Merge tag 'for_linus' of git://git.kernel.org/pub/scm/linux/kernel/git/mst/vhost
[cris-mirror.git] / arch / x86 / hyperv / hv_init.c
blob2edc49e7409baa9b3bfa6b9991247656001a0277
1 /*
2 * X86 specific Hyper-V initialization code.
4 * Copyright (C) 2016, Microsoft, Inc.
6 * Author : K. Y. Srinivasan <kys@microsoft.com>
8 * This program is free software; you can redistribute it and/or modify it
9 * under the terms of the GNU General Public License version 2 as published
10 * by the Free Software Foundation.
12 * This program is distributed in the hope that it will be useful, but
13 * WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
15 * NON INFRINGEMENT. See the GNU General Public License for more
16 * details.
20 #include <linux/types.h>
21 #include <asm/apic.h>
22 #include <asm/desc.h>
23 #include <asm/hypervisor.h>
24 #include <asm/hyperv.h>
25 #include <asm/mshyperv.h>
26 #include <linux/version.h>
27 #include <linux/vmalloc.h>
28 #include <linux/mm.h>
29 #include <linux/clockchips.h>
30 #include <linux/hyperv.h>
31 #include <linux/slab.h>
32 #include <linux/cpuhotplug.h>
34 #ifdef CONFIG_HYPERV_TSCPAGE
36 static struct ms_hyperv_tsc_page *tsc_pg;
38 struct ms_hyperv_tsc_page *hv_get_tsc_page(void)
40 return tsc_pg;
42 EXPORT_SYMBOL_GPL(hv_get_tsc_page);
44 static u64 read_hv_clock_tsc(struct clocksource *arg)
46 u64 current_tick = hv_read_tsc_page(tsc_pg);
48 if (current_tick == U64_MAX)
49 rdmsrl(HV_X64_MSR_TIME_REF_COUNT, current_tick);
51 return current_tick;
54 static struct clocksource hyperv_cs_tsc = {
55 .name = "hyperv_clocksource_tsc_page",
56 .rating = 400,
57 .read = read_hv_clock_tsc,
58 .mask = CLOCKSOURCE_MASK(64),
59 .flags = CLOCK_SOURCE_IS_CONTINUOUS,
61 #endif
63 static u64 read_hv_clock_msr(struct clocksource *arg)
65 u64 current_tick;
67 * Read the partition counter to get the current tick count. This count
68 * is set to 0 when the partition is created and is incremented in
69 * 100 nanosecond units.
71 rdmsrl(HV_X64_MSR_TIME_REF_COUNT, current_tick);
72 return current_tick;
75 static struct clocksource hyperv_cs_msr = {
76 .name = "hyperv_clocksource_msr",
77 .rating = 400,
78 .read = read_hv_clock_msr,
79 .mask = CLOCKSOURCE_MASK(64),
80 .flags = CLOCK_SOURCE_IS_CONTINUOUS,
83 void *hv_hypercall_pg;
84 EXPORT_SYMBOL_GPL(hv_hypercall_pg);
85 struct clocksource *hyperv_cs;
86 EXPORT_SYMBOL_GPL(hyperv_cs);
88 u32 *hv_vp_index;
89 EXPORT_SYMBOL_GPL(hv_vp_index);
91 u32 hv_max_vp_index;
93 static int hv_cpu_init(unsigned int cpu)
95 u64 msr_vp_index;
97 hv_get_vp_index(msr_vp_index);
99 hv_vp_index[smp_processor_id()] = msr_vp_index;
101 if (msr_vp_index > hv_max_vp_index)
102 hv_max_vp_index = msr_vp_index;
104 return 0;
107 static void (*hv_reenlightenment_cb)(void);
109 static void hv_reenlightenment_notify(struct work_struct *dummy)
111 struct hv_tsc_emulation_status emu_status;
113 rdmsrl(HV_X64_MSR_TSC_EMULATION_STATUS, *(u64 *)&emu_status);
115 /* Don't issue the callback if TSC accesses are not emulated */
116 if (hv_reenlightenment_cb && emu_status.inprogress)
117 hv_reenlightenment_cb();
119 static DECLARE_DELAYED_WORK(hv_reenlightenment_work, hv_reenlightenment_notify);
121 void hyperv_stop_tsc_emulation(void)
123 u64 freq;
124 struct hv_tsc_emulation_status emu_status;
126 rdmsrl(HV_X64_MSR_TSC_EMULATION_STATUS, *(u64 *)&emu_status);
127 emu_status.inprogress = 0;
128 wrmsrl(HV_X64_MSR_TSC_EMULATION_STATUS, *(u64 *)&emu_status);
130 rdmsrl(HV_X64_MSR_TSC_FREQUENCY, freq);
131 tsc_khz = div64_u64(freq, 1000);
133 EXPORT_SYMBOL_GPL(hyperv_stop_tsc_emulation);
135 static inline bool hv_reenlightenment_available(void)
138 * Check for required features and priviliges to make TSC frequency
139 * change notifications work.
141 return ms_hyperv.features & HV_X64_ACCESS_FREQUENCY_MSRS &&
142 ms_hyperv.misc_features & HV_FEATURE_FREQUENCY_MSRS_AVAILABLE &&
143 ms_hyperv.features & HV_X64_ACCESS_REENLIGHTENMENT;
146 __visible void __irq_entry hyperv_reenlightenment_intr(struct pt_regs *regs)
148 entering_ack_irq();
150 inc_irq_stat(irq_hv_reenlightenment_count);
152 schedule_delayed_work(&hv_reenlightenment_work, HZ/10);
154 exiting_irq();
157 void set_hv_tscchange_cb(void (*cb)(void))
159 struct hv_reenlightenment_control re_ctrl = {
160 .vector = HYPERV_REENLIGHTENMENT_VECTOR,
161 .enabled = 1,
162 .target_vp = hv_vp_index[smp_processor_id()]
164 struct hv_tsc_emulation_control emu_ctrl = {.enabled = 1};
166 if (!hv_reenlightenment_available()) {
167 pr_warn("Hyper-V: reenlightenment support is unavailable\n");
168 return;
171 hv_reenlightenment_cb = cb;
173 /* Make sure callback is registered before we write to MSRs */
174 wmb();
176 wrmsrl(HV_X64_MSR_REENLIGHTENMENT_CONTROL, *((u64 *)&re_ctrl));
177 wrmsrl(HV_X64_MSR_TSC_EMULATION_CONTROL, *((u64 *)&emu_ctrl));
179 EXPORT_SYMBOL_GPL(set_hv_tscchange_cb);
181 void clear_hv_tscchange_cb(void)
183 struct hv_reenlightenment_control re_ctrl;
185 if (!hv_reenlightenment_available())
186 return;
188 rdmsrl(HV_X64_MSR_REENLIGHTENMENT_CONTROL, *(u64 *)&re_ctrl);
189 re_ctrl.enabled = 0;
190 wrmsrl(HV_X64_MSR_REENLIGHTENMENT_CONTROL, *(u64 *)&re_ctrl);
192 hv_reenlightenment_cb = NULL;
194 EXPORT_SYMBOL_GPL(clear_hv_tscchange_cb);
196 static int hv_cpu_die(unsigned int cpu)
198 struct hv_reenlightenment_control re_ctrl;
199 unsigned int new_cpu;
201 if (hv_reenlightenment_cb == NULL)
202 return 0;
204 rdmsrl(HV_X64_MSR_REENLIGHTENMENT_CONTROL, *((u64 *)&re_ctrl));
205 if (re_ctrl.target_vp == hv_vp_index[cpu]) {
206 /* Reassign to some other online CPU */
207 new_cpu = cpumask_any_but(cpu_online_mask, cpu);
209 re_ctrl.target_vp = hv_vp_index[new_cpu];
210 wrmsrl(HV_X64_MSR_REENLIGHTENMENT_CONTROL, *((u64 *)&re_ctrl));
213 return 0;
217 * This function is to be invoked early in the boot sequence after the
218 * hypervisor has been detected.
220 * 1. Setup the hypercall page.
221 * 2. Register Hyper-V specific clocksource.
223 void hyperv_init(void)
225 u64 guest_id, required_msrs;
226 union hv_x64_msr_hypercall_contents hypercall_msr;
228 if (x86_hyper_type != X86_HYPER_MS_HYPERV)
229 return;
231 /* Absolutely required MSRs */
232 required_msrs = HV_X64_MSR_HYPERCALL_AVAILABLE |
233 HV_X64_MSR_VP_INDEX_AVAILABLE;
235 if ((ms_hyperv.features & required_msrs) != required_msrs)
236 return;
238 /* Allocate percpu VP index */
239 hv_vp_index = kmalloc_array(num_possible_cpus(), sizeof(*hv_vp_index),
240 GFP_KERNEL);
241 if (!hv_vp_index)
242 return;
244 if (cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "x86/hyperv_init:online",
245 hv_cpu_init, hv_cpu_die) < 0)
246 goto free_vp_index;
249 * Setup the hypercall page and enable hypercalls.
250 * 1. Register the guest ID
251 * 2. Enable the hypercall and register the hypercall page
253 guest_id = generate_guest_id(0, LINUX_VERSION_CODE, 0);
254 wrmsrl(HV_X64_MSR_GUEST_OS_ID, guest_id);
256 hv_hypercall_pg = __vmalloc(PAGE_SIZE, GFP_KERNEL, PAGE_KERNEL_RX);
257 if (hv_hypercall_pg == NULL) {
258 wrmsrl(HV_X64_MSR_GUEST_OS_ID, 0);
259 goto free_vp_index;
262 rdmsrl(HV_X64_MSR_HYPERCALL, hypercall_msr.as_uint64);
263 hypercall_msr.enable = 1;
264 hypercall_msr.guest_physical_address = vmalloc_to_pfn(hv_hypercall_pg);
265 wrmsrl(HV_X64_MSR_HYPERCALL, hypercall_msr.as_uint64);
267 hyper_alloc_mmu();
270 * Register Hyper-V specific clocksource.
272 #ifdef CONFIG_HYPERV_TSCPAGE
273 if (ms_hyperv.features & HV_X64_MSR_REFERENCE_TSC_AVAILABLE) {
274 union hv_x64_msr_hypercall_contents tsc_msr;
276 tsc_pg = __vmalloc(PAGE_SIZE, GFP_KERNEL, PAGE_KERNEL);
277 if (!tsc_pg)
278 goto register_msr_cs;
280 hyperv_cs = &hyperv_cs_tsc;
282 rdmsrl(HV_X64_MSR_REFERENCE_TSC, tsc_msr.as_uint64);
284 tsc_msr.enable = 1;
285 tsc_msr.guest_physical_address = vmalloc_to_pfn(tsc_pg);
287 wrmsrl(HV_X64_MSR_REFERENCE_TSC, tsc_msr.as_uint64);
289 hyperv_cs_tsc.archdata.vclock_mode = VCLOCK_HVCLOCK;
291 clocksource_register_hz(&hyperv_cs_tsc, NSEC_PER_SEC/100);
292 return;
294 register_msr_cs:
295 #endif
297 * For 32 bit guests just use the MSR based mechanism for reading
298 * the partition counter.
301 hyperv_cs = &hyperv_cs_msr;
302 if (ms_hyperv.features & HV_X64_MSR_TIME_REF_COUNT_AVAILABLE)
303 clocksource_register_hz(&hyperv_cs_msr, NSEC_PER_SEC/100);
305 return;
307 free_vp_index:
308 kfree(hv_vp_index);
309 hv_vp_index = NULL;
313 * This routine is called before kexec/kdump, it does the required cleanup.
315 void hyperv_cleanup(void)
317 union hv_x64_msr_hypercall_contents hypercall_msr;
319 /* Reset our OS id */
320 wrmsrl(HV_X64_MSR_GUEST_OS_ID, 0);
322 /* Reset the hypercall page */
323 hypercall_msr.as_uint64 = 0;
324 wrmsrl(HV_X64_MSR_HYPERCALL, hypercall_msr.as_uint64);
326 /* Reset the TSC page */
327 hypercall_msr.as_uint64 = 0;
328 wrmsrl(HV_X64_MSR_REFERENCE_TSC, hypercall_msr.as_uint64);
330 EXPORT_SYMBOL_GPL(hyperv_cleanup);
332 void hyperv_report_panic(struct pt_regs *regs, long err)
334 static bool panic_reported;
335 u64 guest_id;
338 * We prefer to report panic on 'die' chain as we have proper
339 * registers to report, but if we miss it (e.g. on BUG()) we need
340 * to report it on 'panic'.
342 if (panic_reported)
343 return;
344 panic_reported = true;
346 rdmsrl(HV_X64_MSR_GUEST_OS_ID, guest_id);
348 wrmsrl(HV_X64_MSR_CRASH_P0, err);
349 wrmsrl(HV_X64_MSR_CRASH_P1, guest_id);
350 wrmsrl(HV_X64_MSR_CRASH_P2, regs->ip);
351 wrmsrl(HV_X64_MSR_CRASH_P3, regs->ax);
352 wrmsrl(HV_X64_MSR_CRASH_P4, regs->sp);
355 * Let Hyper-V know there is crash data available
357 wrmsrl(HV_X64_MSR_CRASH_CTL, HV_CRASH_CTL_CRASH_NOTIFY);
359 EXPORT_SYMBOL_GPL(hyperv_report_panic);
361 bool hv_is_hyperv_initialized(void)
363 union hv_x64_msr_hypercall_contents hypercall_msr;
366 * Ensure that we're really on Hyper-V, and not a KVM or Xen
367 * emulation of Hyper-V
369 if (x86_hyper_type != X86_HYPER_MS_HYPERV)
370 return false;
373 * Verify that earlier initialization succeeded by checking
374 * that the hypercall page is setup
376 hypercall_msr.as_uint64 = 0;
377 rdmsrl(HV_X64_MSR_HYPERCALL, hypercall_msr.as_uint64);
379 return hypercall_msr.enable;
381 EXPORT_SYMBOL_GPL(hv_is_hyperv_initialized);