2 * (c) 2005-2016 Advanced Micro Devices, Inc.
3 * Your use of this code is subject to the terms and conditions of the
4 * GNU general public license version 2. See "COPYING" or
5 * http://www.gnu.org/licenses/gpl.html
7 * Written by Jacob Shin - AMD, Inc.
8 * Maintained by: Borislav Petkov <bp@alien8.de>
10 * All MC4_MISCi registers are shared between cores on a node.
12 #include <linux/interrupt.h>
13 #include <linux/notifier.h>
14 #include <linux/kobject.h>
15 #include <linux/percpu.h>
16 #include <linux/errno.h>
17 #include <linux/sched.h>
18 #include <linux/sysfs.h>
19 #include <linux/slab.h>
20 #include <linux/init.h>
21 #include <linux/cpu.h>
22 #include <linux/smp.h>
23 #include <linux/string.h>
25 #include <asm/amd_nb.h>
29 #include <asm/trace/irq_vectors.h>
31 #include "mce-internal.h"
34 #define THRESHOLD_MAX 0xFFF
35 #define INT_TYPE_APIC 0x00020000
36 #define MASK_VALID_HI 0x80000000
37 #define MASK_CNTP_HI 0x40000000
38 #define MASK_LOCKED_HI 0x20000000
39 #define MASK_LVTOFF_HI 0x00F00000
40 #define MASK_COUNT_EN_HI 0x00080000
41 #define MASK_INT_TYPE_HI 0x00060000
42 #define MASK_OVERFLOW_HI 0x00010000
43 #define MASK_ERR_COUNT_HI 0x00000FFF
44 #define MASK_BLKPTR_LO 0xFF000000
45 #define MCG_XBLK_ADDR 0xC0000400
47 /* Deferred error settings */
48 #define MSR_CU_DEF_ERR 0xC0000410
49 #define MASK_DEF_LVTOFF 0x000000F0
50 #define MASK_DEF_INT_TYPE 0x00000006
51 #define DEF_LVT_OFF 0x2
52 #define DEF_INT_TYPE_APIC 0x2
56 /* Threshold LVT offset is at MSR0xC0000410[15:12] */
57 #define SMCA_THR_LVT_OFF 0xF000
59 static bool thresholding_en
;
61 static const char * const th_names
[] = {
70 static const char * const smca_umc_block_names
[] = {
75 struct smca_bank_name
{
76 const char *name
; /* Short name for sysfs */
77 const char *long_name
; /* Long name for pretty-printing */
80 static struct smca_bank_name smca_names
[] = {
81 [SMCA_LS
] = { "load_store", "Load Store Unit" },
82 [SMCA_IF
] = { "insn_fetch", "Instruction Fetch Unit" },
83 [SMCA_L2_CACHE
] = { "l2_cache", "L2 Cache" },
84 [SMCA_DE
] = { "decode_unit", "Decode Unit" },
85 [SMCA_EX
] = { "execution_unit", "Execution Unit" },
86 [SMCA_FP
] = { "floating_point", "Floating Point Unit" },
87 [SMCA_L3_CACHE
] = { "l3_cache", "L3 Cache" },
88 [SMCA_CS
] = { "coherent_slave", "Coherent Slave" },
89 [SMCA_PIE
] = { "pie", "Power, Interrupts, etc." },
90 [SMCA_UMC
] = { "umc", "Unified Memory Controller" },
91 [SMCA_PB
] = { "param_block", "Parameter Block" },
92 [SMCA_PSP
] = { "psp", "Platform Security Processor" },
93 [SMCA_SMU
] = { "smu", "System Management Unit" },
96 const char *smca_get_name(enum smca_bank_types t
)
98 if (t
>= N_SMCA_BANK_TYPES
)
101 return smca_names
[t
].name
;
104 const char *smca_get_long_name(enum smca_bank_types t
)
106 if (t
>= N_SMCA_BANK_TYPES
)
109 return smca_names
[t
].long_name
;
111 EXPORT_SYMBOL_GPL(smca_get_long_name
);
113 static enum smca_bank_types
smca_get_bank_type(struct mce
*m
)
117 if (m
->bank
>= N_SMCA_BANK_TYPES
)
118 return N_SMCA_BANK_TYPES
;
120 b
= &smca_banks
[m
->bank
];
122 return N_SMCA_BANK_TYPES
;
124 return b
->hwid
->bank_type
;
127 static struct smca_hwid smca_hwid_mcatypes
[] = {
128 /* { bank_type, hwid_mcatype, xec_bitmap } */
130 /* ZN Core (HWID=0xB0) MCA types */
131 { SMCA_LS
, HWID_MCATYPE(0xB0, 0x0), 0x1FFFEF },
132 { SMCA_IF
, HWID_MCATYPE(0xB0, 0x1), 0x3FFF },
133 { SMCA_L2_CACHE
, HWID_MCATYPE(0xB0, 0x2), 0xF },
134 { SMCA_DE
, HWID_MCATYPE(0xB0, 0x3), 0x1FF },
135 /* HWID 0xB0 MCATYPE 0x4 is Reserved */
136 { SMCA_EX
, HWID_MCATYPE(0xB0, 0x5), 0x7FF },
137 { SMCA_FP
, HWID_MCATYPE(0xB0, 0x6), 0x7F },
138 { SMCA_L3_CACHE
, HWID_MCATYPE(0xB0, 0x7), 0xFF },
140 /* Data Fabric MCA types */
141 { SMCA_CS
, HWID_MCATYPE(0x2E, 0x0), 0x1FF },
142 { SMCA_PIE
, HWID_MCATYPE(0x2E, 0x1), 0xF },
144 /* Unified Memory Controller MCA type */
145 { SMCA_UMC
, HWID_MCATYPE(0x96, 0x0), 0x3F },
147 /* Parameter Block MCA type */
148 { SMCA_PB
, HWID_MCATYPE(0x05, 0x0), 0x1 },
150 /* Platform Security Processor MCA type */
151 { SMCA_PSP
, HWID_MCATYPE(0xFF, 0x0), 0x1 },
153 /* System Management Unit MCA type */
154 { SMCA_SMU
, HWID_MCATYPE(0x01, 0x0), 0x1 },
157 struct smca_bank smca_banks
[MAX_NR_BANKS
];
158 EXPORT_SYMBOL_GPL(smca_banks
);
161 * In SMCA enabled processors, we can have multiple banks for a given IP type.
162 * So to define a unique name for each bank, we use a temp c-string to append
163 * the MCA_IPID[InstanceId] to type's name in get_name().
165 * InstanceId is 32 bits which is 8 characters. Make sure MAX_MCATYPE_NAME_LEN
166 * is greater than 8 plus 1 (for underscore) plus length of longest type name.
168 #define MAX_MCATYPE_NAME_LEN 30
169 static char buf_mcatype
[MAX_MCATYPE_NAME_LEN
];
171 static DEFINE_PER_CPU(struct threshold_bank
**, threshold_banks
);
172 static DEFINE_PER_CPU(unsigned int, bank_map
); /* see which banks are on */
174 static void amd_threshold_interrupt(void);
175 static void amd_deferred_error_interrupt(void);
177 static void default_deferred_error_interrupt(void)
179 pr_err("Unexpected deferred interrupt at vector %x\n", DEFERRED_ERROR_VECTOR
);
181 void (*deferred_error_int_vector
)(void) = default_deferred_error_interrupt
;
183 static void smca_configure(unsigned int bank
, unsigned int cpu
)
185 unsigned int i
, hwid_mcatype
;
186 struct smca_hwid
*s_hwid
;
188 u32 smca_config
= MSR_AMD64_SMCA_MCx_CONFIG(bank
);
190 /* Set appropriate bits in MCA_CONFIG */
191 if (!rdmsr_safe(smca_config
, &low
, &high
)) {
193 * OS is required to set the MCAX bit to acknowledge that it is
194 * now using the new MSR ranges and new registers under each
195 * bank. It also means that the OS will configure deferred
196 * errors in the new MCx_CONFIG register. If the bit is not set,
197 * uncorrectable errors will cause a system panic.
199 * MCA_CONFIG[MCAX] is bit 32 (0 in the high portion of the MSR.)
204 * SMCA sets the Deferred Error Interrupt type per bank.
206 * MCA_CONFIG[DeferredIntTypeSupported] is bit 5, and tells us
207 * if the DeferredIntType bit field is available.
209 * MCA_CONFIG[DeferredIntType] is bits [38:37] ([6:5] in the
210 * high portion of the MSR). OS should set this to 0x1 to enable
211 * APIC based interrupt. First, check that no interrupt has been
214 if ((low
& BIT(5)) && !((high
>> 5) & 0x3))
217 wrmsr(smca_config
, low
, high
);
220 /* Return early if this bank was already initialized. */
221 if (smca_banks
[bank
].hwid
)
224 if (rdmsr_safe_on_cpu(cpu
, MSR_AMD64_SMCA_MCx_IPID(bank
), &low
, &high
)) {
225 pr_warn("Failed to read MCA_IPID for bank %d\n", bank
);
229 hwid_mcatype
= HWID_MCATYPE(high
& MCI_IPID_HWID
,
230 (high
& MCI_IPID_MCATYPE
) >> 16);
232 for (i
= 0; i
< ARRAY_SIZE(smca_hwid_mcatypes
); i
++) {
233 s_hwid
= &smca_hwid_mcatypes
[i
];
234 if (hwid_mcatype
== s_hwid
->hwid_mcatype
) {
235 smca_banks
[bank
].hwid
= s_hwid
;
236 smca_banks
[bank
].id
= low
;
237 smca_banks
[bank
].sysfs_id
= s_hwid
->count
++;
243 struct thresh_restart
{
244 struct threshold_block
*b
;
251 static inline bool is_shared_bank(int bank
)
254 * Scalable MCA provides for only one core to have access to the MSRs of
260 /* Bank 4 is for northbridge reporting and is thus shared */
264 static const char *bank4_names(const struct threshold_block
*b
)
266 switch (b
->address
) {
278 WARN(1, "Funny MSR: 0x%08x\n", b
->address
);
284 static bool lvt_interrupt_supported(unsigned int bank
, u32 msr_high_bits
)
287 * bank 4 supports APIC LVT interrupts implicitly since forever.
293 * IntP: interrupt present; if this bit is set, the thresholding
294 * bank can generate APIC LVT interrupts
296 return msr_high_bits
& BIT(28);
299 static int lvt_off_valid(struct threshold_block
*b
, int apic
, u32 lo
, u32 hi
)
301 int msr
= (hi
& MASK_LVTOFF_HI
) >> 20;
304 pr_err(FW_BUG
"cpu %d, failed to setup threshold interrupt "
305 "for bank %d, block %d (MSR%08X=0x%x%08x)\n", b
->cpu
,
306 b
->bank
, b
->block
, b
->address
, hi
, lo
);
312 * On SMCA CPUs, LVT offset is programmed at a different MSR, and
313 * the BIOS provides the value. The original field where LVT offset
314 * was set is reserved. Return early here:
319 pr_err(FW_BUG
"cpu %d, invalid threshold interrupt offset %d "
320 "for bank %d, block %d (MSR%08X=0x%x%08x)\n",
321 b
->cpu
, apic
, b
->bank
, b
->block
, b
->address
, hi
, lo
);
328 /* Reprogram MCx_MISC MSR behind this threshold bank. */
329 static void threshold_restart_bank(void *_tr
)
331 struct thresh_restart
*tr
= _tr
;
334 rdmsr(tr
->b
->address
, lo
, hi
);
336 if (tr
->b
->threshold_limit
< (hi
& THRESHOLD_MAX
))
337 tr
->reset
= 1; /* limit cannot be lower than err count */
339 if (tr
->reset
) { /* reset err count and overflow bit */
341 (hi
& ~(MASK_ERR_COUNT_HI
| MASK_OVERFLOW_HI
)) |
342 (THRESHOLD_MAX
- tr
->b
->threshold_limit
);
343 } else if (tr
->old_limit
) { /* change limit w/o reset */
344 int new_count
= (hi
& THRESHOLD_MAX
) +
345 (tr
->old_limit
- tr
->b
->threshold_limit
);
347 hi
= (hi
& ~MASK_ERR_COUNT_HI
) |
348 (new_count
& THRESHOLD_MAX
);
352 hi
&= ~MASK_INT_TYPE_HI
;
354 if (!tr
->b
->interrupt_capable
)
357 if (tr
->set_lvt_off
) {
358 if (lvt_off_valid(tr
->b
, tr
->lvt_off
, lo
, hi
)) {
359 /* set new lvt offset */
360 hi
&= ~MASK_LVTOFF_HI
;
361 hi
|= tr
->lvt_off
<< 20;
365 if (tr
->b
->interrupt_enable
)
370 hi
|= MASK_COUNT_EN_HI
;
371 wrmsr(tr
->b
->address
, lo
, hi
);
374 static void mce_threshold_block_init(struct threshold_block
*b
, int offset
)
376 struct thresh_restart tr
= {
382 b
->threshold_limit
= THRESHOLD_MAX
;
383 threshold_restart_bank(&tr
);
386 static int setup_APIC_mce_threshold(int reserved
, int new)
388 if (reserved
< 0 && !setup_APIC_eilvt(new, THRESHOLD_APIC_VECTOR
,
389 APIC_EILVT_MSG_FIX
, 0))
395 static int setup_APIC_deferred_error(int reserved
, int new)
397 if (reserved
< 0 && !setup_APIC_eilvt(new, DEFERRED_ERROR_VECTOR
,
398 APIC_EILVT_MSG_FIX
, 0))
404 static void deferred_error_interrupt_enable(struct cpuinfo_x86
*c
)
406 u32 low
= 0, high
= 0;
407 int def_offset
= -1, def_new
;
409 if (rdmsr_safe(MSR_CU_DEF_ERR
, &low
, &high
))
412 def_new
= (low
& MASK_DEF_LVTOFF
) >> 4;
413 if (!(low
& MASK_DEF_LVTOFF
)) {
414 pr_err(FW_BUG
"Your BIOS is not setting up LVT offset 0x2 for deferred error IRQs correctly.\n");
415 def_new
= DEF_LVT_OFF
;
416 low
= (low
& ~MASK_DEF_LVTOFF
) | (DEF_LVT_OFF
<< 4);
419 def_offset
= setup_APIC_deferred_error(def_offset
, def_new
);
420 if ((def_offset
== def_new
) &&
421 (deferred_error_int_vector
!= amd_deferred_error_interrupt
))
422 deferred_error_int_vector
= amd_deferred_error_interrupt
;
425 low
= (low
& ~MASK_DEF_INT_TYPE
) | DEF_INT_TYPE_APIC
;
427 wrmsr(MSR_CU_DEF_ERR
, low
, high
);
430 static u32
get_block_address(unsigned int cpu
, u32 current_addr
, u32 low
, u32 high
,
431 unsigned int bank
, unsigned int block
)
433 u32 addr
= 0, offset
= 0;
435 if (mce_flags
.smca
) {
437 addr
= MSR_AMD64_SMCA_MCx_MISC(bank
);
440 * For SMCA enabled processors, BLKPTR field of the
441 * first MISC register (MCx_MISC0) indicates presence of
442 * additional MISC register set (MISC1-4).
446 if (rdmsr_safe_on_cpu(cpu
, MSR_AMD64_SMCA_MCx_CONFIG(bank
), &low
, &high
))
449 if (!(low
& MCI_CONFIG_MCAX
))
452 if (!rdmsr_safe_on_cpu(cpu
, MSR_AMD64_SMCA_MCx_MISC(bank
), &low
, &high
) &&
453 (low
& MASK_BLKPTR_LO
))
454 addr
= MSR_AMD64_SMCA_MCx_MISCy(bank
, block
- 1);
459 /* Fall back to method we used for older processors: */
462 addr
= msr_ops
.misc(bank
);
465 offset
= ((low
& MASK_BLKPTR_LO
) >> 21);
467 addr
= MCG_XBLK_ADDR
+ offset
;
470 addr
= ++current_addr
;
476 prepare_threshold_block(unsigned int bank
, unsigned int block
, u32 addr
,
477 int offset
, u32 misc_high
)
479 unsigned int cpu
= smp_processor_id();
480 u32 smca_low
, smca_high
;
481 struct threshold_block b
;
485 per_cpu(bank_map
, cpu
) |= (1 << bank
);
487 memset(&b
, 0, sizeof(b
));
492 b
.interrupt_capable
= lvt_interrupt_supported(bank
, misc_high
);
494 if (!b
.interrupt_capable
)
497 b
.interrupt_enable
= 1;
499 if (!mce_flags
.smca
) {
500 new = (misc_high
& MASK_LVTOFF_HI
) >> 20;
504 /* Gather LVT offset for thresholding: */
505 if (rdmsr_safe(MSR_CU_DEF_ERR
, &smca_low
, &smca_high
))
508 new = (smca_low
& SMCA_THR_LVT_OFF
) >> 12;
511 offset
= setup_APIC_mce_threshold(offset
, new);
513 if ((offset
== new) && (mce_threshold_vector
!= amd_threshold_interrupt
))
514 mce_threshold_vector
= amd_threshold_interrupt
;
517 mce_threshold_block_init(&b
, offset
);
523 /* cpu init entry point, called from mce.c with preempt off */
524 void mce_amd_feature_init(struct cpuinfo_x86
*c
)
526 u32 low
= 0, high
= 0, address
= 0;
527 unsigned int bank
, block
, cpu
= smp_processor_id();
530 for (bank
= 0; bank
< mca_cfg
.banks
; ++bank
) {
532 smca_configure(bank
, cpu
);
534 for (block
= 0; block
< NR_BLOCKS
; ++block
) {
535 address
= get_block_address(cpu
, address
, low
, high
, bank
, block
);
539 if (rdmsr_safe(address
, &low
, &high
))
542 if (!(high
& MASK_VALID_HI
))
545 if (!(high
& MASK_CNTP_HI
) ||
546 (high
& MASK_LOCKED_HI
))
549 offset
= prepare_threshold_block(bank
, block
, address
, offset
, high
);
553 if (mce_flags
.succor
)
554 deferred_error_interrupt_enable(c
);
557 int umc_normaddr_to_sysaddr(u64 norm_addr
, u16 nid
, u8 umc
, u64
*sys_addr
)
559 u64 dram_base_addr
, dram_limit_addr
, dram_hole_base
;
560 /* We start from the normalized address */
561 u64 ret_addr
= norm_addr
;
565 u8 die_id_shift
, die_id_mask
, socket_id_shift
, socket_id_mask
;
566 u8 intlv_num_dies
, intlv_num_chan
, intlv_num_sockets
;
567 u8 intlv_addr_sel
, intlv_addr_bit
;
568 u8 num_intlv_bits
, hashed_bit
;
569 u8 lgcy_mmio_hole_en
, base
= 0;
570 u8 cs_mask
, cs_id
= 0;
571 bool hash_enabled
= false;
573 /* Read D18F0x1B4 (DramOffset), check if base 1 is used. */
574 if (amd_df_indirect_read(nid
, 0, 0x1B4, umc
, &tmp
))
577 /* Remove HiAddrOffset from normalized address, if enabled: */
579 u64 hi_addr_offset
= (tmp
& GENMASK_ULL(31, 20)) << 8;
581 if (norm_addr
>= hi_addr_offset
) {
582 ret_addr
-= hi_addr_offset
;
587 /* Read D18F0x110 (DramBaseAddress). */
588 if (amd_df_indirect_read(nid
, 0, 0x110 + (8 * base
), umc
, &tmp
))
591 /* Check if address range is valid. */
592 if (!(tmp
& BIT(0))) {
593 pr_err("%s: Invalid DramBaseAddress range: 0x%x.\n",
598 lgcy_mmio_hole_en
= tmp
& BIT(1);
599 intlv_num_chan
= (tmp
>> 4) & 0xF;
600 intlv_addr_sel
= (tmp
>> 8) & 0x7;
601 dram_base_addr
= (tmp
& GENMASK_ULL(31, 12)) << 16;
603 /* {0, 1, 2, 3} map to address bits {8, 9, 10, 11} respectively */
604 if (intlv_addr_sel
> 3) {
605 pr_err("%s: Invalid interleave address select %d.\n",
606 __func__
, intlv_addr_sel
);
610 /* Read D18F0x114 (DramLimitAddress). */
611 if (amd_df_indirect_read(nid
, 0, 0x114 + (8 * base
), umc
, &tmp
))
614 intlv_num_sockets
= (tmp
>> 8) & 0x1;
615 intlv_num_dies
= (tmp
>> 10) & 0x3;
616 dram_limit_addr
= ((tmp
& GENMASK_ULL(31, 12)) << 16) | GENMASK_ULL(27, 0);
618 intlv_addr_bit
= intlv_addr_sel
+ 8;
620 /* Re-use intlv_num_chan by setting it equal to log2(#channels) */
621 switch (intlv_num_chan
) {
622 case 0: intlv_num_chan
= 0; break;
623 case 1: intlv_num_chan
= 1; break;
624 case 3: intlv_num_chan
= 2; break;
625 case 5: intlv_num_chan
= 3; break;
626 case 7: intlv_num_chan
= 4; break;
628 case 8: intlv_num_chan
= 1;
632 pr_err("%s: Invalid number of interleaved channels %d.\n",
633 __func__
, intlv_num_chan
);
637 num_intlv_bits
= intlv_num_chan
;
639 if (intlv_num_dies
> 2) {
640 pr_err("%s: Invalid number of interleaved nodes/dies %d.\n",
641 __func__
, intlv_num_dies
);
645 num_intlv_bits
+= intlv_num_dies
;
647 /* Add a bit if sockets are interleaved. */
648 num_intlv_bits
+= intlv_num_sockets
;
650 /* Assert num_intlv_bits <= 4 */
651 if (num_intlv_bits
> 4) {
652 pr_err("%s: Invalid interleave bits %d.\n",
653 __func__
, num_intlv_bits
);
657 if (num_intlv_bits
> 0) {
658 u64 temp_addr_x
, temp_addr_i
, temp_addr_y
;
659 u8 die_id_bit
, sock_id_bit
, cs_fabric_id
;
662 * Read FabricBlockInstanceInformation3_CS[BlockFabricID].
663 * This is the fabric id for this coherent slave. Use
664 * umc/channel# as instance id of the coherent slave
667 if (amd_df_indirect_read(nid
, 0, 0x50, umc
, &tmp
))
670 cs_fabric_id
= (tmp
>> 8) & 0xFF;
673 /* If interleaved over more than 1 channel: */
674 if (intlv_num_chan
) {
675 die_id_bit
= intlv_num_chan
;
676 cs_mask
= (1 << die_id_bit
) - 1;
677 cs_id
= cs_fabric_id
& cs_mask
;
680 sock_id_bit
= die_id_bit
;
682 /* Read D18F1x208 (SystemFabricIdMask). */
683 if (intlv_num_dies
|| intlv_num_sockets
)
684 if (amd_df_indirect_read(nid
, 1, 0x208, umc
, &tmp
))
687 /* If interleaved over more than 1 die. */
688 if (intlv_num_dies
) {
689 sock_id_bit
= die_id_bit
+ intlv_num_dies
;
690 die_id_shift
= (tmp
>> 24) & 0xF;
691 die_id_mask
= (tmp
>> 8) & 0xFF;
693 cs_id
|= ((cs_fabric_id
& die_id_mask
) >> die_id_shift
) << die_id_bit
;
696 /* If interleaved over more than 1 socket. */
697 if (intlv_num_sockets
) {
698 socket_id_shift
= (tmp
>> 28) & 0xF;
699 socket_id_mask
= (tmp
>> 16) & 0xFF;
701 cs_id
|= ((cs_fabric_id
& socket_id_mask
) >> socket_id_shift
) << sock_id_bit
;
705 * The pre-interleaved address consists of XXXXXXIIIYYYYY
706 * where III is the ID for this CS, and XXXXXXYYYYY are the
707 * address bits from the post-interleaved address.
708 * "num_intlv_bits" has been calculated to tell us how many "I"
709 * bits there are. "intlv_addr_bit" tells us how many "Y" bits
710 * there are (where "I" starts).
712 temp_addr_y
= ret_addr
& GENMASK_ULL(intlv_addr_bit
-1, 0);
713 temp_addr_i
= (cs_id
<< intlv_addr_bit
);
714 temp_addr_x
= (ret_addr
& GENMASK_ULL(63, intlv_addr_bit
)) << num_intlv_bits
;
715 ret_addr
= temp_addr_x
| temp_addr_i
| temp_addr_y
;
718 /* Add dram base address */
719 ret_addr
+= dram_base_addr
;
721 /* If legacy MMIO hole enabled */
722 if (lgcy_mmio_hole_en
) {
723 if (amd_df_indirect_read(nid
, 0, 0x104, umc
, &tmp
))
726 dram_hole_base
= tmp
& GENMASK(31, 24);
727 if (ret_addr
>= dram_hole_base
)
728 ret_addr
+= (BIT_ULL(32) - dram_hole_base
);
732 /* Save some parentheses and grab ls-bit at the end. */
733 hashed_bit
= (ret_addr
>> 12) ^
739 hashed_bit
&= BIT(0);
741 if (hashed_bit
!= ((ret_addr
>> intlv_addr_bit
) & BIT(0)))
742 ret_addr
^= BIT(intlv_addr_bit
);
745 /* Is calculated system address is above DRAM limit address? */
746 if (ret_addr
> dram_limit_addr
)
749 *sys_addr
= ret_addr
;
755 EXPORT_SYMBOL_GPL(umc_normaddr_to_sysaddr
);
757 bool amd_mce_is_memory_error(struct mce
*m
)
759 /* ErrCodeExt[20:16] */
760 u8 xec
= (m
->status
>> 16) & 0x1f;
763 return smca_get_bank_type(m
) == SMCA_UMC
&& xec
== 0x0;
765 return m
->bank
== 4 && xec
== 0x8;
768 static void __log_error(unsigned int bank
, u64 status
, u64 addr
, u64 misc
)
779 if (m
.status
& MCI_STATUS_ADDRV
) {
783 * Extract [55:<lsb>] where lsb is the least significant
784 * *valid* bit of the address bits.
786 if (mce_flags
.smca
) {
787 u8 lsb
= (m
.addr
>> 56) & 0x3f;
789 m
.addr
&= GENMASK_ULL(55, lsb
);
793 if (mce_flags
.smca
) {
794 rdmsrl(MSR_AMD64_SMCA_MCx_IPID(bank
), m
.ipid
);
796 if (m
.status
& MCI_STATUS_SYNDV
)
797 rdmsrl(MSR_AMD64_SMCA_MCx_SYND(bank
), m
.synd
);
803 asmlinkage __visible
void __irq_entry
smp_deferred_error_interrupt(void)
806 trace_deferred_error_apic_entry(DEFERRED_ERROR_VECTOR
);
807 inc_irq_stat(irq_deferred_error_count
);
808 deferred_error_int_vector();
809 trace_deferred_error_apic_exit(DEFERRED_ERROR_VECTOR
);
814 * Returns true if the logged error is deferred. False, otherwise.
817 _log_error_bank(unsigned int bank
, u32 msr_stat
, u32 msr_addr
, u64 misc
)
819 u64 status
, addr
= 0;
821 rdmsrl(msr_stat
, status
);
822 if (!(status
& MCI_STATUS_VAL
))
825 if (status
& MCI_STATUS_ADDRV
)
826 rdmsrl(msr_addr
, addr
);
828 __log_error(bank
, status
, addr
, misc
);
832 return status
& MCI_STATUS_DEFERRED
;
836 * We have three scenarios for checking for Deferred errors:
838 * 1) Non-SMCA systems check MCA_STATUS and log error if found.
839 * 2) SMCA systems check MCA_STATUS. If error is found then log it and also
841 * 3) SMCA systems check MCA_DESTAT, if error was not found in MCA_STATUS, and
844 static void log_error_deferred(unsigned int bank
)
848 defrd
= _log_error_bank(bank
, msr_ops
.status(bank
),
849 msr_ops
.addr(bank
), 0);
854 /* Clear MCA_DESTAT if we logged the deferred error from MCA_STATUS. */
856 wrmsrl(MSR_AMD64_SMCA_MCx_DESTAT(bank
), 0);
861 * Only deferred errors are logged in MCA_DE{STAT,ADDR} so just check
864 _log_error_bank(bank
, MSR_AMD64_SMCA_MCx_DESTAT(bank
),
865 MSR_AMD64_SMCA_MCx_DEADDR(bank
), 0);
868 /* APIC interrupt handler for deferred errors */
869 static void amd_deferred_error_interrupt(void)
873 for (bank
= 0; bank
< mca_cfg
.banks
; ++bank
)
874 log_error_deferred(bank
);
877 static void log_error_thresholding(unsigned int bank
, u64 misc
)
879 _log_error_bank(bank
, msr_ops
.status(bank
), msr_ops
.addr(bank
), misc
);
882 static void log_and_reset_block(struct threshold_block
*block
)
884 struct thresh_restart tr
;
885 u32 low
= 0, high
= 0;
890 if (rdmsr_safe(block
->address
, &low
, &high
))
893 if (!(high
& MASK_OVERFLOW_HI
))
896 /* Log the MCE which caused the threshold event. */
897 log_error_thresholding(block
->bank
, ((u64
)high
<< 32) | low
);
899 /* Reset threshold block after logging error. */
900 memset(&tr
, 0, sizeof(tr
));
902 threshold_restart_bank(&tr
);
906 * Threshold interrupt handler will service THRESHOLD_APIC_VECTOR. The interrupt
907 * goes off when error_count reaches threshold_limit.
909 static void amd_threshold_interrupt(void)
911 struct threshold_block
*first_block
= NULL
, *block
= NULL
, *tmp
= NULL
;
912 unsigned int bank
, cpu
= smp_processor_id();
914 for (bank
= 0; bank
< mca_cfg
.banks
; ++bank
) {
915 if (!(per_cpu(bank_map
, cpu
) & (1 << bank
)))
918 first_block
= per_cpu(threshold_banks
, cpu
)[bank
]->blocks
;
923 * The first block is also the head of the list. Check it first
924 * before iterating over the rest.
926 log_and_reset_block(first_block
);
927 list_for_each_entry_safe(block
, tmp
, &first_block
->miscj
, miscj
)
928 log_and_reset_block(block
);
936 struct threshold_attr
{
937 struct attribute attr
;
938 ssize_t (*show
) (struct threshold_block
*, char *);
939 ssize_t (*store
) (struct threshold_block
*, const char *, size_t count
);
942 #define SHOW_FIELDS(name) \
943 static ssize_t show_ ## name(struct threshold_block *b, char *buf) \
945 return sprintf(buf, "%lu\n", (unsigned long) b->name); \
947 SHOW_FIELDS(interrupt_enable
)
948 SHOW_FIELDS(threshold_limit
)
951 store_interrupt_enable(struct threshold_block
*b
, const char *buf
, size_t size
)
953 struct thresh_restart tr
;
956 if (!b
->interrupt_capable
)
959 if (kstrtoul(buf
, 0, &new) < 0)
962 b
->interrupt_enable
= !!new;
964 memset(&tr
, 0, sizeof(tr
));
967 smp_call_function_single(b
->cpu
, threshold_restart_bank
, &tr
, 1);
973 store_threshold_limit(struct threshold_block
*b
, const char *buf
, size_t size
)
975 struct thresh_restart tr
;
978 if (kstrtoul(buf
, 0, &new) < 0)
981 if (new > THRESHOLD_MAX
)
986 memset(&tr
, 0, sizeof(tr
));
987 tr
.old_limit
= b
->threshold_limit
;
988 b
->threshold_limit
= new;
991 smp_call_function_single(b
->cpu
, threshold_restart_bank
, &tr
, 1);
996 static ssize_t
show_error_count(struct threshold_block
*b
, char *buf
)
1000 rdmsr_on_cpu(b
->cpu
, b
->address
, &lo
, &hi
);
1002 return sprintf(buf
, "%u\n", ((hi
& THRESHOLD_MAX
) -
1003 (THRESHOLD_MAX
- b
->threshold_limit
)));
1006 static struct threshold_attr error_count
= {
1007 .attr
= {.name
= __stringify(error_count
), .mode
= 0444 },
1008 .show
= show_error_count
,
1011 #define RW_ATTR(val) \
1012 static struct threshold_attr val = { \
1013 .attr = {.name = __stringify(val), .mode = 0644 }, \
1014 .show = show_## val, \
1015 .store = store_## val, \
1018 RW_ATTR(interrupt_enable
);
1019 RW_ATTR(threshold_limit
);
1021 static struct attribute
*default_attrs
[] = {
1022 &threshold_limit
.attr
,
1024 NULL
, /* possibly interrupt_enable if supported, see below */
1028 #define to_block(k) container_of(k, struct threshold_block, kobj)
1029 #define to_attr(a) container_of(a, struct threshold_attr, attr)
1031 static ssize_t
show(struct kobject
*kobj
, struct attribute
*attr
, char *buf
)
1033 struct threshold_block
*b
= to_block(kobj
);
1034 struct threshold_attr
*a
= to_attr(attr
);
1037 ret
= a
->show
? a
->show(b
, buf
) : -EIO
;
1042 static ssize_t
store(struct kobject
*kobj
, struct attribute
*attr
,
1043 const char *buf
, size_t count
)
1045 struct threshold_block
*b
= to_block(kobj
);
1046 struct threshold_attr
*a
= to_attr(attr
);
1049 ret
= a
->store
? a
->store(b
, buf
, count
) : -EIO
;
1054 static const struct sysfs_ops threshold_ops
= {
1059 static struct kobj_type threshold_ktype
= {
1060 .sysfs_ops
= &threshold_ops
,
1061 .default_attrs
= default_attrs
,
1064 static const char *get_name(unsigned int bank
, struct threshold_block
*b
)
1066 unsigned int bank_type
;
1068 if (!mce_flags
.smca
) {
1070 return bank4_names(b
);
1072 return th_names
[bank
];
1075 if (!smca_banks
[bank
].hwid
)
1078 bank_type
= smca_banks
[bank
].hwid
->bank_type
;
1080 if (b
&& bank_type
== SMCA_UMC
) {
1081 if (b
->block
< ARRAY_SIZE(smca_umc_block_names
))
1082 return smca_umc_block_names
[b
->block
];
1086 if (smca_banks
[bank
].hwid
->count
== 1)
1087 return smca_get_name(bank_type
);
1089 snprintf(buf_mcatype
, MAX_MCATYPE_NAME_LEN
,
1090 "%s_%x", smca_get_name(bank_type
),
1091 smca_banks
[bank
].sysfs_id
);
1095 static int allocate_threshold_blocks(unsigned int cpu
, unsigned int bank
,
1096 unsigned int block
, u32 address
)
1098 struct threshold_block
*b
= NULL
;
1102 if ((bank
>= mca_cfg
.banks
) || (block
>= NR_BLOCKS
))
1105 if (rdmsr_safe_on_cpu(cpu
, address
, &low
, &high
))
1108 if (!(high
& MASK_VALID_HI
)) {
1115 if (!(high
& MASK_CNTP_HI
) ||
1116 (high
& MASK_LOCKED_HI
))
1119 b
= kzalloc(sizeof(struct threshold_block
), GFP_KERNEL
);
1126 b
->address
= address
;
1127 b
->interrupt_enable
= 0;
1128 b
->interrupt_capable
= lvt_interrupt_supported(bank
, high
);
1129 b
->threshold_limit
= THRESHOLD_MAX
;
1131 if (b
->interrupt_capable
) {
1132 threshold_ktype
.default_attrs
[2] = &interrupt_enable
.attr
;
1133 b
->interrupt_enable
= 1;
1135 threshold_ktype
.default_attrs
[2] = NULL
;
1138 INIT_LIST_HEAD(&b
->miscj
);
1140 if (per_cpu(threshold_banks
, cpu
)[bank
]->blocks
) {
1142 &per_cpu(threshold_banks
, cpu
)[bank
]->blocks
->miscj
);
1144 per_cpu(threshold_banks
, cpu
)[bank
]->blocks
= b
;
1147 err
= kobject_init_and_add(&b
->kobj
, &threshold_ktype
,
1148 per_cpu(threshold_banks
, cpu
)[bank
]->kobj
,
1153 address
= get_block_address(cpu
, address
, low
, high
, bank
, ++block
);
1157 err
= allocate_threshold_blocks(cpu
, bank
, block
, address
);
1162 kobject_uevent(&b
->kobj
, KOBJ_ADD
);
1168 kobject_put(&b
->kobj
);
1169 list_del(&b
->miscj
);
1175 static int __threshold_add_blocks(struct threshold_bank
*b
)
1177 struct list_head
*head
= &b
->blocks
->miscj
;
1178 struct threshold_block
*pos
= NULL
;
1179 struct threshold_block
*tmp
= NULL
;
1182 err
= kobject_add(&b
->blocks
->kobj
, b
->kobj
, b
->blocks
->kobj
.name
);
1186 list_for_each_entry_safe(pos
, tmp
, head
, miscj
) {
1188 err
= kobject_add(&pos
->kobj
, b
->kobj
, pos
->kobj
.name
);
1190 list_for_each_entry_safe_reverse(pos
, tmp
, head
, miscj
)
1191 kobject_del(&pos
->kobj
);
1199 static int threshold_create_bank(unsigned int cpu
, unsigned int bank
)
1201 struct device
*dev
= per_cpu(mce_device
, cpu
);
1202 struct amd_northbridge
*nb
= NULL
;
1203 struct threshold_bank
*b
= NULL
;
1204 const char *name
= get_name(bank
, NULL
);
1210 if (is_shared_bank(bank
)) {
1211 nb
= node_to_amd_nb(amd_get_nb_id(cpu
));
1213 /* threshold descriptor already initialized on this node? */
1214 if (nb
&& nb
->bank4
) {
1217 err
= kobject_add(b
->kobj
, &dev
->kobj
, name
);
1221 per_cpu(threshold_banks
, cpu
)[bank
] = b
;
1222 refcount_inc(&b
->cpus
);
1224 err
= __threshold_add_blocks(b
);
1230 b
= kzalloc(sizeof(struct threshold_bank
), GFP_KERNEL
);
1236 b
->kobj
= kobject_create_and_add(name
, &dev
->kobj
);
1242 per_cpu(threshold_banks
, cpu
)[bank
] = b
;
1244 if (is_shared_bank(bank
)) {
1245 refcount_set(&b
->cpus
, 1);
1247 /* nb is already initialized, see above */
1254 err
= allocate_threshold_blocks(cpu
, bank
, 0, msr_ops
.misc(bank
));
1265 static void deallocate_threshold_block(unsigned int cpu
,
1268 struct threshold_block
*pos
= NULL
;
1269 struct threshold_block
*tmp
= NULL
;
1270 struct threshold_bank
*head
= per_cpu(threshold_banks
, cpu
)[bank
];
1275 list_for_each_entry_safe(pos
, tmp
, &head
->blocks
->miscj
, miscj
) {
1276 kobject_put(&pos
->kobj
);
1277 list_del(&pos
->miscj
);
1281 kfree(per_cpu(threshold_banks
, cpu
)[bank
]->blocks
);
1282 per_cpu(threshold_banks
, cpu
)[bank
]->blocks
= NULL
;
1285 static void __threshold_remove_blocks(struct threshold_bank
*b
)
1287 struct threshold_block
*pos
= NULL
;
1288 struct threshold_block
*tmp
= NULL
;
1290 kobject_del(b
->kobj
);
1292 list_for_each_entry_safe(pos
, tmp
, &b
->blocks
->miscj
, miscj
)
1293 kobject_del(&pos
->kobj
);
1296 static void threshold_remove_bank(unsigned int cpu
, int bank
)
1298 struct amd_northbridge
*nb
;
1299 struct threshold_bank
*b
;
1301 b
= per_cpu(threshold_banks
, cpu
)[bank
];
1308 if (is_shared_bank(bank
)) {
1309 if (!refcount_dec_and_test(&b
->cpus
)) {
1310 __threshold_remove_blocks(b
);
1311 per_cpu(threshold_banks
, cpu
)[bank
] = NULL
;
1315 * the last CPU on this node using the shared bank is
1316 * going away, remove that bank now.
1318 nb
= node_to_amd_nb(amd_get_nb_id(cpu
));
1323 deallocate_threshold_block(cpu
, bank
);
1326 kobject_del(b
->kobj
);
1327 kobject_put(b
->kobj
);
1329 per_cpu(threshold_banks
, cpu
)[bank
] = NULL
;
1332 int mce_threshold_remove_device(unsigned int cpu
)
1336 if (!thresholding_en
)
1339 for (bank
= 0; bank
< mca_cfg
.banks
; ++bank
) {
1340 if (!(per_cpu(bank_map
, cpu
) & (1 << bank
)))
1342 threshold_remove_bank(cpu
, bank
);
1344 kfree(per_cpu(threshold_banks
, cpu
));
1345 per_cpu(threshold_banks
, cpu
) = NULL
;
1349 /* create dir/files for all valid threshold banks */
1350 int mce_threshold_create_device(unsigned int cpu
)
1353 struct threshold_bank
**bp
;
1356 if (!thresholding_en
)
1359 bp
= per_cpu(threshold_banks
, cpu
);
1363 bp
= kzalloc(sizeof(struct threshold_bank
*) * mca_cfg
.banks
,
1368 per_cpu(threshold_banks
, cpu
) = bp
;
1370 for (bank
= 0; bank
< mca_cfg
.banks
; ++bank
) {
1371 if (!(per_cpu(bank_map
, cpu
) & (1 << bank
)))
1373 err
= threshold_create_bank(cpu
, bank
);
1379 mce_threshold_remove_device(cpu
);
1383 static __init
int threshold_init_device(void)
1387 if (mce_threshold_vector
== amd_threshold_interrupt
)
1388 thresholding_en
= true;
1390 /* to hit CPUs online before the notifier is up */
1391 for_each_online_cpu(lcpu
) {
1392 int err
= mce_threshold_create_device(lcpu
);
1401 * there are 3 funcs which need to be _initcalled in a logic sequence:
1402 * 1. xen_late_init_mcelog
1403 * 2. mcheck_init_device
1404 * 3. threshold_init_device
1406 * xen_late_init_mcelog must register xen_mce_chrdev_device before
1407 * native mce_chrdev_device registration if running under xen platform;
1409 * mcheck_init_device should be inited before threshold_init_device to
1410 * initialize mce_device, otherwise a NULL ptr dereference will cause panic.
1412 * so we use following _initcalls
1413 * 1. device_initcall(xen_late_init_mcelog);
1414 * 2. device_initcall_sync(mcheck_init_device);
1415 * 3. late_initcall(threshold_init_device);
1417 * when running under xen, the initcall order is 1,2,3;
1418 * on baremetal, we skip 1 and we do only 2 and 3.
1420 late_initcall(threshold_init_device
);