2 * User-space Probes (UProbes) for x86
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License as published by
6 * the Free Software Foundation; either version 2 of the License, or
7 * (at your option) any later version.
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software
16 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
18 * Copyright (C) IBM Corporation, 2008-2011
23 #include <linux/kernel.h>
24 #include <linux/sched.h>
25 #include <linux/ptrace.h>
26 #include <linux/uprobes.h>
27 #include <linux/uaccess.h>
29 #include <linux/kdebug.h>
30 #include <asm/processor.h>
32 #include <asm/mmu_context.h>
34 /* Post-execution fixups. */
36 /* Adjust IP back to vicinity of actual insn */
37 #define UPROBE_FIX_IP 0x01
39 /* Adjust the return address of a call insn */
40 #define UPROBE_FIX_CALL 0x02
42 /* Instruction will modify TF, don't change it */
43 #define UPROBE_FIX_SETF 0x04
45 #define UPROBE_FIX_RIP_SI 0x08
46 #define UPROBE_FIX_RIP_DI 0x10
47 #define UPROBE_FIX_RIP_BX 0x20
48 #define UPROBE_FIX_RIP_MASK \
49 (UPROBE_FIX_RIP_SI | UPROBE_FIX_RIP_DI | UPROBE_FIX_RIP_BX)
51 #define UPROBE_TRAP_NR UINT_MAX
53 /* Adaptations for mhiramat x86 decoder v14. */
54 #define OPCODE1(insn) ((insn)->opcode.bytes[0])
55 #define OPCODE2(insn) ((insn)->opcode.bytes[1])
56 #define OPCODE3(insn) ((insn)->opcode.bytes[2])
57 #define MODRM_REG(insn) X86_MODRM_REG((insn)->modrm.value)
59 #define W(row, b0, b1, b2, b3, b4, b5, b6, b7, b8, b9, ba, bb, bc, bd, be, bf)\
60 (((b0##UL << 0x0)|(b1##UL << 0x1)|(b2##UL << 0x2)|(b3##UL << 0x3) | \
61 (b4##UL << 0x4)|(b5##UL << 0x5)|(b6##UL << 0x6)|(b7##UL << 0x7) | \
62 (b8##UL << 0x8)|(b9##UL << 0x9)|(ba##UL << 0xa)|(bb##UL << 0xb) | \
63 (bc##UL << 0xc)|(bd##UL << 0xd)|(be##UL << 0xe)|(bf##UL << 0xf)) \
67 * Good-instruction tables for 32-bit apps. This is non-const and volatile
68 * to keep gcc from statically optimizing it out, as variable_test_bit makes
69 * some versions of gcc to think only *(unsigned long*) is used.
71 * Opcodes we'll probably never support:
72 * 6c-6f - ins,outs. SEGVs if used in userspace
73 * e4-e7 - in,out imm. SEGVs if used in userspace
74 * ec-ef - in,out acc. SEGVs if used in userspace
75 * cc - int3. SIGTRAP if used in userspace
76 * ce - into. Not used in userspace - no kernel support to make it useful. SEGVs
77 * (why we support bound (62) then? it's similar, and similarly unused...)
78 * f1 - int1. SIGTRAP if used in userspace
79 * f4 - hlt. SEGVs if used in userspace
80 * fa - cli. SEGVs if used in userspace
81 * fb - sti. SEGVs if used in userspace
83 * Opcodes which need some work to be supported:
84 * 07,17,1f - pop es/ss/ds
85 * Normally not used in userspace, but would execute if used.
86 * Can cause GP or stack exception if tries to load wrong segment descriptor.
87 * We hesitate to run them under single step since kernel's handling
88 * of userspace single-stepping (TF flag) is fragile.
89 * We can easily refuse to support push es/cs/ss/ds (06/0e/16/1e)
90 * on the same grounds that they are never used.
92 * Used by userspace for "int 80" syscall entry. (Other "int N"
93 * cause GP -> SEGV since their IDT gates don't allow calls from CPL 3).
94 * Not supported since kernel's handling of userspace single-stepping
95 * (TF flag) is fragile.
96 * cf - iret. Normally not used in userspace. Doesn't SEGV unless arguments are bad
98 #if defined(CONFIG_X86_32) || defined(CONFIG_IA32_EMULATION)
99 static volatile u32 good_insns_32
[256 / 32] = {
100 /* 0 1 2 3 4 5 6 7 8 9 a b c d e f */
101 /* ---------------------------------------------- */
102 W(0x00, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1) | /* 00 */
103 W(0x10, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0) , /* 10 */
104 W(0x20, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* 20 */
105 W(0x30, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 30 */
106 W(0x40, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* 40 */
107 W(0x50, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 50 */
108 W(0x60, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0) | /* 60 */
109 W(0x70, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 70 */
110 W(0x80, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* 80 */
111 W(0x90, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 90 */
112 W(0xa0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* a0 */
113 W(0xb0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* b0 */
114 W(0xc0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0) | /* c0 */
115 W(0xd0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* d0 */
116 W(0xe0, 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0) | /* e0 */
117 W(0xf0, 1, 0, 1, 1, 0, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1) /* f0 */
118 /* ---------------------------------------------- */
119 /* 0 1 2 3 4 5 6 7 8 9 a b c d e f */
122 #define good_insns_32 NULL
125 /* Good-instruction tables for 64-bit apps.
127 * Genuinely invalid opcodes:
128 * 06,07 - formerly push/pop es
129 * 0e - formerly push cs
130 * 16,17 - formerly push/pop ss
131 * 1e,1f - formerly push/pop ds
132 * 27,2f,37,3f - formerly daa/das/aaa/aas
133 * 60,61 - formerly pusha/popa
134 * 62 - formerly bound. EVEX prefix for AVX512 (not yet supported)
135 * 82 - formerly redundant encoding of Group1
136 * 9a - formerly call seg:ofs
138 * d4,d5 - formerly aam/aad
139 * d6 - formerly undocumented salc
140 * ea - formerly jmp seg:ofs
142 * Opcodes we'll probably never support:
143 * 6c-6f - ins,outs. SEGVs if used in userspace
144 * e4-e7 - in,out imm. SEGVs if used in userspace
145 * ec-ef - in,out acc. SEGVs if used in userspace
146 * cc - int3. SIGTRAP if used in userspace
147 * f1 - int1. SIGTRAP if used in userspace
148 * f4 - hlt. SEGVs if used in userspace
149 * fa - cli. SEGVs if used in userspace
150 * fb - sti. SEGVs if used in userspace
152 * Opcodes which need some work to be supported:
154 * Used by userspace for "int 80" syscall entry. (Other "int N"
155 * cause GP -> SEGV since their IDT gates don't allow calls from CPL 3).
156 * Not supported since kernel's handling of userspace single-stepping
157 * (TF flag) is fragile.
158 * cf - iret. Normally not used in userspace. Doesn't SEGV unless arguments are bad
160 #if defined(CONFIG_X86_64)
161 static volatile u32 good_insns_64
[256 / 32] = {
162 /* 0 1 2 3 4 5 6 7 8 9 a b c d e f */
163 /* ---------------------------------------------- */
164 W(0x00, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 0, 1) | /* 00 */
165 W(0x10, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0) , /* 10 */
166 W(0x20, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0) | /* 20 */
167 W(0x30, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0) , /* 30 */
168 W(0x40, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* 40 */
169 W(0x50, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 50 */
170 W(0x60, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0) | /* 60 */
171 W(0x70, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 70 */
172 W(0x80, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* 80 */
173 W(0x90, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1) , /* 90 */
174 W(0xa0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* a0 */
175 W(0xb0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* b0 */
176 W(0xc0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0) | /* c0 */
177 W(0xd0, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* d0 */
178 W(0xe0, 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 0, 1, 0, 0, 0, 0) | /* e0 */
179 W(0xf0, 1, 0, 1, 1, 0, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1) /* f0 */
180 /* ---------------------------------------------- */
181 /* 0 1 2 3 4 5 6 7 8 9 a b c d e f */
184 #define good_insns_64 NULL
187 /* Using this for both 64-bit and 32-bit apps.
188 * Opcodes we don't support:
189 * 0f 00 - SLDT/STR/LLDT/LTR/VERR/VERW/-/- group. System insns
190 * 0f 01 - SGDT/SIDT/LGDT/LIDT/SMSW/-/LMSW/INVLPG group.
191 * Also encodes tons of other system insns if mod=11.
192 * Some are in fact non-system: xend, xtest, rdtscp, maybe more
194 * 0f 06 - clts (CPL0 insn)
196 * 0f 08 - invd (CPL0 insn)
197 * 0f 09 - wbinvd (CPL0 insn)
199 * 0f 30 - wrmsr (CPL0 insn) (then why rdmsr is allowed, it's also CPL0 insn?)
203 * 0f 78 - vmread (Intel VMX. CPL0 insn)
204 * 0f 79 - vmwrite (Intel VMX. CPL0 insn)
205 * Note: with prefixes, these two opcodes are
206 * extrq/insertq/AVX512 convert vector ops.
207 * 0f ae - group15: [f]xsave,[f]xrstor,[v]{ld,st}mxcsr,clflush[opt],
208 * {rd,wr}{fs,gs}base,{s,l,m}fence.
209 * Why? They are all user-executable.
211 static volatile u32 good_2byte_insns
[256 / 32] = {
212 /* 0 1 2 3 4 5 6 7 8 9 a b c d e f */
213 /* ---------------------------------------------- */
214 W(0x00, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 1, 0, 1, 1, 1, 1) | /* 00 */
215 W(0x10, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 10 */
216 W(0x20, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* 20 */
217 W(0x30, 0, 1, 1, 1, 0, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1) , /* 30 */
218 W(0x40, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* 40 */
219 W(0x50, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 50 */
220 W(0x60, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* 60 */
221 W(0x70, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1) , /* 70 */
222 W(0x80, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* 80 */
223 W(0x90, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 90 */
224 W(0xa0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1) | /* a0 */
225 W(0xb0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* b0 */
226 W(0xc0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* c0 */
227 W(0xd0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* d0 */
228 W(0xe0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* e0 */
229 W(0xf0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) /* f0 */
230 /* ---------------------------------------------- */
231 /* 0 1 2 3 4 5 6 7 8 9 a b c d e f */
236 * opcodes we may need to refine support for:
238 * 0f - 2-byte instructions: For many of these instructions, the validity
239 * depends on the prefix and/or the reg field. On such instructions, we
240 * just consider the opcode combination valid if it corresponds to any
243 * 8f - Group 1 - only reg = 0 is OK
244 * c6-c7 - Group 11 - only reg = 0 is OK
245 * d9-df - fpu insns with some illegal encodings
246 * f2, f3 - repnz, repz prefixes. These are also the first byte for
247 * certain floating-point instructions, such as addsd.
249 * fe - Group 4 - only reg = 0 or 1 is OK
250 * ff - Group 5 - only reg = 0-6 is OK
252 * others -- Do we need to support these?
254 * 0f - (floating-point?) prefetch instructions
255 * 07, 17, 1f - pop es, pop ss, pop ds
256 * 26, 2e, 36, 3e - es:, cs:, ss:, ds: segment prefixes --
257 * but 64 and 65 (fs: and gs:) seem to be used, so we support them
265 * - Where necessary, examine the modrm byte and allow only valid instructions
266 * in the different Groups and fpu instructions.
269 static bool is_prefix_bad(struct insn
*insn
)
273 for (i
= 0; i
< insn
->prefixes
.nbytes
; i
++) {
276 attr
= inat_get_opcode_attribute(insn
->prefixes
.bytes
[i
]);
278 case INAT_MAKE_PREFIX(INAT_PFX_ES
):
279 case INAT_MAKE_PREFIX(INAT_PFX_CS
):
280 case INAT_MAKE_PREFIX(INAT_PFX_DS
):
281 case INAT_MAKE_PREFIX(INAT_PFX_SS
):
282 case INAT_MAKE_PREFIX(INAT_PFX_LOCK
):
289 static int uprobe_init_insn(struct arch_uprobe
*auprobe
, struct insn
*insn
, bool x86_64
)
291 u32
volatile *good_insns
;
293 insn_init(insn
, auprobe
->insn
, sizeof(auprobe
->insn
), x86_64
);
294 /* has the side-effect of processing the entire instruction */
295 insn_get_length(insn
);
296 if (WARN_ON_ONCE(!insn_complete(insn
)))
299 if (is_prefix_bad(insn
))
303 good_insns
= good_insns_64
;
305 good_insns
= good_insns_32
;
307 if (test_bit(OPCODE1(insn
), (unsigned long *)good_insns
))
310 if (insn
->opcode
.nbytes
== 2) {
311 if (test_bit(OPCODE2(insn
), (unsigned long *)good_2byte_insns
))
320 * If arch_uprobe->insn doesn't use rip-relative addressing, return
321 * immediately. Otherwise, rewrite the instruction so that it accesses
322 * its memory operand indirectly through a scratch register. Set
323 * defparam->fixups accordingly. (The contents of the scratch register
324 * will be saved before we single-step the modified instruction,
325 * and restored afterward).
327 * We do this because a rip-relative instruction can access only a
328 * relatively small area (+/- 2 GB from the instruction), and the XOL
329 * area typically lies beyond that area. At least for instructions
330 * that store to memory, we can't execute the original instruction
331 * and "fix things up" later, because the misdirected store could be
334 * Some useful facts about rip-relative instructions:
336 * - There's always a modrm byte with bit layout "00 reg 101".
337 * - There's never a SIB byte.
338 * - The displacement is always 4 bytes.
339 * - REX.B=1 bit in REX prefix, which normally extends r/m field,
340 * has no effect on rip-relative mode. It doesn't make modrm byte
341 * with r/m=101 refer to register 1101 = R13.
343 static void riprel_analyze(struct arch_uprobe
*auprobe
, struct insn
*insn
)
349 if (!insn_rip_relative(insn
))
353 * insn_rip_relative() would have decoded rex_prefix, vex_prefix, modrm.
354 * Clear REX.b bit (extension of MODRM.rm field):
355 * we want to encode low numbered reg, not r8+.
357 if (insn
->rex_prefix
.nbytes
) {
358 cursor
= auprobe
->insn
+ insn_offset_rex_prefix(insn
);
359 /* REX byte has 0100wrxb layout, clearing REX.b bit */
363 * Similar treatment for VEX3/EVEX prefix.
364 * TODO: add XOP treatment when insn decoder supports them
366 if (insn
->vex_prefix
.nbytes
>= 3) {
368 * vex2: c5 rvvvvLpp (has no b bit)
369 * vex3/xop: c4/8f rxbmmmmm wvvvvLpp
370 * evex: 62 rxbR00mm wvvvv1pp zllBVaaa
371 * Setting VEX3.b (setting because it has inverted meaning).
372 * Setting EVEX.x since (in non-SIB encoding) EVEX.x
373 * is the 4th bit of MODRM.rm, and needs the same treatment.
374 * For VEX3-encoded insns, VEX3.x value has no effect in
375 * non-SIB encoding, the change is superfluous but harmless.
377 cursor
= auprobe
->insn
+ insn_offset_vex_prefix(insn
) + 1;
382 * Convert from rip-relative addressing to register-relative addressing
383 * via a scratch register.
385 * This is tricky since there are insns with modrm byte
386 * which also use registers not encoded in modrm byte:
387 * [i]div/[i]mul: implicitly use dx:ax
388 * shift ops: implicitly use cx
389 * cmpxchg: implicitly uses ax
390 * cmpxchg8/16b: implicitly uses dx:ax and bx:cx
391 * Encoding: 0f c7/1 modrm
392 * The code below thinks that reg=1 (cx), chooses si as scratch.
393 * mulx: implicitly uses dx: mulx r/m,r1,r2 does r1:r2 = dx * r/m.
394 * First appeared in Haswell (BMI2 insn). It is vex-encoded.
395 * Example where none of bx,cx,dx can be used as scratch reg:
396 * c4 e2 63 f6 0d disp32 mulx disp32(%rip),%ebx,%ecx
397 * [v]pcmpistri: implicitly uses cx, xmm0
398 * [v]pcmpistrm: implicitly uses xmm0
399 * [v]pcmpestri: implicitly uses ax, dx, cx, xmm0
400 * [v]pcmpestrm: implicitly uses ax, dx, xmm0
401 * Evil SSE4.2 string comparison ops from hell.
402 * maskmovq/[v]maskmovdqu: implicitly uses (ds:rdi) as destination.
403 * Encoding: 0f f7 modrm, 66 0f f7 modrm, vex-encoded: c5 f9 f7 modrm.
404 * Store op1, byte-masked by op2 msb's in each byte, to (ds:rdi).
405 * AMD says it has no 3-operand form (vex.vvvv must be 1111)
406 * and that it can have only register operands, not mem
407 * (its modrm byte must have mode=11).
408 * If these restrictions will ever be lifted,
409 * we'll need code to prevent selection of di as scratch reg!
411 * Summary: I don't know any insns with modrm byte which
412 * use SI register implicitly. DI register is used only
413 * by one insn (maskmovq) and BX register is used
414 * only by one too (cmpxchg8b).
415 * BP is stack-segment based (may be a problem?).
416 * AX, DX, CX are off-limits (many implicit users).
417 * SP is unusable (it's stack pointer - think about "pop mem";
418 * also, rsp+disp32 needs sib encoding -> insn length change).
421 reg
= MODRM_REG(insn
); /* Fetch modrm.reg */
422 reg2
= 0xff; /* Fetch vex.vvvv */
423 if (insn
->vex_prefix
.nbytes
)
424 reg2
= insn
->vex_prefix
.bytes
[2];
426 * TODO: add XOP vvvv reading.
428 * vex.vvvv field is in bits 6-3, bits are inverted.
429 * But in 32-bit mode, high-order bit may be ignored.
430 * Therefore, let's consider only 3 low-order bits.
432 reg2
= ((reg2
>> 3) & 0x7) ^ 0x7;
434 * Register numbering is ax,cx,dx,bx, sp,bp,si,di, r8..r15.
436 * Choose scratch reg. Order is important: must not select bx
437 * if we can use si (cmpxchg8b case!)
439 if (reg
!= 6 && reg2
!= 6) {
441 auprobe
->defparam
.fixups
|= UPROBE_FIX_RIP_SI
;
442 } else if (reg
!= 7 && reg2
!= 7) {
444 auprobe
->defparam
.fixups
|= UPROBE_FIX_RIP_DI
;
445 /* TODO (paranoia): force maskmovq to not use di */
448 auprobe
->defparam
.fixups
|= UPROBE_FIX_RIP_BX
;
451 * Point cursor at the modrm byte. The next 4 bytes are the
452 * displacement. Beyond the displacement, for some instructions,
453 * is the immediate operand.
455 cursor
= auprobe
->insn
+ insn_offset_modrm(insn
);
457 * Change modrm from "00 reg 101" to "10 reg reg2". Example:
458 * 89 05 disp32 mov %eax,disp32(%rip) becomes
459 * 89 86 disp32 mov %eax,disp32(%rsi)
461 *cursor
= 0x80 | (reg
<< 3) | reg2
;
464 static inline unsigned long *
465 scratch_reg(struct arch_uprobe
*auprobe
, struct pt_regs
*regs
)
467 if (auprobe
->defparam
.fixups
& UPROBE_FIX_RIP_SI
)
469 if (auprobe
->defparam
.fixups
& UPROBE_FIX_RIP_DI
)
475 * If we're emulating a rip-relative instruction, save the contents
476 * of the scratch register and store the target address in that register.
478 static void riprel_pre_xol(struct arch_uprobe
*auprobe
, struct pt_regs
*regs
)
480 if (auprobe
->defparam
.fixups
& UPROBE_FIX_RIP_MASK
) {
481 struct uprobe_task
*utask
= current
->utask
;
482 unsigned long *sr
= scratch_reg(auprobe
, regs
);
484 utask
->autask
.saved_scratch_register
= *sr
;
485 *sr
= utask
->vaddr
+ auprobe
->defparam
.ilen
;
489 static void riprel_post_xol(struct arch_uprobe
*auprobe
, struct pt_regs
*regs
)
491 if (auprobe
->defparam
.fixups
& UPROBE_FIX_RIP_MASK
) {
492 struct uprobe_task
*utask
= current
->utask
;
493 unsigned long *sr
= scratch_reg(auprobe
, regs
);
495 *sr
= utask
->autask
.saved_scratch_register
;
500 * No RIP-relative addressing on 32-bit
502 static void riprel_analyze(struct arch_uprobe
*auprobe
, struct insn
*insn
)
505 static void riprel_pre_xol(struct arch_uprobe
*auprobe
, struct pt_regs
*regs
)
508 static void riprel_post_xol(struct arch_uprobe
*auprobe
, struct pt_regs
*regs
)
511 #endif /* CONFIG_X86_64 */
513 struct uprobe_xol_ops
{
514 bool (*emulate
)(struct arch_uprobe
*, struct pt_regs
*);
515 int (*pre_xol
)(struct arch_uprobe
*, struct pt_regs
*);
516 int (*post_xol
)(struct arch_uprobe
*, struct pt_regs
*);
517 void (*abort
)(struct arch_uprobe
*, struct pt_regs
*);
520 static inline int sizeof_long(void)
522 return in_ia32_syscall() ? 4 : 8;
525 static int default_pre_xol_op(struct arch_uprobe
*auprobe
, struct pt_regs
*regs
)
527 riprel_pre_xol(auprobe
, regs
);
531 static int emulate_push_stack(struct pt_regs
*regs
, unsigned long val
)
533 unsigned long new_sp
= regs
->sp
- sizeof_long();
535 if (copy_to_user((void __user
*)new_sp
, &val
, sizeof_long()))
543 * We have to fix things up as follows:
545 * Typically, the new ip is relative to the copied instruction. We need
546 * to make it relative to the original instruction (FIX_IP). Exceptions
547 * are return instructions and absolute or indirect jump or call instructions.
549 * If the single-stepped instruction was a call, the return address that
550 * is atop the stack is the address following the copied instruction. We
551 * need to make it the address following the original instruction (FIX_CALL).
553 * If the original instruction was a rip-relative instruction such as
554 * "movl %edx,0xnnnn(%rip)", we have instead executed an equivalent
555 * instruction using a scratch register -- e.g., "movl %edx,0xnnnn(%rsi)".
556 * We need to restore the contents of the scratch register
559 static int default_post_xol_op(struct arch_uprobe
*auprobe
, struct pt_regs
*regs
)
561 struct uprobe_task
*utask
= current
->utask
;
563 riprel_post_xol(auprobe
, regs
);
564 if (auprobe
->defparam
.fixups
& UPROBE_FIX_IP
) {
565 long correction
= utask
->vaddr
- utask
->xol_vaddr
;
566 regs
->ip
+= correction
;
567 } else if (auprobe
->defparam
.fixups
& UPROBE_FIX_CALL
) {
568 regs
->sp
+= sizeof_long(); /* Pop incorrect return address */
569 if (emulate_push_stack(regs
, utask
->vaddr
+ auprobe
->defparam
.ilen
))
572 /* popf; tell the caller to not touch TF */
573 if (auprobe
->defparam
.fixups
& UPROBE_FIX_SETF
)
574 utask
->autask
.saved_tf
= true;
579 static void default_abort_op(struct arch_uprobe
*auprobe
, struct pt_regs
*regs
)
581 riprel_post_xol(auprobe
, regs
);
584 static const struct uprobe_xol_ops default_xol_ops
= {
585 .pre_xol
= default_pre_xol_op
,
586 .post_xol
= default_post_xol_op
,
587 .abort
= default_abort_op
,
590 static bool branch_is_call(struct arch_uprobe
*auprobe
)
592 return auprobe
->branch
.opc1
== 0xe8;
596 COND(70, 71, XF(OF)) \
597 COND(72, 73, XF(CF)) \
598 COND(74, 75, XF(ZF)) \
599 COND(78, 79, XF(SF)) \
600 COND(7a, 7b, XF(PF)) \
601 COND(76, 77, XF(CF) || XF(ZF)) \
602 COND(7c, 7d, XF(SF) != XF(OF)) \
603 COND(7e, 7f, XF(ZF) || XF(SF) != XF(OF))
605 #define COND(op_y, op_n, expr) \
606 case 0x ## op_y: DO((expr) != 0) \
607 case 0x ## op_n: DO((expr) == 0)
609 #define XF(xf) (!!(flags & X86_EFLAGS_ ## xf))
611 static bool is_cond_jmp_opcode(u8 opcode
)
624 static bool check_jmp_cond(struct arch_uprobe
*auprobe
, struct pt_regs
*regs
)
626 unsigned long flags
= regs
->flags
;
628 switch (auprobe
->branch
.opc1
) {
634 default: /* not a conditional jmp */
643 static bool branch_emulate_op(struct arch_uprobe
*auprobe
, struct pt_regs
*regs
)
645 unsigned long new_ip
= regs
->ip
+= auprobe
->branch
.ilen
;
646 unsigned long offs
= (long)auprobe
->branch
.offs
;
648 if (branch_is_call(auprobe
)) {
650 * If it fails we execute this (mangled, see the comment in
651 * branch_clear_offset) insn out-of-line. In the likely case
652 * this should trigger the trap, and the probed application
653 * should die or restart the same insn after it handles the
654 * signal, arch_uprobe_post_xol() won't be even called.
656 * But there is corner case, see the comment in ->post_xol().
658 if (emulate_push_stack(regs
, new_ip
))
660 } else if (!check_jmp_cond(auprobe
, regs
)) {
664 regs
->ip
= new_ip
+ offs
;
668 static bool push_emulate_op(struct arch_uprobe
*auprobe
, struct pt_regs
*regs
)
670 unsigned long *src_ptr
= (void *)regs
+ auprobe
->push
.reg_offset
;
672 if (emulate_push_stack(regs
, *src_ptr
))
674 regs
->ip
+= auprobe
->push
.ilen
;
678 static int branch_post_xol_op(struct arch_uprobe
*auprobe
, struct pt_regs
*regs
)
680 BUG_ON(!branch_is_call(auprobe
));
682 * We can only get here if branch_emulate_op() failed to push the ret
683 * address _and_ another thread expanded our stack before the (mangled)
684 * "call" insn was executed out-of-line. Just restore ->sp and restart.
685 * We could also restore ->ip and try to call branch_emulate_op() again.
687 regs
->sp
+= sizeof_long();
691 static void branch_clear_offset(struct arch_uprobe
*auprobe
, struct insn
*insn
)
694 * Turn this insn into "call 1f; 1:", this is what we will execute
695 * out-of-line if ->emulate() fails. We only need this to generate
696 * a trap, so that the probed task receives the correct signal with
697 * the properly filled siginfo.
699 * But see the comment in ->post_xol(), in the unlikely case it can
700 * succeed. So we need to ensure that the new ->ip can not fall into
701 * the non-canonical area and trigger #GP.
703 * We could turn it into (say) "pushf", but then we would need to
704 * divorce ->insn[] and ->ixol[]. We need to preserve the 1st byte
705 * of ->insn[] for set_orig_insn().
707 memset(auprobe
->insn
+ insn_offset_immediate(insn
),
708 0, insn
->immediate
.nbytes
);
711 static const struct uprobe_xol_ops branch_xol_ops
= {
712 .emulate
= branch_emulate_op
,
713 .post_xol
= branch_post_xol_op
,
716 static const struct uprobe_xol_ops push_xol_ops
= {
717 .emulate
= push_emulate_op
,
720 /* Returns -ENOSYS if branch_xol_ops doesn't handle this insn */
721 static int branch_setup_xol_ops(struct arch_uprobe
*auprobe
, struct insn
*insn
)
723 u8 opc1
= OPCODE1(insn
);
727 case 0xeb: /* jmp 8 */
728 case 0xe9: /* jmp 32 */
729 case 0x90: /* prefix* + nop; same as jmp with .offs = 0 */
732 case 0xe8: /* call relative */
733 branch_clear_offset(auprobe
, insn
);
737 if (insn
->opcode
.nbytes
!= 2)
740 * If it is a "near" conditional jmp, OPCODE2() - 0x10 matches
741 * OPCODE1() of the "short" jmp which checks the same condition.
743 opc1
= OPCODE2(insn
) - 0x10;
745 if (!is_cond_jmp_opcode(opc1
))
750 * 16-bit overrides such as CALLW (66 e8 nn nn) are not supported.
751 * Intel and AMD behavior differ in 64-bit mode: Intel ignores 66 prefix.
752 * No one uses these insns, reject any branch insns with such prefix.
754 for (i
= 0; i
< insn
->prefixes
.nbytes
; i
++) {
755 if (insn
->prefixes
.bytes
[i
] == 0x66)
759 auprobe
->branch
.opc1
= opc1
;
760 auprobe
->branch
.ilen
= insn
->length
;
761 auprobe
->branch
.offs
= insn
->immediate
.value
;
763 auprobe
->ops
= &branch_xol_ops
;
767 /* Returns -ENOSYS if push_xol_ops doesn't handle this insn */
768 static int push_setup_xol_ops(struct arch_uprobe
*auprobe
, struct insn
*insn
)
770 u8 opc1
= OPCODE1(insn
), reg_offset
= 0;
772 if (opc1
< 0x50 || opc1
> 0x57)
775 if (insn
->length
> 2)
777 if (insn
->length
== 2) {
778 /* only support rex_prefix 0x41 (x64 only) */
780 if (insn
->rex_prefix
.nbytes
!= 1 ||
781 insn
->rex_prefix
.bytes
[0] != 0x41)
786 reg_offset
= offsetof(struct pt_regs
, r8
);
789 reg_offset
= offsetof(struct pt_regs
, r9
);
792 reg_offset
= offsetof(struct pt_regs
, r10
);
795 reg_offset
= offsetof(struct pt_regs
, r11
);
798 reg_offset
= offsetof(struct pt_regs
, r12
);
801 reg_offset
= offsetof(struct pt_regs
, r13
);
804 reg_offset
= offsetof(struct pt_regs
, r14
);
807 reg_offset
= offsetof(struct pt_regs
, r15
);
816 reg_offset
= offsetof(struct pt_regs
, ax
);
819 reg_offset
= offsetof(struct pt_regs
, cx
);
822 reg_offset
= offsetof(struct pt_regs
, dx
);
825 reg_offset
= offsetof(struct pt_regs
, bx
);
828 reg_offset
= offsetof(struct pt_regs
, sp
);
831 reg_offset
= offsetof(struct pt_regs
, bp
);
834 reg_offset
= offsetof(struct pt_regs
, si
);
837 reg_offset
= offsetof(struct pt_regs
, di
);
842 auprobe
->push
.reg_offset
= reg_offset
;
843 auprobe
->push
.ilen
= insn
->length
;
844 auprobe
->ops
= &push_xol_ops
;
849 * arch_uprobe_analyze_insn - instruction analysis including validity and fixups.
850 * @mm: the probed address space.
851 * @arch_uprobe: the probepoint information.
852 * @addr: virtual address at which to install the probepoint
853 * Return 0 on success or a -ve number on error.
855 int arch_uprobe_analyze_insn(struct arch_uprobe
*auprobe
, struct mm_struct
*mm
, unsigned long addr
)
858 u8 fix_ip_or_call
= UPROBE_FIX_IP
;
861 ret
= uprobe_init_insn(auprobe
, &insn
, is_64bit_mm(mm
));
865 ret
= branch_setup_xol_ops(auprobe
, &insn
);
869 ret
= push_setup_xol_ops(auprobe
, &insn
);
874 * Figure out which fixups default_post_xol_op() will need to perform,
875 * and annotate defparam->fixups accordingly.
877 switch (OPCODE1(&insn
)) {
878 case 0x9d: /* popf */
879 auprobe
->defparam
.fixups
|= UPROBE_FIX_SETF
;
881 case 0xc3: /* ret or lret -- ip is correct */
885 case 0xea: /* jmp absolute -- ip is correct */
888 case 0x9a: /* call absolute - Fix return addr, not ip */
889 fix_ip_or_call
= UPROBE_FIX_CALL
;
892 switch (MODRM_REG(&insn
)) {
893 case 2: case 3: /* call or lcall, indirect */
894 fix_ip_or_call
= UPROBE_FIX_CALL
;
896 case 4: case 5: /* jmp or ljmp, indirect */
902 riprel_analyze(auprobe
, &insn
);
905 auprobe
->defparam
.ilen
= insn
.length
;
906 auprobe
->defparam
.fixups
|= fix_ip_or_call
;
908 auprobe
->ops
= &default_xol_ops
;
913 * arch_uprobe_pre_xol - prepare to execute out of line.
914 * @auprobe: the probepoint information.
915 * @regs: reflects the saved user state of current task.
917 int arch_uprobe_pre_xol(struct arch_uprobe
*auprobe
, struct pt_regs
*regs
)
919 struct uprobe_task
*utask
= current
->utask
;
921 if (auprobe
->ops
->pre_xol
) {
922 int err
= auprobe
->ops
->pre_xol(auprobe
, regs
);
927 regs
->ip
= utask
->xol_vaddr
;
928 utask
->autask
.saved_trap_nr
= current
->thread
.trap_nr
;
929 current
->thread
.trap_nr
= UPROBE_TRAP_NR
;
931 utask
->autask
.saved_tf
= !!(regs
->flags
& X86_EFLAGS_TF
);
932 regs
->flags
|= X86_EFLAGS_TF
;
933 if (test_tsk_thread_flag(current
, TIF_BLOCKSTEP
))
934 set_task_blockstep(current
, false);
940 * If xol insn itself traps and generates a signal(Say,
941 * SIGILL/SIGSEGV/etc), then detect the case where a singlestepped
942 * instruction jumps back to its own address. It is assumed that anything
943 * like do_page_fault/do_trap/etc sets thread.trap_nr != -1.
945 * arch_uprobe_pre_xol/arch_uprobe_post_xol save/restore thread.trap_nr,
946 * arch_uprobe_xol_was_trapped() simply checks that ->trap_nr is not equal to
947 * UPROBE_TRAP_NR == -1 set by arch_uprobe_pre_xol().
949 bool arch_uprobe_xol_was_trapped(struct task_struct
*t
)
951 if (t
->thread
.trap_nr
!= UPROBE_TRAP_NR
)
958 * Called after single-stepping. To avoid the SMP problems that can
959 * occur when we temporarily put back the original opcode to
960 * single-step, we single-stepped a copy of the instruction.
962 * This function prepares to resume execution after the single-step.
964 int arch_uprobe_post_xol(struct arch_uprobe
*auprobe
, struct pt_regs
*regs
)
966 struct uprobe_task
*utask
= current
->utask
;
967 bool send_sigtrap
= utask
->autask
.saved_tf
;
970 WARN_ON_ONCE(current
->thread
.trap_nr
!= UPROBE_TRAP_NR
);
971 current
->thread
.trap_nr
= utask
->autask
.saved_trap_nr
;
973 if (auprobe
->ops
->post_xol
) {
974 err
= auprobe
->ops
->post_xol(auprobe
, regs
);
977 * Restore ->ip for restart or post mortem analysis.
978 * ->post_xol() must not return -ERESTART unless this
979 * is really possible.
981 regs
->ip
= utask
->vaddr
;
982 if (err
== -ERESTART
)
984 send_sigtrap
= false;
988 * arch_uprobe_pre_xol() doesn't save the state of TIF_BLOCKSTEP
989 * so we can get an extra SIGTRAP if we do not clear TF. We need
990 * to examine the opcode to make it right.
993 send_sig(SIGTRAP
, current
, 0);
995 if (!utask
->autask
.saved_tf
)
996 regs
->flags
&= ~X86_EFLAGS_TF
;
1001 /* callback routine for handling exceptions. */
1002 int arch_uprobe_exception_notify(struct notifier_block
*self
, unsigned long val
, void *data
)
1004 struct die_args
*args
= data
;
1005 struct pt_regs
*regs
= args
->regs
;
1006 int ret
= NOTIFY_DONE
;
1008 /* We are only interested in userspace traps */
1009 if (regs
&& !user_mode(regs
))
1014 if (uprobe_pre_sstep_notifier(regs
))
1020 if (uprobe_post_sstep_notifier(regs
))
1031 * This function gets called when XOL instruction either gets trapped or
1032 * the thread has a fatal signal. Reset the instruction pointer to its
1033 * probed address for the potential restart or for post mortem analysis.
1035 void arch_uprobe_abort_xol(struct arch_uprobe
*auprobe
, struct pt_regs
*regs
)
1037 struct uprobe_task
*utask
= current
->utask
;
1039 if (auprobe
->ops
->abort
)
1040 auprobe
->ops
->abort(auprobe
, regs
);
1042 current
->thread
.trap_nr
= utask
->autask
.saved_trap_nr
;
1043 regs
->ip
= utask
->vaddr
;
1044 /* clear TF if it was set by us in arch_uprobe_pre_xol() */
1045 if (!utask
->autask
.saved_tf
)
1046 regs
->flags
&= ~X86_EFLAGS_TF
;
1049 static bool __skip_sstep(struct arch_uprobe
*auprobe
, struct pt_regs
*regs
)
1051 if (auprobe
->ops
->emulate
)
1052 return auprobe
->ops
->emulate(auprobe
, regs
);
1056 bool arch_uprobe_skip_sstep(struct arch_uprobe
*auprobe
, struct pt_regs
*regs
)
1058 bool ret
= __skip_sstep(auprobe
, regs
);
1059 if (ret
&& (regs
->flags
& X86_EFLAGS_TF
))
1060 send_sig(SIGTRAP
, current
, 0);
1065 arch_uretprobe_hijack_return_addr(unsigned long trampoline_vaddr
, struct pt_regs
*regs
)
1067 int rasize
= sizeof_long(), nleft
;
1068 unsigned long orig_ret_vaddr
= 0; /* clear high bits for 32-bit apps */
1070 if (copy_from_user(&orig_ret_vaddr
, (void __user
*)regs
->sp
, rasize
))
1073 /* check whether address has been already hijacked */
1074 if (orig_ret_vaddr
== trampoline_vaddr
)
1075 return orig_ret_vaddr
;
1077 nleft
= copy_to_user((void __user
*)regs
->sp
, &trampoline_vaddr
, rasize
);
1079 return orig_ret_vaddr
;
1081 if (nleft
!= rasize
) {
1082 pr_err("uprobe: return address clobbered: pid=%d, %%sp=%#lx, "
1083 "%%ip=%#lx\n", current
->pid
, regs
->sp
, regs
->ip
);
1085 force_sig_info(SIGSEGV
, SEND_SIG_FORCED
, current
);
1091 bool arch_uretprobe_is_alive(struct return_instance
*ret
, enum rp_check ctx
,
1092 struct pt_regs
*regs
)
1094 if (ctx
== RP_CHECK_CALL
) /* sp was just decremented by "call" insn */
1095 return regs
->sp
< ret
->stack
;
1097 return regs
->sp
<= ret
->stack
;