Merge tag 'for_linus' of git://git.kernel.org/pub/scm/linux/kernel/git/mst/vhost
[cris-mirror.git] / arch / x86 / kvm / svm.c
blobbe9c839e2c89967d689485dbb8e51763980dd151
1 /*
2 * Kernel-based Virtual Machine driver for Linux
4 * AMD SVM support
6 * Copyright (C) 2006 Qumranet, Inc.
7 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
9 * Authors:
10 * Yaniv Kamay <yaniv@qumranet.com>
11 * Avi Kivity <avi@qumranet.com>
13 * This work is licensed under the terms of the GNU GPL, version 2. See
14 * the COPYING file in the top-level directory.
18 #define pr_fmt(fmt) "SVM: " fmt
20 #include <linux/kvm_host.h>
22 #include "irq.h"
23 #include "mmu.h"
24 #include "kvm_cache_regs.h"
25 #include "x86.h"
26 #include "cpuid.h"
27 #include "pmu.h"
29 #include <linux/module.h>
30 #include <linux/mod_devicetable.h>
31 #include <linux/kernel.h>
32 #include <linux/vmalloc.h>
33 #include <linux/highmem.h>
34 #include <linux/sched.h>
35 #include <linux/trace_events.h>
36 #include <linux/slab.h>
37 #include <linux/amd-iommu.h>
38 #include <linux/hashtable.h>
39 #include <linux/frame.h>
40 #include <linux/psp-sev.h>
41 #include <linux/file.h>
42 #include <linux/pagemap.h>
43 #include <linux/swap.h>
45 #include <asm/apic.h>
46 #include <asm/perf_event.h>
47 #include <asm/tlbflush.h>
48 #include <asm/desc.h>
49 #include <asm/debugreg.h>
50 #include <asm/kvm_para.h>
51 #include <asm/irq_remapping.h>
52 #include <asm/microcode.h>
53 #include <asm/nospec-branch.h>
55 #include <asm/virtext.h>
56 #include "trace.h"
58 #define __ex(x) __kvm_handle_fault_on_reboot(x)
60 MODULE_AUTHOR("Qumranet");
61 MODULE_LICENSE("GPL");
63 static const struct x86_cpu_id svm_cpu_id[] = {
64 X86_FEATURE_MATCH(X86_FEATURE_SVM),
67 MODULE_DEVICE_TABLE(x86cpu, svm_cpu_id);
69 #define IOPM_ALLOC_ORDER 2
70 #define MSRPM_ALLOC_ORDER 1
72 #define SEG_TYPE_LDT 2
73 #define SEG_TYPE_BUSY_TSS16 3
75 #define SVM_FEATURE_NPT (1 << 0)
76 #define SVM_FEATURE_LBRV (1 << 1)
77 #define SVM_FEATURE_SVML (1 << 2)
78 #define SVM_FEATURE_NRIP (1 << 3)
79 #define SVM_FEATURE_TSC_RATE (1 << 4)
80 #define SVM_FEATURE_VMCB_CLEAN (1 << 5)
81 #define SVM_FEATURE_FLUSH_ASID (1 << 6)
82 #define SVM_FEATURE_DECODE_ASSIST (1 << 7)
83 #define SVM_FEATURE_PAUSE_FILTER (1 << 10)
85 #define SVM_AVIC_DOORBELL 0xc001011b
87 #define NESTED_EXIT_HOST 0 /* Exit handled on host level */
88 #define NESTED_EXIT_DONE 1 /* Exit caused nested vmexit */
89 #define NESTED_EXIT_CONTINUE 2 /* Further checks needed */
91 #define DEBUGCTL_RESERVED_BITS (~(0x3fULL))
93 #define TSC_RATIO_RSVD 0xffffff0000000000ULL
94 #define TSC_RATIO_MIN 0x0000000000000001ULL
95 #define TSC_RATIO_MAX 0x000000ffffffffffULL
97 #define AVIC_HPA_MASK ~((0xFFFULL << 52) | 0xFFF)
100 * 0xff is broadcast, so the max index allowed for physical APIC ID
101 * table is 0xfe. APIC IDs above 0xff are reserved.
103 #define AVIC_MAX_PHYSICAL_ID_COUNT 255
105 #define AVIC_UNACCEL_ACCESS_WRITE_MASK 1
106 #define AVIC_UNACCEL_ACCESS_OFFSET_MASK 0xFF0
107 #define AVIC_UNACCEL_ACCESS_VECTOR_MASK 0xFFFFFFFF
109 /* AVIC GATAG is encoded using VM and VCPU IDs */
110 #define AVIC_VCPU_ID_BITS 8
111 #define AVIC_VCPU_ID_MASK ((1 << AVIC_VCPU_ID_BITS) - 1)
113 #define AVIC_VM_ID_BITS 24
114 #define AVIC_VM_ID_NR (1 << AVIC_VM_ID_BITS)
115 #define AVIC_VM_ID_MASK ((1 << AVIC_VM_ID_BITS) - 1)
117 #define AVIC_GATAG(x, y) (((x & AVIC_VM_ID_MASK) << AVIC_VCPU_ID_BITS) | \
118 (y & AVIC_VCPU_ID_MASK))
119 #define AVIC_GATAG_TO_VMID(x) ((x >> AVIC_VCPU_ID_BITS) & AVIC_VM_ID_MASK)
120 #define AVIC_GATAG_TO_VCPUID(x) (x & AVIC_VCPU_ID_MASK)
122 static bool erratum_383_found __read_mostly;
124 static const u32 host_save_user_msrs[] = {
125 #ifdef CONFIG_X86_64
126 MSR_STAR, MSR_LSTAR, MSR_CSTAR, MSR_SYSCALL_MASK, MSR_KERNEL_GS_BASE,
127 MSR_FS_BASE,
128 #endif
129 MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
130 MSR_TSC_AUX,
133 #define NR_HOST_SAVE_USER_MSRS ARRAY_SIZE(host_save_user_msrs)
135 struct kvm_vcpu;
137 struct nested_state {
138 struct vmcb *hsave;
139 u64 hsave_msr;
140 u64 vm_cr_msr;
141 u64 vmcb;
143 /* These are the merged vectors */
144 u32 *msrpm;
146 /* gpa pointers to the real vectors */
147 u64 vmcb_msrpm;
148 u64 vmcb_iopm;
150 /* A VMEXIT is required but not yet emulated */
151 bool exit_required;
153 /* cache for intercepts of the guest */
154 u32 intercept_cr;
155 u32 intercept_dr;
156 u32 intercept_exceptions;
157 u64 intercept;
159 /* Nested Paging related state */
160 u64 nested_cr3;
163 #define MSRPM_OFFSETS 16
164 static u32 msrpm_offsets[MSRPM_OFFSETS] __read_mostly;
167 * Set osvw_len to higher value when updated Revision Guides
168 * are published and we know what the new status bits are
170 static uint64_t osvw_len = 4, osvw_status;
172 struct vcpu_svm {
173 struct kvm_vcpu vcpu;
174 struct vmcb *vmcb;
175 unsigned long vmcb_pa;
176 struct svm_cpu_data *svm_data;
177 uint64_t asid_generation;
178 uint64_t sysenter_esp;
179 uint64_t sysenter_eip;
180 uint64_t tsc_aux;
182 u64 msr_decfg;
184 u64 next_rip;
186 u64 host_user_msrs[NR_HOST_SAVE_USER_MSRS];
187 struct {
188 u16 fs;
189 u16 gs;
190 u16 ldt;
191 u64 gs_base;
192 } host;
194 u64 spec_ctrl;
196 u32 *msrpm;
198 ulong nmi_iret_rip;
200 struct nested_state nested;
202 bool nmi_singlestep;
203 u64 nmi_singlestep_guest_rflags;
205 unsigned int3_injected;
206 unsigned long int3_rip;
208 /* cached guest cpuid flags for faster access */
209 bool nrips_enabled : 1;
211 u32 ldr_reg;
212 struct page *avic_backing_page;
213 u64 *avic_physical_id_cache;
214 bool avic_is_running;
217 * Per-vcpu list of struct amd_svm_iommu_ir:
218 * This is used mainly to store interrupt remapping information used
219 * when update the vcpu affinity. This avoids the need to scan for
220 * IRTE and try to match ga_tag in the IOMMU driver.
222 struct list_head ir_list;
223 spinlock_t ir_list_lock;
225 /* which host CPU was used for running this vcpu */
226 unsigned int last_cpu;
230 * This is a wrapper of struct amd_iommu_ir_data.
232 struct amd_svm_iommu_ir {
233 struct list_head node; /* Used by SVM for per-vcpu ir_list */
234 void *data; /* Storing pointer to struct amd_ir_data */
237 #define AVIC_LOGICAL_ID_ENTRY_GUEST_PHYSICAL_ID_MASK (0xFF)
238 #define AVIC_LOGICAL_ID_ENTRY_VALID_MASK (1 << 31)
240 #define AVIC_PHYSICAL_ID_ENTRY_HOST_PHYSICAL_ID_MASK (0xFFULL)
241 #define AVIC_PHYSICAL_ID_ENTRY_BACKING_PAGE_MASK (0xFFFFFFFFFFULL << 12)
242 #define AVIC_PHYSICAL_ID_ENTRY_IS_RUNNING_MASK (1ULL << 62)
243 #define AVIC_PHYSICAL_ID_ENTRY_VALID_MASK (1ULL << 63)
245 static DEFINE_PER_CPU(u64, current_tsc_ratio);
246 #define TSC_RATIO_DEFAULT 0x0100000000ULL
248 #define MSR_INVALID 0xffffffffU
250 static const struct svm_direct_access_msrs {
251 u32 index; /* Index of the MSR */
252 bool always; /* True if intercept is always on */
253 } direct_access_msrs[] = {
254 { .index = MSR_STAR, .always = true },
255 { .index = MSR_IA32_SYSENTER_CS, .always = true },
256 #ifdef CONFIG_X86_64
257 { .index = MSR_GS_BASE, .always = true },
258 { .index = MSR_FS_BASE, .always = true },
259 { .index = MSR_KERNEL_GS_BASE, .always = true },
260 { .index = MSR_LSTAR, .always = true },
261 { .index = MSR_CSTAR, .always = true },
262 { .index = MSR_SYSCALL_MASK, .always = true },
263 #endif
264 { .index = MSR_IA32_SPEC_CTRL, .always = false },
265 { .index = MSR_IA32_PRED_CMD, .always = false },
266 { .index = MSR_IA32_LASTBRANCHFROMIP, .always = false },
267 { .index = MSR_IA32_LASTBRANCHTOIP, .always = false },
268 { .index = MSR_IA32_LASTINTFROMIP, .always = false },
269 { .index = MSR_IA32_LASTINTTOIP, .always = false },
270 { .index = MSR_INVALID, .always = false },
273 /* enable NPT for AMD64 and X86 with PAE */
274 #if defined(CONFIG_X86_64) || defined(CONFIG_X86_PAE)
275 static bool npt_enabled = true;
276 #else
277 static bool npt_enabled;
278 #endif
280 /* allow nested paging (virtualized MMU) for all guests */
281 static int npt = true;
282 module_param(npt, int, S_IRUGO);
284 /* allow nested virtualization in KVM/SVM */
285 static int nested = true;
286 module_param(nested, int, S_IRUGO);
288 /* enable / disable AVIC */
289 static int avic;
290 #ifdef CONFIG_X86_LOCAL_APIC
291 module_param(avic, int, S_IRUGO);
292 #endif
294 /* enable/disable Virtual VMLOAD VMSAVE */
295 static int vls = true;
296 module_param(vls, int, 0444);
298 /* enable/disable Virtual GIF */
299 static int vgif = true;
300 module_param(vgif, int, 0444);
302 /* enable/disable SEV support */
303 static int sev = IS_ENABLED(CONFIG_AMD_MEM_ENCRYPT_ACTIVE_BY_DEFAULT);
304 module_param(sev, int, 0444);
306 static u8 rsm_ins_bytes[] = "\x0f\xaa";
308 static void svm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0);
309 static void svm_flush_tlb(struct kvm_vcpu *vcpu, bool invalidate_gpa);
310 static void svm_complete_interrupts(struct vcpu_svm *svm);
312 static int nested_svm_exit_handled(struct vcpu_svm *svm);
313 static int nested_svm_intercept(struct vcpu_svm *svm);
314 static int nested_svm_vmexit(struct vcpu_svm *svm);
315 static int nested_svm_check_exception(struct vcpu_svm *svm, unsigned nr,
316 bool has_error_code, u32 error_code);
318 enum {
319 VMCB_INTERCEPTS, /* Intercept vectors, TSC offset,
320 pause filter count */
321 VMCB_PERM_MAP, /* IOPM Base and MSRPM Base */
322 VMCB_ASID, /* ASID */
323 VMCB_INTR, /* int_ctl, int_vector */
324 VMCB_NPT, /* npt_en, nCR3, gPAT */
325 VMCB_CR, /* CR0, CR3, CR4, EFER */
326 VMCB_DR, /* DR6, DR7 */
327 VMCB_DT, /* GDT, IDT */
328 VMCB_SEG, /* CS, DS, SS, ES, CPL */
329 VMCB_CR2, /* CR2 only */
330 VMCB_LBR, /* DBGCTL, BR_FROM, BR_TO, LAST_EX_FROM, LAST_EX_TO */
331 VMCB_AVIC, /* AVIC APIC_BAR, AVIC APIC_BACKING_PAGE,
332 * AVIC PHYSICAL_TABLE pointer,
333 * AVIC LOGICAL_TABLE pointer
335 VMCB_DIRTY_MAX,
338 /* TPR and CR2 are always written before VMRUN */
339 #define VMCB_ALWAYS_DIRTY_MASK ((1U << VMCB_INTR) | (1U << VMCB_CR2))
341 #define VMCB_AVIC_APIC_BAR_MASK 0xFFFFFFFFFF000ULL
343 static unsigned int max_sev_asid;
344 static unsigned int min_sev_asid;
345 static unsigned long *sev_asid_bitmap;
346 #define __sme_page_pa(x) __sme_set(page_to_pfn(x) << PAGE_SHIFT)
348 struct enc_region {
349 struct list_head list;
350 unsigned long npages;
351 struct page **pages;
352 unsigned long uaddr;
353 unsigned long size;
356 static inline bool svm_sev_enabled(void)
358 return max_sev_asid;
361 static inline bool sev_guest(struct kvm *kvm)
363 struct kvm_sev_info *sev = &kvm->arch.sev_info;
365 return sev->active;
368 static inline int sev_get_asid(struct kvm *kvm)
370 struct kvm_sev_info *sev = &kvm->arch.sev_info;
372 return sev->asid;
375 static inline void mark_all_dirty(struct vmcb *vmcb)
377 vmcb->control.clean = 0;
380 static inline void mark_all_clean(struct vmcb *vmcb)
382 vmcb->control.clean = ((1 << VMCB_DIRTY_MAX) - 1)
383 & ~VMCB_ALWAYS_DIRTY_MASK;
386 static inline void mark_dirty(struct vmcb *vmcb, int bit)
388 vmcb->control.clean &= ~(1 << bit);
391 static inline struct vcpu_svm *to_svm(struct kvm_vcpu *vcpu)
393 return container_of(vcpu, struct vcpu_svm, vcpu);
396 static inline void avic_update_vapic_bar(struct vcpu_svm *svm, u64 data)
398 svm->vmcb->control.avic_vapic_bar = data & VMCB_AVIC_APIC_BAR_MASK;
399 mark_dirty(svm->vmcb, VMCB_AVIC);
402 static inline bool avic_vcpu_is_running(struct kvm_vcpu *vcpu)
404 struct vcpu_svm *svm = to_svm(vcpu);
405 u64 *entry = svm->avic_physical_id_cache;
407 if (!entry)
408 return false;
410 return (READ_ONCE(*entry) & AVIC_PHYSICAL_ID_ENTRY_IS_RUNNING_MASK);
413 static void recalc_intercepts(struct vcpu_svm *svm)
415 struct vmcb_control_area *c, *h;
416 struct nested_state *g;
418 mark_dirty(svm->vmcb, VMCB_INTERCEPTS);
420 if (!is_guest_mode(&svm->vcpu))
421 return;
423 c = &svm->vmcb->control;
424 h = &svm->nested.hsave->control;
425 g = &svm->nested;
427 c->intercept_cr = h->intercept_cr | g->intercept_cr;
428 c->intercept_dr = h->intercept_dr | g->intercept_dr;
429 c->intercept_exceptions = h->intercept_exceptions | g->intercept_exceptions;
430 c->intercept = h->intercept | g->intercept;
433 static inline struct vmcb *get_host_vmcb(struct vcpu_svm *svm)
435 if (is_guest_mode(&svm->vcpu))
436 return svm->nested.hsave;
437 else
438 return svm->vmcb;
441 static inline void set_cr_intercept(struct vcpu_svm *svm, int bit)
443 struct vmcb *vmcb = get_host_vmcb(svm);
445 vmcb->control.intercept_cr |= (1U << bit);
447 recalc_intercepts(svm);
450 static inline void clr_cr_intercept(struct vcpu_svm *svm, int bit)
452 struct vmcb *vmcb = get_host_vmcb(svm);
454 vmcb->control.intercept_cr &= ~(1U << bit);
456 recalc_intercepts(svm);
459 static inline bool is_cr_intercept(struct vcpu_svm *svm, int bit)
461 struct vmcb *vmcb = get_host_vmcb(svm);
463 return vmcb->control.intercept_cr & (1U << bit);
466 static inline void set_dr_intercepts(struct vcpu_svm *svm)
468 struct vmcb *vmcb = get_host_vmcb(svm);
470 vmcb->control.intercept_dr = (1 << INTERCEPT_DR0_READ)
471 | (1 << INTERCEPT_DR1_READ)
472 | (1 << INTERCEPT_DR2_READ)
473 | (1 << INTERCEPT_DR3_READ)
474 | (1 << INTERCEPT_DR4_READ)
475 | (1 << INTERCEPT_DR5_READ)
476 | (1 << INTERCEPT_DR6_READ)
477 | (1 << INTERCEPT_DR7_READ)
478 | (1 << INTERCEPT_DR0_WRITE)
479 | (1 << INTERCEPT_DR1_WRITE)
480 | (1 << INTERCEPT_DR2_WRITE)
481 | (1 << INTERCEPT_DR3_WRITE)
482 | (1 << INTERCEPT_DR4_WRITE)
483 | (1 << INTERCEPT_DR5_WRITE)
484 | (1 << INTERCEPT_DR6_WRITE)
485 | (1 << INTERCEPT_DR7_WRITE);
487 recalc_intercepts(svm);
490 static inline void clr_dr_intercepts(struct vcpu_svm *svm)
492 struct vmcb *vmcb = get_host_vmcb(svm);
494 vmcb->control.intercept_dr = 0;
496 recalc_intercepts(svm);
499 static inline void set_exception_intercept(struct vcpu_svm *svm, int bit)
501 struct vmcb *vmcb = get_host_vmcb(svm);
503 vmcb->control.intercept_exceptions |= (1U << bit);
505 recalc_intercepts(svm);
508 static inline void clr_exception_intercept(struct vcpu_svm *svm, int bit)
510 struct vmcb *vmcb = get_host_vmcb(svm);
512 vmcb->control.intercept_exceptions &= ~(1U << bit);
514 recalc_intercepts(svm);
517 static inline void set_intercept(struct vcpu_svm *svm, int bit)
519 struct vmcb *vmcb = get_host_vmcb(svm);
521 vmcb->control.intercept |= (1ULL << bit);
523 recalc_intercepts(svm);
526 static inline void clr_intercept(struct vcpu_svm *svm, int bit)
528 struct vmcb *vmcb = get_host_vmcb(svm);
530 vmcb->control.intercept &= ~(1ULL << bit);
532 recalc_intercepts(svm);
535 static inline bool vgif_enabled(struct vcpu_svm *svm)
537 return !!(svm->vmcb->control.int_ctl & V_GIF_ENABLE_MASK);
540 static inline void enable_gif(struct vcpu_svm *svm)
542 if (vgif_enabled(svm))
543 svm->vmcb->control.int_ctl |= V_GIF_MASK;
544 else
545 svm->vcpu.arch.hflags |= HF_GIF_MASK;
548 static inline void disable_gif(struct vcpu_svm *svm)
550 if (vgif_enabled(svm))
551 svm->vmcb->control.int_ctl &= ~V_GIF_MASK;
552 else
553 svm->vcpu.arch.hflags &= ~HF_GIF_MASK;
556 static inline bool gif_set(struct vcpu_svm *svm)
558 if (vgif_enabled(svm))
559 return !!(svm->vmcb->control.int_ctl & V_GIF_MASK);
560 else
561 return !!(svm->vcpu.arch.hflags & HF_GIF_MASK);
564 static unsigned long iopm_base;
566 struct kvm_ldttss_desc {
567 u16 limit0;
568 u16 base0;
569 unsigned base1:8, type:5, dpl:2, p:1;
570 unsigned limit1:4, zero0:3, g:1, base2:8;
571 u32 base3;
572 u32 zero1;
573 } __attribute__((packed));
575 struct svm_cpu_data {
576 int cpu;
578 u64 asid_generation;
579 u32 max_asid;
580 u32 next_asid;
581 u32 min_asid;
582 struct kvm_ldttss_desc *tss_desc;
584 struct page *save_area;
585 struct vmcb *current_vmcb;
587 /* index = sev_asid, value = vmcb pointer */
588 struct vmcb **sev_vmcbs;
591 static DEFINE_PER_CPU(struct svm_cpu_data *, svm_data);
593 struct svm_init_data {
594 int cpu;
595 int r;
598 static const u32 msrpm_ranges[] = {0, 0xc0000000, 0xc0010000};
600 #define NUM_MSR_MAPS ARRAY_SIZE(msrpm_ranges)
601 #define MSRS_RANGE_SIZE 2048
602 #define MSRS_IN_RANGE (MSRS_RANGE_SIZE * 8 / 2)
604 static u32 svm_msrpm_offset(u32 msr)
606 u32 offset;
607 int i;
609 for (i = 0; i < NUM_MSR_MAPS; i++) {
610 if (msr < msrpm_ranges[i] ||
611 msr >= msrpm_ranges[i] + MSRS_IN_RANGE)
612 continue;
614 offset = (msr - msrpm_ranges[i]) / 4; /* 4 msrs per u8 */
615 offset += (i * MSRS_RANGE_SIZE); /* add range offset */
617 /* Now we have the u8 offset - but need the u32 offset */
618 return offset / 4;
621 /* MSR not in any range */
622 return MSR_INVALID;
625 #define MAX_INST_SIZE 15
627 static inline void clgi(void)
629 asm volatile (__ex(SVM_CLGI));
632 static inline void stgi(void)
634 asm volatile (__ex(SVM_STGI));
637 static inline void invlpga(unsigned long addr, u32 asid)
639 asm volatile (__ex(SVM_INVLPGA) : : "a"(addr), "c"(asid));
642 static int get_npt_level(struct kvm_vcpu *vcpu)
644 #ifdef CONFIG_X86_64
645 return PT64_ROOT_4LEVEL;
646 #else
647 return PT32E_ROOT_LEVEL;
648 #endif
651 static void svm_set_efer(struct kvm_vcpu *vcpu, u64 efer)
653 vcpu->arch.efer = efer;
654 if (!npt_enabled && !(efer & EFER_LMA))
655 efer &= ~EFER_LME;
657 to_svm(vcpu)->vmcb->save.efer = efer | EFER_SVME;
658 mark_dirty(to_svm(vcpu)->vmcb, VMCB_CR);
661 static int is_external_interrupt(u32 info)
663 info &= SVM_EVTINJ_TYPE_MASK | SVM_EVTINJ_VALID;
664 return info == (SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_INTR);
667 static u32 svm_get_interrupt_shadow(struct kvm_vcpu *vcpu)
669 struct vcpu_svm *svm = to_svm(vcpu);
670 u32 ret = 0;
672 if (svm->vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK)
673 ret = KVM_X86_SHADOW_INT_STI | KVM_X86_SHADOW_INT_MOV_SS;
674 return ret;
677 static void svm_set_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
679 struct vcpu_svm *svm = to_svm(vcpu);
681 if (mask == 0)
682 svm->vmcb->control.int_state &= ~SVM_INTERRUPT_SHADOW_MASK;
683 else
684 svm->vmcb->control.int_state |= SVM_INTERRUPT_SHADOW_MASK;
688 static void skip_emulated_instruction(struct kvm_vcpu *vcpu)
690 struct vcpu_svm *svm = to_svm(vcpu);
692 if (svm->vmcb->control.next_rip != 0) {
693 WARN_ON_ONCE(!static_cpu_has(X86_FEATURE_NRIPS));
694 svm->next_rip = svm->vmcb->control.next_rip;
697 if (!svm->next_rip) {
698 if (emulate_instruction(vcpu, EMULTYPE_SKIP) !=
699 EMULATE_DONE)
700 printk(KERN_DEBUG "%s: NOP\n", __func__);
701 return;
703 if (svm->next_rip - kvm_rip_read(vcpu) > MAX_INST_SIZE)
704 printk(KERN_ERR "%s: ip 0x%lx next 0x%llx\n",
705 __func__, kvm_rip_read(vcpu), svm->next_rip);
707 kvm_rip_write(vcpu, svm->next_rip);
708 svm_set_interrupt_shadow(vcpu, 0);
711 static void svm_queue_exception(struct kvm_vcpu *vcpu)
713 struct vcpu_svm *svm = to_svm(vcpu);
714 unsigned nr = vcpu->arch.exception.nr;
715 bool has_error_code = vcpu->arch.exception.has_error_code;
716 bool reinject = vcpu->arch.exception.injected;
717 u32 error_code = vcpu->arch.exception.error_code;
720 * If we are within a nested VM we'd better #VMEXIT and let the guest
721 * handle the exception
723 if (!reinject &&
724 nested_svm_check_exception(svm, nr, has_error_code, error_code))
725 return;
727 if (nr == BP_VECTOR && !static_cpu_has(X86_FEATURE_NRIPS)) {
728 unsigned long rip, old_rip = kvm_rip_read(&svm->vcpu);
731 * For guest debugging where we have to reinject #BP if some
732 * INT3 is guest-owned:
733 * Emulate nRIP by moving RIP forward. Will fail if injection
734 * raises a fault that is not intercepted. Still better than
735 * failing in all cases.
737 skip_emulated_instruction(&svm->vcpu);
738 rip = kvm_rip_read(&svm->vcpu);
739 svm->int3_rip = rip + svm->vmcb->save.cs.base;
740 svm->int3_injected = rip - old_rip;
743 svm->vmcb->control.event_inj = nr
744 | SVM_EVTINJ_VALID
745 | (has_error_code ? SVM_EVTINJ_VALID_ERR : 0)
746 | SVM_EVTINJ_TYPE_EXEPT;
747 svm->vmcb->control.event_inj_err = error_code;
750 static void svm_init_erratum_383(void)
752 u32 low, high;
753 int err;
754 u64 val;
756 if (!static_cpu_has_bug(X86_BUG_AMD_TLB_MMATCH))
757 return;
759 /* Use _safe variants to not break nested virtualization */
760 val = native_read_msr_safe(MSR_AMD64_DC_CFG, &err);
761 if (err)
762 return;
764 val |= (1ULL << 47);
766 low = lower_32_bits(val);
767 high = upper_32_bits(val);
769 native_write_msr_safe(MSR_AMD64_DC_CFG, low, high);
771 erratum_383_found = true;
774 static void svm_init_osvw(struct kvm_vcpu *vcpu)
777 * Guests should see errata 400 and 415 as fixed (assuming that
778 * HLT and IO instructions are intercepted).
780 vcpu->arch.osvw.length = (osvw_len >= 3) ? (osvw_len) : 3;
781 vcpu->arch.osvw.status = osvw_status & ~(6ULL);
784 * By increasing VCPU's osvw.length to 3 we are telling the guest that
785 * all osvw.status bits inside that length, including bit 0 (which is
786 * reserved for erratum 298), are valid. However, if host processor's
787 * osvw_len is 0 then osvw_status[0] carries no information. We need to
788 * be conservative here and therefore we tell the guest that erratum 298
789 * is present (because we really don't know).
791 if (osvw_len == 0 && boot_cpu_data.x86 == 0x10)
792 vcpu->arch.osvw.status |= 1;
795 static int has_svm(void)
797 const char *msg;
799 if (!cpu_has_svm(&msg)) {
800 printk(KERN_INFO "has_svm: %s\n", msg);
801 return 0;
804 return 1;
807 static void svm_hardware_disable(void)
809 /* Make sure we clean up behind us */
810 if (static_cpu_has(X86_FEATURE_TSCRATEMSR))
811 wrmsrl(MSR_AMD64_TSC_RATIO, TSC_RATIO_DEFAULT);
813 cpu_svm_disable();
815 amd_pmu_disable_virt();
818 static int svm_hardware_enable(void)
821 struct svm_cpu_data *sd;
822 uint64_t efer;
823 struct desc_struct *gdt;
824 int me = raw_smp_processor_id();
826 rdmsrl(MSR_EFER, efer);
827 if (efer & EFER_SVME)
828 return -EBUSY;
830 if (!has_svm()) {
831 pr_err("%s: err EOPNOTSUPP on %d\n", __func__, me);
832 return -EINVAL;
834 sd = per_cpu(svm_data, me);
835 if (!sd) {
836 pr_err("%s: svm_data is NULL on %d\n", __func__, me);
837 return -EINVAL;
840 sd->asid_generation = 1;
841 sd->max_asid = cpuid_ebx(SVM_CPUID_FUNC) - 1;
842 sd->next_asid = sd->max_asid + 1;
843 sd->min_asid = max_sev_asid + 1;
845 gdt = get_current_gdt_rw();
846 sd->tss_desc = (struct kvm_ldttss_desc *)(gdt + GDT_ENTRY_TSS);
848 wrmsrl(MSR_EFER, efer | EFER_SVME);
850 wrmsrl(MSR_VM_HSAVE_PA, page_to_pfn(sd->save_area) << PAGE_SHIFT);
852 if (static_cpu_has(X86_FEATURE_TSCRATEMSR)) {
853 wrmsrl(MSR_AMD64_TSC_RATIO, TSC_RATIO_DEFAULT);
854 __this_cpu_write(current_tsc_ratio, TSC_RATIO_DEFAULT);
859 * Get OSVW bits.
861 * Note that it is possible to have a system with mixed processor
862 * revisions and therefore different OSVW bits. If bits are not the same
863 * on different processors then choose the worst case (i.e. if erratum
864 * is present on one processor and not on another then assume that the
865 * erratum is present everywhere).
867 if (cpu_has(&boot_cpu_data, X86_FEATURE_OSVW)) {
868 uint64_t len, status = 0;
869 int err;
871 len = native_read_msr_safe(MSR_AMD64_OSVW_ID_LENGTH, &err);
872 if (!err)
873 status = native_read_msr_safe(MSR_AMD64_OSVW_STATUS,
874 &err);
876 if (err)
877 osvw_status = osvw_len = 0;
878 else {
879 if (len < osvw_len)
880 osvw_len = len;
881 osvw_status |= status;
882 osvw_status &= (1ULL << osvw_len) - 1;
884 } else
885 osvw_status = osvw_len = 0;
887 svm_init_erratum_383();
889 amd_pmu_enable_virt();
891 return 0;
894 static void svm_cpu_uninit(int cpu)
896 struct svm_cpu_data *sd = per_cpu(svm_data, raw_smp_processor_id());
898 if (!sd)
899 return;
901 per_cpu(svm_data, raw_smp_processor_id()) = NULL;
902 kfree(sd->sev_vmcbs);
903 __free_page(sd->save_area);
904 kfree(sd);
907 static int svm_cpu_init(int cpu)
909 struct svm_cpu_data *sd;
910 int r;
912 sd = kzalloc(sizeof(struct svm_cpu_data), GFP_KERNEL);
913 if (!sd)
914 return -ENOMEM;
915 sd->cpu = cpu;
916 r = -ENOMEM;
917 sd->save_area = alloc_page(GFP_KERNEL);
918 if (!sd->save_area)
919 goto err_1;
921 if (svm_sev_enabled()) {
922 r = -ENOMEM;
923 sd->sev_vmcbs = kmalloc((max_sev_asid + 1) * sizeof(void *), GFP_KERNEL);
924 if (!sd->sev_vmcbs)
925 goto err_1;
928 per_cpu(svm_data, cpu) = sd;
930 return 0;
932 err_1:
933 kfree(sd);
934 return r;
938 static bool valid_msr_intercept(u32 index)
940 int i;
942 for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++)
943 if (direct_access_msrs[i].index == index)
944 return true;
946 return false;
949 static bool msr_write_intercepted(struct kvm_vcpu *vcpu, unsigned msr)
951 u8 bit_write;
952 unsigned long tmp;
953 u32 offset;
954 u32 *msrpm;
956 msrpm = is_guest_mode(vcpu) ? to_svm(vcpu)->nested.msrpm:
957 to_svm(vcpu)->msrpm;
959 offset = svm_msrpm_offset(msr);
960 bit_write = 2 * (msr & 0x0f) + 1;
961 tmp = msrpm[offset];
963 BUG_ON(offset == MSR_INVALID);
965 return !!test_bit(bit_write, &tmp);
968 static void set_msr_interception(u32 *msrpm, unsigned msr,
969 int read, int write)
971 u8 bit_read, bit_write;
972 unsigned long tmp;
973 u32 offset;
976 * If this warning triggers extend the direct_access_msrs list at the
977 * beginning of the file
979 WARN_ON(!valid_msr_intercept(msr));
981 offset = svm_msrpm_offset(msr);
982 bit_read = 2 * (msr & 0x0f);
983 bit_write = 2 * (msr & 0x0f) + 1;
984 tmp = msrpm[offset];
986 BUG_ON(offset == MSR_INVALID);
988 read ? clear_bit(bit_read, &tmp) : set_bit(bit_read, &tmp);
989 write ? clear_bit(bit_write, &tmp) : set_bit(bit_write, &tmp);
991 msrpm[offset] = tmp;
994 static void svm_vcpu_init_msrpm(u32 *msrpm)
996 int i;
998 memset(msrpm, 0xff, PAGE_SIZE * (1 << MSRPM_ALLOC_ORDER));
1000 for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++) {
1001 if (!direct_access_msrs[i].always)
1002 continue;
1004 set_msr_interception(msrpm, direct_access_msrs[i].index, 1, 1);
1008 static void add_msr_offset(u32 offset)
1010 int i;
1012 for (i = 0; i < MSRPM_OFFSETS; ++i) {
1014 /* Offset already in list? */
1015 if (msrpm_offsets[i] == offset)
1016 return;
1018 /* Slot used by another offset? */
1019 if (msrpm_offsets[i] != MSR_INVALID)
1020 continue;
1022 /* Add offset to list */
1023 msrpm_offsets[i] = offset;
1025 return;
1029 * If this BUG triggers the msrpm_offsets table has an overflow. Just
1030 * increase MSRPM_OFFSETS in this case.
1032 BUG();
1035 static void init_msrpm_offsets(void)
1037 int i;
1039 memset(msrpm_offsets, 0xff, sizeof(msrpm_offsets));
1041 for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++) {
1042 u32 offset;
1044 offset = svm_msrpm_offset(direct_access_msrs[i].index);
1045 BUG_ON(offset == MSR_INVALID);
1047 add_msr_offset(offset);
1051 static void svm_enable_lbrv(struct vcpu_svm *svm)
1053 u32 *msrpm = svm->msrpm;
1055 svm->vmcb->control.virt_ext |= LBR_CTL_ENABLE_MASK;
1056 set_msr_interception(msrpm, MSR_IA32_LASTBRANCHFROMIP, 1, 1);
1057 set_msr_interception(msrpm, MSR_IA32_LASTBRANCHTOIP, 1, 1);
1058 set_msr_interception(msrpm, MSR_IA32_LASTINTFROMIP, 1, 1);
1059 set_msr_interception(msrpm, MSR_IA32_LASTINTTOIP, 1, 1);
1062 static void svm_disable_lbrv(struct vcpu_svm *svm)
1064 u32 *msrpm = svm->msrpm;
1066 svm->vmcb->control.virt_ext &= ~LBR_CTL_ENABLE_MASK;
1067 set_msr_interception(msrpm, MSR_IA32_LASTBRANCHFROMIP, 0, 0);
1068 set_msr_interception(msrpm, MSR_IA32_LASTBRANCHTOIP, 0, 0);
1069 set_msr_interception(msrpm, MSR_IA32_LASTINTFROMIP, 0, 0);
1070 set_msr_interception(msrpm, MSR_IA32_LASTINTTOIP, 0, 0);
1073 static void disable_nmi_singlestep(struct vcpu_svm *svm)
1075 svm->nmi_singlestep = false;
1077 if (!(svm->vcpu.guest_debug & KVM_GUESTDBG_SINGLESTEP)) {
1078 /* Clear our flags if they were not set by the guest */
1079 if (!(svm->nmi_singlestep_guest_rflags & X86_EFLAGS_TF))
1080 svm->vmcb->save.rflags &= ~X86_EFLAGS_TF;
1081 if (!(svm->nmi_singlestep_guest_rflags & X86_EFLAGS_RF))
1082 svm->vmcb->save.rflags &= ~X86_EFLAGS_RF;
1086 /* Note:
1087 * This hash table is used to map VM_ID to a struct kvm_arch,
1088 * when handling AMD IOMMU GALOG notification to schedule in
1089 * a particular vCPU.
1091 #define SVM_VM_DATA_HASH_BITS 8
1092 static DEFINE_HASHTABLE(svm_vm_data_hash, SVM_VM_DATA_HASH_BITS);
1093 static u32 next_vm_id = 0;
1094 static bool next_vm_id_wrapped = 0;
1095 static DEFINE_SPINLOCK(svm_vm_data_hash_lock);
1097 /* Note:
1098 * This function is called from IOMMU driver to notify
1099 * SVM to schedule in a particular vCPU of a particular VM.
1101 static int avic_ga_log_notifier(u32 ga_tag)
1103 unsigned long flags;
1104 struct kvm_arch *ka = NULL;
1105 struct kvm_vcpu *vcpu = NULL;
1106 u32 vm_id = AVIC_GATAG_TO_VMID(ga_tag);
1107 u32 vcpu_id = AVIC_GATAG_TO_VCPUID(ga_tag);
1109 pr_debug("SVM: %s: vm_id=%#x, vcpu_id=%#x\n", __func__, vm_id, vcpu_id);
1111 spin_lock_irqsave(&svm_vm_data_hash_lock, flags);
1112 hash_for_each_possible(svm_vm_data_hash, ka, hnode, vm_id) {
1113 struct kvm *kvm = container_of(ka, struct kvm, arch);
1114 struct kvm_arch *vm_data = &kvm->arch;
1116 if (vm_data->avic_vm_id != vm_id)
1117 continue;
1118 vcpu = kvm_get_vcpu_by_id(kvm, vcpu_id);
1119 break;
1121 spin_unlock_irqrestore(&svm_vm_data_hash_lock, flags);
1123 /* Note:
1124 * At this point, the IOMMU should have already set the pending
1125 * bit in the vAPIC backing page. So, we just need to schedule
1126 * in the vcpu.
1128 if (vcpu)
1129 kvm_vcpu_wake_up(vcpu);
1131 return 0;
1134 static __init int sev_hardware_setup(void)
1136 struct sev_user_data_status *status;
1137 int rc;
1139 /* Maximum number of encrypted guests supported simultaneously */
1140 max_sev_asid = cpuid_ecx(0x8000001F);
1142 if (!max_sev_asid)
1143 return 1;
1145 /* Minimum ASID value that should be used for SEV guest */
1146 min_sev_asid = cpuid_edx(0x8000001F);
1148 /* Initialize SEV ASID bitmap */
1149 sev_asid_bitmap = kcalloc(BITS_TO_LONGS(max_sev_asid),
1150 sizeof(unsigned long), GFP_KERNEL);
1151 if (!sev_asid_bitmap)
1152 return 1;
1154 status = kmalloc(sizeof(*status), GFP_KERNEL);
1155 if (!status)
1156 return 1;
1159 * Check SEV platform status.
1161 * PLATFORM_STATUS can be called in any state, if we failed to query
1162 * the PLATFORM status then either PSP firmware does not support SEV
1163 * feature or SEV firmware is dead.
1165 rc = sev_platform_status(status, NULL);
1166 if (rc)
1167 goto err;
1169 pr_info("SEV supported\n");
1171 err:
1172 kfree(status);
1173 return rc;
1176 static __init int svm_hardware_setup(void)
1178 int cpu;
1179 struct page *iopm_pages;
1180 void *iopm_va;
1181 int r;
1183 iopm_pages = alloc_pages(GFP_KERNEL, IOPM_ALLOC_ORDER);
1185 if (!iopm_pages)
1186 return -ENOMEM;
1188 iopm_va = page_address(iopm_pages);
1189 memset(iopm_va, 0xff, PAGE_SIZE * (1 << IOPM_ALLOC_ORDER));
1190 iopm_base = page_to_pfn(iopm_pages) << PAGE_SHIFT;
1192 init_msrpm_offsets();
1194 if (boot_cpu_has(X86_FEATURE_NX))
1195 kvm_enable_efer_bits(EFER_NX);
1197 if (boot_cpu_has(X86_FEATURE_FXSR_OPT))
1198 kvm_enable_efer_bits(EFER_FFXSR);
1200 if (boot_cpu_has(X86_FEATURE_TSCRATEMSR)) {
1201 kvm_has_tsc_control = true;
1202 kvm_max_tsc_scaling_ratio = TSC_RATIO_MAX;
1203 kvm_tsc_scaling_ratio_frac_bits = 32;
1206 if (nested) {
1207 printk(KERN_INFO "kvm: Nested Virtualization enabled\n");
1208 kvm_enable_efer_bits(EFER_SVME | EFER_LMSLE);
1211 if (sev) {
1212 if (boot_cpu_has(X86_FEATURE_SEV) &&
1213 IS_ENABLED(CONFIG_KVM_AMD_SEV)) {
1214 r = sev_hardware_setup();
1215 if (r)
1216 sev = false;
1217 } else {
1218 sev = false;
1222 for_each_possible_cpu(cpu) {
1223 r = svm_cpu_init(cpu);
1224 if (r)
1225 goto err;
1228 if (!boot_cpu_has(X86_FEATURE_NPT))
1229 npt_enabled = false;
1231 if (npt_enabled && !npt) {
1232 printk(KERN_INFO "kvm: Nested Paging disabled\n");
1233 npt_enabled = false;
1236 if (npt_enabled) {
1237 printk(KERN_INFO "kvm: Nested Paging enabled\n");
1238 kvm_enable_tdp();
1239 } else
1240 kvm_disable_tdp();
1242 if (avic) {
1243 if (!npt_enabled ||
1244 !boot_cpu_has(X86_FEATURE_AVIC) ||
1245 !IS_ENABLED(CONFIG_X86_LOCAL_APIC)) {
1246 avic = false;
1247 } else {
1248 pr_info("AVIC enabled\n");
1250 amd_iommu_register_ga_log_notifier(&avic_ga_log_notifier);
1254 if (vls) {
1255 if (!npt_enabled ||
1256 !boot_cpu_has(X86_FEATURE_V_VMSAVE_VMLOAD) ||
1257 !IS_ENABLED(CONFIG_X86_64)) {
1258 vls = false;
1259 } else {
1260 pr_info("Virtual VMLOAD VMSAVE supported\n");
1264 if (vgif) {
1265 if (!boot_cpu_has(X86_FEATURE_VGIF))
1266 vgif = false;
1267 else
1268 pr_info("Virtual GIF supported\n");
1271 return 0;
1273 err:
1274 __free_pages(iopm_pages, IOPM_ALLOC_ORDER);
1275 iopm_base = 0;
1276 return r;
1279 static __exit void svm_hardware_unsetup(void)
1281 int cpu;
1283 if (svm_sev_enabled())
1284 kfree(sev_asid_bitmap);
1286 for_each_possible_cpu(cpu)
1287 svm_cpu_uninit(cpu);
1289 __free_pages(pfn_to_page(iopm_base >> PAGE_SHIFT), IOPM_ALLOC_ORDER);
1290 iopm_base = 0;
1293 static void init_seg(struct vmcb_seg *seg)
1295 seg->selector = 0;
1296 seg->attrib = SVM_SELECTOR_P_MASK | SVM_SELECTOR_S_MASK |
1297 SVM_SELECTOR_WRITE_MASK; /* Read/Write Data Segment */
1298 seg->limit = 0xffff;
1299 seg->base = 0;
1302 static void init_sys_seg(struct vmcb_seg *seg, uint32_t type)
1304 seg->selector = 0;
1305 seg->attrib = SVM_SELECTOR_P_MASK | type;
1306 seg->limit = 0xffff;
1307 seg->base = 0;
1310 static void svm_write_tsc_offset(struct kvm_vcpu *vcpu, u64 offset)
1312 struct vcpu_svm *svm = to_svm(vcpu);
1313 u64 g_tsc_offset = 0;
1315 if (is_guest_mode(vcpu)) {
1316 g_tsc_offset = svm->vmcb->control.tsc_offset -
1317 svm->nested.hsave->control.tsc_offset;
1318 svm->nested.hsave->control.tsc_offset = offset;
1319 } else
1320 trace_kvm_write_tsc_offset(vcpu->vcpu_id,
1321 svm->vmcb->control.tsc_offset,
1322 offset);
1324 svm->vmcb->control.tsc_offset = offset + g_tsc_offset;
1326 mark_dirty(svm->vmcb, VMCB_INTERCEPTS);
1329 static void avic_init_vmcb(struct vcpu_svm *svm)
1331 struct vmcb *vmcb = svm->vmcb;
1332 struct kvm_arch *vm_data = &svm->vcpu.kvm->arch;
1333 phys_addr_t bpa = __sme_set(page_to_phys(svm->avic_backing_page));
1334 phys_addr_t lpa = __sme_set(page_to_phys(vm_data->avic_logical_id_table_page));
1335 phys_addr_t ppa = __sme_set(page_to_phys(vm_data->avic_physical_id_table_page));
1337 vmcb->control.avic_backing_page = bpa & AVIC_HPA_MASK;
1338 vmcb->control.avic_logical_id = lpa & AVIC_HPA_MASK;
1339 vmcb->control.avic_physical_id = ppa & AVIC_HPA_MASK;
1340 vmcb->control.avic_physical_id |= AVIC_MAX_PHYSICAL_ID_COUNT;
1341 vmcb->control.int_ctl |= AVIC_ENABLE_MASK;
1344 static void init_vmcb(struct vcpu_svm *svm)
1346 struct vmcb_control_area *control = &svm->vmcb->control;
1347 struct vmcb_save_area *save = &svm->vmcb->save;
1349 svm->vcpu.arch.hflags = 0;
1351 set_cr_intercept(svm, INTERCEPT_CR0_READ);
1352 set_cr_intercept(svm, INTERCEPT_CR3_READ);
1353 set_cr_intercept(svm, INTERCEPT_CR4_READ);
1354 set_cr_intercept(svm, INTERCEPT_CR0_WRITE);
1355 set_cr_intercept(svm, INTERCEPT_CR3_WRITE);
1356 set_cr_intercept(svm, INTERCEPT_CR4_WRITE);
1357 if (!kvm_vcpu_apicv_active(&svm->vcpu))
1358 set_cr_intercept(svm, INTERCEPT_CR8_WRITE);
1360 set_dr_intercepts(svm);
1362 set_exception_intercept(svm, PF_VECTOR);
1363 set_exception_intercept(svm, UD_VECTOR);
1364 set_exception_intercept(svm, MC_VECTOR);
1365 set_exception_intercept(svm, AC_VECTOR);
1366 set_exception_intercept(svm, DB_VECTOR);
1368 set_intercept(svm, INTERCEPT_INTR);
1369 set_intercept(svm, INTERCEPT_NMI);
1370 set_intercept(svm, INTERCEPT_SMI);
1371 set_intercept(svm, INTERCEPT_SELECTIVE_CR0);
1372 set_intercept(svm, INTERCEPT_RDPMC);
1373 set_intercept(svm, INTERCEPT_CPUID);
1374 set_intercept(svm, INTERCEPT_INVD);
1375 set_intercept(svm, INTERCEPT_HLT);
1376 set_intercept(svm, INTERCEPT_INVLPG);
1377 set_intercept(svm, INTERCEPT_INVLPGA);
1378 set_intercept(svm, INTERCEPT_IOIO_PROT);
1379 set_intercept(svm, INTERCEPT_MSR_PROT);
1380 set_intercept(svm, INTERCEPT_TASK_SWITCH);
1381 set_intercept(svm, INTERCEPT_SHUTDOWN);
1382 set_intercept(svm, INTERCEPT_VMRUN);
1383 set_intercept(svm, INTERCEPT_VMMCALL);
1384 set_intercept(svm, INTERCEPT_VMLOAD);
1385 set_intercept(svm, INTERCEPT_VMSAVE);
1386 set_intercept(svm, INTERCEPT_STGI);
1387 set_intercept(svm, INTERCEPT_CLGI);
1388 set_intercept(svm, INTERCEPT_SKINIT);
1389 set_intercept(svm, INTERCEPT_WBINVD);
1390 set_intercept(svm, INTERCEPT_XSETBV);
1391 set_intercept(svm, INTERCEPT_RSM);
1393 if (!kvm_mwait_in_guest()) {
1394 set_intercept(svm, INTERCEPT_MONITOR);
1395 set_intercept(svm, INTERCEPT_MWAIT);
1398 control->iopm_base_pa = __sme_set(iopm_base);
1399 control->msrpm_base_pa = __sme_set(__pa(svm->msrpm));
1400 control->int_ctl = V_INTR_MASKING_MASK;
1402 init_seg(&save->es);
1403 init_seg(&save->ss);
1404 init_seg(&save->ds);
1405 init_seg(&save->fs);
1406 init_seg(&save->gs);
1408 save->cs.selector = 0xf000;
1409 save->cs.base = 0xffff0000;
1410 /* Executable/Readable Code Segment */
1411 save->cs.attrib = SVM_SELECTOR_READ_MASK | SVM_SELECTOR_P_MASK |
1412 SVM_SELECTOR_S_MASK | SVM_SELECTOR_CODE_MASK;
1413 save->cs.limit = 0xffff;
1415 save->gdtr.limit = 0xffff;
1416 save->idtr.limit = 0xffff;
1418 init_sys_seg(&save->ldtr, SEG_TYPE_LDT);
1419 init_sys_seg(&save->tr, SEG_TYPE_BUSY_TSS16);
1421 svm_set_efer(&svm->vcpu, 0);
1422 save->dr6 = 0xffff0ff0;
1423 kvm_set_rflags(&svm->vcpu, 2);
1424 save->rip = 0x0000fff0;
1425 svm->vcpu.arch.regs[VCPU_REGS_RIP] = save->rip;
1428 * svm_set_cr0() sets PG and WP and clears NW and CD on save->cr0.
1429 * It also updates the guest-visible cr0 value.
1431 svm_set_cr0(&svm->vcpu, X86_CR0_NW | X86_CR0_CD | X86_CR0_ET);
1432 kvm_mmu_reset_context(&svm->vcpu);
1434 save->cr4 = X86_CR4_PAE;
1435 /* rdx = ?? */
1437 if (npt_enabled) {
1438 /* Setup VMCB for Nested Paging */
1439 control->nested_ctl |= SVM_NESTED_CTL_NP_ENABLE;
1440 clr_intercept(svm, INTERCEPT_INVLPG);
1441 clr_exception_intercept(svm, PF_VECTOR);
1442 clr_cr_intercept(svm, INTERCEPT_CR3_READ);
1443 clr_cr_intercept(svm, INTERCEPT_CR3_WRITE);
1444 save->g_pat = svm->vcpu.arch.pat;
1445 save->cr3 = 0;
1446 save->cr4 = 0;
1448 svm->asid_generation = 0;
1450 svm->nested.vmcb = 0;
1451 svm->vcpu.arch.hflags = 0;
1453 if (boot_cpu_has(X86_FEATURE_PAUSEFILTER)) {
1454 control->pause_filter_count = 3000;
1455 set_intercept(svm, INTERCEPT_PAUSE);
1458 if (kvm_vcpu_apicv_active(&svm->vcpu))
1459 avic_init_vmcb(svm);
1462 * If hardware supports Virtual VMLOAD VMSAVE then enable it
1463 * in VMCB and clear intercepts to avoid #VMEXIT.
1465 if (vls) {
1466 clr_intercept(svm, INTERCEPT_VMLOAD);
1467 clr_intercept(svm, INTERCEPT_VMSAVE);
1468 svm->vmcb->control.virt_ext |= VIRTUAL_VMLOAD_VMSAVE_ENABLE_MASK;
1471 if (vgif) {
1472 clr_intercept(svm, INTERCEPT_STGI);
1473 clr_intercept(svm, INTERCEPT_CLGI);
1474 svm->vmcb->control.int_ctl |= V_GIF_ENABLE_MASK;
1477 if (sev_guest(svm->vcpu.kvm)) {
1478 svm->vmcb->control.nested_ctl |= SVM_NESTED_CTL_SEV_ENABLE;
1479 clr_exception_intercept(svm, UD_VECTOR);
1482 mark_all_dirty(svm->vmcb);
1484 enable_gif(svm);
1488 static u64 *avic_get_physical_id_entry(struct kvm_vcpu *vcpu,
1489 unsigned int index)
1491 u64 *avic_physical_id_table;
1492 struct kvm_arch *vm_data = &vcpu->kvm->arch;
1494 if (index >= AVIC_MAX_PHYSICAL_ID_COUNT)
1495 return NULL;
1497 avic_physical_id_table = page_address(vm_data->avic_physical_id_table_page);
1499 return &avic_physical_id_table[index];
1503 * Note:
1504 * AVIC hardware walks the nested page table to check permissions,
1505 * but does not use the SPA address specified in the leaf page
1506 * table entry since it uses address in the AVIC_BACKING_PAGE pointer
1507 * field of the VMCB. Therefore, we set up the
1508 * APIC_ACCESS_PAGE_PRIVATE_MEMSLOT (4KB) here.
1510 static int avic_init_access_page(struct kvm_vcpu *vcpu)
1512 struct kvm *kvm = vcpu->kvm;
1513 int ret;
1515 if (kvm->arch.apic_access_page_done)
1516 return 0;
1518 ret = x86_set_memory_region(kvm,
1519 APIC_ACCESS_PAGE_PRIVATE_MEMSLOT,
1520 APIC_DEFAULT_PHYS_BASE,
1521 PAGE_SIZE);
1522 if (ret)
1523 return ret;
1525 kvm->arch.apic_access_page_done = true;
1526 return 0;
1529 static int avic_init_backing_page(struct kvm_vcpu *vcpu)
1531 int ret;
1532 u64 *entry, new_entry;
1533 int id = vcpu->vcpu_id;
1534 struct vcpu_svm *svm = to_svm(vcpu);
1536 ret = avic_init_access_page(vcpu);
1537 if (ret)
1538 return ret;
1540 if (id >= AVIC_MAX_PHYSICAL_ID_COUNT)
1541 return -EINVAL;
1543 if (!svm->vcpu.arch.apic->regs)
1544 return -EINVAL;
1546 svm->avic_backing_page = virt_to_page(svm->vcpu.arch.apic->regs);
1548 /* Setting AVIC backing page address in the phy APIC ID table */
1549 entry = avic_get_physical_id_entry(vcpu, id);
1550 if (!entry)
1551 return -EINVAL;
1553 new_entry = READ_ONCE(*entry);
1554 new_entry = __sme_set((page_to_phys(svm->avic_backing_page) &
1555 AVIC_PHYSICAL_ID_ENTRY_BACKING_PAGE_MASK) |
1556 AVIC_PHYSICAL_ID_ENTRY_VALID_MASK);
1557 WRITE_ONCE(*entry, new_entry);
1559 svm->avic_physical_id_cache = entry;
1561 return 0;
1564 static void __sev_asid_free(int asid)
1566 struct svm_cpu_data *sd;
1567 int cpu, pos;
1569 pos = asid - 1;
1570 clear_bit(pos, sev_asid_bitmap);
1572 for_each_possible_cpu(cpu) {
1573 sd = per_cpu(svm_data, cpu);
1574 sd->sev_vmcbs[pos] = NULL;
1578 static void sev_asid_free(struct kvm *kvm)
1580 struct kvm_sev_info *sev = &kvm->arch.sev_info;
1582 __sev_asid_free(sev->asid);
1585 static void sev_unbind_asid(struct kvm *kvm, unsigned int handle)
1587 struct sev_data_decommission *decommission;
1588 struct sev_data_deactivate *data;
1590 if (!handle)
1591 return;
1593 data = kzalloc(sizeof(*data), GFP_KERNEL);
1594 if (!data)
1595 return;
1597 /* deactivate handle */
1598 data->handle = handle;
1599 sev_guest_deactivate(data, NULL);
1601 wbinvd_on_all_cpus();
1602 sev_guest_df_flush(NULL);
1603 kfree(data);
1605 decommission = kzalloc(sizeof(*decommission), GFP_KERNEL);
1606 if (!decommission)
1607 return;
1609 /* decommission handle */
1610 decommission->handle = handle;
1611 sev_guest_decommission(decommission, NULL);
1613 kfree(decommission);
1616 static struct page **sev_pin_memory(struct kvm *kvm, unsigned long uaddr,
1617 unsigned long ulen, unsigned long *n,
1618 int write)
1620 struct kvm_sev_info *sev = &kvm->arch.sev_info;
1621 unsigned long npages, npinned, size;
1622 unsigned long locked, lock_limit;
1623 struct page **pages;
1624 int first, last;
1626 /* Calculate number of pages. */
1627 first = (uaddr & PAGE_MASK) >> PAGE_SHIFT;
1628 last = ((uaddr + ulen - 1) & PAGE_MASK) >> PAGE_SHIFT;
1629 npages = (last - first + 1);
1631 locked = sev->pages_locked + npages;
1632 lock_limit = rlimit(RLIMIT_MEMLOCK) >> PAGE_SHIFT;
1633 if (locked > lock_limit && !capable(CAP_IPC_LOCK)) {
1634 pr_err("SEV: %lu locked pages exceed the lock limit of %lu.\n", locked, lock_limit);
1635 return NULL;
1638 /* Avoid using vmalloc for smaller buffers. */
1639 size = npages * sizeof(struct page *);
1640 if (size > PAGE_SIZE)
1641 pages = vmalloc(size);
1642 else
1643 pages = kmalloc(size, GFP_KERNEL);
1645 if (!pages)
1646 return NULL;
1648 /* Pin the user virtual address. */
1649 npinned = get_user_pages_fast(uaddr, npages, write ? FOLL_WRITE : 0, pages);
1650 if (npinned != npages) {
1651 pr_err("SEV: Failure locking %lu pages.\n", npages);
1652 goto err;
1655 *n = npages;
1656 sev->pages_locked = locked;
1658 return pages;
1660 err:
1661 if (npinned > 0)
1662 release_pages(pages, npinned);
1664 kvfree(pages);
1665 return NULL;
1668 static void sev_unpin_memory(struct kvm *kvm, struct page **pages,
1669 unsigned long npages)
1671 struct kvm_sev_info *sev = &kvm->arch.sev_info;
1673 release_pages(pages, npages);
1674 kvfree(pages);
1675 sev->pages_locked -= npages;
1678 static void sev_clflush_pages(struct page *pages[], unsigned long npages)
1680 uint8_t *page_virtual;
1681 unsigned long i;
1683 if (npages == 0 || pages == NULL)
1684 return;
1686 for (i = 0; i < npages; i++) {
1687 page_virtual = kmap_atomic(pages[i]);
1688 clflush_cache_range(page_virtual, PAGE_SIZE);
1689 kunmap_atomic(page_virtual);
1693 static void __unregister_enc_region_locked(struct kvm *kvm,
1694 struct enc_region *region)
1697 * The guest may change the memory encryption attribute from C=0 -> C=1
1698 * or vice versa for this memory range. Lets make sure caches are
1699 * flushed to ensure that guest data gets written into memory with
1700 * correct C-bit.
1702 sev_clflush_pages(region->pages, region->npages);
1704 sev_unpin_memory(kvm, region->pages, region->npages);
1705 list_del(&region->list);
1706 kfree(region);
1709 static void sev_vm_destroy(struct kvm *kvm)
1711 struct kvm_sev_info *sev = &kvm->arch.sev_info;
1712 struct list_head *head = &sev->regions_list;
1713 struct list_head *pos, *q;
1715 if (!sev_guest(kvm))
1716 return;
1718 mutex_lock(&kvm->lock);
1721 * if userspace was terminated before unregistering the memory regions
1722 * then lets unpin all the registered memory.
1724 if (!list_empty(head)) {
1725 list_for_each_safe(pos, q, head) {
1726 __unregister_enc_region_locked(kvm,
1727 list_entry(pos, struct enc_region, list));
1731 mutex_unlock(&kvm->lock);
1733 sev_unbind_asid(kvm, sev->handle);
1734 sev_asid_free(kvm);
1737 static void avic_vm_destroy(struct kvm *kvm)
1739 unsigned long flags;
1740 struct kvm_arch *vm_data = &kvm->arch;
1742 if (!avic)
1743 return;
1745 if (vm_data->avic_logical_id_table_page)
1746 __free_page(vm_data->avic_logical_id_table_page);
1747 if (vm_data->avic_physical_id_table_page)
1748 __free_page(vm_data->avic_physical_id_table_page);
1750 spin_lock_irqsave(&svm_vm_data_hash_lock, flags);
1751 hash_del(&vm_data->hnode);
1752 spin_unlock_irqrestore(&svm_vm_data_hash_lock, flags);
1755 static void svm_vm_destroy(struct kvm *kvm)
1757 avic_vm_destroy(kvm);
1758 sev_vm_destroy(kvm);
1761 static int avic_vm_init(struct kvm *kvm)
1763 unsigned long flags;
1764 int err = -ENOMEM;
1765 struct kvm_arch *vm_data = &kvm->arch;
1766 struct page *p_page;
1767 struct page *l_page;
1768 struct kvm_arch *ka;
1769 u32 vm_id;
1771 if (!avic)
1772 return 0;
1774 /* Allocating physical APIC ID table (4KB) */
1775 p_page = alloc_page(GFP_KERNEL);
1776 if (!p_page)
1777 goto free_avic;
1779 vm_data->avic_physical_id_table_page = p_page;
1780 clear_page(page_address(p_page));
1782 /* Allocating logical APIC ID table (4KB) */
1783 l_page = alloc_page(GFP_KERNEL);
1784 if (!l_page)
1785 goto free_avic;
1787 vm_data->avic_logical_id_table_page = l_page;
1788 clear_page(page_address(l_page));
1790 spin_lock_irqsave(&svm_vm_data_hash_lock, flags);
1791 again:
1792 vm_id = next_vm_id = (next_vm_id + 1) & AVIC_VM_ID_MASK;
1793 if (vm_id == 0) { /* id is 1-based, zero is not okay */
1794 next_vm_id_wrapped = 1;
1795 goto again;
1797 /* Is it still in use? Only possible if wrapped at least once */
1798 if (next_vm_id_wrapped) {
1799 hash_for_each_possible(svm_vm_data_hash, ka, hnode, vm_id) {
1800 struct kvm *k2 = container_of(ka, struct kvm, arch);
1801 struct kvm_arch *vd2 = &k2->arch;
1802 if (vd2->avic_vm_id == vm_id)
1803 goto again;
1806 vm_data->avic_vm_id = vm_id;
1807 hash_add(svm_vm_data_hash, &vm_data->hnode, vm_data->avic_vm_id);
1808 spin_unlock_irqrestore(&svm_vm_data_hash_lock, flags);
1810 return 0;
1812 free_avic:
1813 avic_vm_destroy(kvm);
1814 return err;
1817 static inline int
1818 avic_update_iommu_vcpu_affinity(struct kvm_vcpu *vcpu, int cpu, bool r)
1820 int ret = 0;
1821 unsigned long flags;
1822 struct amd_svm_iommu_ir *ir;
1823 struct vcpu_svm *svm = to_svm(vcpu);
1825 if (!kvm_arch_has_assigned_device(vcpu->kvm))
1826 return 0;
1829 * Here, we go through the per-vcpu ir_list to update all existing
1830 * interrupt remapping table entry targeting this vcpu.
1832 spin_lock_irqsave(&svm->ir_list_lock, flags);
1834 if (list_empty(&svm->ir_list))
1835 goto out;
1837 list_for_each_entry(ir, &svm->ir_list, node) {
1838 ret = amd_iommu_update_ga(cpu, r, ir->data);
1839 if (ret)
1840 break;
1842 out:
1843 spin_unlock_irqrestore(&svm->ir_list_lock, flags);
1844 return ret;
1847 static void avic_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
1849 u64 entry;
1850 /* ID = 0xff (broadcast), ID > 0xff (reserved) */
1851 int h_physical_id = kvm_cpu_get_apicid(cpu);
1852 struct vcpu_svm *svm = to_svm(vcpu);
1854 if (!kvm_vcpu_apicv_active(vcpu))
1855 return;
1857 if (WARN_ON(h_physical_id >= AVIC_MAX_PHYSICAL_ID_COUNT))
1858 return;
1860 entry = READ_ONCE(*(svm->avic_physical_id_cache));
1861 WARN_ON(entry & AVIC_PHYSICAL_ID_ENTRY_IS_RUNNING_MASK);
1863 entry &= ~AVIC_PHYSICAL_ID_ENTRY_HOST_PHYSICAL_ID_MASK;
1864 entry |= (h_physical_id & AVIC_PHYSICAL_ID_ENTRY_HOST_PHYSICAL_ID_MASK);
1866 entry &= ~AVIC_PHYSICAL_ID_ENTRY_IS_RUNNING_MASK;
1867 if (svm->avic_is_running)
1868 entry |= AVIC_PHYSICAL_ID_ENTRY_IS_RUNNING_MASK;
1870 WRITE_ONCE(*(svm->avic_physical_id_cache), entry);
1871 avic_update_iommu_vcpu_affinity(vcpu, h_physical_id,
1872 svm->avic_is_running);
1875 static void avic_vcpu_put(struct kvm_vcpu *vcpu)
1877 u64 entry;
1878 struct vcpu_svm *svm = to_svm(vcpu);
1880 if (!kvm_vcpu_apicv_active(vcpu))
1881 return;
1883 entry = READ_ONCE(*(svm->avic_physical_id_cache));
1884 if (entry & AVIC_PHYSICAL_ID_ENTRY_IS_RUNNING_MASK)
1885 avic_update_iommu_vcpu_affinity(vcpu, -1, 0);
1887 entry &= ~AVIC_PHYSICAL_ID_ENTRY_IS_RUNNING_MASK;
1888 WRITE_ONCE(*(svm->avic_physical_id_cache), entry);
1892 * This function is called during VCPU halt/unhalt.
1894 static void avic_set_running(struct kvm_vcpu *vcpu, bool is_run)
1896 struct vcpu_svm *svm = to_svm(vcpu);
1898 svm->avic_is_running = is_run;
1899 if (is_run)
1900 avic_vcpu_load(vcpu, vcpu->cpu);
1901 else
1902 avic_vcpu_put(vcpu);
1905 static void svm_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event)
1907 struct vcpu_svm *svm = to_svm(vcpu);
1908 u32 dummy;
1909 u32 eax = 1;
1911 vcpu->arch.microcode_version = 0x01000065;
1912 svm->spec_ctrl = 0;
1914 if (!init_event) {
1915 svm->vcpu.arch.apic_base = APIC_DEFAULT_PHYS_BASE |
1916 MSR_IA32_APICBASE_ENABLE;
1917 if (kvm_vcpu_is_reset_bsp(&svm->vcpu))
1918 svm->vcpu.arch.apic_base |= MSR_IA32_APICBASE_BSP;
1920 init_vmcb(svm);
1922 kvm_cpuid(vcpu, &eax, &dummy, &dummy, &dummy, true);
1923 kvm_register_write(vcpu, VCPU_REGS_RDX, eax);
1925 if (kvm_vcpu_apicv_active(vcpu) && !init_event)
1926 avic_update_vapic_bar(svm, APIC_DEFAULT_PHYS_BASE);
1929 static int avic_init_vcpu(struct vcpu_svm *svm)
1931 int ret;
1933 if (!kvm_vcpu_apicv_active(&svm->vcpu))
1934 return 0;
1936 ret = avic_init_backing_page(&svm->vcpu);
1937 if (ret)
1938 return ret;
1940 INIT_LIST_HEAD(&svm->ir_list);
1941 spin_lock_init(&svm->ir_list_lock);
1943 return ret;
1946 static struct kvm_vcpu *svm_create_vcpu(struct kvm *kvm, unsigned int id)
1948 struct vcpu_svm *svm;
1949 struct page *page;
1950 struct page *msrpm_pages;
1951 struct page *hsave_page;
1952 struct page *nested_msrpm_pages;
1953 int err;
1955 svm = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
1956 if (!svm) {
1957 err = -ENOMEM;
1958 goto out;
1961 err = kvm_vcpu_init(&svm->vcpu, kvm, id);
1962 if (err)
1963 goto free_svm;
1965 err = -ENOMEM;
1966 page = alloc_page(GFP_KERNEL);
1967 if (!page)
1968 goto uninit;
1970 msrpm_pages = alloc_pages(GFP_KERNEL, MSRPM_ALLOC_ORDER);
1971 if (!msrpm_pages)
1972 goto free_page1;
1974 nested_msrpm_pages = alloc_pages(GFP_KERNEL, MSRPM_ALLOC_ORDER);
1975 if (!nested_msrpm_pages)
1976 goto free_page2;
1978 hsave_page = alloc_page(GFP_KERNEL);
1979 if (!hsave_page)
1980 goto free_page3;
1982 err = avic_init_vcpu(svm);
1983 if (err)
1984 goto free_page4;
1986 /* We initialize this flag to true to make sure that the is_running
1987 * bit would be set the first time the vcpu is loaded.
1989 svm->avic_is_running = true;
1991 svm->nested.hsave = page_address(hsave_page);
1993 svm->msrpm = page_address(msrpm_pages);
1994 svm_vcpu_init_msrpm(svm->msrpm);
1996 svm->nested.msrpm = page_address(nested_msrpm_pages);
1997 svm_vcpu_init_msrpm(svm->nested.msrpm);
1999 svm->vmcb = page_address(page);
2000 clear_page(svm->vmcb);
2001 svm->vmcb_pa = __sme_set(page_to_pfn(page) << PAGE_SHIFT);
2002 svm->asid_generation = 0;
2003 init_vmcb(svm);
2005 svm_init_osvw(&svm->vcpu);
2007 return &svm->vcpu;
2009 free_page4:
2010 __free_page(hsave_page);
2011 free_page3:
2012 __free_pages(nested_msrpm_pages, MSRPM_ALLOC_ORDER);
2013 free_page2:
2014 __free_pages(msrpm_pages, MSRPM_ALLOC_ORDER);
2015 free_page1:
2016 __free_page(page);
2017 uninit:
2018 kvm_vcpu_uninit(&svm->vcpu);
2019 free_svm:
2020 kmem_cache_free(kvm_vcpu_cache, svm);
2021 out:
2022 return ERR_PTR(err);
2025 static void svm_free_vcpu(struct kvm_vcpu *vcpu)
2027 struct vcpu_svm *svm = to_svm(vcpu);
2029 __free_page(pfn_to_page(__sme_clr(svm->vmcb_pa) >> PAGE_SHIFT));
2030 __free_pages(virt_to_page(svm->msrpm), MSRPM_ALLOC_ORDER);
2031 __free_page(virt_to_page(svm->nested.hsave));
2032 __free_pages(virt_to_page(svm->nested.msrpm), MSRPM_ALLOC_ORDER);
2033 kvm_vcpu_uninit(vcpu);
2034 kmem_cache_free(kvm_vcpu_cache, svm);
2036 * The vmcb page can be recycled, causing a false negative in
2037 * svm_vcpu_load(). So do a full IBPB now.
2039 indirect_branch_prediction_barrier();
2042 static void svm_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
2044 struct vcpu_svm *svm = to_svm(vcpu);
2045 struct svm_cpu_data *sd = per_cpu(svm_data, cpu);
2046 int i;
2048 if (unlikely(cpu != vcpu->cpu)) {
2049 svm->asid_generation = 0;
2050 mark_all_dirty(svm->vmcb);
2053 #ifdef CONFIG_X86_64
2054 rdmsrl(MSR_GS_BASE, to_svm(vcpu)->host.gs_base);
2055 #endif
2056 savesegment(fs, svm->host.fs);
2057 savesegment(gs, svm->host.gs);
2058 svm->host.ldt = kvm_read_ldt();
2060 for (i = 0; i < NR_HOST_SAVE_USER_MSRS; i++)
2061 rdmsrl(host_save_user_msrs[i], svm->host_user_msrs[i]);
2063 if (static_cpu_has(X86_FEATURE_TSCRATEMSR)) {
2064 u64 tsc_ratio = vcpu->arch.tsc_scaling_ratio;
2065 if (tsc_ratio != __this_cpu_read(current_tsc_ratio)) {
2066 __this_cpu_write(current_tsc_ratio, tsc_ratio);
2067 wrmsrl(MSR_AMD64_TSC_RATIO, tsc_ratio);
2070 /* This assumes that the kernel never uses MSR_TSC_AUX */
2071 if (static_cpu_has(X86_FEATURE_RDTSCP))
2072 wrmsrl(MSR_TSC_AUX, svm->tsc_aux);
2074 if (sd->current_vmcb != svm->vmcb) {
2075 sd->current_vmcb = svm->vmcb;
2076 indirect_branch_prediction_barrier();
2078 avic_vcpu_load(vcpu, cpu);
2081 static void svm_vcpu_put(struct kvm_vcpu *vcpu)
2083 struct vcpu_svm *svm = to_svm(vcpu);
2084 int i;
2086 avic_vcpu_put(vcpu);
2088 ++vcpu->stat.host_state_reload;
2089 kvm_load_ldt(svm->host.ldt);
2090 #ifdef CONFIG_X86_64
2091 loadsegment(fs, svm->host.fs);
2092 wrmsrl(MSR_KERNEL_GS_BASE, current->thread.gsbase);
2093 load_gs_index(svm->host.gs);
2094 #else
2095 #ifdef CONFIG_X86_32_LAZY_GS
2096 loadsegment(gs, svm->host.gs);
2097 #endif
2098 #endif
2099 for (i = 0; i < NR_HOST_SAVE_USER_MSRS; i++)
2100 wrmsrl(host_save_user_msrs[i], svm->host_user_msrs[i]);
2103 static void svm_vcpu_blocking(struct kvm_vcpu *vcpu)
2105 avic_set_running(vcpu, false);
2108 static void svm_vcpu_unblocking(struct kvm_vcpu *vcpu)
2110 avic_set_running(vcpu, true);
2113 static unsigned long svm_get_rflags(struct kvm_vcpu *vcpu)
2115 struct vcpu_svm *svm = to_svm(vcpu);
2116 unsigned long rflags = svm->vmcb->save.rflags;
2118 if (svm->nmi_singlestep) {
2119 /* Hide our flags if they were not set by the guest */
2120 if (!(svm->nmi_singlestep_guest_rflags & X86_EFLAGS_TF))
2121 rflags &= ~X86_EFLAGS_TF;
2122 if (!(svm->nmi_singlestep_guest_rflags & X86_EFLAGS_RF))
2123 rflags &= ~X86_EFLAGS_RF;
2125 return rflags;
2128 static void svm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
2130 if (to_svm(vcpu)->nmi_singlestep)
2131 rflags |= (X86_EFLAGS_TF | X86_EFLAGS_RF);
2134 * Any change of EFLAGS.VM is accompanied by a reload of SS
2135 * (caused by either a task switch or an inter-privilege IRET),
2136 * so we do not need to update the CPL here.
2138 to_svm(vcpu)->vmcb->save.rflags = rflags;
2141 static void svm_cache_reg(struct kvm_vcpu *vcpu, enum kvm_reg reg)
2143 switch (reg) {
2144 case VCPU_EXREG_PDPTR:
2145 BUG_ON(!npt_enabled);
2146 load_pdptrs(vcpu, vcpu->arch.walk_mmu, kvm_read_cr3(vcpu));
2147 break;
2148 default:
2149 BUG();
2153 static void svm_set_vintr(struct vcpu_svm *svm)
2155 set_intercept(svm, INTERCEPT_VINTR);
2158 static void svm_clear_vintr(struct vcpu_svm *svm)
2160 clr_intercept(svm, INTERCEPT_VINTR);
2163 static struct vmcb_seg *svm_seg(struct kvm_vcpu *vcpu, int seg)
2165 struct vmcb_save_area *save = &to_svm(vcpu)->vmcb->save;
2167 switch (seg) {
2168 case VCPU_SREG_CS: return &save->cs;
2169 case VCPU_SREG_DS: return &save->ds;
2170 case VCPU_SREG_ES: return &save->es;
2171 case VCPU_SREG_FS: return &save->fs;
2172 case VCPU_SREG_GS: return &save->gs;
2173 case VCPU_SREG_SS: return &save->ss;
2174 case VCPU_SREG_TR: return &save->tr;
2175 case VCPU_SREG_LDTR: return &save->ldtr;
2177 BUG();
2178 return NULL;
2181 static u64 svm_get_segment_base(struct kvm_vcpu *vcpu, int seg)
2183 struct vmcb_seg *s = svm_seg(vcpu, seg);
2185 return s->base;
2188 static void svm_get_segment(struct kvm_vcpu *vcpu,
2189 struct kvm_segment *var, int seg)
2191 struct vmcb_seg *s = svm_seg(vcpu, seg);
2193 var->base = s->base;
2194 var->limit = s->limit;
2195 var->selector = s->selector;
2196 var->type = s->attrib & SVM_SELECTOR_TYPE_MASK;
2197 var->s = (s->attrib >> SVM_SELECTOR_S_SHIFT) & 1;
2198 var->dpl = (s->attrib >> SVM_SELECTOR_DPL_SHIFT) & 3;
2199 var->present = (s->attrib >> SVM_SELECTOR_P_SHIFT) & 1;
2200 var->avl = (s->attrib >> SVM_SELECTOR_AVL_SHIFT) & 1;
2201 var->l = (s->attrib >> SVM_SELECTOR_L_SHIFT) & 1;
2202 var->db = (s->attrib >> SVM_SELECTOR_DB_SHIFT) & 1;
2205 * AMD CPUs circa 2014 track the G bit for all segments except CS.
2206 * However, the SVM spec states that the G bit is not observed by the
2207 * CPU, and some VMware virtual CPUs drop the G bit for all segments.
2208 * So let's synthesize a legal G bit for all segments, this helps
2209 * running KVM nested. It also helps cross-vendor migration, because
2210 * Intel's vmentry has a check on the 'G' bit.
2212 var->g = s->limit > 0xfffff;
2215 * AMD's VMCB does not have an explicit unusable field, so emulate it
2216 * for cross vendor migration purposes by "not present"
2218 var->unusable = !var->present;
2220 switch (seg) {
2221 case VCPU_SREG_TR:
2223 * Work around a bug where the busy flag in the tr selector
2224 * isn't exposed
2226 var->type |= 0x2;
2227 break;
2228 case VCPU_SREG_DS:
2229 case VCPU_SREG_ES:
2230 case VCPU_SREG_FS:
2231 case VCPU_SREG_GS:
2233 * The accessed bit must always be set in the segment
2234 * descriptor cache, although it can be cleared in the
2235 * descriptor, the cached bit always remains at 1. Since
2236 * Intel has a check on this, set it here to support
2237 * cross-vendor migration.
2239 if (!var->unusable)
2240 var->type |= 0x1;
2241 break;
2242 case VCPU_SREG_SS:
2244 * On AMD CPUs sometimes the DB bit in the segment
2245 * descriptor is left as 1, although the whole segment has
2246 * been made unusable. Clear it here to pass an Intel VMX
2247 * entry check when cross vendor migrating.
2249 if (var->unusable)
2250 var->db = 0;
2251 /* This is symmetric with svm_set_segment() */
2252 var->dpl = to_svm(vcpu)->vmcb->save.cpl;
2253 break;
2257 static int svm_get_cpl(struct kvm_vcpu *vcpu)
2259 struct vmcb_save_area *save = &to_svm(vcpu)->vmcb->save;
2261 return save->cpl;
2264 static void svm_get_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
2266 struct vcpu_svm *svm = to_svm(vcpu);
2268 dt->size = svm->vmcb->save.idtr.limit;
2269 dt->address = svm->vmcb->save.idtr.base;
2272 static void svm_set_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
2274 struct vcpu_svm *svm = to_svm(vcpu);
2276 svm->vmcb->save.idtr.limit = dt->size;
2277 svm->vmcb->save.idtr.base = dt->address ;
2278 mark_dirty(svm->vmcb, VMCB_DT);
2281 static void svm_get_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
2283 struct vcpu_svm *svm = to_svm(vcpu);
2285 dt->size = svm->vmcb->save.gdtr.limit;
2286 dt->address = svm->vmcb->save.gdtr.base;
2289 static void svm_set_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
2291 struct vcpu_svm *svm = to_svm(vcpu);
2293 svm->vmcb->save.gdtr.limit = dt->size;
2294 svm->vmcb->save.gdtr.base = dt->address ;
2295 mark_dirty(svm->vmcb, VMCB_DT);
2298 static void svm_decache_cr0_guest_bits(struct kvm_vcpu *vcpu)
2302 static void svm_decache_cr3(struct kvm_vcpu *vcpu)
2306 static void svm_decache_cr4_guest_bits(struct kvm_vcpu *vcpu)
2310 static void update_cr0_intercept(struct vcpu_svm *svm)
2312 ulong gcr0 = svm->vcpu.arch.cr0;
2313 u64 *hcr0 = &svm->vmcb->save.cr0;
2315 *hcr0 = (*hcr0 & ~SVM_CR0_SELECTIVE_MASK)
2316 | (gcr0 & SVM_CR0_SELECTIVE_MASK);
2318 mark_dirty(svm->vmcb, VMCB_CR);
2320 if (gcr0 == *hcr0) {
2321 clr_cr_intercept(svm, INTERCEPT_CR0_READ);
2322 clr_cr_intercept(svm, INTERCEPT_CR0_WRITE);
2323 } else {
2324 set_cr_intercept(svm, INTERCEPT_CR0_READ);
2325 set_cr_intercept(svm, INTERCEPT_CR0_WRITE);
2329 static void svm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
2331 struct vcpu_svm *svm = to_svm(vcpu);
2333 #ifdef CONFIG_X86_64
2334 if (vcpu->arch.efer & EFER_LME) {
2335 if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
2336 vcpu->arch.efer |= EFER_LMA;
2337 svm->vmcb->save.efer |= EFER_LMA | EFER_LME;
2340 if (is_paging(vcpu) && !(cr0 & X86_CR0_PG)) {
2341 vcpu->arch.efer &= ~EFER_LMA;
2342 svm->vmcb->save.efer &= ~(EFER_LMA | EFER_LME);
2345 #endif
2346 vcpu->arch.cr0 = cr0;
2348 if (!npt_enabled)
2349 cr0 |= X86_CR0_PG | X86_CR0_WP;
2352 * re-enable caching here because the QEMU bios
2353 * does not do it - this results in some delay at
2354 * reboot
2356 if (kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED))
2357 cr0 &= ~(X86_CR0_CD | X86_CR0_NW);
2358 svm->vmcb->save.cr0 = cr0;
2359 mark_dirty(svm->vmcb, VMCB_CR);
2360 update_cr0_intercept(svm);
2363 static int svm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
2365 unsigned long host_cr4_mce = cr4_read_shadow() & X86_CR4_MCE;
2366 unsigned long old_cr4 = to_svm(vcpu)->vmcb->save.cr4;
2368 if (cr4 & X86_CR4_VMXE)
2369 return 1;
2371 if (npt_enabled && ((old_cr4 ^ cr4) & X86_CR4_PGE))
2372 svm_flush_tlb(vcpu, true);
2374 vcpu->arch.cr4 = cr4;
2375 if (!npt_enabled)
2376 cr4 |= X86_CR4_PAE;
2377 cr4 |= host_cr4_mce;
2378 to_svm(vcpu)->vmcb->save.cr4 = cr4;
2379 mark_dirty(to_svm(vcpu)->vmcb, VMCB_CR);
2380 return 0;
2383 static void svm_set_segment(struct kvm_vcpu *vcpu,
2384 struct kvm_segment *var, int seg)
2386 struct vcpu_svm *svm = to_svm(vcpu);
2387 struct vmcb_seg *s = svm_seg(vcpu, seg);
2389 s->base = var->base;
2390 s->limit = var->limit;
2391 s->selector = var->selector;
2392 s->attrib = (var->type & SVM_SELECTOR_TYPE_MASK);
2393 s->attrib |= (var->s & 1) << SVM_SELECTOR_S_SHIFT;
2394 s->attrib |= (var->dpl & 3) << SVM_SELECTOR_DPL_SHIFT;
2395 s->attrib |= ((var->present & 1) && !var->unusable) << SVM_SELECTOR_P_SHIFT;
2396 s->attrib |= (var->avl & 1) << SVM_SELECTOR_AVL_SHIFT;
2397 s->attrib |= (var->l & 1) << SVM_SELECTOR_L_SHIFT;
2398 s->attrib |= (var->db & 1) << SVM_SELECTOR_DB_SHIFT;
2399 s->attrib |= (var->g & 1) << SVM_SELECTOR_G_SHIFT;
2402 * This is always accurate, except if SYSRET returned to a segment
2403 * with SS.DPL != 3. Intel does not have this quirk, and always
2404 * forces SS.DPL to 3 on sysret, so we ignore that case; fixing it
2405 * would entail passing the CPL to userspace and back.
2407 if (seg == VCPU_SREG_SS)
2408 /* This is symmetric with svm_get_segment() */
2409 svm->vmcb->save.cpl = (var->dpl & 3);
2411 mark_dirty(svm->vmcb, VMCB_SEG);
2414 static void update_bp_intercept(struct kvm_vcpu *vcpu)
2416 struct vcpu_svm *svm = to_svm(vcpu);
2418 clr_exception_intercept(svm, BP_VECTOR);
2420 if (vcpu->guest_debug & KVM_GUESTDBG_ENABLE) {
2421 if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
2422 set_exception_intercept(svm, BP_VECTOR);
2423 } else
2424 vcpu->guest_debug = 0;
2427 static void new_asid(struct vcpu_svm *svm, struct svm_cpu_data *sd)
2429 if (sd->next_asid > sd->max_asid) {
2430 ++sd->asid_generation;
2431 sd->next_asid = sd->min_asid;
2432 svm->vmcb->control.tlb_ctl = TLB_CONTROL_FLUSH_ALL_ASID;
2435 svm->asid_generation = sd->asid_generation;
2436 svm->vmcb->control.asid = sd->next_asid++;
2438 mark_dirty(svm->vmcb, VMCB_ASID);
2441 static u64 svm_get_dr6(struct kvm_vcpu *vcpu)
2443 return to_svm(vcpu)->vmcb->save.dr6;
2446 static void svm_set_dr6(struct kvm_vcpu *vcpu, unsigned long value)
2448 struct vcpu_svm *svm = to_svm(vcpu);
2450 svm->vmcb->save.dr6 = value;
2451 mark_dirty(svm->vmcb, VMCB_DR);
2454 static void svm_sync_dirty_debug_regs(struct kvm_vcpu *vcpu)
2456 struct vcpu_svm *svm = to_svm(vcpu);
2458 get_debugreg(vcpu->arch.db[0], 0);
2459 get_debugreg(vcpu->arch.db[1], 1);
2460 get_debugreg(vcpu->arch.db[2], 2);
2461 get_debugreg(vcpu->arch.db[3], 3);
2462 vcpu->arch.dr6 = svm_get_dr6(vcpu);
2463 vcpu->arch.dr7 = svm->vmcb->save.dr7;
2465 vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_WONT_EXIT;
2466 set_dr_intercepts(svm);
2469 static void svm_set_dr7(struct kvm_vcpu *vcpu, unsigned long value)
2471 struct vcpu_svm *svm = to_svm(vcpu);
2473 svm->vmcb->save.dr7 = value;
2474 mark_dirty(svm->vmcb, VMCB_DR);
2477 static int pf_interception(struct vcpu_svm *svm)
2479 u64 fault_address = __sme_clr(svm->vmcb->control.exit_info_2);
2480 u64 error_code = svm->vmcb->control.exit_info_1;
2482 return kvm_handle_page_fault(&svm->vcpu, error_code, fault_address,
2483 static_cpu_has(X86_FEATURE_DECODEASSISTS) ?
2484 svm->vmcb->control.insn_bytes : NULL,
2485 svm->vmcb->control.insn_len);
2488 static int npf_interception(struct vcpu_svm *svm)
2490 u64 fault_address = __sme_clr(svm->vmcb->control.exit_info_2);
2491 u64 error_code = svm->vmcb->control.exit_info_1;
2493 trace_kvm_page_fault(fault_address, error_code);
2494 return kvm_mmu_page_fault(&svm->vcpu, fault_address, error_code,
2495 static_cpu_has(X86_FEATURE_DECODEASSISTS) ?
2496 svm->vmcb->control.insn_bytes : NULL,
2497 svm->vmcb->control.insn_len);
2500 static int db_interception(struct vcpu_svm *svm)
2502 struct kvm_run *kvm_run = svm->vcpu.run;
2504 if (!(svm->vcpu.guest_debug &
2505 (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP)) &&
2506 !svm->nmi_singlestep) {
2507 kvm_queue_exception(&svm->vcpu, DB_VECTOR);
2508 return 1;
2511 if (svm->nmi_singlestep) {
2512 disable_nmi_singlestep(svm);
2515 if (svm->vcpu.guest_debug &
2516 (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP)) {
2517 kvm_run->exit_reason = KVM_EXIT_DEBUG;
2518 kvm_run->debug.arch.pc =
2519 svm->vmcb->save.cs.base + svm->vmcb->save.rip;
2520 kvm_run->debug.arch.exception = DB_VECTOR;
2521 return 0;
2524 return 1;
2527 static int bp_interception(struct vcpu_svm *svm)
2529 struct kvm_run *kvm_run = svm->vcpu.run;
2531 kvm_run->exit_reason = KVM_EXIT_DEBUG;
2532 kvm_run->debug.arch.pc = svm->vmcb->save.cs.base + svm->vmcb->save.rip;
2533 kvm_run->debug.arch.exception = BP_VECTOR;
2534 return 0;
2537 static int ud_interception(struct vcpu_svm *svm)
2539 int er;
2541 er = emulate_instruction(&svm->vcpu, EMULTYPE_TRAP_UD);
2542 if (er == EMULATE_USER_EXIT)
2543 return 0;
2544 if (er != EMULATE_DONE)
2545 kvm_queue_exception(&svm->vcpu, UD_VECTOR);
2546 return 1;
2549 static int ac_interception(struct vcpu_svm *svm)
2551 kvm_queue_exception_e(&svm->vcpu, AC_VECTOR, 0);
2552 return 1;
2555 static bool is_erratum_383(void)
2557 int err, i;
2558 u64 value;
2560 if (!erratum_383_found)
2561 return false;
2563 value = native_read_msr_safe(MSR_IA32_MC0_STATUS, &err);
2564 if (err)
2565 return false;
2567 /* Bit 62 may or may not be set for this mce */
2568 value &= ~(1ULL << 62);
2570 if (value != 0xb600000000010015ULL)
2571 return false;
2573 /* Clear MCi_STATUS registers */
2574 for (i = 0; i < 6; ++i)
2575 native_write_msr_safe(MSR_IA32_MCx_STATUS(i), 0, 0);
2577 value = native_read_msr_safe(MSR_IA32_MCG_STATUS, &err);
2578 if (!err) {
2579 u32 low, high;
2581 value &= ~(1ULL << 2);
2582 low = lower_32_bits(value);
2583 high = upper_32_bits(value);
2585 native_write_msr_safe(MSR_IA32_MCG_STATUS, low, high);
2588 /* Flush tlb to evict multi-match entries */
2589 __flush_tlb_all();
2591 return true;
2594 static void svm_handle_mce(struct vcpu_svm *svm)
2596 if (is_erratum_383()) {
2598 * Erratum 383 triggered. Guest state is corrupt so kill the
2599 * guest.
2601 pr_err("KVM: Guest triggered AMD Erratum 383\n");
2603 kvm_make_request(KVM_REQ_TRIPLE_FAULT, &svm->vcpu);
2605 return;
2609 * On an #MC intercept the MCE handler is not called automatically in
2610 * the host. So do it by hand here.
2612 asm volatile (
2613 "int $0x12\n");
2614 /* not sure if we ever come back to this point */
2616 return;
2619 static int mc_interception(struct vcpu_svm *svm)
2621 return 1;
2624 static int shutdown_interception(struct vcpu_svm *svm)
2626 struct kvm_run *kvm_run = svm->vcpu.run;
2629 * VMCB is undefined after a SHUTDOWN intercept
2630 * so reinitialize it.
2632 clear_page(svm->vmcb);
2633 init_vmcb(svm);
2635 kvm_run->exit_reason = KVM_EXIT_SHUTDOWN;
2636 return 0;
2639 static int io_interception(struct vcpu_svm *svm)
2641 struct kvm_vcpu *vcpu = &svm->vcpu;
2642 u32 io_info = svm->vmcb->control.exit_info_1; /* address size bug? */
2643 int size, in, string, ret;
2644 unsigned port;
2646 ++svm->vcpu.stat.io_exits;
2647 string = (io_info & SVM_IOIO_STR_MASK) != 0;
2648 in = (io_info & SVM_IOIO_TYPE_MASK) != 0;
2649 if (string)
2650 return emulate_instruction(vcpu, 0) == EMULATE_DONE;
2652 port = io_info >> 16;
2653 size = (io_info & SVM_IOIO_SIZE_MASK) >> SVM_IOIO_SIZE_SHIFT;
2654 svm->next_rip = svm->vmcb->control.exit_info_2;
2655 ret = kvm_skip_emulated_instruction(&svm->vcpu);
2658 * TODO: we might be squashing a KVM_GUESTDBG_SINGLESTEP-triggered
2659 * KVM_EXIT_DEBUG here.
2661 if (in)
2662 return kvm_fast_pio_in(vcpu, size, port) && ret;
2663 else
2664 return kvm_fast_pio_out(vcpu, size, port) && ret;
2667 static int nmi_interception(struct vcpu_svm *svm)
2669 return 1;
2672 static int intr_interception(struct vcpu_svm *svm)
2674 ++svm->vcpu.stat.irq_exits;
2675 return 1;
2678 static int nop_on_interception(struct vcpu_svm *svm)
2680 return 1;
2683 static int halt_interception(struct vcpu_svm *svm)
2685 svm->next_rip = kvm_rip_read(&svm->vcpu) + 1;
2686 return kvm_emulate_halt(&svm->vcpu);
2689 static int vmmcall_interception(struct vcpu_svm *svm)
2691 svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
2692 return kvm_emulate_hypercall(&svm->vcpu);
2695 static unsigned long nested_svm_get_tdp_cr3(struct kvm_vcpu *vcpu)
2697 struct vcpu_svm *svm = to_svm(vcpu);
2699 return svm->nested.nested_cr3;
2702 static u64 nested_svm_get_tdp_pdptr(struct kvm_vcpu *vcpu, int index)
2704 struct vcpu_svm *svm = to_svm(vcpu);
2705 u64 cr3 = svm->nested.nested_cr3;
2706 u64 pdpte;
2707 int ret;
2709 ret = kvm_vcpu_read_guest_page(vcpu, gpa_to_gfn(__sme_clr(cr3)), &pdpte,
2710 offset_in_page(cr3) + index * 8, 8);
2711 if (ret)
2712 return 0;
2713 return pdpte;
2716 static void nested_svm_set_tdp_cr3(struct kvm_vcpu *vcpu,
2717 unsigned long root)
2719 struct vcpu_svm *svm = to_svm(vcpu);
2721 svm->vmcb->control.nested_cr3 = __sme_set(root);
2722 mark_dirty(svm->vmcb, VMCB_NPT);
2723 svm_flush_tlb(vcpu, true);
2726 static void nested_svm_inject_npf_exit(struct kvm_vcpu *vcpu,
2727 struct x86_exception *fault)
2729 struct vcpu_svm *svm = to_svm(vcpu);
2731 if (svm->vmcb->control.exit_code != SVM_EXIT_NPF) {
2733 * TODO: track the cause of the nested page fault, and
2734 * correctly fill in the high bits of exit_info_1.
2736 svm->vmcb->control.exit_code = SVM_EXIT_NPF;
2737 svm->vmcb->control.exit_code_hi = 0;
2738 svm->vmcb->control.exit_info_1 = (1ULL << 32);
2739 svm->vmcb->control.exit_info_2 = fault->address;
2742 svm->vmcb->control.exit_info_1 &= ~0xffffffffULL;
2743 svm->vmcb->control.exit_info_1 |= fault->error_code;
2746 * The present bit is always zero for page structure faults on real
2747 * hardware.
2749 if (svm->vmcb->control.exit_info_1 & (2ULL << 32))
2750 svm->vmcb->control.exit_info_1 &= ~1;
2752 nested_svm_vmexit(svm);
2755 static void nested_svm_init_mmu_context(struct kvm_vcpu *vcpu)
2757 WARN_ON(mmu_is_nested(vcpu));
2758 kvm_init_shadow_mmu(vcpu);
2759 vcpu->arch.mmu.set_cr3 = nested_svm_set_tdp_cr3;
2760 vcpu->arch.mmu.get_cr3 = nested_svm_get_tdp_cr3;
2761 vcpu->arch.mmu.get_pdptr = nested_svm_get_tdp_pdptr;
2762 vcpu->arch.mmu.inject_page_fault = nested_svm_inject_npf_exit;
2763 vcpu->arch.mmu.shadow_root_level = get_npt_level(vcpu);
2764 reset_shadow_zero_bits_mask(vcpu, &vcpu->arch.mmu);
2765 vcpu->arch.walk_mmu = &vcpu->arch.nested_mmu;
2768 static void nested_svm_uninit_mmu_context(struct kvm_vcpu *vcpu)
2770 vcpu->arch.walk_mmu = &vcpu->arch.mmu;
2773 static int nested_svm_check_permissions(struct vcpu_svm *svm)
2775 if (!(svm->vcpu.arch.efer & EFER_SVME) ||
2776 !is_paging(&svm->vcpu)) {
2777 kvm_queue_exception(&svm->vcpu, UD_VECTOR);
2778 return 1;
2781 if (svm->vmcb->save.cpl) {
2782 kvm_inject_gp(&svm->vcpu, 0);
2783 return 1;
2786 return 0;
2789 static int nested_svm_check_exception(struct vcpu_svm *svm, unsigned nr,
2790 bool has_error_code, u32 error_code)
2792 int vmexit;
2794 if (!is_guest_mode(&svm->vcpu))
2795 return 0;
2797 vmexit = nested_svm_intercept(svm);
2798 if (vmexit != NESTED_EXIT_DONE)
2799 return 0;
2801 svm->vmcb->control.exit_code = SVM_EXIT_EXCP_BASE + nr;
2802 svm->vmcb->control.exit_code_hi = 0;
2803 svm->vmcb->control.exit_info_1 = error_code;
2806 * FIXME: we should not write CR2 when L1 intercepts an L2 #PF exception.
2807 * The fix is to add the ancillary datum (CR2 or DR6) to structs
2808 * kvm_queued_exception and kvm_vcpu_events, so that CR2 and DR6 can be
2809 * written only when inject_pending_event runs (DR6 would written here
2810 * too). This should be conditional on a new capability---if the
2811 * capability is disabled, kvm_multiple_exception would write the
2812 * ancillary information to CR2 or DR6, for backwards ABI-compatibility.
2814 if (svm->vcpu.arch.exception.nested_apf)
2815 svm->vmcb->control.exit_info_2 = svm->vcpu.arch.apf.nested_apf_token;
2816 else
2817 svm->vmcb->control.exit_info_2 = svm->vcpu.arch.cr2;
2819 svm->nested.exit_required = true;
2820 return vmexit;
2823 /* This function returns true if it is save to enable the irq window */
2824 static inline bool nested_svm_intr(struct vcpu_svm *svm)
2826 if (!is_guest_mode(&svm->vcpu))
2827 return true;
2829 if (!(svm->vcpu.arch.hflags & HF_VINTR_MASK))
2830 return true;
2832 if (!(svm->vcpu.arch.hflags & HF_HIF_MASK))
2833 return false;
2836 * if vmexit was already requested (by intercepted exception
2837 * for instance) do not overwrite it with "external interrupt"
2838 * vmexit.
2840 if (svm->nested.exit_required)
2841 return false;
2843 svm->vmcb->control.exit_code = SVM_EXIT_INTR;
2844 svm->vmcb->control.exit_info_1 = 0;
2845 svm->vmcb->control.exit_info_2 = 0;
2847 if (svm->nested.intercept & 1ULL) {
2849 * The #vmexit can't be emulated here directly because this
2850 * code path runs with irqs and preemption disabled. A
2851 * #vmexit emulation might sleep. Only signal request for
2852 * the #vmexit here.
2854 svm->nested.exit_required = true;
2855 trace_kvm_nested_intr_vmexit(svm->vmcb->save.rip);
2856 return false;
2859 return true;
2862 /* This function returns true if it is save to enable the nmi window */
2863 static inline bool nested_svm_nmi(struct vcpu_svm *svm)
2865 if (!is_guest_mode(&svm->vcpu))
2866 return true;
2868 if (!(svm->nested.intercept & (1ULL << INTERCEPT_NMI)))
2869 return true;
2871 svm->vmcb->control.exit_code = SVM_EXIT_NMI;
2872 svm->nested.exit_required = true;
2874 return false;
2877 static void *nested_svm_map(struct vcpu_svm *svm, u64 gpa, struct page **_page)
2879 struct page *page;
2881 might_sleep();
2883 page = kvm_vcpu_gfn_to_page(&svm->vcpu, gpa >> PAGE_SHIFT);
2884 if (is_error_page(page))
2885 goto error;
2887 *_page = page;
2889 return kmap(page);
2891 error:
2892 kvm_inject_gp(&svm->vcpu, 0);
2894 return NULL;
2897 static void nested_svm_unmap(struct page *page)
2899 kunmap(page);
2900 kvm_release_page_dirty(page);
2903 static int nested_svm_intercept_ioio(struct vcpu_svm *svm)
2905 unsigned port, size, iopm_len;
2906 u16 val, mask;
2907 u8 start_bit;
2908 u64 gpa;
2910 if (!(svm->nested.intercept & (1ULL << INTERCEPT_IOIO_PROT)))
2911 return NESTED_EXIT_HOST;
2913 port = svm->vmcb->control.exit_info_1 >> 16;
2914 size = (svm->vmcb->control.exit_info_1 & SVM_IOIO_SIZE_MASK) >>
2915 SVM_IOIO_SIZE_SHIFT;
2916 gpa = svm->nested.vmcb_iopm + (port / 8);
2917 start_bit = port % 8;
2918 iopm_len = (start_bit + size > 8) ? 2 : 1;
2919 mask = (0xf >> (4 - size)) << start_bit;
2920 val = 0;
2922 if (kvm_vcpu_read_guest(&svm->vcpu, gpa, &val, iopm_len))
2923 return NESTED_EXIT_DONE;
2925 return (val & mask) ? NESTED_EXIT_DONE : NESTED_EXIT_HOST;
2928 static int nested_svm_exit_handled_msr(struct vcpu_svm *svm)
2930 u32 offset, msr, value;
2931 int write, mask;
2933 if (!(svm->nested.intercept & (1ULL << INTERCEPT_MSR_PROT)))
2934 return NESTED_EXIT_HOST;
2936 msr = svm->vcpu.arch.regs[VCPU_REGS_RCX];
2937 offset = svm_msrpm_offset(msr);
2938 write = svm->vmcb->control.exit_info_1 & 1;
2939 mask = 1 << ((2 * (msr & 0xf)) + write);
2941 if (offset == MSR_INVALID)
2942 return NESTED_EXIT_DONE;
2944 /* Offset is in 32 bit units but need in 8 bit units */
2945 offset *= 4;
2947 if (kvm_vcpu_read_guest(&svm->vcpu, svm->nested.vmcb_msrpm + offset, &value, 4))
2948 return NESTED_EXIT_DONE;
2950 return (value & mask) ? NESTED_EXIT_DONE : NESTED_EXIT_HOST;
2953 /* DB exceptions for our internal use must not cause vmexit */
2954 static int nested_svm_intercept_db(struct vcpu_svm *svm)
2956 unsigned long dr6;
2958 /* if we're not singlestepping, it's not ours */
2959 if (!svm->nmi_singlestep)
2960 return NESTED_EXIT_DONE;
2962 /* if it's not a singlestep exception, it's not ours */
2963 if (kvm_get_dr(&svm->vcpu, 6, &dr6))
2964 return NESTED_EXIT_DONE;
2965 if (!(dr6 & DR6_BS))
2966 return NESTED_EXIT_DONE;
2968 /* if the guest is singlestepping, it should get the vmexit */
2969 if (svm->nmi_singlestep_guest_rflags & X86_EFLAGS_TF) {
2970 disable_nmi_singlestep(svm);
2971 return NESTED_EXIT_DONE;
2974 /* it's ours, the nested hypervisor must not see this one */
2975 return NESTED_EXIT_HOST;
2978 static int nested_svm_exit_special(struct vcpu_svm *svm)
2980 u32 exit_code = svm->vmcb->control.exit_code;
2982 switch (exit_code) {
2983 case SVM_EXIT_INTR:
2984 case SVM_EXIT_NMI:
2985 case SVM_EXIT_EXCP_BASE + MC_VECTOR:
2986 return NESTED_EXIT_HOST;
2987 case SVM_EXIT_NPF:
2988 /* For now we are always handling NPFs when using them */
2989 if (npt_enabled)
2990 return NESTED_EXIT_HOST;
2991 break;
2992 case SVM_EXIT_EXCP_BASE + PF_VECTOR:
2993 /* When we're shadowing, trap PFs, but not async PF */
2994 if (!npt_enabled && svm->vcpu.arch.apf.host_apf_reason == 0)
2995 return NESTED_EXIT_HOST;
2996 break;
2997 default:
2998 break;
3001 return NESTED_EXIT_CONTINUE;
3005 * If this function returns true, this #vmexit was already handled
3007 static int nested_svm_intercept(struct vcpu_svm *svm)
3009 u32 exit_code = svm->vmcb->control.exit_code;
3010 int vmexit = NESTED_EXIT_HOST;
3012 switch (exit_code) {
3013 case SVM_EXIT_MSR:
3014 vmexit = nested_svm_exit_handled_msr(svm);
3015 break;
3016 case SVM_EXIT_IOIO:
3017 vmexit = nested_svm_intercept_ioio(svm);
3018 break;
3019 case SVM_EXIT_READ_CR0 ... SVM_EXIT_WRITE_CR8: {
3020 u32 bit = 1U << (exit_code - SVM_EXIT_READ_CR0);
3021 if (svm->nested.intercept_cr & bit)
3022 vmexit = NESTED_EXIT_DONE;
3023 break;
3025 case SVM_EXIT_READ_DR0 ... SVM_EXIT_WRITE_DR7: {
3026 u32 bit = 1U << (exit_code - SVM_EXIT_READ_DR0);
3027 if (svm->nested.intercept_dr & bit)
3028 vmexit = NESTED_EXIT_DONE;
3029 break;
3031 case SVM_EXIT_EXCP_BASE ... SVM_EXIT_EXCP_BASE + 0x1f: {
3032 u32 excp_bits = 1 << (exit_code - SVM_EXIT_EXCP_BASE);
3033 if (svm->nested.intercept_exceptions & excp_bits) {
3034 if (exit_code == SVM_EXIT_EXCP_BASE + DB_VECTOR)
3035 vmexit = nested_svm_intercept_db(svm);
3036 else
3037 vmexit = NESTED_EXIT_DONE;
3039 /* async page fault always cause vmexit */
3040 else if ((exit_code == SVM_EXIT_EXCP_BASE + PF_VECTOR) &&
3041 svm->vcpu.arch.exception.nested_apf != 0)
3042 vmexit = NESTED_EXIT_DONE;
3043 break;
3045 case SVM_EXIT_ERR: {
3046 vmexit = NESTED_EXIT_DONE;
3047 break;
3049 default: {
3050 u64 exit_bits = 1ULL << (exit_code - SVM_EXIT_INTR);
3051 if (svm->nested.intercept & exit_bits)
3052 vmexit = NESTED_EXIT_DONE;
3056 return vmexit;
3059 static int nested_svm_exit_handled(struct vcpu_svm *svm)
3061 int vmexit;
3063 vmexit = nested_svm_intercept(svm);
3065 if (vmexit == NESTED_EXIT_DONE)
3066 nested_svm_vmexit(svm);
3068 return vmexit;
3071 static inline void copy_vmcb_control_area(struct vmcb *dst_vmcb, struct vmcb *from_vmcb)
3073 struct vmcb_control_area *dst = &dst_vmcb->control;
3074 struct vmcb_control_area *from = &from_vmcb->control;
3076 dst->intercept_cr = from->intercept_cr;
3077 dst->intercept_dr = from->intercept_dr;
3078 dst->intercept_exceptions = from->intercept_exceptions;
3079 dst->intercept = from->intercept;
3080 dst->iopm_base_pa = from->iopm_base_pa;
3081 dst->msrpm_base_pa = from->msrpm_base_pa;
3082 dst->tsc_offset = from->tsc_offset;
3083 dst->asid = from->asid;
3084 dst->tlb_ctl = from->tlb_ctl;
3085 dst->int_ctl = from->int_ctl;
3086 dst->int_vector = from->int_vector;
3087 dst->int_state = from->int_state;
3088 dst->exit_code = from->exit_code;
3089 dst->exit_code_hi = from->exit_code_hi;
3090 dst->exit_info_1 = from->exit_info_1;
3091 dst->exit_info_2 = from->exit_info_2;
3092 dst->exit_int_info = from->exit_int_info;
3093 dst->exit_int_info_err = from->exit_int_info_err;
3094 dst->nested_ctl = from->nested_ctl;
3095 dst->event_inj = from->event_inj;
3096 dst->event_inj_err = from->event_inj_err;
3097 dst->nested_cr3 = from->nested_cr3;
3098 dst->virt_ext = from->virt_ext;
3101 static int nested_svm_vmexit(struct vcpu_svm *svm)
3103 struct vmcb *nested_vmcb;
3104 struct vmcb *hsave = svm->nested.hsave;
3105 struct vmcb *vmcb = svm->vmcb;
3106 struct page *page;
3108 trace_kvm_nested_vmexit_inject(vmcb->control.exit_code,
3109 vmcb->control.exit_info_1,
3110 vmcb->control.exit_info_2,
3111 vmcb->control.exit_int_info,
3112 vmcb->control.exit_int_info_err,
3113 KVM_ISA_SVM);
3115 nested_vmcb = nested_svm_map(svm, svm->nested.vmcb, &page);
3116 if (!nested_vmcb)
3117 return 1;
3119 /* Exit Guest-Mode */
3120 leave_guest_mode(&svm->vcpu);
3121 svm->nested.vmcb = 0;
3123 /* Give the current vmcb to the guest */
3124 disable_gif(svm);
3126 nested_vmcb->save.es = vmcb->save.es;
3127 nested_vmcb->save.cs = vmcb->save.cs;
3128 nested_vmcb->save.ss = vmcb->save.ss;
3129 nested_vmcb->save.ds = vmcb->save.ds;
3130 nested_vmcb->save.gdtr = vmcb->save.gdtr;
3131 nested_vmcb->save.idtr = vmcb->save.idtr;
3132 nested_vmcb->save.efer = svm->vcpu.arch.efer;
3133 nested_vmcb->save.cr0 = kvm_read_cr0(&svm->vcpu);
3134 nested_vmcb->save.cr3 = kvm_read_cr3(&svm->vcpu);
3135 nested_vmcb->save.cr2 = vmcb->save.cr2;
3136 nested_vmcb->save.cr4 = svm->vcpu.arch.cr4;
3137 nested_vmcb->save.rflags = kvm_get_rflags(&svm->vcpu);
3138 nested_vmcb->save.rip = vmcb->save.rip;
3139 nested_vmcb->save.rsp = vmcb->save.rsp;
3140 nested_vmcb->save.rax = vmcb->save.rax;
3141 nested_vmcb->save.dr7 = vmcb->save.dr7;
3142 nested_vmcb->save.dr6 = vmcb->save.dr6;
3143 nested_vmcb->save.cpl = vmcb->save.cpl;
3145 nested_vmcb->control.int_ctl = vmcb->control.int_ctl;
3146 nested_vmcb->control.int_vector = vmcb->control.int_vector;
3147 nested_vmcb->control.int_state = vmcb->control.int_state;
3148 nested_vmcb->control.exit_code = vmcb->control.exit_code;
3149 nested_vmcb->control.exit_code_hi = vmcb->control.exit_code_hi;
3150 nested_vmcb->control.exit_info_1 = vmcb->control.exit_info_1;
3151 nested_vmcb->control.exit_info_2 = vmcb->control.exit_info_2;
3152 nested_vmcb->control.exit_int_info = vmcb->control.exit_int_info;
3153 nested_vmcb->control.exit_int_info_err = vmcb->control.exit_int_info_err;
3155 if (svm->nrips_enabled)
3156 nested_vmcb->control.next_rip = vmcb->control.next_rip;
3159 * If we emulate a VMRUN/#VMEXIT in the same host #vmexit cycle we have
3160 * to make sure that we do not lose injected events. So check event_inj
3161 * here and copy it to exit_int_info if it is valid.
3162 * Exit_int_info and event_inj can't be both valid because the case
3163 * below only happens on a VMRUN instruction intercept which has
3164 * no valid exit_int_info set.
3166 if (vmcb->control.event_inj & SVM_EVTINJ_VALID) {
3167 struct vmcb_control_area *nc = &nested_vmcb->control;
3169 nc->exit_int_info = vmcb->control.event_inj;
3170 nc->exit_int_info_err = vmcb->control.event_inj_err;
3173 nested_vmcb->control.tlb_ctl = 0;
3174 nested_vmcb->control.event_inj = 0;
3175 nested_vmcb->control.event_inj_err = 0;
3177 /* We always set V_INTR_MASKING and remember the old value in hflags */
3178 if (!(svm->vcpu.arch.hflags & HF_VINTR_MASK))
3179 nested_vmcb->control.int_ctl &= ~V_INTR_MASKING_MASK;
3181 /* Restore the original control entries */
3182 copy_vmcb_control_area(vmcb, hsave);
3184 kvm_clear_exception_queue(&svm->vcpu);
3185 kvm_clear_interrupt_queue(&svm->vcpu);
3187 svm->nested.nested_cr3 = 0;
3189 /* Restore selected save entries */
3190 svm->vmcb->save.es = hsave->save.es;
3191 svm->vmcb->save.cs = hsave->save.cs;
3192 svm->vmcb->save.ss = hsave->save.ss;
3193 svm->vmcb->save.ds = hsave->save.ds;
3194 svm->vmcb->save.gdtr = hsave->save.gdtr;
3195 svm->vmcb->save.idtr = hsave->save.idtr;
3196 kvm_set_rflags(&svm->vcpu, hsave->save.rflags);
3197 svm_set_efer(&svm->vcpu, hsave->save.efer);
3198 svm_set_cr0(&svm->vcpu, hsave->save.cr0 | X86_CR0_PE);
3199 svm_set_cr4(&svm->vcpu, hsave->save.cr4);
3200 if (npt_enabled) {
3201 svm->vmcb->save.cr3 = hsave->save.cr3;
3202 svm->vcpu.arch.cr3 = hsave->save.cr3;
3203 } else {
3204 (void)kvm_set_cr3(&svm->vcpu, hsave->save.cr3);
3206 kvm_register_write(&svm->vcpu, VCPU_REGS_RAX, hsave->save.rax);
3207 kvm_register_write(&svm->vcpu, VCPU_REGS_RSP, hsave->save.rsp);
3208 kvm_register_write(&svm->vcpu, VCPU_REGS_RIP, hsave->save.rip);
3209 svm->vmcb->save.dr7 = 0;
3210 svm->vmcb->save.cpl = 0;
3211 svm->vmcb->control.exit_int_info = 0;
3213 mark_all_dirty(svm->vmcb);
3215 nested_svm_unmap(page);
3217 nested_svm_uninit_mmu_context(&svm->vcpu);
3218 kvm_mmu_reset_context(&svm->vcpu);
3219 kvm_mmu_load(&svm->vcpu);
3221 return 0;
3224 static bool nested_svm_vmrun_msrpm(struct vcpu_svm *svm)
3227 * This function merges the msr permission bitmaps of kvm and the
3228 * nested vmcb. It is optimized in that it only merges the parts where
3229 * the kvm msr permission bitmap may contain zero bits
3231 int i;
3233 if (!(svm->nested.intercept & (1ULL << INTERCEPT_MSR_PROT)))
3234 return true;
3236 for (i = 0; i < MSRPM_OFFSETS; i++) {
3237 u32 value, p;
3238 u64 offset;
3240 if (msrpm_offsets[i] == 0xffffffff)
3241 break;
3243 p = msrpm_offsets[i];
3244 offset = svm->nested.vmcb_msrpm + (p * 4);
3246 if (kvm_vcpu_read_guest(&svm->vcpu, offset, &value, 4))
3247 return false;
3249 svm->nested.msrpm[p] = svm->msrpm[p] | value;
3252 svm->vmcb->control.msrpm_base_pa = __sme_set(__pa(svm->nested.msrpm));
3254 return true;
3257 static bool nested_vmcb_checks(struct vmcb *vmcb)
3259 if ((vmcb->control.intercept & (1ULL << INTERCEPT_VMRUN)) == 0)
3260 return false;
3262 if (vmcb->control.asid == 0)
3263 return false;
3265 if ((vmcb->control.nested_ctl & SVM_NESTED_CTL_NP_ENABLE) &&
3266 !npt_enabled)
3267 return false;
3269 return true;
3272 static void enter_svm_guest_mode(struct vcpu_svm *svm, u64 vmcb_gpa,
3273 struct vmcb *nested_vmcb, struct page *page)
3275 if (kvm_get_rflags(&svm->vcpu) & X86_EFLAGS_IF)
3276 svm->vcpu.arch.hflags |= HF_HIF_MASK;
3277 else
3278 svm->vcpu.arch.hflags &= ~HF_HIF_MASK;
3280 if (nested_vmcb->control.nested_ctl & SVM_NESTED_CTL_NP_ENABLE) {
3281 kvm_mmu_unload(&svm->vcpu);
3282 svm->nested.nested_cr3 = nested_vmcb->control.nested_cr3;
3283 nested_svm_init_mmu_context(&svm->vcpu);
3286 /* Load the nested guest state */
3287 svm->vmcb->save.es = nested_vmcb->save.es;
3288 svm->vmcb->save.cs = nested_vmcb->save.cs;
3289 svm->vmcb->save.ss = nested_vmcb->save.ss;
3290 svm->vmcb->save.ds = nested_vmcb->save.ds;
3291 svm->vmcb->save.gdtr = nested_vmcb->save.gdtr;
3292 svm->vmcb->save.idtr = nested_vmcb->save.idtr;
3293 kvm_set_rflags(&svm->vcpu, nested_vmcb->save.rflags);
3294 svm_set_efer(&svm->vcpu, nested_vmcb->save.efer);
3295 svm_set_cr0(&svm->vcpu, nested_vmcb->save.cr0);
3296 svm_set_cr4(&svm->vcpu, nested_vmcb->save.cr4);
3297 if (npt_enabled) {
3298 svm->vmcb->save.cr3 = nested_vmcb->save.cr3;
3299 svm->vcpu.arch.cr3 = nested_vmcb->save.cr3;
3300 } else
3301 (void)kvm_set_cr3(&svm->vcpu, nested_vmcb->save.cr3);
3303 /* Guest paging mode is active - reset mmu */
3304 kvm_mmu_reset_context(&svm->vcpu);
3306 svm->vmcb->save.cr2 = svm->vcpu.arch.cr2 = nested_vmcb->save.cr2;
3307 kvm_register_write(&svm->vcpu, VCPU_REGS_RAX, nested_vmcb->save.rax);
3308 kvm_register_write(&svm->vcpu, VCPU_REGS_RSP, nested_vmcb->save.rsp);
3309 kvm_register_write(&svm->vcpu, VCPU_REGS_RIP, nested_vmcb->save.rip);
3311 /* In case we don't even reach vcpu_run, the fields are not updated */
3312 svm->vmcb->save.rax = nested_vmcb->save.rax;
3313 svm->vmcb->save.rsp = nested_vmcb->save.rsp;
3314 svm->vmcb->save.rip = nested_vmcb->save.rip;
3315 svm->vmcb->save.dr7 = nested_vmcb->save.dr7;
3316 svm->vmcb->save.dr6 = nested_vmcb->save.dr6;
3317 svm->vmcb->save.cpl = nested_vmcb->save.cpl;
3319 svm->nested.vmcb_msrpm = nested_vmcb->control.msrpm_base_pa & ~0x0fffULL;
3320 svm->nested.vmcb_iopm = nested_vmcb->control.iopm_base_pa & ~0x0fffULL;
3322 /* cache intercepts */
3323 svm->nested.intercept_cr = nested_vmcb->control.intercept_cr;
3324 svm->nested.intercept_dr = nested_vmcb->control.intercept_dr;
3325 svm->nested.intercept_exceptions = nested_vmcb->control.intercept_exceptions;
3326 svm->nested.intercept = nested_vmcb->control.intercept;
3328 svm_flush_tlb(&svm->vcpu, true);
3329 svm->vmcb->control.int_ctl = nested_vmcb->control.int_ctl | V_INTR_MASKING_MASK;
3330 if (nested_vmcb->control.int_ctl & V_INTR_MASKING_MASK)
3331 svm->vcpu.arch.hflags |= HF_VINTR_MASK;
3332 else
3333 svm->vcpu.arch.hflags &= ~HF_VINTR_MASK;
3335 if (svm->vcpu.arch.hflags & HF_VINTR_MASK) {
3336 /* We only want the cr8 intercept bits of the guest */
3337 clr_cr_intercept(svm, INTERCEPT_CR8_READ);
3338 clr_cr_intercept(svm, INTERCEPT_CR8_WRITE);
3341 /* We don't want to see VMMCALLs from a nested guest */
3342 clr_intercept(svm, INTERCEPT_VMMCALL);
3344 svm->vmcb->control.virt_ext = nested_vmcb->control.virt_ext;
3345 svm->vmcb->control.int_vector = nested_vmcb->control.int_vector;
3346 svm->vmcb->control.int_state = nested_vmcb->control.int_state;
3347 svm->vmcb->control.tsc_offset += nested_vmcb->control.tsc_offset;
3348 svm->vmcb->control.event_inj = nested_vmcb->control.event_inj;
3349 svm->vmcb->control.event_inj_err = nested_vmcb->control.event_inj_err;
3351 nested_svm_unmap(page);
3353 /* Enter Guest-Mode */
3354 enter_guest_mode(&svm->vcpu);
3357 * Merge guest and host intercepts - must be called with vcpu in
3358 * guest-mode to take affect here
3360 recalc_intercepts(svm);
3362 svm->nested.vmcb = vmcb_gpa;
3364 enable_gif(svm);
3366 mark_all_dirty(svm->vmcb);
3369 static bool nested_svm_vmrun(struct vcpu_svm *svm)
3371 struct vmcb *nested_vmcb;
3372 struct vmcb *hsave = svm->nested.hsave;
3373 struct vmcb *vmcb = svm->vmcb;
3374 struct page *page;
3375 u64 vmcb_gpa;
3377 vmcb_gpa = svm->vmcb->save.rax;
3379 nested_vmcb = nested_svm_map(svm, svm->vmcb->save.rax, &page);
3380 if (!nested_vmcb)
3381 return false;
3383 if (!nested_vmcb_checks(nested_vmcb)) {
3384 nested_vmcb->control.exit_code = SVM_EXIT_ERR;
3385 nested_vmcb->control.exit_code_hi = 0;
3386 nested_vmcb->control.exit_info_1 = 0;
3387 nested_vmcb->control.exit_info_2 = 0;
3389 nested_svm_unmap(page);
3391 return false;
3394 trace_kvm_nested_vmrun(svm->vmcb->save.rip, vmcb_gpa,
3395 nested_vmcb->save.rip,
3396 nested_vmcb->control.int_ctl,
3397 nested_vmcb->control.event_inj,
3398 nested_vmcb->control.nested_ctl);
3400 trace_kvm_nested_intercepts(nested_vmcb->control.intercept_cr & 0xffff,
3401 nested_vmcb->control.intercept_cr >> 16,
3402 nested_vmcb->control.intercept_exceptions,
3403 nested_vmcb->control.intercept);
3405 /* Clear internal status */
3406 kvm_clear_exception_queue(&svm->vcpu);
3407 kvm_clear_interrupt_queue(&svm->vcpu);
3410 * Save the old vmcb, so we don't need to pick what we save, but can
3411 * restore everything when a VMEXIT occurs
3413 hsave->save.es = vmcb->save.es;
3414 hsave->save.cs = vmcb->save.cs;
3415 hsave->save.ss = vmcb->save.ss;
3416 hsave->save.ds = vmcb->save.ds;
3417 hsave->save.gdtr = vmcb->save.gdtr;
3418 hsave->save.idtr = vmcb->save.idtr;
3419 hsave->save.efer = svm->vcpu.arch.efer;
3420 hsave->save.cr0 = kvm_read_cr0(&svm->vcpu);
3421 hsave->save.cr4 = svm->vcpu.arch.cr4;
3422 hsave->save.rflags = kvm_get_rflags(&svm->vcpu);
3423 hsave->save.rip = kvm_rip_read(&svm->vcpu);
3424 hsave->save.rsp = vmcb->save.rsp;
3425 hsave->save.rax = vmcb->save.rax;
3426 if (npt_enabled)
3427 hsave->save.cr3 = vmcb->save.cr3;
3428 else
3429 hsave->save.cr3 = kvm_read_cr3(&svm->vcpu);
3431 copy_vmcb_control_area(hsave, vmcb);
3433 enter_svm_guest_mode(svm, vmcb_gpa, nested_vmcb, page);
3435 return true;
3438 static void nested_svm_vmloadsave(struct vmcb *from_vmcb, struct vmcb *to_vmcb)
3440 to_vmcb->save.fs = from_vmcb->save.fs;
3441 to_vmcb->save.gs = from_vmcb->save.gs;
3442 to_vmcb->save.tr = from_vmcb->save.tr;
3443 to_vmcb->save.ldtr = from_vmcb->save.ldtr;
3444 to_vmcb->save.kernel_gs_base = from_vmcb->save.kernel_gs_base;
3445 to_vmcb->save.star = from_vmcb->save.star;
3446 to_vmcb->save.lstar = from_vmcb->save.lstar;
3447 to_vmcb->save.cstar = from_vmcb->save.cstar;
3448 to_vmcb->save.sfmask = from_vmcb->save.sfmask;
3449 to_vmcb->save.sysenter_cs = from_vmcb->save.sysenter_cs;
3450 to_vmcb->save.sysenter_esp = from_vmcb->save.sysenter_esp;
3451 to_vmcb->save.sysenter_eip = from_vmcb->save.sysenter_eip;
3454 static int vmload_interception(struct vcpu_svm *svm)
3456 struct vmcb *nested_vmcb;
3457 struct page *page;
3458 int ret;
3460 if (nested_svm_check_permissions(svm))
3461 return 1;
3463 nested_vmcb = nested_svm_map(svm, svm->vmcb->save.rax, &page);
3464 if (!nested_vmcb)
3465 return 1;
3467 svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
3468 ret = kvm_skip_emulated_instruction(&svm->vcpu);
3470 nested_svm_vmloadsave(nested_vmcb, svm->vmcb);
3471 nested_svm_unmap(page);
3473 return ret;
3476 static int vmsave_interception(struct vcpu_svm *svm)
3478 struct vmcb *nested_vmcb;
3479 struct page *page;
3480 int ret;
3482 if (nested_svm_check_permissions(svm))
3483 return 1;
3485 nested_vmcb = nested_svm_map(svm, svm->vmcb->save.rax, &page);
3486 if (!nested_vmcb)
3487 return 1;
3489 svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
3490 ret = kvm_skip_emulated_instruction(&svm->vcpu);
3492 nested_svm_vmloadsave(svm->vmcb, nested_vmcb);
3493 nested_svm_unmap(page);
3495 return ret;
3498 static int vmrun_interception(struct vcpu_svm *svm)
3500 if (nested_svm_check_permissions(svm))
3501 return 1;
3503 /* Save rip after vmrun instruction */
3504 kvm_rip_write(&svm->vcpu, kvm_rip_read(&svm->vcpu) + 3);
3506 if (!nested_svm_vmrun(svm))
3507 return 1;
3509 if (!nested_svm_vmrun_msrpm(svm))
3510 goto failed;
3512 return 1;
3514 failed:
3516 svm->vmcb->control.exit_code = SVM_EXIT_ERR;
3517 svm->vmcb->control.exit_code_hi = 0;
3518 svm->vmcb->control.exit_info_1 = 0;
3519 svm->vmcb->control.exit_info_2 = 0;
3521 nested_svm_vmexit(svm);
3523 return 1;
3526 static int stgi_interception(struct vcpu_svm *svm)
3528 int ret;
3530 if (nested_svm_check_permissions(svm))
3531 return 1;
3534 * If VGIF is enabled, the STGI intercept is only added to
3535 * detect the opening of the SMI/NMI window; remove it now.
3537 if (vgif_enabled(svm))
3538 clr_intercept(svm, INTERCEPT_STGI);
3540 svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
3541 ret = kvm_skip_emulated_instruction(&svm->vcpu);
3542 kvm_make_request(KVM_REQ_EVENT, &svm->vcpu);
3544 enable_gif(svm);
3546 return ret;
3549 static int clgi_interception(struct vcpu_svm *svm)
3551 int ret;
3553 if (nested_svm_check_permissions(svm))
3554 return 1;
3556 svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
3557 ret = kvm_skip_emulated_instruction(&svm->vcpu);
3559 disable_gif(svm);
3561 /* After a CLGI no interrupts should come */
3562 if (!kvm_vcpu_apicv_active(&svm->vcpu)) {
3563 svm_clear_vintr(svm);
3564 svm->vmcb->control.int_ctl &= ~V_IRQ_MASK;
3565 mark_dirty(svm->vmcb, VMCB_INTR);
3568 return ret;
3571 static int invlpga_interception(struct vcpu_svm *svm)
3573 struct kvm_vcpu *vcpu = &svm->vcpu;
3575 trace_kvm_invlpga(svm->vmcb->save.rip, kvm_register_read(&svm->vcpu, VCPU_REGS_RCX),
3576 kvm_register_read(&svm->vcpu, VCPU_REGS_RAX));
3578 /* Let's treat INVLPGA the same as INVLPG (can be optimized!) */
3579 kvm_mmu_invlpg(vcpu, kvm_register_read(&svm->vcpu, VCPU_REGS_RAX));
3581 svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
3582 return kvm_skip_emulated_instruction(&svm->vcpu);
3585 static int skinit_interception(struct vcpu_svm *svm)
3587 trace_kvm_skinit(svm->vmcb->save.rip, kvm_register_read(&svm->vcpu, VCPU_REGS_RAX));
3589 kvm_queue_exception(&svm->vcpu, UD_VECTOR);
3590 return 1;
3593 static int wbinvd_interception(struct vcpu_svm *svm)
3595 return kvm_emulate_wbinvd(&svm->vcpu);
3598 static int xsetbv_interception(struct vcpu_svm *svm)
3600 u64 new_bv = kvm_read_edx_eax(&svm->vcpu);
3601 u32 index = kvm_register_read(&svm->vcpu, VCPU_REGS_RCX);
3603 if (kvm_set_xcr(&svm->vcpu, index, new_bv) == 0) {
3604 svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
3605 return kvm_skip_emulated_instruction(&svm->vcpu);
3608 return 1;
3611 static int task_switch_interception(struct vcpu_svm *svm)
3613 u16 tss_selector;
3614 int reason;
3615 int int_type = svm->vmcb->control.exit_int_info &
3616 SVM_EXITINTINFO_TYPE_MASK;
3617 int int_vec = svm->vmcb->control.exit_int_info & SVM_EVTINJ_VEC_MASK;
3618 uint32_t type =
3619 svm->vmcb->control.exit_int_info & SVM_EXITINTINFO_TYPE_MASK;
3620 uint32_t idt_v =
3621 svm->vmcb->control.exit_int_info & SVM_EXITINTINFO_VALID;
3622 bool has_error_code = false;
3623 u32 error_code = 0;
3625 tss_selector = (u16)svm->vmcb->control.exit_info_1;
3627 if (svm->vmcb->control.exit_info_2 &
3628 (1ULL << SVM_EXITINFOSHIFT_TS_REASON_IRET))
3629 reason = TASK_SWITCH_IRET;
3630 else if (svm->vmcb->control.exit_info_2 &
3631 (1ULL << SVM_EXITINFOSHIFT_TS_REASON_JMP))
3632 reason = TASK_SWITCH_JMP;
3633 else if (idt_v)
3634 reason = TASK_SWITCH_GATE;
3635 else
3636 reason = TASK_SWITCH_CALL;
3638 if (reason == TASK_SWITCH_GATE) {
3639 switch (type) {
3640 case SVM_EXITINTINFO_TYPE_NMI:
3641 svm->vcpu.arch.nmi_injected = false;
3642 break;
3643 case SVM_EXITINTINFO_TYPE_EXEPT:
3644 if (svm->vmcb->control.exit_info_2 &
3645 (1ULL << SVM_EXITINFOSHIFT_TS_HAS_ERROR_CODE)) {
3646 has_error_code = true;
3647 error_code =
3648 (u32)svm->vmcb->control.exit_info_2;
3650 kvm_clear_exception_queue(&svm->vcpu);
3651 break;
3652 case SVM_EXITINTINFO_TYPE_INTR:
3653 kvm_clear_interrupt_queue(&svm->vcpu);
3654 break;
3655 default:
3656 break;
3660 if (reason != TASK_SWITCH_GATE ||
3661 int_type == SVM_EXITINTINFO_TYPE_SOFT ||
3662 (int_type == SVM_EXITINTINFO_TYPE_EXEPT &&
3663 (int_vec == OF_VECTOR || int_vec == BP_VECTOR)))
3664 skip_emulated_instruction(&svm->vcpu);
3666 if (int_type != SVM_EXITINTINFO_TYPE_SOFT)
3667 int_vec = -1;
3669 if (kvm_task_switch(&svm->vcpu, tss_selector, int_vec, reason,
3670 has_error_code, error_code) == EMULATE_FAIL) {
3671 svm->vcpu.run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
3672 svm->vcpu.run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
3673 svm->vcpu.run->internal.ndata = 0;
3674 return 0;
3676 return 1;
3679 static int cpuid_interception(struct vcpu_svm *svm)
3681 svm->next_rip = kvm_rip_read(&svm->vcpu) + 2;
3682 return kvm_emulate_cpuid(&svm->vcpu);
3685 static int iret_interception(struct vcpu_svm *svm)
3687 ++svm->vcpu.stat.nmi_window_exits;
3688 clr_intercept(svm, INTERCEPT_IRET);
3689 svm->vcpu.arch.hflags |= HF_IRET_MASK;
3690 svm->nmi_iret_rip = kvm_rip_read(&svm->vcpu);
3691 kvm_make_request(KVM_REQ_EVENT, &svm->vcpu);
3692 return 1;
3695 static int invlpg_interception(struct vcpu_svm *svm)
3697 if (!static_cpu_has(X86_FEATURE_DECODEASSISTS))
3698 return emulate_instruction(&svm->vcpu, 0) == EMULATE_DONE;
3700 kvm_mmu_invlpg(&svm->vcpu, svm->vmcb->control.exit_info_1);
3701 return kvm_skip_emulated_instruction(&svm->vcpu);
3704 static int emulate_on_interception(struct vcpu_svm *svm)
3706 return emulate_instruction(&svm->vcpu, 0) == EMULATE_DONE;
3709 static int rsm_interception(struct vcpu_svm *svm)
3711 return x86_emulate_instruction(&svm->vcpu, 0, 0,
3712 rsm_ins_bytes, 2) == EMULATE_DONE;
3715 static int rdpmc_interception(struct vcpu_svm *svm)
3717 int err;
3719 if (!static_cpu_has(X86_FEATURE_NRIPS))
3720 return emulate_on_interception(svm);
3722 err = kvm_rdpmc(&svm->vcpu);
3723 return kvm_complete_insn_gp(&svm->vcpu, err);
3726 static bool check_selective_cr0_intercepted(struct vcpu_svm *svm,
3727 unsigned long val)
3729 unsigned long cr0 = svm->vcpu.arch.cr0;
3730 bool ret = false;
3731 u64 intercept;
3733 intercept = svm->nested.intercept;
3735 if (!is_guest_mode(&svm->vcpu) ||
3736 (!(intercept & (1ULL << INTERCEPT_SELECTIVE_CR0))))
3737 return false;
3739 cr0 &= ~SVM_CR0_SELECTIVE_MASK;
3740 val &= ~SVM_CR0_SELECTIVE_MASK;
3742 if (cr0 ^ val) {
3743 svm->vmcb->control.exit_code = SVM_EXIT_CR0_SEL_WRITE;
3744 ret = (nested_svm_exit_handled(svm) == NESTED_EXIT_DONE);
3747 return ret;
3750 #define CR_VALID (1ULL << 63)
3752 static int cr_interception(struct vcpu_svm *svm)
3754 int reg, cr;
3755 unsigned long val;
3756 int err;
3758 if (!static_cpu_has(X86_FEATURE_DECODEASSISTS))
3759 return emulate_on_interception(svm);
3761 if (unlikely((svm->vmcb->control.exit_info_1 & CR_VALID) == 0))
3762 return emulate_on_interception(svm);
3764 reg = svm->vmcb->control.exit_info_1 & SVM_EXITINFO_REG_MASK;
3765 if (svm->vmcb->control.exit_code == SVM_EXIT_CR0_SEL_WRITE)
3766 cr = SVM_EXIT_WRITE_CR0 - SVM_EXIT_READ_CR0;
3767 else
3768 cr = svm->vmcb->control.exit_code - SVM_EXIT_READ_CR0;
3770 err = 0;
3771 if (cr >= 16) { /* mov to cr */
3772 cr -= 16;
3773 val = kvm_register_read(&svm->vcpu, reg);
3774 switch (cr) {
3775 case 0:
3776 if (!check_selective_cr0_intercepted(svm, val))
3777 err = kvm_set_cr0(&svm->vcpu, val);
3778 else
3779 return 1;
3781 break;
3782 case 3:
3783 err = kvm_set_cr3(&svm->vcpu, val);
3784 break;
3785 case 4:
3786 err = kvm_set_cr4(&svm->vcpu, val);
3787 break;
3788 case 8:
3789 err = kvm_set_cr8(&svm->vcpu, val);
3790 break;
3791 default:
3792 WARN(1, "unhandled write to CR%d", cr);
3793 kvm_queue_exception(&svm->vcpu, UD_VECTOR);
3794 return 1;
3796 } else { /* mov from cr */
3797 switch (cr) {
3798 case 0:
3799 val = kvm_read_cr0(&svm->vcpu);
3800 break;
3801 case 2:
3802 val = svm->vcpu.arch.cr2;
3803 break;
3804 case 3:
3805 val = kvm_read_cr3(&svm->vcpu);
3806 break;
3807 case 4:
3808 val = kvm_read_cr4(&svm->vcpu);
3809 break;
3810 case 8:
3811 val = kvm_get_cr8(&svm->vcpu);
3812 break;
3813 default:
3814 WARN(1, "unhandled read from CR%d", cr);
3815 kvm_queue_exception(&svm->vcpu, UD_VECTOR);
3816 return 1;
3818 kvm_register_write(&svm->vcpu, reg, val);
3820 return kvm_complete_insn_gp(&svm->vcpu, err);
3823 static int dr_interception(struct vcpu_svm *svm)
3825 int reg, dr;
3826 unsigned long val;
3828 if (svm->vcpu.guest_debug == 0) {
3830 * No more DR vmexits; force a reload of the debug registers
3831 * and reenter on this instruction. The next vmexit will
3832 * retrieve the full state of the debug registers.
3834 clr_dr_intercepts(svm);
3835 svm->vcpu.arch.switch_db_regs |= KVM_DEBUGREG_WONT_EXIT;
3836 return 1;
3839 if (!boot_cpu_has(X86_FEATURE_DECODEASSISTS))
3840 return emulate_on_interception(svm);
3842 reg = svm->vmcb->control.exit_info_1 & SVM_EXITINFO_REG_MASK;
3843 dr = svm->vmcb->control.exit_code - SVM_EXIT_READ_DR0;
3845 if (dr >= 16) { /* mov to DRn */
3846 if (!kvm_require_dr(&svm->vcpu, dr - 16))
3847 return 1;
3848 val = kvm_register_read(&svm->vcpu, reg);
3849 kvm_set_dr(&svm->vcpu, dr - 16, val);
3850 } else {
3851 if (!kvm_require_dr(&svm->vcpu, dr))
3852 return 1;
3853 kvm_get_dr(&svm->vcpu, dr, &val);
3854 kvm_register_write(&svm->vcpu, reg, val);
3857 return kvm_skip_emulated_instruction(&svm->vcpu);
3860 static int cr8_write_interception(struct vcpu_svm *svm)
3862 struct kvm_run *kvm_run = svm->vcpu.run;
3863 int r;
3865 u8 cr8_prev = kvm_get_cr8(&svm->vcpu);
3866 /* instruction emulation calls kvm_set_cr8() */
3867 r = cr_interception(svm);
3868 if (lapic_in_kernel(&svm->vcpu))
3869 return r;
3870 if (cr8_prev <= kvm_get_cr8(&svm->vcpu))
3871 return r;
3872 kvm_run->exit_reason = KVM_EXIT_SET_TPR;
3873 return 0;
3876 static int svm_get_msr_feature(struct kvm_msr_entry *msr)
3878 msr->data = 0;
3880 switch (msr->index) {
3881 case MSR_F10H_DECFG:
3882 if (boot_cpu_has(X86_FEATURE_LFENCE_RDTSC))
3883 msr->data |= MSR_F10H_DECFG_LFENCE_SERIALIZE;
3884 break;
3885 default:
3886 return 1;
3889 return 0;
3892 static int svm_get_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
3894 struct vcpu_svm *svm = to_svm(vcpu);
3896 switch (msr_info->index) {
3897 case MSR_IA32_TSC: {
3898 msr_info->data = svm->vmcb->control.tsc_offset +
3899 kvm_scale_tsc(vcpu, rdtsc());
3901 break;
3903 case MSR_STAR:
3904 msr_info->data = svm->vmcb->save.star;
3905 break;
3906 #ifdef CONFIG_X86_64
3907 case MSR_LSTAR:
3908 msr_info->data = svm->vmcb->save.lstar;
3909 break;
3910 case MSR_CSTAR:
3911 msr_info->data = svm->vmcb->save.cstar;
3912 break;
3913 case MSR_KERNEL_GS_BASE:
3914 msr_info->data = svm->vmcb->save.kernel_gs_base;
3915 break;
3916 case MSR_SYSCALL_MASK:
3917 msr_info->data = svm->vmcb->save.sfmask;
3918 break;
3919 #endif
3920 case MSR_IA32_SYSENTER_CS:
3921 msr_info->data = svm->vmcb->save.sysenter_cs;
3922 break;
3923 case MSR_IA32_SYSENTER_EIP:
3924 msr_info->data = svm->sysenter_eip;
3925 break;
3926 case MSR_IA32_SYSENTER_ESP:
3927 msr_info->data = svm->sysenter_esp;
3928 break;
3929 case MSR_TSC_AUX:
3930 if (!boot_cpu_has(X86_FEATURE_RDTSCP))
3931 return 1;
3932 msr_info->data = svm->tsc_aux;
3933 break;
3935 * Nobody will change the following 5 values in the VMCB so we can
3936 * safely return them on rdmsr. They will always be 0 until LBRV is
3937 * implemented.
3939 case MSR_IA32_DEBUGCTLMSR:
3940 msr_info->data = svm->vmcb->save.dbgctl;
3941 break;
3942 case MSR_IA32_LASTBRANCHFROMIP:
3943 msr_info->data = svm->vmcb->save.br_from;
3944 break;
3945 case MSR_IA32_LASTBRANCHTOIP:
3946 msr_info->data = svm->vmcb->save.br_to;
3947 break;
3948 case MSR_IA32_LASTINTFROMIP:
3949 msr_info->data = svm->vmcb->save.last_excp_from;
3950 break;
3951 case MSR_IA32_LASTINTTOIP:
3952 msr_info->data = svm->vmcb->save.last_excp_to;
3953 break;
3954 case MSR_VM_HSAVE_PA:
3955 msr_info->data = svm->nested.hsave_msr;
3956 break;
3957 case MSR_VM_CR:
3958 msr_info->data = svm->nested.vm_cr_msr;
3959 break;
3960 case MSR_IA32_SPEC_CTRL:
3961 if (!msr_info->host_initiated &&
3962 !guest_cpuid_has(vcpu, X86_FEATURE_IBRS))
3963 return 1;
3965 msr_info->data = svm->spec_ctrl;
3966 break;
3967 case MSR_F15H_IC_CFG: {
3969 int family, model;
3971 family = guest_cpuid_family(vcpu);
3972 model = guest_cpuid_model(vcpu);
3974 if (family < 0 || model < 0)
3975 return kvm_get_msr_common(vcpu, msr_info);
3977 msr_info->data = 0;
3979 if (family == 0x15 &&
3980 (model >= 0x2 && model < 0x20))
3981 msr_info->data = 0x1E;
3983 break;
3984 case MSR_F10H_DECFG:
3985 msr_info->data = svm->msr_decfg;
3986 break;
3987 default:
3988 return kvm_get_msr_common(vcpu, msr_info);
3990 return 0;
3993 static int rdmsr_interception(struct vcpu_svm *svm)
3995 u32 ecx = kvm_register_read(&svm->vcpu, VCPU_REGS_RCX);
3996 struct msr_data msr_info;
3998 msr_info.index = ecx;
3999 msr_info.host_initiated = false;
4000 if (svm_get_msr(&svm->vcpu, &msr_info)) {
4001 trace_kvm_msr_read_ex(ecx);
4002 kvm_inject_gp(&svm->vcpu, 0);
4003 return 1;
4004 } else {
4005 trace_kvm_msr_read(ecx, msr_info.data);
4007 kvm_register_write(&svm->vcpu, VCPU_REGS_RAX,
4008 msr_info.data & 0xffffffff);
4009 kvm_register_write(&svm->vcpu, VCPU_REGS_RDX,
4010 msr_info.data >> 32);
4011 svm->next_rip = kvm_rip_read(&svm->vcpu) + 2;
4012 return kvm_skip_emulated_instruction(&svm->vcpu);
4016 static int svm_set_vm_cr(struct kvm_vcpu *vcpu, u64 data)
4018 struct vcpu_svm *svm = to_svm(vcpu);
4019 int svm_dis, chg_mask;
4021 if (data & ~SVM_VM_CR_VALID_MASK)
4022 return 1;
4024 chg_mask = SVM_VM_CR_VALID_MASK;
4026 if (svm->nested.vm_cr_msr & SVM_VM_CR_SVM_DIS_MASK)
4027 chg_mask &= ~(SVM_VM_CR_SVM_LOCK_MASK | SVM_VM_CR_SVM_DIS_MASK);
4029 svm->nested.vm_cr_msr &= ~chg_mask;
4030 svm->nested.vm_cr_msr |= (data & chg_mask);
4032 svm_dis = svm->nested.vm_cr_msr & SVM_VM_CR_SVM_DIS_MASK;
4034 /* check for svm_disable while efer.svme is set */
4035 if (svm_dis && (vcpu->arch.efer & EFER_SVME))
4036 return 1;
4038 return 0;
4041 static int svm_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr)
4043 struct vcpu_svm *svm = to_svm(vcpu);
4045 u32 ecx = msr->index;
4046 u64 data = msr->data;
4047 switch (ecx) {
4048 case MSR_IA32_CR_PAT:
4049 if (!kvm_mtrr_valid(vcpu, MSR_IA32_CR_PAT, data))
4050 return 1;
4051 vcpu->arch.pat = data;
4052 svm->vmcb->save.g_pat = data;
4053 mark_dirty(svm->vmcb, VMCB_NPT);
4054 break;
4055 case MSR_IA32_TSC:
4056 kvm_write_tsc(vcpu, msr);
4057 break;
4058 case MSR_IA32_SPEC_CTRL:
4059 if (!msr->host_initiated &&
4060 !guest_cpuid_has(vcpu, X86_FEATURE_IBRS))
4061 return 1;
4063 /* The STIBP bit doesn't fault even if it's not advertised */
4064 if (data & ~(SPEC_CTRL_IBRS | SPEC_CTRL_STIBP))
4065 return 1;
4067 svm->spec_ctrl = data;
4069 if (!data)
4070 break;
4073 * For non-nested:
4074 * When it's written (to non-zero) for the first time, pass
4075 * it through.
4077 * For nested:
4078 * The handling of the MSR bitmap for L2 guests is done in
4079 * nested_svm_vmrun_msrpm.
4080 * We update the L1 MSR bit as well since it will end up
4081 * touching the MSR anyway now.
4083 set_msr_interception(svm->msrpm, MSR_IA32_SPEC_CTRL, 1, 1);
4084 break;
4085 case MSR_IA32_PRED_CMD:
4086 if (!msr->host_initiated &&
4087 !guest_cpuid_has(vcpu, X86_FEATURE_IBPB))
4088 return 1;
4090 if (data & ~PRED_CMD_IBPB)
4091 return 1;
4093 if (!data)
4094 break;
4096 wrmsrl(MSR_IA32_PRED_CMD, PRED_CMD_IBPB);
4097 if (is_guest_mode(vcpu))
4098 break;
4099 set_msr_interception(svm->msrpm, MSR_IA32_PRED_CMD, 0, 1);
4100 break;
4101 case MSR_STAR:
4102 svm->vmcb->save.star = data;
4103 break;
4104 #ifdef CONFIG_X86_64
4105 case MSR_LSTAR:
4106 svm->vmcb->save.lstar = data;
4107 break;
4108 case MSR_CSTAR:
4109 svm->vmcb->save.cstar = data;
4110 break;
4111 case MSR_KERNEL_GS_BASE:
4112 svm->vmcb->save.kernel_gs_base = data;
4113 break;
4114 case MSR_SYSCALL_MASK:
4115 svm->vmcb->save.sfmask = data;
4116 break;
4117 #endif
4118 case MSR_IA32_SYSENTER_CS:
4119 svm->vmcb->save.sysenter_cs = data;
4120 break;
4121 case MSR_IA32_SYSENTER_EIP:
4122 svm->sysenter_eip = data;
4123 svm->vmcb->save.sysenter_eip = data;
4124 break;
4125 case MSR_IA32_SYSENTER_ESP:
4126 svm->sysenter_esp = data;
4127 svm->vmcb->save.sysenter_esp = data;
4128 break;
4129 case MSR_TSC_AUX:
4130 if (!boot_cpu_has(X86_FEATURE_RDTSCP))
4131 return 1;
4134 * This is rare, so we update the MSR here instead of using
4135 * direct_access_msrs. Doing that would require a rdmsr in
4136 * svm_vcpu_put.
4138 svm->tsc_aux = data;
4139 wrmsrl(MSR_TSC_AUX, svm->tsc_aux);
4140 break;
4141 case MSR_IA32_DEBUGCTLMSR:
4142 if (!boot_cpu_has(X86_FEATURE_LBRV)) {
4143 vcpu_unimpl(vcpu, "%s: MSR_IA32_DEBUGCTL 0x%llx, nop\n",
4144 __func__, data);
4145 break;
4147 if (data & DEBUGCTL_RESERVED_BITS)
4148 return 1;
4150 svm->vmcb->save.dbgctl = data;
4151 mark_dirty(svm->vmcb, VMCB_LBR);
4152 if (data & (1ULL<<0))
4153 svm_enable_lbrv(svm);
4154 else
4155 svm_disable_lbrv(svm);
4156 break;
4157 case MSR_VM_HSAVE_PA:
4158 svm->nested.hsave_msr = data;
4159 break;
4160 case MSR_VM_CR:
4161 return svm_set_vm_cr(vcpu, data);
4162 case MSR_VM_IGNNE:
4163 vcpu_unimpl(vcpu, "unimplemented wrmsr: 0x%x data 0x%llx\n", ecx, data);
4164 break;
4165 case MSR_F10H_DECFG: {
4166 struct kvm_msr_entry msr_entry;
4168 msr_entry.index = msr->index;
4169 if (svm_get_msr_feature(&msr_entry))
4170 return 1;
4172 /* Check the supported bits */
4173 if (data & ~msr_entry.data)
4174 return 1;
4176 /* Don't allow the guest to change a bit, #GP */
4177 if (!msr->host_initiated && (data ^ msr_entry.data))
4178 return 1;
4180 svm->msr_decfg = data;
4181 break;
4183 case MSR_IA32_APICBASE:
4184 if (kvm_vcpu_apicv_active(vcpu))
4185 avic_update_vapic_bar(to_svm(vcpu), data);
4186 /* Follow through */
4187 default:
4188 return kvm_set_msr_common(vcpu, msr);
4190 return 0;
4193 static int wrmsr_interception(struct vcpu_svm *svm)
4195 struct msr_data msr;
4196 u32 ecx = kvm_register_read(&svm->vcpu, VCPU_REGS_RCX);
4197 u64 data = kvm_read_edx_eax(&svm->vcpu);
4199 msr.data = data;
4200 msr.index = ecx;
4201 msr.host_initiated = false;
4203 svm->next_rip = kvm_rip_read(&svm->vcpu) + 2;
4204 if (kvm_set_msr(&svm->vcpu, &msr)) {
4205 trace_kvm_msr_write_ex(ecx, data);
4206 kvm_inject_gp(&svm->vcpu, 0);
4207 return 1;
4208 } else {
4209 trace_kvm_msr_write(ecx, data);
4210 return kvm_skip_emulated_instruction(&svm->vcpu);
4214 static int msr_interception(struct vcpu_svm *svm)
4216 if (svm->vmcb->control.exit_info_1)
4217 return wrmsr_interception(svm);
4218 else
4219 return rdmsr_interception(svm);
4222 static int interrupt_window_interception(struct vcpu_svm *svm)
4224 kvm_make_request(KVM_REQ_EVENT, &svm->vcpu);
4225 svm_clear_vintr(svm);
4226 svm->vmcb->control.int_ctl &= ~V_IRQ_MASK;
4227 mark_dirty(svm->vmcb, VMCB_INTR);
4228 ++svm->vcpu.stat.irq_window_exits;
4229 return 1;
4232 static int pause_interception(struct vcpu_svm *svm)
4234 struct kvm_vcpu *vcpu = &svm->vcpu;
4235 bool in_kernel = (svm_get_cpl(vcpu) == 0);
4237 kvm_vcpu_on_spin(vcpu, in_kernel);
4238 return 1;
4241 static int nop_interception(struct vcpu_svm *svm)
4243 return kvm_skip_emulated_instruction(&(svm->vcpu));
4246 static int monitor_interception(struct vcpu_svm *svm)
4248 printk_once(KERN_WARNING "kvm: MONITOR instruction emulated as NOP!\n");
4249 return nop_interception(svm);
4252 static int mwait_interception(struct vcpu_svm *svm)
4254 printk_once(KERN_WARNING "kvm: MWAIT instruction emulated as NOP!\n");
4255 return nop_interception(svm);
4258 enum avic_ipi_failure_cause {
4259 AVIC_IPI_FAILURE_INVALID_INT_TYPE,
4260 AVIC_IPI_FAILURE_TARGET_NOT_RUNNING,
4261 AVIC_IPI_FAILURE_INVALID_TARGET,
4262 AVIC_IPI_FAILURE_INVALID_BACKING_PAGE,
4265 static int avic_incomplete_ipi_interception(struct vcpu_svm *svm)
4267 u32 icrh = svm->vmcb->control.exit_info_1 >> 32;
4268 u32 icrl = svm->vmcb->control.exit_info_1;
4269 u32 id = svm->vmcb->control.exit_info_2 >> 32;
4270 u32 index = svm->vmcb->control.exit_info_2 & 0xFF;
4271 struct kvm_lapic *apic = svm->vcpu.arch.apic;
4273 trace_kvm_avic_incomplete_ipi(svm->vcpu.vcpu_id, icrh, icrl, id, index);
4275 switch (id) {
4276 case AVIC_IPI_FAILURE_INVALID_INT_TYPE:
4278 * AVIC hardware handles the generation of
4279 * IPIs when the specified Message Type is Fixed
4280 * (also known as fixed delivery mode) and
4281 * the Trigger Mode is edge-triggered. The hardware
4282 * also supports self and broadcast delivery modes
4283 * specified via the Destination Shorthand(DSH)
4284 * field of the ICRL. Logical and physical APIC ID
4285 * formats are supported. All other IPI types cause
4286 * a #VMEXIT, which needs to emulated.
4288 kvm_lapic_reg_write(apic, APIC_ICR2, icrh);
4289 kvm_lapic_reg_write(apic, APIC_ICR, icrl);
4290 break;
4291 case AVIC_IPI_FAILURE_TARGET_NOT_RUNNING: {
4292 int i;
4293 struct kvm_vcpu *vcpu;
4294 struct kvm *kvm = svm->vcpu.kvm;
4295 struct kvm_lapic *apic = svm->vcpu.arch.apic;
4298 * At this point, we expect that the AVIC HW has already
4299 * set the appropriate IRR bits on the valid target
4300 * vcpus. So, we just need to kick the appropriate vcpu.
4302 kvm_for_each_vcpu(i, vcpu, kvm) {
4303 bool m = kvm_apic_match_dest(vcpu, apic,
4304 icrl & KVM_APIC_SHORT_MASK,
4305 GET_APIC_DEST_FIELD(icrh),
4306 icrl & KVM_APIC_DEST_MASK);
4308 if (m && !avic_vcpu_is_running(vcpu))
4309 kvm_vcpu_wake_up(vcpu);
4311 break;
4313 case AVIC_IPI_FAILURE_INVALID_TARGET:
4314 break;
4315 case AVIC_IPI_FAILURE_INVALID_BACKING_PAGE:
4316 WARN_ONCE(1, "Invalid backing page\n");
4317 break;
4318 default:
4319 pr_err("Unknown IPI interception\n");
4322 return 1;
4325 static u32 *avic_get_logical_id_entry(struct kvm_vcpu *vcpu, u32 ldr, bool flat)
4327 struct kvm_arch *vm_data = &vcpu->kvm->arch;
4328 int index;
4329 u32 *logical_apic_id_table;
4330 int dlid = GET_APIC_LOGICAL_ID(ldr);
4332 if (!dlid)
4333 return NULL;
4335 if (flat) { /* flat */
4336 index = ffs(dlid) - 1;
4337 if (index > 7)
4338 return NULL;
4339 } else { /* cluster */
4340 int cluster = (dlid & 0xf0) >> 4;
4341 int apic = ffs(dlid & 0x0f) - 1;
4343 if ((apic < 0) || (apic > 7) ||
4344 (cluster >= 0xf))
4345 return NULL;
4346 index = (cluster << 2) + apic;
4349 logical_apic_id_table = (u32 *) page_address(vm_data->avic_logical_id_table_page);
4351 return &logical_apic_id_table[index];
4354 static int avic_ldr_write(struct kvm_vcpu *vcpu, u8 g_physical_id, u32 ldr,
4355 bool valid)
4357 bool flat;
4358 u32 *entry, new_entry;
4360 flat = kvm_lapic_get_reg(vcpu->arch.apic, APIC_DFR) == APIC_DFR_FLAT;
4361 entry = avic_get_logical_id_entry(vcpu, ldr, flat);
4362 if (!entry)
4363 return -EINVAL;
4365 new_entry = READ_ONCE(*entry);
4366 new_entry &= ~AVIC_LOGICAL_ID_ENTRY_GUEST_PHYSICAL_ID_MASK;
4367 new_entry |= (g_physical_id & AVIC_LOGICAL_ID_ENTRY_GUEST_PHYSICAL_ID_MASK);
4368 if (valid)
4369 new_entry |= AVIC_LOGICAL_ID_ENTRY_VALID_MASK;
4370 else
4371 new_entry &= ~AVIC_LOGICAL_ID_ENTRY_VALID_MASK;
4372 WRITE_ONCE(*entry, new_entry);
4374 return 0;
4377 static int avic_handle_ldr_update(struct kvm_vcpu *vcpu)
4379 int ret;
4380 struct vcpu_svm *svm = to_svm(vcpu);
4381 u32 ldr = kvm_lapic_get_reg(vcpu->arch.apic, APIC_LDR);
4383 if (!ldr)
4384 return 1;
4386 ret = avic_ldr_write(vcpu, vcpu->vcpu_id, ldr, true);
4387 if (ret && svm->ldr_reg) {
4388 avic_ldr_write(vcpu, 0, svm->ldr_reg, false);
4389 svm->ldr_reg = 0;
4390 } else {
4391 svm->ldr_reg = ldr;
4393 return ret;
4396 static int avic_handle_apic_id_update(struct kvm_vcpu *vcpu)
4398 u64 *old, *new;
4399 struct vcpu_svm *svm = to_svm(vcpu);
4400 u32 apic_id_reg = kvm_lapic_get_reg(vcpu->arch.apic, APIC_ID);
4401 u32 id = (apic_id_reg >> 24) & 0xff;
4403 if (vcpu->vcpu_id == id)
4404 return 0;
4406 old = avic_get_physical_id_entry(vcpu, vcpu->vcpu_id);
4407 new = avic_get_physical_id_entry(vcpu, id);
4408 if (!new || !old)
4409 return 1;
4411 /* We need to move physical_id_entry to new offset */
4412 *new = *old;
4413 *old = 0ULL;
4414 to_svm(vcpu)->avic_physical_id_cache = new;
4417 * Also update the guest physical APIC ID in the logical
4418 * APIC ID table entry if already setup the LDR.
4420 if (svm->ldr_reg)
4421 avic_handle_ldr_update(vcpu);
4423 return 0;
4426 static int avic_handle_dfr_update(struct kvm_vcpu *vcpu)
4428 struct vcpu_svm *svm = to_svm(vcpu);
4429 struct kvm_arch *vm_data = &vcpu->kvm->arch;
4430 u32 dfr = kvm_lapic_get_reg(vcpu->arch.apic, APIC_DFR);
4431 u32 mod = (dfr >> 28) & 0xf;
4434 * We assume that all local APICs are using the same type.
4435 * If this changes, we need to flush the AVIC logical
4436 * APID id table.
4438 if (vm_data->ldr_mode == mod)
4439 return 0;
4441 clear_page(page_address(vm_data->avic_logical_id_table_page));
4442 vm_data->ldr_mode = mod;
4444 if (svm->ldr_reg)
4445 avic_handle_ldr_update(vcpu);
4446 return 0;
4449 static int avic_unaccel_trap_write(struct vcpu_svm *svm)
4451 struct kvm_lapic *apic = svm->vcpu.arch.apic;
4452 u32 offset = svm->vmcb->control.exit_info_1 &
4453 AVIC_UNACCEL_ACCESS_OFFSET_MASK;
4455 switch (offset) {
4456 case APIC_ID:
4457 if (avic_handle_apic_id_update(&svm->vcpu))
4458 return 0;
4459 break;
4460 case APIC_LDR:
4461 if (avic_handle_ldr_update(&svm->vcpu))
4462 return 0;
4463 break;
4464 case APIC_DFR:
4465 avic_handle_dfr_update(&svm->vcpu);
4466 break;
4467 default:
4468 break;
4471 kvm_lapic_reg_write(apic, offset, kvm_lapic_get_reg(apic, offset));
4473 return 1;
4476 static bool is_avic_unaccelerated_access_trap(u32 offset)
4478 bool ret = false;
4480 switch (offset) {
4481 case APIC_ID:
4482 case APIC_EOI:
4483 case APIC_RRR:
4484 case APIC_LDR:
4485 case APIC_DFR:
4486 case APIC_SPIV:
4487 case APIC_ESR:
4488 case APIC_ICR:
4489 case APIC_LVTT:
4490 case APIC_LVTTHMR:
4491 case APIC_LVTPC:
4492 case APIC_LVT0:
4493 case APIC_LVT1:
4494 case APIC_LVTERR:
4495 case APIC_TMICT:
4496 case APIC_TDCR:
4497 ret = true;
4498 break;
4499 default:
4500 break;
4502 return ret;
4505 static int avic_unaccelerated_access_interception(struct vcpu_svm *svm)
4507 int ret = 0;
4508 u32 offset = svm->vmcb->control.exit_info_1 &
4509 AVIC_UNACCEL_ACCESS_OFFSET_MASK;
4510 u32 vector = svm->vmcb->control.exit_info_2 &
4511 AVIC_UNACCEL_ACCESS_VECTOR_MASK;
4512 bool write = (svm->vmcb->control.exit_info_1 >> 32) &
4513 AVIC_UNACCEL_ACCESS_WRITE_MASK;
4514 bool trap = is_avic_unaccelerated_access_trap(offset);
4516 trace_kvm_avic_unaccelerated_access(svm->vcpu.vcpu_id, offset,
4517 trap, write, vector);
4518 if (trap) {
4519 /* Handling Trap */
4520 WARN_ONCE(!write, "svm: Handling trap read.\n");
4521 ret = avic_unaccel_trap_write(svm);
4522 } else {
4523 /* Handling Fault */
4524 ret = (emulate_instruction(&svm->vcpu, 0) == EMULATE_DONE);
4527 return ret;
4530 static int (*const svm_exit_handlers[])(struct vcpu_svm *svm) = {
4531 [SVM_EXIT_READ_CR0] = cr_interception,
4532 [SVM_EXIT_READ_CR3] = cr_interception,
4533 [SVM_EXIT_READ_CR4] = cr_interception,
4534 [SVM_EXIT_READ_CR8] = cr_interception,
4535 [SVM_EXIT_CR0_SEL_WRITE] = cr_interception,
4536 [SVM_EXIT_WRITE_CR0] = cr_interception,
4537 [SVM_EXIT_WRITE_CR3] = cr_interception,
4538 [SVM_EXIT_WRITE_CR4] = cr_interception,
4539 [SVM_EXIT_WRITE_CR8] = cr8_write_interception,
4540 [SVM_EXIT_READ_DR0] = dr_interception,
4541 [SVM_EXIT_READ_DR1] = dr_interception,
4542 [SVM_EXIT_READ_DR2] = dr_interception,
4543 [SVM_EXIT_READ_DR3] = dr_interception,
4544 [SVM_EXIT_READ_DR4] = dr_interception,
4545 [SVM_EXIT_READ_DR5] = dr_interception,
4546 [SVM_EXIT_READ_DR6] = dr_interception,
4547 [SVM_EXIT_READ_DR7] = dr_interception,
4548 [SVM_EXIT_WRITE_DR0] = dr_interception,
4549 [SVM_EXIT_WRITE_DR1] = dr_interception,
4550 [SVM_EXIT_WRITE_DR2] = dr_interception,
4551 [SVM_EXIT_WRITE_DR3] = dr_interception,
4552 [SVM_EXIT_WRITE_DR4] = dr_interception,
4553 [SVM_EXIT_WRITE_DR5] = dr_interception,
4554 [SVM_EXIT_WRITE_DR6] = dr_interception,
4555 [SVM_EXIT_WRITE_DR7] = dr_interception,
4556 [SVM_EXIT_EXCP_BASE + DB_VECTOR] = db_interception,
4557 [SVM_EXIT_EXCP_BASE + BP_VECTOR] = bp_interception,
4558 [SVM_EXIT_EXCP_BASE + UD_VECTOR] = ud_interception,
4559 [SVM_EXIT_EXCP_BASE + PF_VECTOR] = pf_interception,
4560 [SVM_EXIT_EXCP_BASE + MC_VECTOR] = mc_interception,
4561 [SVM_EXIT_EXCP_BASE + AC_VECTOR] = ac_interception,
4562 [SVM_EXIT_INTR] = intr_interception,
4563 [SVM_EXIT_NMI] = nmi_interception,
4564 [SVM_EXIT_SMI] = nop_on_interception,
4565 [SVM_EXIT_INIT] = nop_on_interception,
4566 [SVM_EXIT_VINTR] = interrupt_window_interception,
4567 [SVM_EXIT_RDPMC] = rdpmc_interception,
4568 [SVM_EXIT_CPUID] = cpuid_interception,
4569 [SVM_EXIT_IRET] = iret_interception,
4570 [SVM_EXIT_INVD] = emulate_on_interception,
4571 [SVM_EXIT_PAUSE] = pause_interception,
4572 [SVM_EXIT_HLT] = halt_interception,
4573 [SVM_EXIT_INVLPG] = invlpg_interception,
4574 [SVM_EXIT_INVLPGA] = invlpga_interception,
4575 [SVM_EXIT_IOIO] = io_interception,
4576 [SVM_EXIT_MSR] = msr_interception,
4577 [SVM_EXIT_TASK_SWITCH] = task_switch_interception,
4578 [SVM_EXIT_SHUTDOWN] = shutdown_interception,
4579 [SVM_EXIT_VMRUN] = vmrun_interception,
4580 [SVM_EXIT_VMMCALL] = vmmcall_interception,
4581 [SVM_EXIT_VMLOAD] = vmload_interception,
4582 [SVM_EXIT_VMSAVE] = vmsave_interception,
4583 [SVM_EXIT_STGI] = stgi_interception,
4584 [SVM_EXIT_CLGI] = clgi_interception,
4585 [SVM_EXIT_SKINIT] = skinit_interception,
4586 [SVM_EXIT_WBINVD] = wbinvd_interception,
4587 [SVM_EXIT_MONITOR] = monitor_interception,
4588 [SVM_EXIT_MWAIT] = mwait_interception,
4589 [SVM_EXIT_XSETBV] = xsetbv_interception,
4590 [SVM_EXIT_NPF] = npf_interception,
4591 [SVM_EXIT_RSM] = rsm_interception,
4592 [SVM_EXIT_AVIC_INCOMPLETE_IPI] = avic_incomplete_ipi_interception,
4593 [SVM_EXIT_AVIC_UNACCELERATED_ACCESS] = avic_unaccelerated_access_interception,
4596 static void dump_vmcb(struct kvm_vcpu *vcpu)
4598 struct vcpu_svm *svm = to_svm(vcpu);
4599 struct vmcb_control_area *control = &svm->vmcb->control;
4600 struct vmcb_save_area *save = &svm->vmcb->save;
4602 pr_err("VMCB Control Area:\n");
4603 pr_err("%-20s%04x\n", "cr_read:", control->intercept_cr & 0xffff);
4604 pr_err("%-20s%04x\n", "cr_write:", control->intercept_cr >> 16);
4605 pr_err("%-20s%04x\n", "dr_read:", control->intercept_dr & 0xffff);
4606 pr_err("%-20s%04x\n", "dr_write:", control->intercept_dr >> 16);
4607 pr_err("%-20s%08x\n", "exceptions:", control->intercept_exceptions);
4608 pr_err("%-20s%016llx\n", "intercepts:", control->intercept);
4609 pr_err("%-20s%d\n", "pause filter count:", control->pause_filter_count);
4610 pr_err("%-20s%016llx\n", "iopm_base_pa:", control->iopm_base_pa);
4611 pr_err("%-20s%016llx\n", "msrpm_base_pa:", control->msrpm_base_pa);
4612 pr_err("%-20s%016llx\n", "tsc_offset:", control->tsc_offset);
4613 pr_err("%-20s%d\n", "asid:", control->asid);
4614 pr_err("%-20s%d\n", "tlb_ctl:", control->tlb_ctl);
4615 pr_err("%-20s%08x\n", "int_ctl:", control->int_ctl);
4616 pr_err("%-20s%08x\n", "int_vector:", control->int_vector);
4617 pr_err("%-20s%08x\n", "int_state:", control->int_state);
4618 pr_err("%-20s%08x\n", "exit_code:", control->exit_code);
4619 pr_err("%-20s%016llx\n", "exit_info1:", control->exit_info_1);
4620 pr_err("%-20s%016llx\n", "exit_info2:", control->exit_info_2);
4621 pr_err("%-20s%08x\n", "exit_int_info:", control->exit_int_info);
4622 pr_err("%-20s%08x\n", "exit_int_info_err:", control->exit_int_info_err);
4623 pr_err("%-20s%lld\n", "nested_ctl:", control->nested_ctl);
4624 pr_err("%-20s%016llx\n", "nested_cr3:", control->nested_cr3);
4625 pr_err("%-20s%016llx\n", "avic_vapic_bar:", control->avic_vapic_bar);
4626 pr_err("%-20s%08x\n", "event_inj:", control->event_inj);
4627 pr_err("%-20s%08x\n", "event_inj_err:", control->event_inj_err);
4628 pr_err("%-20s%lld\n", "virt_ext:", control->virt_ext);
4629 pr_err("%-20s%016llx\n", "next_rip:", control->next_rip);
4630 pr_err("%-20s%016llx\n", "avic_backing_page:", control->avic_backing_page);
4631 pr_err("%-20s%016llx\n", "avic_logical_id:", control->avic_logical_id);
4632 pr_err("%-20s%016llx\n", "avic_physical_id:", control->avic_physical_id);
4633 pr_err("VMCB State Save Area:\n");
4634 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
4635 "es:",
4636 save->es.selector, save->es.attrib,
4637 save->es.limit, save->es.base);
4638 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
4639 "cs:",
4640 save->cs.selector, save->cs.attrib,
4641 save->cs.limit, save->cs.base);
4642 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
4643 "ss:",
4644 save->ss.selector, save->ss.attrib,
4645 save->ss.limit, save->ss.base);
4646 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
4647 "ds:",
4648 save->ds.selector, save->ds.attrib,
4649 save->ds.limit, save->ds.base);
4650 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
4651 "fs:",
4652 save->fs.selector, save->fs.attrib,
4653 save->fs.limit, save->fs.base);
4654 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
4655 "gs:",
4656 save->gs.selector, save->gs.attrib,
4657 save->gs.limit, save->gs.base);
4658 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
4659 "gdtr:",
4660 save->gdtr.selector, save->gdtr.attrib,
4661 save->gdtr.limit, save->gdtr.base);
4662 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
4663 "ldtr:",
4664 save->ldtr.selector, save->ldtr.attrib,
4665 save->ldtr.limit, save->ldtr.base);
4666 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
4667 "idtr:",
4668 save->idtr.selector, save->idtr.attrib,
4669 save->idtr.limit, save->idtr.base);
4670 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
4671 "tr:",
4672 save->tr.selector, save->tr.attrib,
4673 save->tr.limit, save->tr.base);
4674 pr_err("cpl: %d efer: %016llx\n",
4675 save->cpl, save->efer);
4676 pr_err("%-15s %016llx %-13s %016llx\n",
4677 "cr0:", save->cr0, "cr2:", save->cr2);
4678 pr_err("%-15s %016llx %-13s %016llx\n",
4679 "cr3:", save->cr3, "cr4:", save->cr4);
4680 pr_err("%-15s %016llx %-13s %016llx\n",
4681 "dr6:", save->dr6, "dr7:", save->dr7);
4682 pr_err("%-15s %016llx %-13s %016llx\n",
4683 "rip:", save->rip, "rflags:", save->rflags);
4684 pr_err("%-15s %016llx %-13s %016llx\n",
4685 "rsp:", save->rsp, "rax:", save->rax);
4686 pr_err("%-15s %016llx %-13s %016llx\n",
4687 "star:", save->star, "lstar:", save->lstar);
4688 pr_err("%-15s %016llx %-13s %016llx\n",
4689 "cstar:", save->cstar, "sfmask:", save->sfmask);
4690 pr_err("%-15s %016llx %-13s %016llx\n",
4691 "kernel_gs_base:", save->kernel_gs_base,
4692 "sysenter_cs:", save->sysenter_cs);
4693 pr_err("%-15s %016llx %-13s %016llx\n",
4694 "sysenter_esp:", save->sysenter_esp,
4695 "sysenter_eip:", save->sysenter_eip);
4696 pr_err("%-15s %016llx %-13s %016llx\n",
4697 "gpat:", save->g_pat, "dbgctl:", save->dbgctl);
4698 pr_err("%-15s %016llx %-13s %016llx\n",
4699 "br_from:", save->br_from, "br_to:", save->br_to);
4700 pr_err("%-15s %016llx %-13s %016llx\n",
4701 "excp_from:", save->last_excp_from,
4702 "excp_to:", save->last_excp_to);
4705 static void svm_get_exit_info(struct kvm_vcpu *vcpu, u64 *info1, u64 *info2)
4707 struct vmcb_control_area *control = &to_svm(vcpu)->vmcb->control;
4709 *info1 = control->exit_info_1;
4710 *info2 = control->exit_info_2;
4713 static int handle_exit(struct kvm_vcpu *vcpu)
4715 struct vcpu_svm *svm = to_svm(vcpu);
4716 struct kvm_run *kvm_run = vcpu->run;
4717 u32 exit_code = svm->vmcb->control.exit_code;
4719 trace_kvm_exit(exit_code, vcpu, KVM_ISA_SVM);
4721 if (!is_cr_intercept(svm, INTERCEPT_CR0_WRITE))
4722 vcpu->arch.cr0 = svm->vmcb->save.cr0;
4723 if (npt_enabled)
4724 vcpu->arch.cr3 = svm->vmcb->save.cr3;
4726 if (unlikely(svm->nested.exit_required)) {
4727 nested_svm_vmexit(svm);
4728 svm->nested.exit_required = false;
4730 return 1;
4733 if (is_guest_mode(vcpu)) {
4734 int vmexit;
4736 trace_kvm_nested_vmexit(svm->vmcb->save.rip, exit_code,
4737 svm->vmcb->control.exit_info_1,
4738 svm->vmcb->control.exit_info_2,
4739 svm->vmcb->control.exit_int_info,
4740 svm->vmcb->control.exit_int_info_err,
4741 KVM_ISA_SVM);
4743 vmexit = nested_svm_exit_special(svm);
4745 if (vmexit == NESTED_EXIT_CONTINUE)
4746 vmexit = nested_svm_exit_handled(svm);
4748 if (vmexit == NESTED_EXIT_DONE)
4749 return 1;
4752 svm_complete_interrupts(svm);
4754 if (svm->vmcb->control.exit_code == SVM_EXIT_ERR) {
4755 kvm_run->exit_reason = KVM_EXIT_FAIL_ENTRY;
4756 kvm_run->fail_entry.hardware_entry_failure_reason
4757 = svm->vmcb->control.exit_code;
4758 pr_err("KVM: FAILED VMRUN WITH VMCB:\n");
4759 dump_vmcb(vcpu);
4760 return 0;
4763 if (is_external_interrupt(svm->vmcb->control.exit_int_info) &&
4764 exit_code != SVM_EXIT_EXCP_BASE + PF_VECTOR &&
4765 exit_code != SVM_EXIT_NPF && exit_code != SVM_EXIT_TASK_SWITCH &&
4766 exit_code != SVM_EXIT_INTR && exit_code != SVM_EXIT_NMI)
4767 printk(KERN_ERR "%s: unexpected exit_int_info 0x%x "
4768 "exit_code 0x%x\n",
4769 __func__, svm->vmcb->control.exit_int_info,
4770 exit_code);
4772 if (exit_code >= ARRAY_SIZE(svm_exit_handlers)
4773 || !svm_exit_handlers[exit_code]) {
4774 WARN_ONCE(1, "svm: unexpected exit reason 0x%x\n", exit_code);
4775 kvm_queue_exception(vcpu, UD_VECTOR);
4776 return 1;
4779 return svm_exit_handlers[exit_code](svm);
4782 static void reload_tss(struct kvm_vcpu *vcpu)
4784 int cpu = raw_smp_processor_id();
4786 struct svm_cpu_data *sd = per_cpu(svm_data, cpu);
4787 sd->tss_desc->type = 9; /* available 32/64-bit TSS */
4788 load_TR_desc();
4791 static void pre_sev_run(struct vcpu_svm *svm, int cpu)
4793 struct svm_cpu_data *sd = per_cpu(svm_data, cpu);
4794 int asid = sev_get_asid(svm->vcpu.kvm);
4796 /* Assign the asid allocated with this SEV guest */
4797 svm->vmcb->control.asid = asid;
4800 * Flush guest TLB:
4802 * 1) when different VMCB for the same ASID is to be run on the same host CPU.
4803 * 2) or this VMCB was executed on different host CPU in previous VMRUNs.
4805 if (sd->sev_vmcbs[asid] == svm->vmcb &&
4806 svm->last_cpu == cpu)
4807 return;
4809 svm->last_cpu = cpu;
4810 sd->sev_vmcbs[asid] = svm->vmcb;
4811 svm->vmcb->control.tlb_ctl = TLB_CONTROL_FLUSH_ASID;
4812 mark_dirty(svm->vmcb, VMCB_ASID);
4815 static void pre_svm_run(struct vcpu_svm *svm)
4817 int cpu = raw_smp_processor_id();
4819 struct svm_cpu_data *sd = per_cpu(svm_data, cpu);
4821 if (sev_guest(svm->vcpu.kvm))
4822 return pre_sev_run(svm, cpu);
4824 /* FIXME: handle wraparound of asid_generation */
4825 if (svm->asid_generation != sd->asid_generation)
4826 new_asid(svm, sd);
4829 static void svm_inject_nmi(struct kvm_vcpu *vcpu)
4831 struct vcpu_svm *svm = to_svm(vcpu);
4833 svm->vmcb->control.event_inj = SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_NMI;
4834 vcpu->arch.hflags |= HF_NMI_MASK;
4835 set_intercept(svm, INTERCEPT_IRET);
4836 ++vcpu->stat.nmi_injections;
4839 static inline void svm_inject_irq(struct vcpu_svm *svm, int irq)
4841 struct vmcb_control_area *control;
4843 /* The following fields are ignored when AVIC is enabled */
4844 control = &svm->vmcb->control;
4845 control->int_vector = irq;
4846 control->int_ctl &= ~V_INTR_PRIO_MASK;
4847 control->int_ctl |= V_IRQ_MASK |
4848 ((/*control->int_vector >> 4*/ 0xf) << V_INTR_PRIO_SHIFT);
4849 mark_dirty(svm->vmcb, VMCB_INTR);
4852 static void svm_set_irq(struct kvm_vcpu *vcpu)
4854 struct vcpu_svm *svm = to_svm(vcpu);
4856 BUG_ON(!(gif_set(svm)));
4858 trace_kvm_inj_virq(vcpu->arch.interrupt.nr);
4859 ++vcpu->stat.irq_injections;
4861 svm->vmcb->control.event_inj = vcpu->arch.interrupt.nr |
4862 SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_INTR;
4865 static inline bool svm_nested_virtualize_tpr(struct kvm_vcpu *vcpu)
4867 return is_guest_mode(vcpu) && (vcpu->arch.hflags & HF_VINTR_MASK);
4870 static void update_cr8_intercept(struct kvm_vcpu *vcpu, int tpr, int irr)
4872 struct vcpu_svm *svm = to_svm(vcpu);
4874 if (svm_nested_virtualize_tpr(vcpu) ||
4875 kvm_vcpu_apicv_active(vcpu))
4876 return;
4878 clr_cr_intercept(svm, INTERCEPT_CR8_WRITE);
4880 if (irr == -1)
4881 return;
4883 if (tpr >= irr)
4884 set_cr_intercept(svm, INTERCEPT_CR8_WRITE);
4887 static void svm_set_virtual_x2apic_mode(struct kvm_vcpu *vcpu, bool set)
4889 return;
4892 static bool svm_get_enable_apicv(struct kvm_vcpu *vcpu)
4894 return avic && irqchip_split(vcpu->kvm);
4897 static void svm_hwapic_irr_update(struct kvm_vcpu *vcpu, int max_irr)
4901 static void svm_hwapic_isr_update(struct kvm_vcpu *vcpu, int max_isr)
4905 /* Note: Currently only used by Hyper-V. */
4906 static void svm_refresh_apicv_exec_ctrl(struct kvm_vcpu *vcpu)
4908 struct vcpu_svm *svm = to_svm(vcpu);
4909 struct vmcb *vmcb = svm->vmcb;
4911 if (!kvm_vcpu_apicv_active(&svm->vcpu))
4912 return;
4914 vmcb->control.int_ctl &= ~AVIC_ENABLE_MASK;
4915 mark_dirty(vmcb, VMCB_INTR);
4918 static void svm_load_eoi_exitmap(struct kvm_vcpu *vcpu, u64 *eoi_exit_bitmap)
4920 return;
4923 static void svm_deliver_avic_intr(struct kvm_vcpu *vcpu, int vec)
4925 kvm_lapic_set_irr(vec, vcpu->arch.apic);
4926 smp_mb__after_atomic();
4928 if (avic_vcpu_is_running(vcpu))
4929 wrmsrl(SVM_AVIC_DOORBELL,
4930 kvm_cpu_get_apicid(vcpu->cpu));
4931 else
4932 kvm_vcpu_wake_up(vcpu);
4935 static void svm_ir_list_del(struct vcpu_svm *svm, struct amd_iommu_pi_data *pi)
4937 unsigned long flags;
4938 struct amd_svm_iommu_ir *cur;
4940 spin_lock_irqsave(&svm->ir_list_lock, flags);
4941 list_for_each_entry(cur, &svm->ir_list, node) {
4942 if (cur->data != pi->ir_data)
4943 continue;
4944 list_del(&cur->node);
4945 kfree(cur);
4946 break;
4948 spin_unlock_irqrestore(&svm->ir_list_lock, flags);
4951 static int svm_ir_list_add(struct vcpu_svm *svm, struct amd_iommu_pi_data *pi)
4953 int ret = 0;
4954 unsigned long flags;
4955 struct amd_svm_iommu_ir *ir;
4958 * In some cases, the existing irte is updaed and re-set,
4959 * so we need to check here if it's already been * added
4960 * to the ir_list.
4962 if (pi->ir_data && (pi->prev_ga_tag != 0)) {
4963 struct kvm *kvm = svm->vcpu.kvm;
4964 u32 vcpu_id = AVIC_GATAG_TO_VCPUID(pi->prev_ga_tag);
4965 struct kvm_vcpu *prev_vcpu = kvm_get_vcpu_by_id(kvm, vcpu_id);
4966 struct vcpu_svm *prev_svm;
4968 if (!prev_vcpu) {
4969 ret = -EINVAL;
4970 goto out;
4973 prev_svm = to_svm(prev_vcpu);
4974 svm_ir_list_del(prev_svm, pi);
4978 * Allocating new amd_iommu_pi_data, which will get
4979 * add to the per-vcpu ir_list.
4981 ir = kzalloc(sizeof(struct amd_svm_iommu_ir), GFP_KERNEL);
4982 if (!ir) {
4983 ret = -ENOMEM;
4984 goto out;
4986 ir->data = pi->ir_data;
4988 spin_lock_irqsave(&svm->ir_list_lock, flags);
4989 list_add(&ir->node, &svm->ir_list);
4990 spin_unlock_irqrestore(&svm->ir_list_lock, flags);
4991 out:
4992 return ret;
4996 * Note:
4997 * The HW cannot support posting multicast/broadcast
4998 * interrupts to a vCPU. So, we still use legacy interrupt
4999 * remapping for these kind of interrupts.
5001 * For lowest-priority interrupts, we only support
5002 * those with single CPU as the destination, e.g. user
5003 * configures the interrupts via /proc/irq or uses
5004 * irqbalance to make the interrupts single-CPU.
5006 static int
5007 get_pi_vcpu_info(struct kvm *kvm, struct kvm_kernel_irq_routing_entry *e,
5008 struct vcpu_data *vcpu_info, struct vcpu_svm **svm)
5010 struct kvm_lapic_irq irq;
5011 struct kvm_vcpu *vcpu = NULL;
5013 kvm_set_msi_irq(kvm, e, &irq);
5015 if (!kvm_intr_is_single_vcpu(kvm, &irq, &vcpu)) {
5016 pr_debug("SVM: %s: use legacy intr remap mode for irq %u\n",
5017 __func__, irq.vector);
5018 return -1;
5021 pr_debug("SVM: %s: use GA mode for irq %u\n", __func__,
5022 irq.vector);
5023 *svm = to_svm(vcpu);
5024 vcpu_info->pi_desc_addr = __sme_set(page_to_phys((*svm)->avic_backing_page));
5025 vcpu_info->vector = irq.vector;
5027 return 0;
5031 * svm_update_pi_irte - set IRTE for Posted-Interrupts
5033 * @kvm: kvm
5034 * @host_irq: host irq of the interrupt
5035 * @guest_irq: gsi of the interrupt
5036 * @set: set or unset PI
5037 * returns 0 on success, < 0 on failure
5039 static int svm_update_pi_irte(struct kvm *kvm, unsigned int host_irq,
5040 uint32_t guest_irq, bool set)
5042 struct kvm_kernel_irq_routing_entry *e;
5043 struct kvm_irq_routing_table *irq_rt;
5044 int idx, ret = -EINVAL;
5046 if (!kvm_arch_has_assigned_device(kvm) ||
5047 !irq_remapping_cap(IRQ_POSTING_CAP))
5048 return 0;
5050 pr_debug("SVM: %s: host_irq=%#x, guest_irq=%#x, set=%#x\n",
5051 __func__, host_irq, guest_irq, set);
5053 idx = srcu_read_lock(&kvm->irq_srcu);
5054 irq_rt = srcu_dereference(kvm->irq_routing, &kvm->irq_srcu);
5055 WARN_ON(guest_irq >= irq_rt->nr_rt_entries);
5057 hlist_for_each_entry(e, &irq_rt->map[guest_irq], link) {
5058 struct vcpu_data vcpu_info;
5059 struct vcpu_svm *svm = NULL;
5061 if (e->type != KVM_IRQ_ROUTING_MSI)
5062 continue;
5065 * Here, we setup with legacy mode in the following cases:
5066 * 1. When cannot target interrupt to a specific vcpu.
5067 * 2. Unsetting posted interrupt.
5068 * 3. APIC virtialization is disabled for the vcpu.
5070 if (!get_pi_vcpu_info(kvm, e, &vcpu_info, &svm) && set &&
5071 kvm_vcpu_apicv_active(&svm->vcpu)) {
5072 struct amd_iommu_pi_data pi;
5074 /* Try to enable guest_mode in IRTE */
5075 pi.base = __sme_set(page_to_phys(svm->avic_backing_page) &
5076 AVIC_HPA_MASK);
5077 pi.ga_tag = AVIC_GATAG(kvm->arch.avic_vm_id,
5078 svm->vcpu.vcpu_id);
5079 pi.is_guest_mode = true;
5080 pi.vcpu_data = &vcpu_info;
5081 ret = irq_set_vcpu_affinity(host_irq, &pi);
5084 * Here, we successfully setting up vcpu affinity in
5085 * IOMMU guest mode. Now, we need to store the posted
5086 * interrupt information in a per-vcpu ir_list so that
5087 * we can reference to them directly when we update vcpu
5088 * scheduling information in IOMMU irte.
5090 if (!ret && pi.is_guest_mode)
5091 svm_ir_list_add(svm, &pi);
5092 } else {
5093 /* Use legacy mode in IRTE */
5094 struct amd_iommu_pi_data pi;
5097 * Here, pi is used to:
5098 * - Tell IOMMU to use legacy mode for this interrupt.
5099 * - Retrieve ga_tag of prior interrupt remapping data.
5101 pi.is_guest_mode = false;
5102 ret = irq_set_vcpu_affinity(host_irq, &pi);
5105 * Check if the posted interrupt was previously
5106 * setup with the guest_mode by checking if the ga_tag
5107 * was cached. If so, we need to clean up the per-vcpu
5108 * ir_list.
5110 if (!ret && pi.prev_ga_tag) {
5111 int id = AVIC_GATAG_TO_VCPUID(pi.prev_ga_tag);
5112 struct kvm_vcpu *vcpu;
5114 vcpu = kvm_get_vcpu_by_id(kvm, id);
5115 if (vcpu)
5116 svm_ir_list_del(to_svm(vcpu), &pi);
5120 if (!ret && svm) {
5121 trace_kvm_pi_irte_update(svm->vcpu.vcpu_id,
5122 host_irq, e->gsi,
5123 vcpu_info.vector,
5124 vcpu_info.pi_desc_addr, set);
5127 if (ret < 0) {
5128 pr_err("%s: failed to update PI IRTE\n", __func__);
5129 goto out;
5133 ret = 0;
5134 out:
5135 srcu_read_unlock(&kvm->irq_srcu, idx);
5136 return ret;
5139 static int svm_nmi_allowed(struct kvm_vcpu *vcpu)
5141 struct vcpu_svm *svm = to_svm(vcpu);
5142 struct vmcb *vmcb = svm->vmcb;
5143 int ret;
5144 ret = !(vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK) &&
5145 !(svm->vcpu.arch.hflags & HF_NMI_MASK);
5146 ret = ret && gif_set(svm) && nested_svm_nmi(svm);
5148 return ret;
5151 static bool svm_get_nmi_mask(struct kvm_vcpu *vcpu)
5153 struct vcpu_svm *svm = to_svm(vcpu);
5155 return !!(svm->vcpu.arch.hflags & HF_NMI_MASK);
5158 static void svm_set_nmi_mask(struct kvm_vcpu *vcpu, bool masked)
5160 struct vcpu_svm *svm = to_svm(vcpu);
5162 if (masked) {
5163 svm->vcpu.arch.hflags |= HF_NMI_MASK;
5164 set_intercept(svm, INTERCEPT_IRET);
5165 } else {
5166 svm->vcpu.arch.hflags &= ~HF_NMI_MASK;
5167 clr_intercept(svm, INTERCEPT_IRET);
5171 static int svm_interrupt_allowed(struct kvm_vcpu *vcpu)
5173 struct vcpu_svm *svm = to_svm(vcpu);
5174 struct vmcb *vmcb = svm->vmcb;
5175 int ret;
5177 if (!gif_set(svm) ||
5178 (vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK))
5179 return 0;
5181 ret = !!(kvm_get_rflags(vcpu) & X86_EFLAGS_IF);
5183 if (is_guest_mode(vcpu))
5184 return ret && !(svm->vcpu.arch.hflags & HF_VINTR_MASK);
5186 return ret;
5189 static void enable_irq_window(struct kvm_vcpu *vcpu)
5191 struct vcpu_svm *svm = to_svm(vcpu);
5193 if (kvm_vcpu_apicv_active(vcpu))
5194 return;
5197 * In case GIF=0 we can't rely on the CPU to tell us when GIF becomes
5198 * 1, because that's a separate STGI/VMRUN intercept. The next time we
5199 * get that intercept, this function will be called again though and
5200 * we'll get the vintr intercept. However, if the vGIF feature is
5201 * enabled, the STGI interception will not occur. Enable the irq
5202 * window under the assumption that the hardware will set the GIF.
5204 if ((vgif_enabled(svm) || gif_set(svm)) && nested_svm_intr(svm)) {
5205 svm_set_vintr(svm);
5206 svm_inject_irq(svm, 0x0);
5210 static void enable_nmi_window(struct kvm_vcpu *vcpu)
5212 struct vcpu_svm *svm = to_svm(vcpu);
5214 if ((svm->vcpu.arch.hflags & (HF_NMI_MASK | HF_IRET_MASK))
5215 == HF_NMI_MASK)
5216 return; /* IRET will cause a vm exit */
5218 if (!gif_set(svm)) {
5219 if (vgif_enabled(svm))
5220 set_intercept(svm, INTERCEPT_STGI);
5221 return; /* STGI will cause a vm exit */
5224 if (svm->nested.exit_required)
5225 return; /* we're not going to run the guest yet */
5228 * Something prevents NMI from been injected. Single step over possible
5229 * problem (IRET or exception injection or interrupt shadow)
5231 svm->nmi_singlestep_guest_rflags = svm_get_rflags(vcpu);
5232 svm->nmi_singlestep = true;
5233 svm->vmcb->save.rflags |= (X86_EFLAGS_TF | X86_EFLAGS_RF);
5236 static int svm_set_tss_addr(struct kvm *kvm, unsigned int addr)
5238 return 0;
5241 static void svm_flush_tlb(struct kvm_vcpu *vcpu, bool invalidate_gpa)
5243 struct vcpu_svm *svm = to_svm(vcpu);
5245 if (static_cpu_has(X86_FEATURE_FLUSHBYASID))
5246 svm->vmcb->control.tlb_ctl = TLB_CONTROL_FLUSH_ASID;
5247 else
5248 svm->asid_generation--;
5251 static void svm_prepare_guest_switch(struct kvm_vcpu *vcpu)
5255 static inline void sync_cr8_to_lapic(struct kvm_vcpu *vcpu)
5257 struct vcpu_svm *svm = to_svm(vcpu);
5259 if (svm_nested_virtualize_tpr(vcpu))
5260 return;
5262 if (!is_cr_intercept(svm, INTERCEPT_CR8_WRITE)) {
5263 int cr8 = svm->vmcb->control.int_ctl & V_TPR_MASK;
5264 kvm_set_cr8(vcpu, cr8);
5268 static inline void sync_lapic_to_cr8(struct kvm_vcpu *vcpu)
5270 struct vcpu_svm *svm = to_svm(vcpu);
5271 u64 cr8;
5273 if (svm_nested_virtualize_tpr(vcpu) ||
5274 kvm_vcpu_apicv_active(vcpu))
5275 return;
5277 cr8 = kvm_get_cr8(vcpu);
5278 svm->vmcb->control.int_ctl &= ~V_TPR_MASK;
5279 svm->vmcb->control.int_ctl |= cr8 & V_TPR_MASK;
5282 static void svm_complete_interrupts(struct vcpu_svm *svm)
5284 u8 vector;
5285 int type;
5286 u32 exitintinfo = svm->vmcb->control.exit_int_info;
5287 unsigned int3_injected = svm->int3_injected;
5289 svm->int3_injected = 0;
5292 * If we've made progress since setting HF_IRET_MASK, we've
5293 * executed an IRET and can allow NMI injection.
5295 if ((svm->vcpu.arch.hflags & HF_IRET_MASK)
5296 && kvm_rip_read(&svm->vcpu) != svm->nmi_iret_rip) {
5297 svm->vcpu.arch.hflags &= ~(HF_NMI_MASK | HF_IRET_MASK);
5298 kvm_make_request(KVM_REQ_EVENT, &svm->vcpu);
5301 svm->vcpu.arch.nmi_injected = false;
5302 kvm_clear_exception_queue(&svm->vcpu);
5303 kvm_clear_interrupt_queue(&svm->vcpu);
5305 if (!(exitintinfo & SVM_EXITINTINFO_VALID))
5306 return;
5308 kvm_make_request(KVM_REQ_EVENT, &svm->vcpu);
5310 vector = exitintinfo & SVM_EXITINTINFO_VEC_MASK;
5311 type = exitintinfo & SVM_EXITINTINFO_TYPE_MASK;
5313 switch (type) {
5314 case SVM_EXITINTINFO_TYPE_NMI:
5315 svm->vcpu.arch.nmi_injected = true;
5316 break;
5317 case SVM_EXITINTINFO_TYPE_EXEPT:
5319 * In case of software exceptions, do not reinject the vector,
5320 * but re-execute the instruction instead. Rewind RIP first
5321 * if we emulated INT3 before.
5323 if (kvm_exception_is_soft(vector)) {
5324 if (vector == BP_VECTOR && int3_injected &&
5325 kvm_is_linear_rip(&svm->vcpu, svm->int3_rip))
5326 kvm_rip_write(&svm->vcpu,
5327 kvm_rip_read(&svm->vcpu) -
5328 int3_injected);
5329 break;
5331 if (exitintinfo & SVM_EXITINTINFO_VALID_ERR) {
5332 u32 err = svm->vmcb->control.exit_int_info_err;
5333 kvm_requeue_exception_e(&svm->vcpu, vector, err);
5335 } else
5336 kvm_requeue_exception(&svm->vcpu, vector);
5337 break;
5338 case SVM_EXITINTINFO_TYPE_INTR:
5339 kvm_queue_interrupt(&svm->vcpu, vector, false);
5340 break;
5341 default:
5342 break;
5346 static void svm_cancel_injection(struct kvm_vcpu *vcpu)
5348 struct vcpu_svm *svm = to_svm(vcpu);
5349 struct vmcb_control_area *control = &svm->vmcb->control;
5351 control->exit_int_info = control->event_inj;
5352 control->exit_int_info_err = control->event_inj_err;
5353 control->event_inj = 0;
5354 svm_complete_interrupts(svm);
5357 static void svm_vcpu_run(struct kvm_vcpu *vcpu)
5359 struct vcpu_svm *svm = to_svm(vcpu);
5361 svm->vmcb->save.rax = vcpu->arch.regs[VCPU_REGS_RAX];
5362 svm->vmcb->save.rsp = vcpu->arch.regs[VCPU_REGS_RSP];
5363 svm->vmcb->save.rip = vcpu->arch.regs[VCPU_REGS_RIP];
5366 * A vmexit emulation is required before the vcpu can be executed
5367 * again.
5369 if (unlikely(svm->nested.exit_required))
5370 return;
5373 * Disable singlestep if we're injecting an interrupt/exception.
5374 * We don't want our modified rflags to be pushed on the stack where
5375 * we might not be able to easily reset them if we disabled NMI
5376 * singlestep later.
5378 if (svm->nmi_singlestep && svm->vmcb->control.event_inj) {
5380 * Event injection happens before external interrupts cause a
5381 * vmexit and interrupts are disabled here, so smp_send_reschedule
5382 * is enough to force an immediate vmexit.
5384 disable_nmi_singlestep(svm);
5385 smp_send_reschedule(vcpu->cpu);
5388 pre_svm_run(svm);
5390 sync_lapic_to_cr8(vcpu);
5392 svm->vmcb->save.cr2 = vcpu->arch.cr2;
5394 clgi();
5396 local_irq_enable();
5399 * If this vCPU has touched SPEC_CTRL, restore the guest's value if
5400 * it's non-zero. Since vmentry is serialising on affected CPUs, there
5401 * is no need to worry about the conditional branch over the wrmsr
5402 * being speculatively taken.
5404 if (svm->spec_ctrl)
5405 native_wrmsrl(MSR_IA32_SPEC_CTRL, svm->spec_ctrl);
5407 asm volatile (
5408 "push %%" _ASM_BP "; \n\t"
5409 "mov %c[rbx](%[svm]), %%" _ASM_BX " \n\t"
5410 "mov %c[rcx](%[svm]), %%" _ASM_CX " \n\t"
5411 "mov %c[rdx](%[svm]), %%" _ASM_DX " \n\t"
5412 "mov %c[rsi](%[svm]), %%" _ASM_SI " \n\t"
5413 "mov %c[rdi](%[svm]), %%" _ASM_DI " \n\t"
5414 "mov %c[rbp](%[svm]), %%" _ASM_BP " \n\t"
5415 #ifdef CONFIG_X86_64
5416 "mov %c[r8](%[svm]), %%r8 \n\t"
5417 "mov %c[r9](%[svm]), %%r9 \n\t"
5418 "mov %c[r10](%[svm]), %%r10 \n\t"
5419 "mov %c[r11](%[svm]), %%r11 \n\t"
5420 "mov %c[r12](%[svm]), %%r12 \n\t"
5421 "mov %c[r13](%[svm]), %%r13 \n\t"
5422 "mov %c[r14](%[svm]), %%r14 \n\t"
5423 "mov %c[r15](%[svm]), %%r15 \n\t"
5424 #endif
5426 /* Enter guest mode */
5427 "push %%" _ASM_AX " \n\t"
5428 "mov %c[vmcb](%[svm]), %%" _ASM_AX " \n\t"
5429 __ex(SVM_VMLOAD) "\n\t"
5430 __ex(SVM_VMRUN) "\n\t"
5431 __ex(SVM_VMSAVE) "\n\t"
5432 "pop %%" _ASM_AX " \n\t"
5434 /* Save guest registers, load host registers */
5435 "mov %%" _ASM_BX ", %c[rbx](%[svm]) \n\t"
5436 "mov %%" _ASM_CX ", %c[rcx](%[svm]) \n\t"
5437 "mov %%" _ASM_DX ", %c[rdx](%[svm]) \n\t"
5438 "mov %%" _ASM_SI ", %c[rsi](%[svm]) \n\t"
5439 "mov %%" _ASM_DI ", %c[rdi](%[svm]) \n\t"
5440 "mov %%" _ASM_BP ", %c[rbp](%[svm]) \n\t"
5441 #ifdef CONFIG_X86_64
5442 "mov %%r8, %c[r8](%[svm]) \n\t"
5443 "mov %%r9, %c[r9](%[svm]) \n\t"
5444 "mov %%r10, %c[r10](%[svm]) \n\t"
5445 "mov %%r11, %c[r11](%[svm]) \n\t"
5446 "mov %%r12, %c[r12](%[svm]) \n\t"
5447 "mov %%r13, %c[r13](%[svm]) \n\t"
5448 "mov %%r14, %c[r14](%[svm]) \n\t"
5449 "mov %%r15, %c[r15](%[svm]) \n\t"
5450 #endif
5452 * Clear host registers marked as clobbered to prevent
5453 * speculative use.
5455 "xor %%" _ASM_BX ", %%" _ASM_BX " \n\t"
5456 "xor %%" _ASM_CX ", %%" _ASM_CX " \n\t"
5457 "xor %%" _ASM_DX ", %%" _ASM_DX " \n\t"
5458 "xor %%" _ASM_SI ", %%" _ASM_SI " \n\t"
5459 "xor %%" _ASM_DI ", %%" _ASM_DI " \n\t"
5460 #ifdef CONFIG_X86_64
5461 "xor %%r8, %%r8 \n\t"
5462 "xor %%r9, %%r9 \n\t"
5463 "xor %%r10, %%r10 \n\t"
5464 "xor %%r11, %%r11 \n\t"
5465 "xor %%r12, %%r12 \n\t"
5466 "xor %%r13, %%r13 \n\t"
5467 "xor %%r14, %%r14 \n\t"
5468 "xor %%r15, %%r15 \n\t"
5469 #endif
5470 "pop %%" _ASM_BP
5472 : [svm]"a"(svm),
5473 [vmcb]"i"(offsetof(struct vcpu_svm, vmcb_pa)),
5474 [rbx]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RBX])),
5475 [rcx]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RCX])),
5476 [rdx]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RDX])),
5477 [rsi]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RSI])),
5478 [rdi]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RDI])),
5479 [rbp]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RBP]))
5480 #ifdef CONFIG_X86_64
5481 , [r8]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R8])),
5482 [r9]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R9])),
5483 [r10]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R10])),
5484 [r11]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R11])),
5485 [r12]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R12])),
5486 [r13]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R13])),
5487 [r14]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R14])),
5488 [r15]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R15]))
5489 #endif
5490 : "cc", "memory"
5491 #ifdef CONFIG_X86_64
5492 , "rbx", "rcx", "rdx", "rsi", "rdi"
5493 , "r8", "r9", "r10", "r11" , "r12", "r13", "r14", "r15"
5494 #else
5495 , "ebx", "ecx", "edx", "esi", "edi"
5496 #endif
5500 * We do not use IBRS in the kernel. If this vCPU has used the
5501 * SPEC_CTRL MSR it may have left it on; save the value and
5502 * turn it off. This is much more efficient than blindly adding
5503 * it to the atomic save/restore list. Especially as the former
5504 * (Saving guest MSRs on vmexit) doesn't even exist in KVM.
5506 * For non-nested case:
5507 * If the L01 MSR bitmap does not intercept the MSR, then we need to
5508 * save it.
5510 * For nested case:
5511 * If the L02 MSR bitmap does not intercept the MSR, then we need to
5512 * save it.
5514 if (unlikely(!msr_write_intercepted(vcpu, MSR_IA32_SPEC_CTRL)))
5515 svm->spec_ctrl = native_read_msr(MSR_IA32_SPEC_CTRL);
5517 if (svm->spec_ctrl)
5518 native_wrmsrl(MSR_IA32_SPEC_CTRL, 0);
5520 /* Eliminate branch target predictions from guest mode */
5521 vmexit_fill_RSB();
5523 #ifdef CONFIG_X86_64
5524 wrmsrl(MSR_GS_BASE, svm->host.gs_base);
5525 #else
5526 loadsegment(fs, svm->host.fs);
5527 #ifndef CONFIG_X86_32_LAZY_GS
5528 loadsegment(gs, svm->host.gs);
5529 #endif
5530 #endif
5532 reload_tss(vcpu);
5534 local_irq_disable();
5536 vcpu->arch.cr2 = svm->vmcb->save.cr2;
5537 vcpu->arch.regs[VCPU_REGS_RAX] = svm->vmcb->save.rax;
5538 vcpu->arch.regs[VCPU_REGS_RSP] = svm->vmcb->save.rsp;
5539 vcpu->arch.regs[VCPU_REGS_RIP] = svm->vmcb->save.rip;
5541 if (unlikely(svm->vmcb->control.exit_code == SVM_EXIT_NMI))
5542 kvm_before_handle_nmi(&svm->vcpu);
5544 stgi();
5546 /* Any pending NMI will happen here */
5548 if (unlikely(svm->vmcb->control.exit_code == SVM_EXIT_NMI))
5549 kvm_after_handle_nmi(&svm->vcpu);
5551 sync_cr8_to_lapic(vcpu);
5553 svm->next_rip = 0;
5555 svm->vmcb->control.tlb_ctl = TLB_CONTROL_DO_NOTHING;
5557 /* if exit due to PF check for async PF */
5558 if (svm->vmcb->control.exit_code == SVM_EXIT_EXCP_BASE + PF_VECTOR)
5559 svm->vcpu.arch.apf.host_apf_reason = kvm_read_and_reset_pf_reason();
5561 if (npt_enabled) {
5562 vcpu->arch.regs_avail &= ~(1 << VCPU_EXREG_PDPTR);
5563 vcpu->arch.regs_dirty &= ~(1 << VCPU_EXREG_PDPTR);
5567 * We need to handle MC intercepts here before the vcpu has a chance to
5568 * change the physical cpu
5570 if (unlikely(svm->vmcb->control.exit_code ==
5571 SVM_EXIT_EXCP_BASE + MC_VECTOR))
5572 svm_handle_mce(svm);
5574 mark_all_clean(svm->vmcb);
5576 STACK_FRAME_NON_STANDARD(svm_vcpu_run);
5578 static void svm_set_cr3(struct kvm_vcpu *vcpu, unsigned long root)
5580 struct vcpu_svm *svm = to_svm(vcpu);
5582 svm->vmcb->save.cr3 = __sme_set(root);
5583 mark_dirty(svm->vmcb, VMCB_CR);
5584 svm_flush_tlb(vcpu, true);
5587 static void set_tdp_cr3(struct kvm_vcpu *vcpu, unsigned long root)
5589 struct vcpu_svm *svm = to_svm(vcpu);
5591 svm->vmcb->control.nested_cr3 = __sme_set(root);
5592 mark_dirty(svm->vmcb, VMCB_NPT);
5594 /* Also sync guest cr3 here in case we live migrate */
5595 svm->vmcb->save.cr3 = kvm_read_cr3(vcpu);
5596 mark_dirty(svm->vmcb, VMCB_CR);
5598 svm_flush_tlb(vcpu, true);
5601 static int is_disabled(void)
5603 u64 vm_cr;
5605 rdmsrl(MSR_VM_CR, vm_cr);
5606 if (vm_cr & (1 << SVM_VM_CR_SVM_DISABLE))
5607 return 1;
5609 return 0;
5612 static void
5613 svm_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall)
5616 * Patch in the VMMCALL instruction:
5618 hypercall[0] = 0x0f;
5619 hypercall[1] = 0x01;
5620 hypercall[2] = 0xd9;
5623 static void svm_check_processor_compat(void *rtn)
5625 *(int *)rtn = 0;
5628 static bool svm_cpu_has_accelerated_tpr(void)
5630 return false;
5633 static bool svm_has_high_real_mode_segbase(void)
5635 return true;
5638 static u64 svm_get_mt_mask(struct kvm_vcpu *vcpu, gfn_t gfn, bool is_mmio)
5640 return 0;
5643 static void svm_cpuid_update(struct kvm_vcpu *vcpu)
5645 struct vcpu_svm *svm = to_svm(vcpu);
5647 /* Update nrips enabled cache */
5648 svm->nrips_enabled = !!guest_cpuid_has(&svm->vcpu, X86_FEATURE_NRIPS);
5650 if (!kvm_vcpu_apicv_active(vcpu))
5651 return;
5653 guest_cpuid_clear(vcpu, X86_FEATURE_X2APIC);
5656 static void svm_set_supported_cpuid(u32 func, struct kvm_cpuid_entry2 *entry)
5658 switch (func) {
5659 case 0x1:
5660 if (avic)
5661 entry->ecx &= ~bit(X86_FEATURE_X2APIC);
5662 break;
5663 case 0x80000001:
5664 if (nested)
5665 entry->ecx |= (1 << 2); /* Set SVM bit */
5666 break;
5667 case 0x8000000A:
5668 entry->eax = 1; /* SVM revision 1 */
5669 entry->ebx = 8; /* Lets support 8 ASIDs in case we add proper
5670 ASID emulation to nested SVM */
5671 entry->ecx = 0; /* Reserved */
5672 entry->edx = 0; /* Per default do not support any
5673 additional features */
5675 /* Support next_rip if host supports it */
5676 if (boot_cpu_has(X86_FEATURE_NRIPS))
5677 entry->edx |= SVM_FEATURE_NRIP;
5679 /* Support NPT for the guest if enabled */
5680 if (npt_enabled)
5681 entry->edx |= SVM_FEATURE_NPT;
5683 break;
5684 case 0x8000001F:
5685 /* Support memory encryption cpuid if host supports it */
5686 if (boot_cpu_has(X86_FEATURE_SEV))
5687 cpuid(0x8000001f, &entry->eax, &entry->ebx,
5688 &entry->ecx, &entry->edx);
5693 static int svm_get_lpage_level(void)
5695 return PT_PDPE_LEVEL;
5698 static bool svm_rdtscp_supported(void)
5700 return boot_cpu_has(X86_FEATURE_RDTSCP);
5703 static bool svm_invpcid_supported(void)
5705 return false;
5708 static bool svm_mpx_supported(void)
5710 return false;
5713 static bool svm_xsaves_supported(void)
5715 return false;
5718 static bool svm_umip_emulated(void)
5720 return false;
5723 static bool svm_has_wbinvd_exit(void)
5725 return true;
5728 #define PRE_EX(exit) { .exit_code = (exit), \
5729 .stage = X86_ICPT_PRE_EXCEPT, }
5730 #define POST_EX(exit) { .exit_code = (exit), \
5731 .stage = X86_ICPT_POST_EXCEPT, }
5732 #define POST_MEM(exit) { .exit_code = (exit), \
5733 .stage = X86_ICPT_POST_MEMACCESS, }
5735 static const struct __x86_intercept {
5736 u32 exit_code;
5737 enum x86_intercept_stage stage;
5738 } x86_intercept_map[] = {
5739 [x86_intercept_cr_read] = POST_EX(SVM_EXIT_READ_CR0),
5740 [x86_intercept_cr_write] = POST_EX(SVM_EXIT_WRITE_CR0),
5741 [x86_intercept_clts] = POST_EX(SVM_EXIT_WRITE_CR0),
5742 [x86_intercept_lmsw] = POST_EX(SVM_EXIT_WRITE_CR0),
5743 [x86_intercept_smsw] = POST_EX(SVM_EXIT_READ_CR0),
5744 [x86_intercept_dr_read] = POST_EX(SVM_EXIT_READ_DR0),
5745 [x86_intercept_dr_write] = POST_EX(SVM_EXIT_WRITE_DR0),
5746 [x86_intercept_sldt] = POST_EX(SVM_EXIT_LDTR_READ),
5747 [x86_intercept_str] = POST_EX(SVM_EXIT_TR_READ),
5748 [x86_intercept_lldt] = POST_EX(SVM_EXIT_LDTR_WRITE),
5749 [x86_intercept_ltr] = POST_EX(SVM_EXIT_TR_WRITE),
5750 [x86_intercept_sgdt] = POST_EX(SVM_EXIT_GDTR_READ),
5751 [x86_intercept_sidt] = POST_EX(SVM_EXIT_IDTR_READ),
5752 [x86_intercept_lgdt] = POST_EX(SVM_EXIT_GDTR_WRITE),
5753 [x86_intercept_lidt] = POST_EX(SVM_EXIT_IDTR_WRITE),
5754 [x86_intercept_vmrun] = POST_EX(SVM_EXIT_VMRUN),
5755 [x86_intercept_vmmcall] = POST_EX(SVM_EXIT_VMMCALL),
5756 [x86_intercept_vmload] = POST_EX(SVM_EXIT_VMLOAD),
5757 [x86_intercept_vmsave] = POST_EX(SVM_EXIT_VMSAVE),
5758 [x86_intercept_stgi] = POST_EX(SVM_EXIT_STGI),
5759 [x86_intercept_clgi] = POST_EX(SVM_EXIT_CLGI),
5760 [x86_intercept_skinit] = POST_EX(SVM_EXIT_SKINIT),
5761 [x86_intercept_invlpga] = POST_EX(SVM_EXIT_INVLPGA),
5762 [x86_intercept_rdtscp] = POST_EX(SVM_EXIT_RDTSCP),
5763 [x86_intercept_monitor] = POST_MEM(SVM_EXIT_MONITOR),
5764 [x86_intercept_mwait] = POST_EX(SVM_EXIT_MWAIT),
5765 [x86_intercept_invlpg] = POST_EX(SVM_EXIT_INVLPG),
5766 [x86_intercept_invd] = POST_EX(SVM_EXIT_INVD),
5767 [x86_intercept_wbinvd] = POST_EX(SVM_EXIT_WBINVD),
5768 [x86_intercept_wrmsr] = POST_EX(SVM_EXIT_MSR),
5769 [x86_intercept_rdtsc] = POST_EX(SVM_EXIT_RDTSC),
5770 [x86_intercept_rdmsr] = POST_EX(SVM_EXIT_MSR),
5771 [x86_intercept_rdpmc] = POST_EX(SVM_EXIT_RDPMC),
5772 [x86_intercept_cpuid] = PRE_EX(SVM_EXIT_CPUID),
5773 [x86_intercept_rsm] = PRE_EX(SVM_EXIT_RSM),
5774 [x86_intercept_pause] = PRE_EX(SVM_EXIT_PAUSE),
5775 [x86_intercept_pushf] = PRE_EX(SVM_EXIT_PUSHF),
5776 [x86_intercept_popf] = PRE_EX(SVM_EXIT_POPF),
5777 [x86_intercept_intn] = PRE_EX(SVM_EXIT_SWINT),
5778 [x86_intercept_iret] = PRE_EX(SVM_EXIT_IRET),
5779 [x86_intercept_icebp] = PRE_EX(SVM_EXIT_ICEBP),
5780 [x86_intercept_hlt] = POST_EX(SVM_EXIT_HLT),
5781 [x86_intercept_in] = POST_EX(SVM_EXIT_IOIO),
5782 [x86_intercept_ins] = POST_EX(SVM_EXIT_IOIO),
5783 [x86_intercept_out] = POST_EX(SVM_EXIT_IOIO),
5784 [x86_intercept_outs] = POST_EX(SVM_EXIT_IOIO),
5787 #undef PRE_EX
5788 #undef POST_EX
5789 #undef POST_MEM
5791 static int svm_check_intercept(struct kvm_vcpu *vcpu,
5792 struct x86_instruction_info *info,
5793 enum x86_intercept_stage stage)
5795 struct vcpu_svm *svm = to_svm(vcpu);
5796 int vmexit, ret = X86EMUL_CONTINUE;
5797 struct __x86_intercept icpt_info;
5798 struct vmcb *vmcb = svm->vmcb;
5800 if (info->intercept >= ARRAY_SIZE(x86_intercept_map))
5801 goto out;
5803 icpt_info = x86_intercept_map[info->intercept];
5805 if (stage != icpt_info.stage)
5806 goto out;
5808 switch (icpt_info.exit_code) {
5809 case SVM_EXIT_READ_CR0:
5810 if (info->intercept == x86_intercept_cr_read)
5811 icpt_info.exit_code += info->modrm_reg;
5812 break;
5813 case SVM_EXIT_WRITE_CR0: {
5814 unsigned long cr0, val;
5815 u64 intercept;
5817 if (info->intercept == x86_intercept_cr_write)
5818 icpt_info.exit_code += info->modrm_reg;
5820 if (icpt_info.exit_code != SVM_EXIT_WRITE_CR0 ||
5821 info->intercept == x86_intercept_clts)
5822 break;
5824 intercept = svm->nested.intercept;
5826 if (!(intercept & (1ULL << INTERCEPT_SELECTIVE_CR0)))
5827 break;
5829 cr0 = vcpu->arch.cr0 & ~SVM_CR0_SELECTIVE_MASK;
5830 val = info->src_val & ~SVM_CR0_SELECTIVE_MASK;
5832 if (info->intercept == x86_intercept_lmsw) {
5833 cr0 &= 0xfUL;
5834 val &= 0xfUL;
5835 /* lmsw can't clear PE - catch this here */
5836 if (cr0 & X86_CR0_PE)
5837 val |= X86_CR0_PE;
5840 if (cr0 ^ val)
5841 icpt_info.exit_code = SVM_EXIT_CR0_SEL_WRITE;
5843 break;
5845 case SVM_EXIT_READ_DR0:
5846 case SVM_EXIT_WRITE_DR0:
5847 icpt_info.exit_code += info->modrm_reg;
5848 break;
5849 case SVM_EXIT_MSR:
5850 if (info->intercept == x86_intercept_wrmsr)
5851 vmcb->control.exit_info_1 = 1;
5852 else
5853 vmcb->control.exit_info_1 = 0;
5854 break;
5855 case SVM_EXIT_PAUSE:
5857 * We get this for NOP only, but pause
5858 * is rep not, check this here
5860 if (info->rep_prefix != REPE_PREFIX)
5861 goto out;
5862 break;
5863 case SVM_EXIT_IOIO: {
5864 u64 exit_info;
5865 u32 bytes;
5867 if (info->intercept == x86_intercept_in ||
5868 info->intercept == x86_intercept_ins) {
5869 exit_info = ((info->src_val & 0xffff) << 16) |
5870 SVM_IOIO_TYPE_MASK;
5871 bytes = info->dst_bytes;
5872 } else {
5873 exit_info = (info->dst_val & 0xffff) << 16;
5874 bytes = info->src_bytes;
5877 if (info->intercept == x86_intercept_outs ||
5878 info->intercept == x86_intercept_ins)
5879 exit_info |= SVM_IOIO_STR_MASK;
5881 if (info->rep_prefix)
5882 exit_info |= SVM_IOIO_REP_MASK;
5884 bytes = min(bytes, 4u);
5886 exit_info |= bytes << SVM_IOIO_SIZE_SHIFT;
5888 exit_info |= (u32)info->ad_bytes << (SVM_IOIO_ASIZE_SHIFT - 1);
5890 vmcb->control.exit_info_1 = exit_info;
5891 vmcb->control.exit_info_2 = info->next_rip;
5893 break;
5895 default:
5896 break;
5899 /* TODO: Advertise NRIPS to guest hypervisor unconditionally */
5900 if (static_cpu_has(X86_FEATURE_NRIPS))
5901 vmcb->control.next_rip = info->next_rip;
5902 vmcb->control.exit_code = icpt_info.exit_code;
5903 vmexit = nested_svm_exit_handled(svm);
5905 ret = (vmexit == NESTED_EXIT_DONE) ? X86EMUL_INTERCEPTED
5906 : X86EMUL_CONTINUE;
5908 out:
5909 return ret;
5912 static void svm_handle_external_intr(struct kvm_vcpu *vcpu)
5914 local_irq_enable();
5916 * We must have an instruction with interrupts enabled, so
5917 * the timer interrupt isn't delayed by the interrupt shadow.
5919 asm("nop");
5920 local_irq_disable();
5923 static void svm_sched_in(struct kvm_vcpu *vcpu, int cpu)
5927 static inline void avic_post_state_restore(struct kvm_vcpu *vcpu)
5929 if (avic_handle_apic_id_update(vcpu) != 0)
5930 return;
5931 if (avic_handle_dfr_update(vcpu) != 0)
5932 return;
5933 avic_handle_ldr_update(vcpu);
5936 static void svm_setup_mce(struct kvm_vcpu *vcpu)
5938 /* [63:9] are reserved. */
5939 vcpu->arch.mcg_cap &= 0x1ff;
5942 static int svm_smi_allowed(struct kvm_vcpu *vcpu)
5944 struct vcpu_svm *svm = to_svm(vcpu);
5946 /* Per APM Vol.2 15.22.2 "Response to SMI" */
5947 if (!gif_set(svm))
5948 return 0;
5950 if (is_guest_mode(&svm->vcpu) &&
5951 svm->nested.intercept & (1ULL << INTERCEPT_SMI)) {
5952 /* TODO: Might need to set exit_info_1 and exit_info_2 here */
5953 svm->vmcb->control.exit_code = SVM_EXIT_SMI;
5954 svm->nested.exit_required = true;
5955 return 0;
5958 return 1;
5961 static int svm_pre_enter_smm(struct kvm_vcpu *vcpu, char *smstate)
5963 struct vcpu_svm *svm = to_svm(vcpu);
5964 int ret;
5966 if (is_guest_mode(vcpu)) {
5967 /* FED8h - SVM Guest */
5968 put_smstate(u64, smstate, 0x7ed8, 1);
5969 /* FEE0h - SVM Guest VMCB Physical Address */
5970 put_smstate(u64, smstate, 0x7ee0, svm->nested.vmcb);
5972 svm->vmcb->save.rax = vcpu->arch.regs[VCPU_REGS_RAX];
5973 svm->vmcb->save.rsp = vcpu->arch.regs[VCPU_REGS_RSP];
5974 svm->vmcb->save.rip = vcpu->arch.regs[VCPU_REGS_RIP];
5976 ret = nested_svm_vmexit(svm);
5977 if (ret)
5978 return ret;
5980 return 0;
5983 static int svm_pre_leave_smm(struct kvm_vcpu *vcpu, u64 smbase)
5985 struct vcpu_svm *svm = to_svm(vcpu);
5986 struct vmcb *nested_vmcb;
5987 struct page *page;
5988 struct {
5989 u64 guest;
5990 u64 vmcb;
5991 } svm_state_save;
5992 int ret;
5994 ret = kvm_vcpu_read_guest(vcpu, smbase + 0xfed8, &svm_state_save,
5995 sizeof(svm_state_save));
5996 if (ret)
5997 return ret;
5999 if (svm_state_save.guest) {
6000 vcpu->arch.hflags &= ~HF_SMM_MASK;
6001 nested_vmcb = nested_svm_map(svm, svm_state_save.vmcb, &page);
6002 if (nested_vmcb)
6003 enter_svm_guest_mode(svm, svm_state_save.vmcb, nested_vmcb, page);
6004 else
6005 ret = 1;
6006 vcpu->arch.hflags |= HF_SMM_MASK;
6008 return ret;
6011 static int enable_smi_window(struct kvm_vcpu *vcpu)
6013 struct vcpu_svm *svm = to_svm(vcpu);
6015 if (!gif_set(svm)) {
6016 if (vgif_enabled(svm))
6017 set_intercept(svm, INTERCEPT_STGI);
6018 /* STGI will cause a vm exit */
6019 return 1;
6021 return 0;
6024 static int sev_asid_new(void)
6026 int pos;
6029 * SEV-enabled guest must use asid from min_sev_asid to max_sev_asid.
6031 pos = find_next_zero_bit(sev_asid_bitmap, max_sev_asid, min_sev_asid - 1);
6032 if (pos >= max_sev_asid)
6033 return -EBUSY;
6035 set_bit(pos, sev_asid_bitmap);
6036 return pos + 1;
6039 static int sev_guest_init(struct kvm *kvm, struct kvm_sev_cmd *argp)
6041 struct kvm_sev_info *sev = &kvm->arch.sev_info;
6042 int asid, ret;
6044 ret = -EBUSY;
6045 asid = sev_asid_new();
6046 if (asid < 0)
6047 return ret;
6049 ret = sev_platform_init(&argp->error);
6050 if (ret)
6051 goto e_free;
6053 sev->active = true;
6054 sev->asid = asid;
6055 INIT_LIST_HEAD(&sev->regions_list);
6057 return 0;
6059 e_free:
6060 __sev_asid_free(asid);
6061 return ret;
6064 static int sev_bind_asid(struct kvm *kvm, unsigned int handle, int *error)
6066 struct sev_data_activate *data;
6067 int asid = sev_get_asid(kvm);
6068 int ret;
6070 wbinvd_on_all_cpus();
6072 ret = sev_guest_df_flush(error);
6073 if (ret)
6074 return ret;
6076 data = kzalloc(sizeof(*data), GFP_KERNEL);
6077 if (!data)
6078 return -ENOMEM;
6080 /* activate ASID on the given handle */
6081 data->handle = handle;
6082 data->asid = asid;
6083 ret = sev_guest_activate(data, error);
6084 kfree(data);
6086 return ret;
6089 static int __sev_issue_cmd(int fd, int id, void *data, int *error)
6091 struct fd f;
6092 int ret;
6094 f = fdget(fd);
6095 if (!f.file)
6096 return -EBADF;
6098 ret = sev_issue_cmd_external_user(f.file, id, data, error);
6100 fdput(f);
6101 return ret;
6104 static int sev_issue_cmd(struct kvm *kvm, int id, void *data, int *error)
6106 struct kvm_sev_info *sev = &kvm->arch.sev_info;
6108 return __sev_issue_cmd(sev->fd, id, data, error);
6111 static int sev_launch_start(struct kvm *kvm, struct kvm_sev_cmd *argp)
6113 struct kvm_sev_info *sev = &kvm->arch.sev_info;
6114 struct sev_data_launch_start *start;
6115 struct kvm_sev_launch_start params;
6116 void *dh_blob, *session_blob;
6117 int *error = &argp->error;
6118 int ret;
6120 if (!sev_guest(kvm))
6121 return -ENOTTY;
6123 if (copy_from_user(&params, (void __user *)(uintptr_t)argp->data, sizeof(params)))
6124 return -EFAULT;
6126 start = kzalloc(sizeof(*start), GFP_KERNEL);
6127 if (!start)
6128 return -ENOMEM;
6130 dh_blob = NULL;
6131 if (params.dh_uaddr) {
6132 dh_blob = psp_copy_user_blob(params.dh_uaddr, params.dh_len);
6133 if (IS_ERR(dh_blob)) {
6134 ret = PTR_ERR(dh_blob);
6135 goto e_free;
6138 start->dh_cert_address = __sme_set(__pa(dh_blob));
6139 start->dh_cert_len = params.dh_len;
6142 session_blob = NULL;
6143 if (params.session_uaddr) {
6144 session_blob = psp_copy_user_blob(params.session_uaddr, params.session_len);
6145 if (IS_ERR(session_blob)) {
6146 ret = PTR_ERR(session_blob);
6147 goto e_free_dh;
6150 start->session_address = __sme_set(__pa(session_blob));
6151 start->session_len = params.session_len;
6154 start->handle = params.handle;
6155 start->policy = params.policy;
6157 /* create memory encryption context */
6158 ret = __sev_issue_cmd(argp->sev_fd, SEV_CMD_LAUNCH_START, start, error);
6159 if (ret)
6160 goto e_free_session;
6162 /* Bind ASID to this guest */
6163 ret = sev_bind_asid(kvm, start->handle, error);
6164 if (ret)
6165 goto e_free_session;
6167 /* return handle to userspace */
6168 params.handle = start->handle;
6169 if (copy_to_user((void __user *)(uintptr_t)argp->data, &params, sizeof(params))) {
6170 sev_unbind_asid(kvm, start->handle);
6171 ret = -EFAULT;
6172 goto e_free_session;
6175 sev->handle = start->handle;
6176 sev->fd = argp->sev_fd;
6178 e_free_session:
6179 kfree(session_blob);
6180 e_free_dh:
6181 kfree(dh_blob);
6182 e_free:
6183 kfree(start);
6184 return ret;
6187 static int get_num_contig_pages(int idx, struct page **inpages,
6188 unsigned long npages)
6190 unsigned long paddr, next_paddr;
6191 int i = idx + 1, pages = 1;
6193 /* find the number of contiguous pages starting from idx */
6194 paddr = __sme_page_pa(inpages[idx]);
6195 while (i < npages) {
6196 next_paddr = __sme_page_pa(inpages[i++]);
6197 if ((paddr + PAGE_SIZE) == next_paddr) {
6198 pages++;
6199 paddr = next_paddr;
6200 continue;
6202 break;
6205 return pages;
6208 static int sev_launch_update_data(struct kvm *kvm, struct kvm_sev_cmd *argp)
6210 unsigned long vaddr, vaddr_end, next_vaddr, npages, size;
6211 struct kvm_sev_info *sev = &kvm->arch.sev_info;
6212 struct kvm_sev_launch_update_data params;
6213 struct sev_data_launch_update_data *data;
6214 struct page **inpages;
6215 int i, ret, pages;
6217 if (!sev_guest(kvm))
6218 return -ENOTTY;
6220 if (copy_from_user(&params, (void __user *)(uintptr_t)argp->data, sizeof(params)))
6221 return -EFAULT;
6223 data = kzalloc(sizeof(*data), GFP_KERNEL);
6224 if (!data)
6225 return -ENOMEM;
6227 vaddr = params.uaddr;
6228 size = params.len;
6229 vaddr_end = vaddr + size;
6231 /* Lock the user memory. */
6232 inpages = sev_pin_memory(kvm, vaddr, size, &npages, 1);
6233 if (!inpages) {
6234 ret = -ENOMEM;
6235 goto e_free;
6239 * The LAUNCH_UPDATE command will perform in-place encryption of the
6240 * memory content (i.e it will write the same memory region with C=1).
6241 * It's possible that the cache may contain the data with C=0, i.e.,
6242 * unencrypted so invalidate it first.
6244 sev_clflush_pages(inpages, npages);
6246 for (i = 0; vaddr < vaddr_end; vaddr = next_vaddr, i += pages) {
6247 int offset, len;
6250 * If the user buffer is not page-aligned, calculate the offset
6251 * within the page.
6253 offset = vaddr & (PAGE_SIZE - 1);
6255 /* Calculate the number of pages that can be encrypted in one go. */
6256 pages = get_num_contig_pages(i, inpages, npages);
6258 len = min_t(size_t, ((pages * PAGE_SIZE) - offset), size);
6260 data->handle = sev->handle;
6261 data->len = len;
6262 data->address = __sme_page_pa(inpages[i]) + offset;
6263 ret = sev_issue_cmd(kvm, SEV_CMD_LAUNCH_UPDATE_DATA, data, &argp->error);
6264 if (ret)
6265 goto e_unpin;
6267 size -= len;
6268 next_vaddr = vaddr + len;
6271 e_unpin:
6272 /* content of memory is updated, mark pages dirty */
6273 for (i = 0; i < npages; i++) {
6274 set_page_dirty_lock(inpages[i]);
6275 mark_page_accessed(inpages[i]);
6277 /* unlock the user pages */
6278 sev_unpin_memory(kvm, inpages, npages);
6279 e_free:
6280 kfree(data);
6281 return ret;
6284 static int sev_launch_measure(struct kvm *kvm, struct kvm_sev_cmd *argp)
6286 void __user *measure = (void __user *)(uintptr_t)argp->data;
6287 struct kvm_sev_info *sev = &kvm->arch.sev_info;
6288 struct sev_data_launch_measure *data;
6289 struct kvm_sev_launch_measure params;
6290 void __user *p = NULL;
6291 void *blob = NULL;
6292 int ret;
6294 if (!sev_guest(kvm))
6295 return -ENOTTY;
6297 if (copy_from_user(&params, measure, sizeof(params)))
6298 return -EFAULT;
6300 data = kzalloc(sizeof(*data), GFP_KERNEL);
6301 if (!data)
6302 return -ENOMEM;
6304 /* User wants to query the blob length */
6305 if (!params.len)
6306 goto cmd;
6308 p = (void __user *)(uintptr_t)params.uaddr;
6309 if (p) {
6310 if (params.len > SEV_FW_BLOB_MAX_SIZE) {
6311 ret = -EINVAL;
6312 goto e_free;
6315 ret = -ENOMEM;
6316 blob = kmalloc(params.len, GFP_KERNEL);
6317 if (!blob)
6318 goto e_free;
6320 data->address = __psp_pa(blob);
6321 data->len = params.len;
6324 cmd:
6325 data->handle = sev->handle;
6326 ret = sev_issue_cmd(kvm, SEV_CMD_LAUNCH_MEASURE, data, &argp->error);
6329 * If we query the session length, FW responded with expected data.
6331 if (!params.len)
6332 goto done;
6334 if (ret)
6335 goto e_free_blob;
6337 if (blob) {
6338 if (copy_to_user(p, blob, params.len))
6339 ret = -EFAULT;
6342 done:
6343 params.len = data->len;
6344 if (copy_to_user(measure, &params, sizeof(params)))
6345 ret = -EFAULT;
6346 e_free_blob:
6347 kfree(blob);
6348 e_free:
6349 kfree(data);
6350 return ret;
6353 static int sev_launch_finish(struct kvm *kvm, struct kvm_sev_cmd *argp)
6355 struct kvm_sev_info *sev = &kvm->arch.sev_info;
6356 struct sev_data_launch_finish *data;
6357 int ret;
6359 if (!sev_guest(kvm))
6360 return -ENOTTY;
6362 data = kzalloc(sizeof(*data), GFP_KERNEL);
6363 if (!data)
6364 return -ENOMEM;
6366 data->handle = sev->handle;
6367 ret = sev_issue_cmd(kvm, SEV_CMD_LAUNCH_FINISH, data, &argp->error);
6369 kfree(data);
6370 return ret;
6373 static int sev_guest_status(struct kvm *kvm, struct kvm_sev_cmd *argp)
6375 struct kvm_sev_info *sev = &kvm->arch.sev_info;
6376 struct kvm_sev_guest_status params;
6377 struct sev_data_guest_status *data;
6378 int ret;
6380 if (!sev_guest(kvm))
6381 return -ENOTTY;
6383 data = kzalloc(sizeof(*data), GFP_KERNEL);
6384 if (!data)
6385 return -ENOMEM;
6387 data->handle = sev->handle;
6388 ret = sev_issue_cmd(kvm, SEV_CMD_GUEST_STATUS, data, &argp->error);
6389 if (ret)
6390 goto e_free;
6392 params.policy = data->policy;
6393 params.state = data->state;
6394 params.handle = data->handle;
6396 if (copy_to_user((void __user *)(uintptr_t)argp->data, &params, sizeof(params)))
6397 ret = -EFAULT;
6398 e_free:
6399 kfree(data);
6400 return ret;
6403 static int __sev_issue_dbg_cmd(struct kvm *kvm, unsigned long src,
6404 unsigned long dst, int size,
6405 int *error, bool enc)
6407 struct kvm_sev_info *sev = &kvm->arch.sev_info;
6408 struct sev_data_dbg *data;
6409 int ret;
6411 data = kzalloc(sizeof(*data), GFP_KERNEL);
6412 if (!data)
6413 return -ENOMEM;
6415 data->handle = sev->handle;
6416 data->dst_addr = dst;
6417 data->src_addr = src;
6418 data->len = size;
6420 ret = sev_issue_cmd(kvm,
6421 enc ? SEV_CMD_DBG_ENCRYPT : SEV_CMD_DBG_DECRYPT,
6422 data, error);
6423 kfree(data);
6424 return ret;
6427 static int __sev_dbg_decrypt(struct kvm *kvm, unsigned long src_paddr,
6428 unsigned long dst_paddr, int sz, int *err)
6430 int offset;
6433 * Its safe to read more than we are asked, caller should ensure that
6434 * destination has enough space.
6436 src_paddr = round_down(src_paddr, 16);
6437 offset = src_paddr & 15;
6438 sz = round_up(sz + offset, 16);
6440 return __sev_issue_dbg_cmd(kvm, src_paddr, dst_paddr, sz, err, false);
6443 static int __sev_dbg_decrypt_user(struct kvm *kvm, unsigned long paddr,
6444 unsigned long __user dst_uaddr,
6445 unsigned long dst_paddr,
6446 int size, int *err)
6448 struct page *tpage = NULL;
6449 int ret, offset;
6451 /* if inputs are not 16-byte then use intermediate buffer */
6452 if (!IS_ALIGNED(dst_paddr, 16) ||
6453 !IS_ALIGNED(paddr, 16) ||
6454 !IS_ALIGNED(size, 16)) {
6455 tpage = (void *)alloc_page(GFP_KERNEL);
6456 if (!tpage)
6457 return -ENOMEM;
6459 dst_paddr = __sme_page_pa(tpage);
6462 ret = __sev_dbg_decrypt(kvm, paddr, dst_paddr, size, err);
6463 if (ret)
6464 goto e_free;
6466 if (tpage) {
6467 offset = paddr & 15;
6468 if (copy_to_user((void __user *)(uintptr_t)dst_uaddr,
6469 page_address(tpage) + offset, size))
6470 ret = -EFAULT;
6473 e_free:
6474 if (tpage)
6475 __free_page(tpage);
6477 return ret;
6480 static int __sev_dbg_encrypt_user(struct kvm *kvm, unsigned long paddr,
6481 unsigned long __user vaddr,
6482 unsigned long dst_paddr,
6483 unsigned long __user dst_vaddr,
6484 int size, int *error)
6486 struct page *src_tpage = NULL;
6487 struct page *dst_tpage = NULL;
6488 int ret, len = size;
6490 /* If source buffer is not aligned then use an intermediate buffer */
6491 if (!IS_ALIGNED(vaddr, 16)) {
6492 src_tpage = alloc_page(GFP_KERNEL);
6493 if (!src_tpage)
6494 return -ENOMEM;
6496 if (copy_from_user(page_address(src_tpage),
6497 (void __user *)(uintptr_t)vaddr, size)) {
6498 __free_page(src_tpage);
6499 return -EFAULT;
6502 paddr = __sme_page_pa(src_tpage);
6506 * If destination buffer or length is not aligned then do read-modify-write:
6507 * - decrypt destination in an intermediate buffer
6508 * - copy the source buffer in an intermediate buffer
6509 * - use the intermediate buffer as source buffer
6511 if (!IS_ALIGNED(dst_vaddr, 16) || !IS_ALIGNED(size, 16)) {
6512 int dst_offset;
6514 dst_tpage = alloc_page(GFP_KERNEL);
6515 if (!dst_tpage) {
6516 ret = -ENOMEM;
6517 goto e_free;
6520 ret = __sev_dbg_decrypt(kvm, dst_paddr,
6521 __sme_page_pa(dst_tpage), size, error);
6522 if (ret)
6523 goto e_free;
6526 * If source is kernel buffer then use memcpy() otherwise
6527 * copy_from_user().
6529 dst_offset = dst_paddr & 15;
6531 if (src_tpage)
6532 memcpy(page_address(dst_tpage) + dst_offset,
6533 page_address(src_tpage), size);
6534 else {
6535 if (copy_from_user(page_address(dst_tpage) + dst_offset,
6536 (void __user *)(uintptr_t)vaddr, size)) {
6537 ret = -EFAULT;
6538 goto e_free;
6542 paddr = __sme_page_pa(dst_tpage);
6543 dst_paddr = round_down(dst_paddr, 16);
6544 len = round_up(size, 16);
6547 ret = __sev_issue_dbg_cmd(kvm, paddr, dst_paddr, len, error, true);
6549 e_free:
6550 if (src_tpage)
6551 __free_page(src_tpage);
6552 if (dst_tpage)
6553 __free_page(dst_tpage);
6554 return ret;
6557 static int sev_dbg_crypt(struct kvm *kvm, struct kvm_sev_cmd *argp, bool dec)
6559 unsigned long vaddr, vaddr_end, next_vaddr;
6560 unsigned long dst_vaddr, dst_vaddr_end;
6561 struct page **src_p, **dst_p;
6562 struct kvm_sev_dbg debug;
6563 unsigned long n;
6564 int ret, size;
6566 if (!sev_guest(kvm))
6567 return -ENOTTY;
6569 if (copy_from_user(&debug, (void __user *)(uintptr_t)argp->data, sizeof(debug)))
6570 return -EFAULT;
6572 vaddr = debug.src_uaddr;
6573 size = debug.len;
6574 vaddr_end = vaddr + size;
6575 dst_vaddr = debug.dst_uaddr;
6576 dst_vaddr_end = dst_vaddr + size;
6578 for (; vaddr < vaddr_end; vaddr = next_vaddr) {
6579 int len, s_off, d_off;
6581 /* lock userspace source and destination page */
6582 src_p = sev_pin_memory(kvm, vaddr & PAGE_MASK, PAGE_SIZE, &n, 0);
6583 if (!src_p)
6584 return -EFAULT;
6586 dst_p = sev_pin_memory(kvm, dst_vaddr & PAGE_MASK, PAGE_SIZE, &n, 1);
6587 if (!dst_p) {
6588 sev_unpin_memory(kvm, src_p, n);
6589 return -EFAULT;
6593 * The DBG_{DE,EN}CRYPT commands will perform {dec,en}cryption of the
6594 * memory content (i.e it will write the same memory region with C=1).
6595 * It's possible that the cache may contain the data with C=0, i.e.,
6596 * unencrypted so invalidate it first.
6598 sev_clflush_pages(src_p, 1);
6599 sev_clflush_pages(dst_p, 1);
6602 * Since user buffer may not be page aligned, calculate the
6603 * offset within the page.
6605 s_off = vaddr & ~PAGE_MASK;
6606 d_off = dst_vaddr & ~PAGE_MASK;
6607 len = min_t(size_t, (PAGE_SIZE - s_off), size);
6609 if (dec)
6610 ret = __sev_dbg_decrypt_user(kvm,
6611 __sme_page_pa(src_p[0]) + s_off,
6612 dst_vaddr,
6613 __sme_page_pa(dst_p[0]) + d_off,
6614 len, &argp->error);
6615 else
6616 ret = __sev_dbg_encrypt_user(kvm,
6617 __sme_page_pa(src_p[0]) + s_off,
6618 vaddr,
6619 __sme_page_pa(dst_p[0]) + d_off,
6620 dst_vaddr,
6621 len, &argp->error);
6623 sev_unpin_memory(kvm, src_p, 1);
6624 sev_unpin_memory(kvm, dst_p, 1);
6626 if (ret)
6627 goto err;
6629 next_vaddr = vaddr + len;
6630 dst_vaddr = dst_vaddr + len;
6631 size -= len;
6633 err:
6634 return ret;
6637 static int sev_launch_secret(struct kvm *kvm, struct kvm_sev_cmd *argp)
6639 struct kvm_sev_info *sev = &kvm->arch.sev_info;
6640 struct sev_data_launch_secret *data;
6641 struct kvm_sev_launch_secret params;
6642 struct page **pages;
6643 void *blob, *hdr;
6644 unsigned long n;
6645 int ret, offset;
6647 if (!sev_guest(kvm))
6648 return -ENOTTY;
6650 if (copy_from_user(&params, (void __user *)(uintptr_t)argp->data, sizeof(params)))
6651 return -EFAULT;
6653 pages = sev_pin_memory(kvm, params.guest_uaddr, params.guest_len, &n, 1);
6654 if (!pages)
6655 return -ENOMEM;
6658 * The secret must be copied into contiguous memory region, lets verify
6659 * that userspace memory pages are contiguous before we issue command.
6661 if (get_num_contig_pages(0, pages, n) != n) {
6662 ret = -EINVAL;
6663 goto e_unpin_memory;
6666 ret = -ENOMEM;
6667 data = kzalloc(sizeof(*data), GFP_KERNEL);
6668 if (!data)
6669 goto e_unpin_memory;
6671 offset = params.guest_uaddr & (PAGE_SIZE - 1);
6672 data->guest_address = __sme_page_pa(pages[0]) + offset;
6673 data->guest_len = params.guest_len;
6675 blob = psp_copy_user_blob(params.trans_uaddr, params.trans_len);
6676 if (IS_ERR(blob)) {
6677 ret = PTR_ERR(blob);
6678 goto e_free;
6681 data->trans_address = __psp_pa(blob);
6682 data->trans_len = params.trans_len;
6684 hdr = psp_copy_user_blob(params.hdr_uaddr, params.hdr_len);
6685 if (IS_ERR(hdr)) {
6686 ret = PTR_ERR(hdr);
6687 goto e_free_blob;
6689 data->hdr_address = __psp_pa(hdr);
6690 data->hdr_len = params.hdr_len;
6692 data->handle = sev->handle;
6693 ret = sev_issue_cmd(kvm, SEV_CMD_LAUNCH_UPDATE_SECRET, data, &argp->error);
6695 kfree(hdr);
6697 e_free_blob:
6698 kfree(blob);
6699 e_free:
6700 kfree(data);
6701 e_unpin_memory:
6702 sev_unpin_memory(kvm, pages, n);
6703 return ret;
6706 static int svm_mem_enc_op(struct kvm *kvm, void __user *argp)
6708 struct kvm_sev_cmd sev_cmd;
6709 int r;
6711 if (!svm_sev_enabled())
6712 return -ENOTTY;
6714 if (copy_from_user(&sev_cmd, argp, sizeof(struct kvm_sev_cmd)))
6715 return -EFAULT;
6717 mutex_lock(&kvm->lock);
6719 switch (sev_cmd.id) {
6720 case KVM_SEV_INIT:
6721 r = sev_guest_init(kvm, &sev_cmd);
6722 break;
6723 case KVM_SEV_LAUNCH_START:
6724 r = sev_launch_start(kvm, &sev_cmd);
6725 break;
6726 case KVM_SEV_LAUNCH_UPDATE_DATA:
6727 r = sev_launch_update_data(kvm, &sev_cmd);
6728 break;
6729 case KVM_SEV_LAUNCH_MEASURE:
6730 r = sev_launch_measure(kvm, &sev_cmd);
6731 break;
6732 case KVM_SEV_LAUNCH_FINISH:
6733 r = sev_launch_finish(kvm, &sev_cmd);
6734 break;
6735 case KVM_SEV_GUEST_STATUS:
6736 r = sev_guest_status(kvm, &sev_cmd);
6737 break;
6738 case KVM_SEV_DBG_DECRYPT:
6739 r = sev_dbg_crypt(kvm, &sev_cmd, true);
6740 break;
6741 case KVM_SEV_DBG_ENCRYPT:
6742 r = sev_dbg_crypt(kvm, &sev_cmd, false);
6743 break;
6744 case KVM_SEV_LAUNCH_SECRET:
6745 r = sev_launch_secret(kvm, &sev_cmd);
6746 break;
6747 default:
6748 r = -EINVAL;
6749 goto out;
6752 if (copy_to_user(argp, &sev_cmd, sizeof(struct kvm_sev_cmd)))
6753 r = -EFAULT;
6755 out:
6756 mutex_unlock(&kvm->lock);
6757 return r;
6760 static int svm_register_enc_region(struct kvm *kvm,
6761 struct kvm_enc_region *range)
6763 struct kvm_sev_info *sev = &kvm->arch.sev_info;
6764 struct enc_region *region;
6765 int ret = 0;
6767 if (!sev_guest(kvm))
6768 return -ENOTTY;
6770 region = kzalloc(sizeof(*region), GFP_KERNEL);
6771 if (!region)
6772 return -ENOMEM;
6774 region->pages = sev_pin_memory(kvm, range->addr, range->size, &region->npages, 1);
6775 if (!region->pages) {
6776 ret = -ENOMEM;
6777 goto e_free;
6781 * The guest may change the memory encryption attribute from C=0 -> C=1
6782 * or vice versa for this memory range. Lets make sure caches are
6783 * flushed to ensure that guest data gets written into memory with
6784 * correct C-bit.
6786 sev_clflush_pages(region->pages, region->npages);
6788 region->uaddr = range->addr;
6789 region->size = range->size;
6791 mutex_lock(&kvm->lock);
6792 list_add_tail(&region->list, &sev->regions_list);
6793 mutex_unlock(&kvm->lock);
6795 return ret;
6797 e_free:
6798 kfree(region);
6799 return ret;
6802 static struct enc_region *
6803 find_enc_region(struct kvm *kvm, struct kvm_enc_region *range)
6805 struct kvm_sev_info *sev = &kvm->arch.sev_info;
6806 struct list_head *head = &sev->regions_list;
6807 struct enc_region *i;
6809 list_for_each_entry(i, head, list) {
6810 if (i->uaddr == range->addr &&
6811 i->size == range->size)
6812 return i;
6815 return NULL;
6819 static int svm_unregister_enc_region(struct kvm *kvm,
6820 struct kvm_enc_region *range)
6822 struct enc_region *region;
6823 int ret;
6825 mutex_lock(&kvm->lock);
6827 if (!sev_guest(kvm)) {
6828 ret = -ENOTTY;
6829 goto failed;
6832 region = find_enc_region(kvm, range);
6833 if (!region) {
6834 ret = -EINVAL;
6835 goto failed;
6838 __unregister_enc_region_locked(kvm, region);
6840 mutex_unlock(&kvm->lock);
6841 return 0;
6843 failed:
6844 mutex_unlock(&kvm->lock);
6845 return ret;
6848 static struct kvm_x86_ops svm_x86_ops __ro_after_init = {
6849 .cpu_has_kvm_support = has_svm,
6850 .disabled_by_bios = is_disabled,
6851 .hardware_setup = svm_hardware_setup,
6852 .hardware_unsetup = svm_hardware_unsetup,
6853 .check_processor_compatibility = svm_check_processor_compat,
6854 .hardware_enable = svm_hardware_enable,
6855 .hardware_disable = svm_hardware_disable,
6856 .cpu_has_accelerated_tpr = svm_cpu_has_accelerated_tpr,
6857 .cpu_has_high_real_mode_segbase = svm_has_high_real_mode_segbase,
6859 .vcpu_create = svm_create_vcpu,
6860 .vcpu_free = svm_free_vcpu,
6861 .vcpu_reset = svm_vcpu_reset,
6863 .vm_init = avic_vm_init,
6864 .vm_destroy = svm_vm_destroy,
6866 .prepare_guest_switch = svm_prepare_guest_switch,
6867 .vcpu_load = svm_vcpu_load,
6868 .vcpu_put = svm_vcpu_put,
6869 .vcpu_blocking = svm_vcpu_blocking,
6870 .vcpu_unblocking = svm_vcpu_unblocking,
6872 .update_bp_intercept = update_bp_intercept,
6873 .get_msr_feature = svm_get_msr_feature,
6874 .get_msr = svm_get_msr,
6875 .set_msr = svm_set_msr,
6876 .get_segment_base = svm_get_segment_base,
6877 .get_segment = svm_get_segment,
6878 .set_segment = svm_set_segment,
6879 .get_cpl = svm_get_cpl,
6880 .get_cs_db_l_bits = kvm_get_cs_db_l_bits,
6881 .decache_cr0_guest_bits = svm_decache_cr0_guest_bits,
6882 .decache_cr3 = svm_decache_cr3,
6883 .decache_cr4_guest_bits = svm_decache_cr4_guest_bits,
6884 .set_cr0 = svm_set_cr0,
6885 .set_cr3 = svm_set_cr3,
6886 .set_cr4 = svm_set_cr4,
6887 .set_efer = svm_set_efer,
6888 .get_idt = svm_get_idt,
6889 .set_idt = svm_set_idt,
6890 .get_gdt = svm_get_gdt,
6891 .set_gdt = svm_set_gdt,
6892 .get_dr6 = svm_get_dr6,
6893 .set_dr6 = svm_set_dr6,
6894 .set_dr7 = svm_set_dr7,
6895 .sync_dirty_debug_regs = svm_sync_dirty_debug_regs,
6896 .cache_reg = svm_cache_reg,
6897 .get_rflags = svm_get_rflags,
6898 .set_rflags = svm_set_rflags,
6900 .tlb_flush = svm_flush_tlb,
6902 .run = svm_vcpu_run,
6903 .handle_exit = handle_exit,
6904 .skip_emulated_instruction = skip_emulated_instruction,
6905 .set_interrupt_shadow = svm_set_interrupt_shadow,
6906 .get_interrupt_shadow = svm_get_interrupt_shadow,
6907 .patch_hypercall = svm_patch_hypercall,
6908 .set_irq = svm_set_irq,
6909 .set_nmi = svm_inject_nmi,
6910 .queue_exception = svm_queue_exception,
6911 .cancel_injection = svm_cancel_injection,
6912 .interrupt_allowed = svm_interrupt_allowed,
6913 .nmi_allowed = svm_nmi_allowed,
6914 .get_nmi_mask = svm_get_nmi_mask,
6915 .set_nmi_mask = svm_set_nmi_mask,
6916 .enable_nmi_window = enable_nmi_window,
6917 .enable_irq_window = enable_irq_window,
6918 .update_cr8_intercept = update_cr8_intercept,
6919 .set_virtual_x2apic_mode = svm_set_virtual_x2apic_mode,
6920 .get_enable_apicv = svm_get_enable_apicv,
6921 .refresh_apicv_exec_ctrl = svm_refresh_apicv_exec_ctrl,
6922 .load_eoi_exitmap = svm_load_eoi_exitmap,
6923 .hwapic_irr_update = svm_hwapic_irr_update,
6924 .hwapic_isr_update = svm_hwapic_isr_update,
6925 .sync_pir_to_irr = kvm_lapic_find_highest_irr,
6926 .apicv_post_state_restore = avic_post_state_restore,
6928 .set_tss_addr = svm_set_tss_addr,
6929 .get_tdp_level = get_npt_level,
6930 .get_mt_mask = svm_get_mt_mask,
6932 .get_exit_info = svm_get_exit_info,
6934 .get_lpage_level = svm_get_lpage_level,
6936 .cpuid_update = svm_cpuid_update,
6938 .rdtscp_supported = svm_rdtscp_supported,
6939 .invpcid_supported = svm_invpcid_supported,
6940 .mpx_supported = svm_mpx_supported,
6941 .xsaves_supported = svm_xsaves_supported,
6942 .umip_emulated = svm_umip_emulated,
6944 .set_supported_cpuid = svm_set_supported_cpuid,
6946 .has_wbinvd_exit = svm_has_wbinvd_exit,
6948 .write_tsc_offset = svm_write_tsc_offset,
6950 .set_tdp_cr3 = set_tdp_cr3,
6952 .check_intercept = svm_check_intercept,
6953 .handle_external_intr = svm_handle_external_intr,
6955 .sched_in = svm_sched_in,
6957 .pmu_ops = &amd_pmu_ops,
6958 .deliver_posted_interrupt = svm_deliver_avic_intr,
6959 .update_pi_irte = svm_update_pi_irte,
6960 .setup_mce = svm_setup_mce,
6962 .smi_allowed = svm_smi_allowed,
6963 .pre_enter_smm = svm_pre_enter_smm,
6964 .pre_leave_smm = svm_pre_leave_smm,
6965 .enable_smi_window = enable_smi_window,
6967 .mem_enc_op = svm_mem_enc_op,
6968 .mem_enc_reg_region = svm_register_enc_region,
6969 .mem_enc_unreg_region = svm_unregister_enc_region,
6972 static int __init svm_init(void)
6974 return kvm_init(&svm_x86_ops, sizeof(struct vcpu_svm),
6975 __alignof__(struct vcpu_svm), THIS_MODULE);
6978 static void __exit svm_exit(void)
6980 kvm_exit();
6983 module_init(svm_init)
6984 module_exit(svm_exit)