Merge tag 'for_linus' of git://git.kernel.org/pub/scm/linux/kernel/git/mst/vhost
[cris-mirror.git] / arch / x86 / kernel / fpu / core.c
blobf92a6593de1ec651d244d43d16acbd8d49959e4b
1 /*
2 * Copyright (C) 1994 Linus Torvalds
4 * Pentium III FXSR, SSE support
5 * General FPU state handling cleanups
6 * Gareth Hughes <gareth@valinux.com>, May 2000
7 */
8 #include <asm/fpu/internal.h>
9 #include <asm/fpu/regset.h>
10 #include <asm/fpu/signal.h>
11 #include <asm/fpu/types.h>
12 #include <asm/traps.h>
14 #include <linux/hardirq.h>
15 #include <linux/pkeys.h>
17 #define CREATE_TRACE_POINTS
18 #include <asm/trace/fpu.h>
21 * Represents the initial FPU state. It's mostly (but not completely) zeroes,
22 * depending on the FPU hardware format:
24 union fpregs_state init_fpstate __read_mostly;
27 * Track whether the kernel is using the FPU state
28 * currently.
30 * This flag is used:
32 * - by IRQ context code to potentially use the FPU
33 * if it's unused.
35 * - to debug kernel_fpu_begin()/end() correctness
37 static DEFINE_PER_CPU(bool, in_kernel_fpu);
40 * Track which context is using the FPU on the CPU:
42 DEFINE_PER_CPU(struct fpu *, fpu_fpregs_owner_ctx);
44 static void kernel_fpu_disable(void)
46 WARN_ON_FPU(this_cpu_read(in_kernel_fpu));
47 this_cpu_write(in_kernel_fpu, true);
50 static void kernel_fpu_enable(void)
52 WARN_ON_FPU(!this_cpu_read(in_kernel_fpu));
53 this_cpu_write(in_kernel_fpu, false);
56 static bool kernel_fpu_disabled(void)
58 return this_cpu_read(in_kernel_fpu);
61 static bool interrupted_kernel_fpu_idle(void)
63 return !kernel_fpu_disabled();
67 * Were we in user mode (or vm86 mode) when we were
68 * interrupted?
70 * Doing kernel_fpu_begin/end() is ok if we are running
71 * in an interrupt context from user mode - we'll just
72 * save the FPU state as required.
74 static bool interrupted_user_mode(void)
76 struct pt_regs *regs = get_irq_regs();
77 return regs && user_mode(regs);
81 * Can we use the FPU in kernel mode with the
82 * whole "kernel_fpu_begin/end()" sequence?
84 * It's always ok in process context (ie "not interrupt")
85 * but it is sometimes ok even from an irq.
87 bool irq_fpu_usable(void)
89 return !in_interrupt() ||
90 interrupted_user_mode() ||
91 interrupted_kernel_fpu_idle();
93 EXPORT_SYMBOL(irq_fpu_usable);
95 void __kernel_fpu_begin(void)
97 struct fpu *fpu = &current->thread.fpu;
99 WARN_ON_FPU(!irq_fpu_usable());
101 kernel_fpu_disable();
103 if (fpu->initialized) {
105 * Ignore return value -- we don't care if reg state
106 * is clobbered.
108 copy_fpregs_to_fpstate(fpu);
109 } else {
110 __cpu_invalidate_fpregs_state();
113 EXPORT_SYMBOL(__kernel_fpu_begin);
115 void __kernel_fpu_end(void)
117 struct fpu *fpu = &current->thread.fpu;
119 if (fpu->initialized)
120 copy_kernel_to_fpregs(&fpu->state);
122 kernel_fpu_enable();
124 EXPORT_SYMBOL(__kernel_fpu_end);
126 void kernel_fpu_begin(void)
128 preempt_disable();
129 __kernel_fpu_begin();
131 EXPORT_SYMBOL_GPL(kernel_fpu_begin);
133 void kernel_fpu_end(void)
135 __kernel_fpu_end();
136 preempt_enable();
138 EXPORT_SYMBOL_GPL(kernel_fpu_end);
141 * Save the FPU state (mark it for reload if necessary):
143 * This only ever gets called for the current task.
145 void fpu__save(struct fpu *fpu)
147 WARN_ON_FPU(fpu != &current->thread.fpu);
149 preempt_disable();
150 trace_x86_fpu_before_save(fpu);
151 if (fpu->initialized) {
152 if (!copy_fpregs_to_fpstate(fpu)) {
153 copy_kernel_to_fpregs(&fpu->state);
156 trace_x86_fpu_after_save(fpu);
157 preempt_enable();
159 EXPORT_SYMBOL_GPL(fpu__save);
162 * Legacy x87 fpstate state init:
164 static inline void fpstate_init_fstate(struct fregs_state *fp)
166 fp->cwd = 0xffff037fu;
167 fp->swd = 0xffff0000u;
168 fp->twd = 0xffffffffu;
169 fp->fos = 0xffff0000u;
172 void fpstate_init(union fpregs_state *state)
174 if (!static_cpu_has(X86_FEATURE_FPU)) {
175 fpstate_init_soft(&state->soft);
176 return;
179 memset(state, 0, fpu_kernel_xstate_size);
181 if (static_cpu_has(X86_FEATURE_XSAVES))
182 fpstate_init_xstate(&state->xsave);
183 if (static_cpu_has(X86_FEATURE_FXSR))
184 fpstate_init_fxstate(&state->fxsave);
185 else
186 fpstate_init_fstate(&state->fsave);
188 EXPORT_SYMBOL_GPL(fpstate_init);
190 int fpu__copy(struct fpu *dst_fpu, struct fpu *src_fpu)
192 dst_fpu->last_cpu = -1;
194 if (!src_fpu->initialized || !static_cpu_has(X86_FEATURE_FPU))
195 return 0;
197 WARN_ON_FPU(src_fpu != &current->thread.fpu);
200 * Don't let 'init optimized' areas of the XSAVE area
201 * leak into the child task:
203 memset(&dst_fpu->state.xsave, 0, fpu_kernel_xstate_size);
206 * Save current FPU registers directly into the child
207 * FPU context, without any memory-to-memory copying.
209 * ( The function 'fails' in the FNSAVE case, which destroys
210 * register contents so we have to copy them back. )
212 if (!copy_fpregs_to_fpstate(dst_fpu)) {
213 memcpy(&src_fpu->state, &dst_fpu->state, fpu_kernel_xstate_size);
214 copy_kernel_to_fpregs(&src_fpu->state);
217 trace_x86_fpu_copy_src(src_fpu);
218 trace_x86_fpu_copy_dst(dst_fpu);
220 return 0;
224 * Activate the current task's in-memory FPU context,
225 * if it has not been used before:
227 void fpu__initialize(struct fpu *fpu)
229 WARN_ON_FPU(fpu != &current->thread.fpu);
231 if (!fpu->initialized) {
232 fpstate_init(&fpu->state);
233 trace_x86_fpu_init_state(fpu);
235 trace_x86_fpu_activate_state(fpu);
236 /* Safe to do for the current task: */
237 fpu->initialized = 1;
240 EXPORT_SYMBOL_GPL(fpu__initialize);
243 * This function must be called before we read a task's fpstate.
245 * There's two cases where this gets called:
247 * - for the current task (when coredumping), in which case we have
248 * to save the latest FPU registers into the fpstate,
250 * - or it's called for stopped tasks (ptrace), in which case the
251 * registers were already saved by the context-switch code when
252 * the task scheduled out - we only have to initialize the registers
253 * if they've never been initialized.
255 * If the task has used the FPU before then save it.
257 void fpu__prepare_read(struct fpu *fpu)
259 if (fpu == &current->thread.fpu) {
260 fpu__save(fpu);
261 } else {
262 if (!fpu->initialized) {
263 fpstate_init(&fpu->state);
264 trace_x86_fpu_init_state(fpu);
266 trace_x86_fpu_activate_state(fpu);
267 /* Safe to do for current and for stopped child tasks: */
268 fpu->initialized = 1;
274 * This function must be called before we write a task's fpstate.
276 * If the task has used the FPU before then invalidate any cached FPU registers.
277 * If the task has not used the FPU before then initialize its fpstate.
279 * After this function call, after registers in the fpstate are
280 * modified and the child task has woken up, the child task will
281 * restore the modified FPU state from the modified context. If we
282 * didn't clear its cached status here then the cached in-registers
283 * state pending on its former CPU could be restored, corrupting
284 * the modifications.
286 void fpu__prepare_write(struct fpu *fpu)
289 * Only stopped child tasks can be used to modify the FPU
290 * state in the fpstate buffer:
292 WARN_ON_FPU(fpu == &current->thread.fpu);
294 if (fpu->initialized) {
295 /* Invalidate any cached state: */
296 __fpu_invalidate_fpregs_state(fpu);
297 } else {
298 fpstate_init(&fpu->state);
299 trace_x86_fpu_init_state(fpu);
301 trace_x86_fpu_activate_state(fpu);
302 /* Safe to do for stopped child tasks: */
303 fpu->initialized = 1;
308 * 'fpu__restore()' is called to copy FPU registers from
309 * the FPU fpstate to the live hw registers and to activate
310 * access to the hardware registers, so that FPU instructions
311 * can be used afterwards.
313 * Must be called with kernel preemption disabled (for example
314 * with local interrupts disabled, as it is in the case of
315 * do_device_not_available()).
317 void fpu__restore(struct fpu *fpu)
319 fpu__initialize(fpu);
321 /* Avoid __kernel_fpu_begin() right after fpregs_activate() */
322 kernel_fpu_disable();
323 trace_x86_fpu_before_restore(fpu);
324 fpregs_activate(fpu);
325 copy_kernel_to_fpregs(&fpu->state);
326 trace_x86_fpu_after_restore(fpu);
327 kernel_fpu_enable();
329 EXPORT_SYMBOL_GPL(fpu__restore);
332 * Drops current FPU state: deactivates the fpregs and
333 * the fpstate. NOTE: it still leaves previous contents
334 * in the fpregs in the eager-FPU case.
336 * This function can be used in cases where we know that
337 * a state-restore is coming: either an explicit one,
338 * or a reschedule.
340 void fpu__drop(struct fpu *fpu)
342 preempt_disable();
344 if (fpu == &current->thread.fpu) {
345 if (fpu->initialized) {
346 /* Ignore delayed exceptions from user space */
347 asm volatile("1: fwait\n"
348 "2:\n"
349 _ASM_EXTABLE(1b, 2b));
350 fpregs_deactivate(fpu);
354 fpu->initialized = 0;
356 trace_x86_fpu_dropped(fpu);
358 preempt_enable();
362 * Clear FPU registers by setting them up from
363 * the init fpstate:
365 static inline void copy_init_fpstate_to_fpregs(void)
367 if (use_xsave())
368 copy_kernel_to_xregs(&init_fpstate.xsave, -1);
369 else if (static_cpu_has(X86_FEATURE_FXSR))
370 copy_kernel_to_fxregs(&init_fpstate.fxsave);
371 else
372 copy_kernel_to_fregs(&init_fpstate.fsave);
374 if (boot_cpu_has(X86_FEATURE_OSPKE))
375 copy_init_pkru_to_fpregs();
379 * Clear the FPU state back to init state.
381 * Called by sys_execve(), by the signal handler code and by various
382 * error paths.
384 void fpu__clear(struct fpu *fpu)
386 WARN_ON_FPU(fpu != &current->thread.fpu); /* Almost certainly an anomaly */
388 fpu__drop(fpu);
391 * Make sure fpstate is cleared and initialized.
393 if (static_cpu_has(X86_FEATURE_FPU)) {
394 preempt_disable();
395 fpu__initialize(fpu);
396 user_fpu_begin();
397 copy_init_fpstate_to_fpregs();
398 preempt_enable();
403 * x87 math exception handling:
406 int fpu__exception_code(struct fpu *fpu, int trap_nr)
408 int err;
410 if (trap_nr == X86_TRAP_MF) {
411 unsigned short cwd, swd;
413 * (~cwd & swd) will mask out exceptions that are not set to unmasked
414 * status. 0x3f is the exception bits in these regs, 0x200 is the
415 * C1 reg you need in case of a stack fault, 0x040 is the stack
416 * fault bit. We should only be taking one exception at a time,
417 * so if this combination doesn't produce any single exception,
418 * then we have a bad program that isn't synchronizing its FPU usage
419 * and it will suffer the consequences since we won't be able to
420 * fully reproduce the context of the exception.
422 if (boot_cpu_has(X86_FEATURE_FXSR)) {
423 cwd = fpu->state.fxsave.cwd;
424 swd = fpu->state.fxsave.swd;
425 } else {
426 cwd = (unsigned short)fpu->state.fsave.cwd;
427 swd = (unsigned short)fpu->state.fsave.swd;
430 err = swd & ~cwd;
431 } else {
433 * The SIMD FPU exceptions are handled a little differently, as there
434 * is only a single status/control register. Thus, to determine which
435 * unmasked exception was caught we must mask the exception mask bits
436 * at 0x1f80, and then use these to mask the exception bits at 0x3f.
438 unsigned short mxcsr = MXCSR_DEFAULT;
440 if (boot_cpu_has(X86_FEATURE_XMM))
441 mxcsr = fpu->state.fxsave.mxcsr;
443 err = ~(mxcsr >> 7) & mxcsr;
446 if (err & 0x001) { /* Invalid op */
448 * swd & 0x240 == 0x040: Stack Underflow
449 * swd & 0x240 == 0x240: Stack Overflow
450 * User must clear the SF bit (0x40) if set
452 return FPE_FLTINV;
453 } else if (err & 0x004) { /* Divide by Zero */
454 return FPE_FLTDIV;
455 } else if (err & 0x008) { /* Overflow */
456 return FPE_FLTOVF;
457 } else if (err & 0x012) { /* Denormal, Underflow */
458 return FPE_FLTUND;
459 } else if (err & 0x020) { /* Precision */
460 return FPE_FLTRES;
464 * If we're using IRQ 13, or supposedly even some trap
465 * X86_TRAP_MF implementations, it's possible
466 * we get a spurious trap, which is not an error.
468 return 0;