
, "config1:0-63");
3410 PMU_FORMAT_ATTR(ldlat
, "config1:0-15");
3412 PMU_FORMAT_ATTR(frontend
, "config1:0-23");
3414 static struct attribute
*intel_arch3_formats_attr
[] = {
3415 &format_attr_event
.attr
,
3416 &format_attr_umask
.attr
,
3417 &format_attr_edge
.attr
,
3418 &format_attr_pc
.attr
,
3419 &format_attr_any
.attr
,
3420 &format_attr_inv
.attr
,
3421 &format_attr_cmask
.attr
,
3425 static struct attribute
*hsw_format_attr
[] = {
3426 &format_attr_in_tx
.attr
,
3427 &format_attr_in_tx_cp
.attr
,
3428 &format_attr_offcore_rsp
.attr
,
3429 &format_attr_ldlat
.attr
,
3433 static struct attribute
*nhm_format_attr
[] = {
3434 &format_attr_offcore_rsp
.attr
,
3435 &format_attr_ldlat
.attr
,
3439 static struct attribute
*slm_format_attr
[] = {
3440 &format_attr_offcore_rsp
.attr
,
3444 static struct attribute
*skl_format_attr
[] = {
3445 &format_attr_frontend
.attr
,
3449 static __initconst
const struct x86_pmu core_pmu
= {
3451 .handle_irq
= x86_pmu_handle_irq
,
3452 .disable_all
= x86_pmu_disable_all
,
3453 .enable_all
= core_pmu_enable_all
,
3454 .enable
= core_pmu_enable_event
,
3455 .disable
= x86_pmu_disable_event
,
3456 .hw_config
= x86_pmu_hw_config
,
3457 .schedule_events
= x86_schedule_events
,
3458 .eventsel
= MSR_ARCH_PERFMON_EVENTSEL0
,
3459 .perfctr
= MSR_ARCH_PERFMON_PERFCTR0
,
3460 .event_map
= intel_pmu_event_map
,
3461 .max_events
= ARRAY_SIZE(intel_perfmon_event_map
),
3463 .free_running_flags
= PEBS_FREERUNNING_FLAGS
,
3466 * Intel PMCs cannot be accessed sanely above 32-bit width,
3467 * so we install an artificial 1<<31 period regardless of
3468 * the generic event period:
3470 .max_period
= (1ULL<<31) - 1,
3471 .get_event_constraints
= intel_get_event_constraints
,
3472 .put_event_constraints
= intel_put_event_constraints
,
3473 .event_constraints
= intel_core_event_constraints
,
3474 .guest_get_msrs
= core_guest_get_msrs
,
3475 .format_attrs
= intel_arch_formats_attr
,
3476 .events_sysfs_show
= intel_event_sysfs_show
,
3479 * Virtual (or funny metal) CPU can define x86_pmu.extra_regs
3480 * together with PMU version 1 and thus be using core_pmu with
3481 * shared_regs. We need following callbacks here to allocate
3484 .cpu_prepare
= intel_pmu_cpu_prepare
,
3485 .cpu_starting
= intel_pmu_cpu_starting
,
3486 .cpu_dying
= intel_pmu_cpu_dying
,
3489 static __initconst
const struct x86_pmu intel_pmu
= {
3491 .handle_irq
= intel_pmu_handle_irq
,
3492 .disable_all
= intel_pmu_disable_all
,
3493 .enable_all
= intel_pmu_enable_all
,
3494 .enable
= intel_pmu_enable_event
,
3495 .disable
= intel_pmu_disable_event
,
3496 .add
= intel_pmu_add_event
,
3497 .del
= intel_pmu_del_event
,
3498 .hw_config
= intel_pmu_hw_config
,
3499 .schedule_events
= x86_schedule_events
,
3500 .eventsel
= MSR_ARCH_PERFMON_EVENTSEL0
,
3501 .perfctr
= MSR_ARCH_PERFMON_PERFCTR0
,
3502 .event_map
= intel_pmu_event_map
,
3503 .max_events
= ARRAY_SIZE(intel_perfmon_event_map
),
3505 .free_running_flags
= PEBS_FREERUNNING_FLAGS
,
3507 * Intel PMCs cannot be accessed sanely above 32 bit width,
3508 * so we install an artificial 1<<31 period regardless of
3509 * the generic event period:
3511 .max_period
= (1ULL << 31) - 1,
3512 .get_event_constraints
= intel_get_event_constraints
,
3513 .put_event_constraints
= intel_put_event_constraints
,
3514 .pebs_aliases
= intel_pebs_aliases_core2
,
3516 .format_attrs
= intel_arch3_formats_attr
,
3517 .events_sysfs_show
= intel_event_sysfs_show
,
3519 .cpu_prepare
= intel_pmu_cpu_prepare
,
3520 .cpu_starting
= intel_pmu_cpu_starting
,
3521 .cpu_dying
= intel_pmu_cpu_dying
,
3522 .guest_get_msrs
= intel_guest_get_msrs
,
3523 .sched_task
= intel_pmu_sched_task
,
3526 static __init
void intel_clovertown_quirk(void)
3529 * PEBS is unreliable due to:
3531 * AJ67 - PEBS may experience CPL leaks
3532 * AJ68 - PEBS PMI may be delayed by one event
3533 * AJ69 - GLOBAL_STATUS[62] will only be set when DEBUGCTL[12]
3534 * AJ106 - FREEZE_LBRS_ON_PMI doesn't work in combination with PEBS
3536 * AJ67 could be worked around by restricting the OS/USR flags.
3537 * AJ69 could be worked around by setting PMU_FREEZE_ON_PMI.
3539 * AJ106 could possibly be worked around by not allowing LBR
3540 * usage from PEBS, including the fixup.
3541 * AJ68 could possibly be worked around by always programming
3542 * a pebs_event_reset[0] value and coping with the lost events.
3544 * But taken together it might just make sense to not enable PEBS on
3547 pr_warn("PEBS disabled due to CPU errata\n");
3549 x86_pmu
.pebs_constraints
= NULL
;
3552 static int intel_snb_pebs_broken(int cpu
)
3554 u32 rev
= UINT_MAX
; /* default to broken for unknown models */
3556 switch (cpu_data(cpu
).x86_model
) {
3557 case INTEL_FAM6_SANDYBRIDGE
:
3561 case INTEL_FAM6_SANDYBRIDGE_X
:
3562 switch (cpu_data(cpu
).x86_stepping
) {
3563 case 6: rev
= 0x618; break;
3564 case 7: rev
= 0x70c; break;
3568 return (cpu_data(cpu
).microcode
< rev
);
3571 static void intel_snb_check_microcode(void)
3573 int pebs_broken
= 0;
3576 for_each_online_cpu(cpu
) {
3577 if ((pebs_broken
= intel_snb_pebs_broken(cpu
)))
3581 if (pebs_broken
== x86_pmu
.pebs_broken
)
3585 * Serialized by the microcode lock..
3587 if (x86_pmu
.pebs_broken
) {
3588 pr_info("PEBS enabled due to microcode update\n");
3589 x86_pmu
.pebs_broken
= 0;
3591 pr_info("PEBS disabled due to CPU errata, please upgrade microcode\n");
3592 x86_pmu
.pebs_broken
= 1;
3596 static bool is_lbr_from(unsigned long msr
)
3598 unsigned long lbr_from_nr
= x86_pmu
.lbr_from
+ x86_pmu
.lbr_nr
;
3600 return x86_pmu
.lbr_from
<= msr
&& msr
< lbr_from_nr
;
3604 * Under certain circumstances, access certain MSR may cause #GP.
3605 * The function tests if the input MSR can be safely accessed.
3607 static bool check_msr(unsigned long msr
, u64 mask
)
3609 u64 val_old
, val_new
, val_tmp
;
3612 * Read the current value, change it and read it back to see if it
3613 * matches, this is needed to detect certain hardware emulators
3614 * (qemu/kvm) that don't trap on the MSR access and always return 0s.
3616 if (rdmsrl_safe(msr
, &val_old
))
3620 * Only change the bits which can be updated by wrmsrl.
3622 val_tmp
= val_old
^ mask
;
3624 if (is_lbr_from(msr
))
3625 val_tmp
= lbr_from_signext_quirk_wr(val_tmp
);
3627 if (wrmsrl_safe(msr
, val_tmp
) ||
3628 rdmsrl_safe(msr
, &val_new
))
3632 * Quirk only affects validation in wrmsr(), so wrmsrl()'s value
3633 * should equal rdmsrl()'s even with the quirk.
3635 if (val_new
!= val_tmp
)
3638 if (is_lbr_from(msr
))
3639 val_old
= lbr_from_signext_quirk_wr(val_old
);
3641 /* Here it's sure that the MSR can be safely accessed.
3642 * Restore the old value and return.
3644 wrmsrl(msr
, val_old
);
3649 static __init
void intel_sandybridge_quirk(void)
3651 x86_pmu
.check_microcode
= intel_snb_check_microcode
;
3653 intel_snb_check_microcode();
3657 static const struct { int id
; char *name
; } intel_arch_events_map
[] __initconst
= {
3658 { PERF_COUNT_HW_CPU_CYCLES
, "cpu cycles" },
3659 { PERF_COUNT_HW_INSTRUCTIONS
, "instructions" },
3660 { PERF_COUNT_HW_BUS_CYCLES
, "bus cycles" },
3661 { PERF_COUNT_HW_CACHE_REFERENCES
, "cache references" },
3662 { PERF_COUNT_HW_CACHE_MISSES
, "cache misses" },
3663 { PERF_COUNT_HW_BRANCH_INSTRUCTIONS
, "branch instructions" },
3664 { PERF_COUNT_HW_BRANCH_MISSES
, "branch misses" },
3667 static __init
void intel_arch_events_quirk(void)
3671 /* disable event that reported as not presend by cpuid */
3672 for_each_set_bit(bit
, x86_pmu
.events_mask
, ARRAY_SIZE(intel_arch_events_map
)) {
3673 intel_perfmon_event_map
[intel_arch_events_map
[bit
].id
] = 0;
3674 pr_warn("CPUID marked event: \'%s\' unavailable\n",
3675 intel_arch_events_map
[bit
].name
);
3679 static __init
void intel_nehalem_quirk(void)
3681 union cpuid10_ebx ebx
;
3683 ebx
.full
= x86_pmu
.events_maskl
;
3684 if (ebx
.split
.no_branch_misses_retired
) {
3686 * Erratum AAJ80 detected, we work it around by using
3687 * the BR_MISP_EXEC.ANY event. This will over-count
3688 * branch-misses, but it's still much better than the
3689 * architectural event which is often completely bogus:
3691 intel_perfmon_event_map
[PERF_COUNT_HW_BRANCH_MISSES
] = 0x7f89;
3692 ebx
.split
.no_branch_misses_retired
= 0;
3693 x86_pmu
.events_maskl
= ebx
.full
;
3694 pr_info("CPU erratum AAJ80 worked around\n");
3699 * enable software workaround for errata:
3704 * Only needed when HT is enabled. However detecting
3705 * if HT is enabled is difficult (model specific). So instead,
3706 * we enable the workaround in the early boot, and verify if
3707 * it is needed in a later initcall phase once we have valid
3708 * topology information to check if HT is actually enabled
3710 static __init
void intel_ht_bug(void)
3712 x86_pmu
.flags
|= PMU_FL_EXCL_CNTRS
| PMU_FL_EXCL_ENABLED
;
3714 x86_pmu
.start_scheduling
= intel_start_scheduling
;
3715 x86_pmu
.commit_scheduling
= intel_commit_scheduling
;
3716 x86_pmu
.stop_scheduling
= intel_stop_scheduling
;
3719 EVENT_ATTR_STR(mem
-loads
, mem_ld_hsw
, "event=0xcd,umask=0x1,ldlat=3");
3720 EVENT_ATTR_STR(mem
-stores
, mem_st_hsw
, "event=0xd0,umask=0x82")
3722 /* Haswell special events */
3723 EVENT_ATTR_STR(tx
-start
, tx_start
, "event=0xc9,umask=0x1");
3724 EVENT_ATTR_STR(tx
-commit
, tx_commit
, "event=0xc9,umask=0x2");
3725 EVENT_ATTR_STR(tx
-abort
, tx_abort
, "event=0xc9,umask=0x4");
3726 EVENT_ATTR_STR(tx
-capacity
, tx_capacity
, "event=0x54,umask=0x2");
3727 EVENT_ATTR_STR(tx
-conflict
, tx_conflict
, "event=0x54,umask=0x1");
3728 EVENT_ATTR_STR(el
-start
, el_start
, "event=0xc8,umask=0x1");
3729 EVENT_ATTR_STR(el
-commit
, el_commit
, "event=0xc8,umask=0x2");
3730 EVENT_ATTR_STR(el
-abort
, el_abort
, "event=0xc8,umask=0x4");
3731 EVENT_ATTR_STR(el
-capacity
, el_capacity
, "event=0x54,umask=0x2");
3732 EVENT_ATTR_STR(el
-conflict
, el_conflict
, "event=0x54,umask=0x1");
3733 EVENT_ATTR_STR(cycles
-t
, cycles_t
, "event=0x3c,in_tx=1");
3734 EVENT_ATTR_STR(cycles
-ct
, cycles_ct
, "event=0x3c,in_tx=1,in_tx_cp=1");
3736 static struct attribute
*hsw_events_attrs
[] = {
3737 EVENT_PTR(mem_ld_hsw
),
3738 EVENT_PTR(mem_st_hsw
),
3739 EVENT_PTR(td_slots_issued
),
3740 EVENT_PTR(td_slots_retired
),
3741 EVENT_PTR(td_fetch_bubbles
),
3742 EVENT_PTR(td_total_slots
),
3743 EVENT_PTR(td_total_slots_scale
),
3744 EVENT_PTR(td_recovery_bubbles
),
3745 EVENT_PTR(td_recovery_bubbles_scale
),
3749 static struct attribute
*hsw_tsx_events_attrs
[] = {
3750 EVENT_PTR(tx_start
),
3751 EVENT_PTR(tx_commit
),
3752 EVENT_PTR(tx_abort
),
3753 EVENT_PTR(tx_capacity
),
3754 EVENT_PTR(tx_conflict
),
3755 EVENT_PTR(el_start
),
3756 EVENT_PTR(el_commit
),
3757 EVENT_PTR(el_abort
),
3758 EVENT_PTR(el_capacity
),
3759 EVENT_PTR(el_conflict
),
3760 EVENT_PTR(cycles_t
),
3761 EVENT_PTR(cycles_ct
),
3765 static __init
struct attribute
**get_hsw_events_attrs(void)
3767 return boot_cpu_has(X86_FEATURE_RTM
) ?
3768 merge_attr(hsw_events_attrs
, hsw_tsx_events_attrs
) :
3772 static ssize_t
freeze_on_smi_show(struct device
*cdev
,
3773 struct device_attribute
*attr
,
3776 return sprintf(buf
, "%lu\n", x86_pmu
.attr_freeze_on_smi
);
3779 static DEFINE_MUTEX(freeze_on_smi_mutex
);
3781 static ssize_t
freeze_on_smi_store(struct device
*cdev
,
3782 struct device_attribute
*attr
,
3783 const char *buf
, size_t count
)
3788 ret
= kstrtoul(buf
, 0, &val
);
3795 mutex_lock(&freeze_on_smi_mutex
);
3797 if (x86_pmu
.attr_freeze_on_smi
== val
)
3800 x86_pmu
.attr_freeze_on_smi
= val
;
3803 on_each_cpu(flip_smm_bit
, &val
, 1);
3806 mutex_unlock(&freeze_on_smi_mutex
);
3811 static DEVICE_ATTR_RW(freeze_on_smi
);
3813 static ssize_t
branches_show(struct device
*cdev
,
3814 struct device_attribute
*attr
,
3817 return snprintf(buf
, PAGE_SIZE
, "%d\n", x86_pmu
.lbr_nr
);
3820 static DEVICE_ATTR_RO(branches
);
3822 static struct attribute
*lbr_attrs
[] = {
3823 &dev_attr_branches
.attr
,
3827 static char pmu_name_str
[30];
3829 static ssize_t
pmu_name_show(struct device
*cdev
,
3830 struct device_attribute
*attr
,
3833 return snprintf(buf
, PAGE_SIZE
, "%s\n", pmu_name_str
);
3836 static DEVICE_ATTR_RO(pmu_name
);
3838 static struct attribute
*intel_pmu_caps_attrs
[] = {
3839 &dev_attr_pmu_name
.attr
,
3843 static struct attribute
*intel_pmu_attrs
[] = {
3844 &dev_attr_freeze_on_smi
.attr
,
3848 __init
int intel_pmu_init(void)
3850 struct attribute
**extra_attr
= NULL
;
3851 struct attribute
**to_free
= NULL
;
3852 union cpuid10_edx edx
;
3853 union cpuid10_eax eax
;
3854 union cpuid10_ebx ebx
;
3855 struct event_constraint
*c
;
3856 unsigned int unused
;
3857 struct extra_reg
*er
;
3861 if (!cpu_has(&boot_cpu_data
, X86_FEATURE_ARCH_PERFMON
)) {
3862 switch (boot_cpu_data
.x86
) {
3864 return p6_pmu_init();
3866 return knc_pmu_init();
3868 return p4_pmu_init();
3874 * Check whether the Architectural PerfMon supports
3875 * Branch Misses Retired hw_event or not.
3877 cpuid(10, &eax
.full
, &ebx
.full
, &unused
, &edx
.full
);
3878 if (eax
.split
.mask_length
< ARCH_PERFMON_EVENTS_COUNT
)
3881 version
= eax
.split
.version_id
;
3885 x86_pmu
= intel_pmu
;
3887 x86_pmu
.version
= version
;
3888 x86_pmu
.num_counters
= eax
.split
.num_counters
;
3889 x86_pmu
.cntval_bits
= eax
.split
.bit_width
;
3890 x86_pmu
.cntval_mask
= (1ULL << eax
.split
.bit_width
) - 1;
3892 x86_pmu
.events_maskl
= ebx
.full
;
3893 x86_pmu
.events_mask_len
= eax
.split
.mask_length
;
3895 x86_pmu
.max_pebs_events
= min_t(unsigned, MAX_PEBS_EVENTS
, x86_pmu
.num_counters
);
3898 x86_pmu
.attrs
= intel_pmu_attrs
;
3900 * Quirk: v2 perfmon does not report fixed-purpose events, so
3901 * assume at least 3 events, when not running in a hypervisor:
3904 int assume
= 3 * !boot_cpu_has(X86_FEATURE_HYPERVISOR
);
3906 x86_pmu
.num_counters_fixed
=
3907 max((int)edx
.split
.num_counters_fixed
, assume
);
3910 if (boot_cpu_has(X86_FEATURE_PDCM
)) {
3913 rdmsrl(MSR_IA32_PERF_CAPABILITIES
, capabilities
);
3914 x86_pmu
.intel_cap
.capabilities
= capabilities
;
3919 x86_add_quirk(intel_arch_events_quirk
); /* Install first, so it runs last */
3922 * Install the hw-cache-events table:
3924 switch (boot_cpu_data
.x86_model
) {
3925 case INTEL_FAM6_CORE_YONAH
:
3926 pr_cont("Core events, ");
3930 case INTEL_FAM6_CORE2_MEROM
:
3931 x86_add_quirk(intel_clovertown_quirk
);
3932 case INTEL_FAM6_CORE2_MEROM_L
:
3933 case INTEL_FAM6_CORE2_PENRYN
:
3934 case INTEL_FAM6_CORE2_DUNNINGTON
:
3935 memcpy(hw_cache_event_ids
, core2_hw_cache_event_ids
,
3936 sizeof(hw_cache_event_ids
));
3938 intel_pmu_lbr_init_core();
3940 x86_pmu
.event_constraints
= intel_core2_event_constraints
;
3941 x86_pmu
.pebs_constraints
= intel_core2_pebs_event_constraints
;
3942 pr_cont("Core2 events, ");
3946 case INTEL_FAM6_NEHALEM
:
3947 case INTEL_FAM6_NEHALEM_EP
:
3948 case INTEL_FAM6_NEHALEM_EX
:
3949 memcpy(hw_cache_event_ids
, nehalem_hw_cache_event_ids
,
3950 sizeof(hw_cache_event_ids
));
3951 memcpy(hw_cache_extra_regs
, nehalem_hw_cache_extra_regs
,
3952 sizeof(hw_cache_extra_regs
));
3954 intel_pmu_lbr_init_nhm();
3956 x86_pmu
.event_constraints
= intel_nehalem_event_constraints
;
3957 x86_pmu
.pebs_constraints
= intel_nehalem_pebs_event_constraints
;
3958 x86_pmu
.enable_all
= intel_pmu_nhm_enable_all
;
3959 x86_pmu
.extra_regs
= intel_nehalem_extra_regs
;
3961 x86_pmu
.cpu_events
= nhm_events_attrs
;
3963 /* UOPS_ISSUED.STALLED_CYCLES */
3964 intel_perfmon_event_map
[PERF_COUNT_HW_STALLED_CYCLES_FRONTEND
] =
3965 X86_CONFIG(.event
=0x0e, .umask
=0x01, .inv
=1, .cmask
=1);
3966 /* UOPS_EXECUTED.CORE_ACTIVE_CYCLES,c=1,i=1 */
3967 intel_perfmon_event_map
[PERF_COUNT_HW_STALLED_CYCLES_BACKEND
] =
3968 X86_CONFIG(.event
=0xb1, .umask
=0x3f, .inv
=1, .cmask
=1);
3970 intel_pmu_pebs_data_source_nhm();
3971 x86_add_quirk(intel_nehalem_quirk
);
3972 x86_pmu
.pebs_no_tlb
= 1;
3973 extra_attr
= nhm_format_attr
;
3975 pr_cont("Nehalem events, ");
3979 case INTEL_FAM6_ATOM_PINEVIEW
:
3980 case INTEL_FAM6_ATOM_LINCROFT
:
3981 case INTEL_FAM6_ATOM_PENWELL
:
3982 case INTEL_FAM6_ATOM_CLOVERVIEW
:
3983 case INTEL_FAM6_ATOM_CEDARVIEW
:
3984 memcpy(hw_cache_event_ids
, atom_hw_cache_event_ids
,
3985 sizeof(hw_cache_event_ids
));
3987 intel_pmu_lbr_init_atom();
3989 x86_pmu
.event_constraints
= intel_gen_event_constraints
;
3990 x86_pmu
.pebs_constraints
= intel_atom_pebs_event_constraints
;
3991 x86_pmu
.pebs_aliases
= intel_pebs_aliases_core2
;
3992 pr_cont("Atom events, ");
3996 case INTEL_FAM6_ATOM_SILVERMONT1
:
3997 case INTEL_FAM6_ATOM_SILVERMONT2
:
3998 case INTEL_FAM6_ATOM_AIRMONT
:
3999 memcpy(hw_cache_event_ids
, slm_hw_cache_event_ids
,
4000 sizeof(hw_cache_event_ids
));
4001 memcpy(hw_cache_extra_regs
, slm_hw_cache_extra_regs
,
4002 sizeof(hw_cache_extra_regs
));
4004 intel_pmu_lbr_init_slm();
4006 x86_pmu
.event_constraints
= intel_slm_event_constraints
;
4007 x86_pmu
.pebs_constraints
= intel_slm_pebs_event_constraints
;
4008 x86_pmu
.extra_regs
= intel_slm_extra_regs
;
4009 x86_pmu
.flags
|= PMU_FL_HAS_RSP_1
;
4010 x86_pmu
.cpu_events
= slm_events_attrs
;
4011 extra_attr
= slm_format_attr
;
4012 pr_cont("Silvermont events, ");
4013 name
= "silvermont";
4016 case INTEL_FAM6_ATOM_GOLDMONT
:
4017 case INTEL_FAM6_ATOM_DENVERTON
:
4018 memcpy(hw_cache_event_ids
, glm_hw_cache_event_ids
,
4019 sizeof(hw_cache_event_ids
));
4020 memcpy(hw_cache_extra_regs
, glm_hw_cache_extra_regs
,
4021 sizeof(hw_cache_extra_regs
));
4023 intel_pmu_lbr_init_skl();
4025 x86_pmu
.event_constraints
= intel_slm_event_constraints
;
4026 x86_pmu
.pebs_constraints
= intel_glm_pebs_event_constraints
;
4027 x86_pmu
.extra_regs
= intel_glm_extra_regs
;
4029 * It's recommended to use CPU_CLK_UNHALTED.CORE_P + NPEBS
4030 * for precise cycles.
4031 * :pp is identical to :ppp
4033 x86_pmu
.pebs_aliases
= NULL
;
4034 x86_pmu
.pebs_prec_dist
= true;
4035 x86_pmu
.lbr_pt_coexist
= true;
4036 x86_pmu
.flags
|= PMU_FL_HAS_RSP_1
;
4037 x86_pmu
.cpu_events
= glm_events_attrs
;
4038 extra_attr
= slm_format_attr
;
4039 pr_cont("Goldmont events, ");
4043 case INTEL_FAM6_ATOM_GEMINI_LAKE
:
4044 memcpy(hw_cache_event_ids
, glp_hw_cache_event_ids
,
4045 sizeof(hw_cache_event_ids
));
4046 memcpy(hw_cache_extra_regs
, glp_hw_cache_extra_regs
,
4047 sizeof(hw_cache_extra_regs
));
4049 intel_pmu_lbr_init_skl();
4051 x86_pmu
.event_constraints
= intel_slm_event_constraints
;
4052 x86_pmu
.pebs_constraints
= intel_glp_pebs_event_constraints
;
4053 x86_pmu
.extra_regs
= intel_glm_extra_regs
;
4055 * It's recommended to use CPU_CLK_UNHALTED.CORE_P + NPEBS
4056 * for precise cycles.
4058 x86_pmu
.pebs_aliases
= NULL
;
4059 x86_pmu
.pebs_prec_dist
= true;
4060 x86_pmu
.lbr_pt_coexist
= true;
4061 x86_pmu
.flags
|= PMU_FL_HAS_RSP_1
;
4062 x86_pmu
.get_event_constraints
= glp_get_event_constraints
;
4063 x86_pmu
.cpu_events
= glm_events_attrs
;
4064 /* Goldmont Plus has 4-wide pipeline */
4065 event_attr_td_total_slots_scale_glm
.event_str
= "4";
4066 extra_attr
= slm_format_attr
;
4067 pr_cont("Goldmont plus events, ");
4068 name
= "goldmont_plus";
4071 case INTEL_FAM6_WESTMERE
:
4072 case INTEL_FAM6_WESTMERE_EP
:
4073 case INTEL_FAM6_WESTMERE_EX
:
4074 memcpy(hw_cache_event_ids
, westmere_hw_cache_event_ids
,
4075 sizeof(hw_cache_event_ids
));
4076 memcpy(hw_cache_extra_regs
, nehalem_hw_cache_extra_regs
,
4077 sizeof(hw_cache_extra_regs
));
4079 intel_pmu_lbr_init_nhm();
4081 x86_pmu
.event_constraints
= intel_westmere_event_constraints
;
4082 x86_pmu
.enable_all
= intel_pmu_nhm_enable_all
;
4083 x86_pmu
.pebs_constraints
= intel_westmere_pebs_event_constraints
;
4084 x86_pmu
.extra_regs
= intel_westmere_extra_regs
;
4085 x86_pmu
.flags
|= PMU_FL_HAS_RSP_1
;
4087 x86_pmu
.cpu_events
= nhm_events_attrs
;
4089 /* UOPS_ISSUED.STALLED_CYCLES */
4090 intel_perfmon_event_map
[PERF_COUNT_HW_STALLED_CYCLES_FRONTEND
] =
4091 X86_CONFIG(.event
=0x0e, .umask
=0x01, .inv
=1, .cmask
=1);
4092 /* UOPS_EXECUTED.CORE_ACTIVE_CYCLES,c=1,i=1 */
4093 intel_perfmon_event_map
[PERF_COUNT_HW_STALLED_CYCLES_BACKEND
] =
4094 X86_CONFIG(.event
=0xb1, .umask
=0x3f, .inv
=1, .cmask
=1);
4096 intel_pmu_pebs_data_source_nhm();
4097 extra_attr
= nhm_format_attr
;
4098 pr_cont("Westmere events, ");
4102 case INTEL_FAM6_SANDYBRIDGE
:
4103 case INTEL_FAM6_SANDYBRIDGE_X
:
4104 x86_add_quirk(intel_sandybridge_quirk
);
4105 x86_add_quirk(intel_ht_bug
);
4106 memcpy(hw_cache_event_ids
, snb_hw_cache_event_ids
,
4107 sizeof(hw_cache_event_ids
));
4108 memcpy(hw_cache_extra_regs
, snb_hw_cache_extra_regs
,
4109 sizeof(hw_cache_extra_regs
));
4111 intel_pmu_lbr_init_snb();
4113 x86_pmu
.event_constraints
= intel_snb_event_constraints
;
4114 x86_pmu
.pebs_constraints
= intel_snb_pebs_event_constraints
;
4115 x86_pmu
.pebs_aliases
= intel_pebs_aliases_snb
;
4116 if (boot_cpu_data
.x86_model
== INTEL_FAM6_SANDYBRIDGE_X
)
4117 x86_pmu
.extra_regs
= intel_snbep_extra_regs
;
4119 x86_pmu
.extra_regs
= intel_snb_extra_regs
;
4122 /* all extra regs are per-cpu when HT is on */
4123 x86_pmu
.flags
|= PMU_FL_HAS_RSP_1
;
4124 x86_pmu
.flags
|= PMU_FL_NO_HT_SHARING
;
4126 x86_pmu
.cpu_events
= snb_events_attrs
;
4128 /* UOPS_ISSUED.ANY,c=1,i=1 to count stall cycles */
4129 intel_perfmon_event_map
[PERF_COUNT_HW_STALLED_CYCLES_FRONTEND
] =
4130 X86_CONFIG(.event
=0x0e, .umask
=0x01, .inv
=1, .cmask
=1);
4131 /* UOPS_DISPATCHED.THREAD,c=1,i=1 to count stall cycles*/
4132 intel_perfmon_event_map
[PERF_COUNT_HW_STALLED_CYCLES_BACKEND
] =
4133 X86_CONFIG(.event
=0xb1, .umask
=0x01, .inv
=1, .cmask
=1);
4135 extra_attr
= nhm_format_attr
;
4137 pr_cont("SandyBridge events, ");
4138 name
= "sandybridge";
4141 case INTEL_FAM6_IVYBRIDGE
:
4142 case INTEL_FAM6_IVYBRIDGE_X
:
4143 x86_add_quirk(intel_ht_bug
);
4144 memcpy(hw_cache_event_ids
, snb_hw_cache_event_ids
,
4145 sizeof(hw_cache_event_ids
));
4146 /* dTLB-load-misses on IVB is different than SNB */
4147 hw_cache_event_ids
[C(DTLB
)][C(OP_READ
)][C(RESULT_MISS
)] = 0x8108; /* DTLB_LOAD_MISSES.DEMAND_LD_MISS_CAUSES_A_WALK */
4149 memcpy(hw_cache_extra_regs
, snb_hw_cache_extra_regs
,
4150 sizeof(hw_cache_extra_regs
));
4152 intel_pmu_lbr_init_snb();
4154 x86_pmu
.event_constraints
= intel_ivb_event_constraints
;
4155 x86_pmu
.pebs_constraints
= intel_ivb_pebs_event_constraints
;
4156 x86_pmu
.pebs_aliases
= intel_pebs_aliases_ivb
;
4157 x86_pmu
.pebs_prec_dist
= true;
4158 if (boot_cpu_data
.x86_model
== INTEL_FAM6_IVYBRIDGE_X
)
4159 x86_pmu
.extra_regs
= intel_snbep_extra_regs
;
4161 x86_pmu
.extra_regs
= intel_snb_extra_regs
;
4162 /* all extra regs are per-cpu when HT is on */
4163 x86_pmu
.flags
|= PMU_FL_HAS_RSP_1
;
4164 x86_pmu
.flags
|= PMU_FL_NO_HT_SHARING
;
4166 x86_pmu
.cpu_events
= snb_events_attrs
;
4168 /* UOPS_ISSUED.ANY,c=1,i=1 to count stall cycles */
4169 intel_perfmon_event_map
[PERF_COUNT_HW_STALLED_CYCLES_FRONTEND
] =
4170 X86_CONFIG(.event
=0x0e, .umask
=0x01, .inv
=1, .cmask
=1);
4172 extra_attr
= nhm_format_attr
;
4174 pr_cont("IvyBridge events, ");
4179 case INTEL_FAM6_HASWELL_CORE
:
4180 case INTEL_FAM6_HASWELL_X
:
4181 case INTEL_FAM6_HASWELL_ULT
:
4182 case INTEL_FAM6_HASWELL_GT3E
:
4183 x86_add_quirk(intel_ht_bug
);
4184 x86_pmu
.late_ack
= true;
4185 memcpy(hw_cache_event_ids
, hsw_hw_cache_event_ids
, sizeof(hw_cache_event_ids
));
4186 memcpy(hw_cache_extra_regs
, hsw_hw_cache_extra_regs
, sizeof(hw_cache_extra_regs
));
4188 intel_pmu_lbr_init_hsw();
4190 x86_pmu
.event_constraints
= intel_hsw_event_constraints
;
4191 x86_pmu
.pebs_constraints
= intel_hsw_pebs_event_constraints
;
4192 x86_pmu
.extra_regs
= intel_snbep_extra_regs
;
4193 x86_pmu
.pebs_aliases
= intel_pebs_aliases_ivb
;
4194 x86_pmu
.pebs_prec_dist
= true;
4195 /* all extra regs are per-cpu when HT is on */
4196 x86_pmu
.flags
|= PMU_FL_HAS_RSP_1
;
4197 x86_pmu
.flags
|= PMU_FL_NO_HT_SHARING
;
4199 x86_pmu
.hw_config
= hsw_hw_config
;
4200 x86_pmu
.get_event_constraints
= hsw_get_event_constraints
;
4201 x86_pmu
.cpu_events
= get_hsw_events_attrs();
4202 x86_pmu
.lbr_double_abort
= true;
4203 extra_attr
= boot_cpu_has(X86_FEATURE_RTM
) ?
4204 hsw_format_attr
: nhm_format_attr
;
4205 pr_cont("Haswell events, ");
4209 case INTEL_FAM6_BROADWELL_CORE
:
4210 case INTEL_FAM6_BROADWELL_XEON_D
:
4211 case INTEL_FAM6_BROADWELL_GT3E
:
4212 case INTEL_FAM6_BROADWELL_X
:
4213 x86_pmu
.late_ack
= true;
4214 memcpy(hw_cache_event_ids
, hsw_hw_cache_event_ids
, sizeof(hw_cache_event_ids
));
4215 memcpy(hw_cache_extra_regs
, hsw_hw_cache_extra_regs
, sizeof(hw_cache_extra_regs
));
4217 /* L3_MISS_LOCAL_DRAM is BIT(26) in Broadwell */
4218 hw_cache_extra_regs
[C(LL
)][C(OP_READ
)][C(RESULT_MISS
)] = HSW_DEMAND_READ
|
4219 BDW_L3_MISS
|HSW_SNOOP_DRAM
;
4220 hw_cache_extra_regs
[C(LL
)][C(OP_WRITE
)][C(RESULT_MISS
)] = HSW_DEMAND_WRITE
|BDW_L3_MISS
|
4222 hw_cache_extra_regs
[C(NODE
)][C(OP_READ
)][C(RESULT_ACCESS
)] = HSW_DEMAND_READ
|
4223 BDW_L3_MISS_LOCAL
|HSW_SNOOP_DRAM
;
4224 hw_cache_extra_regs
[C(NODE
)][C(OP_WRITE
)][C(RESULT_ACCESS
)] = HSW_DEMAND_WRITE
|
4225 BDW_L3_MISS_LOCAL
|HSW_SNOOP_DRAM
;
4227 intel_pmu_lbr_init_hsw();
4229 x86_pmu
.event_constraints
= intel_bdw_event_constraints
;
4230 x86_pmu
.pebs_constraints
= intel_bdw_pebs_event_constraints
;
4231 x86_pmu
.extra_regs
= intel_snbep_extra_regs
;
4232 x86_pmu
.pebs_aliases
= intel_pebs_aliases_ivb
;
4233 x86_pmu
.pebs_prec_dist
= true;
4234 /* all extra regs are per-cpu when HT is on */
4235 x86_pmu
.flags
|= PMU_FL_HAS_RSP_1
;
4236 x86_pmu
.flags
|= PMU_FL_NO_HT_SHARING
;
4238 x86_pmu
.hw_config
= hsw_hw_config
;
4239 x86_pmu
.get_event_constraints
= hsw_get_event_constraints
;
4240 x86_pmu
.cpu_events
= get_hsw_events_attrs();
4241 x86_pmu
.limit_period
= bdw_limit_period
;
4242 extra_attr
= boot_cpu_has(X86_FEATURE_RTM
) ?
4243 hsw_format_attr
: nhm_format_attr
;
4244 pr_cont("Broadwell events, ");
4248 case INTEL_FAM6_XEON_PHI_KNL
:
4249 case INTEL_FAM6_XEON_PHI_KNM
:
4250 memcpy(hw_cache_event_ids
,
4251 slm_hw_cache_event_ids
, sizeof(hw_cache_event_ids
));
4252 memcpy(hw_cache_extra_regs
,
4253 knl_hw_cache_extra_regs
, sizeof(hw_cache_extra_regs
));
4254 intel_pmu_lbr_init_knl();
4256 x86_pmu
.event_constraints
= intel_slm_event_constraints
;
4257 x86_pmu
.pebs_constraints
= intel_slm_pebs_event_constraints
;
4258 x86_pmu
.extra_regs
= intel_knl_extra_regs
;
4260 /* all extra regs are per-cpu when HT is on */
4261 x86_pmu
.flags
|= PMU_FL_HAS_RSP_1
;
4262 x86_pmu
.flags
|= PMU_FL_NO_HT_SHARING
;
4263 extra_attr
= slm_format_attr
;
4264 pr_cont("Knights Landing/Mill events, ");
4265 name
= "knights-landing";
4268 case INTEL_FAM6_SKYLAKE_MOBILE
:
4269 case INTEL_FAM6_SKYLAKE_DESKTOP
:
4270 case INTEL_FAM6_SKYLAKE_X
:
4271 case INTEL_FAM6_KABYLAKE_MOBILE
:
4272 case INTEL_FAM6_KABYLAKE_DESKTOP
:
4273 x86_pmu
.late_ack
= true;
4274 memcpy(hw_cache_event_ids
, skl_hw_cache_event_ids
, sizeof(hw_cache_event_ids
));
4275 memcpy(hw_cache_extra_regs
, skl_hw_cache_extra_regs
, sizeof(hw_cache_extra_regs
));
4276 intel_pmu_lbr_init_skl();
4278 /* INT_MISC.RECOVERY_CYCLES has umask 1 in Skylake */
4279 event_attr_td_recovery_bubbles
.event_str_noht
=
4280 "event=0xd,umask=0x1,cmask=1";
4281 event_attr_td_recovery_bubbles
.event_str_ht
=
4282 "event=0xd,umask=0x1,cmask=1,any=1";
4284 x86_pmu
.event_constraints
= intel_skl_event_constraints
;
4285 x86_pmu
.pebs_constraints
= intel_skl_pebs_event_constraints
;
4286 x86_pmu
.extra_regs
= intel_skl_extra_regs
;
4287 x86_pmu
.pebs_aliases
= intel_pebs_aliases_skl
;
4288 x86_pmu
.pebs_prec_dist
= true;
4289 /* all extra regs are per-cpu when HT is on */
4290 x86_pmu
.flags
|= PMU_FL_HAS_RSP_1
;
4291 x86_pmu
.flags
|= PMU_FL_NO_HT_SHARING
;
4293 x86_pmu
.hw_config
= hsw_hw_config
;
4294 x86_pmu
.get_event_constraints
= hsw_get_event_constraints
;
4295 extra_attr
= boot_cpu_has(X86_FEATURE_RTM
) ?
4296 hsw_format_attr
: nhm_format_attr
;
4297 extra_attr
= merge_attr(extra_attr
, skl_format_attr
);
4298 to_free
= extra_attr
;
4299 x86_pmu
.cpu_events
= get_hsw_events_attrs();
4300 intel_pmu_pebs_data_source_skl(
4301 boot_cpu_data
.x86_model
== INTEL_FAM6_SKYLAKE_X
);
4302 pr_cont("Skylake events, ");
4307 switch (x86_pmu
.version
) {
4309 x86_pmu
.event_constraints
= intel_v1_event_constraints
;
4310 pr_cont("generic architected perfmon v1, ");
4311 name
= "generic_arch_v1";
4315 * default constraints for v2 and up
4317 x86_pmu
.event_constraints
= intel_gen_event_constraints
;
4318 pr_cont("generic architected perfmon, ");
4319 name
= "generic_arch_v2+";
4324 snprintf(pmu_name_str
, sizeof pmu_name_str
, "%s", name
);
4326 if (version
>= 2 && extra_attr
) {
4327 x86_pmu
.format_attrs
= merge_attr(intel_arch3_formats_attr
,
4329 WARN_ON(!x86_pmu
.format_attrs
);
4332 if (x86_pmu
.num_counters
> INTEL_PMC_MAX_GENERIC
) {
4333 WARN(1, KERN_ERR
"hw perf events %d > max(%d), clipping!",
4334 x86_pmu
.num_counters
, INTEL_PMC_MAX_GENERIC
);
4335 x86_pmu
.num_counters
= INTEL_PMC_MAX_GENERIC
;
4337 x86_pmu
.intel_ctrl
= (1ULL << x86_pmu
.num_counters
) - 1;
4339 if (x86_pmu
.num_counters_fixed
> INTEL_PMC_MAX_FIXED
) {
4340 WARN(1, KERN_ERR
"hw perf events fixed %d > max(%d), clipping!",
4341 x86_pmu
.num_counters_fixed
, INTEL_PMC_MAX_FIXED
);
4342 x86_pmu
.num_counters_fixed
= INTEL_PMC_MAX_FIXED
;
4345 x86_pmu
.intel_ctrl
|=
4346 ((1LL << x86_pmu
.num_counters_fixed
)-1) << INTEL_PMC_IDX_FIXED
;
4348 if (x86_pmu
.event_constraints
) {
4350 * event on fixed counter2 (REF_CYCLES) only works on this
4351 * counter, so do not extend mask to generic counters
4353 for_each_event_constraint(c
, x86_pmu
.event_constraints
) {
4354 if (c
->cmask
== FIXED_EVENT_FLAGS
4355 && c
->idxmsk64
!= INTEL_PMC_MSK_FIXED_REF_CYCLES
) {
4356 c
->idxmsk64
|= (1ULL << x86_pmu
.num_counters
) - 1;
4359 ~(~0ULL << (INTEL_PMC_IDX_FIXED
+ x86_pmu
.num_counters_fixed
));
4360 c
->weight
= hweight64(c
->idxmsk64
);
4365 * Access LBR MSR may cause #GP under certain circumstances.
4366 * E.g. KVM doesn't support LBR MSR
4367 * Check all LBT MSR here.
4368 * Disable LBR access if any LBR MSRs can not be accessed.
4370 if (x86_pmu
.lbr_nr
&& !check_msr(x86_pmu
.lbr_tos
, 0x3UL
))
4372 for (i
= 0; i
< x86_pmu
.lbr_nr
; i
++) {
4373 if (!(check_msr(x86_pmu
.lbr_from
+ i
, 0xffffUL
) &&
4374 check_msr(x86_pmu
.lbr_to
+ i
, 0xffffUL
)))
4378 x86_pmu
.caps_attrs
= intel_pmu_caps_attrs
;
4380 if (x86_pmu
.lbr_nr
) {
4381 x86_pmu
.caps_attrs
= merge_attr(x86_pmu
.caps_attrs
, lbr_attrs
);
4382 pr_cont("%d-deep LBR, ", x86_pmu
.lbr_nr
);
4386 * Access extra MSR may cause #GP under certain circumstances.
4387 * E.g. KVM doesn't support offcore event
4388 * Check all extra_regs here.
4390 if (x86_pmu
.extra_regs
) {
4391 for (er
= x86_pmu
.extra_regs
; er
->msr
; er
++) {
4392 er
->extra_msr_access
= check_msr(er
->msr
, 0x11UL
);
4393 /* Disable LBR select mapping */
4394 if ((er
->idx
== EXTRA_REG_LBR
) && !er
->extra_msr_access
)
4395 x86_pmu
.lbr_sel_map
= NULL
;
4399 /* Support full width counters using alternative MSR range */
4400 if (x86_pmu
.intel_cap
.full_width_write
) {
4401 x86_pmu
.max_period
= x86_pmu
.cntval_mask
>> 1;
4402 x86_pmu
.perfctr
= MSR_IA32_PMC0
;
4403 pr_cont("full-width counters, ");
4411 * HT bug: phase 2 init
4412 * Called once we have valid topology information to check
4413 * whether or not HT is enabled
4414 * If HT is off, then we disable the workaround
4416 static __init
int fixup_ht_bug(void)
4420 * problem not present on this CPU model, nothing to do
4422 if (!(x86_pmu
.flags
& PMU_FL_EXCL_ENABLED
))
4425 if (topology_max_smt_threads() > 1) {
4426 pr_info("PMU erratum BJ122, BV98, HSD29 worked around, HT is on\n");
4432 hardlockup_detector_perf_stop();
4434 x86_pmu
.flags
&= ~(PMU_FL_EXCL_CNTRS
| PMU_FL_EXCL_ENABLED
);
4436 x86_pmu
.start_scheduling
= NULL
;
4437 x86_pmu
.commit_scheduling
= NULL
;
4438 x86_pmu
.stop_scheduling
= NULL
;
4440 hardlockup_detector_perf_restart();
4442 for_each_online_cpu(c
)
4446 pr_info("PMU erratum BJ122, BV98, HSD29 workaround disabled, HT off\n");
4449 subsys_initcall(fixup_ht_bug
)