Merge tag 'for_linus' of git://git.kernel.org/pub/scm/linux/kernel/git/mst/vhost
[cris-mirror.git] / arch / x86 / kernel / cpu / mcheck / mce.c
blob8ff94d1e2dce54e87cc72c63812365d610476ec8
1 /*
2 * Machine check handler.
4 * K8 parts Copyright 2002,2003 Andi Kleen, SuSE Labs.
5 * Rest from unknown author(s).
6 * 2004 Andi Kleen. Rewrote most of it.
7 * Copyright 2008 Intel Corporation
8 * Author: Andi Kleen
9 */
11 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
13 #include <linux/thread_info.h>
14 #include <linux/capability.h>
15 #include <linux/miscdevice.h>
16 #include <linux/ratelimit.h>
17 #include <linux/rcupdate.h>
18 #include <linux/kobject.h>
19 #include <linux/uaccess.h>
20 #include <linux/kdebug.h>
21 #include <linux/kernel.h>
22 #include <linux/percpu.h>
23 #include <linux/string.h>
24 #include <linux/device.h>
25 #include <linux/syscore_ops.h>
26 #include <linux/delay.h>
27 #include <linux/ctype.h>
28 #include <linux/sched.h>
29 #include <linux/sysfs.h>
30 #include <linux/types.h>
31 #include <linux/slab.h>
32 #include <linux/init.h>
33 #include <linux/kmod.h>
34 #include <linux/poll.h>
35 #include <linux/nmi.h>
36 #include <linux/cpu.h>
37 #include <linux/ras.h>
38 #include <linux/smp.h>
39 #include <linux/fs.h>
40 #include <linux/mm.h>
41 #include <linux/debugfs.h>
42 #include <linux/irq_work.h>
43 #include <linux/export.h>
44 #include <linux/jump_label.h>
46 #include <asm/intel-family.h>
47 #include <asm/processor.h>
48 #include <asm/traps.h>
49 #include <asm/tlbflush.h>
50 #include <asm/mce.h>
51 #include <asm/msr.h>
52 #include <asm/reboot.h>
53 #include <asm/set_memory.h>
55 #include "mce-internal.h"
57 static DEFINE_MUTEX(mce_log_mutex);
59 #define CREATE_TRACE_POINTS
60 #include <trace/events/mce.h>
62 #define SPINUNIT 100 /* 100ns */
64 DEFINE_PER_CPU(unsigned, mce_exception_count);
66 struct mce_bank *mce_banks __read_mostly;
67 struct mce_vendor_flags mce_flags __read_mostly;
69 struct mca_config mca_cfg __read_mostly = {
70 .bootlog = -1,
72 * Tolerant levels:
73 * 0: always panic on uncorrected errors, log corrected errors
74 * 1: panic or SIGBUS on uncorrected errors, log corrected errors
75 * 2: SIGBUS or log uncorrected errors (if possible), log corr. errors
76 * 3: never panic or SIGBUS, log all errors (for testing only)
78 .tolerant = 1,
79 .monarch_timeout = -1
82 static DEFINE_PER_CPU(struct mce, mces_seen);
83 static unsigned long mce_need_notify;
84 static int cpu_missing;
87 * MCA banks polled by the period polling timer for corrected events.
88 * With Intel CMCI, this only has MCA banks which do not support CMCI (if any).
90 DEFINE_PER_CPU(mce_banks_t, mce_poll_banks) = {
91 [0 ... BITS_TO_LONGS(MAX_NR_BANKS)-1] = ~0UL
95 * MCA banks controlled through firmware first for corrected errors.
96 * This is a global list of banks for which we won't enable CMCI and we
97 * won't poll. Firmware controls these banks and is responsible for
98 * reporting corrected errors through GHES. Uncorrected/recoverable
99 * errors are still notified through a machine check.
101 mce_banks_t mce_banks_ce_disabled;
103 static struct work_struct mce_work;
104 static struct irq_work mce_irq_work;
106 static void (*quirk_no_way_out)(int bank, struct mce *m, struct pt_regs *regs);
108 #ifndef mce_unmap_kpfn
109 static void mce_unmap_kpfn(unsigned long pfn);
110 #endif
113 * CPU/chipset specific EDAC code can register a notifier call here to print
114 * MCE errors in a human-readable form.
116 BLOCKING_NOTIFIER_HEAD(x86_mce_decoder_chain);
118 /* Do initial initialization of a struct mce */
119 void mce_setup(struct mce *m)
121 memset(m, 0, sizeof(struct mce));
122 m->cpu = m->extcpu = smp_processor_id();
123 /* We hope get_seconds stays lockless */
124 m->time = get_seconds();
125 m->cpuvendor = boot_cpu_data.x86_vendor;
126 m->cpuid = cpuid_eax(1);
127 m->socketid = cpu_data(m->extcpu).phys_proc_id;
128 m->apicid = cpu_data(m->extcpu).initial_apicid;
129 rdmsrl(MSR_IA32_MCG_CAP, m->mcgcap);
131 if (this_cpu_has(X86_FEATURE_INTEL_PPIN))
132 rdmsrl(MSR_PPIN, m->ppin);
135 DEFINE_PER_CPU(struct mce, injectm);
136 EXPORT_PER_CPU_SYMBOL_GPL(injectm);
138 void mce_log(struct mce *m)
140 if (!mce_gen_pool_add(m))
141 irq_work_queue(&mce_irq_work);
144 void mce_inject_log(struct mce *m)
146 mutex_lock(&mce_log_mutex);
147 mce_log(m);
148 mutex_unlock(&mce_log_mutex);
150 EXPORT_SYMBOL_GPL(mce_inject_log);
152 static struct notifier_block mce_srao_nb;
155 * We run the default notifier if we have only the SRAO, the first and the
156 * default notifier registered. I.e., the mandatory NUM_DEFAULT_NOTIFIERS
157 * notifiers registered on the chain.
159 #define NUM_DEFAULT_NOTIFIERS 3
160 static atomic_t num_notifiers;
162 void mce_register_decode_chain(struct notifier_block *nb)
164 if (WARN_ON(nb->priority > MCE_PRIO_MCELOG && nb->priority < MCE_PRIO_EDAC))
165 return;
167 atomic_inc(&num_notifiers);
169 blocking_notifier_chain_register(&x86_mce_decoder_chain, nb);
171 EXPORT_SYMBOL_GPL(mce_register_decode_chain);
173 void mce_unregister_decode_chain(struct notifier_block *nb)
175 atomic_dec(&num_notifiers);
177 blocking_notifier_chain_unregister(&x86_mce_decoder_chain, nb);
179 EXPORT_SYMBOL_GPL(mce_unregister_decode_chain);
181 static inline u32 ctl_reg(int bank)
183 return MSR_IA32_MCx_CTL(bank);
186 static inline u32 status_reg(int bank)
188 return MSR_IA32_MCx_STATUS(bank);
191 static inline u32 addr_reg(int bank)
193 return MSR_IA32_MCx_ADDR(bank);
196 static inline u32 misc_reg(int bank)
198 return MSR_IA32_MCx_MISC(bank);
201 static inline u32 smca_ctl_reg(int bank)
203 return MSR_AMD64_SMCA_MCx_CTL(bank);
206 static inline u32 smca_status_reg(int bank)
208 return MSR_AMD64_SMCA_MCx_STATUS(bank);
211 static inline u32 smca_addr_reg(int bank)
213 return MSR_AMD64_SMCA_MCx_ADDR(bank);
216 static inline u32 smca_misc_reg(int bank)
218 return MSR_AMD64_SMCA_MCx_MISC(bank);
221 struct mca_msr_regs msr_ops = {
222 .ctl = ctl_reg,
223 .status = status_reg,
224 .addr = addr_reg,
225 .misc = misc_reg
228 static void __print_mce(struct mce *m)
230 pr_emerg(HW_ERR "CPU %d: Machine Check%s: %Lx Bank %d: %016Lx\n",
231 m->extcpu,
232 (m->mcgstatus & MCG_STATUS_MCIP ? " Exception" : ""),
233 m->mcgstatus, m->bank, m->status);
235 if (m->ip) {
236 pr_emerg(HW_ERR "RIP%s %02x:<%016Lx> ",
237 !(m->mcgstatus & MCG_STATUS_EIPV) ? " !INEXACT!" : "",
238 m->cs, m->ip);
240 if (m->cs == __KERNEL_CS)
241 pr_cont("{%pS}", (void *)(unsigned long)m->ip);
242 pr_cont("\n");
245 pr_emerg(HW_ERR "TSC %llx ", m->tsc);
246 if (m->addr)
247 pr_cont("ADDR %llx ", m->addr);
248 if (m->misc)
249 pr_cont("MISC %llx ", m->misc);
251 if (mce_flags.smca) {
252 if (m->synd)
253 pr_cont("SYND %llx ", m->synd);
254 if (m->ipid)
255 pr_cont("IPID %llx ", m->ipid);
258 pr_cont("\n");
260 * Note this output is parsed by external tools and old fields
261 * should not be changed.
263 pr_emerg(HW_ERR "PROCESSOR %u:%x TIME %llu SOCKET %u APIC %x microcode %x\n",
264 m->cpuvendor, m->cpuid, m->time, m->socketid, m->apicid,
265 cpu_data(m->extcpu).microcode);
268 static void print_mce(struct mce *m)
270 __print_mce(m);
271 pr_emerg_ratelimited(HW_ERR "Run the above through 'mcelog --ascii'\n");
274 #define PANIC_TIMEOUT 5 /* 5 seconds */
276 static atomic_t mce_panicked;
278 static int fake_panic;
279 static atomic_t mce_fake_panicked;
281 /* Panic in progress. Enable interrupts and wait for final IPI */
282 static void wait_for_panic(void)
284 long timeout = PANIC_TIMEOUT*USEC_PER_SEC;
286 preempt_disable();
287 local_irq_enable();
288 while (timeout-- > 0)
289 udelay(1);
290 if (panic_timeout == 0)
291 panic_timeout = mca_cfg.panic_timeout;
292 panic("Panicing machine check CPU died");
295 static void mce_panic(const char *msg, struct mce *final, char *exp)
297 int apei_err = 0;
298 struct llist_node *pending;
299 struct mce_evt_llist *l;
301 if (!fake_panic) {
303 * Make sure only one CPU runs in machine check panic
305 if (atomic_inc_return(&mce_panicked) > 1)
306 wait_for_panic();
307 barrier();
309 bust_spinlocks(1);
310 console_verbose();
311 } else {
312 /* Don't log too much for fake panic */
313 if (atomic_inc_return(&mce_fake_panicked) > 1)
314 return;
316 pending = mce_gen_pool_prepare_records();
317 /* First print corrected ones that are still unlogged */
318 llist_for_each_entry(l, pending, llnode) {
319 struct mce *m = &l->mce;
320 if (!(m->status & MCI_STATUS_UC)) {
321 print_mce(m);
322 if (!apei_err)
323 apei_err = apei_write_mce(m);
326 /* Now print uncorrected but with the final one last */
327 llist_for_each_entry(l, pending, llnode) {
328 struct mce *m = &l->mce;
329 if (!(m->status & MCI_STATUS_UC))
330 continue;
331 if (!final || mce_cmp(m, final)) {
332 print_mce(m);
333 if (!apei_err)
334 apei_err = apei_write_mce(m);
337 if (final) {
338 print_mce(final);
339 if (!apei_err)
340 apei_err = apei_write_mce(final);
342 if (cpu_missing)
343 pr_emerg(HW_ERR "Some CPUs didn't answer in synchronization\n");
344 if (exp)
345 pr_emerg(HW_ERR "Machine check: %s\n", exp);
346 if (!fake_panic) {
347 if (panic_timeout == 0)
348 panic_timeout = mca_cfg.panic_timeout;
349 panic(msg);
350 } else
351 pr_emerg(HW_ERR "Fake kernel panic: %s\n", msg);
354 /* Support code for software error injection */
356 static int msr_to_offset(u32 msr)
358 unsigned bank = __this_cpu_read(injectm.bank);
360 if (msr == mca_cfg.rip_msr)
361 return offsetof(struct mce, ip);
362 if (msr == msr_ops.status(bank))
363 return offsetof(struct mce, status);
364 if (msr == msr_ops.addr(bank))
365 return offsetof(struct mce, addr);
366 if (msr == msr_ops.misc(bank))
367 return offsetof(struct mce, misc);
368 if (msr == MSR_IA32_MCG_STATUS)
369 return offsetof(struct mce, mcgstatus);
370 return -1;
373 /* MSR access wrappers used for error injection */
374 static u64 mce_rdmsrl(u32 msr)
376 u64 v;
378 if (__this_cpu_read(injectm.finished)) {
379 int offset = msr_to_offset(msr);
381 if (offset < 0)
382 return 0;
383 return *(u64 *)((char *)this_cpu_ptr(&injectm) + offset);
386 if (rdmsrl_safe(msr, &v)) {
387 WARN_ONCE(1, "mce: Unable to read MSR 0x%x!\n", msr);
389 * Return zero in case the access faulted. This should
390 * not happen normally but can happen if the CPU does
391 * something weird, or if the code is buggy.
393 v = 0;
396 return v;
399 static void mce_wrmsrl(u32 msr, u64 v)
401 if (__this_cpu_read(injectm.finished)) {
402 int offset = msr_to_offset(msr);
404 if (offset >= 0)
405 *(u64 *)((char *)this_cpu_ptr(&injectm) + offset) = v;
406 return;
408 wrmsrl(msr, v);
412 * Collect all global (w.r.t. this processor) status about this machine
413 * check into our "mce" struct so that we can use it later to assess
414 * the severity of the problem as we read per-bank specific details.
416 static inline void mce_gather_info(struct mce *m, struct pt_regs *regs)
418 mce_setup(m);
420 m->mcgstatus = mce_rdmsrl(MSR_IA32_MCG_STATUS);
421 if (regs) {
423 * Get the address of the instruction at the time of
424 * the machine check error.
426 if (m->mcgstatus & (MCG_STATUS_RIPV|MCG_STATUS_EIPV)) {
427 m->ip = regs->ip;
428 m->cs = regs->cs;
431 * When in VM86 mode make the cs look like ring 3
432 * always. This is a lie, but it's better than passing
433 * the additional vm86 bit around everywhere.
435 if (v8086_mode(regs))
436 m->cs |= 3;
438 /* Use accurate RIP reporting if available. */
439 if (mca_cfg.rip_msr)
440 m->ip = mce_rdmsrl(mca_cfg.rip_msr);
444 int mce_available(struct cpuinfo_x86 *c)
446 if (mca_cfg.disabled)
447 return 0;
448 return cpu_has(c, X86_FEATURE_MCE) && cpu_has(c, X86_FEATURE_MCA);
451 static void mce_schedule_work(void)
453 if (!mce_gen_pool_empty())
454 schedule_work(&mce_work);
457 static void mce_irq_work_cb(struct irq_work *entry)
459 mce_schedule_work();
462 static void mce_report_event(struct pt_regs *regs)
464 if (regs->flags & (X86_VM_MASK|X86_EFLAGS_IF)) {
465 mce_notify_irq();
467 * Triggering the work queue here is just an insurance
468 * policy in case the syscall exit notify handler
469 * doesn't run soon enough or ends up running on the
470 * wrong CPU (can happen when audit sleeps)
472 mce_schedule_work();
473 return;
476 irq_work_queue(&mce_irq_work);
480 * Check if the address reported by the CPU is in a format we can parse.
481 * It would be possible to add code for most other cases, but all would
482 * be somewhat complicated (e.g. segment offset would require an instruction
483 * parser). So only support physical addresses up to page granuality for now.
485 static int mce_usable_address(struct mce *m)
487 if (!(m->status & MCI_STATUS_ADDRV))
488 return 0;
490 /* Checks after this one are Intel-specific: */
491 if (boot_cpu_data.x86_vendor != X86_VENDOR_INTEL)
492 return 1;
494 if (!(m->status & MCI_STATUS_MISCV))
495 return 0;
497 if (MCI_MISC_ADDR_LSB(m->misc) > PAGE_SHIFT)
498 return 0;
500 if (MCI_MISC_ADDR_MODE(m->misc) != MCI_MISC_ADDR_PHYS)
501 return 0;
503 return 1;
506 bool mce_is_memory_error(struct mce *m)
508 if (m->cpuvendor == X86_VENDOR_AMD) {
509 return amd_mce_is_memory_error(m);
511 } else if (m->cpuvendor == X86_VENDOR_INTEL) {
513 * Intel SDM Volume 3B - 15.9.2 Compound Error Codes
515 * Bit 7 of the MCACOD field of IA32_MCi_STATUS is used for
516 * indicating a memory error. Bit 8 is used for indicating a
517 * cache hierarchy error. The combination of bit 2 and bit 3
518 * is used for indicating a `generic' cache hierarchy error
519 * But we can't just blindly check the above bits, because if
520 * bit 11 is set, then it is a bus/interconnect error - and
521 * either way the above bits just gives more detail on what
522 * bus/interconnect error happened. Note that bit 12 can be
523 * ignored, as it's the "filter" bit.
525 return (m->status & 0xef80) == BIT(7) ||
526 (m->status & 0xef00) == BIT(8) ||
527 (m->status & 0xeffc) == 0xc;
530 return false;
532 EXPORT_SYMBOL_GPL(mce_is_memory_error);
534 static bool mce_is_correctable(struct mce *m)
536 if (m->cpuvendor == X86_VENDOR_AMD && m->status & MCI_STATUS_DEFERRED)
537 return false;
539 if (m->status & MCI_STATUS_UC)
540 return false;
542 return true;
545 static bool cec_add_mce(struct mce *m)
547 if (!m)
548 return false;
550 /* We eat only correctable DRAM errors with usable addresses. */
551 if (mce_is_memory_error(m) &&
552 mce_is_correctable(m) &&
553 mce_usable_address(m))
554 if (!cec_add_elem(m->addr >> PAGE_SHIFT))
555 return true;
557 return false;
560 static int mce_first_notifier(struct notifier_block *nb, unsigned long val,
561 void *data)
563 struct mce *m = (struct mce *)data;
565 if (!m)
566 return NOTIFY_DONE;
568 if (cec_add_mce(m))
569 return NOTIFY_STOP;
571 /* Emit the trace record: */
572 trace_mce_record(m);
574 set_bit(0, &mce_need_notify);
576 mce_notify_irq();
578 return NOTIFY_DONE;
581 static struct notifier_block first_nb = {
582 .notifier_call = mce_first_notifier,
583 .priority = MCE_PRIO_FIRST,
586 static int srao_decode_notifier(struct notifier_block *nb, unsigned long val,
587 void *data)
589 struct mce *mce = (struct mce *)data;
590 unsigned long pfn;
592 if (!mce)
593 return NOTIFY_DONE;
595 if (mce_usable_address(mce) && (mce->severity == MCE_AO_SEVERITY)) {
596 pfn = mce->addr >> PAGE_SHIFT;
597 if (!memory_failure(pfn, 0))
598 mce_unmap_kpfn(pfn);
601 return NOTIFY_OK;
603 static struct notifier_block mce_srao_nb = {
604 .notifier_call = srao_decode_notifier,
605 .priority = MCE_PRIO_SRAO,
608 static int mce_default_notifier(struct notifier_block *nb, unsigned long val,
609 void *data)
611 struct mce *m = (struct mce *)data;
613 if (!m)
614 return NOTIFY_DONE;
616 if (atomic_read(&num_notifiers) > NUM_DEFAULT_NOTIFIERS)
617 return NOTIFY_DONE;
619 __print_mce(m);
621 return NOTIFY_DONE;
624 static struct notifier_block mce_default_nb = {
625 .notifier_call = mce_default_notifier,
626 /* lowest prio, we want it to run last. */
627 .priority = MCE_PRIO_LOWEST,
631 * Read ADDR and MISC registers.
633 static void mce_read_aux(struct mce *m, int i)
635 if (m->status & MCI_STATUS_MISCV)
636 m->misc = mce_rdmsrl(msr_ops.misc(i));
638 if (m->status & MCI_STATUS_ADDRV) {
639 m->addr = mce_rdmsrl(msr_ops.addr(i));
642 * Mask the reported address by the reported granularity.
644 if (mca_cfg.ser && (m->status & MCI_STATUS_MISCV)) {
645 u8 shift = MCI_MISC_ADDR_LSB(m->misc);
646 m->addr >>= shift;
647 m->addr <<= shift;
651 * Extract [55:<lsb>] where lsb is the least significant
652 * *valid* bit of the address bits.
654 if (mce_flags.smca) {
655 u8 lsb = (m->addr >> 56) & 0x3f;
657 m->addr &= GENMASK_ULL(55, lsb);
661 if (mce_flags.smca) {
662 m->ipid = mce_rdmsrl(MSR_AMD64_SMCA_MCx_IPID(i));
664 if (m->status & MCI_STATUS_SYNDV)
665 m->synd = mce_rdmsrl(MSR_AMD64_SMCA_MCx_SYND(i));
669 DEFINE_PER_CPU(unsigned, mce_poll_count);
672 * Poll for corrected events or events that happened before reset.
673 * Those are just logged through /dev/mcelog.
675 * This is executed in standard interrupt context.
677 * Note: spec recommends to panic for fatal unsignalled
678 * errors here. However this would be quite problematic --
679 * we would need to reimplement the Monarch handling and
680 * it would mess up the exclusion between exception handler
681 * and poll hander -- * so we skip this for now.
682 * These cases should not happen anyways, or only when the CPU
683 * is already totally * confused. In this case it's likely it will
684 * not fully execute the machine check handler either.
686 bool machine_check_poll(enum mcp_flags flags, mce_banks_t *b)
688 bool error_seen = false;
689 struct mce m;
690 int i;
692 this_cpu_inc(mce_poll_count);
694 mce_gather_info(&m, NULL);
696 if (flags & MCP_TIMESTAMP)
697 m.tsc = rdtsc();
699 for (i = 0; i < mca_cfg.banks; i++) {
700 if (!mce_banks[i].ctl || !test_bit(i, *b))
701 continue;
703 m.misc = 0;
704 m.addr = 0;
705 m.bank = i;
707 barrier();
708 m.status = mce_rdmsrl(msr_ops.status(i));
709 if (!(m.status & MCI_STATUS_VAL))
710 continue;
713 * Uncorrected or signalled events are handled by the exception
714 * handler when it is enabled, so don't process those here.
716 * TBD do the same check for MCI_STATUS_EN here?
718 if (!(flags & MCP_UC) &&
719 (m.status & (mca_cfg.ser ? MCI_STATUS_S : MCI_STATUS_UC)))
720 continue;
722 error_seen = true;
724 mce_read_aux(&m, i);
726 m.severity = mce_severity(&m, mca_cfg.tolerant, NULL, false);
729 * Don't get the IP here because it's unlikely to
730 * have anything to do with the actual error location.
732 if (!(flags & MCP_DONTLOG) && !mca_cfg.dont_log_ce)
733 mce_log(&m);
734 else if (mce_usable_address(&m)) {
736 * Although we skipped logging this, we still want
737 * to take action. Add to the pool so the registered
738 * notifiers will see it.
740 if (!mce_gen_pool_add(&m))
741 mce_schedule_work();
745 * Clear state for this bank.
747 mce_wrmsrl(msr_ops.status(i), 0);
751 * Don't clear MCG_STATUS here because it's only defined for
752 * exceptions.
755 sync_core();
757 return error_seen;
759 EXPORT_SYMBOL_GPL(machine_check_poll);
762 * Do a quick check if any of the events requires a panic.
763 * This decides if we keep the events around or clear them.
765 static int mce_no_way_out(struct mce *m, char **msg, unsigned long *validp,
766 struct pt_regs *regs)
768 int i, ret = 0;
769 char *tmp;
771 for (i = 0; i < mca_cfg.banks; i++) {
772 m->status = mce_rdmsrl(msr_ops.status(i));
773 if (m->status & MCI_STATUS_VAL) {
774 __set_bit(i, validp);
775 if (quirk_no_way_out)
776 quirk_no_way_out(i, m, regs);
779 if (mce_severity(m, mca_cfg.tolerant, &tmp, true) >= MCE_PANIC_SEVERITY) {
780 *msg = tmp;
781 ret = 1;
784 return ret;
788 * Variable to establish order between CPUs while scanning.
789 * Each CPU spins initially until executing is equal its number.
791 static atomic_t mce_executing;
794 * Defines order of CPUs on entry. First CPU becomes Monarch.
796 static atomic_t mce_callin;
799 * Check if a timeout waiting for other CPUs happened.
801 static int mce_timed_out(u64 *t, const char *msg)
804 * The others already did panic for some reason.
805 * Bail out like in a timeout.
806 * rmb() to tell the compiler that system_state
807 * might have been modified by someone else.
809 rmb();
810 if (atomic_read(&mce_panicked))
811 wait_for_panic();
812 if (!mca_cfg.monarch_timeout)
813 goto out;
814 if ((s64)*t < SPINUNIT) {
815 if (mca_cfg.tolerant <= 1)
816 mce_panic(msg, NULL, NULL);
817 cpu_missing = 1;
818 return 1;
820 *t -= SPINUNIT;
821 out:
822 touch_nmi_watchdog();
823 return 0;
827 * The Monarch's reign. The Monarch is the CPU who entered
828 * the machine check handler first. It waits for the others to
829 * raise the exception too and then grades them. When any
830 * error is fatal panic. Only then let the others continue.
832 * The other CPUs entering the MCE handler will be controlled by the
833 * Monarch. They are called Subjects.
835 * This way we prevent any potential data corruption in a unrecoverable case
836 * and also makes sure always all CPU's errors are examined.
838 * Also this detects the case of a machine check event coming from outer
839 * space (not detected by any CPUs) In this case some external agent wants
840 * us to shut down, so panic too.
842 * The other CPUs might still decide to panic if the handler happens
843 * in a unrecoverable place, but in this case the system is in a semi-stable
844 * state and won't corrupt anything by itself. It's ok to let the others
845 * continue for a bit first.
847 * All the spin loops have timeouts; when a timeout happens a CPU
848 * typically elects itself to be Monarch.
850 static void mce_reign(void)
852 int cpu;
853 struct mce *m = NULL;
854 int global_worst = 0;
855 char *msg = NULL;
856 char *nmsg = NULL;
859 * This CPU is the Monarch and the other CPUs have run
860 * through their handlers.
861 * Grade the severity of the errors of all the CPUs.
863 for_each_possible_cpu(cpu) {
864 int severity = mce_severity(&per_cpu(mces_seen, cpu),
865 mca_cfg.tolerant,
866 &nmsg, true);
867 if (severity > global_worst) {
868 msg = nmsg;
869 global_worst = severity;
870 m = &per_cpu(mces_seen, cpu);
875 * Cannot recover? Panic here then.
876 * This dumps all the mces in the log buffer and stops the
877 * other CPUs.
879 if (m && global_worst >= MCE_PANIC_SEVERITY && mca_cfg.tolerant < 3)
880 mce_panic("Fatal machine check", m, msg);
883 * For UC somewhere we let the CPU who detects it handle it.
884 * Also must let continue the others, otherwise the handling
885 * CPU could deadlock on a lock.
889 * No machine check event found. Must be some external
890 * source or one CPU is hung. Panic.
892 if (global_worst <= MCE_KEEP_SEVERITY && mca_cfg.tolerant < 3)
893 mce_panic("Fatal machine check from unknown source", NULL, NULL);
896 * Now clear all the mces_seen so that they don't reappear on
897 * the next mce.
899 for_each_possible_cpu(cpu)
900 memset(&per_cpu(mces_seen, cpu), 0, sizeof(struct mce));
903 static atomic_t global_nwo;
906 * Start of Monarch synchronization. This waits until all CPUs have
907 * entered the exception handler and then determines if any of them
908 * saw a fatal event that requires panic. Then it executes them
909 * in the entry order.
910 * TBD double check parallel CPU hotunplug
912 static int mce_start(int *no_way_out)
914 int order;
915 int cpus = num_online_cpus();
916 u64 timeout = (u64)mca_cfg.monarch_timeout * NSEC_PER_USEC;
918 if (!timeout)
919 return -1;
921 atomic_add(*no_way_out, &global_nwo);
923 * Rely on the implied barrier below, such that global_nwo
924 * is updated before mce_callin.
926 order = atomic_inc_return(&mce_callin);
929 * Wait for everyone.
931 while (atomic_read(&mce_callin) != cpus) {
932 if (mce_timed_out(&timeout,
933 "Timeout: Not all CPUs entered broadcast exception handler")) {
934 atomic_set(&global_nwo, 0);
935 return -1;
937 ndelay(SPINUNIT);
941 * mce_callin should be read before global_nwo
943 smp_rmb();
945 if (order == 1) {
947 * Monarch: Starts executing now, the others wait.
949 atomic_set(&mce_executing, 1);
950 } else {
952 * Subject: Now start the scanning loop one by one in
953 * the original callin order.
954 * This way when there are any shared banks it will be
955 * only seen by one CPU before cleared, avoiding duplicates.
957 while (atomic_read(&mce_executing) < order) {
958 if (mce_timed_out(&timeout,
959 "Timeout: Subject CPUs unable to finish machine check processing")) {
960 atomic_set(&global_nwo, 0);
961 return -1;
963 ndelay(SPINUNIT);
968 * Cache the global no_way_out state.
970 *no_way_out = atomic_read(&global_nwo);
972 return order;
976 * Synchronize between CPUs after main scanning loop.
977 * This invokes the bulk of the Monarch processing.
979 static int mce_end(int order)
981 int ret = -1;
982 u64 timeout = (u64)mca_cfg.monarch_timeout * NSEC_PER_USEC;
984 if (!timeout)
985 goto reset;
986 if (order < 0)
987 goto reset;
990 * Allow others to run.
992 atomic_inc(&mce_executing);
994 if (order == 1) {
995 /* CHECKME: Can this race with a parallel hotplug? */
996 int cpus = num_online_cpus();
999 * Monarch: Wait for everyone to go through their scanning
1000 * loops.
1002 while (atomic_read(&mce_executing) <= cpus) {
1003 if (mce_timed_out(&timeout,
1004 "Timeout: Monarch CPU unable to finish machine check processing"))
1005 goto reset;
1006 ndelay(SPINUNIT);
1009 mce_reign();
1010 barrier();
1011 ret = 0;
1012 } else {
1014 * Subject: Wait for Monarch to finish.
1016 while (atomic_read(&mce_executing) != 0) {
1017 if (mce_timed_out(&timeout,
1018 "Timeout: Monarch CPU did not finish machine check processing"))
1019 goto reset;
1020 ndelay(SPINUNIT);
1024 * Don't reset anything. That's done by the Monarch.
1026 return 0;
1030 * Reset all global state.
1032 reset:
1033 atomic_set(&global_nwo, 0);
1034 atomic_set(&mce_callin, 0);
1035 barrier();
1038 * Let others run again.
1040 atomic_set(&mce_executing, 0);
1041 return ret;
1044 static void mce_clear_state(unsigned long *toclear)
1046 int i;
1048 for (i = 0; i < mca_cfg.banks; i++) {
1049 if (test_bit(i, toclear))
1050 mce_wrmsrl(msr_ops.status(i), 0);
1054 static int do_memory_failure(struct mce *m)
1056 int flags = MF_ACTION_REQUIRED;
1057 int ret;
1059 pr_err("Uncorrected hardware memory error in user-access at %llx", m->addr);
1060 if (!(m->mcgstatus & MCG_STATUS_RIPV))
1061 flags |= MF_MUST_KILL;
1062 ret = memory_failure(m->addr >> PAGE_SHIFT, flags);
1063 if (ret)
1064 pr_err("Memory error not recovered");
1065 else
1066 mce_unmap_kpfn(m->addr >> PAGE_SHIFT);
1067 return ret;
1070 #ifndef mce_unmap_kpfn
1071 static void mce_unmap_kpfn(unsigned long pfn)
1073 unsigned long decoy_addr;
1076 * Unmap this page from the kernel 1:1 mappings to make sure
1077 * we don't log more errors because of speculative access to
1078 * the page.
1079 * We would like to just call:
1080 * set_memory_np((unsigned long)pfn_to_kaddr(pfn), 1);
1081 * but doing that would radically increase the odds of a
1082 * speculative access to the poison page because we'd have
1083 * the virtual address of the kernel 1:1 mapping sitting
1084 * around in registers.
1085 * Instead we get tricky. We create a non-canonical address
1086 * that looks just like the one we want, but has bit 63 flipped.
1087 * This relies on set_memory_np() not checking whether we passed
1088 * a legal address.
1092 * Build time check to see if we have a spare virtual bit. Don't want
1093 * to leave this until run time because most developers don't have a
1094 * system that can exercise this code path. This will only become a
1095 * problem if/when we move beyond 5-level page tables.
1097 * Hard code "9" here because cpp doesn't grok ilog2(PTRS_PER_PGD)
1099 #if PGDIR_SHIFT + 9 < 63
1100 decoy_addr = (pfn << PAGE_SHIFT) + (PAGE_OFFSET ^ BIT(63));
1101 #else
1102 #error "no unused virtual bit available"
1103 #endif
1105 if (set_memory_np(decoy_addr, 1))
1106 pr_warn("Could not invalidate pfn=0x%lx from 1:1 map\n", pfn);
1108 #endif
1111 * The actual machine check handler. This only handles real
1112 * exceptions when something got corrupted coming in through int 18.
1114 * This is executed in NMI context not subject to normal locking rules. This
1115 * implies that most kernel services cannot be safely used. Don't even
1116 * think about putting a printk in there!
1118 * On Intel systems this is entered on all CPUs in parallel through
1119 * MCE broadcast. However some CPUs might be broken beyond repair,
1120 * so be always careful when synchronizing with others.
1122 void do_machine_check(struct pt_regs *regs, long error_code)
1124 struct mca_config *cfg = &mca_cfg;
1125 struct mce m, *final;
1126 int i;
1127 int worst = 0;
1128 int severity;
1131 * Establish sequential order between the CPUs entering the machine
1132 * check handler.
1134 int order = -1;
1136 * If no_way_out gets set, there is no safe way to recover from this
1137 * MCE. If mca_cfg.tolerant is cranked up, we'll try anyway.
1139 int no_way_out = 0;
1141 * If kill_it gets set, there might be a way to recover from this
1142 * error.
1144 int kill_it = 0;
1145 DECLARE_BITMAP(toclear, MAX_NR_BANKS);
1146 DECLARE_BITMAP(valid_banks, MAX_NR_BANKS);
1147 char *msg = "Unknown";
1150 * MCEs are always local on AMD. Same is determined by MCG_STATUS_LMCES
1151 * on Intel.
1153 int lmce = 1;
1154 int cpu = smp_processor_id();
1157 * Cases where we avoid rendezvous handler timeout:
1158 * 1) If this CPU is offline.
1160 * 2) If crashing_cpu was set, e.g. we're entering kdump and we need to
1161 * skip those CPUs which remain looping in the 1st kernel - see
1162 * crash_nmi_callback().
1164 * Note: there still is a small window between kexec-ing and the new,
1165 * kdump kernel establishing a new #MC handler where a broadcasted MCE
1166 * might not get handled properly.
1168 if (cpu_is_offline(cpu) ||
1169 (crashing_cpu != -1 && crashing_cpu != cpu)) {
1170 u64 mcgstatus;
1172 mcgstatus = mce_rdmsrl(MSR_IA32_MCG_STATUS);
1173 if (mcgstatus & MCG_STATUS_RIPV) {
1174 mce_wrmsrl(MSR_IA32_MCG_STATUS, 0);
1175 return;
1179 ist_enter(regs);
1181 this_cpu_inc(mce_exception_count);
1183 if (!cfg->banks)
1184 goto out;
1186 mce_gather_info(&m, regs);
1187 m.tsc = rdtsc();
1189 final = this_cpu_ptr(&mces_seen);
1190 *final = m;
1192 memset(valid_banks, 0, sizeof(valid_banks));
1193 no_way_out = mce_no_way_out(&m, &msg, valid_banks, regs);
1195 barrier();
1198 * When no restart IP might need to kill or panic.
1199 * Assume the worst for now, but if we find the
1200 * severity is MCE_AR_SEVERITY we have other options.
1202 if (!(m.mcgstatus & MCG_STATUS_RIPV))
1203 kill_it = 1;
1206 * Check if this MCE is signaled to only this logical processor,
1207 * on Intel only.
1209 if (m.cpuvendor == X86_VENDOR_INTEL)
1210 lmce = m.mcgstatus & MCG_STATUS_LMCES;
1213 * Go through all banks in exclusion of the other CPUs. This way we
1214 * don't report duplicated events on shared banks because the first one
1215 * to see it will clear it. If this is a Local MCE, then no need to
1216 * perform rendezvous.
1218 if (!lmce)
1219 order = mce_start(&no_way_out);
1221 for (i = 0; i < cfg->banks; i++) {
1222 __clear_bit(i, toclear);
1223 if (!test_bit(i, valid_banks))
1224 continue;
1225 if (!mce_banks[i].ctl)
1226 continue;
1228 m.misc = 0;
1229 m.addr = 0;
1230 m.bank = i;
1232 m.status = mce_rdmsrl(msr_ops.status(i));
1233 if ((m.status & MCI_STATUS_VAL) == 0)
1234 continue;
1237 * Non uncorrected or non signaled errors are handled by
1238 * machine_check_poll. Leave them alone, unless this panics.
1240 if (!(m.status & (cfg->ser ? MCI_STATUS_S : MCI_STATUS_UC)) &&
1241 !no_way_out)
1242 continue;
1245 * Set taint even when machine check was not enabled.
1247 add_taint(TAINT_MACHINE_CHECK, LOCKDEP_NOW_UNRELIABLE);
1249 severity = mce_severity(&m, cfg->tolerant, NULL, true);
1252 * When machine check was for corrected/deferred handler don't
1253 * touch, unless we're panicing.
1255 if ((severity == MCE_KEEP_SEVERITY ||
1256 severity == MCE_UCNA_SEVERITY) && !no_way_out)
1257 continue;
1258 __set_bit(i, toclear);
1259 if (severity == MCE_NO_SEVERITY) {
1261 * Machine check event was not enabled. Clear, but
1262 * ignore.
1264 continue;
1267 mce_read_aux(&m, i);
1269 /* assuming valid severity level != 0 */
1270 m.severity = severity;
1272 mce_log(&m);
1274 if (severity > worst) {
1275 *final = m;
1276 worst = severity;
1280 /* mce_clear_state will clear *final, save locally for use later */
1281 m = *final;
1283 if (!no_way_out)
1284 mce_clear_state(toclear);
1287 * Do most of the synchronization with other CPUs.
1288 * When there's any problem use only local no_way_out state.
1290 if (!lmce) {
1291 if (mce_end(order) < 0)
1292 no_way_out = worst >= MCE_PANIC_SEVERITY;
1293 } else {
1295 * Local MCE skipped calling mce_reign()
1296 * If we found a fatal error, we need to panic here.
1298 if (worst >= MCE_PANIC_SEVERITY && mca_cfg.tolerant < 3)
1299 mce_panic("Machine check from unknown source",
1300 NULL, NULL);
1304 * If tolerant is at an insane level we drop requests to kill
1305 * processes and continue even when there is no way out.
1307 if (cfg->tolerant == 3)
1308 kill_it = 0;
1309 else if (no_way_out)
1310 mce_panic("Fatal machine check on current CPU", &m, msg);
1312 if (worst > 0)
1313 mce_report_event(regs);
1314 mce_wrmsrl(MSR_IA32_MCG_STATUS, 0);
1315 out:
1316 sync_core();
1318 if (worst != MCE_AR_SEVERITY && !kill_it)
1319 goto out_ist;
1321 /* Fault was in user mode and we need to take some action */
1322 if ((m.cs & 3) == 3) {
1323 ist_begin_non_atomic(regs);
1324 local_irq_enable();
1326 if (kill_it || do_memory_failure(&m))
1327 force_sig(SIGBUS, current);
1328 local_irq_disable();
1329 ist_end_non_atomic();
1330 } else {
1331 if (!fixup_exception(regs, X86_TRAP_MC))
1332 mce_panic("Failed kernel mode recovery", &m, NULL);
1335 out_ist:
1336 ist_exit(regs);
1338 EXPORT_SYMBOL_GPL(do_machine_check);
1340 #ifndef CONFIG_MEMORY_FAILURE
1341 int memory_failure(unsigned long pfn, int flags)
1343 /* mce_severity() should not hand us an ACTION_REQUIRED error */
1344 BUG_ON(flags & MF_ACTION_REQUIRED);
1345 pr_err("Uncorrected memory error in page 0x%lx ignored\n"
1346 "Rebuild kernel with CONFIG_MEMORY_FAILURE=y for smarter handling\n",
1347 pfn);
1349 return 0;
1351 #endif
1354 * Periodic polling timer for "silent" machine check errors. If the
1355 * poller finds an MCE, poll 2x faster. When the poller finds no more
1356 * errors, poll 2x slower (up to check_interval seconds).
1358 static unsigned long check_interval = INITIAL_CHECK_INTERVAL;
1360 static DEFINE_PER_CPU(unsigned long, mce_next_interval); /* in jiffies */
1361 static DEFINE_PER_CPU(struct timer_list, mce_timer);
1363 static unsigned long mce_adjust_timer_default(unsigned long interval)
1365 return interval;
1368 static unsigned long (*mce_adjust_timer)(unsigned long interval) = mce_adjust_timer_default;
1370 static void __start_timer(struct timer_list *t, unsigned long interval)
1372 unsigned long when = jiffies + interval;
1373 unsigned long flags;
1375 local_irq_save(flags);
1377 if (!timer_pending(t) || time_before(when, t->expires))
1378 mod_timer(t, round_jiffies(when));
1380 local_irq_restore(flags);
1383 static void mce_timer_fn(struct timer_list *t)
1385 struct timer_list *cpu_t = this_cpu_ptr(&mce_timer);
1386 unsigned long iv;
1388 WARN_ON(cpu_t != t);
1390 iv = __this_cpu_read(mce_next_interval);
1392 if (mce_available(this_cpu_ptr(&cpu_info))) {
1393 machine_check_poll(0, this_cpu_ptr(&mce_poll_banks));
1395 if (mce_intel_cmci_poll()) {
1396 iv = mce_adjust_timer(iv);
1397 goto done;
1402 * Alert userspace if needed. If we logged an MCE, reduce the polling
1403 * interval, otherwise increase the polling interval.
1405 if (mce_notify_irq())
1406 iv = max(iv / 2, (unsigned long) HZ/100);
1407 else
1408 iv = min(iv * 2, round_jiffies_relative(check_interval * HZ));
1410 done:
1411 __this_cpu_write(mce_next_interval, iv);
1412 __start_timer(t, iv);
1416 * Ensure that the timer is firing in @interval from now.
1418 void mce_timer_kick(unsigned long interval)
1420 struct timer_list *t = this_cpu_ptr(&mce_timer);
1421 unsigned long iv = __this_cpu_read(mce_next_interval);
1423 __start_timer(t, interval);
1425 if (interval < iv)
1426 __this_cpu_write(mce_next_interval, interval);
1429 /* Must not be called in IRQ context where del_timer_sync() can deadlock */
1430 static void mce_timer_delete_all(void)
1432 int cpu;
1434 for_each_online_cpu(cpu)
1435 del_timer_sync(&per_cpu(mce_timer, cpu));
1439 * Notify the user(s) about new machine check events.
1440 * Can be called from interrupt context, but not from machine check/NMI
1441 * context.
1443 int mce_notify_irq(void)
1445 /* Not more than two messages every minute */
1446 static DEFINE_RATELIMIT_STATE(ratelimit, 60*HZ, 2);
1448 if (test_and_clear_bit(0, &mce_need_notify)) {
1449 mce_work_trigger();
1451 if (__ratelimit(&ratelimit))
1452 pr_info(HW_ERR "Machine check events logged\n");
1454 return 1;
1456 return 0;
1458 EXPORT_SYMBOL_GPL(mce_notify_irq);
1460 static int __mcheck_cpu_mce_banks_init(void)
1462 int i;
1463 u8 num_banks = mca_cfg.banks;
1465 mce_banks = kzalloc(num_banks * sizeof(struct mce_bank), GFP_KERNEL);
1466 if (!mce_banks)
1467 return -ENOMEM;
1469 for (i = 0; i < num_banks; i++) {
1470 struct mce_bank *b = &mce_banks[i];
1472 b->ctl = -1ULL;
1473 b->init = 1;
1475 return 0;
1479 * Initialize Machine Checks for a CPU.
1481 static int __mcheck_cpu_cap_init(void)
1483 unsigned b;
1484 u64 cap;
1486 rdmsrl(MSR_IA32_MCG_CAP, cap);
1488 b = cap & MCG_BANKCNT_MASK;
1489 if (!mca_cfg.banks)
1490 pr_info("CPU supports %d MCE banks\n", b);
1492 if (b > MAX_NR_BANKS) {
1493 pr_warn("Using only %u machine check banks out of %u\n",
1494 MAX_NR_BANKS, b);
1495 b = MAX_NR_BANKS;
1498 /* Don't support asymmetric configurations today */
1499 WARN_ON(mca_cfg.banks != 0 && b != mca_cfg.banks);
1500 mca_cfg.banks = b;
1502 if (!mce_banks) {
1503 int err = __mcheck_cpu_mce_banks_init();
1505 if (err)
1506 return err;
1509 /* Use accurate RIP reporting if available. */
1510 if ((cap & MCG_EXT_P) && MCG_EXT_CNT(cap) >= 9)
1511 mca_cfg.rip_msr = MSR_IA32_MCG_EIP;
1513 if (cap & MCG_SER_P)
1514 mca_cfg.ser = true;
1516 return 0;
1519 static void __mcheck_cpu_init_generic(void)
1521 enum mcp_flags m_fl = 0;
1522 mce_banks_t all_banks;
1523 u64 cap;
1525 if (!mca_cfg.bootlog)
1526 m_fl = MCP_DONTLOG;
1529 * Log the machine checks left over from the previous reset.
1531 bitmap_fill(all_banks, MAX_NR_BANKS);
1532 machine_check_poll(MCP_UC | m_fl, &all_banks);
1534 cr4_set_bits(X86_CR4_MCE);
1536 rdmsrl(MSR_IA32_MCG_CAP, cap);
1537 if (cap & MCG_CTL_P)
1538 wrmsr(MSR_IA32_MCG_CTL, 0xffffffff, 0xffffffff);
1541 static void __mcheck_cpu_init_clear_banks(void)
1543 int i;
1545 for (i = 0; i < mca_cfg.banks; i++) {
1546 struct mce_bank *b = &mce_banks[i];
1548 if (!b->init)
1549 continue;
1550 wrmsrl(msr_ops.ctl(i), b->ctl);
1551 wrmsrl(msr_ops.status(i), 0);
1556 * During IFU recovery Sandy Bridge -EP4S processors set the RIPV and
1557 * EIPV bits in MCG_STATUS to zero on the affected logical processor (SDM
1558 * Vol 3B Table 15-20). But this confuses both the code that determines
1559 * whether the machine check occurred in kernel or user mode, and also
1560 * the severity assessment code. Pretend that EIPV was set, and take the
1561 * ip/cs values from the pt_regs that mce_gather_info() ignored earlier.
1563 static void quirk_sandybridge_ifu(int bank, struct mce *m, struct pt_regs *regs)
1565 if (bank != 0)
1566 return;
1567 if ((m->mcgstatus & (MCG_STATUS_EIPV|MCG_STATUS_RIPV)) != 0)
1568 return;
1569 if ((m->status & (MCI_STATUS_OVER|MCI_STATUS_UC|
1570 MCI_STATUS_EN|MCI_STATUS_MISCV|MCI_STATUS_ADDRV|
1571 MCI_STATUS_PCC|MCI_STATUS_S|MCI_STATUS_AR|
1572 MCACOD)) !=
1573 (MCI_STATUS_UC|MCI_STATUS_EN|
1574 MCI_STATUS_MISCV|MCI_STATUS_ADDRV|MCI_STATUS_S|
1575 MCI_STATUS_AR|MCACOD_INSTR))
1576 return;
1578 m->mcgstatus |= MCG_STATUS_EIPV;
1579 m->ip = regs->ip;
1580 m->cs = regs->cs;
1583 /* Add per CPU specific workarounds here */
1584 static int __mcheck_cpu_apply_quirks(struct cpuinfo_x86 *c)
1586 struct mca_config *cfg = &mca_cfg;
1588 if (c->x86_vendor == X86_VENDOR_UNKNOWN) {
1589 pr_info("unknown CPU type - not enabling MCE support\n");
1590 return -EOPNOTSUPP;
1593 /* This should be disabled by the BIOS, but isn't always */
1594 if (c->x86_vendor == X86_VENDOR_AMD) {
1595 if (c->x86 == 15 && cfg->banks > 4) {
1597 * disable GART TBL walk error reporting, which
1598 * trips off incorrectly with the IOMMU & 3ware
1599 * & Cerberus:
1601 clear_bit(10, (unsigned long *)&mce_banks[4].ctl);
1603 if (c->x86 < 0x11 && cfg->bootlog < 0) {
1605 * Lots of broken BIOS around that don't clear them
1606 * by default and leave crap in there. Don't log:
1608 cfg->bootlog = 0;
1611 * Various K7s with broken bank 0 around. Always disable
1612 * by default.
1614 if (c->x86 == 6 && cfg->banks > 0)
1615 mce_banks[0].ctl = 0;
1618 * overflow_recov is supported for F15h Models 00h-0fh
1619 * even though we don't have a CPUID bit for it.
1621 if (c->x86 == 0x15 && c->x86_model <= 0xf)
1622 mce_flags.overflow_recov = 1;
1625 * Turn off MC4_MISC thresholding banks on those models since
1626 * they're not supported there.
1628 if (c->x86 == 0x15 &&
1629 (c->x86_model >= 0x10 && c->x86_model <= 0x1f)) {
1630 int i;
1631 u64 hwcr;
1632 bool need_toggle;
1633 u32 msrs[] = {
1634 0x00000413, /* MC4_MISC0 */
1635 0xc0000408, /* MC4_MISC1 */
1638 rdmsrl(MSR_K7_HWCR, hwcr);
1640 /* McStatusWrEn has to be set */
1641 need_toggle = !(hwcr & BIT(18));
1643 if (need_toggle)
1644 wrmsrl(MSR_K7_HWCR, hwcr | BIT(18));
1646 /* Clear CntP bit safely */
1647 for (i = 0; i < ARRAY_SIZE(msrs); i++)
1648 msr_clear_bit(msrs[i], 62);
1650 /* restore old settings */
1651 if (need_toggle)
1652 wrmsrl(MSR_K7_HWCR, hwcr);
1656 if (c->x86_vendor == X86_VENDOR_INTEL) {
1658 * SDM documents that on family 6 bank 0 should not be written
1659 * because it aliases to another special BIOS controlled
1660 * register.
1661 * But it's not aliased anymore on model 0x1a+
1662 * Don't ignore bank 0 completely because there could be a
1663 * valid event later, merely don't write CTL0.
1666 if (c->x86 == 6 && c->x86_model < 0x1A && cfg->banks > 0)
1667 mce_banks[0].init = 0;
1670 * All newer Intel systems support MCE broadcasting. Enable
1671 * synchronization with a one second timeout.
1673 if ((c->x86 > 6 || (c->x86 == 6 && c->x86_model >= 0xe)) &&
1674 cfg->monarch_timeout < 0)
1675 cfg->monarch_timeout = USEC_PER_SEC;
1678 * There are also broken BIOSes on some Pentium M and
1679 * earlier systems:
1681 if (c->x86 == 6 && c->x86_model <= 13 && cfg->bootlog < 0)
1682 cfg->bootlog = 0;
1684 if (c->x86 == 6 && c->x86_model == 45)
1685 quirk_no_way_out = quirk_sandybridge_ifu;
1687 if (cfg->monarch_timeout < 0)
1688 cfg->monarch_timeout = 0;
1689 if (cfg->bootlog != 0)
1690 cfg->panic_timeout = 30;
1692 return 0;
1695 static int __mcheck_cpu_ancient_init(struct cpuinfo_x86 *c)
1697 if (c->x86 != 5)
1698 return 0;
1700 switch (c->x86_vendor) {
1701 case X86_VENDOR_INTEL:
1702 intel_p5_mcheck_init(c);
1703 return 1;
1704 break;
1705 case X86_VENDOR_CENTAUR:
1706 winchip_mcheck_init(c);
1707 return 1;
1708 break;
1709 default:
1710 return 0;
1713 return 0;
1717 * Init basic CPU features needed for early decoding of MCEs.
1719 static void __mcheck_cpu_init_early(struct cpuinfo_x86 *c)
1721 if (c->x86_vendor == X86_VENDOR_AMD) {
1722 mce_flags.overflow_recov = !!cpu_has(c, X86_FEATURE_OVERFLOW_RECOV);
1723 mce_flags.succor = !!cpu_has(c, X86_FEATURE_SUCCOR);
1724 mce_flags.smca = !!cpu_has(c, X86_FEATURE_SMCA);
1726 if (mce_flags.smca) {
1727 msr_ops.ctl = smca_ctl_reg;
1728 msr_ops.status = smca_status_reg;
1729 msr_ops.addr = smca_addr_reg;
1730 msr_ops.misc = smca_misc_reg;
1735 static void __mcheck_cpu_init_vendor(struct cpuinfo_x86 *c)
1737 switch (c->x86_vendor) {
1738 case X86_VENDOR_INTEL:
1739 mce_intel_feature_init(c);
1740 mce_adjust_timer = cmci_intel_adjust_timer;
1741 break;
1743 case X86_VENDOR_AMD: {
1744 mce_amd_feature_init(c);
1745 break;
1748 default:
1749 break;
1753 static void __mcheck_cpu_clear_vendor(struct cpuinfo_x86 *c)
1755 switch (c->x86_vendor) {
1756 case X86_VENDOR_INTEL:
1757 mce_intel_feature_clear(c);
1758 break;
1759 default:
1760 break;
1764 static void mce_start_timer(struct timer_list *t)
1766 unsigned long iv = check_interval * HZ;
1768 if (mca_cfg.ignore_ce || !iv)
1769 return;
1771 this_cpu_write(mce_next_interval, iv);
1772 __start_timer(t, iv);
1775 static void __mcheck_cpu_setup_timer(void)
1777 struct timer_list *t = this_cpu_ptr(&mce_timer);
1779 timer_setup(t, mce_timer_fn, TIMER_PINNED);
1782 static void __mcheck_cpu_init_timer(void)
1784 struct timer_list *t = this_cpu_ptr(&mce_timer);
1786 timer_setup(t, mce_timer_fn, TIMER_PINNED);
1787 mce_start_timer(t);
1790 /* Handle unconfigured int18 (should never happen) */
1791 static void unexpected_machine_check(struct pt_regs *regs, long error_code)
1793 pr_err("CPU#%d: Unexpected int18 (Machine Check)\n",
1794 smp_processor_id());
1797 /* Call the installed machine check handler for this CPU setup. */
1798 void (*machine_check_vector)(struct pt_regs *, long error_code) =
1799 unexpected_machine_check;
1801 dotraplinkage void do_mce(struct pt_regs *regs, long error_code)
1803 machine_check_vector(regs, error_code);
1807 * Called for each booted CPU to set up machine checks.
1808 * Must be called with preempt off:
1810 void mcheck_cpu_init(struct cpuinfo_x86 *c)
1812 if (mca_cfg.disabled)
1813 return;
1815 if (__mcheck_cpu_ancient_init(c))
1816 return;
1818 if (!mce_available(c))
1819 return;
1821 if (__mcheck_cpu_cap_init() < 0 || __mcheck_cpu_apply_quirks(c) < 0) {
1822 mca_cfg.disabled = true;
1823 return;
1826 if (mce_gen_pool_init()) {
1827 mca_cfg.disabled = true;
1828 pr_emerg("Couldn't allocate MCE records pool!\n");
1829 return;
1832 machine_check_vector = do_machine_check;
1834 __mcheck_cpu_init_early(c);
1835 __mcheck_cpu_init_generic();
1836 __mcheck_cpu_init_vendor(c);
1837 __mcheck_cpu_init_clear_banks();
1838 __mcheck_cpu_setup_timer();
1842 * Called for each booted CPU to clear some machine checks opt-ins
1844 void mcheck_cpu_clear(struct cpuinfo_x86 *c)
1846 if (mca_cfg.disabled)
1847 return;
1849 if (!mce_available(c))
1850 return;
1853 * Possibly to clear general settings generic to x86
1854 * __mcheck_cpu_clear_generic(c);
1856 __mcheck_cpu_clear_vendor(c);
1860 static void __mce_disable_bank(void *arg)
1862 int bank = *((int *)arg);
1863 __clear_bit(bank, this_cpu_ptr(mce_poll_banks));
1864 cmci_disable_bank(bank);
1867 void mce_disable_bank(int bank)
1869 if (bank >= mca_cfg.banks) {
1870 pr_warn(FW_BUG
1871 "Ignoring request to disable invalid MCA bank %d.\n",
1872 bank);
1873 return;
1875 set_bit(bank, mce_banks_ce_disabled);
1876 on_each_cpu(__mce_disable_bank, &bank, 1);
1880 * mce=off Disables machine check
1881 * mce=no_cmci Disables CMCI
1882 * mce=no_lmce Disables LMCE
1883 * mce=dont_log_ce Clears corrected events silently, no log created for CEs.
1884 * mce=ignore_ce Disables polling and CMCI, corrected events are not cleared.
1885 * mce=TOLERANCELEVEL[,monarchtimeout] (number, see above)
1886 * monarchtimeout is how long to wait for other CPUs on machine
1887 * check, or 0 to not wait
1888 * mce=bootlog Log MCEs from before booting. Disabled by default on AMD Fam10h
1889 and older.
1890 * mce=nobootlog Don't log MCEs from before booting.
1891 * mce=bios_cmci_threshold Don't program the CMCI threshold
1892 * mce=recovery force enable memcpy_mcsafe()
1894 static int __init mcheck_enable(char *str)
1896 struct mca_config *cfg = &mca_cfg;
1898 if (*str == 0) {
1899 enable_p5_mce();
1900 return 1;
1902 if (*str == '=')
1903 str++;
1904 if (!strcmp(str, "off"))
1905 cfg->disabled = true;
1906 else if (!strcmp(str, "no_cmci"))
1907 cfg->cmci_disabled = true;
1908 else if (!strcmp(str, "no_lmce"))
1909 cfg->lmce_disabled = true;
1910 else if (!strcmp(str, "dont_log_ce"))
1911 cfg->dont_log_ce = true;
1912 else if (!strcmp(str, "ignore_ce"))
1913 cfg->ignore_ce = true;
1914 else if (!strcmp(str, "bootlog") || !strcmp(str, "nobootlog"))
1915 cfg->bootlog = (str[0] == 'b');
1916 else if (!strcmp(str, "bios_cmci_threshold"))
1917 cfg->bios_cmci_threshold = true;
1918 else if (!strcmp(str, "recovery"))
1919 cfg->recovery = true;
1920 else if (isdigit(str[0])) {
1921 if (get_option(&str, &cfg->tolerant) == 2)
1922 get_option(&str, &(cfg->monarch_timeout));
1923 } else {
1924 pr_info("mce argument %s ignored. Please use /sys\n", str);
1925 return 0;
1927 return 1;
1929 __setup("mce", mcheck_enable);
1931 int __init mcheck_init(void)
1933 mcheck_intel_therm_init();
1934 mce_register_decode_chain(&first_nb);
1935 mce_register_decode_chain(&mce_srao_nb);
1936 mce_register_decode_chain(&mce_default_nb);
1937 mcheck_vendor_init_severity();
1939 INIT_WORK(&mce_work, mce_gen_pool_process);
1940 init_irq_work(&mce_irq_work, mce_irq_work_cb);
1942 return 0;
1946 * mce_syscore: PM support
1950 * Disable machine checks on suspend and shutdown. We can't really handle
1951 * them later.
1953 static void mce_disable_error_reporting(void)
1955 int i;
1957 for (i = 0; i < mca_cfg.banks; i++) {
1958 struct mce_bank *b = &mce_banks[i];
1960 if (b->init)
1961 wrmsrl(msr_ops.ctl(i), 0);
1963 return;
1966 static void vendor_disable_error_reporting(void)
1969 * Don't clear on Intel or AMD CPUs. Some of these MSRs are socket-wide.
1970 * Disabling them for just a single offlined CPU is bad, since it will
1971 * inhibit reporting for all shared resources on the socket like the
1972 * last level cache (LLC), the integrated memory controller (iMC), etc.
1974 if (boot_cpu_data.x86_vendor == X86_VENDOR_INTEL ||
1975 boot_cpu_data.x86_vendor == X86_VENDOR_AMD)
1976 return;
1978 mce_disable_error_reporting();
1981 static int mce_syscore_suspend(void)
1983 vendor_disable_error_reporting();
1984 return 0;
1987 static void mce_syscore_shutdown(void)
1989 vendor_disable_error_reporting();
1993 * On resume clear all MCE state. Don't want to see leftovers from the BIOS.
1994 * Only one CPU is active at this time, the others get re-added later using
1995 * CPU hotplug:
1997 static void mce_syscore_resume(void)
1999 __mcheck_cpu_init_generic();
2000 __mcheck_cpu_init_vendor(raw_cpu_ptr(&cpu_info));
2001 __mcheck_cpu_init_clear_banks();
2004 static struct syscore_ops mce_syscore_ops = {
2005 .suspend = mce_syscore_suspend,
2006 .shutdown = mce_syscore_shutdown,
2007 .resume = mce_syscore_resume,
2011 * mce_device: Sysfs support
2014 static void mce_cpu_restart(void *data)
2016 if (!mce_available(raw_cpu_ptr(&cpu_info)))
2017 return;
2018 __mcheck_cpu_init_generic();
2019 __mcheck_cpu_init_clear_banks();
2020 __mcheck_cpu_init_timer();
2023 /* Reinit MCEs after user configuration changes */
2024 static void mce_restart(void)
2026 mce_timer_delete_all();
2027 on_each_cpu(mce_cpu_restart, NULL, 1);
2030 /* Toggle features for corrected errors */
2031 static void mce_disable_cmci(void *data)
2033 if (!mce_available(raw_cpu_ptr(&cpu_info)))
2034 return;
2035 cmci_clear();
2038 static void mce_enable_ce(void *all)
2040 if (!mce_available(raw_cpu_ptr(&cpu_info)))
2041 return;
2042 cmci_reenable();
2043 cmci_recheck();
2044 if (all)
2045 __mcheck_cpu_init_timer();
2048 static struct bus_type mce_subsys = {
2049 .name = "machinecheck",
2050 .dev_name = "machinecheck",
2053 DEFINE_PER_CPU(struct device *, mce_device);
2055 static inline struct mce_bank *attr_to_bank(struct device_attribute *attr)
2057 return container_of(attr, struct mce_bank, attr);
2060 static ssize_t show_bank(struct device *s, struct device_attribute *attr,
2061 char *buf)
2063 return sprintf(buf, "%llx\n", attr_to_bank(attr)->ctl);
2066 static ssize_t set_bank(struct device *s, struct device_attribute *attr,
2067 const char *buf, size_t size)
2069 u64 new;
2071 if (kstrtou64(buf, 0, &new) < 0)
2072 return -EINVAL;
2074 attr_to_bank(attr)->ctl = new;
2075 mce_restart();
2077 return size;
2080 static ssize_t set_ignore_ce(struct device *s,
2081 struct device_attribute *attr,
2082 const char *buf, size_t size)
2084 u64 new;
2086 if (kstrtou64(buf, 0, &new) < 0)
2087 return -EINVAL;
2089 if (mca_cfg.ignore_ce ^ !!new) {
2090 if (new) {
2091 /* disable ce features */
2092 mce_timer_delete_all();
2093 on_each_cpu(mce_disable_cmci, NULL, 1);
2094 mca_cfg.ignore_ce = true;
2095 } else {
2096 /* enable ce features */
2097 mca_cfg.ignore_ce = false;
2098 on_each_cpu(mce_enable_ce, (void *)1, 1);
2101 return size;
2104 static ssize_t set_cmci_disabled(struct device *s,
2105 struct device_attribute *attr,
2106 const char *buf, size_t size)
2108 u64 new;
2110 if (kstrtou64(buf, 0, &new) < 0)
2111 return -EINVAL;
2113 if (mca_cfg.cmci_disabled ^ !!new) {
2114 if (new) {
2115 /* disable cmci */
2116 on_each_cpu(mce_disable_cmci, NULL, 1);
2117 mca_cfg.cmci_disabled = true;
2118 } else {
2119 /* enable cmci */
2120 mca_cfg.cmci_disabled = false;
2121 on_each_cpu(mce_enable_ce, NULL, 1);
2124 return size;
2127 static ssize_t store_int_with_restart(struct device *s,
2128 struct device_attribute *attr,
2129 const char *buf, size_t size)
2131 ssize_t ret = device_store_int(s, attr, buf, size);
2132 mce_restart();
2133 return ret;
2136 static DEVICE_INT_ATTR(tolerant, 0644, mca_cfg.tolerant);
2137 static DEVICE_INT_ATTR(monarch_timeout, 0644, mca_cfg.monarch_timeout);
2138 static DEVICE_BOOL_ATTR(dont_log_ce, 0644, mca_cfg.dont_log_ce);
2140 static struct dev_ext_attribute dev_attr_check_interval = {
2141 __ATTR(check_interval, 0644, device_show_int, store_int_with_restart),
2142 &check_interval
2145 static struct dev_ext_attribute dev_attr_ignore_ce = {
2146 __ATTR(ignore_ce, 0644, device_show_bool, set_ignore_ce),
2147 &mca_cfg.ignore_ce
2150 static struct dev_ext_attribute dev_attr_cmci_disabled = {
2151 __ATTR(cmci_disabled, 0644, device_show_bool, set_cmci_disabled),
2152 &mca_cfg.cmci_disabled
2155 static struct device_attribute *mce_device_attrs[] = {
2156 &dev_attr_tolerant.attr,
2157 &dev_attr_check_interval.attr,
2158 #ifdef CONFIG_X86_MCELOG_LEGACY
2159 &dev_attr_trigger,
2160 #endif
2161 &dev_attr_monarch_timeout.attr,
2162 &dev_attr_dont_log_ce.attr,
2163 &dev_attr_ignore_ce.attr,
2164 &dev_attr_cmci_disabled.attr,
2165 NULL
2168 static cpumask_var_t mce_device_initialized;
2170 static void mce_device_release(struct device *dev)
2172 kfree(dev);
2175 /* Per cpu device init. All of the cpus still share the same ctrl bank: */
2176 static int mce_device_create(unsigned int cpu)
2178 struct device *dev;
2179 int err;
2180 int i, j;
2182 if (!mce_available(&boot_cpu_data))
2183 return -EIO;
2185 dev = per_cpu(mce_device, cpu);
2186 if (dev)
2187 return 0;
2189 dev = kzalloc(sizeof *dev, GFP_KERNEL);
2190 if (!dev)
2191 return -ENOMEM;
2192 dev->id = cpu;
2193 dev->bus = &mce_subsys;
2194 dev->release = &mce_device_release;
2196 err = device_register(dev);
2197 if (err) {
2198 put_device(dev);
2199 return err;
2202 for (i = 0; mce_device_attrs[i]; i++) {
2203 err = device_create_file(dev, mce_device_attrs[i]);
2204 if (err)
2205 goto error;
2207 for (j = 0; j < mca_cfg.banks; j++) {
2208 err = device_create_file(dev, &mce_banks[j].attr);
2209 if (err)
2210 goto error2;
2212 cpumask_set_cpu(cpu, mce_device_initialized);
2213 per_cpu(mce_device, cpu) = dev;
2215 return 0;
2216 error2:
2217 while (--j >= 0)
2218 device_remove_file(dev, &mce_banks[j].attr);
2219 error:
2220 while (--i >= 0)
2221 device_remove_file(dev, mce_device_attrs[i]);
2223 device_unregister(dev);
2225 return err;
2228 static void mce_device_remove(unsigned int cpu)
2230 struct device *dev = per_cpu(mce_device, cpu);
2231 int i;
2233 if (!cpumask_test_cpu(cpu, mce_device_initialized))
2234 return;
2236 for (i = 0; mce_device_attrs[i]; i++)
2237 device_remove_file(dev, mce_device_attrs[i]);
2239 for (i = 0; i < mca_cfg.banks; i++)
2240 device_remove_file(dev, &mce_banks[i].attr);
2242 device_unregister(dev);
2243 cpumask_clear_cpu(cpu, mce_device_initialized);
2244 per_cpu(mce_device, cpu) = NULL;
2247 /* Make sure there are no machine checks on offlined CPUs. */
2248 static void mce_disable_cpu(void)
2250 if (!mce_available(raw_cpu_ptr(&cpu_info)))
2251 return;
2253 if (!cpuhp_tasks_frozen)
2254 cmci_clear();
2256 vendor_disable_error_reporting();
2259 static void mce_reenable_cpu(void)
2261 int i;
2263 if (!mce_available(raw_cpu_ptr(&cpu_info)))
2264 return;
2266 if (!cpuhp_tasks_frozen)
2267 cmci_reenable();
2268 for (i = 0; i < mca_cfg.banks; i++) {
2269 struct mce_bank *b = &mce_banks[i];
2271 if (b->init)
2272 wrmsrl(msr_ops.ctl(i), b->ctl);
2276 static int mce_cpu_dead(unsigned int cpu)
2278 mce_intel_hcpu_update(cpu);
2280 /* intentionally ignoring frozen here */
2281 if (!cpuhp_tasks_frozen)
2282 cmci_rediscover();
2283 return 0;
2286 static int mce_cpu_online(unsigned int cpu)
2288 struct timer_list *t = this_cpu_ptr(&mce_timer);
2289 int ret;
2291 mce_device_create(cpu);
2293 ret = mce_threshold_create_device(cpu);
2294 if (ret) {
2295 mce_device_remove(cpu);
2296 return ret;
2298 mce_reenable_cpu();
2299 mce_start_timer(t);
2300 return 0;
2303 static int mce_cpu_pre_down(unsigned int cpu)
2305 struct timer_list *t = this_cpu_ptr(&mce_timer);
2307 mce_disable_cpu();
2308 del_timer_sync(t);
2309 mce_threshold_remove_device(cpu);
2310 mce_device_remove(cpu);
2311 return 0;
2314 static __init void mce_init_banks(void)
2316 int i;
2318 for (i = 0; i < mca_cfg.banks; i++) {
2319 struct mce_bank *b = &mce_banks[i];
2320 struct device_attribute *a = &b->attr;
2322 sysfs_attr_init(&a->attr);
2323 a->attr.name = b->attrname;
2324 snprintf(b->attrname, ATTR_LEN, "bank%d", i);
2326 a->attr.mode = 0644;
2327 a->show = show_bank;
2328 a->store = set_bank;
2332 static __init int mcheck_init_device(void)
2334 int err;
2336 if (!mce_available(&boot_cpu_data)) {
2337 err = -EIO;
2338 goto err_out;
2341 if (!zalloc_cpumask_var(&mce_device_initialized, GFP_KERNEL)) {
2342 err = -ENOMEM;
2343 goto err_out;
2346 mce_init_banks();
2348 err = subsys_system_register(&mce_subsys, NULL);
2349 if (err)
2350 goto err_out_mem;
2352 err = cpuhp_setup_state(CPUHP_X86_MCE_DEAD, "x86/mce:dead", NULL,
2353 mce_cpu_dead);
2354 if (err)
2355 goto err_out_mem;
2357 err = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "x86/mce:online",
2358 mce_cpu_online, mce_cpu_pre_down);
2359 if (err < 0)
2360 goto err_out_online;
2362 register_syscore_ops(&mce_syscore_ops);
2364 return 0;
2366 err_out_online:
2367 cpuhp_remove_state(CPUHP_X86_MCE_DEAD);
2369 err_out_mem:
2370 free_cpumask_var(mce_device_initialized);
2372 err_out:
2373 pr_err("Unable to init MCE device (rc: %d)\n", err);
2375 return err;
2377 device_initcall_sync(mcheck_init_device);
2380 * Old style boot options parsing. Only for compatibility.
2382 static int __init mcheck_disable(char *str)
2384 mca_cfg.disabled = true;
2385 return 1;
2387 __setup("nomce", mcheck_disable);
2389 #ifdef CONFIG_DEBUG_FS
2390 struct dentry *mce_get_debugfs_dir(void)
2392 static struct dentry *dmce;
2394 if (!dmce)
2395 dmce = debugfs_create_dir("mce", NULL);
2397 return dmce;
2400 static void mce_reset(void)
2402 cpu_missing = 0;
2403 atomic_set(&mce_fake_panicked, 0);
2404 atomic_set(&mce_executing, 0);
2405 atomic_set(&mce_callin, 0);
2406 atomic_set(&global_nwo, 0);
2409 static int fake_panic_get(void *data, u64 *val)
2411 *val = fake_panic;
2412 return 0;
2415 static int fake_panic_set(void *data, u64 val)
2417 mce_reset();
2418 fake_panic = val;
2419 return 0;
2422 DEFINE_SIMPLE_ATTRIBUTE(fake_panic_fops, fake_panic_get,
2423 fake_panic_set, "%llu\n");
2425 static int __init mcheck_debugfs_init(void)
2427 struct dentry *dmce, *ffake_panic;
2429 dmce = mce_get_debugfs_dir();
2430 if (!dmce)
2431 return -ENOMEM;
2432 ffake_panic = debugfs_create_file("fake_panic", 0444, dmce, NULL,
2433 &fake_panic_fops);
2434 if (!ffake_panic)
2435 return -ENOMEM;
2437 return 0;
2439 #else
2440 static int __init mcheck_debugfs_init(void) { return -EINVAL; }
2441 #endif
2443 DEFINE_STATIC_KEY_FALSE(mcsafe_key);
2444 EXPORT_SYMBOL_GPL(mcsafe_key);
2446 static int __init mcheck_late_init(void)
2448 if (mca_cfg.recovery)
2449 static_branch_inc(&mcsafe_key);
2451 mcheck_debugfs_init();
2452 cec_init();
2455 * Flush out everything that has been logged during early boot, now that
2456 * everything has been initialized (workqueues, decoders, ...).
2458 mce_schedule_work();
2460 return 0;
2462 late_initcall(mcheck_late_init);