Merge tag 'for_linus' of git://git.kernel.org/pub/scm/linux/kernel/git/mst/vhost
[cris-mirror.git] / arch / x86 / kernel / hpet.c
blob8ce4212e2b8d0f139e543e05e7e284ee25ee856d
1 #include <linux/clocksource.h>
2 #include <linux/clockchips.h>
3 #include <linux/interrupt.h>
4 #include <linux/export.h>
5 #include <linux/delay.h>
6 #include <linux/errno.h>
7 #include <linux/i8253.h>
8 #include <linux/slab.h>
9 #include <linux/hpet.h>
10 #include <linux/init.h>
11 #include <linux/cpu.h>
12 #include <linux/pm.h>
13 #include <linux/io.h>
15 #include <asm/cpufeature.h>
16 #include <asm/irqdomain.h>
17 #include <asm/fixmap.h>
18 #include <asm/hpet.h>
19 #include <asm/time.h>
21 #define HPET_MASK CLOCKSOURCE_MASK(32)
23 /* FSEC = 10^-15
24 NSEC = 10^-9 */
25 #define FSEC_PER_NSEC 1000000L
27 #define HPET_DEV_USED_BIT 2
28 #define HPET_DEV_USED (1 << HPET_DEV_USED_BIT)
29 #define HPET_DEV_VALID 0x8
30 #define HPET_DEV_FSB_CAP 0x1000
31 #define HPET_DEV_PERI_CAP 0x2000
33 #define HPET_MIN_CYCLES 128
34 #define HPET_MIN_PROG_DELTA (HPET_MIN_CYCLES + (HPET_MIN_CYCLES >> 1))
37 * HPET address is set in acpi/boot.c, when an ACPI entry exists
39 unsigned long hpet_address;
40 u8 hpet_blockid; /* OS timer block num */
41 bool hpet_msi_disable;
43 #ifdef CONFIG_PCI_MSI
44 static unsigned int hpet_num_timers;
45 #endif
46 static void __iomem *hpet_virt_address;
48 struct hpet_dev {
49 struct clock_event_device evt;
50 unsigned int num;
51 int cpu;
52 unsigned int irq;
53 unsigned int flags;
54 char name[10];
57 static inline struct hpet_dev *EVT_TO_HPET_DEV(struct clock_event_device *evtdev)
59 return container_of(evtdev, struct hpet_dev, evt);
62 inline unsigned int hpet_readl(unsigned int a)
64 return readl(hpet_virt_address + a);
67 static inline void hpet_writel(unsigned int d, unsigned int a)
69 writel(d, hpet_virt_address + a);
72 #ifdef CONFIG_X86_64
73 #include <asm/pgtable.h>
74 #endif
76 static inline void hpet_set_mapping(void)
78 hpet_virt_address = ioremap_nocache(hpet_address, HPET_MMAP_SIZE);
81 static inline void hpet_clear_mapping(void)
83 iounmap(hpet_virt_address);
84 hpet_virt_address = NULL;
88 * HPET command line enable / disable
90 bool boot_hpet_disable;
91 bool hpet_force_user;
92 static bool hpet_verbose;
94 static int __init hpet_setup(char *str)
96 while (str) {
97 char *next = strchr(str, ',');
99 if (next)
100 *next++ = 0;
101 if (!strncmp("disable", str, 7))
102 boot_hpet_disable = true;
103 if (!strncmp("force", str, 5))
104 hpet_force_user = true;
105 if (!strncmp("verbose", str, 7))
106 hpet_verbose = true;
107 str = next;
109 return 1;
111 __setup("hpet=", hpet_setup);
113 static int __init disable_hpet(char *str)
115 boot_hpet_disable = true;
116 return 1;
118 __setup("nohpet", disable_hpet);
120 static inline int is_hpet_capable(void)
122 return !boot_hpet_disable && hpet_address;
126 * HPET timer interrupt enable / disable
128 static bool hpet_legacy_int_enabled;
131 * is_hpet_enabled - check whether the hpet timer interrupt is enabled
133 int is_hpet_enabled(void)
135 return is_hpet_capable() && hpet_legacy_int_enabled;
137 EXPORT_SYMBOL_GPL(is_hpet_enabled);
139 static void _hpet_print_config(const char *function, int line)
141 u32 i, timers, l, h;
142 printk(KERN_INFO "hpet: %s(%d):\n", function, line);
143 l = hpet_readl(HPET_ID);
144 h = hpet_readl(HPET_PERIOD);
145 timers = ((l & HPET_ID_NUMBER) >> HPET_ID_NUMBER_SHIFT) + 1;
146 printk(KERN_INFO "hpet: ID: 0x%x, PERIOD: 0x%x\n", l, h);
147 l = hpet_readl(HPET_CFG);
148 h = hpet_readl(HPET_STATUS);
149 printk(KERN_INFO "hpet: CFG: 0x%x, STATUS: 0x%x\n", l, h);
150 l = hpet_readl(HPET_COUNTER);
151 h = hpet_readl(HPET_COUNTER+4);
152 printk(KERN_INFO "hpet: COUNTER_l: 0x%x, COUNTER_h: 0x%x\n", l, h);
154 for (i = 0; i < timers; i++) {
155 l = hpet_readl(HPET_Tn_CFG(i));
156 h = hpet_readl(HPET_Tn_CFG(i)+4);
157 printk(KERN_INFO "hpet: T%d: CFG_l: 0x%x, CFG_h: 0x%x\n",
158 i, l, h);
159 l = hpet_readl(HPET_Tn_CMP(i));
160 h = hpet_readl(HPET_Tn_CMP(i)+4);
161 printk(KERN_INFO "hpet: T%d: CMP_l: 0x%x, CMP_h: 0x%x\n",
162 i, l, h);
163 l = hpet_readl(HPET_Tn_ROUTE(i));
164 h = hpet_readl(HPET_Tn_ROUTE(i)+4);
165 printk(KERN_INFO "hpet: T%d ROUTE_l: 0x%x, ROUTE_h: 0x%x\n",
166 i, l, h);
170 #define hpet_print_config() \
171 do { \
172 if (hpet_verbose) \
173 _hpet_print_config(__func__, __LINE__); \
174 } while (0)
177 * When the hpet driver (/dev/hpet) is enabled, we need to reserve
178 * timer 0 and timer 1 in case of RTC emulation.
180 #ifdef CONFIG_HPET
182 static void hpet_reserve_msi_timers(struct hpet_data *hd);
184 static void hpet_reserve_platform_timers(unsigned int id)
186 struct hpet __iomem *hpet = hpet_virt_address;
187 struct hpet_timer __iomem *timer = &hpet->hpet_timers[2];
188 unsigned int nrtimers, i;
189 struct hpet_data hd;
191 nrtimers = ((id & HPET_ID_NUMBER) >> HPET_ID_NUMBER_SHIFT) + 1;
193 memset(&hd, 0, sizeof(hd));
194 hd.hd_phys_address = hpet_address;
195 hd.hd_address = hpet;
196 hd.hd_nirqs = nrtimers;
197 hpet_reserve_timer(&hd, 0);
199 #ifdef CONFIG_HPET_EMULATE_RTC
200 hpet_reserve_timer(&hd, 1);
201 #endif
204 * NOTE that hd_irq[] reflects IOAPIC input pins (LEGACY_8254
205 * is wrong for i8259!) not the output IRQ. Many BIOS writers
206 * don't bother configuring *any* comparator interrupts.
208 hd.hd_irq[0] = HPET_LEGACY_8254;
209 hd.hd_irq[1] = HPET_LEGACY_RTC;
211 for (i = 2; i < nrtimers; timer++, i++) {
212 hd.hd_irq[i] = (readl(&timer->hpet_config) &
213 Tn_INT_ROUTE_CNF_MASK) >> Tn_INT_ROUTE_CNF_SHIFT;
216 hpet_reserve_msi_timers(&hd);
218 hpet_alloc(&hd);
221 #else
222 static void hpet_reserve_platform_timers(unsigned int id) { }
223 #endif
226 * Common hpet info
228 static unsigned long hpet_freq;
230 static struct clock_event_device hpet_clockevent;
232 static void hpet_stop_counter(void)
234 u32 cfg = hpet_readl(HPET_CFG);
235 cfg &= ~HPET_CFG_ENABLE;
236 hpet_writel(cfg, HPET_CFG);
239 static void hpet_reset_counter(void)
241 hpet_writel(0, HPET_COUNTER);
242 hpet_writel(0, HPET_COUNTER + 4);
245 static void hpet_start_counter(void)
247 unsigned int cfg = hpet_readl(HPET_CFG);
248 cfg |= HPET_CFG_ENABLE;
249 hpet_writel(cfg, HPET_CFG);
252 static void hpet_restart_counter(void)
254 hpet_stop_counter();
255 hpet_reset_counter();
256 hpet_start_counter();
259 static void hpet_resume_device(void)
261 force_hpet_resume();
264 static void hpet_resume_counter(struct clocksource *cs)
266 hpet_resume_device();
267 hpet_restart_counter();
270 static void hpet_enable_legacy_int(void)
272 unsigned int cfg = hpet_readl(HPET_CFG);
274 cfg |= HPET_CFG_LEGACY;
275 hpet_writel(cfg, HPET_CFG);
276 hpet_legacy_int_enabled = true;
279 static void hpet_legacy_clockevent_register(void)
281 /* Start HPET legacy interrupts */
282 hpet_enable_legacy_int();
285 * Start hpet with the boot cpu mask and make it
286 * global after the IO_APIC has been initialized.
288 hpet_clockevent.cpumask = cpumask_of(boot_cpu_data.cpu_index);
289 clockevents_config_and_register(&hpet_clockevent, hpet_freq,
290 HPET_MIN_PROG_DELTA, 0x7FFFFFFF);
291 global_clock_event = &hpet_clockevent;
292 printk(KERN_DEBUG "hpet clockevent registered\n");
295 static int hpet_set_periodic(struct clock_event_device *evt, int timer)
297 unsigned int cfg, cmp, now;
298 uint64_t delta;
300 hpet_stop_counter();
301 delta = ((uint64_t)(NSEC_PER_SEC / HZ)) * evt->mult;
302 delta >>= evt->shift;
303 now = hpet_readl(HPET_COUNTER);
304 cmp = now + (unsigned int)delta;
305 cfg = hpet_readl(HPET_Tn_CFG(timer));
306 cfg |= HPET_TN_ENABLE | HPET_TN_PERIODIC | HPET_TN_SETVAL |
307 HPET_TN_32BIT;
308 hpet_writel(cfg, HPET_Tn_CFG(timer));
309 hpet_writel(cmp, HPET_Tn_CMP(timer));
310 udelay(1);
312 * HPET on AMD 81xx needs a second write (with HPET_TN_SETVAL
313 * cleared) to T0_CMP to set the period. The HPET_TN_SETVAL
314 * bit is automatically cleared after the first write.
315 * (See AMD-8111 HyperTransport I/O Hub Data Sheet,
316 * Publication # 24674)
318 hpet_writel((unsigned int)delta, HPET_Tn_CMP(timer));
319 hpet_start_counter();
320 hpet_print_config();
322 return 0;
325 static int hpet_set_oneshot(struct clock_event_device *evt, int timer)
327 unsigned int cfg;
329 cfg = hpet_readl(HPET_Tn_CFG(timer));
330 cfg &= ~HPET_TN_PERIODIC;
331 cfg |= HPET_TN_ENABLE | HPET_TN_32BIT;
332 hpet_writel(cfg, HPET_Tn_CFG(timer));
334 return 0;
337 static int hpet_shutdown(struct clock_event_device *evt, int timer)
339 unsigned int cfg;
341 cfg = hpet_readl(HPET_Tn_CFG(timer));
342 cfg &= ~HPET_TN_ENABLE;
343 hpet_writel(cfg, HPET_Tn_CFG(timer));
345 return 0;
348 static int hpet_resume(struct clock_event_device *evt)
350 hpet_enable_legacy_int();
351 hpet_print_config();
352 return 0;
355 static int hpet_next_event(unsigned long delta,
356 struct clock_event_device *evt, int timer)
358 u32 cnt;
359 s32 res;
361 cnt = hpet_readl(HPET_COUNTER);
362 cnt += (u32) delta;
363 hpet_writel(cnt, HPET_Tn_CMP(timer));
366 * HPETs are a complete disaster. The compare register is
367 * based on a equal comparison and neither provides a less
368 * than or equal functionality (which would require to take
369 * the wraparound into account) nor a simple count down event
370 * mode. Further the write to the comparator register is
371 * delayed internally up to two HPET clock cycles in certain
372 * chipsets (ATI, ICH9,10). Some newer AMD chipsets have even
373 * longer delays. We worked around that by reading back the
374 * compare register, but that required another workaround for
375 * ICH9,10 chips where the first readout after write can
376 * return the old stale value. We already had a minimum
377 * programming delta of 5us enforced, but a NMI or SMI hitting
378 * between the counter readout and the comparator write can
379 * move us behind that point easily. Now instead of reading
380 * the compare register back several times, we make the ETIME
381 * decision based on the following: Return ETIME if the
382 * counter value after the write is less than HPET_MIN_CYCLES
383 * away from the event or if the counter is already ahead of
384 * the event. The minimum programming delta for the generic
385 * clockevents code is set to 1.5 * HPET_MIN_CYCLES.
387 res = (s32)(cnt - hpet_readl(HPET_COUNTER));
389 return res < HPET_MIN_CYCLES ? -ETIME : 0;
392 static int hpet_legacy_shutdown(struct clock_event_device *evt)
394 return hpet_shutdown(evt, 0);
397 static int hpet_legacy_set_oneshot(struct clock_event_device *evt)
399 return hpet_set_oneshot(evt, 0);
402 static int hpet_legacy_set_periodic(struct clock_event_device *evt)
404 return hpet_set_periodic(evt, 0);
407 static int hpet_legacy_resume(struct clock_event_device *evt)
409 return hpet_resume(evt);
412 static int hpet_legacy_next_event(unsigned long delta,
413 struct clock_event_device *evt)
415 return hpet_next_event(delta, evt, 0);
419 * The hpet clock event device
421 static struct clock_event_device hpet_clockevent = {
422 .name = "hpet",
423 .features = CLOCK_EVT_FEAT_PERIODIC |
424 CLOCK_EVT_FEAT_ONESHOT,
425 .set_state_periodic = hpet_legacy_set_periodic,
426 .set_state_oneshot = hpet_legacy_set_oneshot,
427 .set_state_shutdown = hpet_legacy_shutdown,
428 .tick_resume = hpet_legacy_resume,
429 .set_next_event = hpet_legacy_next_event,
430 .irq = 0,
431 .rating = 50,
435 * HPET MSI Support
437 #ifdef CONFIG_PCI_MSI
439 static DEFINE_PER_CPU(struct hpet_dev *, cpu_hpet_dev);
440 static struct hpet_dev *hpet_devs;
441 static struct irq_domain *hpet_domain;
443 void hpet_msi_unmask(struct irq_data *data)
445 struct hpet_dev *hdev = irq_data_get_irq_handler_data(data);
446 unsigned int cfg;
448 /* unmask it */
449 cfg = hpet_readl(HPET_Tn_CFG(hdev->num));
450 cfg |= HPET_TN_ENABLE | HPET_TN_FSB;
451 hpet_writel(cfg, HPET_Tn_CFG(hdev->num));
454 void hpet_msi_mask(struct irq_data *data)
456 struct hpet_dev *hdev = irq_data_get_irq_handler_data(data);
457 unsigned int cfg;
459 /* mask it */
460 cfg = hpet_readl(HPET_Tn_CFG(hdev->num));
461 cfg &= ~(HPET_TN_ENABLE | HPET_TN_FSB);
462 hpet_writel(cfg, HPET_Tn_CFG(hdev->num));
465 void hpet_msi_write(struct hpet_dev *hdev, struct msi_msg *msg)
467 hpet_writel(msg->data, HPET_Tn_ROUTE(hdev->num));
468 hpet_writel(msg->address_lo, HPET_Tn_ROUTE(hdev->num) + 4);
471 void hpet_msi_read(struct hpet_dev *hdev, struct msi_msg *msg)
473 msg->data = hpet_readl(HPET_Tn_ROUTE(hdev->num));
474 msg->address_lo = hpet_readl(HPET_Tn_ROUTE(hdev->num) + 4);
475 msg->address_hi = 0;
478 static int hpet_msi_shutdown(struct clock_event_device *evt)
480 struct hpet_dev *hdev = EVT_TO_HPET_DEV(evt);
482 return hpet_shutdown(evt, hdev->num);
485 static int hpet_msi_set_oneshot(struct clock_event_device *evt)
487 struct hpet_dev *hdev = EVT_TO_HPET_DEV(evt);
489 return hpet_set_oneshot(evt, hdev->num);
492 static int hpet_msi_set_periodic(struct clock_event_device *evt)
494 struct hpet_dev *hdev = EVT_TO_HPET_DEV(evt);
496 return hpet_set_periodic(evt, hdev->num);
499 static int hpet_msi_resume(struct clock_event_device *evt)
501 struct hpet_dev *hdev = EVT_TO_HPET_DEV(evt);
502 struct irq_data *data = irq_get_irq_data(hdev->irq);
503 struct msi_msg msg;
505 /* Restore the MSI msg and unmask the interrupt */
506 irq_chip_compose_msi_msg(data, &msg);
507 hpet_msi_write(hdev, &msg);
508 hpet_msi_unmask(data);
509 return 0;
512 static int hpet_msi_next_event(unsigned long delta,
513 struct clock_event_device *evt)
515 struct hpet_dev *hdev = EVT_TO_HPET_DEV(evt);
516 return hpet_next_event(delta, evt, hdev->num);
519 static irqreturn_t hpet_interrupt_handler(int irq, void *data)
521 struct hpet_dev *dev = (struct hpet_dev *)data;
522 struct clock_event_device *hevt = &dev->evt;
524 if (!hevt->event_handler) {
525 printk(KERN_INFO "Spurious HPET timer interrupt on HPET timer %d\n",
526 dev->num);
527 return IRQ_HANDLED;
530 hevt->event_handler(hevt);
531 return IRQ_HANDLED;
534 static int hpet_setup_irq(struct hpet_dev *dev)
537 if (request_irq(dev->irq, hpet_interrupt_handler,
538 IRQF_TIMER | IRQF_NOBALANCING,
539 dev->name, dev))
540 return -1;
542 disable_irq(dev->irq);
543 irq_set_affinity(dev->irq, cpumask_of(dev->cpu));
544 enable_irq(dev->irq);
546 printk(KERN_DEBUG "hpet: %s irq %d for MSI\n",
547 dev->name, dev->irq);
549 return 0;
552 /* This should be called in specific @cpu */
553 static void init_one_hpet_msi_clockevent(struct hpet_dev *hdev, int cpu)
555 struct clock_event_device *evt = &hdev->evt;
557 WARN_ON(cpu != smp_processor_id());
558 if (!(hdev->flags & HPET_DEV_VALID))
559 return;
561 hdev->cpu = cpu;
562 per_cpu(cpu_hpet_dev, cpu) = hdev;
563 evt->name = hdev->name;
564 hpet_setup_irq(hdev);
565 evt->irq = hdev->irq;
567 evt->rating = 110;
568 evt->features = CLOCK_EVT_FEAT_ONESHOT;
569 if (hdev->flags & HPET_DEV_PERI_CAP) {
570 evt->features |= CLOCK_EVT_FEAT_PERIODIC;
571 evt->set_state_periodic = hpet_msi_set_periodic;
574 evt->set_state_shutdown = hpet_msi_shutdown;
575 evt->set_state_oneshot = hpet_msi_set_oneshot;
576 evt->tick_resume = hpet_msi_resume;
577 evt->set_next_event = hpet_msi_next_event;
578 evt->cpumask = cpumask_of(hdev->cpu);
580 clockevents_config_and_register(evt, hpet_freq, HPET_MIN_PROG_DELTA,
581 0x7FFFFFFF);
584 #ifdef CONFIG_HPET
585 /* Reserve at least one timer for userspace (/dev/hpet) */
586 #define RESERVE_TIMERS 1
587 #else
588 #define RESERVE_TIMERS 0
589 #endif
591 static void hpet_msi_capability_lookup(unsigned int start_timer)
593 unsigned int id;
594 unsigned int num_timers;
595 unsigned int num_timers_used = 0;
596 int i, irq;
598 if (hpet_msi_disable)
599 return;
601 if (boot_cpu_has(X86_FEATURE_ARAT))
602 return;
603 id = hpet_readl(HPET_ID);
605 num_timers = ((id & HPET_ID_NUMBER) >> HPET_ID_NUMBER_SHIFT);
606 num_timers++; /* Value read out starts from 0 */
607 hpet_print_config();
609 hpet_domain = hpet_create_irq_domain(hpet_blockid);
610 if (!hpet_domain)
611 return;
613 hpet_devs = kzalloc(sizeof(struct hpet_dev) * num_timers, GFP_KERNEL);
614 if (!hpet_devs)
615 return;
617 hpet_num_timers = num_timers;
619 for (i = start_timer; i < num_timers - RESERVE_TIMERS; i++) {
620 struct hpet_dev *hdev = &hpet_devs[num_timers_used];
621 unsigned int cfg = hpet_readl(HPET_Tn_CFG(i));
623 /* Only consider HPET timer with MSI support */
624 if (!(cfg & HPET_TN_FSB_CAP))
625 continue;
627 hdev->flags = 0;
628 if (cfg & HPET_TN_PERIODIC_CAP)
629 hdev->flags |= HPET_DEV_PERI_CAP;
630 sprintf(hdev->name, "hpet%d", i);
631 hdev->num = i;
633 irq = hpet_assign_irq(hpet_domain, hdev, hdev->num);
634 if (irq <= 0)
635 continue;
637 hdev->irq = irq;
638 hdev->flags |= HPET_DEV_FSB_CAP;
639 hdev->flags |= HPET_DEV_VALID;
640 num_timers_used++;
641 if (num_timers_used == num_possible_cpus())
642 break;
645 printk(KERN_INFO "HPET: %d timers in total, %d timers will be used for per-cpu timer\n",
646 num_timers, num_timers_used);
649 #ifdef CONFIG_HPET
650 static void hpet_reserve_msi_timers(struct hpet_data *hd)
652 int i;
654 if (!hpet_devs)
655 return;
657 for (i = 0; i < hpet_num_timers; i++) {
658 struct hpet_dev *hdev = &hpet_devs[i];
660 if (!(hdev->flags & HPET_DEV_VALID))
661 continue;
663 hd->hd_irq[hdev->num] = hdev->irq;
664 hpet_reserve_timer(hd, hdev->num);
667 #endif
669 static struct hpet_dev *hpet_get_unused_timer(void)
671 int i;
673 if (!hpet_devs)
674 return NULL;
676 for (i = 0; i < hpet_num_timers; i++) {
677 struct hpet_dev *hdev = &hpet_devs[i];
679 if (!(hdev->flags & HPET_DEV_VALID))
680 continue;
681 if (test_and_set_bit(HPET_DEV_USED_BIT,
682 (unsigned long *)&hdev->flags))
683 continue;
684 return hdev;
686 return NULL;
689 struct hpet_work_struct {
690 struct delayed_work work;
691 struct completion complete;
694 static void hpet_work(struct work_struct *w)
696 struct hpet_dev *hdev;
697 int cpu = smp_processor_id();
698 struct hpet_work_struct *hpet_work;
700 hpet_work = container_of(w, struct hpet_work_struct, work.work);
702 hdev = hpet_get_unused_timer();
703 if (hdev)
704 init_one_hpet_msi_clockevent(hdev, cpu);
706 complete(&hpet_work->complete);
709 static int hpet_cpuhp_online(unsigned int cpu)
711 struct hpet_work_struct work;
713 INIT_DELAYED_WORK_ONSTACK(&work.work, hpet_work);
714 init_completion(&work.complete);
715 /* FIXME: add schedule_work_on() */
716 schedule_delayed_work_on(cpu, &work.work, 0);
717 wait_for_completion(&work.complete);
718 destroy_delayed_work_on_stack(&work.work);
719 return 0;
722 static int hpet_cpuhp_dead(unsigned int cpu)
724 struct hpet_dev *hdev = per_cpu(cpu_hpet_dev, cpu);
726 if (!hdev)
727 return 0;
728 free_irq(hdev->irq, hdev);
729 hdev->flags &= ~HPET_DEV_USED;
730 per_cpu(cpu_hpet_dev, cpu) = NULL;
731 return 0;
733 #else
735 static void hpet_msi_capability_lookup(unsigned int start_timer)
737 return;
740 #ifdef CONFIG_HPET
741 static void hpet_reserve_msi_timers(struct hpet_data *hd)
743 return;
745 #endif
747 #define hpet_cpuhp_online NULL
748 #define hpet_cpuhp_dead NULL
750 #endif
753 * Clock source related code
755 #if defined(CONFIG_SMP) && defined(CONFIG_64BIT)
757 * Reading the HPET counter is a very slow operation. If a large number of
758 * CPUs are trying to access the HPET counter simultaneously, it can cause
759 * massive delay and slow down system performance dramatically. This may
760 * happen when HPET is the default clock source instead of TSC. For a
761 * really large system with hundreds of CPUs, the slowdown may be so
762 * severe that it may actually crash the system because of a NMI watchdog
763 * soft lockup, for example.
765 * If multiple CPUs are trying to access the HPET counter at the same time,
766 * we don't actually need to read the counter multiple times. Instead, the
767 * other CPUs can use the counter value read by the first CPU in the group.
769 * This special feature is only enabled on x86-64 systems. It is unlikely
770 * that 32-bit x86 systems will have enough CPUs to require this feature
771 * with its associated locking overhead. And we also need 64-bit atomic
772 * read.
774 * The lock and the hpet value are stored together and can be read in a
775 * single atomic 64-bit read. It is explicitly assumed that arch_spinlock_t
776 * is 32 bits in size.
778 union hpet_lock {
779 struct {
780 arch_spinlock_t lock;
781 u32 value;
783 u64 lockval;
786 static union hpet_lock hpet __cacheline_aligned = {
787 { .lock = __ARCH_SPIN_LOCK_UNLOCKED, },
790 static u64 read_hpet(struct clocksource *cs)
792 unsigned long flags;
793 union hpet_lock old, new;
795 BUILD_BUG_ON(sizeof(union hpet_lock) != 8);
798 * Read HPET directly if in NMI.
800 if (in_nmi())
801 return (u64)hpet_readl(HPET_COUNTER);
804 * Read the current state of the lock and HPET value atomically.
806 old.lockval = READ_ONCE(hpet.lockval);
808 if (arch_spin_is_locked(&old.lock))
809 goto contended;
811 local_irq_save(flags);
812 if (arch_spin_trylock(&hpet.lock)) {
813 new.value = hpet_readl(HPET_COUNTER);
815 * Use WRITE_ONCE() to prevent store tearing.
817 WRITE_ONCE(hpet.value, new.value);
818 arch_spin_unlock(&hpet.lock);
819 local_irq_restore(flags);
820 return (u64)new.value;
822 local_irq_restore(flags);
824 contended:
826 * Contended case
827 * --------------
828 * Wait until the HPET value change or the lock is free to indicate
829 * its value is up-to-date.
831 * It is possible that old.value has already contained the latest
832 * HPET value while the lock holder was in the process of releasing
833 * the lock. Checking for lock state change will enable us to return
834 * the value immediately instead of waiting for the next HPET reader
835 * to come along.
837 do {
838 cpu_relax();
839 new.lockval = READ_ONCE(hpet.lockval);
840 } while ((new.value == old.value) && arch_spin_is_locked(&new.lock));
842 return (u64)new.value;
844 #else
846 * For UP or 32-bit.
848 static u64 read_hpet(struct clocksource *cs)
850 return (u64)hpet_readl(HPET_COUNTER);
852 #endif
854 static struct clocksource clocksource_hpet = {
855 .name = "hpet",
856 .rating = 250,
857 .read = read_hpet,
858 .mask = HPET_MASK,
859 .flags = CLOCK_SOURCE_IS_CONTINUOUS,
860 .resume = hpet_resume_counter,
863 static int hpet_clocksource_register(void)
865 u64 start, now;
866 u64 t1;
868 /* Start the counter */
869 hpet_restart_counter();
871 /* Verify whether hpet counter works */
872 t1 = hpet_readl(HPET_COUNTER);
873 start = rdtsc();
876 * We don't know the TSC frequency yet, but waiting for
877 * 200000 TSC cycles is safe:
878 * 4 GHz == 50us
879 * 1 GHz == 200us
881 do {
882 rep_nop();
883 now = rdtsc();
884 } while ((now - start) < 200000UL);
886 if (t1 == hpet_readl(HPET_COUNTER)) {
887 printk(KERN_WARNING
888 "HPET counter not counting. HPET disabled\n");
889 return -ENODEV;
892 clocksource_register_hz(&clocksource_hpet, (u32)hpet_freq);
893 return 0;
896 static u32 *hpet_boot_cfg;
899 * hpet_enable - Try to setup the HPET timer. Returns 1 on success.
901 int __init hpet_enable(void)
903 u32 hpet_period, cfg, id;
904 u64 freq;
905 unsigned int i, last;
907 if (!is_hpet_capable())
908 return 0;
910 hpet_set_mapping();
913 * Read the period and check for a sane value:
915 hpet_period = hpet_readl(HPET_PERIOD);
918 * AMD SB700 based systems with spread spectrum enabled use a
919 * SMM based HPET emulation to provide proper frequency
920 * setting. The SMM code is initialized with the first HPET
921 * register access and takes some time to complete. During
922 * this time the config register reads 0xffffffff. We check
923 * for max. 1000 loops whether the config register reads a non
924 * 0xffffffff value to make sure that HPET is up and running
925 * before we go further. A counting loop is safe, as the HPET
926 * access takes thousands of CPU cycles. On non SB700 based
927 * machines this check is only done once and has no side
928 * effects.
930 for (i = 0; hpet_readl(HPET_CFG) == 0xFFFFFFFF; i++) {
931 if (i == 1000) {
932 printk(KERN_WARNING
933 "HPET config register value = 0xFFFFFFFF. "
934 "Disabling HPET\n");
935 goto out_nohpet;
939 if (hpet_period < HPET_MIN_PERIOD || hpet_period > HPET_MAX_PERIOD)
940 goto out_nohpet;
943 * The period is a femto seconds value. Convert it to a
944 * frequency.
946 freq = FSEC_PER_SEC;
947 do_div(freq, hpet_period);
948 hpet_freq = freq;
951 * Read the HPET ID register to retrieve the IRQ routing
952 * information and the number of channels
954 id = hpet_readl(HPET_ID);
955 hpet_print_config();
957 last = (id & HPET_ID_NUMBER) >> HPET_ID_NUMBER_SHIFT;
959 #ifdef CONFIG_HPET_EMULATE_RTC
961 * The legacy routing mode needs at least two channels, tick timer
962 * and the rtc emulation channel.
964 if (!last)
965 goto out_nohpet;
966 #endif
968 cfg = hpet_readl(HPET_CFG);
969 hpet_boot_cfg = kmalloc((last + 2) * sizeof(*hpet_boot_cfg),
970 GFP_KERNEL);
971 if (hpet_boot_cfg)
972 *hpet_boot_cfg = cfg;
973 else
974 pr_warn("HPET initial state will not be saved\n");
975 cfg &= ~(HPET_CFG_ENABLE | HPET_CFG_LEGACY);
976 hpet_writel(cfg, HPET_CFG);
977 if (cfg)
978 pr_warn("HPET: Unrecognized bits %#x set in global cfg\n",
979 cfg);
981 for (i = 0; i <= last; ++i) {
982 cfg = hpet_readl(HPET_Tn_CFG(i));
983 if (hpet_boot_cfg)
984 hpet_boot_cfg[i + 1] = cfg;
985 cfg &= ~(HPET_TN_ENABLE | HPET_TN_LEVEL | HPET_TN_FSB);
986 hpet_writel(cfg, HPET_Tn_CFG(i));
987 cfg &= ~(HPET_TN_PERIODIC | HPET_TN_PERIODIC_CAP
988 | HPET_TN_64BIT_CAP | HPET_TN_32BIT | HPET_TN_ROUTE
989 | HPET_TN_FSB | HPET_TN_FSB_CAP);
990 if (cfg)
991 pr_warn("HPET: Unrecognized bits %#x set in cfg#%u\n",
992 cfg, i);
994 hpet_print_config();
996 if (hpet_clocksource_register())
997 goto out_nohpet;
999 if (id & HPET_ID_LEGSUP) {
1000 hpet_legacy_clockevent_register();
1001 return 1;
1003 return 0;
1005 out_nohpet:
1006 hpet_clear_mapping();
1007 hpet_address = 0;
1008 return 0;
1012 * Needs to be late, as the reserve_timer code calls kalloc !
1014 * Not a problem on i386 as hpet_enable is called from late_time_init,
1015 * but on x86_64 it is necessary !
1017 static __init int hpet_late_init(void)
1019 int ret;
1021 if (boot_hpet_disable)
1022 return -ENODEV;
1024 if (!hpet_address) {
1025 if (!force_hpet_address)
1026 return -ENODEV;
1028 hpet_address = force_hpet_address;
1029 hpet_enable();
1032 if (!hpet_virt_address)
1033 return -ENODEV;
1035 if (hpet_readl(HPET_ID) & HPET_ID_LEGSUP)
1036 hpet_msi_capability_lookup(2);
1037 else
1038 hpet_msi_capability_lookup(0);
1040 hpet_reserve_platform_timers(hpet_readl(HPET_ID));
1041 hpet_print_config();
1043 if (hpet_msi_disable)
1044 return 0;
1046 if (boot_cpu_has(X86_FEATURE_ARAT))
1047 return 0;
1049 /* This notifier should be called after workqueue is ready */
1050 ret = cpuhp_setup_state(CPUHP_AP_X86_HPET_ONLINE, "x86/hpet:online",
1051 hpet_cpuhp_online, NULL);
1052 if (ret)
1053 return ret;
1054 ret = cpuhp_setup_state(CPUHP_X86_HPET_DEAD, "x86/hpet:dead", NULL,
1055 hpet_cpuhp_dead);
1056 if (ret)
1057 goto err_cpuhp;
1058 return 0;
1060 err_cpuhp:
1061 cpuhp_remove_state(CPUHP_AP_X86_HPET_ONLINE);
1062 return ret;
1064 fs_initcall(hpet_late_init);
1066 void hpet_disable(void)
1068 if (is_hpet_capable() && hpet_virt_address) {
1069 unsigned int cfg = hpet_readl(HPET_CFG), id, last;
1071 if (hpet_boot_cfg)
1072 cfg = *hpet_boot_cfg;
1073 else if (hpet_legacy_int_enabled) {
1074 cfg &= ~HPET_CFG_LEGACY;
1075 hpet_legacy_int_enabled = false;
1077 cfg &= ~HPET_CFG_ENABLE;
1078 hpet_writel(cfg, HPET_CFG);
1080 if (!hpet_boot_cfg)
1081 return;
1083 id = hpet_readl(HPET_ID);
1084 last = ((id & HPET_ID_NUMBER) >> HPET_ID_NUMBER_SHIFT);
1086 for (id = 0; id <= last; ++id)
1087 hpet_writel(hpet_boot_cfg[id + 1], HPET_Tn_CFG(id));
1089 if (*hpet_boot_cfg & HPET_CFG_ENABLE)
1090 hpet_writel(*hpet_boot_cfg, HPET_CFG);
1094 #ifdef CONFIG_HPET_EMULATE_RTC
1096 /* HPET in LegacyReplacement Mode eats up RTC interrupt line. When, HPET
1097 * is enabled, we support RTC interrupt functionality in software.
1098 * RTC has 3 kinds of interrupts:
1099 * 1) Update Interrupt - generate an interrupt, every sec, when RTC clock
1100 * is updated
1101 * 2) Alarm Interrupt - generate an interrupt at a specific time of day
1102 * 3) Periodic Interrupt - generate periodic interrupt, with frequencies
1103 * 2Hz-8192Hz (2Hz-64Hz for non-root user) (all freqs in powers of 2)
1104 * (1) and (2) above are implemented using polling at a frequency of
1105 * 64 Hz. The exact frequency is a tradeoff between accuracy and interrupt
1106 * overhead. (DEFAULT_RTC_INT_FREQ)
1107 * For (3), we use interrupts at 64Hz or user specified periodic
1108 * frequency, whichever is higher.
1110 #include <linux/mc146818rtc.h>
1111 #include <linux/rtc.h>
1113 #define DEFAULT_RTC_INT_FREQ 64
1114 #define DEFAULT_RTC_SHIFT 6
1115 #define RTC_NUM_INTS 1
1117 static unsigned long hpet_rtc_flags;
1118 static int hpet_prev_update_sec;
1119 static struct rtc_time hpet_alarm_time;
1120 static unsigned long hpet_pie_count;
1121 static u32 hpet_t1_cmp;
1122 static u32 hpet_default_delta;
1123 static u32 hpet_pie_delta;
1124 static unsigned long hpet_pie_limit;
1126 static rtc_irq_handler irq_handler;
1129 * Check that the hpet counter c1 is ahead of the c2
1131 static inline int hpet_cnt_ahead(u32 c1, u32 c2)
1133 return (s32)(c2 - c1) < 0;
1137 * Registers a IRQ handler.
1139 int hpet_register_irq_handler(rtc_irq_handler handler)
1141 if (!is_hpet_enabled())
1142 return -ENODEV;
1143 if (irq_handler)
1144 return -EBUSY;
1146 irq_handler = handler;
1148 return 0;
1150 EXPORT_SYMBOL_GPL(hpet_register_irq_handler);
1153 * Deregisters the IRQ handler registered with hpet_register_irq_handler()
1154 * and does cleanup.
1156 void hpet_unregister_irq_handler(rtc_irq_handler handler)
1158 if (!is_hpet_enabled())
1159 return;
1161 irq_handler = NULL;
1162 hpet_rtc_flags = 0;
1164 EXPORT_SYMBOL_GPL(hpet_unregister_irq_handler);
1167 * Timer 1 for RTC emulation. We use one shot mode, as periodic mode
1168 * is not supported by all HPET implementations for timer 1.
1170 * hpet_rtc_timer_init() is called when the rtc is initialized.
1172 int hpet_rtc_timer_init(void)
1174 unsigned int cfg, cnt, delta;
1175 unsigned long flags;
1177 if (!is_hpet_enabled())
1178 return 0;
1180 if (!hpet_default_delta) {
1181 uint64_t clc;
1183 clc = (uint64_t) hpet_clockevent.mult * NSEC_PER_SEC;
1184 clc >>= hpet_clockevent.shift + DEFAULT_RTC_SHIFT;
1185 hpet_default_delta = clc;
1188 if (!(hpet_rtc_flags & RTC_PIE) || hpet_pie_limit)
1189 delta = hpet_default_delta;
1190 else
1191 delta = hpet_pie_delta;
1193 local_irq_save(flags);
1195 cnt = delta + hpet_readl(HPET_COUNTER);
1196 hpet_writel(cnt, HPET_T1_CMP);
1197 hpet_t1_cmp = cnt;
1199 cfg = hpet_readl(HPET_T1_CFG);
1200 cfg &= ~HPET_TN_PERIODIC;
1201 cfg |= HPET_TN_ENABLE | HPET_TN_32BIT;
1202 hpet_writel(cfg, HPET_T1_CFG);
1204 local_irq_restore(flags);
1206 return 1;
1208 EXPORT_SYMBOL_GPL(hpet_rtc_timer_init);
1210 static void hpet_disable_rtc_channel(void)
1212 u32 cfg = hpet_readl(HPET_T1_CFG);
1213 cfg &= ~HPET_TN_ENABLE;
1214 hpet_writel(cfg, HPET_T1_CFG);
1218 * The functions below are called from rtc driver.
1219 * Return 0 if HPET is not being used.
1220 * Otherwise do the necessary changes and return 1.
1222 int hpet_mask_rtc_irq_bit(unsigned long bit_mask)
1224 if (!is_hpet_enabled())
1225 return 0;
1227 hpet_rtc_flags &= ~bit_mask;
1228 if (unlikely(!hpet_rtc_flags))
1229 hpet_disable_rtc_channel();
1231 return 1;
1233 EXPORT_SYMBOL_GPL(hpet_mask_rtc_irq_bit);
1235 int hpet_set_rtc_irq_bit(unsigned long bit_mask)
1237 unsigned long oldbits = hpet_rtc_flags;
1239 if (!is_hpet_enabled())
1240 return 0;
1242 hpet_rtc_flags |= bit_mask;
1244 if ((bit_mask & RTC_UIE) && !(oldbits & RTC_UIE))
1245 hpet_prev_update_sec = -1;
1247 if (!oldbits)
1248 hpet_rtc_timer_init();
1250 return 1;
1252 EXPORT_SYMBOL_GPL(hpet_set_rtc_irq_bit);
1254 int hpet_set_alarm_time(unsigned char hrs, unsigned char min,
1255 unsigned char sec)
1257 if (!is_hpet_enabled())
1258 return 0;
1260 hpet_alarm_time.tm_hour = hrs;
1261 hpet_alarm_time.tm_min = min;
1262 hpet_alarm_time.tm_sec = sec;
1264 return 1;
1266 EXPORT_SYMBOL_GPL(hpet_set_alarm_time);
1268 int hpet_set_periodic_freq(unsigned long freq)
1270 uint64_t clc;
1272 if (!is_hpet_enabled())
1273 return 0;
1275 if (freq <= DEFAULT_RTC_INT_FREQ)
1276 hpet_pie_limit = DEFAULT_RTC_INT_FREQ / freq;
1277 else {
1278 clc = (uint64_t) hpet_clockevent.mult * NSEC_PER_SEC;
1279 do_div(clc, freq);
1280 clc >>= hpet_clockevent.shift;
1281 hpet_pie_delta = clc;
1282 hpet_pie_limit = 0;
1284 return 1;
1286 EXPORT_SYMBOL_GPL(hpet_set_periodic_freq);
1288 int hpet_rtc_dropped_irq(void)
1290 return is_hpet_enabled();
1292 EXPORT_SYMBOL_GPL(hpet_rtc_dropped_irq);
1294 static void hpet_rtc_timer_reinit(void)
1296 unsigned int delta;
1297 int lost_ints = -1;
1299 if (unlikely(!hpet_rtc_flags))
1300 hpet_disable_rtc_channel();
1302 if (!(hpet_rtc_flags & RTC_PIE) || hpet_pie_limit)
1303 delta = hpet_default_delta;
1304 else
1305 delta = hpet_pie_delta;
1308 * Increment the comparator value until we are ahead of the
1309 * current count.
1311 do {
1312 hpet_t1_cmp += delta;
1313 hpet_writel(hpet_t1_cmp, HPET_T1_CMP);
1314 lost_ints++;
1315 } while (!hpet_cnt_ahead(hpet_t1_cmp, hpet_readl(HPET_COUNTER)));
1317 if (lost_ints) {
1318 if (hpet_rtc_flags & RTC_PIE)
1319 hpet_pie_count += lost_ints;
1320 if (printk_ratelimit())
1321 printk(KERN_WARNING "hpet1: lost %d rtc interrupts\n",
1322 lost_ints);
1326 irqreturn_t hpet_rtc_interrupt(int irq, void *dev_id)
1328 struct rtc_time curr_time;
1329 unsigned long rtc_int_flag = 0;
1331 hpet_rtc_timer_reinit();
1332 memset(&curr_time, 0, sizeof(struct rtc_time));
1334 if (hpet_rtc_flags & (RTC_UIE | RTC_AIE))
1335 mc146818_get_time(&curr_time);
1337 if (hpet_rtc_flags & RTC_UIE &&
1338 curr_time.tm_sec != hpet_prev_update_sec) {
1339 if (hpet_prev_update_sec >= 0)
1340 rtc_int_flag = RTC_UF;
1341 hpet_prev_update_sec = curr_time.tm_sec;
1344 if (hpet_rtc_flags & RTC_PIE &&
1345 ++hpet_pie_count >= hpet_pie_limit) {
1346 rtc_int_flag |= RTC_PF;
1347 hpet_pie_count = 0;
1350 if (hpet_rtc_flags & RTC_AIE &&
1351 (curr_time.tm_sec == hpet_alarm_time.tm_sec) &&
1352 (curr_time.tm_min == hpet_alarm_time.tm_min) &&
1353 (curr_time.tm_hour == hpet_alarm_time.tm_hour))
1354 rtc_int_flag |= RTC_AF;
1356 if (rtc_int_flag) {
1357 rtc_int_flag |= (RTC_IRQF | (RTC_NUM_INTS << 8));
1358 if (irq_handler)
1359 irq_handler(rtc_int_flag, dev_id);
1361 return IRQ_HANDLED;
1363 EXPORT_SYMBOL_GPL(hpet_rtc_interrupt);
1364 #endif