2 * Kernel-based Virtual Machine driver for Linux
6 * Copyright (C) 2006 Qumranet, Inc.
7 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
10 * Yaniv Kamay <yaniv@qumranet.com>
11 * Avi Kivity <avi@qumranet.com>
13 * This work is licensed under the terms of the GNU GPL, version 2. See
14 * the COPYING file in the top-level directory.
18 #define pr_fmt(fmt) "SVM: " fmt
20 #include <linux/kvm_host.h>
24 #include "kvm_cache_regs.h"
29 #include <linux/module.h>
30 #include <linux/mod_devicetable.h>
31 #include <linux/kernel.h>
32 #include <linux/vmalloc.h>
33 #include <linux/highmem.h>
34 #include <linux/sched.h>
35 #include <linux/trace_events.h>
36 #include <linux/slab.h>
37 #include <linux/amd-iommu.h>
38 #include <linux/hashtable.h>
39 #include <linux/frame.h>
40 #include <linux/psp-sev.h>
41 #include <linux/file.h>
42 #include <linux/pagemap.h>
43 #include <linux/swap.h>
46 #include <asm/perf_event.h>
47 #include <asm/tlbflush.h>
49 #include <asm/debugreg.h>
50 #include <asm/kvm_para.h>
51 #include <asm/irq_remapping.h>
52 #include <asm/microcode.h>
53 #include <asm/nospec-branch.h>
55 #include <asm/virtext.h>
58 #define __ex(x) __kvm_handle_fault_on_reboot(x)
60 MODULE_AUTHOR("Qumranet");
61 MODULE_LICENSE("GPL");
63 static const struct x86_cpu_id svm_cpu_id
[] = {
64 X86_FEATURE_MATCH(X86_FEATURE_SVM
),
67 MODULE_DEVICE_TABLE(x86cpu
, svm_cpu_id
);
69 #define IOPM_ALLOC_ORDER 2
70 #define MSRPM_ALLOC_ORDER 1
72 #define SEG_TYPE_LDT 2
73 #define SEG_TYPE_BUSY_TSS16 3
75 #define SVM_FEATURE_NPT (1 << 0)
76 #define SVM_FEATURE_LBRV (1 << 1)
77 #define SVM_FEATURE_SVML (1 << 2)
78 #define SVM_FEATURE_NRIP (1 << 3)
79 #define SVM_FEATURE_TSC_RATE (1 << 4)
80 #define SVM_FEATURE_VMCB_CLEAN (1 << 5)
81 #define SVM_FEATURE_FLUSH_ASID (1 << 6)
82 #define SVM_FEATURE_DECODE_ASSIST (1 << 7)
83 #define SVM_FEATURE_PAUSE_FILTER (1 << 10)
85 #define SVM_AVIC_DOORBELL 0xc001011b
87 #define NESTED_EXIT_HOST 0 /* Exit handled on host level */
88 #define NESTED_EXIT_DONE 1 /* Exit caused nested vmexit */
89 #define NESTED_EXIT_CONTINUE 2 /* Further checks needed */
91 #define DEBUGCTL_RESERVED_BITS (~(0x3fULL))
93 #define TSC_RATIO_RSVD 0xffffff0000000000ULL
94 #define TSC_RATIO_MIN 0x0000000000000001ULL
95 #define TSC_RATIO_MAX 0x000000ffffffffffULL
97 #define AVIC_HPA_MASK ~((0xFFFULL << 52) | 0xFFF)
100 * 0xff is broadcast, so the max index allowed for physical APIC ID
101 * table is 0xfe. APIC IDs above 0xff are reserved.
103 #define AVIC_MAX_PHYSICAL_ID_COUNT 255
105 #define AVIC_UNACCEL_ACCESS_WRITE_MASK 1
106 #define AVIC_UNACCEL_ACCESS_OFFSET_MASK 0xFF0
107 #define AVIC_UNACCEL_ACCESS_VECTOR_MASK 0xFFFFFFFF
109 /* AVIC GATAG is encoded using VM and VCPU IDs */
110 #define AVIC_VCPU_ID_BITS 8
111 #define AVIC_VCPU_ID_MASK ((1 << AVIC_VCPU_ID_BITS) - 1)
113 #define AVIC_VM_ID_BITS 24
114 #define AVIC_VM_ID_NR (1 << AVIC_VM_ID_BITS)
115 #define AVIC_VM_ID_MASK ((1 << AVIC_VM_ID_BITS) - 1)
117 #define AVIC_GATAG(x, y) (((x & AVIC_VM_ID_MASK) << AVIC_VCPU_ID_BITS) | \
118 (y & AVIC_VCPU_ID_MASK))
119 #define AVIC_GATAG_TO_VMID(x) ((x >> AVIC_VCPU_ID_BITS) & AVIC_VM_ID_MASK)
120 #define AVIC_GATAG_TO_VCPUID(x) (x & AVIC_VCPU_ID_MASK)
122 static bool erratum_383_found __read_mostly
;
124 static const u32 host_save_user_msrs
[] = {
126 MSR_STAR
, MSR_LSTAR
, MSR_CSTAR
, MSR_SYSCALL_MASK
, MSR_KERNEL_GS_BASE
,
129 MSR_IA32_SYSENTER_CS
, MSR_IA32_SYSENTER_ESP
, MSR_IA32_SYSENTER_EIP
,
133 #define NR_HOST_SAVE_USER_MSRS ARRAY_SIZE(host_save_user_msrs)
137 struct nested_state
{
143 /* These are the merged vectors */
146 /* gpa pointers to the real vectors */
150 /* A VMEXIT is required but not yet emulated */
153 /* cache for intercepts of the guest */
156 u32 intercept_exceptions
;
159 /* Nested Paging related state */
163 #define MSRPM_OFFSETS 16
164 static u32 msrpm_offsets
[MSRPM_OFFSETS
] __read_mostly
;
167 * Set osvw_len to higher value when updated Revision Guides
168 * are published and we know what the new status bits are
170 static uint64_t osvw_len
= 4, osvw_status
;
173 struct kvm_vcpu vcpu
;
175 unsigned long vmcb_pa
;
176 struct svm_cpu_data
*svm_data
;
177 uint64_t asid_generation
;
178 uint64_t sysenter_esp
;
179 uint64_t sysenter_eip
;
186 u64 host_user_msrs
[NR_HOST_SAVE_USER_MSRS
];
200 struct nested_state nested
;
203 u64 nmi_singlestep_guest_rflags
;
205 unsigned int3_injected
;
206 unsigned long int3_rip
;
208 /* cached guest cpuid flags for faster access */
209 bool nrips_enabled
: 1;
212 struct page
*avic_backing_page
;
213 u64
*avic_physical_id_cache
;
214 bool avic_is_running
;
217 * Per-vcpu list of struct amd_svm_iommu_ir:
218 * This is used mainly to store interrupt remapping information used
219 * when update the vcpu affinity. This avoids the need to scan for
220 * IRTE and try to match ga_tag in the IOMMU driver.
222 struct list_head ir_list
;
223 spinlock_t ir_list_lock
;
225 /* which host CPU was used for running this vcpu */
226 unsigned int last_cpu
;
230 * This is a wrapper of struct amd_iommu_ir_data.
232 struct amd_svm_iommu_ir
{
233 struct list_head node
; /* Used by SVM for per-vcpu ir_list */
234 void *data
; /* Storing pointer to struct amd_ir_data */
237 #define AVIC_LOGICAL_ID_ENTRY_GUEST_PHYSICAL_ID_MASK (0xFF)
238 #define AVIC_LOGICAL_ID_ENTRY_VALID_MASK (1 << 31)
240 #define AVIC_PHYSICAL_ID_ENTRY_HOST_PHYSICAL_ID_MASK (0xFFULL)
241 #define AVIC_PHYSICAL_ID_ENTRY_BACKING_PAGE_MASK (0xFFFFFFFFFFULL << 12)
242 #define AVIC_PHYSICAL_ID_ENTRY_IS_RUNNING_MASK (1ULL << 62)
243 #define AVIC_PHYSICAL_ID_ENTRY_VALID_MASK (1ULL << 63)
245 static DEFINE_PER_CPU(u64
, current_tsc_ratio
);
246 #define TSC_RATIO_DEFAULT 0x0100000000ULL
248 #define MSR_INVALID 0xffffffffU
250 static const struct svm_direct_access_msrs
{
251 u32 index
; /* Index of the MSR */
252 bool always
; /* True if intercept is always on */
253 } direct_access_msrs
[] = {
254 { .index
= MSR_STAR
, .always
= true },
255 { .index
= MSR_IA32_SYSENTER_CS
, .always
= true },
257 { .index
= MSR_GS_BASE
, .always
= true },
258 { .index
= MSR_FS_BASE
, .always
= true },
259 { .index
= MSR_KERNEL_GS_BASE
, .always
= true },
260 { .index
= MSR_LSTAR
, .always
= true },
261 { .index
= MSR_CSTAR
, .always
= true },
262 { .index
= MSR_SYSCALL_MASK
, .always
= true },
264 { .index
= MSR_IA32_SPEC_CTRL
, .always
= false },
265 { .index
= MSR_IA32_PRED_CMD
, .always
= false },
266 { .index
= MSR_IA32_LASTBRANCHFROMIP
, .always
= false },
267 { .index
= MSR_IA32_LASTBRANCHTOIP
, .always
= false },
268 { .index
= MSR_IA32_LASTINTFROMIP
, .always
= false },
269 { .index
= MSR_IA32_LASTINTTOIP
, .always
= false },
270 { .index
= MSR_INVALID
, .always
= false },
273 /* enable NPT for AMD64 and X86 with PAE */
274 #if defined(CONFIG_X86_64) || defined(CONFIG_X86_PAE)
275 static bool npt_enabled
= true;
277 static bool npt_enabled
;
280 /* allow nested paging (virtualized MMU) for all guests */
281 static int npt
= true;
282 module_param(npt
, int, S_IRUGO
);
284 /* allow nested virtualization in KVM/SVM */
285 static int nested
= true;
286 module_param(nested
, int, S_IRUGO
);
288 /* enable / disable AVIC */
290 #ifdef CONFIG_X86_LOCAL_APIC
291 module_param(avic
, int, S_IRUGO
);
294 /* enable/disable Virtual VMLOAD VMSAVE */
295 static int vls
= true;
296 module_param(vls
, int, 0444);
298 /* enable/disable Virtual GIF */
299 static int vgif
= true;
300 module_param(vgif
, int, 0444);
302 /* enable/disable SEV support */
303 static int sev
= IS_ENABLED(CONFIG_AMD_MEM_ENCRYPT_ACTIVE_BY_DEFAULT
);
304 module_param(sev
, int, 0444);
306 static u8 rsm_ins_bytes
[] = "\x0f\xaa";
308 static void svm_set_cr0(struct kvm_vcpu
*vcpu
, unsigned long cr0
);
309 static void svm_flush_tlb(struct kvm_vcpu
*vcpu
, bool invalidate_gpa
);
310 static void svm_complete_interrupts(struct vcpu_svm
*svm
);
312 static int nested_svm_exit_handled(struct vcpu_svm
*svm
);
313 static int nested_svm_intercept(struct vcpu_svm
*svm
);
314 static int nested_svm_vmexit(struct vcpu_svm
*svm
);
315 static int nested_svm_check_exception(struct vcpu_svm
*svm
, unsigned nr
,
316 bool has_error_code
, u32 error_code
);
319 VMCB_INTERCEPTS
, /* Intercept vectors, TSC offset,
320 pause filter count */
321 VMCB_PERM_MAP
, /* IOPM Base and MSRPM Base */
322 VMCB_ASID
, /* ASID */
323 VMCB_INTR
, /* int_ctl, int_vector */
324 VMCB_NPT
, /* npt_en, nCR3, gPAT */
325 VMCB_CR
, /* CR0, CR3, CR4, EFER */
326 VMCB_DR
, /* DR6, DR7 */
327 VMCB_DT
, /* GDT, IDT */
328 VMCB_SEG
, /* CS, DS, SS, ES, CPL */
329 VMCB_CR2
, /* CR2 only */
330 VMCB_LBR
, /* DBGCTL, BR_FROM, BR_TO, LAST_EX_FROM, LAST_EX_TO */
331 VMCB_AVIC
, /* AVIC APIC_BAR, AVIC APIC_BACKING_PAGE,
332 * AVIC PHYSICAL_TABLE pointer,
333 * AVIC LOGICAL_TABLE pointer
338 /* TPR and CR2 are always written before VMRUN */
339 #define VMCB_ALWAYS_DIRTY_MASK ((1U << VMCB_INTR) | (1U << VMCB_CR2))
341 #define VMCB_AVIC_APIC_BAR_MASK 0xFFFFFFFFFF000ULL
343 static unsigned int max_sev_asid
;
344 static unsigned int min_sev_asid
;
345 static unsigned long *sev_asid_bitmap
;
346 #define __sme_page_pa(x) __sme_set(page_to_pfn(x) << PAGE_SHIFT)
349 struct list_head list
;
350 unsigned long npages
;
356 static inline bool svm_sev_enabled(void)
361 static inline bool sev_guest(struct kvm
*kvm
)
363 struct kvm_sev_info
*sev
= &kvm
->arch
.sev_info
;
368 static inline int sev_get_asid(struct kvm
*kvm
)
370 struct kvm_sev_info
*sev
= &kvm
->arch
.sev_info
;
375 static inline void mark_all_dirty(struct vmcb
*vmcb
)
377 vmcb
->control
.clean
= 0;
380 static inline void mark_all_clean(struct vmcb
*vmcb
)
382 vmcb
->control
.clean
= ((1 << VMCB_DIRTY_MAX
) - 1)
383 & ~VMCB_ALWAYS_DIRTY_MASK
;
386 static inline void mark_dirty(struct vmcb
*vmcb
, int bit
)
388 vmcb
->control
.clean
&= ~(1 << bit
);
391 static inline struct vcpu_svm
*to_svm(struct kvm_vcpu
*vcpu
)
393 return container_of(vcpu
, struct vcpu_svm
, vcpu
);
396 static inline void avic_update_vapic_bar(struct vcpu_svm
*svm
, u64 data
)
398 svm
->vmcb
->control
.avic_vapic_bar
= data
& VMCB_AVIC_APIC_BAR_MASK
;
399 mark_dirty(svm
->vmcb
, VMCB_AVIC
);
402 static inline bool avic_vcpu_is_running(struct kvm_vcpu
*vcpu
)
404 struct vcpu_svm
*svm
= to_svm(vcpu
);
405 u64
*entry
= svm
->avic_physical_id_cache
;
410 return (READ_ONCE(*entry
) & AVIC_PHYSICAL_ID_ENTRY_IS_RUNNING_MASK
);
413 static void recalc_intercepts(struct vcpu_svm
*svm
)
415 struct vmcb_control_area
*c
, *h
;
416 struct nested_state
*g
;
418 mark_dirty(svm
->vmcb
, VMCB_INTERCEPTS
);
420 if (!is_guest_mode(&svm
->vcpu
))
423 c
= &svm
->vmcb
->control
;
424 h
= &svm
->nested
.hsave
->control
;
427 c
->intercept_cr
= h
->intercept_cr
| g
->intercept_cr
;
428 c
->intercept_dr
= h
->intercept_dr
| g
->intercept_dr
;
429 c
->intercept_exceptions
= h
->intercept_exceptions
| g
->intercept_exceptions
;
430 c
->intercept
= h
->intercept
| g
->intercept
;
433 static inline struct vmcb
*get_host_vmcb(struct vcpu_svm
*svm
)
435 if (is_guest_mode(&svm
->vcpu
))
436 return svm
->nested
.hsave
;
441 static inline void set_cr_intercept(struct vcpu_svm
*svm
, int bit
)
443 struct vmcb
*vmcb
= get_host_vmcb(svm
);
445 vmcb
->control
.intercept_cr
|= (1U << bit
);
447 recalc_intercepts(svm
);
450 static inline void clr_cr_intercept(struct vcpu_svm
*svm
, int bit
)
452 struct vmcb
*vmcb
= get_host_vmcb(svm
);
454 vmcb
->control
.intercept_cr
&= ~(1U << bit
);
456 recalc_intercepts(svm
);
459 static inline bool is_cr_intercept(struct vcpu_svm
*svm
, int bit
)
461 struct vmcb
*vmcb
= get_host_vmcb(svm
);
463 return vmcb
->control
.intercept_cr
& (1U << bit
);
466 static inline void set_dr_intercepts(struct vcpu_svm
*svm
)
468 struct vmcb
*vmcb
= get_host_vmcb(svm
);
470 vmcb
->control
.intercept_dr
= (1 << INTERCEPT_DR0_READ
)
471 | (1 << INTERCEPT_DR1_READ
)
472 | (1 << INTERCEPT_DR2_READ
)
473 | (1 << INTERCEPT_DR3_READ
)
474 | (1 << INTERCEPT_DR4_READ
)
475 | (1 << INTERCEPT_DR5_READ
)
476 | (1 << INTERCEPT_DR6_READ
)
477 | (1 << INTERCEPT_DR7_READ
)
478 | (1 << INTERCEPT_DR0_WRITE
)
479 | (1 << INTERCEPT_DR1_WRITE
)
480 | (1 << INTERCEPT_DR2_WRITE
)
481 | (1 << INTERCEPT_DR3_WRITE
)
482 | (1 << INTERCEPT_DR4_WRITE
)
483 | (1 << INTERCEPT_DR5_WRITE
)
484 | (1 << INTERCEPT_DR6_WRITE
)
485 | (1 << INTERCEPT_DR7_WRITE
);
487 recalc_intercepts(svm
);
490 static inline void clr_dr_intercepts(struct vcpu_svm
*svm
)
492 struct vmcb
*vmcb
= get_host_vmcb(svm
);
494 vmcb
->control
.intercept_dr
= 0;
496 recalc_intercepts(svm
);
499 static inline void set_exception_intercept(struct vcpu_svm
*svm
, int bit
)
501 struct vmcb
*vmcb
= get_host_vmcb(svm
);
503 vmcb
->control
.intercept_exceptions
|= (1U << bit
);
505 recalc_intercepts(svm
);
508 static inline void clr_exception_intercept(struct vcpu_svm
*svm
, int bit
)
510 struct vmcb
*vmcb
= get_host_vmcb(svm
);
512 vmcb
->control
.intercept_exceptions
&= ~(1U << bit
);
514 recalc_intercepts(svm
);
517 static inline void set_intercept(struct vcpu_svm
*svm
, int bit
)
519 struct vmcb
*vmcb
= get_host_vmcb(svm
);
521 vmcb
->control
.intercept
|= (1ULL << bit
);
523 recalc_intercepts(svm
);
526 static inline void clr_intercept(struct vcpu_svm
*svm
, int bit
)
528 struct vmcb
*vmcb
= get_host_vmcb(svm
);
530 vmcb
->control
.intercept
&= ~(1ULL << bit
);
532 recalc_intercepts(svm
);
535 static inline bool vgif_enabled(struct vcpu_svm
*svm
)
537 return !!(svm
->vmcb
->control
.int_ctl
& V_GIF_ENABLE_MASK
);
540 static inline void enable_gif(struct vcpu_svm
*svm
)
542 if (vgif_enabled(svm
))
543 svm
->vmcb
->control
.int_ctl
|= V_GIF_MASK
;
545 svm
->vcpu
.arch
.hflags
|= HF_GIF_MASK
;
548 static inline void disable_gif(struct vcpu_svm
*svm
)
550 if (vgif_enabled(svm
))
551 svm
->vmcb
->control
.int_ctl
&= ~V_GIF_MASK
;
553 svm
->vcpu
.arch
.hflags
&= ~HF_GIF_MASK
;
556 static inline bool gif_set(struct vcpu_svm
*svm
)
558 if (vgif_enabled(svm
))
559 return !!(svm
->vmcb
->control
.int_ctl
& V_GIF_MASK
);
561 return !!(svm
->vcpu
.arch
.hflags
& HF_GIF_MASK
);
564 static unsigned long iopm_base
;
566 struct kvm_ldttss_desc
{
569 unsigned base1
:8, type
:5, dpl
:2, p
:1;
570 unsigned limit1
:4, zero0
:3, g
:1, base2
:8;
573 } __attribute__((packed
));
575 struct svm_cpu_data
{
582 struct kvm_ldttss_desc
*tss_desc
;
584 struct page
*save_area
;
585 struct vmcb
*current_vmcb
;
587 /* index = sev_asid, value = vmcb pointer */
588 struct vmcb
**sev_vmcbs
;
591 static DEFINE_PER_CPU(struct svm_cpu_data
*, svm_data
);
593 struct svm_init_data
{
598 static const u32 msrpm_ranges
[] = {0, 0xc0000000, 0xc0010000};
600 #define NUM_MSR_MAPS ARRAY_SIZE(msrpm_ranges)
601 #define MSRS_RANGE_SIZE 2048
602 #define MSRS_IN_RANGE (MSRS_RANGE_SIZE * 8 / 2)
604 static u32
svm_msrpm_offset(u32 msr
)
609 for (i
= 0; i
< NUM_MSR_MAPS
; i
++) {
610 if (msr
< msrpm_ranges
[i
] ||
611 msr
>= msrpm_ranges
[i
] + MSRS_IN_RANGE
)
614 offset
= (msr
- msrpm_ranges
[i
]) / 4; /* 4 msrs per u8 */
615 offset
+= (i
* MSRS_RANGE_SIZE
); /* add range offset */
617 /* Now we have the u8 offset - but need the u32 offset */
621 /* MSR not in any range */
625 #define MAX_INST_SIZE 15
627 static inline void clgi(void)
629 asm volatile (__ex(SVM_CLGI
));
632 static inline void stgi(void)
634 asm volatile (__ex(SVM_STGI
));
637 static inline void invlpga(unsigned long addr
, u32 asid
)
639 asm volatile (__ex(SVM_INVLPGA
) : : "a"(addr
), "c"(asid
));
642 static int get_npt_level(struct kvm_vcpu
*vcpu
)
645 return PT64_ROOT_4LEVEL
;
647 return PT32E_ROOT_LEVEL
;
651 static void svm_set_efer(struct kvm_vcpu
*vcpu
, u64 efer
)
653 vcpu
->arch
.efer
= efer
;
654 if (!npt_enabled
&& !(efer
& EFER_LMA
))
657 to_svm(vcpu
)->vmcb
->save
.efer
= efer
| EFER_SVME
;
658 mark_dirty(to_svm(vcpu
)->vmcb
, VMCB_CR
);
661 static int is_external_interrupt(u32 info
)
663 info
&= SVM_EVTINJ_TYPE_MASK
| SVM_EVTINJ_VALID
;
664 return info
== (SVM_EVTINJ_VALID
| SVM_EVTINJ_TYPE_INTR
);
667 static u32
svm_get_interrupt_shadow(struct kvm_vcpu
*vcpu
)
669 struct vcpu_svm
*svm
= to_svm(vcpu
);
672 if (svm
->vmcb
->control
.int_state
& SVM_INTERRUPT_SHADOW_MASK
)
673 ret
= KVM_X86_SHADOW_INT_STI
| KVM_X86_SHADOW_INT_MOV_SS
;
677 static void svm_set_interrupt_shadow(struct kvm_vcpu
*vcpu
, int mask
)
679 struct vcpu_svm
*svm
= to_svm(vcpu
);
682 svm
->vmcb
->control
.int_state
&= ~SVM_INTERRUPT_SHADOW_MASK
;
684 svm
->vmcb
->control
.int_state
|= SVM_INTERRUPT_SHADOW_MASK
;
688 static void skip_emulated_instruction(struct kvm_vcpu
*vcpu
)
690 struct vcpu_svm
*svm
= to_svm(vcpu
);
692 if (svm
->vmcb
->control
.next_rip
!= 0) {
693 WARN_ON_ONCE(!static_cpu_has(X86_FEATURE_NRIPS
));
694 svm
->next_rip
= svm
->vmcb
->control
.next_rip
;
697 if (!svm
->next_rip
) {
698 if (emulate_instruction(vcpu
, EMULTYPE_SKIP
) !=
700 printk(KERN_DEBUG
"%s: NOP\n", __func__
);
703 if (svm
->next_rip
- kvm_rip_read(vcpu
) > MAX_INST_SIZE
)
704 printk(KERN_ERR
"%s: ip 0x%lx next 0x%llx\n",
705 __func__
, kvm_rip_read(vcpu
), svm
->next_rip
);
707 kvm_rip_write(vcpu
, svm
->next_rip
);
708 svm_set_interrupt_shadow(vcpu
, 0);
711 static void svm_queue_exception(struct kvm_vcpu
*vcpu
)
713 struct vcpu_svm
*svm
= to_svm(vcpu
);
714 unsigned nr
= vcpu
->arch
.exception
.nr
;
715 bool has_error_code
= vcpu
->arch
.exception
.has_error_code
;
716 bool reinject
= vcpu
->arch
.exception
.injected
;
717 u32 error_code
= vcpu
->arch
.exception
.error_code
;
720 * If we are within a nested VM we'd better #VMEXIT and let the guest
721 * handle the exception
724 nested_svm_check_exception(svm
, nr
, has_error_code
, error_code
))
727 if (nr
== BP_VECTOR
&& !static_cpu_has(X86_FEATURE_NRIPS
)) {
728 unsigned long rip
, old_rip
= kvm_rip_read(&svm
->vcpu
);
731 * For guest debugging where we have to reinject #BP if some
732 * INT3 is guest-owned:
733 * Emulate nRIP by moving RIP forward. Will fail if injection
734 * raises a fault that is not intercepted. Still better than
735 * failing in all cases.
737 skip_emulated_instruction(&svm
->vcpu
);
738 rip
= kvm_rip_read(&svm
->vcpu
);
739 svm
->int3_rip
= rip
+ svm
->vmcb
->save
.cs
.base
;
740 svm
->int3_injected
= rip
- old_rip
;
743 svm
->vmcb
->control
.event_inj
= nr
745 | (has_error_code
? SVM_EVTINJ_VALID_ERR
: 0)
746 | SVM_EVTINJ_TYPE_EXEPT
;
747 svm
->vmcb
->control
.event_inj_err
= error_code
;
750 static void svm_init_erratum_383(void)
756 if (!static_cpu_has_bug(X86_BUG_AMD_TLB_MMATCH
))
759 /* Use _safe variants to not break nested virtualization */
760 val
= native_read_msr_safe(MSR_AMD64_DC_CFG
, &err
);
766 low
= lower_32_bits(val
);
767 high
= upper_32_bits(val
);
769 native_write_msr_safe(MSR_AMD64_DC_CFG
, low
, high
);
771 erratum_383_found
= true;
774 static void svm_init_osvw(struct kvm_vcpu
*vcpu
)
777 * Guests should see errata 400 and 415 as fixed (assuming that
778 * HLT and IO instructions are intercepted).
780 vcpu
->arch
.osvw
.length
= (osvw_len
>= 3) ? (osvw_len
) : 3;
781 vcpu
->arch
.osvw
.status
= osvw_status
& ~(6ULL);
784 * By increasing VCPU's osvw.length to 3 we are telling the guest that
785 * all osvw.status bits inside that length, including bit 0 (which is
786 * reserved for erratum 298), are valid. However, if host processor's
787 * osvw_len is 0 then osvw_status[0] carries no information. We need to
788 * be conservative here and therefore we tell the guest that erratum 298
789 * is present (because we really don't know).
791 if (osvw_len
== 0 && boot_cpu_data
.x86
== 0x10)
792 vcpu
->arch
.osvw
.status
|= 1;
795 static int has_svm(void)
799 if (!cpu_has_svm(&msg
)) {
800 printk(KERN_INFO
"has_svm: %s\n", msg
);
807 static void svm_hardware_disable(void)
809 /* Make sure we clean up behind us */
810 if (static_cpu_has(X86_FEATURE_TSCRATEMSR
))
811 wrmsrl(MSR_AMD64_TSC_RATIO
, TSC_RATIO_DEFAULT
);
815 amd_pmu_disable_virt();
818 static int svm_hardware_enable(void)
821 struct svm_cpu_data
*sd
;
823 struct desc_struct
*gdt
;
824 int me
= raw_smp_processor_id();
826 rdmsrl(MSR_EFER
, efer
);
827 if (efer
& EFER_SVME
)
831 pr_err("%s: err EOPNOTSUPP on %d\n", __func__
, me
);
834 sd
= per_cpu(svm_data
, me
);
836 pr_err("%s: svm_data is NULL on %d\n", __func__
, me
);
840 sd
->asid_generation
= 1;
841 sd
->max_asid
= cpuid_ebx(SVM_CPUID_FUNC
) - 1;
842 sd
->next_asid
= sd
->max_asid
+ 1;
843 sd
->min_asid
= max_sev_asid
+ 1;
845 gdt
= get_current_gdt_rw();
846 sd
->tss_desc
= (struct kvm_ldttss_desc
*)(gdt
+ GDT_ENTRY_TSS
);
848 wrmsrl(MSR_EFER
, efer
| EFER_SVME
);
850 wrmsrl(MSR_VM_HSAVE_PA
, page_to_pfn(sd
->save_area
) << PAGE_SHIFT
);
852 if (static_cpu_has(X86_FEATURE_TSCRATEMSR
)) {
853 wrmsrl(MSR_AMD64_TSC_RATIO
, TSC_RATIO_DEFAULT
);
854 __this_cpu_write(current_tsc_ratio
, TSC_RATIO_DEFAULT
);
861 * Note that it is possible to have a system with mixed processor
862 * revisions and therefore different OSVW bits. If bits are not the same
863 * on different processors then choose the worst case (i.e. if erratum
864 * is present on one processor and not on another then assume that the
865 * erratum is present everywhere).
867 if (cpu_has(&boot_cpu_data
, X86_FEATURE_OSVW
)) {
868 uint64_t len
, status
= 0;
871 len
= native_read_msr_safe(MSR_AMD64_OSVW_ID_LENGTH
, &err
);
873 status
= native_read_msr_safe(MSR_AMD64_OSVW_STATUS
,
877 osvw_status
= osvw_len
= 0;
881 osvw_status
|= status
;
882 osvw_status
&= (1ULL << osvw_len
) - 1;
885 osvw_status
= osvw_len
= 0;
887 svm_init_erratum_383();
889 amd_pmu_enable_virt();
894 static void svm_cpu_uninit(int cpu
)
896 struct svm_cpu_data
*sd
= per_cpu(svm_data
, raw_smp_processor_id());
901 per_cpu(svm_data
, raw_smp_processor_id()) = NULL
;
902 kfree(sd
->sev_vmcbs
);
903 __free_page(sd
->save_area
);
907 static int svm_cpu_init(int cpu
)
909 struct svm_cpu_data
*sd
;
912 sd
= kzalloc(sizeof(struct svm_cpu_data
), GFP_KERNEL
);
917 sd
->save_area
= alloc_page(GFP_KERNEL
);
921 if (svm_sev_enabled()) {
923 sd
->sev_vmcbs
= kmalloc((max_sev_asid
+ 1) * sizeof(void *), GFP_KERNEL
);
928 per_cpu(svm_data
, cpu
) = sd
;
938 static bool valid_msr_intercept(u32 index
)
942 for (i
= 0; direct_access_msrs
[i
].index
!= MSR_INVALID
; i
++)
943 if (direct_access_msrs
[i
].index
== index
)
949 static bool msr_write_intercepted(struct kvm_vcpu
*vcpu
, unsigned msr
)
956 msrpm
= is_guest_mode(vcpu
) ? to_svm(vcpu
)->nested
.msrpm
:
959 offset
= svm_msrpm_offset(msr
);
960 bit_write
= 2 * (msr
& 0x0f) + 1;
963 BUG_ON(offset
== MSR_INVALID
);
965 return !!test_bit(bit_write
, &tmp
);
968 static void set_msr_interception(u32
*msrpm
, unsigned msr
,
971 u8 bit_read
, bit_write
;
976 * If this warning triggers extend the direct_access_msrs list at the
977 * beginning of the file
979 WARN_ON(!valid_msr_intercept(msr
));
981 offset
= svm_msrpm_offset(msr
);
982 bit_read
= 2 * (msr
& 0x0f);
983 bit_write
= 2 * (msr
& 0x0f) + 1;
986 BUG_ON(offset
== MSR_INVALID
);
988 read
? clear_bit(bit_read
, &tmp
) : set_bit(bit_read
, &tmp
);
989 write
? clear_bit(bit_write
, &tmp
) : set_bit(bit_write
, &tmp
);
994 static void svm_vcpu_init_msrpm(u32
*msrpm
)
998 memset(msrpm
, 0xff, PAGE_SIZE
* (1 << MSRPM_ALLOC_ORDER
));
1000 for (i
= 0; direct_access_msrs
[i
].index
!= MSR_INVALID
; i
++) {
1001 if (!direct_access_msrs
[i
].always
)
1004 set_msr_interception(msrpm
, direct_access_msrs
[i
].index
, 1, 1);
1008 static void add_msr_offset(u32 offset
)
1012 for (i
= 0; i
< MSRPM_OFFSETS
; ++i
) {
1014 /* Offset already in list? */
1015 if (msrpm_offsets
[i
] == offset
)
1018 /* Slot used by another offset? */
1019 if (msrpm_offsets
[i
] != MSR_INVALID
)
1022 /* Add offset to list */
1023 msrpm_offsets
[i
] = offset
;
1029 * If this BUG triggers the msrpm_offsets table has an overflow. Just
1030 * increase MSRPM_OFFSETS in this case.
1035 static void init_msrpm_offsets(void)
1039 memset(msrpm_offsets
, 0xff, sizeof(msrpm_offsets
));
1041 for (i
= 0; direct_access_msrs
[i
].index
!= MSR_INVALID
; i
++) {
1044 offset
= svm_msrpm_offset(direct_access_msrs
[i
].index
);
1045 BUG_ON(offset
== MSR_INVALID
);
1047 add_msr_offset(offset
);
1051 static void svm_enable_lbrv(struct vcpu_svm
*svm
)
1053 u32
*msrpm
= svm
->msrpm
;
1055 svm
->vmcb
->control
.virt_ext
|= LBR_CTL_ENABLE_MASK
;
1056 set_msr_interception(msrpm
, MSR_IA32_LASTBRANCHFROMIP
, 1, 1);
1057 set_msr_interception(msrpm
, MSR_IA32_LASTBRANCHTOIP
, 1, 1);
1058 set_msr_interception(msrpm
, MSR_IA32_LASTINTFROMIP
, 1, 1);
1059 set_msr_interception(msrpm
, MSR_IA32_LASTINTTOIP
, 1, 1);
1062 static void svm_disable_lbrv(struct vcpu_svm
*svm
)
1064 u32
*msrpm
= svm
->msrpm
;
1066 svm
->vmcb
->control
.virt_ext
&= ~LBR_CTL_ENABLE_MASK
;
1067 set_msr_interception(msrpm
, MSR_IA32_LASTBRANCHFROMIP
, 0, 0);
1068 set_msr_interception(msrpm
, MSR_IA32_LASTBRANCHTOIP
, 0, 0);
1069 set_msr_interception(msrpm
, MSR_IA32_LASTINTFROMIP
, 0, 0);
1070 set_msr_interception(msrpm
, MSR_IA32_LASTINTTOIP
, 0, 0);
1073 static void disable_nmi_singlestep(struct vcpu_svm
*svm
)
1075 svm
->nmi_singlestep
= false;
1077 if (!(svm
->vcpu
.guest_debug
& KVM_GUESTDBG_SINGLESTEP
)) {
1078 /* Clear our flags if they were not set by the guest */
1079 if (!(svm
->nmi_singlestep_guest_rflags
& X86_EFLAGS_TF
))
1080 svm
->vmcb
->save
.rflags
&= ~X86_EFLAGS_TF
;
1081 if (!(svm
->nmi_singlestep_guest_rflags
& X86_EFLAGS_RF
))
1082 svm
->vmcb
->save
.rflags
&= ~X86_EFLAGS_RF
;
1087 * This hash table is used to map VM_ID to a struct kvm_arch,
1088 * when handling AMD IOMMU GALOG notification to schedule in
1089 * a particular vCPU.
1091 #define SVM_VM_DATA_HASH_BITS 8
1092 static DEFINE_HASHTABLE(svm_vm_data_hash
, SVM_VM_DATA_HASH_BITS
);
1093 static u32 next_vm_id
= 0;
1094 static bool next_vm_id_wrapped
= 0;
1095 static DEFINE_SPINLOCK(svm_vm_data_hash_lock
);
1098 * This function is called from IOMMU driver to notify
1099 * SVM to schedule in a particular vCPU of a particular VM.
1101 static int avic_ga_log_notifier(u32 ga_tag
)
1103 unsigned long flags
;
1104 struct kvm_arch
*ka
= NULL
;
1105 struct kvm_vcpu
*vcpu
= NULL
;
1106 u32 vm_id
= AVIC_GATAG_TO_VMID(ga_tag
);
1107 u32 vcpu_id
= AVIC_GATAG_TO_VCPUID(ga_tag
);
1109 pr_debug("SVM: %s: vm_id=%#x, vcpu_id=%#x\n", __func__
, vm_id
, vcpu_id
);
1111 spin_lock_irqsave(&svm_vm_data_hash_lock
, flags
);
1112 hash_for_each_possible(svm_vm_data_hash
, ka
, hnode
, vm_id
) {
1113 struct kvm
*kvm
= container_of(ka
, struct kvm
, arch
);
1114 struct kvm_arch
*vm_data
= &kvm
->arch
;
1116 if (vm_data
->avic_vm_id
!= vm_id
)
1118 vcpu
= kvm_get_vcpu_by_id(kvm
, vcpu_id
);
1121 spin_unlock_irqrestore(&svm_vm_data_hash_lock
, flags
);
1124 * At this point, the IOMMU should have already set the pending
1125 * bit in the vAPIC backing page. So, we just need to schedule
1129 kvm_vcpu_wake_up(vcpu
);
1134 static __init
int sev_hardware_setup(void)
1136 struct sev_user_data_status
*status
;
1139 /* Maximum number of encrypted guests supported simultaneously */
1140 max_sev_asid
= cpuid_ecx(0x8000001F);
1145 /* Minimum ASID value that should be used for SEV guest */
1146 min_sev_asid
= cpuid_edx(0x8000001F);
1148 /* Initialize SEV ASID bitmap */
1149 sev_asid_bitmap
= kcalloc(BITS_TO_LONGS(max_sev_asid
),
1150 sizeof(unsigned long), GFP_KERNEL
);
1151 if (!sev_asid_bitmap
)
1154 status
= kmalloc(sizeof(*status
), GFP_KERNEL
);
1159 * Check SEV platform status.
1161 * PLATFORM_STATUS can be called in any state, if we failed to query
1162 * the PLATFORM status then either PSP firmware does not support SEV
1163 * feature or SEV firmware is dead.
1165 rc
= sev_platform_status(status
, NULL
);
1169 pr_info("SEV supported\n");
1176 static __init
int svm_hardware_setup(void)
1179 struct page
*iopm_pages
;
1183 iopm_pages
= alloc_pages(GFP_KERNEL
, IOPM_ALLOC_ORDER
);
1188 iopm_va
= page_address(iopm_pages
);
1189 memset(iopm_va
, 0xff, PAGE_SIZE
* (1 << IOPM_ALLOC_ORDER
));
1190 iopm_base
= page_to_pfn(iopm_pages
) << PAGE_SHIFT
;
1192 init_msrpm_offsets();
1194 if (boot_cpu_has(X86_FEATURE_NX
))
1195 kvm_enable_efer_bits(EFER_NX
);
1197 if (boot_cpu_has(X86_FEATURE_FXSR_OPT
))
1198 kvm_enable_efer_bits(EFER_FFXSR
);
1200 if (boot_cpu_has(X86_FEATURE_TSCRATEMSR
)) {
1201 kvm_has_tsc_control
= true;
1202 kvm_max_tsc_scaling_ratio
= TSC_RATIO_MAX
;
1203 kvm_tsc_scaling_ratio_frac_bits
= 32;
1207 printk(KERN_INFO
"kvm: Nested Virtualization enabled\n");
1208 kvm_enable_efer_bits(EFER_SVME
| EFER_LMSLE
);
1212 if (boot_cpu_has(X86_FEATURE_SEV
) &&
1213 IS_ENABLED(CONFIG_KVM_AMD_SEV
)) {
1214 r
= sev_hardware_setup();
1222 for_each_possible_cpu(cpu
) {
1223 r
= svm_cpu_init(cpu
);
1228 if (!boot_cpu_has(X86_FEATURE_NPT
))
1229 npt_enabled
= false;
1231 if (npt_enabled
&& !npt
) {
1232 printk(KERN_INFO
"kvm: Nested Paging disabled\n");
1233 npt_enabled
= false;
1237 printk(KERN_INFO
"kvm: Nested Paging enabled\n");
1244 !boot_cpu_has(X86_FEATURE_AVIC
) ||
1245 !IS_ENABLED(CONFIG_X86_LOCAL_APIC
)) {
1248 pr_info("AVIC enabled\n");
1250 amd_iommu_register_ga_log_notifier(&avic_ga_log_notifier
);
1256 !boot_cpu_has(X86_FEATURE_V_VMSAVE_VMLOAD
) ||
1257 !IS_ENABLED(CONFIG_X86_64
)) {
1260 pr_info("Virtual VMLOAD VMSAVE supported\n");
1265 if (!boot_cpu_has(X86_FEATURE_VGIF
))
1268 pr_info("Virtual GIF supported\n");
1274 __free_pages(iopm_pages
, IOPM_ALLOC_ORDER
);
1279 static __exit
void svm_hardware_unsetup(void)
1283 if (svm_sev_enabled())
1284 kfree(sev_asid_bitmap
);
1286 for_each_possible_cpu(cpu
)
1287 svm_cpu_uninit(cpu
);
1289 __free_pages(pfn_to_page(iopm_base
>> PAGE_SHIFT
), IOPM_ALLOC_ORDER
);
1293 static void init_seg(struct vmcb_seg
*seg
)
1296 seg
->attrib
= SVM_SELECTOR_P_MASK
| SVM_SELECTOR_S_MASK
|
1297 SVM_SELECTOR_WRITE_MASK
; /* Read/Write Data Segment */
1298 seg
->limit
= 0xffff;
1302 static void init_sys_seg(struct vmcb_seg
*seg
, uint32_t type
)
1305 seg
->attrib
= SVM_SELECTOR_P_MASK
| type
;
1306 seg
->limit
= 0xffff;
1310 static void svm_write_tsc_offset(struct kvm_vcpu
*vcpu
, u64 offset
)
1312 struct vcpu_svm
*svm
= to_svm(vcpu
);
1313 u64 g_tsc_offset
= 0;
1315 if (is_guest_mode(vcpu
)) {
1316 g_tsc_offset
= svm
->vmcb
->control
.tsc_offset
-
1317 svm
->nested
.hsave
->control
.tsc_offset
;
1318 svm
->nested
.hsave
->control
.tsc_offset
= offset
;
1320 trace_kvm_write_tsc_offset(vcpu
->vcpu_id
,
1321 svm
->vmcb
->control
.tsc_offset
,
1324 svm
->vmcb
->control
.tsc_offset
= offset
+ g_tsc_offset
;
1326 mark_dirty(svm
->vmcb
, VMCB_INTERCEPTS
);
1329 static void avic_init_vmcb(struct vcpu_svm
*svm
)
1331 struct vmcb
*vmcb
= svm
->vmcb
;
1332 struct kvm_arch
*vm_data
= &svm
->vcpu
.kvm
->arch
;
1333 phys_addr_t bpa
= __sme_set(page_to_phys(svm
->avic_backing_page
));
1334 phys_addr_t lpa
= __sme_set(page_to_phys(vm_data
->avic_logical_id_table_page
));
1335 phys_addr_t ppa
= __sme_set(page_to_phys(vm_data
->avic_physical_id_table_page
));
1337 vmcb
->control
.avic_backing_page
= bpa
& AVIC_HPA_MASK
;
1338 vmcb
->control
.avic_logical_id
= lpa
& AVIC_HPA_MASK
;
1339 vmcb
->control
.avic_physical_id
= ppa
& AVIC_HPA_MASK
;
1340 vmcb
->control
.avic_physical_id
|= AVIC_MAX_PHYSICAL_ID_COUNT
;
1341 vmcb
->control
.int_ctl
|= AVIC_ENABLE_MASK
;
1344 static void init_vmcb(struct vcpu_svm
*svm
)
1346 struct vmcb_control_area
*control
= &svm
->vmcb
->control
;
1347 struct vmcb_save_area
*save
= &svm
->vmcb
->save
;
1349 svm
->vcpu
.arch
.hflags
= 0;
1351 set_cr_intercept(svm
, INTERCEPT_CR0_READ
);
1352 set_cr_intercept(svm
, INTERCEPT_CR3_READ
);
1353 set_cr_intercept(svm
, INTERCEPT_CR4_READ
);
1354 set_cr_intercept(svm
, INTERCEPT_CR0_WRITE
);
1355 set_cr_intercept(svm
, INTERCEPT_CR3_WRITE
);
1356 set_cr_intercept(svm
, INTERCEPT_CR4_WRITE
);
1357 if (!kvm_vcpu_apicv_active(&svm
->vcpu
))
1358 set_cr_intercept(svm
, INTERCEPT_CR8_WRITE
);
1360 set_dr_intercepts(svm
);
1362 set_exception_intercept(svm
, PF_VECTOR
);
1363 set_exception_intercept(svm
, UD_VECTOR
);
1364 set_exception_intercept(svm
, MC_VECTOR
);
1365 set_exception_intercept(svm
, AC_VECTOR
);
1366 set_exception_intercept(svm
, DB_VECTOR
);
1368 set_intercept(svm
, INTERCEPT_INTR
);
1369 set_intercept(svm
, INTERCEPT_NMI
);
1370 set_intercept(svm
, INTERCEPT_SMI
);
1371 set_intercept(svm
, INTERCEPT_SELECTIVE_CR0
);
1372 set_intercept(svm
, INTERCEPT_RDPMC
);
1373 set_intercept(svm
, INTERCEPT_CPUID
);
1374 set_intercept(svm
, INTERCEPT_INVD
);
1375 set_intercept(svm
, INTERCEPT_HLT
);
1376 set_intercept(svm
, INTERCEPT_INVLPG
);
1377 set_intercept(svm
, INTERCEPT_INVLPGA
);
1378 set_intercept(svm
, INTERCEPT_IOIO_PROT
);
1379 set_intercept(svm
, INTERCEPT_MSR_PROT
);
1380 set_intercept(svm
, INTERCEPT_TASK_SWITCH
);
1381 set_intercept(svm
, INTERCEPT_SHUTDOWN
);
1382 set_intercept(svm
, INTERCEPT_VMRUN
);
1383 set_intercept(svm
, INTERCEPT_VMMCALL
);
1384 set_intercept(svm
, INTERCEPT_VMLOAD
);
1385 set_intercept(svm
, INTERCEPT_VMSAVE
);
1386 set_intercept(svm
, INTERCEPT_STGI
);
1387 set_intercept(svm
, INTERCEPT_CLGI
);
1388 set_intercept(svm
, INTERCEPT_SKINIT
);
1389 set_intercept(svm
, INTERCEPT_WBINVD
);
1390 set_intercept(svm
, INTERCEPT_XSETBV
);
1391 set_intercept(svm
, INTERCEPT_RSM
);
1393 if (!kvm_mwait_in_guest()) {
1394 set_intercept(svm
, INTERCEPT_MONITOR
);
1395 set_intercept(svm
, INTERCEPT_MWAIT
);
1398 control
->iopm_base_pa
= __sme_set(iopm_base
);
1399 control
->msrpm_base_pa
= __sme_set(__pa(svm
->msrpm
));
1400 control
->int_ctl
= V_INTR_MASKING_MASK
;
1402 init_seg(&save
->es
);
1403 init_seg(&save
->ss
);
1404 init_seg(&save
->ds
);
1405 init_seg(&save
->fs
);
1406 init_seg(&save
->gs
);
1408 save
->cs
.selector
= 0xf000;
1409 save
->cs
.base
= 0xffff0000;
1410 /* Executable/Readable Code Segment */
1411 save
->cs
.attrib
= SVM_SELECTOR_READ_MASK
| SVM_SELECTOR_P_MASK
|
1412 SVM_SELECTOR_S_MASK
| SVM_SELECTOR_CODE_MASK
;
1413 save
->cs
.limit
= 0xffff;
1415 save
->gdtr
.limit
= 0xffff;
1416 save
->idtr
.limit
= 0xffff;
1418 init_sys_seg(&save
->ldtr
, SEG_TYPE_LDT
);
1419 init_sys_seg(&save
->tr
, SEG_TYPE_BUSY_TSS16
);
1421 svm_set_efer(&svm
->vcpu
, 0);
1422 save
->dr6
= 0xffff0ff0;
1423 kvm_set_rflags(&svm
->vcpu
, 2);
1424 save
->rip
= 0x0000fff0;
1425 svm
->vcpu
.arch
.regs
[VCPU_REGS_RIP
] = save
->rip
;
1428 * svm_set_cr0() sets PG and WP and clears NW and CD on save->cr0.
1429 * It also updates the guest-visible cr0 value.
1431 svm_set_cr0(&svm
->vcpu
, X86_CR0_NW
| X86_CR0_CD
| X86_CR0_ET
);
1432 kvm_mmu_reset_context(&svm
->vcpu
);
1434 save
->cr4
= X86_CR4_PAE
;
1438 /* Setup VMCB for Nested Paging */
1439 control
->nested_ctl
|= SVM_NESTED_CTL_NP_ENABLE
;
1440 clr_intercept(svm
, INTERCEPT_INVLPG
);
1441 clr_exception_intercept(svm
, PF_VECTOR
);
1442 clr_cr_intercept(svm
, INTERCEPT_CR3_READ
);
1443 clr_cr_intercept(svm
, INTERCEPT_CR3_WRITE
);
1444 save
->g_pat
= svm
->vcpu
.arch
.pat
;
1448 svm
->asid_generation
= 0;
1450 svm
->nested
.vmcb
= 0;
1451 svm
->vcpu
.arch
.hflags
= 0;
1453 if (boot_cpu_has(X86_FEATURE_PAUSEFILTER
)) {
1454 control
->pause_filter_count
= 3000;
1455 set_intercept(svm
, INTERCEPT_PAUSE
);
1458 if (kvm_vcpu_apicv_active(&svm
->vcpu
))
1459 avic_init_vmcb(svm
);
1462 * If hardware supports Virtual VMLOAD VMSAVE then enable it
1463 * in VMCB and clear intercepts to avoid #VMEXIT.
1466 clr_intercept(svm
, INTERCEPT_VMLOAD
);
1467 clr_intercept(svm
, INTERCEPT_VMSAVE
);
1468 svm
->vmcb
->control
.virt_ext
|= VIRTUAL_VMLOAD_VMSAVE_ENABLE_MASK
;
1472 clr_intercept(svm
, INTERCEPT_STGI
);
1473 clr_intercept(svm
, INTERCEPT_CLGI
);
1474 svm
->vmcb
->control
.int_ctl
|= V_GIF_ENABLE_MASK
;
1477 if (sev_guest(svm
->vcpu
.kvm
)) {
1478 svm
->vmcb
->control
.nested_ctl
|= SVM_NESTED_CTL_SEV_ENABLE
;
1479 clr_exception_intercept(svm
, UD_VECTOR
);
1482 mark_all_dirty(svm
->vmcb
);
1488 static u64
*avic_get_physical_id_entry(struct kvm_vcpu
*vcpu
,
1491 u64
*avic_physical_id_table
;
1492 struct kvm_arch
*vm_data
= &vcpu
->kvm
->arch
;
1494 if (index
>= AVIC_MAX_PHYSICAL_ID_COUNT
)
1497 avic_physical_id_table
= page_address(vm_data
->avic_physical_id_table_page
);
1499 return &avic_physical_id_table
[index
];
1504 * AVIC hardware walks the nested page table to check permissions,
1505 * but does not use the SPA address specified in the leaf page
1506 * table entry since it uses address in the AVIC_BACKING_PAGE pointer
1507 * field of the VMCB. Therefore, we set up the
1508 * APIC_ACCESS_PAGE_PRIVATE_MEMSLOT (4KB) here.
1510 static int avic_init_access_page(struct kvm_vcpu
*vcpu
)
1512 struct kvm
*kvm
= vcpu
->kvm
;
1515 if (kvm
->arch
.apic_access_page_done
)
1518 ret
= x86_set_memory_region(kvm
,
1519 APIC_ACCESS_PAGE_PRIVATE_MEMSLOT
,
1520 APIC_DEFAULT_PHYS_BASE
,
1525 kvm
->arch
.apic_access_page_done
= true;
1529 static int avic_init_backing_page(struct kvm_vcpu
*vcpu
)
1532 u64
*entry
, new_entry
;
1533 int id
= vcpu
->vcpu_id
;
1534 struct vcpu_svm
*svm
= to_svm(vcpu
);
1536 ret
= avic_init_access_page(vcpu
);
1540 if (id
>= AVIC_MAX_PHYSICAL_ID_COUNT
)
1543 if (!svm
->vcpu
.arch
.apic
->regs
)
1546 svm
->avic_backing_page
= virt_to_page(svm
->vcpu
.arch
.apic
->regs
);
1548 /* Setting AVIC backing page address in the phy APIC ID table */
1549 entry
= avic_get_physical_id_entry(vcpu
, id
);
1553 new_entry
= READ_ONCE(*entry
);
1554 new_entry
= __sme_set((page_to_phys(svm
->avic_backing_page
) &
1555 AVIC_PHYSICAL_ID_ENTRY_BACKING_PAGE_MASK
) |
1556 AVIC_PHYSICAL_ID_ENTRY_VALID_MASK
);
1557 WRITE_ONCE(*entry
, new_entry
);
1559 svm
->avic_physical_id_cache
= entry
;
1564 static void __sev_asid_free(int asid
)
1566 struct svm_cpu_data
*sd
;
1570 clear_bit(pos
, sev_asid_bitmap
);
1572 for_each_possible_cpu(cpu
) {
1573 sd
= per_cpu(svm_data
, cpu
);
1574 sd
->sev_vmcbs
[pos
] = NULL
;
1578 static void sev_asid_free(struct kvm
*kvm
)
1580 struct kvm_sev_info
*sev
= &kvm
->arch
.sev_info
;
1582 __sev_asid_free(sev
->asid
);
1585 static void sev_unbind_asid(struct kvm
*kvm
, unsigned int handle
)
1587 struct sev_data_decommission
*decommission
;
1588 struct sev_data_deactivate
*data
;
1593 data
= kzalloc(sizeof(*data
), GFP_KERNEL
);
1597 /* deactivate handle */
1598 data
->handle
= handle
;
1599 sev_guest_deactivate(data
, NULL
);
1601 wbinvd_on_all_cpus();
1602 sev_guest_df_flush(NULL
);
1605 decommission
= kzalloc(sizeof(*decommission
), GFP_KERNEL
);
1609 /* decommission handle */
1610 decommission
->handle
= handle
;
1611 sev_guest_decommission(decommission
, NULL
);
1613 kfree(decommission
);
1616 static struct page
**sev_pin_memory(struct kvm
*kvm
, unsigned long uaddr
,
1617 unsigned long ulen
, unsigned long *n
,
1620 struct kvm_sev_info
*sev
= &kvm
->arch
.sev_info
;
1621 unsigned long npages
, npinned
, size
;
1622 unsigned long locked
, lock_limit
;
1623 struct page
**pages
;
1626 /* Calculate number of pages. */
1627 first
= (uaddr
& PAGE_MASK
) >> PAGE_SHIFT
;
1628 last
= ((uaddr
+ ulen
- 1) & PAGE_MASK
) >> PAGE_SHIFT
;
1629 npages
= (last
- first
+ 1);
1631 locked
= sev
->pages_locked
+ npages
;
1632 lock_limit
= rlimit(RLIMIT_MEMLOCK
) >> PAGE_SHIFT
;
1633 if (locked
> lock_limit
&& !capable(CAP_IPC_LOCK
)) {
1634 pr_err("SEV: %lu locked pages exceed the lock limit of %lu.\n", locked
, lock_limit
);
1638 /* Avoid using vmalloc for smaller buffers. */
1639 size
= npages
* sizeof(struct page
*);
1640 if (size
> PAGE_SIZE
)
1641 pages
= vmalloc(size
);
1643 pages
= kmalloc(size
, GFP_KERNEL
);
1648 /* Pin the user virtual address. */
1649 npinned
= get_user_pages_fast(uaddr
, npages
, write
? FOLL_WRITE
: 0, pages
);
1650 if (npinned
!= npages
) {
1651 pr_err("SEV: Failure locking %lu pages.\n", npages
);
1656 sev
->pages_locked
= locked
;
1662 release_pages(pages
, npinned
);
1668 static void sev_unpin_memory(struct kvm
*kvm
, struct page
**pages
,
1669 unsigned long npages
)
1671 struct kvm_sev_info
*sev
= &kvm
->arch
.sev_info
;
1673 release_pages(pages
, npages
);
1675 sev
->pages_locked
-= npages
;
1678 static void sev_clflush_pages(struct page
*pages
[], unsigned long npages
)
1680 uint8_t *page_virtual
;
1683 if (npages
== 0 || pages
== NULL
)
1686 for (i
= 0; i
< npages
; i
++) {
1687 page_virtual
= kmap_atomic(pages
[i
]);
1688 clflush_cache_range(page_virtual
, PAGE_SIZE
);
1689 kunmap_atomic(page_virtual
);
1693 static void __unregister_enc_region_locked(struct kvm
*kvm
,
1694 struct enc_region
*region
)
1697 * The guest may change the memory encryption attribute from C=0 -> C=1
1698 * or vice versa for this memory range. Lets make sure caches are
1699 * flushed to ensure that guest data gets written into memory with
1702 sev_clflush_pages(region
->pages
, region
->npages
);
1704 sev_unpin_memory(kvm
, region
->pages
, region
->npages
);
1705 list_del(®ion
->list
);
1709 static void sev_vm_destroy(struct kvm
*kvm
)
1711 struct kvm_sev_info
*sev
= &kvm
->arch
.sev_info
;
1712 struct list_head
*head
= &sev
->regions_list
;
1713 struct list_head
*pos
, *q
;
1715 if (!sev_guest(kvm
))
1718 mutex_lock(&kvm
->lock
);
1721 * if userspace was terminated before unregistering the memory regions
1722 * then lets unpin all the registered memory.
1724 if (!list_empty(head
)) {
1725 list_for_each_safe(pos
, q
, head
) {
1726 __unregister_enc_region_locked(kvm
,
1727 list_entry(pos
, struct enc_region
, list
));
1731 mutex_unlock(&kvm
->lock
);
1733 sev_unbind_asid(kvm
, sev
->handle
);
1737 static void avic_vm_destroy(struct kvm
*kvm
)
1739 unsigned long flags
;
1740 struct kvm_arch
*vm_data
= &kvm
->arch
;
1745 if (vm_data
->avic_logical_id_table_page
)
1746 __free_page(vm_data
->avic_logical_id_table_page
);
1747 if (vm_data
->avic_physical_id_table_page
)
1748 __free_page(vm_data
->avic_physical_id_table_page
);
1750 spin_lock_irqsave(&svm_vm_data_hash_lock
, flags
);
1751 hash_del(&vm_data
->hnode
);
1752 spin_unlock_irqrestore(&svm_vm_data_hash_lock
, flags
);
1755 static void svm_vm_destroy(struct kvm
*kvm
)
1757 avic_vm_destroy(kvm
);
1758 sev_vm_destroy(kvm
);
1761 static int avic_vm_init(struct kvm
*kvm
)
1763 unsigned long flags
;
1765 struct kvm_arch
*vm_data
= &kvm
->arch
;
1766 struct page
*p_page
;
1767 struct page
*l_page
;
1768 struct kvm_arch
*ka
;
1774 /* Allocating physical APIC ID table (4KB) */
1775 p_page
= alloc_page(GFP_KERNEL
);
1779 vm_data
->avic_physical_id_table_page
= p_page
;
1780 clear_page(page_address(p_page
));
1782 /* Allocating logical APIC ID table (4KB) */
1783 l_page
= alloc_page(GFP_KERNEL
);
1787 vm_data
->avic_logical_id_table_page
= l_page
;
1788 clear_page(page_address(l_page
));
1790 spin_lock_irqsave(&svm_vm_data_hash_lock
, flags
);
1792 vm_id
= next_vm_id
= (next_vm_id
+ 1) & AVIC_VM_ID_MASK
;
1793 if (vm_id
== 0) { /* id is 1-based, zero is not okay */
1794 next_vm_id_wrapped
= 1;
1797 /* Is it still in use? Only possible if wrapped at least once */
1798 if (next_vm_id_wrapped
) {
1799 hash_for_each_possible(svm_vm_data_hash
, ka
, hnode
, vm_id
) {
1800 struct kvm
*k2
= container_of(ka
, struct kvm
, arch
);
1801 struct kvm_arch
*vd2
= &k2
->arch
;
1802 if (vd2
->avic_vm_id
== vm_id
)
1806 vm_data
->avic_vm_id
= vm_id
;
1807 hash_add(svm_vm_data_hash
, &vm_data
->hnode
, vm_data
->avic_vm_id
);
1808 spin_unlock_irqrestore(&svm_vm_data_hash_lock
, flags
);
1813 avic_vm_destroy(kvm
);
1818 avic_update_iommu_vcpu_affinity(struct kvm_vcpu
*vcpu
, int cpu
, bool r
)
1821 unsigned long flags
;
1822 struct amd_svm_iommu_ir
*ir
;
1823 struct vcpu_svm
*svm
= to_svm(vcpu
);
1825 if (!kvm_arch_has_assigned_device(vcpu
->kvm
))
1829 * Here, we go through the per-vcpu ir_list to update all existing
1830 * interrupt remapping table entry targeting this vcpu.
1832 spin_lock_irqsave(&svm
->ir_list_lock
, flags
);
1834 if (list_empty(&svm
->ir_list
))
1837 list_for_each_entry(ir
, &svm
->ir_list
, node
) {
1838 ret
= amd_iommu_update_ga(cpu
, r
, ir
->data
);
1843 spin_unlock_irqrestore(&svm
->ir_list_lock
, flags
);
1847 static void avic_vcpu_load(struct kvm_vcpu
*vcpu
, int cpu
)
1850 /* ID = 0xff (broadcast), ID > 0xff (reserved) */
1851 int h_physical_id
= kvm_cpu_get_apicid(cpu
);
1852 struct vcpu_svm
*svm
= to_svm(vcpu
);
1854 if (!kvm_vcpu_apicv_active(vcpu
))
1857 if (WARN_ON(h_physical_id
>= AVIC_MAX_PHYSICAL_ID_COUNT
))
1860 entry
= READ_ONCE(*(svm
->avic_physical_id_cache
));
1861 WARN_ON(entry
& AVIC_PHYSICAL_ID_ENTRY_IS_RUNNING_MASK
);
1863 entry
&= ~AVIC_PHYSICAL_ID_ENTRY_HOST_PHYSICAL_ID_MASK
;
1864 entry
|= (h_physical_id
& AVIC_PHYSICAL_ID_ENTRY_HOST_PHYSICAL_ID_MASK
);
1866 entry
&= ~AVIC_PHYSICAL_ID_ENTRY_IS_RUNNING_MASK
;
1867 if (svm
->avic_is_running
)
1868 entry
|= AVIC_PHYSICAL_ID_ENTRY_IS_RUNNING_MASK
;
1870 WRITE_ONCE(*(svm
->avic_physical_id_cache
), entry
);
1871 avic_update_iommu_vcpu_affinity(vcpu
, h_physical_id
,
1872 svm
->avic_is_running
);
1875 static void avic_vcpu_put(struct kvm_vcpu
*vcpu
)
1878 struct vcpu_svm
*svm
= to_svm(vcpu
);
1880 if (!kvm_vcpu_apicv_active(vcpu
))
1883 entry
= READ_ONCE(*(svm
->avic_physical_id_cache
));
1884 if (entry
& AVIC_PHYSICAL_ID_ENTRY_IS_RUNNING_MASK
)
1885 avic_update_iommu_vcpu_affinity(vcpu
, -1, 0);
1887 entry
&= ~AVIC_PHYSICAL_ID_ENTRY_IS_RUNNING_MASK
;
1888 WRITE_ONCE(*(svm
->avic_physical_id_cache
), entry
);
1892 * This function is called during VCPU halt/unhalt.
1894 static void avic_set_running(struct kvm_vcpu
*vcpu
, bool is_run
)
1896 struct vcpu_svm
*svm
= to_svm(vcpu
);
1898 svm
->avic_is_running
= is_run
;
1900 avic_vcpu_load(vcpu
, vcpu
->cpu
);
1902 avic_vcpu_put(vcpu
);
1905 static void svm_vcpu_reset(struct kvm_vcpu
*vcpu
, bool init_event
)
1907 struct vcpu_svm
*svm
= to_svm(vcpu
);
1911 vcpu
->arch
.microcode_version
= 0x01000065;
1915 svm
->vcpu
.arch
.apic_base
= APIC_DEFAULT_PHYS_BASE
|
1916 MSR_IA32_APICBASE_ENABLE
;
1917 if (kvm_vcpu_is_reset_bsp(&svm
->vcpu
))
1918 svm
->vcpu
.arch
.apic_base
|= MSR_IA32_APICBASE_BSP
;
1922 kvm_cpuid(vcpu
, &eax
, &dummy
, &dummy
, &dummy
, true);
1923 kvm_register_write(vcpu
, VCPU_REGS_RDX
, eax
);
1925 if (kvm_vcpu_apicv_active(vcpu
) && !init_event
)
1926 avic_update_vapic_bar(svm
, APIC_DEFAULT_PHYS_BASE
);
1929 static int avic_init_vcpu(struct vcpu_svm
*svm
)
1933 if (!kvm_vcpu_apicv_active(&svm
->vcpu
))
1936 ret
= avic_init_backing_page(&svm
->vcpu
);
1940 INIT_LIST_HEAD(&svm
->ir_list
);
1941 spin_lock_init(&svm
->ir_list_lock
);
1946 static struct kvm_vcpu
*svm_create_vcpu(struct kvm
*kvm
, unsigned int id
)
1948 struct vcpu_svm
*svm
;
1950 struct page
*msrpm_pages
;
1951 struct page
*hsave_page
;
1952 struct page
*nested_msrpm_pages
;
1955 svm
= kmem_cache_zalloc(kvm_vcpu_cache
, GFP_KERNEL
);
1961 err
= kvm_vcpu_init(&svm
->vcpu
, kvm
, id
);
1966 page
= alloc_page(GFP_KERNEL
);
1970 msrpm_pages
= alloc_pages(GFP_KERNEL
, MSRPM_ALLOC_ORDER
);
1974 nested_msrpm_pages
= alloc_pages(GFP_KERNEL
, MSRPM_ALLOC_ORDER
);
1975 if (!nested_msrpm_pages
)
1978 hsave_page
= alloc_page(GFP_KERNEL
);
1982 err
= avic_init_vcpu(svm
);
1986 /* We initialize this flag to true to make sure that the is_running
1987 * bit would be set the first time the vcpu is loaded.
1989 svm
->avic_is_running
= true;
1991 svm
->nested
.hsave
= page_address(hsave_page
);
1993 svm
->msrpm
= page_address(msrpm_pages
);
1994 svm_vcpu_init_msrpm(svm
->msrpm
);
1996 svm
->nested
.msrpm
= page_address(nested_msrpm_pages
);
1997 svm_vcpu_init_msrpm(svm
->nested
.msrpm
);
1999 svm
->vmcb
= page_address(page
);
2000 clear_page(svm
->vmcb
);
2001 svm
->vmcb_pa
= __sme_set(page_to_pfn(page
) << PAGE_SHIFT
);
2002 svm
->asid_generation
= 0;
2005 svm_init_osvw(&svm
->vcpu
);
2010 __free_page(hsave_page
);
2012 __free_pages(nested_msrpm_pages
, MSRPM_ALLOC_ORDER
);
2014 __free_pages(msrpm_pages
, MSRPM_ALLOC_ORDER
);
2018 kvm_vcpu_uninit(&svm
->vcpu
);
2020 kmem_cache_free(kvm_vcpu_cache
, svm
);
2022 return ERR_PTR(err
);
2025 static void svm_free_vcpu(struct kvm_vcpu
*vcpu
)
2027 struct vcpu_svm
*svm
= to_svm(vcpu
);
2029 __free_page(pfn_to_page(__sme_clr(svm
->vmcb_pa
) >> PAGE_SHIFT
));
2030 __free_pages(virt_to_page(svm
->msrpm
), MSRPM_ALLOC_ORDER
);
2031 __free_page(virt_to_page(svm
->nested
.hsave
));
2032 __free_pages(virt_to_page(svm
->nested
.msrpm
), MSRPM_ALLOC_ORDER
);
2033 kvm_vcpu_uninit(vcpu
);
2034 kmem_cache_free(kvm_vcpu_cache
, svm
);
2036 * The vmcb page can be recycled, causing a false negative in
2037 * svm_vcpu_load(). So do a full IBPB now.
2039 indirect_branch_prediction_barrier();
2042 static void svm_vcpu_load(struct kvm_vcpu
*vcpu
, int cpu
)
2044 struct vcpu_svm
*svm
= to_svm(vcpu
);
2045 struct svm_cpu_data
*sd
= per_cpu(svm_data
, cpu
);
2048 if (unlikely(cpu
!= vcpu
->cpu
)) {
2049 svm
->asid_generation
= 0;
2050 mark_all_dirty(svm
->vmcb
);
2053 #ifdef CONFIG_X86_64
2054 rdmsrl(MSR_GS_BASE
, to_svm(vcpu
)->host
.gs_base
);
2056 savesegment(fs
, svm
->host
.fs
);
2057 savesegment(gs
, svm
->host
.gs
);
2058 svm
->host
.ldt
= kvm_read_ldt();
2060 for (i
= 0; i
< NR_HOST_SAVE_USER_MSRS
; i
++)
2061 rdmsrl(host_save_user_msrs
[i
], svm
->host_user_msrs
[i
]);
2063 if (static_cpu_has(X86_FEATURE_TSCRATEMSR
)) {
2064 u64 tsc_ratio
= vcpu
->arch
.tsc_scaling_ratio
;
2065 if (tsc_ratio
!= __this_cpu_read(current_tsc_ratio
)) {
2066 __this_cpu_write(current_tsc_ratio
, tsc_ratio
);
2067 wrmsrl(MSR_AMD64_TSC_RATIO
, tsc_ratio
);
2070 /* This assumes that the kernel never uses MSR_TSC_AUX */
2071 if (static_cpu_has(X86_FEATURE_RDTSCP
))
2072 wrmsrl(MSR_TSC_AUX
, svm
->tsc_aux
);
2074 if (sd
->current_vmcb
!= svm
->vmcb
) {
2075 sd
->current_vmcb
= svm
->vmcb
;
2076 indirect_branch_prediction_barrier();
2078 avic_vcpu_load(vcpu
, cpu
);
2081 static void svm_vcpu_put(struct kvm_vcpu
*vcpu
)
2083 struct vcpu_svm
*svm
= to_svm(vcpu
);
2086 avic_vcpu_put(vcpu
);
2088 ++vcpu
->stat
.host_state_reload
;
2089 kvm_load_ldt(svm
->host
.ldt
);
2090 #ifdef CONFIG_X86_64
2091 loadsegment(fs
, svm
->host
.fs
);
2092 wrmsrl(MSR_KERNEL_GS_BASE
, current
->thread
.gsbase
);
2093 load_gs_index(svm
->host
.gs
);
2095 #ifdef CONFIG_X86_32_LAZY_GS
2096 loadsegment(gs
, svm
->host
.gs
);
2099 for (i
= 0; i
< NR_HOST_SAVE_USER_MSRS
; i
++)
2100 wrmsrl(host_save_user_msrs
[i
], svm
->host_user_msrs
[i
]);
2103 static void svm_vcpu_blocking(struct kvm_vcpu
*vcpu
)
2105 avic_set_running(vcpu
, false);
2108 static void svm_vcpu_unblocking(struct kvm_vcpu
*vcpu
)
2110 avic_set_running(vcpu
, true);
2113 static unsigned long svm_get_rflags(struct kvm_vcpu
*vcpu
)
2115 struct vcpu_svm
*svm
= to_svm(vcpu
);
2116 unsigned long rflags
= svm
->vmcb
->save
.rflags
;
2118 if (svm
->nmi_singlestep
) {
2119 /* Hide our flags if they were not set by the guest */
2120 if (!(svm
->nmi_singlestep_guest_rflags
& X86_EFLAGS_TF
))
2121 rflags
&= ~X86_EFLAGS_TF
;
2122 if (!(svm
->nmi_singlestep_guest_rflags
& X86_EFLAGS_RF
))
2123 rflags
&= ~X86_EFLAGS_RF
;
2128 static void svm_set_rflags(struct kvm_vcpu
*vcpu
, unsigned long rflags
)
2130 if (to_svm(vcpu
)->nmi_singlestep
)
2131 rflags
|= (X86_EFLAGS_TF
| X86_EFLAGS_RF
);
2134 * Any change of EFLAGS.VM is accompanied by a reload of SS
2135 * (caused by either a task switch or an inter-privilege IRET),
2136 * so we do not need to update the CPL here.
2138 to_svm(vcpu
)->vmcb
->save
.rflags
= rflags
;
2141 static void svm_cache_reg(struct kvm_vcpu
*vcpu
, enum kvm_reg reg
)
2144 case VCPU_EXREG_PDPTR
:
2145 BUG_ON(!npt_enabled
);
2146 load_pdptrs(vcpu
, vcpu
->arch
.walk_mmu
, kvm_read_cr3(vcpu
));
2153 static void svm_set_vintr(struct vcpu_svm
*svm
)
2155 set_intercept(svm
, INTERCEPT_VINTR
);
2158 static void svm_clear_vintr(struct vcpu_svm
*svm
)
2160 clr_intercept(svm
, INTERCEPT_VINTR
);
2163 static struct vmcb_seg
*svm_seg(struct kvm_vcpu
*vcpu
, int seg
)
2165 struct vmcb_save_area
*save
= &to_svm(vcpu
)->vmcb
->save
;
2168 case VCPU_SREG_CS
: return &save
->cs
;
2169 case VCPU_SREG_DS
: return &save
->ds
;
2170 case VCPU_SREG_ES
: return &save
->es
;
2171 case VCPU_SREG_FS
: return &save
->fs
;
2172 case VCPU_SREG_GS
: return &save
->gs
;
2173 case VCPU_SREG_SS
: return &save
->ss
;
2174 case VCPU_SREG_TR
: return &save
->tr
;
2175 case VCPU_SREG_LDTR
: return &save
->ldtr
;
2181 static u64
svm_get_segment_base(struct kvm_vcpu
*vcpu
, int seg
)
2183 struct vmcb_seg
*s
= svm_seg(vcpu
, seg
);
2188 static void svm_get_segment(struct kvm_vcpu
*vcpu
,
2189 struct kvm_segment
*var
, int seg
)
2191 struct vmcb_seg
*s
= svm_seg(vcpu
, seg
);
2193 var
->base
= s
->base
;
2194 var
->limit
= s
->limit
;
2195 var
->selector
= s
->selector
;
2196 var
->type
= s
->attrib
& SVM_SELECTOR_TYPE_MASK
;
2197 var
->s
= (s
->attrib
>> SVM_SELECTOR_S_SHIFT
) & 1;
2198 var
->dpl
= (s
->attrib
>> SVM_SELECTOR_DPL_SHIFT
) & 3;
2199 var
->present
= (s
->attrib
>> SVM_SELECTOR_P_SHIFT
) & 1;
2200 var
->avl
= (s
->attrib
>> SVM_SELECTOR_AVL_SHIFT
) & 1;
2201 var
->l
= (s
->attrib
>> SVM_SELECTOR_L_SHIFT
) & 1;
2202 var
->db
= (s
->attrib
>> SVM_SELECTOR_DB_SHIFT
) & 1;
2205 * AMD CPUs circa 2014 track the G bit for all segments except CS.
2206 * However, the SVM spec states that the G bit is not observed by the
2207 * CPU, and some VMware virtual CPUs drop the G bit for all segments.
2208 * So let's synthesize a legal G bit for all segments, this helps
2209 * running KVM nested. It also helps cross-vendor migration, because
2210 * Intel's vmentry has a check on the 'G' bit.
2212 var
->g
= s
->limit
> 0xfffff;
2215 * AMD's VMCB does not have an explicit unusable field, so emulate it
2216 * for cross vendor migration purposes by "not present"
2218 var
->unusable
= !var
->present
;
2223 * Work around a bug where the busy flag in the tr selector
2233 * The accessed bit must always be set in the segment
2234 * descriptor cache, although it can be cleared in the
2235 * descriptor, the cached bit always remains at 1. Since
2236 * Intel has a check on this, set it here to support
2237 * cross-vendor migration.
2244 * On AMD CPUs sometimes the DB bit in the segment
2245 * descriptor is left as 1, although the whole segment has
2246 * been made unusable. Clear it here to pass an Intel VMX
2247 * entry check when cross vendor migrating.
2251 /* This is symmetric with svm_set_segment() */
2252 var
->dpl
= to_svm(vcpu
)->vmcb
->save
.cpl
;
2257 static int svm_get_cpl(struct kvm_vcpu
*vcpu
)
2259 struct vmcb_save_area
*save
= &to_svm(vcpu
)->vmcb
->save
;
2264 static void svm_get_idt(struct kvm_vcpu
*vcpu
, struct desc_ptr
*dt
)
2266 struct vcpu_svm
*svm
= to_svm(vcpu
);
2268 dt
->size
= svm
->vmcb
->save
.idtr
.limit
;
2269 dt
->address
= svm
->vmcb
->save
.idtr
.base
;
2272 static void svm_set_idt(struct kvm_vcpu
*vcpu
, struct desc_ptr
*dt
)
2274 struct vcpu_svm
*svm
= to_svm(vcpu
);
2276 svm
->vmcb
->save
.idtr
.limit
= dt
->size
;
2277 svm
->vmcb
->save
.idtr
.base
= dt
->address
;
2278 mark_dirty(svm
->vmcb
, VMCB_DT
);
2281 static void svm_get_gdt(struct kvm_vcpu
*vcpu
, struct desc_ptr
*dt
)
2283 struct vcpu_svm
*svm
= to_svm(vcpu
);
2285 dt
->size
= svm
->vmcb
->save
.gdtr
.limit
;
2286 dt
->address
= svm
->vmcb
->save
.gdtr
.base
;
2289 static void svm_set_gdt(struct kvm_vcpu
*vcpu
, struct desc_ptr
*dt
)
2291 struct vcpu_svm
*svm
= to_svm(vcpu
);
2293 svm
->vmcb
->save
.gdtr
.limit
= dt
->size
;
2294 svm
->vmcb
->save
.gdtr
.base
= dt
->address
;
2295 mark_dirty(svm
->vmcb
, VMCB_DT
);
2298 static void svm_decache_cr0_guest_bits(struct kvm_vcpu
*vcpu
)
2302 static void svm_decache_cr3(struct kvm_vcpu
*vcpu
)
2306 static void svm_decache_cr4_guest_bits(struct kvm_vcpu
*vcpu
)
2310 static void update_cr0_intercept(struct vcpu_svm
*svm
)
2312 ulong gcr0
= svm
->vcpu
.arch
.cr0
;
2313 u64
*hcr0
= &svm
->vmcb
->save
.cr0
;
2315 *hcr0
= (*hcr0
& ~SVM_CR0_SELECTIVE_MASK
)
2316 | (gcr0
& SVM_CR0_SELECTIVE_MASK
);
2318 mark_dirty(svm
->vmcb
, VMCB_CR
);
2320 if (gcr0
== *hcr0
) {
2321 clr_cr_intercept(svm
, INTERCEPT_CR0_READ
);
2322 clr_cr_intercept(svm
, INTERCEPT_CR0_WRITE
);
2324 set_cr_intercept(svm
, INTERCEPT_CR0_READ
);
2325 set_cr_intercept(svm
, INTERCEPT_CR0_WRITE
);
2329 static void svm_set_cr0(struct kvm_vcpu
*vcpu
, unsigned long cr0
)
2331 struct vcpu_svm
*svm
= to_svm(vcpu
);
2333 #ifdef CONFIG_X86_64
2334 if (vcpu
->arch
.efer
& EFER_LME
) {
2335 if (!is_paging(vcpu
) && (cr0
& X86_CR0_PG
)) {
2336 vcpu
->arch
.efer
|= EFER_LMA
;
2337 svm
->vmcb
->save
.efer
|= EFER_LMA
| EFER_LME
;
2340 if (is_paging(vcpu
) && !(cr0
& X86_CR0_PG
)) {
2341 vcpu
->arch
.efer
&= ~EFER_LMA
;
2342 svm
->vmcb
->save
.efer
&= ~(EFER_LMA
| EFER_LME
);
2346 vcpu
->arch
.cr0
= cr0
;
2349 cr0
|= X86_CR0_PG
| X86_CR0_WP
;
2352 * re-enable caching here because the QEMU bios
2353 * does not do it - this results in some delay at
2356 if (kvm_check_has_quirk(vcpu
->kvm
, KVM_X86_QUIRK_CD_NW_CLEARED
))
2357 cr0
&= ~(X86_CR0_CD
| X86_CR0_NW
);
2358 svm
->vmcb
->save
.cr0
= cr0
;
2359 mark_dirty(svm
->vmcb
, VMCB_CR
);
2360 update_cr0_intercept(svm
);
2363 static int svm_set_cr4(struct kvm_vcpu
*vcpu
, unsigned long cr4
)
2365 unsigned long host_cr4_mce
= cr4_read_shadow() & X86_CR4_MCE
;
2366 unsigned long old_cr4
= to_svm(vcpu
)->vmcb
->save
.cr4
;
2368 if (cr4
& X86_CR4_VMXE
)
2371 if (npt_enabled
&& ((old_cr4
^ cr4
) & X86_CR4_PGE
))
2372 svm_flush_tlb(vcpu
, true);
2374 vcpu
->arch
.cr4
= cr4
;
2377 cr4
|= host_cr4_mce
;
2378 to_svm(vcpu
)->vmcb
->save
.cr4
= cr4
;
2379 mark_dirty(to_svm(vcpu
)->vmcb
, VMCB_CR
);
2383 static void svm_set_segment(struct kvm_vcpu
*vcpu
,
2384 struct kvm_segment
*var
, int seg
)
2386 struct vcpu_svm
*svm
= to_svm(vcpu
);
2387 struct vmcb_seg
*s
= svm_seg(vcpu
, seg
);
2389 s
->base
= var
->base
;
2390 s
->limit
= var
->limit
;
2391 s
->selector
= var
->selector
;
2392 s
->attrib
= (var
->type
& SVM_SELECTOR_TYPE_MASK
);
2393 s
->attrib
|= (var
->s
& 1) << SVM_SELECTOR_S_SHIFT
;
2394 s
->attrib
|= (var
->dpl
& 3) << SVM_SELECTOR_DPL_SHIFT
;
2395 s
->attrib
|= ((var
->present
& 1) && !var
->unusable
) << SVM_SELECTOR_P_SHIFT
;
2396 s
->attrib
|= (var
->avl
& 1) << SVM_SELECTOR_AVL_SHIFT
;
2397 s
->attrib
|= (var
->l
& 1) << SVM_SELECTOR_L_SHIFT
;
2398 s
->attrib
|= (var
->db
& 1) << SVM_SELECTOR_DB_SHIFT
;
2399 s
->attrib
|= (var
->g
& 1) << SVM_SELECTOR_G_SHIFT
;
2402 * This is always accurate, except if SYSRET returned to a segment
2403 * with SS.DPL != 3. Intel does not have this quirk, and always
2404 * forces SS.DPL to 3 on sysret, so we ignore that case; fixing it
2405 * would entail passing the CPL to userspace and back.
2407 if (seg
== VCPU_SREG_SS
)
2408 /* This is symmetric with svm_get_segment() */
2409 svm
->vmcb
->save
.cpl
= (var
->dpl
& 3);
2411 mark_dirty(svm
->vmcb
, VMCB_SEG
);
2414 static void update_bp_intercept(struct kvm_vcpu
*vcpu
)
2416 struct vcpu_svm
*svm
= to_svm(vcpu
);
2418 clr_exception_intercept(svm
, BP_VECTOR
);
2420 if (vcpu
->guest_debug
& KVM_GUESTDBG_ENABLE
) {
2421 if (vcpu
->guest_debug
& KVM_GUESTDBG_USE_SW_BP
)
2422 set_exception_intercept(svm
, BP_VECTOR
);
2424 vcpu
->guest_debug
= 0;
2427 static void new_asid(struct vcpu_svm
*svm
, struct svm_cpu_data
*sd
)
2429 if (sd
->next_asid
> sd
->max_asid
) {
2430 ++sd
->asid_generation
;
2431 sd
->next_asid
= sd
->min_asid
;
2432 svm
->vmcb
->control
.tlb_ctl
= TLB_CONTROL_FLUSH_ALL_ASID
;
2435 svm
->asid_generation
= sd
->asid_generation
;
2436 svm
->vmcb
->control
.asid
= sd
->next_asid
++;
2438 mark_dirty(svm
->vmcb
, VMCB_ASID
);
2441 static u64
svm_get_dr6(struct kvm_vcpu
*vcpu
)
2443 return to_svm(vcpu
)->vmcb
->save
.dr6
;
2446 static void svm_set_dr6(struct kvm_vcpu
*vcpu
, unsigned long value
)
2448 struct vcpu_svm
*svm
= to_svm(vcpu
);
2450 svm
->vmcb
->save
.dr6
= value
;
2451 mark_dirty(svm
->vmcb
, VMCB_DR
);
2454 static void svm_sync_dirty_debug_regs(struct kvm_vcpu
*vcpu
)
2456 struct vcpu_svm
*svm
= to_svm(vcpu
);
2458 get_debugreg(vcpu
->arch
.db
[0], 0);
2459 get_debugreg(vcpu
->arch
.db
[1], 1);
2460 get_debugreg(vcpu
->arch
.db
[2], 2);
2461 get_debugreg(vcpu
->arch
.db
[3], 3);
2462 vcpu
->arch
.dr6
= svm_get_dr6(vcpu
);
2463 vcpu
->arch
.dr7
= svm
->vmcb
->save
.dr7
;
2465 vcpu
->arch
.switch_db_regs
&= ~KVM_DEBUGREG_WONT_EXIT
;
2466 set_dr_intercepts(svm
);
2469 static void svm_set_dr7(struct kvm_vcpu
*vcpu
, unsigned long value
)
2471 struct vcpu_svm
*svm
= to_svm(vcpu
);
2473 svm
->vmcb
->save
.dr7
= value
;
2474 mark_dirty(svm
->vmcb
, VMCB_DR
);
2477 static int pf_interception(struct vcpu_svm
*svm
)
2479 u64 fault_address
= __sme_clr(svm
->vmcb
->control
.exit_info_2
);
2480 u64 error_code
= svm
->vmcb
->control
.exit_info_1
;
2482 return kvm_handle_page_fault(&svm
->vcpu
, error_code
, fault_address
,
2483 static_cpu_has(X86_FEATURE_DECODEASSISTS
) ?
2484 svm
->vmcb
->control
.insn_bytes
: NULL
,
2485 svm
->vmcb
->control
.insn_len
);
2488 static int npf_interception(struct vcpu_svm
*svm
)
2490 u64 fault_address
= __sme_clr(svm
->vmcb
->control
.exit_info_2
);
2491 u64 error_code
= svm
->vmcb
->control
.exit_info_1
;
2493 trace_kvm_page_fault(fault_address
, error_code
);
2494 return kvm_mmu_page_fault(&svm
->vcpu
, fault_address
, error_code
,
2495 static_cpu_has(X86_FEATURE_DECODEASSISTS
) ?
2496 svm
->vmcb
->control
.insn_bytes
: NULL
,
2497 svm
->vmcb
->control
.insn_len
);
2500 static int db_interception(struct vcpu_svm
*svm
)
2502 struct kvm_run
*kvm_run
= svm
->vcpu
.run
;
2504 if (!(svm
->vcpu
.guest_debug
&
2505 (KVM_GUESTDBG_SINGLESTEP
| KVM_GUESTDBG_USE_HW_BP
)) &&
2506 !svm
->nmi_singlestep
) {
2507 kvm_queue_exception(&svm
->vcpu
, DB_VECTOR
);
2511 if (svm
->nmi_singlestep
) {
2512 disable_nmi_singlestep(svm
);
2515 if (svm
->vcpu
.guest_debug
&
2516 (KVM_GUESTDBG_SINGLESTEP
| KVM_GUESTDBG_USE_HW_BP
)) {
2517 kvm_run
->exit_reason
= KVM_EXIT_DEBUG
;
2518 kvm_run
->debug
.arch
.pc
=
2519 svm
->vmcb
->save
.cs
.base
+ svm
->vmcb
->save
.rip
;
2520 kvm_run
->debug
.arch
.exception
= DB_VECTOR
;
2527 static int bp_interception(struct vcpu_svm
*svm
)
2529 struct kvm_run
*kvm_run
= svm
->vcpu
.run
;
2531 kvm_run
->exit_reason
= KVM_EXIT_DEBUG
;
2532 kvm_run
->debug
.arch
.pc
= svm
->vmcb
->save
.cs
.base
+ svm
->vmcb
->save
.rip
;
2533 kvm_run
->debug
.arch
.exception
= BP_VECTOR
;
2537 static int ud_interception(struct vcpu_svm
*svm
)
2541 er
= emulate_instruction(&svm
->vcpu
, EMULTYPE_TRAP_UD
);
2542 if (er
== EMULATE_USER_EXIT
)
2544 if (er
!= EMULATE_DONE
)
2545 kvm_queue_exception(&svm
->vcpu
, UD_VECTOR
);
2549 static int ac_interception(struct vcpu_svm
*svm
)
2551 kvm_queue_exception_e(&svm
->vcpu
, AC_VECTOR
, 0);
2555 static bool is_erratum_383(void)
2560 if (!erratum_383_found
)
2563 value
= native_read_msr_safe(MSR_IA32_MC0_STATUS
, &err
);
2567 /* Bit 62 may or may not be set for this mce */
2568 value
&= ~(1ULL << 62);
2570 if (value
!= 0xb600000000010015ULL
)
2573 /* Clear MCi_STATUS registers */
2574 for (i
= 0; i
< 6; ++i
)
2575 native_write_msr_safe(MSR_IA32_MCx_STATUS(i
), 0, 0);
2577 value
= native_read_msr_safe(MSR_IA32_MCG_STATUS
, &err
);
2581 value
&= ~(1ULL << 2);
2582 low
= lower_32_bits(value
);
2583 high
= upper_32_bits(value
);
2585 native_write_msr_safe(MSR_IA32_MCG_STATUS
, low
, high
);
2588 /* Flush tlb to evict multi-match entries */
2594 static void svm_handle_mce(struct vcpu_svm
*svm
)
2596 if (is_erratum_383()) {
2598 * Erratum 383 triggered. Guest state is corrupt so kill the
2601 pr_err("KVM: Guest triggered AMD Erratum 383\n");
2603 kvm_make_request(KVM_REQ_TRIPLE_FAULT
, &svm
->vcpu
);
2609 * On an #MC intercept the MCE handler is not called automatically in
2610 * the host. So do it by hand here.
2614 /* not sure if we ever come back to this point */
2619 static int mc_interception(struct vcpu_svm
*svm
)
2624 static int shutdown_interception(struct vcpu_svm
*svm
)
2626 struct kvm_run
*kvm_run
= svm
->vcpu
.run
;
2629 * VMCB is undefined after a SHUTDOWN intercept
2630 * so reinitialize it.
2632 clear_page(svm
->vmcb
);
2635 kvm_run
->exit_reason
= KVM_EXIT_SHUTDOWN
;
2639 static int io_interception(struct vcpu_svm
*svm
)
2641 struct kvm_vcpu
*vcpu
= &svm
->vcpu
;
2642 u32 io_info
= svm
->vmcb
->control
.exit_info_1
; /* address size bug? */
2643 int size
, in
, string
, ret
;
2646 ++svm
->vcpu
.stat
.io_exits
;
2647 string
= (io_info
& SVM_IOIO_STR_MASK
) != 0;
2648 in
= (io_info
& SVM_IOIO_TYPE_MASK
) != 0;
2650 return emulate_instruction(vcpu
, 0) == EMULATE_DONE
;
2652 port
= io_info
>> 16;
2653 size
= (io_info
& SVM_IOIO_SIZE_MASK
) >> SVM_IOIO_SIZE_SHIFT
;
2654 svm
->next_rip
= svm
->vmcb
->control
.exit_info_2
;
2655 ret
= kvm_skip_emulated_instruction(&svm
->vcpu
);
2658 * TODO: we might be squashing a KVM_GUESTDBG_SINGLESTEP-triggered
2659 * KVM_EXIT_DEBUG here.
2662 return kvm_fast_pio_in(vcpu
, size
, port
) && ret
;
2664 return kvm_fast_pio_out(vcpu
, size
, port
) && ret
;
2667 static int nmi_interception(struct vcpu_svm
*svm
)
2672 static int intr_interception(struct vcpu_svm
*svm
)
2674 ++svm
->vcpu
.stat
.irq_exits
;
2678 static int nop_on_interception(struct vcpu_svm
*svm
)
2683 static int halt_interception(struct vcpu_svm
*svm
)
2685 svm
->next_rip
= kvm_rip_read(&svm
->vcpu
) + 1;
2686 return kvm_emulate_halt(&svm
->vcpu
);
2689 static int vmmcall_interception(struct vcpu_svm
*svm
)
2691 svm
->next_rip
= kvm_rip_read(&svm
->vcpu
) + 3;
2692 return kvm_emulate_hypercall(&svm
->vcpu
);
2695 static unsigned long nested_svm_get_tdp_cr3(struct kvm_vcpu
*vcpu
)
2697 struct vcpu_svm
*svm
= to_svm(vcpu
);
2699 return svm
->nested
.nested_cr3
;
2702 static u64
nested_svm_get_tdp_pdptr(struct kvm_vcpu
*vcpu
, int index
)
2704 struct vcpu_svm
*svm
= to_svm(vcpu
);
2705 u64 cr3
= svm
->nested
.nested_cr3
;
2709 ret
= kvm_vcpu_read_guest_page(vcpu
, gpa_to_gfn(__sme_clr(cr3
)), &pdpte
,
2710 offset_in_page(cr3
) + index
* 8, 8);
2716 static void nested_svm_set_tdp_cr3(struct kvm_vcpu
*vcpu
,
2719 struct vcpu_svm
*svm
= to_svm(vcpu
);
2721 svm
->vmcb
->control
.nested_cr3
= __sme_set(root
);
2722 mark_dirty(svm
->vmcb
, VMCB_NPT
);
2723 svm_flush_tlb(vcpu
, true);
2726 static void nested_svm_inject_npf_exit(struct kvm_vcpu
*vcpu
,
2727 struct x86_exception
*fault
)
2729 struct vcpu_svm
*svm
= to_svm(vcpu
);
2731 if (svm
->vmcb
->control
.exit_code
!= SVM_EXIT_NPF
) {
2733 * TODO: track the cause of the nested page fault, and
2734 * correctly fill in the high bits of exit_info_1.
2736 svm
->vmcb
->control
.exit_code
= SVM_EXIT_NPF
;
2737 svm
->vmcb
->control
.exit_code_hi
= 0;
2738 svm
->vmcb
->control
.exit_info_1
= (1ULL << 32);
2739 svm
->vmcb
->control
.exit_info_2
= fault
->address
;
2742 svm
->vmcb
->control
.exit_info_1
&= ~0xffffffffULL
;
2743 svm
->vmcb
->control
.exit_info_1
|= fault
->error_code
;
2746 * The present bit is always zero for page structure faults on real
2749 if (svm
->vmcb
->control
.exit_info_1
& (2ULL << 32))
2750 svm
->vmcb
->control
.exit_info_1
&= ~1;
2752 nested_svm_vmexit(svm
);
2755 static void nested_svm_init_mmu_context(struct kvm_vcpu
*vcpu
)
2757 WARN_ON(mmu_is_nested(vcpu
));
2758 kvm_init_shadow_mmu(vcpu
);
2759 vcpu
->arch
.mmu
.set_cr3
= nested_svm_set_tdp_cr3
;
2760 vcpu
->arch
.mmu
.get_cr3
= nested_svm_get_tdp_cr3
;
2761 vcpu
->arch
.mmu
.get_pdptr
= nested_svm_get_tdp_pdptr
;
2762 vcpu
->arch
.mmu
.inject_page_fault
= nested_svm_inject_npf_exit
;
2763 vcpu
->arch
.mmu
.shadow_root_level
= get_npt_level(vcpu
);
2764 reset_shadow_zero_bits_mask(vcpu
, &vcpu
->arch
.mmu
);
2765 vcpu
->arch
.walk_mmu
= &vcpu
->arch
.nested_mmu
;
2768 static void nested_svm_uninit_mmu_context(struct kvm_vcpu
*vcpu
)
2770 vcpu
->arch
.walk_mmu
= &vcpu
->arch
.mmu
;
2773 static int nested_svm_check_permissions(struct vcpu_svm
*svm
)
2775 if (!(svm
->vcpu
.arch
.efer
& EFER_SVME
) ||
2776 !is_paging(&svm
->vcpu
)) {
2777 kvm_queue_exception(&svm
->vcpu
, UD_VECTOR
);
2781 if (svm
->vmcb
->save
.cpl
) {
2782 kvm_inject_gp(&svm
->vcpu
, 0);
2789 static int nested_svm_check_exception(struct vcpu_svm
*svm
, unsigned nr
,
2790 bool has_error_code
, u32 error_code
)
2794 if (!is_guest_mode(&svm
->vcpu
))
2797 vmexit
= nested_svm_intercept(svm
);
2798 if (vmexit
!= NESTED_EXIT_DONE
)
2801 svm
->vmcb
->control
.exit_code
= SVM_EXIT_EXCP_BASE
+ nr
;
2802 svm
->vmcb
->control
.exit_code_hi
= 0;
2803 svm
->vmcb
->control
.exit_info_1
= error_code
;
2806 * FIXME: we should not write CR2 when L1 intercepts an L2 #PF exception.
2807 * The fix is to add the ancillary datum (CR2 or DR6) to structs
2808 * kvm_queued_exception and kvm_vcpu_events, so that CR2 and DR6 can be
2809 * written only when inject_pending_event runs (DR6 would written here
2810 * too). This should be conditional on a new capability---if the
2811 * capability is disabled, kvm_multiple_exception would write the
2812 * ancillary information to CR2 or DR6, for backwards ABI-compatibility.
2814 if (svm
->vcpu
.arch
.exception
.nested_apf
)
2815 svm
->vmcb
->control
.exit_info_2
= svm
->vcpu
.arch
.apf
.nested_apf_token
;
2817 svm
->vmcb
->control
.exit_info_2
= svm
->vcpu
.arch
.cr2
;
2819 svm
->nested
.exit_required
= true;
2823 /* This function returns true if it is save to enable the irq window */
2824 static inline bool nested_svm_intr(struct vcpu_svm
*svm
)
2826 if (!is_guest_mode(&svm
->vcpu
))
2829 if (!(svm
->vcpu
.arch
.hflags
& HF_VINTR_MASK
))
2832 if (!(svm
->vcpu
.arch
.hflags
& HF_HIF_MASK
))
2836 * if vmexit was already requested (by intercepted exception
2837 * for instance) do not overwrite it with "external interrupt"
2840 if (svm
->nested
.exit_required
)
2843 svm
->vmcb
->control
.exit_code
= SVM_EXIT_INTR
;
2844 svm
->vmcb
->control
.exit_info_1
= 0;
2845 svm
->vmcb
->control
.exit_info_2
= 0;
2847 if (svm
->nested
.intercept
& 1ULL) {
2849 * The #vmexit can't be emulated here directly because this
2850 * code path runs with irqs and preemption disabled. A
2851 * #vmexit emulation might sleep. Only signal request for
2854 svm
->nested
.exit_required
= true;
2855 trace_kvm_nested_intr_vmexit(svm
->vmcb
->save
.rip
);
2862 /* This function returns true if it is save to enable the nmi window */
2863 static inline bool nested_svm_nmi(struct vcpu_svm
*svm
)
2865 if (!is_guest_mode(&svm
->vcpu
))
2868 if (!(svm
->nested
.intercept
& (1ULL << INTERCEPT_NMI
)))
2871 svm
->vmcb
->control
.exit_code
= SVM_EXIT_NMI
;
2872 svm
->nested
.exit_required
= true;
2877 static void *nested_svm_map(struct vcpu_svm
*svm
, u64 gpa
, struct page
**_page
)
2883 page
= kvm_vcpu_gfn_to_page(&svm
->vcpu
, gpa
>> PAGE_SHIFT
);
2884 if (is_error_page(page
))
2892 kvm_inject_gp(&svm
->vcpu
, 0);
2897 static void nested_svm_unmap(struct page
*page
)
2900 kvm_release_page_dirty(page
);
2903 static int nested_svm_intercept_ioio(struct vcpu_svm
*svm
)
2905 unsigned port
, size
, iopm_len
;
2910 if (!(svm
->nested
.intercept
& (1ULL << INTERCEPT_IOIO_PROT
)))
2911 return NESTED_EXIT_HOST
;
2913 port
= svm
->vmcb
->control
.exit_info_1
>> 16;
2914 size
= (svm
->vmcb
->control
.exit_info_1
& SVM_IOIO_SIZE_MASK
) >>
2915 SVM_IOIO_SIZE_SHIFT
;
2916 gpa
= svm
->nested
.vmcb_iopm
+ (port
/ 8);
2917 start_bit
= port
% 8;
2918 iopm_len
= (start_bit
+ size
> 8) ? 2 : 1;
2919 mask
= (0xf >> (4 - size
)) << start_bit
;
2922 if (kvm_vcpu_read_guest(&svm
->vcpu
, gpa
, &val
, iopm_len
))
2923 return NESTED_EXIT_DONE
;
2925 return (val
& mask
) ? NESTED_EXIT_DONE
: NESTED_EXIT_HOST
;
2928 static int nested_svm_exit_handled_msr(struct vcpu_svm
*svm
)
2930 u32 offset
, msr
, value
;
2933 if (!(svm
->nested
.intercept
& (1ULL << INTERCEPT_MSR_PROT
)))
2934 return NESTED_EXIT_HOST
;
2936 msr
= svm
->vcpu
.arch
.regs
[VCPU_REGS_RCX
];
2937 offset
= svm_msrpm_offset(msr
);
2938 write
= svm
->vmcb
->control
.exit_info_1
& 1;
2939 mask
= 1 << ((2 * (msr
& 0xf)) + write
);
2941 if (offset
== MSR_INVALID
)
2942 return NESTED_EXIT_DONE
;
2944 /* Offset is in 32 bit units but need in 8 bit units */
2947 if (kvm_vcpu_read_guest(&svm
->vcpu
, svm
->nested
.vmcb_msrpm
+ offset
, &value
, 4))
2948 return NESTED_EXIT_DONE
;
2950 return (value
& mask
) ? NESTED_EXIT_DONE
: NESTED_EXIT_HOST
;
2953 /* DB exceptions for our internal use must not cause vmexit */
2954 static int nested_svm_intercept_db(struct vcpu_svm
*svm
)
2958 /* if we're not singlestepping, it's not ours */
2959 if (!svm
->nmi_singlestep
)
2960 return NESTED_EXIT_DONE
;
2962 /* if it's not a singlestep exception, it's not ours */
2963 if (kvm_get_dr(&svm
->vcpu
, 6, &dr6
))
2964 return NESTED_EXIT_DONE
;
2965 if (!(dr6
& DR6_BS
))
2966 return NESTED_EXIT_DONE
;
2968 /* if the guest is singlestepping, it should get the vmexit */
2969 if (svm
->nmi_singlestep_guest_rflags
& X86_EFLAGS_TF
) {
2970 disable_nmi_singlestep(svm
);
2971 return NESTED_EXIT_DONE
;
2974 /* it's ours, the nested hypervisor must not see this one */
2975 return NESTED_EXIT_HOST
;
2978 static int nested_svm_exit_special(struct vcpu_svm
*svm
)
2980 u32 exit_code
= svm
->vmcb
->control
.exit_code
;
2982 switch (exit_code
) {
2985 case SVM_EXIT_EXCP_BASE
+ MC_VECTOR
:
2986 return NESTED_EXIT_HOST
;
2988 /* For now we are always handling NPFs when using them */
2990 return NESTED_EXIT_HOST
;
2992 case SVM_EXIT_EXCP_BASE
+ PF_VECTOR
:
2993 /* When we're shadowing, trap PFs, but not async PF */
2994 if (!npt_enabled
&& svm
->vcpu
.arch
.apf
.host_apf_reason
== 0)
2995 return NESTED_EXIT_HOST
;
3001 return NESTED_EXIT_CONTINUE
;
3005 * If this function returns true, this #vmexit was already handled
3007 static int nested_svm_intercept(struct vcpu_svm
*svm
)
3009 u32 exit_code
= svm
->vmcb
->control
.exit_code
;
3010 int vmexit
= NESTED_EXIT_HOST
;
3012 switch (exit_code
) {
3014 vmexit
= nested_svm_exit_handled_msr(svm
);
3017 vmexit
= nested_svm_intercept_ioio(svm
);
3019 case SVM_EXIT_READ_CR0
... SVM_EXIT_WRITE_CR8
: {
3020 u32 bit
= 1U << (exit_code
- SVM_EXIT_READ_CR0
);
3021 if (svm
->nested
.intercept_cr
& bit
)
3022 vmexit
= NESTED_EXIT_DONE
;
3025 case SVM_EXIT_READ_DR0
... SVM_EXIT_WRITE_DR7
: {
3026 u32 bit
= 1U << (exit_code
- SVM_EXIT_READ_DR0
);
3027 if (svm
->nested
.intercept_dr
& bit
)
3028 vmexit
= NESTED_EXIT_DONE
;
3031 case SVM_EXIT_EXCP_BASE
... SVM_EXIT_EXCP_BASE
+ 0x1f: {
3032 u32 excp_bits
= 1 << (exit_code
- SVM_EXIT_EXCP_BASE
);
3033 if (svm
->nested
.intercept_exceptions
& excp_bits
) {
3034 if (exit_code
== SVM_EXIT_EXCP_BASE
+ DB_VECTOR
)
3035 vmexit
= nested_svm_intercept_db(svm
);
3037 vmexit
= NESTED_EXIT_DONE
;
3039 /* async page fault always cause vmexit */
3040 else if ((exit_code
== SVM_EXIT_EXCP_BASE
+ PF_VECTOR
) &&
3041 svm
->vcpu
.arch
.exception
.nested_apf
!= 0)
3042 vmexit
= NESTED_EXIT_DONE
;
3045 case SVM_EXIT_ERR
: {
3046 vmexit
= NESTED_EXIT_DONE
;
3050 u64 exit_bits
= 1ULL << (exit_code
- SVM_EXIT_INTR
);
3051 if (svm
->nested
.intercept
& exit_bits
)
3052 vmexit
= NESTED_EXIT_DONE
;
3059 static int nested_svm_exit_handled(struct vcpu_svm
*svm
)
3063 vmexit
= nested_svm_intercept(svm
);
3065 if (vmexit
== NESTED_EXIT_DONE
)
3066 nested_svm_vmexit(svm
);
3071 static inline void copy_vmcb_control_area(struct vmcb
*dst_vmcb
, struct vmcb
*from_vmcb
)
3073 struct vmcb_control_area
*dst
= &dst_vmcb
->control
;
3074 struct vmcb_control_area
*from
= &from_vmcb
->control
;
3076 dst
->intercept_cr
= from
->intercept_cr
;
3077 dst
->intercept_dr
= from
->intercept_dr
;
3078 dst
->intercept_exceptions
= from
->intercept_exceptions
;
3079 dst
->intercept
= from
->intercept
;
3080 dst
->iopm_base_pa
= from
->iopm_base_pa
;
3081 dst
->msrpm_base_pa
= from
->msrpm_base_pa
;
3082 dst
->tsc_offset
= from
->tsc_offset
;
3083 dst
->asid
= from
->asid
;
3084 dst
->tlb_ctl
= from
->tlb_ctl
;
3085 dst
->int_ctl
= from
->int_ctl
;
3086 dst
->int_vector
= from
->int_vector
;
3087 dst
->int_state
= from
->int_state
;
3088 dst
->exit_code
= from
->exit_code
;
3089 dst
->exit_code_hi
= from
->exit_code_hi
;
3090 dst
->exit_info_1
= from
->exit_info_1
;
3091 dst
->exit_info_2
= from
->exit_info_2
;
3092 dst
->exit_int_info
= from
->exit_int_info
;
3093 dst
->exit_int_info_err
= from
->exit_int_info_err
;
3094 dst
->nested_ctl
= from
->nested_ctl
;
3095 dst
->event_inj
= from
->event_inj
;
3096 dst
->event_inj_err
= from
->event_inj_err
;
3097 dst
->nested_cr3
= from
->nested_cr3
;
3098 dst
->virt_ext
= from
->virt_ext
;
3101 static int nested_svm_vmexit(struct vcpu_svm
*svm
)
3103 struct vmcb
*nested_vmcb
;
3104 struct vmcb
*hsave
= svm
->nested
.hsave
;
3105 struct vmcb
*vmcb
= svm
->vmcb
;
3108 trace_kvm_nested_vmexit_inject(vmcb
->control
.exit_code
,
3109 vmcb
->control
.exit_info_1
,
3110 vmcb
->control
.exit_info_2
,
3111 vmcb
->control
.exit_int_info
,
3112 vmcb
->control
.exit_int_info_err
,
3115 nested_vmcb
= nested_svm_map(svm
, svm
->nested
.vmcb
, &page
);
3119 /* Exit Guest-Mode */
3120 leave_guest_mode(&svm
->vcpu
);
3121 svm
->nested
.vmcb
= 0;
3123 /* Give the current vmcb to the guest */
3126 nested_vmcb
->save
.es
= vmcb
->save
.es
;
3127 nested_vmcb
->save
.cs
= vmcb
->save
.cs
;
3128 nested_vmcb
->save
.ss
= vmcb
->save
.ss
;
3129 nested_vmcb
->save
.ds
= vmcb
->save
.ds
;
3130 nested_vmcb
->save
.gdtr
= vmcb
->save
.gdtr
;
3131 nested_vmcb
->save
.idtr
= vmcb
->save
.idtr
;
3132 nested_vmcb
->save
.efer
= svm
->vcpu
.arch
.efer
;
3133 nested_vmcb
->save
.cr0
= kvm_read_cr0(&svm
->vcpu
);
3134 nested_vmcb
->save
.cr3
= kvm_read_cr3(&svm
->vcpu
);
3135 nested_vmcb
->save
.cr2
= vmcb
->save
.cr2
;
3136 nested_vmcb
->save
.cr4
= svm
->vcpu
.arch
.cr4
;
3137 nested_vmcb
->save
.rflags
= kvm_get_rflags(&svm
->vcpu
);
3138 nested_vmcb
->save
.rip
= vmcb
->save
.rip
;
3139 nested_vmcb
->save
.rsp
= vmcb
->save
.rsp
;
3140 nested_vmcb
->save
.rax
= vmcb
->save
.rax
;
3141 nested_vmcb
->save
.dr7
= vmcb
->save
.dr7
;
3142 nested_vmcb
->save
.dr6
= vmcb
->save
.dr6
;
3143 nested_vmcb
->save
.cpl
= vmcb
->save
.cpl
;
3145 nested_vmcb
->control
.int_ctl
= vmcb
->control
.int_ctl
;
3146 nested_vmcb
->control
.int_vector
= vmcb
->control
.int_vector
;
3147 nested_vmcb
->control
.int_state
= vmcb
->control
.int_state
;
3148 nested_vmcb
->control
.exit_code
= vmcb
->control
.exit_code
;
3149 nested_vmcb
->control
.exit_code_hi
= vmcb
->control
.exit_code_hi
;
3150 nested_vmcb
->control
.exit_info_1
= vmcb
->control
.exit_info_1
;
3151 nested_vmcb
->control
.exit_info_2
= vmcb
->control
.exit_info_2
;
3152 nested_vmcb
->control
.exit_int_info
= vmcb
->control
.exit_int_info
;
3153 nested_vmcb
->control
.exit_int_info_err
= vmcb
->control
.exit_int_info_err
;
3155 if (svm
->nrips_enabled
)
3156 nested_vmcb
->control
.next_rip
= vmcb
->control
.next_rip
;
3159 * If we emulate a VMRUN/#VMEXIT in the same host #vmexit cycle we have
3160 * to make sure that we do not lose injected events. So check event_inj
3161 * here and copy it to exit_int_info if it is valid.
3162 * Exit_int_info and event_inj can't be both valid because the case
3163 * below only happens on a VMRUN instruction intercept which has
3164 * no valid exit_int_info set.
3166 if (vmcb
->control
.event_inj
& SVM_EVTINJ_VALID
) {
3167 struct vmcb_control_area
*nc
= &nested_vmcb
->control
;
3169 nc
->exit_int_info
= vmcb
->control
.event_inj
;
3170 nc
->exit_int_info_err
= vmcb
->control
.event_inj_err
;
3173 nested_vmcb
->control
.tlb_ctl
= 0;
3174 nested_vmcb
->control
.event_inj
= 0;
3175 nested_vmcb
->control
.event_inj_err
= 0;
3177 /* We always set V_INTR_MASKING and remember the old value in hflags */
3178 if (!(svm
->vcpu
.arch
.hflags
& HF_VINTR_MASK
))
3179 nested_vmcb
->control
.int_ctl
&= ~V_INTR_MASKING_MASK
;
3181 /* Restore the original control entries */
3182 copy_vmcb_control_area(vmcb
, hsave
);
3184 kvm_clear_exception_queue(&svm
->vcpu
);
3185 kvm_clear_interrupt_queue(&svm
->vcpu
);
3187 svm
->nested
.nested_cr3
= 0;
3189 /* Restore selected save entries */
3190 svm
->vmcb
->save
.es
= hsave
->save
.es
;
3191 svm
->vmcb
->save
.cs
= hsave
->save
.cs
;
3192 svm
->vmcb
->save
.ss
= hsave
->save
.ss
;
3193 svm
->vmcb
->save
.ds
= hsave
->save
.ds
;
3194 svm
->vmcb
->save
.gdtr
= hsave
->save
.gdtr
;
3195 svm
->vmcb
->save
.idtr
= hsave
->save
.idtr
;
3196 kvm_set_rflags(&svm
->vcpu
, hsave
->save
.rflags
);
3197 svm_set_efer(&svm
->vcpu
, hsave
->save
.efer
);
3198 svm_set_cr0(&svm
->vcpu
, hsave
->save
.cr0
| X86_CR0_PE
);
3199 svm_set_cr4(&svm
->vcpu
, hsave
->save
.cr4
);
3201 svm
->vmcb
->save
.cr3
= hsave
->save
.cr3
;
3202 svm
->vcpu
.arch
.cr3
= hsave
->save
.cr3
;
3204 (void)kvm_set_cr3(&svm
->vcpu
, hsave
->save
.cr3
);
3206 kvm_register_write(&svm
->vcpu
, VCPU_REGS_RAX
, hsave
->save
.rax
);
3207 kvm_register_write(&svm
->vcpu
, VCPU_REGS_RSP
, hsave
->save
.rsp
);
3208 kvm_register_write(&svm
->vcpu
, VCPU_REGS_RIP
, hsave
->save
.rip
);
3209 svm
->vmcb
->save
.dr7
= 0;
3210 svm
->vmcb
->save
.cpl
= 0;
3211 svm
->vmcb
->control
.exit_int_info
= 0;
3213 mark_all_dirty(svm
->vmcb
);
3215 nested_svm_unmap(page
);
3217 nested_svm_uninit_mmu_context(&svm
->vcpu
);
3218 kvm_mmu_reset_context(&svm
->vcpu
);
3219 kvm_mmu_load(&svm
->vcpu
);
3224 static bool nested_svm_vmrun_msrpm(struct vcpu_svm
*svm
)
3227 * This function merges the msr permission bitmaps of kvm and the
3228 * nested vmcb. It is optimized in that it only merges the parts where
3229 * the kvm msr permission bitmap may contain zero bits
3233 if (!(svm
->nested
.intercept
& (1ULL << INTERCEPT_MSR_PROT
)))
3236 for (i
= 0; i
< MSRPM_OFFSETS
; i
++) {
3240 if (msrpm_offsets
[i
] == 0xffffffff)
3243 p
= msrpm_offsets
[i
];
3244 offset
= svm
->nested
.vmcb_msrpm
+ (p
* 4);
3246 if (kvm_vcpu_read_guest(&svm
->vcpu
, offset
, &value
, 4))
3249 svm
->nested
.msrpm
[p
] = svm
->msrpm
[p
] | value
;
3252 svm
->vmcb
->control
.msrpm_base_pa
= __sme_set(__pa(svm
->nested
.msrpm
));
3257 static bool nested_vmcb_checks(struct vmcb
*vmcb
)
3259 if ((vmcb
->control
.intercept
& (1ULL << INTERCEPT_VMRUN
)) == 0)
3262 if (vmcb
->control
.asid
== 0)
3265 if ((vmcb
->control
.nested_ctl
& SVM_NESTED_CTL_NP_ENABLE
) &&
3272 static void enter_svm_guest_mode(struct vcpu_svm
*svm
, u64 vmcb_gpa
,
3273 struct vmcb
*nested_vmcb
, struct page
*page
)
3275 if (kvm_get_rflags(&svm
->vcpu
) & X86_EFLAGS_IF
)
3276 svm
->vcpu
.arch
.hflags
|= HF_HIF_MASK
;
3278 svm
->vcpu
.arch
.hflags
&= ~HF_HIF_MASK
;
3280 if (nested_vmcb
->control
.nested_ctl
& SVM_NESTED_CTL_NP_ENABLE
) {
3281 kvm_mmu_unload(&svm
->vcpu
);
3282 svm
->nested
.nested_cr3
= nested_vmcb
->control
.nested_cr3
;
3283 nested_svm_init_mmu_context(&svm
->vcpu
);
3286 /* Load the nested guest state */
3287 svm
->vmcb
->save
.es
= nested_vmcb
->save
.es
;
3288 svm
->vmcb
->save
.cs
= nested_vmcb
->save
.cs
;
3289 svm
->vmcb
->save
.ss
= nested_vmcb
->save
.ss
;
3290 svm
->vmcb
->save
.ds
= nested_vmcb
->save
.ds
;
3291 svm
->vmcb
->save
.gdtr
= nested_vmcb
->save
.gdtr
;
3292 svm
->vmcb
->save
.idtr
= nested_vmcb
->save
.idtr
;
3293 kvm_set_rflags(&svm
->vcpu
, nested_vmcb
->save
.rflags
);
3294 svm_set_efer(&svm
->vcpu
, nested_vmcb
->save
.efer
);
3295 svm_set_cr0(&svm
->vcpu
, nested_vmcb
->save
.cr0
);
3296 svm_set_cr4(&svm
->vcpu
, nested_vmcb
->save
.cr4
);
3298 svm
->vmcb
->save
.cr3
= nested_vmcb
->save
.cr3
;
3299 svm
->vcpu
.arch
.cr3
= nested_vmcb
->save
.cr3
;
3301 (void)kvm_set_cr3(&svm
->vcpu
, nested_vmcb
->save
.cr3
);
3303 /* Guest paging mode is active - reset mmu */
3304 kvm_mmu_reset_context(&svm
->vcpu
);
3306 svm
->vmcb
->save
.cr2
= svm
->vcpu
.arch
.cr2
= nested_vmcb
->save
.cr2
;
3307 kvm_register_write(&svm
->vcpu
, VCPU_REGS_RAX
, nested_vmcb
->save
.rax
);
3308 kvm_register_write(&svm
->vcpu
, VCPU_REGS_RSP
, nested_vmcb
->save
.rsp
);
3309 kvm_register_write(&svm
->vcpu
, VCPU_REGS_RIP
, nested_vmcb
->save
.rip
);
3311 /* In case we don't even reach vcpu_run, the fields are not updated */
3312 svm
->vmcb
->save
.rax
= nested_vmcb
->save
.rax
;
3313 svm
->vmcb
->save
.rsp
= nested_vmcb
->save
.rsp
;
3314 svm
->vmcb
->save
.rip
= nested_vmcb
->save
.rip
;
3315 svm
->vmcb
->save
.dr7
= nested_vmcb
->save
.dr7
;
3316 svm
->vmcb
->save
.dr6
= nested_vmcb
->save
.dr6
;
3317 svm
->vmcb
->save
.cpl
= nested_vmcb
->save
.cpl
;
3319 svm
->nested
.vmcb_msrpm
= nested_vmcb
->control
.msrpm_base_pa
& ~0x0fffULL
;
3320 svm
->nested
.vmcb_iopm
= nested_vmcb
->control
.iopm_base_pa
& ~0x0fffULL
;
3322 /* cache intercepts */
3323 svm
->nested
.intercept_cr
= nested_vmcb
->control
.intercept_cr
;
3324 svm
->nested
.intercept_dr
= nested_vmcb
->control
.intercept_dr
;
3325 svm
->nested
.intercept_exceptions
= nested_vmcb
->control
.intercept_exceptions
;
3326 svm
->nested
.intercept
= nested_vmcb
->control
.intercept
;
3328 svm_flush_tlb(&svm
->vcpu
, true);
3329 svm
->vmcb
->control
.int_ctl
= nested_vmcb
->control
.int_ctl
| V_INTR_MASKING_MASK
;
3330 if (nested_vmcb
->control
.int_ctl
& V_INTR_MASKING_MASK
)
3331 svm
->vcpu
.arch
.hflags
|= HF_VINTR_MASK
;
3333 svm
->vcpu
.arch
.hflags
&= ~HF_VINTR_MASK
;
3335 if (svm
->vcpu
.arch
.hflags
& HF_VINTR_MASK
) {
3336 /* We only want the cr8 intercept bits of the guest */
3337 clr_cr_intercept(svm
, INTERCEPT_CR8_READ
);
3338 clr_cr_intercept(svm
, INTERCEPT_CR8_WRITE
);
3341 /* We don't want to see VMMCALLs from a nested guest */
3342 clr_intercept(svm
, INTERCEPT_VMMCALL
);
3344 svm
->vmcb
->control
.virt_ext
= nested_vmcb
->control
.virt_ext
;
3345 svm
->vmcb
->control
.int_vector
= nested_vmcb
->control
.int_vector
;
3346 svm
->vmcb
->control
.int_state
= nested_vmcb
->control
.int_state
;
3347 svm
->vmcb
->control
.tsc_offset
+= nested_vmcb
->control
.tsc_offset
;
3348 svm
->vmcb
->control
.event_inj
= nested_vmcb
->control
.event_inj
;
3349 svm
->vmcb
->control
.event_inj_err
= nested_vmcb
->control
.event_inj_err
;
3351 nested_svm_unmap(page
);
3353 /* Enter Guest-Mode */
3354 enter_guest_mode(&svm
->vcpu
);
3357 * Merge guest and host intercepts - must be called with vcpu in
3358 * guest-mode to take affect here
3360 recalc_intercepts(svm
);
3362 svm
->nested
.vmcb
= vmcb_gpa
;
3366 mark_all_dirty(svm
->vmcb
);
3369 static bool nested_svm_vmrun(struct vcpu_svm
*svm
)
3371 struct vmcb
*nested_vmcb
;
3372 struct vmcb
*hsave
= svm
->nested
.hsave
;
3373 struct vmcb
*vmcb
= svm
->vmcb
;
3377 vmcb_gpa
= svm
->vmcb
->save
.rax
;
3379 nested_vmcb
= nested_svm_map(svm
, svm
->vmcb
->save
.rax
, &page
);
3383 if (!nested_vmcb_checks(nested_vmcb
)) {
3384 nested_vmcb
->control
.exit_code
= SVM_EXIT_ERR
;
3385 nested_vmcb
->control
.exit_code_hi
= 0;
3386 nested_vmcb
->control
.exit_info_1
= 0;
3387 nested_vmcb
->control
.exit_info_2
= 0;
3389 nested_svm_unmap(page
);
3394 trace_kvm_nested_vmrun(svm
->vmcb
->save
.rip
, vmcb_gpa
,
3395 nested_vmcb
->save
.rip
,
3396 nested_vmcb
->control
.int_ctl
,
3397 nested_vmcb
->control
.event_inj
,
3398 nested_vmcb
->control
.nested_ctl
);
3400 trace_kvm_nested_intercepts(nested_vmcb
->control
.intercept_cr
& 0xffff,
3401 nested_vmcb
->control
.intercept_cr
>> 16,
3402 nested_vmcb
->control
.intercept_exceptions
,
3403 nested_vmcb
->control
.intercept
);
3405 /* Clear internal status */
3406 kvm_clear_exception_queue(&svm
->vcpu
);
3407 kvm_clear_interrupt_queue(&svm
->vcpu
);
3410 * Save the old vmcb, so we don't need to pick what we save, but can
3411 * restore everything when a VMEXIT occurs
3413 hsave
->save
.es
= vmcb
->save
.es
;
3414 hsave
->save
.cs
= vmcb
->save
.cs
;
3415 hsave
->save
.ss
= vmcb
->save
.ss
;
3416 hsave
->save
.ds
= vmcb
->save
.ds
;
3417 hsave
->save
.gdtr
= vmcb
->save
.gdtr
;
3418 hsave
->save
.idtr
= vmcb
->save
.idtr
;
3419 hsave
->save
.efer
= svm
->vcpu
.arch
.efer
;
3420 hsave
->save
.cr0
= kvm_read_cr0(&svm
->vcpu
);
3421 hsave
->save
.cr4
= svm
->vcpu
.arch
.cr4
;
3422 hsave
->save
.rflags
= kvm_get_rflags(&svm
->vcpu
);
3423 hsave
->save
.rip
= kvm_rip_read(&svm
->vcpu
);
3424 hsave
->save
.rsp
= vmcb
->save
.rsp
;
3425 hsave
->save
.rax
= vmcb
->save
.rax
;
3427 hsave
->save
.cr3
= vmcb
->save
.cr3
;
3429 hsave
->save
.cr3
= kvm_read_cr3(&svm
->vcpu
);
3431 copy_vmcb_control_area(hsave
, vmcb
);
3433 enter_svm_guest_mode(svm
, vmcb_gpa
, nested_vmcb
, page
);
3438 static void nested_svm_vmloadsave(struct vmcb
*from_vmcb
, struct vmcb
*to_vmcb
)
3440 to_vmcb
->save
.fs
= from_vmcb
->save
.fs
;
3441 to_vmcb
->save
.gs
= from_vmcb
->save
.gs
;
3442 to_vmcb
->save
.tr
= from_vmcb
->save
.tr
;
3443 to_vmcb
->save
.ldtr
= from_vmcb
->save
.ldtr
;
3444 to_vmcb
->save
.kernel_gs_base
= from_vmcb
->save
.kernel_gs_base
;
3445 to_vmcb
->save
.star
= from_vmcb
->save
.star
;
3446 to_vmcb
->save
.lstar
= from_vmcb
->save
.lstar
;
3447 to_vmcb
->save
.cstar
= from_vmcb
->save
.cstar
;
3448 to_vmcb
->save
.sfmask
= from_vmcb
->save
.sfmask
;
3449 to_vmcb
->save
.sysenter_cs
= from_vmcb
->save
.sysenter_cs
;
3450 to_vmcb
->save
.sysenter_esp
= from_vmcb
->save
.sysenter_esp
;
3451 to_vmcb
->save
.sysenter_eip
= from_vmcb
->save
.sysenter_eip
;
3454 static int vmload_interception(struct vcpu_svm
*svm
)
3456 struct vmcb
*nested_vmcb
;
3460 if (nested_svm_check_permissions(svm
))
3463 nested_vmcb
= nested_svm_map(svm
, svm
->vmcb
->save
.rax
, &page
);
3467 svm
->next_rip
= kvm_rip_read(&svm
->vcpu
) + 3;
3468 ret
= kvm_skip_emulated_instruction(&svm
->vcpu
);
3470 nested_svm_vmloadsave(nested_vmcb
, svm
->vmcb
);
3471 nested_svm_unmap(page
);
3476 static int vmsave_interception(struct vcpu_svm
*svm
)
3478 struct vmcb
*nested_vmcb
;
3482 if (nested_svm_check_permissions(svm
))
3485 nested_vmcb
= nested_svm_map(svm
, svm
->vmcb
->save
.rax
, &page
);
3489 svm
->next_rip
= kvm_rip_read(&svm
->vcpu
) + 3;
3490 ret
= kvm_skip_emulated_instruction(&svm
->vcpu
);
3492 nested_svm_vmloadsave(svm
->vmcb
, nested_vmcb
);
3493 nested_svm_unmap(page
);
3498 static int vmrun_interception(struct vcpu_svm
*svm
)
3500 if (nested_svm_check_permissions(svm
))
3503 /* Save rip after vmrun instruction */
3504 kvm_rip_write(&svm
->vcpu
, kvm_rip_read(&svm
->vcpu
) + 3);
3506 if (!nested_svm_vmrun(svm
))
3509 if (!nested_svm_vmrun_msrpm(svm
))
3516 svm
->vmcb
->control
.exit_code
= SVM_EXIT_ERR
;
3517 svm
->vmcb
->control
.exit_code_hi
= 0;
3518 svm
->vmcb
->control
.exit_info_1
= 0;
3519 svm
->vmcb
->control
.exit_info_2
= 0;
3521 nested_svm_vmexit(svm
);
3526 static int stgi_interception(struct vcpu_svm
*svm
)
3530 if (nested_svm_check_permissions(svm
))
3534 * If VGIF is enabled, the STGI intercept is only added to
3535 * detect the opening of the SMI/NMI window; remove it now.
3537 if (vgif_enabled(svm
))
3538 clr_intercept(svm
, INTERCEPT_STGI
);
3540 svm
->next_rip
= kvm_rip_read(&svm
->vcpu
) + 3;
3541 ret
= kvm_skip_emulated_instruction(&svm
->vcpu
);
3542 kvm_make_request(KVM_REQ_EVENT
, &svm
->vcpu
);
3549 static int clgi_interception(struct vcpu_svm
*svm
)
3553 if (nested_svm_check_permissions(svm
))
3556 svm
->next_rip
= kvm_rip_read(&svm
->vcpu
) + 3;
3557 ret
= kvm_skip_emulated_instruction(&svm
->vcpu
);
3561 /* After a CLGI no interrupts should come */
3562 if (!kvm_vcpu_apicv_active(&svm
->vcpu
)) {
3563 svm_clear_vintr(svm
);
3564 svm
->vmcb
->control
.int_ctl
&= ~V_IRQ_MASK
;
3565 mark_dirty(svm
->vmcb
, VMCB_INTR
);
3571 static int invlpga_interception(struct vcpu_svm
*svm
)
3573 struct kvm_vcpu
*vcpu
= &svm
->vcpu
;
3575 trace_kvm_invlpga(svm
->vmcb
->save
.rip
, kvm_register_read(&svm
->vcpu
, VCPU_REGS_RCX
),
3576 kvm_register_read(&svm
->vcpu
, VCPU_REGS_RAX
));
3578 /* Let's treat INVLPGA the same as INVLPG (can be optimized!) */
3579 kvm_mmu_invlpg(vcpu
, kvm_register_read(&svm
->vcpu
, VCPU_REGS_RAX
));
3581 svm
->next_rip
= kvm_rip_read(&svm
->vcpu
) + 3;
3582 return kvm_skip_emulated_instruction(&svm
->vcpu
);
3585 static int skinit_interception(struct vcpu_svm
*svm
)
3587 trace_kvm_skinit(svm
->vmcb
->save
.rip
, kvm_register_read(&svm
->vcpu
, VCPU_REGS_RAX
));
3589 kvm_queue_exception(&svm
->vcpu
, UD_VECTOR
);
3593 static int wbinvd_interception(struct vcpu_svm
*svm
)
3595 return kvm_emulate_wbinvd(&svm
->vcpu
);
3598 static int xsetbv_interception(struct vcpu_svm
*svm
)
3600 u64 new_bv
= kvm_read_edx_eax(&svm
->vcpu
);
3601 u32 index
= kvm_register_read(&svm
->vcpu
, VCPU_REGS_RCX
);
3603 if (kvm_set_xcr(&svm
->vcpu
, index
, new_bv
) == 0) {
3604 svm
->next_rip
= kvm_rip_read(&svm
->vcpu
) + 3;
3605 return kvm_skip_emulated_instruction(&svm
->vcpu
);
3611 static int task_switch_interception(struct vcpu_svm
*svm
)
3615 int int_type
= svm
->vmcb
->control
.exit_int_info
&
3616 SVM_EXITINTINFO_TYPE_MASK
;
3617 int int_vec
= svm
->vmcb
->control
.exit_int_info
& SVM_EVTINJ_VEC_MASK
;
3619 svm
->vmcb
->control
.exit_int_info
& SVM_EXITINTINFO_TYPE_MASK
;
3621 svm
->vmcb
->control
.exit_int_info
& SVM_EXITINTINFO_VALID
;
3622 bool has_error_code
= false;
3625 tss_selector
= (u16
)svm
->vmcb
->control
.exit_info_1
;
3627 if (svm
->vmcb
->control
.exit_info_2
&
3628 (1ULL << SVM_EXITINFOSHIFT_TS_REASON_IRET
))
3629 reason
= TASK_SWITCH_IRET
;
3630 else if (svm
->vmcb
->control
.exit_info_2
&
3631 (1ULL << SVM_EXITINFOSHIFT_TS_REASON_JMP
))
3632 reason
= TASK_SWITCH_JMP
;
3634 reason
= TASK_SWITCH_GATE
;
3636 reason
= TASK_SWITCH_CALL
;
3638 if (reason
== TASK_SWITCH_GATE
) {
3640 case SVM_EXITINTINFO_TYPE_NMI
:
3641 svm
->vcpu
.arch
.nmi_injected
= false;
3643 case SVM_EXITINTINFO_TYPE_EXEPT
:
3644 if (svm
->vmcb
->control
.exit_info_2
&
3645 (1ULL << SVM_EXITINFOSHIFT_TS_HAS_ERROR_CODE
)) {
3646 has_error_code
= true;
3648 (u32
)svm
->vmcb
->control
.exit_info_2
;
3650 kvm_clear_exception_queue(&svm
->vcpu
);
3652 case SVM_EXITINTINFO_TYPE_INTR
:
3653 kvm_clear_interrupt_queue(&svm
->vcpu
);
3660 if (reason
!= TASK_SWITCH_GATE
||
3661 int_type
== SVM_EXITINTINFO_TYPE_SOFT
||
3662 (int_type
== SVM_EXITINTINFO_TYPE_EXEPT
&&
3663 (int_vec
== OF_VECTOR
|| int_vec
== BP_VECTOR
)))
3664 skip_emulated_instruction(&svm
->vcpu
);
3666 if (int_type
!= SVM_EXITINTINFO_TYPE_SOFT
)
3669 if (kvm_task_switch(&svm
->vcpu
, tss_selector
, int_vec
, reason
,
3670 has_error_code
, error_code
) == EMULATE_FAIL
) {
3671 svm
->vcpu
.run
->exit_reason
= KVM_EXIT_INTERNAL_ERROR
;
3672 svm
->vcpu
.run
->internal
.suberror
= KVM_INTERNAL_ERROR_EMULATION
;
3673 svm
->vcpu
.run
->internal
.ndata
= 0;
3679 static int cpuid_interception(struct vcpu_svm
*svm
)
3681 svm
->next_rip
= kvm_rip_read(&svm
->vcpu
) + 2;
3682 return kvm_emulate_cpuid(&svm
->vcpu
);
3685 static int iret_interception(struct vcpu_svm
*svm
)
3687 ++svm
->vcpu
.stat
.nmi_window_exits
;
3688 clr_intercept(svm
, INTERCEPT_IRET
);
3689 svm
->vcpu
.arch
.hflags
|= HF_IRET_MASK
;
3690 svm
->nmi_iret_rip
= kvm_rip_read(&svm
->vcpu
);
3691 kvm_make_request(KVM_REQ_EVENT
, &svm
->vcpu
);
3695 static int invlpg_interception(struct vcpu_svm
*svm
)
3697 if (!static_cpu_has(X86_FEATURE_DECODEASSISTS
))
3698 return emulate_instruction(&svm
->vcpu
, 0) == EMULATE_DONE
;
3700 kvm_mmu_invlpg(&svm
->vcpu
, svm
->vmcb
->control
.exit_info_1
);
3701 return kvm_skip_emulated_instruction(&svm
->vcpu
);
3704 static int emulate_on_interception(struct vcpu_svm
*svm
)
3706 return emulate_instruction(&svm
->vcpu
, 0) == EMULATE_DONE
;
3709 static int rsm_interception(struct vcpu_svm
*svm
)
3711 return x86_emulate_instruction(&svm
->vcpu
, 0, 0,
3712 rsm_ins_bytes
, 2) == EMULATE_DONE
;
3715 static int rdpmc_interception(struct vcpu_svm
*svm
)
3719 if (!static_cpu_has(X86_FEATURE_NRIPS
))
3720 return emulate_on_interception(svm
);
3722 err
= kvm_rdpmc(&svm
->vcpu
);
3723 return kvm_complete_insn_gp(&svm
->vcpu
, err
);
3726 static bool check_selective_cr0_intercepted(struct vcpu_svm
*svm
,
3729 unsigned long cr0
= svm
->vcpu
.arch
.cr0
;
3733 intercept
= svm
->nested
.intercept
;
3735 if (!is_guest_mode(&svm
->vcpu
) ||
3736 (!(intercept
& (1ULL << INTERCEPT_SELECTIVE_CR0
))))
3739 cr0
&= ~SVM_CR0_SELECTIVE_MASK
;
3740 val
&= ~SVM_CR0_SELECTIVE_MASK
;
3743 svm
->vmcb
->control
.exit_code
= SVM_EXIT_CR0_SEL_WRITE
;
3744 ret
= (nested_svm_exit_handled(svm
) == NESTED_EXIT_DONE
);
3750 #define CR_VALID (1ULL << 63)
3752 static int cr_interception(struct vcpu_svm
*svm
)
3758 if (!static_cpu_has(X86_FEATURE_DECODEASSISTS
))
3759 return emulate_on_interception(svm
);
3761 if (unlikely((svm
->vmcb
->control
.exit_info_1
& CR_VALID
) == 0))
3762 return emulate_on_interception(svm
);
3764 reg
= svm
->vmcb
->control
.exit_info_1
& SVM_EXITINFO_REG_MASK
;
3765 if (svm
->vmcb
->control
.exit_code
== SVM_EXIT_CR0_SEL_WRITE
)
3766 cr
= SVM_EXIT_WRITE_CR0
- SVM_EXIT_READ_CR0
;
3768 cr
= svm
->vmcb
->control
.exit_code
- SVM_EXIT_READ_CR0
;
3771 if (cr
>= 16) { /* mov to cr */
3773 val
= kvm_register_read(&svm
->vcpu
, reg
);
3776 if (!check_selective_cr0_intercepted(svm
, val
))
3777 err
= kvm_set_cr0(&svm
->vcpu
, val
);
3783 err
= kvm_set_cr3(&svm
->vcpu
, val
);
3786 err
= kvm_set_cr4(&svm
->vcpu
, val
);
3789 err
= kvm_set_cr8(&svm
->vcpu
, val
);
3792 WARN(1, "unhandled write to CR%d", cr
);
3793 kvm_queue_exception(&svm
->vcpu
, UD_VECTOR
);
3796 } else { /* mov from cr */
3799 val
= kvm_read_cr0(&svm
->vcpu
);
3802 val
= svm
->vcpu
.arch
.cr2
;
3805 val
= kvm_read_cr3(&svm
->vcpu
);
3808 val
= kvm_read_cr4(&svm
->vcpu
);
3811 val
= kvm_get_cr8(&svm
->vcpu
);
3814 WARN(1, "unhandled read from CR%d", cr
);
3815 kvm_queue_exception(&svm
->vcpu
, UD_VECTOR
);
3818 kvm_register_write(&svm
->vcpu
, reg
, val
);
3820 return kvm_complete_insn_gp(&svm
->vcpu
, err
);
3823 static int dr_interception(struct vcpu_svm
*svm
)
3828 if (svm
->vcpu
.guest_debug
== 0) {
3830 * No more DR vmexits; force a reload of the debug registers
3831 * and reenter on this instruction. The next vmexit will
3832 * retrieve the full state of the debug registers.
3834 clr_dr_intercepts(svm
);
3835 svm
->vcpu
.arch
.switch_db_regs
|= KVM_DEBUGREG_WONT_EXIT
;
3839 if (!boot_cpu_has(X86_FEATURE_DECODEASSISTS
))
3840 return emulate_on_interception(svm
);
3842 reg
= svm
->vmcb
->control
.exit_info_1
& SVM_EXITINFO_REG_MASK
;
3843 dr
= svm
->vmcb
->control
.exit_code
- SVM_EXIT_READ_DR0
;
3845 if (dr
>= 16) { /* mov to DRn */
3846 if (!kvm_require_dr(&svm
->vcpu
, dr
- 16))
3848 val
= kvm_register_read(&svm
->vcpu
, reg
);
3849 kvm_set_dr(&svm
->vcpu
, dr
- 16, val
);
3851 if (!kvm_require_dr(&svm
->vcpu
, dr
))
3853 kvm_get_dr(&svm
->vcpu
, dr
, &val
);
3854 kvm_register_write(&svm
->vcpu
, reg
, val
);
3857 return kvm_skip_emulated_instruction(&svm
->vcpu
);
3860 static int cr8_write_interception(struct vcpu_svm
*svm
)
3862 struct kvm_run
*kvm_run
= svm
->vcpu
.run
;
3865 u8 cr8_prev
= kvm_get_cr8(&svm
->vcpu
);
3866 /* instruction emulation calls kvm_set_cr8() */
3867 r
= cr_interception(svm
);
3868 if (lapic_in_kernel(&svm
->vcpu
))
3870 if (cr8_prev
<= kvm_get_cr8(&svm
->vcpu
))
3872 kvm_run
->exit_reason
= KVM_EXIT_SET_TPR
;
3876 static int svm_get_msr_feature(struct kvm_msr_entry
*msr
)
3880 switch (msr
->index
) {
3881 case MSR_F10H_DECFG
:
3882 if (boot_cpu_has(X86_FEATURE_LFENCE_RDTSC
))
3883 msr
->data
|= MSR_F10H_DECFG_LFENCE_SERIALIZE
;
3892 static int svm_get_msr(struct kvm_vcpu
*vcpu
, struct msr_data
*msr_info
)
3894 struct vcpu_svm
*svm
= to_svm(vcpu
);
3896 switch (msr_info
->index
) {
3897 case MSR_IA32_TSC
: {
3898 msr_info
->data
= svm
->vmcb
->control
.tsc_offset
+
3899 kvm_scale_tsc(vcpu
, rdtsc());
3904 msr_info
->data
= svm
->vmcb
->save
.star
;
3906 #ifdef CONFIG_X86_64
3908 msr_info
->data
= svm
->vmcb
->save
.lstar
;
3911 msr_info
->data
= svm
->vmcb
->save
.cstar
;
3913 case MSR_KERNEL_GS_BASE
:
3914 msr_info
->data
= svm
->vmcb
->save
.kernel_gs_base
;
3916 case MSR_SYSCALL_MASK
:
3917 msr_info
->data
= svm
->vmcb
->save
.sfmask
;
3920 case MSR_IA32_SYSENTER_CS
:
3921 msr_info
->data
= svm
->vmcb
->save
.sysenter_cs
;
3923 case MSR_IA32_SYSENTER_EIP
:
3924 msr_info
->data
= svm
->sysenter_eip
;
3926 case MSR_IA32_SYSENTER_ESP
:
3927 msr_info
->data
= svm
->sysenter_esp
;
3930 if (!boot_cpu_has(X86_FEATURE_RDTSCP
))
3932 msr_info
->data
= svm
->tsc_aux
;
3935 * Nobody will change the following 5 values in the VMCB so we can
3936 * safely return them on rdmsr. They will always be 0 until LBRV is
3939 case MSR_IA32_DEBUGCTLMSR
:
3940 msr_info
->data
= svm
->vmcb
->save
.dbgctl
;
3942 case MSR_IA32_LASTBRANCHFROMIP
:
3943 msr_info
->data
= svm
->vmcb
->save
.br_from
;
3945 case MSR_IA32_LASTBRANCHTOIP
:
3946 msr_info
->data
= svm
->vmcb
->save
.br_to
;
3948 case MSR_IA32_LASTINTFROMIP
:
3949 msr_info
->data
= svm
->vmcb
->save
.last_excp_from
;
3951 case MSR_IA32_LASTINTTOIP
:
3952 msr_info
->data
= svm
->vmcb
->save
.last_excp_to
;
3954 case MSR_VM_HSAVE_PA
:
3955 msr_info
->data
= svm
->nested
.hsave_msr
;
3958 msr_info
->data
= svm
->nested
.vm_cr_msr
;
3960 case MSR_IA32_SPEC_CTRL
:
3961 if (!msr_info
->host_initiated
&&
3962 !guest_cpuid_has(vcpu
, X86_FEATURE_IBRS
))
3965 msr_info
->data
= svm
->spec_ctrl
;
3967 case MSR_F15H_IC_CFG
: {
3971 family
= guest_cpuid_family(vcpu
);
3972 model
= guest_cpuid_model(vcpu
);
3974 if (family
< 0 || model
< 0)
3975 return kvm_get_msr_common(vcpu
, msr_info
);
3979 if (family
== 0x15 &&
3980 (model
>= 0x2 && model
< 0x20))
3981 msr_info
->data
= 0x1E;
3984 case MSR_F10H_DECFG
:
3985 msr_info
->data
= svm
->msr_decfg
;
3988 return kvm_get_msr_common(vcpu
, msr_info
);
3993 static int rdmsr_interception(struct vcpu_svm
*svm
)
3995 u32 ecx
= kvm_register_read(&svm
->vcpu
, VCPU_REGS_RCX
);
3996 struct msr_data msr_info
;
3998 msr_info
.index
= ecx
;
3999 msr_info
.host_initiated
= false;
4000 if (svm_get_msr(&svm
->vcpu
, &msr_info
)) {
4001 trace_kvm_msr_read_ex(ecx
);
4002 kvm_inject_gp(&svm
->vcpu
, 0);
4005 trace_kvm_msr_read(ecx
, msr_info
.data
);
4007 kvm_register_write(&svm
->vcpu
, VCPU_REGS_RAX
,
4008 msr_info
.data
& 0xffffffff);
4009 kvm_register_write(&svm
->vcpu
, VCPU_REGS_RDX
,
4010 msr_info
.data
>> 32);
4011 svm
->next_rip
= kvm_rip_read(&svm
->vcpu
) + 2;
4012 return kvm_skip_emulated_instruction(&svm
->vcpu
);
4016 static int svm_set_vm_cr(struct kvm_vcpu
*vcpu
, u64 data
)
4018 struct vcpu_svm
*svm
= to_svm(vcpu
);
4019 int svm_dis
, chg_mask
;
4021 if (data
& ~SVM_VM_CR_VALID_MASK
)
4024 chg_mask
= SVM_VM_CR_VALID_MASK
;
4026 if (svm
->nested
.vm_cr_msr
& SVM_VM_CR_SVM_DIS_MASK
)
4027 chg_mask
&= ~(SVM_VM_CR_SVM_LOCK_MASK
| SVM_VM_CR_SVM_DIS_MASK
);
4029 svm
->nested
.vm_cr_msr
&= ~chg_mask
;
4030 svm
->nested
.vm_cr_msr
|= (data
& chg_mask
);
4032 svm_dis
= svm
->nested
.vm_cr_msr
& SVM_VM_CR_SVM_DIS_MASK
;
4034 /* check for svm_disable while efer.svme is set */
4035 if (svm_dis
&& (vcpu
->arch
.efer
& EFER_SVME
))
4041 static int svm_set_msr(struct kvm_vcpu
*vcpu
, struct msr_data
*msr
)
4043 struct vcpu_svm
*svm
= to_svm(vcpu
);
4045 u32 ecx
= msr
->index
;
4046 u64 data
= msr
->data
;
4048 case MSR_IA32_CR_PAT
:
4049 if (!kvm_mtrr_valid(vcpu
, MSR_IA32_CR_PAT
, data
))
4051 vcpu
->arch
.pat
= data
;
4052 svm
->vmcb
->save
.g_pat
= data
;
4053 mark_dirty(svm
->vmcb
, VMCB_NPT
);
4056 kvm_write_tsc(vcpu
, msr
);
4058 case MSR_IA32_SPEC_CTRL
:
4059 if (!msr
->host_initiated
&&
4060 !guest_cpuid_has(vcpu
, X86_FEATURE_IBRS
))
4063 /* The STIBP bit doesn't fault even if it's not advertised */
4064 if (data
& ~(SPEC_CTRL_IBRS
| SPEC_CTRL_STIBP
))
4067 svm
->spec_ctrl
= data
;
4074 * When it's written (to non-zero) for the first time, pass
4078 * The handling of the MSR bitmap for L2 guests is done in
4079 * nested_svm_vmrun_msrpm.
4080 * We update the L1 MSR bit as well since it will end up
4081 * touching the MSR anyway now.
4083 set_msr_interception(svm
->msrpm
, MSR_IA32_SPEC_CTRL
, 1, 1);
4085 case MSR_IA32_PRED_CMD
:
4086 if (!msr
->host_initiated
&&
4087 !guest_cpuid_has(vcpu
, X86_FEATURE_IBPB
))
4090 if (data
& ~PRED_CMD_IBPB
)
4096 wrmsrl(MSR_IA32_PRED_CMD
, PRED_CMD_IBPB
);
4097 if (is_guest_mode(vcpu
))
4099 set_msr_interception(svm
->msrpm
, MSR_IA32_PRED_CMD
, 0, 1);
4102 svm
->vmcb
->save
.star
= data
;
4104 #ifdef CONFIG_X86_64
4106 svm
->vmcb
->save
.lstar
= data
;
4109 svm
->vmcb
->save
.cstar
= data
;
4111 case MSR_KERNEL_GS_BASE
:
4112 svm
->vmcb
->save
.kernel_gs_base
= data
;
4114 case MSR_SYSCALL_MASK
:
4115 svm
->vmcb
->save
.sfmask
= data
;
4118 case MSR_IA32_SYSENTER_CS
:
4119 svm
->vmcb
->save
.sysenter_cs
= data
;
4121 case MSR_IA32_SYSENTER_EIP
:
4122 svm
->sysenter_eip
= data
;
4123 svm
->vmcb
->save
.sysenter_eip
= data
;
4125 case MSR_IA32_SYSENTER_ESP
:
4126 svm
->sysenter_esp
= data
;
4127 svm
->vmcb
->save
.sysenter_esp
= data
;
4130 if (!boot_cpu_has(X86_FEATURE_RDTSCP
))
4134 * This is rare, so we update the MSR here instead of using
4135 * direct_access_msrs. Doing that would require a rdmsr in
4138 svm
->tsc_aux
= data
;
4139 wrmsrl(MSR_TSC_AUX
, svm
->tsc_aux
);
4141 case MSR_IA32_DEBUGCTLMSR
:
4142 if (!boot_cpu_has(X86_FEATURE_LBRV
)) {
4143 vcpu_unimpl(vcpu
, "%s: MSR_IA32_DEBUGCTL 0x%llx, nop\n",
4147 if (data
& DEBUGCTL_RESERVED_BITS
)
4150 svm
->vmcb
->save
.dbgctl
= data
;
4151 mark_dirty(svm
->vmcb
, VMCB_LBR
);
4152 if (data
& (1ULL<<0))
4153 svm_enable_lbrv(svm
);
4155 svm_disable_lbrv(svm
);
4157 case MSR_VM_HSAVE_PA
:
4158 svm
->nested
.hsave_msr
= data
;
4161 return svm_set_vm_cr(vcpu
, data
);
4163 vcpu_unimpl(vcpu
, "unimplemented wrmsr: 0x%x data 0x%llx\n", ecx
, data
);
4165 case MSR_F10H_DECFG
: {
4166 struct kvm_msr_entry msr_entry
;
4168 msr_entry
.index
= msr
->index
;
4169 if (svm_get_msr_feature(&msr_entry
))
4172 /* Check the supported bits */
4173 if (data
& ~msr_entry
.data
)
4176 /* Don't allow the guest to change a bit, #GP */
4177 if (!msr
->host_initiated
&& (data
^ msr_entry
.data
))
4180 svm
->msr_decfg
= data
;
4183 case MSR_IA32_APICBASE
:
4184 if (kvm_vcpu_apicv_active(vcpu
))
4185 avic_update_vapic_bar(to_svm(vcpu
), data
);
4186 /* Follow through */
4188 return kvm_set_msr_common(vcpu
, msr
);
4193 static int wrmsr_interception(struct vcpu_svm
*svm
)
4195 struct msr_data msr
;
4196 u32 ecx
= kvm_register_read(&svm
->vcpu
, VCPU_REGS_RCX
);
4197 u64 data
= kvm_read_edx_eax(&svm
->vcpu
);
4201 msr
.host_initiated
= false;
4203 svm
->next_rip
= kvm_rip_read(&svm
->vcpu
) + 2;
4204 if (kvm_set_msr(&svm
->vcpu
, &msr
)) {
4205 trace_kvm_msr_write_ex(ecx
, data
);
4206 kvm_inject_gp(&svm
->vcpu
, 0);
4209 trace_kvm_msr_write(ecx
, data
);
4210 return kvm_skip_emulated_instruction(&svm
->vcpu
);
4214 static int msr_interception(struct vcpu_svm
*svm
)
4216 if (svm
->vmcb
->control
.exit_info_1
)
4217 return wrmsr_interception(svm
);
4219 return rdmsr_interception(svm
);
4222 static int interrupt_window_interception(struct vcpu_svm
*svm
)
4224 kvm_make_request(KVM_REQ_EVENT
, &svm
->vcpu
);
4225 svm_clear_vintr(svm
);
4226 svm
->vmcb
->control
.int_ctl
&= ~V_IRQ_MASK
;
4227 mark_dirty(svm
->vmcb
, VMCB_INTR
);
4228 ++svm
->vcpu
.stat
.irq_window_exits
;
4232 static int pause_interception(struct vcpu_svm
*svm
)
4234 struct kvm_vcpu
*vcpu
= &svm
->vcpu
;
4235 bool in_kernel
= (svm_get_cpl(vcpu
) == 0);
4237 kvm_vcpu_on_spin(vcpu
, in_kernel
);
4241 static int nop_interception(struct vcpu_svm
*svm
)
4243 return kvm_skip_emulated_instruction(&(svm
->vcpu
));
4246 static int monitor_interception(struct vcpu_svm
*svm
)
4248 printk_once(KERN_WARNING
"kvm: MONITOR instruction emulated as NOP!\n");
4249 return nop_interception(svm
);
4252 static int mwait_interception(struct vcpu_svm
*svm
)
4254 printk_once(KERN_WARNING
"kvm: MWAIT instruction emulated as NOP!\n");
4255 return nop_interception(svm
);
4258 enum avic_ipi_failure_cause
{
4259 AVIC_IPI_FAILURE_INVALID_INT_TYPE
,
4260 AVIC_IPI_FAILURE_TARGET_NOT_RUNNING
,
4261 AVIC_IPI_FAILURE_INVALID_TARGET
,
4262 AVIC_IPI_FAILURE_INVALID_BACKING_PAGE
,
4265 static int avic_incomplete_ipi_interception(struct vcpu_svm
*svm
)
4267 u32 icrh
= svm
->vmcb
->control
.exit_info_1
>> 32;
4268 u32 icrl
= svm
->vmcb
->control
.exit_info_1
;
4269 u32 id
= svm
->vmcb
->control
.exit_info_2
>> 32;
4270 u32 index
= svm
->vmcb
->control
.exit_info_2
& 0xFF;
4271 struct kvm_lapic
*apic
= svm
->vcpu
.arch
.apic
;
4273 trace_kvm_avic_incomplete_ipi(svm
->vcpu
.vcpu_id
, icrh
, icrl
, id
, index
);
4276 case AVIC_IPI_FAILURE_INVALID_INT_TYPE
:
4278 * AVIC hardware handles the generation of
4279 * IPIs when the specified Message Type is Fixed
4280 * (also known as fixed delivery mode) and
4281 * the Trigger Mode is edge-triggered. The hardware
4282 * also supports self and broadcast delivery modes
4283 * specified via the Destination Shorthand(DSH)
4284 * field of the ICRL. Logical and physical APIC ID
4285 * formats are supported. All other IPI types cause
4286 * a #VMEXIT, which needs to emulated.
4288 kvm_lapic_reg_write(apic
, APIC_ICR2
, icrh
);
4289 kvm_lapic_reg_write(apic
, APIC_ICR
, icrl
);
4291 case AVIC_IPI_FAILURE_TARGET_NOT_RUNNING
: {
4293 struct kvm_vcpu
*vcpu
;
4294 struct kvm
*kvm
= svm
->vcpu
.kvm
;
4295 struct kvm_lapic
*apic
= svm
->vcpu
.arch
.apic
;
4298 * At this point, we expect that the AVIC HW has already
4299 * set the appropriate IRR bits on the valid target
4300 * vcpus. So, we just need to kick the appropriate vcpu.
4302 kvm_for_each_vcpu(i
, vcpu
, kvm
) {
4303 bool m
= kvm_apic_match_dest(vcpu
, apic
,
4304 icrl
& KVM_APIC_SHORT_MASK
,
4305 GET_APIC_DEST_FIELD(icrh
),
4306 icrl
& KVM_APIC_DEST_MASK
);
4308 if (m
&& !avic_vcpu_is_running(vcpu
))
4309 kvm_vcpu_wake_up(vcpu
);
4313 case AVIC_IPI_FAILURE_INVALID_TARGET
:
4315 case AVIC_IPI_FAILURE_INVALID_BACKING_PAGE
:
4316 WARN_ONCE(1, "Invalid backing page\n");
4319 pr_err("Unknown IPI interception\n");
4325 static u32
*avic_get_logical_id_entry(struct kvm_vcpu
*vcpu
, u32 ldr
, bool flat
)
4327 struct kvm_arch
*vm_data
= &vcpu
->kvm
->arch
;
4329 u32
*logical_apic_id_table
;
4330 int dlid
= GET_APIC_LOGICAL_ID(ldr
);
4335 if (flat
) { /* flat */
4336 index
= ffs(dlid
) - 1;
4339 } else { /* cluster */
4340 int cluster
= (dlid
& 0xf0) >> 4;
4341 int apic
= ffs(dlid
& 0x0f) - 1;
4343 if ((apic
< 0) || (apic
> 7) ||
4346 index
= (cluster
<< 2) + apic
;
4349 logical_apic_id_table
= (u32
*) page_address(vm_data
->avic_logical_id_table_page
);
4351 return &logical_apic_id_table
[index
];
4354 static int avic_ldr_write(struct kvm_vcpu
*vcpu
, u8 g_physical_id
, u32 ldr
,
4358 u32
*entry
, new_entry
;
4360 flat
= kvm_lapic_get_reg(vcpu
->arch
.apic
, APIC_DFR
) == APIC_DFR_FLAT
;
4361 entry
= avic_get_logical_id_entry(vcpu
, ldr
, flat
);
4365 new_entry
= READ_ONCE(*entry
);
4366 new_entry
&= ~AVIC_LOGICAL_ID_ENTRY_GUEST_PHYSICAL_ID_MASK
;
4367 new_entry
|= (g_physical_id
& AVIC_LOGICAL_ID_ENTRY_GUEST_PHYSICAL_ID_MASK
);
4369 new_entry
|= AVIC_LOGICAL_ID_ENTRY_VALID_MASK
;
4371 new_entry
&= ~AVIC_LOGICAL_ID_ENTRY_VALID_MASK
;
4372 WRITE_ONCE(*entry
, new_entry
);
4377 static int avic_handle_ldr_update(struct kvm_vcpu
*vcpu
)
4380 struct vcpu_svm
*svm
= to_svm(vcpu
);
4381 u32 ldr
= kvm_lapic_get_reg(vcpu
->arch
.apic
, APIC_LDR
);
4386 ret
= avic_ldr_write(vcpu
, vcpu
->vcpu_id
, ldr
, true);
4387 if (ret
&& svm
->ldr_reg
) {
4388 avic_ldr_write(vcpu
, 0, svm
->ldr_reg
, false);
4396 static int avic_handle_apic_id_update(struct kvm_vcpu
*vcpu
)
4399 struct vcpu_svm
*svm
= to_svm(vcpu
);
4400 u32 apic_id_reg
= kvm_lapic_get_reg(vcpu
->arch
.apic
, APIC_ID
);
4401 u32 id
= (apic_id_reg
>> 24) & 0xff;
4403 if (vcpu
->vcpu_id
== id
)
4406 old
= avic_get_physical_id_entry(vcpu
, vcpu
->vcpu_id
);
4407 new = avic_get_physical_id_entry(vcpu
, id
);
4411 /* We need to move physical_id_entry to new offset */
4414 to_svm(vcpu
)->avic_physical_id_cache
= new;
4417 * Also update the guest physical APIC ID in the logical
4418 * APIC ID table entry if already setup the LDR.
4421 avic_handle_ldr_update(vcpu
);
4426 static int avic_handle_dfr_update(struct kvm_vcpu
*vcpu
)
4428 struct vcpu_svm
*svm
= to_svm(vcpu
);
4429 struct kvm_arch
*vm_data
= &vcpu
->kvm
->arch
;
4430 u32 dfr
= kvm_lapic_get_reg(vcpu
->arch
.apic
, APIC_DFR
);
4431 u32 mod
= (dfr
>> 28) & 0xf;
4434 * We assume that all local APICs are using the same type.
4435 * If this changes, we need to flush the AVIC logical
4438 if (vm_data
->ldr_mode
== mod
)
4441 clear_page(page_address(vm_data
->avic_logical_id_table_page
));
4442 vm_data
->ldr_mode
= mod
;
4445 avic_handle_ldr_update(vcpu
);
4449 static int avic_unaccel_trap_write(struct vcpu_svm
*svm
)
4451 struct kvm_lapic
*apic
= svm
->vcpu
.arch
.apic
;
4452 u32 offset
= svm
->vmcb
->control
.exit_info_1
&
4453 AVIC_UNACCEL_ACCESS_OFFSET_MASK
;
4457 if (avic_handle_apic_id_update(&svm
->vcpu
))
4461 if (avic_handle_ldr_update(&svm
->vcpu
))
4465 avic_handle_dfr_update(&svm
->vcpu
);
4471 kvm_lapic_reg_write(apic
, offset
, kvm_lapic_get_reg(apic
, offset
));
4476 static bool is_avic_unaccelerated_access_trap(u32 offset
)
4505 static int avic_unaccelerated_access_interception(struct vcpu_svm
*svm
)
4508 u32 offset
= svm
->vmcb
->control
.exit_info_1
&
4509 AVIC_UNACCEL_ACCESS_OFFSET_MASK
;
4510 u32 vector
= svm
->vmcb
->control
.exit_info_2
&
4511 AVIC_UNACCEL_ACCESS_VECTOR_MASK
;
4512 bool write
= (svm
->vmcb
->control
.exit_info_1
>> 32) &
4513 AVIC_UNACCEL_ACCESS_WRITE_MASK
;
4514 bool trap
= is_avic_unaccelerated_access_trap(offset
);
4516 trace_kvm_avic_unaccelerated_access(svm
->vcpu
.vcpu_id
, offset
,
4517 trap
, write
, vector
);
4520 WARN_ONCE(!write
, "svm: Handling trap read.\n");
4521 ret
= avic_unaccel_trap_write(svm
);
4523 /* Handling Fault */
4524 ret
= (emulate_instruction(&svm
->vcpu
, 0) == EMULATE_DONE
);
4530 static int (*const svm_exit_handlers
[])(struct vcpu_svm
*svm
) = {
4531 [SVM_EXIT_READ_CR0
] = cr_interception
,
4532 [SVM_EXIT_READ_CR3
] = cr_interception
,
4533 [SVM_EXIT_READ_CR4
] = cr_interception
,
4534 [SVM_EXIT_READ_CR8
] = cr_interception
,
4535 [SVM_EXIT_CR0_SEL_WRITE
] = cr_interception
,
4536 [SVM_EXIT_WRITE_CR0
] = cr_interception
,
4537 [SVM_EXIT_WRITE_CR3
] = cr_interception
,
4538 [SVM_EXIT_WRITE_CR4
] = cr_interception
,
4539 [SVM_EXIT_WRITE_CR8
] = cr8_write_interception
,
4540 [SVM_EXIT_READ_DR0
] = dr_interception
,
4541 [SVM_EXIT_READ_DR1
] = dr_interception
,
4542 [SVM_EXIT_READ_DR2
] = dr_interception
,
4543 [SVM_EXIT_READ_DR3
] = dr_interception
,
4544 [SVM_EXIT_READ_DR4
] = dr_interception
,
4545 [SVM_EXIT_READ_DR5
] = dr_interception
,
4546 [SVM_EXIT_READ_DR6
] = dr_interception
,
4547 [SVM_EXIT_READ_DR7
] = dr_interception
,
4548 [SVM_EXIT_WRITE_DR0
] = dr_interception
,
4549 [SVM_EXIT_WRITE_DR1
] = dr_interception
,
4550 [SVM_EXIT_WRITE_DR2
] = dr_interception
,
4551 [SVM_EXIT_WRITE_DR3
] = dr_interception
,
4552 [SVM_EXIT_WRITE_DR4
] = dr_interception
,
4553 [SVM_EXIT_WRITE_DR5
] = dr_interception
,
4554 [SVM_EXIT_WRITE_DR6
] = dr_interception
,
4555 [SVM_EXIT_WRITE_DR7
] = dr_interception
,
4556 [SVM_EXIT_EXCP_BASE
+ DB_VECTOR
] = db_interception
,
4557 [SVM_EXIT_EXCP_BASE
+ BP_VECTOR
] = bp_interception
,
4558 [SVM_EXIT_EXCP_BASE
+ UD_VECTOR
] = ud_interception
,
4559 [SVM_EXIT_EXCP_BASE
+ PF_VECTOR
] = pf_interception
,
4560 [SVM_EXIT_EXCP_BASE
+ MC_VECTOR
] = mc_interception
,
4561 [SVM_EXIT_EXCP_BASE
+ AC_VECTOR
] = ac_interception
,
4562 [SVM_EXIT_INTR
] = intr_interception
,
4563 [SVM_EXIT_NMI
] = nmi_interception
,
4564 [SVM_EXIT_SMI
] = nop_on_interception
,
4565 [SVM_EXIT_INIT
] = nop_on_interception
,
4566 [SVM_EXIT_VINTR
] = interrupt_window_interception
,
4567 [SVM_EXIT_RDPMC
] = rdpmc_interception
,
4568 [SVM_EXIT_CPUID
] = cpuid_interception
,
4569 [SVM_EXIT_IRET
] = iret_interception
,
4570 [SVM_EXIT_INVD
] = emulate_on_interception
,
4571 [SVM_EXIT_PAUSE
] = pause_interception
,
4572 [SVM_EXIT_HLT
] = halt_interception
,
4573 [SVM_EXIT_INVLPG
] = invlpg_interception
,
4574 [SVM_EXIT_INVLPGA
] = invlpga_interception
,
4575 [SVM_EXIT_IOIO
] = io_interception
,
4576 [SVM_EXIT_MSR
] = msr_interception
,
4577 [SVM_EXIT_TASK_SWITCH
] = task_switch_interception
,
4578 [SVM_EXIT_SHUTDOWN
] = shutdown_interception
,
4579 [SVM_EXIT_VMRUN
] = vmrun_interception
,
4580 [SVM_EXIT_VMMCALL
] = vmmcall_interception
,
4581 [SVM_EXIT_VMLOAD
] = vmload_interception
,
4582 [SVM_EXIT_VMSAVE
] = vmsave_interception
,
4583 [SVM_EXIT_STGI
] = stgi_interception
,
4584 [SVM_EXIT_CLGI
] = clgi_interception
,
4585 [SVM_EXIT_SKINIT
] = skinit_interception
,
4586 [SVM_EXIT_WBINVD
] = wbinvd_interception
,
4587 [SVM_EXIT_MONITOR
] = monitor_interception
,
4588 [SVM_EXIT_MWAIT
] = mwait_interception
,
4589 [SVM_EXIT_XSETBV
] = xsetbv_interception
,
4590 [SVM_EXIT_NPF
] = npf_interception
,
4591 [SVM_EXIT_RSM
] = rsm_interception
,
4592 [SVM_EXIT_AVIC_INCOMPLETE_IPI
] = avic_incomplete_ipi_interception
,
4593 [SVM_EXIT_AVIC_UNACCELERATED_ACCESS
] = avic_unaccelerated_access_interception
,
4596 static void dump_vmcb(struct kvm_vcpu
*vcpu
)
4598 struct vcpu_svm
*svm
= to_svm(vcpu
);
4599 struct vmcb_control_area
*control
= &svm
->vmcb
->control
;
4600 struct vmcb_save_area
*save
= &svm
->vmcb
->save
;
4602 pr_err("VMCB Control Area:\n");
4603 pr_err("%-20s%04x\n", "cr_read:", control
->intercept_cr
& 0xffff);
4604 pr_err("%-20s%04x\n", "cr_write:", control
->intercept_cr
>> 16);
4605 pr_err("%-20s%04x\n", "dr_read:", control
->intercept_dr
& 0xffff);
4606 pr_err("%-20s%04x\n", "dr_write:", control
->intercept_dr
>> 16);
4607 pr_err("%-20s%08x\n", "exceptions:", control
->intercept_exceptions
);
4608 pr_err("%-20s%016llx\n", "intercepts:", control
->intercept
);
4609 pr_err("%-20s%d\n", "pause filter count:", control
->pause_filter_count
);
4610 pr_err("%-20s%016llx\n", "iopm_base_pa:", control
->iopm_base_pa
);
4611 pr_err("%-20s%016llx\n", "msrpm_base_pa:", control
->msrpm_base_pa
);
4612 pr_err("%-20s%016llx\n", "tsc_offset:", control
->tsc_offset
);
4613 pr_err("%-20s%d\n", "asid:", control
->asid
);
4614 pr_err("%-20s%d\n", "tlb_ctl:", control
->tlb_ctl
);
4615 pr_err("%-20s%08x\n", "int_ctl:", control
->int_ctl
);
4616 pr_err("%-20s%08x\n", "int_vector:", control
->int_vector
);
4617 pr_err("%-20s%08x\n", "int_state:", control
->int_state
);
4618 pr_err("%-20s%08x\n", "exit_code:", control
->exit_code
);
4619 pr_err("%-20s%016llx\n", "exit_info1:", control
->exit_info_1
);
4620 pr_err("%-20s%016llx\n", "exit_info2:", control
->exit_info_2
);
4621 pr_err("%-20s%08x\n", "exit_int_info:", control
->exit_int_info
);
4622 pr_err("%-20s%08x\n", "exit_int_info_err:", control
->exit_int_info_err
);
4623 pr_err("%-20s%lld\n", "nested_ctl:", control
->nested_ctl
);
4624 pr_err("%-20s%016llx\n", "nested_cr3:", control
->nested_cr3
);
4625 pr_err("%-20s%016llx\n", "avic_vapic_bar:", control
->avic_vapic_bar
);
4626 pr_err("%-20s%08x\n", "event_inj:", control
->event_inj
);
4627 pr_err("%-20s%08x\n", "event_inj_err:", control
->event_inj_err
);
4628 pr_err("%-20s%lld\n", "virt_ext:", control
->virt_ext
);
4629 pr_err("%-20s%016llx\n", "next_rip:", control
->next_rip
);
4630 pr_err("%-20s%016llx\n", "avic_backing_page:", control
->avic_backing_page
);
4631 pr_err("%-20s%016llx\n", "avic_logical_id:", control
->avic_logical_id
);
4632 pr_err("%-20s%016llx\n", "avic_physical_id:", control
->avic_physical_id
);
4633 pr_err("VMCB State Save Area:\n");
4634 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
4636 save
->es
.selector
, save
->es
.attrib
,
4637 save
->es
.limit
, save
->es
.base
);
4638 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
4640 save
->cs
.selector
, save
->cs
.attrib
,
4641 save
->cs
.limit
, save
->cs
.base
);
4642 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
4644 save
->ss
.selector
, save
->ss
.attrib
,
4645 save
->ss
.limit
, save
->ss
.base
);
4646 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
4648 save
->ds
.selector
, save
->ds
.attrib
,
4649 save
->ds
.limit
, save
->ds
.base
);
4650 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
4652 save
->fs
.selector
, save
->fs
.attrib
,
4653 save
->fs
.limit
, save
->fs
.base
);
4654 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
4656 save
->gs
.selector
, save
->gs
.attrib
,
4657 save
->gs
.limit
, save
->gs
.base
);
4658 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
4660 save
->gdtr
.selector
, save
->gdtr
.attrib
,
4661 save
->gdtr
.limit
, save
->gdtr
.base
);
4662 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
4664 save
->ldtr
.selector
, save
->ldtr
.attrib
,
4665 save
->ldtr
.limit
, save
->ldtr
.base
);
4666 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
4668 save
->idtr
.selector
, save
->idtr
.attrib
,
4669 save
->idtr
.limit
, save
->idtr
.base
);
4670 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
4672 save
->tr
.selector
, save
->tr
.attrib
,
4673 save
->tr
.limit
, save
->tr
.base
);
4674 pr_err("cpl: %d efer: %016llx\n",
4675 save
->cpl
, save
->efer
);
4676 pr_err("%-15s %016llx %-13s %016llx\n",
4677 "cr0:", save
->cr0
, "cr2:", save
->cr2
);
4678 pr_err("%-15s %016llx %-13s %016llx\n",
4679 "cr3:", save
->cr3
, "cr4:", save
->cr4
);
4680 pr_err("%-15s %016llx %-13s %016llx\n",
4681 "dr6:", save
->dr6
, "dr7:", save
->dr7
);
4682 pr_err("%-15s %016llx %-13s %016llx\n",
4683 "rip:", save
->rip
, "rflags:", save
->rflags
);
4684 pr_err("%-15s %016llx %-13s %016llx\n",
4685 "rsp:", save
->rsp
, "rax:", save
->rax
);
4686 pr_err("%-15s %016llx %-13s %016llx\n",
4687 "star:", save
->star
, "lstar:", save
->lstar
);
4688 pr_err("%-15s %016llx %-13s %016llx\n",
4689 "cstar:", save
->cstar
, "sfmask:", save
->sfmask
);
4690 pr_err("%-15s %016llx %-13s %016llx\n",
4691 "kernel_gs_base:", save
->kernel_gs_base
,
4692 "sysenter_cs:", save
->sysenter_cs
);
4693 pr_err("%-15s %016llx %-13s %016llx\n",
4694 "sysenter_esp:", save
->sysenter_esp
,
4695 "sysenter_eip:", save
->sysenter_eip
);
4696 pr_err("%-15s %016llx %-13s %016llx\n",
4697 "gpat:", save
->g_pat
, "dbgctl:", save
->dbgctl
);
4698 pr_err("%-15s %016llx %-13s %016llx\n",
4699 "br_from:", save
->br_from
, "br_to:", save
->br_to
);
4700 pr_err("%-15s %016llx %-13s %016llx\n",
4701 "excp_from:", save
->last_excp_from
,
4702 "excp_to:", save
->last_excp_to
);
4705 static void svm_get_exit_info(struct kvm_vcpu
*vcpu
, u64
*info1
, u64
*info2
)
4707 struct vmcb_control_area
*control
= &to_svm(vcpu
)->vmcb
->control
;
4709 *info1
= control
->exit_info_1
;
4710 *info2
= control
->exit_info_2
;
4713 static int handle_exit(struct kvm_vcpu
*vcpu
)
4715 struct vcpu_svm
*svm
= to_svm(vcpu
);
4716 struct kvm_run
*kvm_run
= vcpu
->run
;
4717 u32 exit_code
= svm
->vmcb
->control
.exit_code
;
4719 trace_kvm_exit(exit_code
, vcpu
, KVM_ISA_SVM
);
4721 if (!is_cr_intercept(svm
, INTERCEPT_CR0_WRITE
))
4722 vcpu
->arch
.cr0
= svm
->vmcb
->save
.cr0
;
4724 vcpu
->arch
.cr3
= svm
->vmcb
->save
.cr3
;
4726 if (unlikely(svm
->nested
.exit_required
)) {
4727 nested_svm_vmexit(svm
);
4728 svm
->nested
.exit_required
= false;
4733 if (is_guest_mode(vcpu
)) {
4736 trace_kvm_nested_vmexit(svm
->vmcb
->save
.rip
, exit_code
,
4737 svm
->vmcb
->control
.exit_info_1
,
4738 svm
->vmcb
->control
.exit_info_2
,
4739 svm
->vmcb
->control
.exit_int_info
,
4740 svm
->vmcb
->control
.exit_int_info_err
,
4743 vmexit
= nested_svm_exit_special(svm
);
4745 if (vmexit
== NESTED_EXIT_CONTINUE
)
4746 vmexit
= nested_svm_exit_handled(svm
);
4748 if (vmexit
== NESTED_EXIT_DONE
)
4752 svm_complete_interrupts(svm
);
4754 if (svm
->vmcb
->control
.exit_code
== SVM_EXIT_ERR
) {
4755 kvm_run
->exit_reason
= KVM_EXIT_FAIL_ENTRY
;
4756 kvm_run
->fail_entry
.hardware_entry_failure_reason
4757 = svm
->vmcb
->control
.exit_code
;
4758 pr_err("KVM: FAILED VMRUN WITH VMCB:\n");
4763 if (is_external_interrupt(svm
->vmcb
->control
.exit_int_info
) &&
4764 exit_code
!= SVM_EXIT_EXCP_BASE
+ PF_VECTOR
&&
4765 exit_code
!= SVM_EXIT_NPF
&& exit_code
!= SVM_EXIT_TASK_SWITCH
&&
4766 exit_code
!= SVM_EXIT_INTR
&& exit_code
!= SVM_EXIT_NMI
)
4767 printk(KERN_ERR
"%s: unexpected exit_int_info 0x%x "
4769 __func__
, svm
->vmcb
->control
.exit_int_info
,
4772 if (exit_code
>= ARRAY_SIZE(svm_exit_handlers
)
4773 || !svm_exit_handlers
[exit_code
]) {
4774 WARN_ONCE(1, "svm: unexpected exit reason 0x%x\n", exit_code
);
4775 kvm_queue_exception(vcpu
, UD_VECTOR
);
4779 return svm_exit_handlers
[exit_code
](svm
);
4782 static void reload_tss(struct kvm_vcpu
*vcpu
)
4784 int cpu
= raw_smp_processor_id();
4786 struct svm_cpu_data
*sd
= per_cpu(svm_data
, cpu
);
4787 sd
->tss_desc
->type
= 9; /* available 32/64-bit TSS */
4791 static void pre_sev_run(struct vcpu_svm
*svm
, int cpu
)
4793 struct svm_cpu_data
*sd
= per_cpu(svm_data
, cpu
);
4794 int asid
= sev_get_asid(svm
->vcpu
.kvm
);
4796 /* Assign the asid allocated with this SEV guest */
4797 svm
->vmcb
->control
.asid
= asid
;
4802 * 1) when different VMCB for the same ASID is to be run on the same host CPU.
4803 * 2) or this VMCB was executed on different host CPU in previous VMRUNs.
4805 if (sd
->sev_vmcbs
[asid
] == svm
->vmcb
&&
4806 svm
->last_cpu
== cpu
)
4809 svm
->last_cpu
= cpu
;
4810 sd
->sev_vmcbs
[asid
] = svm
->vmcb
;
4811 svm
->vmcb
->control
.tlb_ctl
= TLB_CONTROL_FLUSH_ASID
;
4812 mark_dirty(svm
->vmcb
, VMCB_ASID
);
4815 static void pre_svm_run(struct vcpu_svm
*svm
)
4817 int cpu
= raw_smp_processor_id();
4819 struct svm_cpu_data
*sd
= per_cpu(svm_data
, cpu
);
4821 if (sev_guest(svm
->vcpu
.kvm
))
4822 return pre_sev_run(svm
, cpu
);
4824 /* FIXME: handle wraparound of asid_generation */
4825 if (svm
->asid_generation
!= sd
->asid_generation
)
4829 static void svm_inject_nmi(struct kvm_vcpu
*vcpu
)
4831 struct vcpu_svm
*svm
= to_svm(vcpu
);
4833 svm
->vmcb
->control
.event_inj
= SVM_EVTINJ_VALID
| SVM_EVTINJ_TYPE_NMI
;
4834 vcpu
->arch
.hflags
|= HF_NMI_MASK
;
4835 set_intercept(svm
, INTERCEPT_IRET
);
4836 ++vcpu
->stat
.nmi_injections
;
4839 static inline void svm_inject_irq(struct vcpu_svm
*svm
, int irq
)
4841 struct vmcb_control_area
*control
;
4843 /* The following fields are ignored when AVIC is enabled */
4844 control
= &svm
->vmcb
->control
;
4845 control
->int_vector
= irq
;
4846 control
->int_ctl
&= ~V_INTR_PRIO_MASK
;
4847 control
->int_ctl
|= V_IRQ_MASK
|
4848 ((/*control->int_vector >> 4*/ 0xf) << V_INTR_PRIO_SHIFT
);
4849 mark_dirty(svm
->vmcb
, VMCB_INTR
);
4852 static void svm_set_irq(struct kvm_vcpu
*vcpu
)
4854 struct vcpu_svm
*svm
= to_svm(vcpu
);
4856 BUG_ON(!(gif_set(svm
)));
4858 trace_kvm_inj_virq(vcpu
->arch
.interrupt
.nr
);
4859 ++vcpu
->stat
.irq_injections
;
4861 svm
->vmcb
->control
.event_inj
= vcpu
->arch
.interrupt
.nr
|
4862 SVM_EVTINJ_VALID
| SVM_EVTINJ_TYPE_INTR
;
4865 static inline bool svm_nested_virtualize_tpr(struct kvm_vcpu
*vcpu
)
4867 return is_guest_mode(vcpu
) && (vcpu
->arch
.hflags
& HF_VINTR_MASK
);
4870 static void update_cr8_intercept(struct kvm_vcpu
*vcpu
, int tpr
, int irr
)
4872 struct vcpu_svm
*svm
= to_svm(vcpu
);
4874 if (svm_nested_virtualize_tpr(vcpu
) ||
4875 kvm_vcpu_apicv_active(vcpu
))
4878 clr_cr_intercept(svm
, INTERCEPT_CR8_WRITE
);
4884 set_cr_intercept(svm
, INTERCEPT_CR8_WRITE
);
4887 static void svm_set_virtual_x2apic_mode(struct kvm_vcpu
*vcpu
, bool set
)
4892 static bool svm_get_enable_apicv(struct kvm_vcpu
*vcpu
)
4894 return avic
&& irqchip_split(vcpu
->kvm
);
4897 static void svm_hwapic_irr_update(struct kvm_vcpu
*vcpu
, int max_irr
)
4901 static void svm_hwapic_isr_update(struct kvm_vcpu
*vcpu
, int max_isr
)
4905 /* Note: Currently only used by Hyper-V. */
4906 static void svm_refresh_apicv_exec_ctrl(struct kvm_vcpu
*vcpu
)
4908 struct vcpu_svm
*svm
= to_svm(vcpu
);
4909 struct vmcb
*vmcb
= svm
->vmcb
;
4911 if (!kvm_vcpu_apicv_active(&svm
->vcpu
))
4914 vmcb
->control
.int_ctl
&= ~AVIC_ENABLE_MASK
;
4915 mark_dirty(vmcb
, VMCB_INTR
);
4918 static void svm_load_eoi_exitmap(struct kvm_vcpu
*vcpu
, u64
*eoi_exit_bitmap
)
4923 static void svm_deliver_avic_intr(struct kvm_vcpu
*vcpu
, int vec
)
4925 kvm_lapic_set_irr(vec
, vcpu
->arch
.apic
);
4926 smp_mb__after_atomic();
4928 if (avic_vcpu_is_running(vcpu
))
4929 wrmsrl(SVM_AVIC_DOORBELL
,
4930 kvm_cpu_get_apicid(vcpu
->cpu
));
4932 kvm_vcpu_wake_up(vcpu
);
4935 static void svm_ir_list_del(struct vcpu_svm
*svm
, struct amd_iommu_pi_data
*pi
)
4937 unsigned long flags
;
4938 struct amd_svm_iommu_ir
*cur
;
4940 spin_lock_irqsave(&svm
->ir_list_lock
, flags
);
4941 list_for_each_entry(cur
, &svm
->ir_list
, node
) {
4942 if (cur
->data
!= pi
->ir_data
)
4944 list_del(&cur
->node
);
4948 spin_unlock_irqrestore(&svm
->ir_list_lock
, flags
);
4951 static int svm_ir_list_add(struct vcpu_svm
*svm
, struct amd_iommu_pi_data
*pi
)
4954 unsigned long flags
;
4955 struct amd_svm_iommu_ir
*ir
;
4958 * In some cases, the existing irte is updaed and re-set,
4959 * so we need to check here if it's already been * added
4962 if (pi
->ir_data
&& (pi
->prev_ga_tag
!= 0)) {
4963 struct kvm
*kvm
= svm
->vcpu
.kvm
;
4964 u32 vcpu_id
= AVIC_GATAG_TO_VCPUID(pi
->prev_ga_tag
);
4965 struct kvm_vcpu
*prev_vcpu
= kvm_get_vcpu_by_id(kvm
, vcpu_id
);
4966 struct vcpu_svm
*prev_svm
;
4973 prev_svm
= to_svm(prev_vcpu
);
4974 svm_ir_list_del(prev_svm
, pi
);
4978 * Allocating new amd_iommu_pi_data, which will get
4979 * add to the per-vcpu ir_list.
4981 ir
= kzalloc(sizeof(struct amd_svm_iommu_ir
), GFP_KERNEL
);
4986 ir
->data
= pi
->ir_data
;
4988 spin_lock_irqsave(&svm
->ir_list_lock
, flags
);
4989 list_add(&ir
->node
, &svm
->ir_list
);
4990 spin_unlock_irqrestore(&svm
->ir_list_lock
, flags
);
4997 * The HW cannot support posting multicast/broadcast
4998 * interrupts to a vCPU. So, we still use legacy interrupt
4999 * remapping for these kind of interrupts.
5001 * For lowest-priority interrupts, we only support
5002 * those with single CPU as the destination, e.g. user
5003 * configures the interrupts via /proc/irq or uses
5004 * irqbalance to make the interrupts single-CPU.
5007 get_pi_vcpu_info(struct kvm
*kvm
, struct kvm_kernel_irq_routing_entry
*e
,
5008 struct vcpu_data
*vcpu_info
, struct vcpu_svm
**svm
)
5010 struct kvm_lapic_irq irq
;
5011 struct kvm_vcpu
*vcpu
= NULL
;
5013 kvm_set_msi_irq(kvm
, e
, &irq
);
5015 if (!kvm_intr_is_single_vcpu(kvm
, &irq
, &vcpu
)) {
5016 pr_debug("SVM: %s: use legacy intr remap mode for irq %u\n",
5017 __func__
, irq
.vector
);
5021 pr_debug("SVM: %s: use GA mode for irq %u\n", __func__
,
5023 *svm
= to_svm(vcpu
);
5024 vcpu_info
->pi_desc_addr
= __sme_set(page_to_phys((*svm
)->avic_backing_page
));
5025 vcpu_info
->vector
= irq
.vector
;
5031 * svm_update_pi_irte - set IRTE for Posted-Interrupts
5034 * @host_irq: host irq of the interrupt
5035 * @guest_irq: gsi of the interrupt
5036 * @set: set or unset PI
5037 * returns 0 on success, < 0 on failure
5039 static int svm_update_pi_irte(struct kvm
*kvm
, unsigned int host_irq
,
5040 uint32_t guest_irq
, bool set
)
5042 struct kvm_kernel_irq_routing_entry
*e
;
5043 struct kvm_irq_routing_table
*irq_rt
;
5044 int idx
, ret
= -EINVAL
;
5046 if (!kvm_arch_has_assigned_device(kvm
) ||
5047 !irq_remapping_cap(IRQ_POSTING_CAP
))
5050 pr_debug("SVM: %s: host_irq=%#x, guest_irq=%#x, set=%#x\n",
5051 __func__
, host_irq
, guest_irq
, set
);
5053 idx
= srcu_read_lock(&kvm
->irq_srcu
);
5054 irq_rt
= srcu_dereference(kvm
->irq_routing
, &kvm
->irq_srcu
);
5055 WARN_ON(guest_irq
>= irq_rt
->nr_rt_entries
);
5057 hlist_for_each_entry(e
, &irq_rt
->map
[guest_irq
], link
) {
5058 struct vcpu_data vcpu_info
;
5059 struct vcpu_svm
*svm
= NULL
;
5061 if (e
->type
!= KVM_IRQ_ROUTING_MSI
)
5065 * Here, we setup with legacy mode in the following cases:
5066 * 1. When cannot target interrupt to a specific vcpu.
5067 * 2. Unsetting posted interrupt.
5068 * 3. APIC virtialization is disabled for the vcpu.
5070 if (!get_pi_vcpu_info(kvm
, e
, &vcpu_info
, &svm
) && set
&&
5071 kvm_vcpu_apicv_active(&svm
->vcpu
)) {
5072 struct amd_iommu_pi_data pi
;
5074 /* Try to enable guest_mode in IRTE */
5075 pi
.base
= __sme_set(page_to_phys(svm
->avic_backing_page
) &
5077 pi
.ga_tag
= AVIC_GATAG(kvm
->arch
.avic_vm_id
,
5079 pi
.is_guest_mode
= true;
5080 pi
.vcpu_data
= &vcpu_info
;
5081 ret
= irq_set_vcpu_affinity(host_irq
, &pi
);
5084 * Here, we successfully setting up vcpu affinity in
5085 * IOMMU guest mode. Now, we need to store the posted
5086 * interrupt information in a per-vcpu ir_list so that
5087 * we can reference to them directly when we update vcpu
5088 * scheduling information in IOMMU irte.
5090 if (!ret
&& pi
.is_guest_mode
)
5091 svm_ir_list_add(svm
, &pi
);
5093 /* Use legacy mode in IRTE */
5094 struct amd_iommu_pi_data pi
;
5097 * Here, pi is used to:
5098 * - Tell IOMMU to use legacy mode for this interrupt.
5099 * - Retrieve ga_tag of prior interrupt remapping data.
5101 pi
.is_guest_mode
= false;
5102 ret
= irq_set_vcpu_affinity(host_irq
, &pi
);
5105 * Check if the posted interrupt was previously
5106 * setup with the guest_mode by checking if the ga_tag
5107 * was cached. If so, we need to clean up the per-vcpu
5110 if (!ret
&& pi
.prev_ga_tag
) {
5111 int id
= AVIC_GATAG_TO_VCPUID(pi
.prev_ga_tag
);
5112 struct kvm_vcpu
*vcpu
;
5114 vcpu
= kvm_get_vcpu_by_id(kvm
, id
);
5116 svm_ir_list_del(to_svm(vcpu
), &pi
);
5121 trace_kvm_pi_irte_update(svm
->vcpu
.vcpu_id
,
5124 vcpu_info
.pi_desc_addr
, set
);
5128 pr_err("%s: failed to update PI IRTE\n", __func__
);
5135 srcu_read_unlock(&kvm
->irq_srcu
, idx
);
5139 static int svm_nmi_allowed(struct kvm_vcpu
*vcpu
)
5141 struct vcpu_svm
*svm
= to_svm(vcpu
);
5142 struct vmcb
*vmcb
= svm
->vmcb
;
5144 ret
= !(vmcb
->control
.int_state
& SVM_INTERRUPT_SHADOW_MASK
) &&
5145 !(svm
->vcpu
.arch
.hflags
& HF_NMI_MASK
);
5146 ret
= ret
&& gif_set(svm
) && nested_svm_nmi(svm
);
5151 static bool svm_get_nmi_mask(struct kvm_vcpu
*vcpu
)
5153 struct vcpu_svm
*svm
= to_svm(vcpu
);
5155 return !!(svm
->vcpu
.arch
.hflags
& HF_NMI_MASK
);
5158 static void svm_set_nmi_mask(struct kvm_vcpu
*vcpu
, bool masked
)
5160 struct vcpu_svm
*svm
= to_svm(vcpu
);
5163 svm
->vcpu
.arch
.hflags
|= HF_NMI_MASK
;
5164 set_intercept(svm
, INTERCEPT_IRET
);
5166 svm
->vcpu
.arch
.hflags
&= ~HF_NMI_MASK
;
5167 clr_intercept(svm
, INTERCEPT_IRET
);
5171 static int svm_interrupt_allowed(struct kvm_vcpu
*vcpu
)
5173 struct vcpu_svm
*svm
= to_svm(vcpu
);
5174 struct vmcb
*vmcb
= svm
->vmcb
;
5177 if (!gif_set(svm
) ||
5178 (vmcb
->control
.int_state
& SVM_INTERRUPT_SHADOW_MASK
))
5181 ret
= !!(kvm_get_rflags(vcpu
) & X86_EFLAGS_IF
);
5183 if (is_guest_mode(vcpu
))
5184 return ret
&& !(svm
->vcpu
.arch
.hflags
& HF_VINTR_MASK
);
5189 static void enable_irq_window(struct kvm_vcpu
*vcpu
)
5191 struct vcpu_svm
*svm
= to_svm(vcpu
);
5193 if (kvm_vcpu_apicv_active(vcpu
))
5197 * In case GIF=0 we can't rely on the CPU to tell us when GIF becomes
5198 * 1, because that's a separate STGI/VMRUN intercept. The next time we
5199 * get that intercept, this function will be called again though and
5200 * we'll get the vintr intercept. However, if the vGIF feature is
5201 * enabled, the STGI interception will not occur. Enable the irq
5202 * window under the assumption that the hardware will set the GIF.
5204 if ((vgif_enabled(svm
) || gif_set(svm
)) && nested_svm_intr(svm
)) {
5206 svm_inject_irq(svm
, 0x0);
5210 static void enable_nmi_window(struct kvm_vcpu
*vcpu
)
5212 struct vcpu_svm
*svm
= to_svm(vcpu
);
5214 if ((svm
->vcpu
.arch
.hflags
& (HF_NMI_MASK
| HF_IRET_MASK
))
5216 return; /* IRET will cause a vm exit */
5218 if (!gif_set(svm
)) {
5219 if (vgif_enabled(svm
))
5220 set_intercept(svm
, INTERCEPT_STGI
);
5221 return; /* STGI will cause a vm exit */
5224 if (svm
->nested
.exit_required
)
5225 return; /* we're not going to run the guest yet */
5228 * Something prevents NMI from been injected. Single step over possible
5229 * problem (IRET or exception injection or interrupt shadow)
5231 svm
->nmi_singlestep_guest_rflags
= svm_get_rflags(vcpu
);
5232 svm
->nmi_singlestep
= true;
5233 svm
->vmcb
->save
.rflags
|= (X86_EFLAGS_TF
| X86_EFLAGS_RF
);
5236 static int svm_set_tss_addr(struct kvm
*kvm
, unsigned int addr
)
5241 static void svm_flush_tlb(struct kvm_vcpu
*vcpu
, bool invalidate_gpa
)
5243 struct vcpu_svm
*svm
= to_svm(vcpu
);
5245 if (static_cpu_has(X86_FEATURE_FLUSHBYASID
))
5246 svm
->vmcb
->control
.tlb_ctl
= TLB_CONTROL_FLUSH_ASID
;
5248 svm
->asid_generation
--;
5251 static void svm_prepare_guest_switch(struct kvm_vcpu
*vcpu
)
5255 static inline void sync_cr8_to_lapic(struct kvm_vcpu
*vcpu
)
5257 struct vcpu_svm
*svm
= to_svm(vcpu
);
5259 if (svm_nested_virtualize_tpr(vcpu
))
5262 if (!is_cr_intercept(svm
, INTERCEPT_CR8_WRITE
)) {
5263 int cr8
= svm
->vmcb
->control
.int_ctl
& V_TPR_MASK
;
5264 kvm_set_cr8(vcpu
, cr8
);
5268 static inline void sync_lapic_to_cr8(struct kvm_vcpu
*vcpu
)
5270 struct vcpu_svm
*svm
= to_svm(vcpu
);
5273 if (svm_nested_virtualize_tpr(vcpu
) ||
5274 kvm_vcpu_apicv_active(vcpu
))
5277 cr8
= kvm_get_cr8(vcpu
);
5278 svm
->vmcb
->control
.int_ctl
&= ~V_TPR_MASK
;
5279 svm
->vmcb
->control
.int_ctl
|= cr8
& V_TPR_MASK
;
5282 static void svm_complete_interrupts(struct vcpu_svm
*svm
)
5286 u32 exitintinfo
= svm
->vmcb
->control
.exit_int_info
;
5287 unsigned int3_injected
= svm
->int3_injected
;
5289 svm
->int3_injected
= 0;
5292 * If we've made progress since setting HF_IRET_MASK, we've
5293 * executed an IRET and can allow NMI injection.
5295 if ((svm
->vcpu
.arch
.hflags
& HF_IRET_MASK
)
5296 && kvm_rip_read(&svm
->vcpu
) != svm
->nmi_iret_rip
) {
5297 svm
->vcpu
.arch
.hflags
&= ~(HF_NMI_MASK
| HF_IRET_MASK
);
5298 kvm_make_request(KVM_REQ_EVENT
, &svm
->vcpu
);
5301 svm
->vcpu
.arch
.nmi_injected
= false;
5302 kvm_clear_exception_queue(&svm
->vcpu
);
5303 kvm_clear_interrupt_queue(&svm
->vcpu
);
5305 if (!(exitintinfo
& SVM_EXITINTINFO_VALID
))
5308 kvm_make_request(KVM_REQ_EVENT
, &svm
->vcpu
);
5310 vector
= exitintinfo
& SVM_EXITINTINFO_VEC_MASK
;
5311 type
= exitintinfo
& SVM_EXITINTINFO_TYPE_MASK
;
5314 case SVM_EXITINTINFO_TYPE_NMI
:
5315 svm
->vcpu
.arch
.nmi_injected
= true;
5317 case SVM_EXITINTINFO_TYPE_EXEPT
:
5319 * In case of software exceptions, do not reinject the vector,
5320 * but re-execute the instruction instead. Rewind RIP first
5321 * if we emulated INT3 before.
5323 if (kvm_exception_is_soft(vector
)) {
5324 if (vector
== BP_VECTOR
&& int3_injected
&&
5325 kvm_is_linear_rip(&svm
->vcpu
, svm
->int3_rip
))
5326 kvm_rip_write(&svm
->vcpu
,
5327 kvm_rip_read(&svm
->vcpu
) -
5331 if (exitintinfo
& SVM_EXITINTINFO_VALID_ERR
) {
5332 u32 err
= svm
->vmcb
->control
.exit_int_info_err
;
5333 kvm_requeue_exception_e(&svm
->vcpu
, vector
, err
);
5336 kvm_requeue_exception(&svm
->vcpu
, vector
);
5338 case SVM_EXITINTINFO_TYPE_INTR
:
5339 kvm_queue_interrupt(&svm
->vcpu
, vector
, false);
5346 static void svm_cancel_injection(struct kvm_vcpu
*vcpu
)
5348 struct vcpu_svm
*svm
= to_svm(vcpu
);
5349 struct vmcb_control_area
*control
= &svm
->vmcb
->control
;
5351 control
->exit_int_info
= control
->event_inj
;
5352 control
->exit_int_info_err
= control
->event_inj_err
;
5353 control
->event_inj
= 0;
5354 svm_complete_interrupts(svm
);
5357 static void svm_vcpu_run(struct kvm_vcpu
*vcpu
)
5359 struct vcpu_svm
*svm
= to_svm(vcpu
);
5361 svm
->vmcb
->save
.rax
= vcpu
->arch
.regs
[VCPU_REGS_RAX
];
5362 svm
->vmcb
->save
.rsp
= vcpu
->arch
.regs
[VCPU_REGS_RSP
];
5363 svm
->vmcb
->save
.rip
= vcpu
->arch
.regs
[VCPU_REGS_RIP
];
5366 * A vmexit emulation is required before the vcpu can be executed
5369 if (unlikely(svm
->nested
.exit_required
))
5373 * Disable singlestep if we're injecting an interrupt/exception.
5374 * We don't want our modified rflags to be pushed on the stack where
5375 * we might not be able to easily reset them if we disabled NMI
5378 if (svm
->nmi_singlestep
&& svm
->vmcb
->control
.event_inj
) {
5380 * Event injection happens before external interrupts cause a
5381 * vmexit and interrupts are disabled here, so smp_send_reschedule
5382 * is enough to force an immediate vmexit.
5384 disable_nmi_singlestep(svm
);
5385 smp_send_reschedule(vcpu
->cpu
);
5390 sync_lapic_to_cr8(vcpu
);
5392 svm
->vmcb
->save
.cr2
= vcpu
->arch
.cr2
;
5399 * If this vCPU has touched SPEC_CTRL, restore the guest's value if
5400 * it's non-zero. Since vmentry is serialising on affected CPUs, there
5401 * is no need to worry about the conditional branch over the wrmsr
5402 * being speculatively taken.
5405 native_wrmsrl(MSR_IA32_SPEC_CTRL
, svm
->spec_ctrl
);
5408 "push %%" _ASM_BP
"; \n\t"
5409 "mov %c[rbx](%[svm]), %%" _ASM_BX
" \n\t"
5410 "mov %c[rcx](%[svm]), %%" _ASM_CX
" \n\t"
5411 "mov %c[rdx](%[svm]), %%" _ASM_DX
" \n\t"
5412 "mov %c[rsi](%[svm]), %%" _ASM_SI
" \n\t"
5413 "mov %c[rdi](%[svm]), %%" _ASM_DI
" \n\t"
5414 "mov %c[rbp](%[svm]), %%" _ASM_BP
" \n\t"
5415 #ifdef CONFIG_X86_64
5416 "mov %c[r8](%[svm]), %%r8 \n\t"
5417 "mov %c[r9](%[svm]), %%r9 \n\t"
5418 "mov %c[r10](%[svm]), %%r10 \n\t"
5419 "mov %c[r11](%[svm]), %%r11 \n\t"
5420 "mov %c[r12](%[svm]), %%r12 \n\t"
5421 "mov %c[r13](%[svm]), %%r13 \n\t"
5422 "mov %c[r14](%[svm]), %%r14 \n\t"
5423 "mov %c[r15](%[svm]), %%r15 \n\t"
5426 /* Enter guest mode */
5427 "push %%" _ASM_AX
" \n\t"
5428 "mov %c[vmcb](%[svm]), %%" _ASM_AX
" \n\t"
5429 __ex(SVM_VMLOAD
) "\n\t"
5430 __ex(SVM_VMRUN
) "\n\t"
5431 __ex(SVM_VMSAVE
) "\n\t"
5432 "pop %%" _ASM_AX
" \n\t"
5434 /* Save guest registers, load host registers */
5435 "mov %%" _ASM_BX
", %c[rbx](%[svm]) \n\t"
5436 "mov %%" _ASM_CX
", %c[rcx](%[svm]) \n\t"
5437 "mov %%" _ASM_DX
", %c[rdx](%[svm]) \n\t"
5438 "mov %%" _ASM_SI
", %c[rsi](%[svm]) \n\t"
5439 "mov %%" _ASM_DI
", %c[rdi](%[svm]) \n\t"
5440 "mov %%" _ASM_BP
", %c[rbp](%[svm]) \n\t"
5441 #ifdef CONFIG_X86_64
5442 "mov %%r8, %c[r8](%[svm]) \n\t"
5443 "mov %%r9, %c[r9](%[svm]) \n\t"
5444 "mov %%r10, %c[r10](%[svm]) \n\t"
5445 "mov %%r11, %c[r11](%[svm]) \n\t"
5446 "mov %%r12, %c[r12](%[svm]) \n\t"
5447 "mov %%r13, %c[r13](%[svm]) \n\t"
5448 "mov %%r14, %c[r14](%[svm]) \n\t"
5449 "mov %%r15, %c[r15](%[svm]) \n\t"
5452 * Clear host registers marked as clobbered to prevent
5455 "xor %%" _ASM_BX
", %%" _ASM_BX
" \n\t"
5456 "xor %%" _ASM_CX
", %%" _ASM_CX
" \n\t"
5457 "xor %%" _ASM_DX
", %%" _ASM_DX
" \n\t"
5458 "xor %%" _ASM_SI
", %%" _ASM_SI
" \n\t"
5459 "xor %%" _ASM_DI
", %%" _ASM_DI
" \n\t"
5460 #ifdef CONFIG_X86_64
5461 "xor %%r8, %%r8 \n\t"
5462 "xor %%r9, %%r9 \n\t"
5463 "xor %%r10, %%r10 \n\t"
5464 "xor %%r11, %%r11 \n\t"
5465 "xor %%r12, %%r12 \n\t"
5466 "xor %%r13, %%r13 \n\t"
5467 "xor %%r14, %%r14 \n\t"
5468 "xor %%r15, %%r15 \n\t"
5473 [vmcb
]"i"(offsetof(struct vcpu_svm
, vmcb_pa
)),
5474 [rbx
]"i"(offsetof(struct vcpu_svm
, vcpu
.arch
.regs
[VCPU_REGS_RBX
])),
5475 [rcx
]"i"(offsetof(struct vcpu_svm
, vcpu
.arch
.regs
[VCPU_REGS_RCX
])),
5476 [rdx
]"i"(offsetof(struct vcpu_svm
, vcpu
.arch
.regs
[VCPU_REGS_RDX
])),
5477 [rsi
]"i"(offsetof(struct vcpu_svm
, vcpu
.arch
.regs
[VCPU_REGS_RSI
])),
5478 [rdi
]"i"(offsetof(struct vcpu_svm
, vcpu
.arch
.regs
[VCPU_REGS_RDI
])),
5479 [rbp
]"i"(offsetof(struct vcpu_svm
, vcpu
.arch
.regs
[VCPU_REGS_RBP
]))
5480 #ifdef CONFIG_X86_64
5481 , [r8
]"i"(offsetof(struct vcpu_svm
, vcpu
.arch
.regs
[VCPU_REGS_R8
])),
5482 [r9
]"i"(offsetof(struct vcpu_svm
, vcpu
.arch
.regs
[VCPU_REGS_R9
])),
5483 [r10
]"i"(offsetof(struct vcpu_svm
, vcpu
.arch
.regs
[VCPU_REGS_R10
])),
5484 [r11
]"i"(offsetof(struct vcpu_svm
, vcpu
.arch
.regs
[VCPU_REGS_R11
])),
5485 [r12
]"i"(offsetof(struct vcpu_svm
, vcpu
.arch
.regs
[VCPU_REGS_R12
])),
5486 [r13
]"i"(offsetof(struct vcpu_svm
, vcpu
.arch
.regs
[VCPU_REGS_R13
])),
5487 [r14
]"i"(offsetof(struct vcpu_svm
, vcpu
.arch
.regs
[VCPU_REGS_R14
])),
5488 [r15
]"i"(offsetof(struct vcpu_svm
, vcpu
.arch
.regs
[VCPU_REGS_R15
]))
5491 #ifdef CONFIG_X86_64
5492 , "rbx", "rcx", "rdx", "rsi", "rdi"
5493 , "r8", "r9", "r10", "r11" , "r12", "r13", "r14", "r15"
5495 , "ebx", "ecx", "edx", "esi", "edi"
5500 * We do not use IBRS in the kernel. If this vCPU has used the
5501 * SPEC_CTRL MSR it may have left it on; save the value and
5502 * turn it off. This is much more efficient than blindly adding
5503 * it to the atomic save/restore list. Especially as the former
5504 * (Saving guest MSRs on vmexit) doesn't even exist in KVM.
5506 * For non-nested case:
5507 * If the L01 MSR bitmap does not intercept the MSR, then we need to
5511 * If the L02 MSR bitmap does not intercept the MSR, then we need to
5514 if (unlikely(!msr_write_intercepted(vcpu
, MSR_IA32_SPEC_CTRL
)))
5515 svm
->spec_ctrl
= native_read_msr(MSR_IA32_SPEC_CTRL
);
5518 native_wrmsrl(MSR_IA32_SPEC_CTRL
, 0);
5520 /* Eliminate branch target predictions from guest mode */
5523 #ifdef CONFIG_X86_64
5524 wrmsrl(MSR_GS_BASE
, svm
->host
.gs_base
);
5526 loadsegment(fs
, svm
->host
.fs
);
5527 #ifndef CONFIG_X86_32_LAZY_GS
5528 loadsegment(gs
, svm
->host
.gs
);
5534 local_irq_disable();
5536 vcpu
->arch
.cr2
= svm
->vmcb
->save
.cr2
;
5537 vcpu
->arch
.regs
[VCPU_REGS_RAX
] = svm
->vmcb
->save
.rax
;
5538 vcpu
->arch
.regs
[VCPU_REGS_RSP
] = svm
->vmcb
->save
.rsp
;
5539 vcpu
->arch
.regs
[VCPU_REGS_RIP
] = svm
->vmcb
->save
.rip
;
5541 if (unlikely(svm
->vmcb
->control
.exit_code
== SVM_EXIT_NMI
))
5542 kvm_before_handle_nmi(&svm
->vcpu
);
5546 /* Any pending NMI will happen here */
5548 if (unlikely(svm
->vmcb
->control
.exit_code
== SVM_EXIT_NMI
))
5549 kvm_after_handle_nmi(&svm
->vcpu
);
5551 sync_cr8_to_lapic(vcpu
);
5555 svm
->vmcb
->control
.tlb_ctl
= TLB_CONTROL_DO_NOTHING
;
5557 /* if exit due to PF check for async PF */
5558 if (svm
->vmcb
->control
.exit_code
== SVM_EXIT_EXCP_BASE
+ PF_VECTOR
)
5559 svm
->vcpu
.arch
.apf
.host_apf_reason
= kvm_read_and_reset_pf_reason();
5562 vcpu
->arch
.regs_avail
&= ~(1 << VCPU_EXREG_PDPTR
);
5563 vcpu
->arch
.regs_dirty
&= ~(1 << VCPU_EXREG_PDPTR
);
5567 * We need to handle MC intercepts here before the vcpu has a chance to
5568 * change the physical cpu
5570 if (unlikely(svm
->vmcb
->control
.exit_code
==
5571 SVM_EXIT_EXCP_BASE
+ MC_VECTOR
))
5572 svm_handle_mce(svm
);
5574 mark_all_clean(svm
->vmcb
);
5576 STACK_FRAME_NON_STANDARD(svm_vcpu_run
);
5578 static void svm_set_cr3(struct kvm_vcpu
*vcpu
, unsigned long root
)
5580 struct vcpu_svm
*svm
= to_svm(vcpu
);
5582 svm
->vmcb
->save
.cr3
= __sme_set(root
);
5583 mark_dirty(svm
->vmcb
, VMCB_CR
);
5584 svm_flush_tlb(vcpu
, true);
5587 static void set_tdp_cr3(struct kvm_vcpu
*vcpu
, unsigned long root
)
5589 struct vcpu_svm
*svm
= to_svm(vcpu
);
5591 svm
->vmcb
->control
.nested_cr3
= __sme_set(root
);
5592 mark_dirty(svm
->vmcb
, VMCB_NPT
);
5594 /* Also sync guest cr3 here in case we live migrate */
5595 svm
->vmcb
->save
.cr3
= kvm_read_cr3(vcpu
);
5596 mark_dirty(svm
->vmcb
, VMCB_CR
);
5598 svm_flush_tlb(vcpu
, true);
5601 static int is_disabled(void)
5605 rdmsrl(MSR_VM_CR
, vm_cr
);
5606 if (vm_cr
& (1 << SVM_VM_CR_SVM_DISABLE
))
5613 svm_patch_hypercall(struct kvm_vcpu
*vcpu
, unsigned char *hypercall
)
5616 * Patch in the VMMCALL instruction:
5618 hypercall
[0] = 0x0f;
5619 hypercall
[1] = 0x01;
5620 hypercall
[2] = 0xd9;
5623 static void svm_check_processor_compat(void *rtn
)
5628 static bool svm_cpu_has_accelerated_tpr(void)
5633 static bool svm_has_high_real_mode_segbase(void)
5638 static u64
svm_get_mt_mask(struct kvm_vcpu
*vcpu
, gfn_t gfn
, bool is_mmio
)
5643 static void svm_cpuid_update(struct kvm_vcpu
*vcpu
)
5645 struct vcpu_svm
*svm
= to_svm(vcpu
);
5647 /* Update nrips enabled cache */
5648 svm
->nrips_enabled
= !!guest_cpuid_has(&svm
->vcpu
, X86_FEATURE_NRIPS
);
5650 if (!kvm_vcpu_apicv_active(vcpu
))
5653 guest_cpuid_clear(vcpu
, X86_FEATURE_X2APIC
);
5656 static void svm_set_supported_cpuid(u32 func
, struct kvm_cpuid_entry2
*entry
)
5661 entry
->ecx
&= ~bit(X86_FEATURE_X2APIC
);
5665 entry
->ecx
|= (1 << 2); /* Set SVM bit */
5668 entry
->eax
= 1; /* SVM revision 1 */
5669 entry
->ebx
= 8; /* Lets support 8 ASIDs in case we add proper
5670 ASID emulation to nested SVM */
5671 entry
->ecx
= 0; /* Reserved */
5672 entry
->edx
= 0; /* Per default do not support any
5673 additional features */
5675 /* Support next_rip if host supports it */
5676 if (boot_cpu_has(X86_FEATURE_NRIPS
))
5677 entry
->edx
|= SVM_FEATURE_NRIP
;
5679 /* Support NPT for the guest if enabled */
5681 entry
->edx
|= SVM_FEATURE_NPT
;
5685 /* Support memory encryption cpuid if host supports it */
5686 if (boot_cpu_has(X86_FEATURE_SEV
))
5687 cpuid(0x8000001f, &entry
->eax
, &entry
->ebx
,
5688 &entry
->ecx
, &entry
->edx
);
5693 static int svm_get_lpage_level(void)
5695 return PT_PDPE_LEVEL
;
5698 static bool svm_rdtscp_supported(void)
5700 return boot_cpu_has(X86_FEATURE_RDTSCP
);
5703 static bool svm_invpcid_supported(void)
5708 static bool svm_mpx_supported(void)
5713 static bool svm_xsaves_supported(void)
5718 static bool svm_umip_emulated(void)
5723 static bool svm_has_wbinvd_exit(void)
5728 #define PRE_EX(exit) { .exit_code = (exit), \
5729 .stage = X86_ICPT_PRE_EXCEPT, }
5730 #define POST_EX(exit) { .exit_code = (exit), \
5731 .stage = X86_ICPT_POST_EXCEPT, }
5732 #define POST_MEM(exit) { .exit_code = (exit), \
5733 .stage = X86_ICPT_POST_MEMACCESS, }
5735 static const struct __x86_intercept
{
5737 enum x86_intercept_stage stage
;
5738 } x86_intercept_map
[] = {
5739 [x86_intercept_cr_read
] = POST_EX(SVM_EXIT_READ_CR0
),
5740 [x86_intercept_cr_write
] = POST_EX(SVM_EXIT_WRITE_CR0
),
5741 [x86_intercept_clts
] = POST_EX(SVM_EXIT_WRITE_CR0
),
5742 [x86_intercept_lmsw
] = POST_EX(SVM_EXIT_WRITE_CR0
),
5743 [x86_intercept_smsw
] = POST_EX(SVM_EXIT_READ_CR0
),
5744 [x86_intercept_dr_read
] = POST_EX(SVM_EXIT_READ_DR0
),
5745 [x86_intercept_dr_write
] = POST_EX(SVM_EXIT_WRITE_DR0
),
5746 [x86_intercept_sldt
] = POST_EX(SVM_EXIT_LDTR_READ
),
5747 [x86_intercept_str
] = POST_EX(SVM_EXIT_TR_READ
),
5748 [x86_intercept_lldt
] = POST_EX(SVM_EXIT_LDTR_WRITE
),
5749 [x86_intercept_ltr
] = POST_EX(SVM_EXIT_TR_WRITE
),
5750 [x86_intercept_sgdt
] = POST_EX(SVM_EXIT_GDTR_READ
),
5751 [x86_intercept_sidt
] = POST_EX(SVM_EXIT_IDTR_READ
),
5752 [x86_intercept_lgdt
] = POST_EX(SVM_EXIT_GDTR_WRITE
),
5753 [x86_intercept_lidt
] = POST_EX(SVM_EXIT_IDTR_WRITE
),
5754 [x86_intercept_vmrun
] = POST_EX(SVM_EXIT_VMRUN
),
5755 [x86_intercept_vmmcall
] = POST_EX(SVM_EXIT_VMMCALL
),
5756 [x86_intercept_vmload
] = POST_EX(SVM_EXIT_VMLOAD
),
5757 [x86_intercept_vmsave
] = POST_EX(SVM_EXIT_VMSAVE
),
5758 [x86_intercept_stgi
] = POST_EX(SVM_EXIT_STGI
),
5759 [x86_intercept_clgi
] = POST_EX(SVM_EXIT_CLGI
),
5760 [x86_intercept_skinit
] = POST_EX(SVM_EXIT_SKINIT
),
5761 [x86_intercept_invlpga
] = POST_EX(SVM_EXIT_INVLPGA
),
5762 [x86_intercept_rdtscp
] = POST_EX(SVM_EXIT_RDTSCP
),
5763 [x86_intercept_monitor
] = POST_MEM(SVM_EXIT_MONITOR
),
5764 [x86_intercept_mwait
] = POST_EX(SVM_EXIT_MWAIT
),
5765 [x86_intercept_invlpg
] = POST_EX(SVM_EXIT_INVLPG
),
5766 [x86_intercept_invd
] = POST_EX(SVM_EXIT_INVD
),
5767 [x86_intercept_wbinvd
] = POST_EX(SVM_EXIT_WBINVD
),
5768 [x86_intercept_wrmsr
] = POST_EX(SVM_EXIT_MSR
),
5769 [x86_intercept_rdtsc
] = POST_EX(SVM_EXIT_RDTSC
),
5770 [x86_intercept_rdmsr
] = POST_EX(SVM_EXIT_MSR
),
5771 [x86_intercept_rdpmc
] = POST_EX(SVM_EXIT_RDPMC
),
5772 [x86_intercept_cpuid
] = PRE_EX(SVM_EXIT_CPUID
),
5773 [x86_intercept_rsm
] = PRE_EX(SVM_EXIT_RSM
),
5774 [x86_intercept_pause
] = PRE_EX(SVM_EXIT_PAUSE
),
5775 [x86_intercept_pushf
] = PRE_EX(SVM_EXIT_PUSHF
),
5776 [x86_intercept_popf
] = PRE_EX(SVM_EXIT_POPF
),
5777 [x86_intercept_intn
] = PRE_EX(SVM_EXIT_SWINT
),
5778 [x86_intercept_iret
] = PRE_EX(SVM_EXIT_IRET
),
5779 [x86_intercept_icebp
] = PRE_EX(SVM_EXIT_ICEBP
),
5780 [x86_intercept_hlt
] = POST_EX(SVM_EXIT_HLT
),
5781 [x86_intercept_in
] = POST_EX(SVM_EXIT_IOIO
),
5782 [x86_intercept_ins
] = POST_EX(SVM_EXIT_IOIO
),
5783 [x86_intercept_out
] = POST_EX(SVM_EXIT_IOIO
),
5784 [x86_intercept_outs
] = POST_EX(SVM_EXIT_IOIO
),
5791 static int svm_check_intercept(struct kvm_vcpu
*vcpu
,
5792 struct x86_instruction_info
*info
,
5793 enum x86_intercept_stage stage
)
5795 struct vcpu_svm
*svm
= to_svm(vcpu
);
5796 int vmexit
, ret
= X86EMUL_CONTINUE
;
5797 struct __x86_intercept icpt_info
;
5798 struct vmcb
*vmcb
= svm
->vmcb
;
5800 if (info
->intercept
>= ARRAY_SIZE(x86_intercept_map
))
5803 icpt_info
= x86_intercept_map
[info
->intercept
];
5805 if (stage
!= icpt_info
.stage
)
5808 switch (icpt_info
.exit_code
) {
5809 case SVM_EXIT_READ_CR0
:
5810 if (info
->intercept
== x86_intercept_cr_read
)
5811 icpt_info
.exit_code
+= info
->modrm_reg
;
5813 case SVM_EXIT_WRITE_CR0
: {
5814 unsigned long cr0
, val
;
5817 if (info
->intercept
== x86_intercept_cr_write
)
5818 icpt_info
.exit_code
+= info
->modrm_reg
;
5820 if (icpt_info
.exit_code
!= SVM_EXIT_WRITE_CR0
||
5821 info
->intercept
== x86_intercept_clts
)
5824 intercept
= svm
->nested
.intercept
;
5826 if (!(intercept
& (1ULL << INTERCEPT_SELECTIVE_CR0
)))
5829 cr0
= vcpu
->arch
.cr0
& ~SVM_CR0_SELECTIVE_MASK
;
5830 val
= info
->src_val
& ~SVM_CR0_SELECTIVE_MASK
;
5832 if (info
->intercept
== x86_intercept_lmsw
) {
5835 /* lmsw can't clear PE - catch this here */
5836 if (cr0
& X86_CR0_PE
)
5841 icpt_info
.exit_code
= SVM_EXIT_CR0_SEL_WRITE
;
5845 case SVM_EXIT_READ_DR0
:
5846 case SVM_EXIT_WRITE_DR0
:
5847 icpt_info
.exit_code
+= info
->modrm_reg
;
5850 if (info
->intercept
== x86_intercept_wrmsr
)
5851 vmcb
->control
.exit_info_1
= 1;
5853 vmcb
->control
.exit_info_1
= 0;
5855 case SVM_EXIT_PAUSE
:
5857 * We get this for NOP only, but pause
5858 * is rep not, check this here
5860 if (info
->rep_prefix
!= REPE_PREFIX
)
5863 case SVM_EXIT_IOIO
: {
5867 if (info
->intercept
== x86_intercept_in
||
5868 info
->intercept
== x86_intercept_ins
) {
5869 exit_info
= ((info
->src_val
& 0xffff) << 16) |
5871 bytes
= info
->dst_bytes
;
5873 exit_info
= (info
->dst_val
& 0xffff) << 16;
5874 bytes
= info
->src_bytes
;
5877 if (info
->intercept
== x86_intercept_outs
||
5878 info
->intercept
== x86_intercept_ins
)
5879 exit_info
|= SVM_IOIO_STR_MASK
;
5881 if (info
->rep_prefix
)
5882 exit_info
|= SVM_IOIO_REP_MASK
;
5884 bytes
= min(bytes
, 4u);
5886 exit_info
|= bytes
<< SVM_IOIO_SIZE_SHIFT
;
5888 exit_info
|= (u32
)info
->ad_bytes
<< (SVM_IOIO_ASIZE_SHIFT
- 1);
5890 vmcb
->control
.exit_info_1
= exit_info
;
5891 vmcb
->control
.exit_info_2
= info
->next_rip
;
5899 /* TODO: Advertise NRIPS to guest hypervisor unconditionally */
5900 if (static_cpu_has(X86_FEATURE_NRIPS
))
5901 vmcb
->control
.next_rip
= info
->next_rip
;
5902 vmcb
->control
.exit_code
= icpt_info
.exit_code
;
5903 vmexit
= nested_svm_exit_handled(svm
);
5905 ret
= (vmexit
== NESTED_EXIT_DONE
) ? X86EMUL_INTERCEPTED
5912 static void svm_handle_external_intr(struct kvm_vcpu
*vcpu
)
5916 * We must have an instruction with interrupts enabled, so
5917 * the timer interrupt isn't delayed by the interrupt shadow.
5920 local_irq_disable();
5923 static void svm_sched_in(struct kvm_vcpu
*vcpu
, int cpu
)
5927 static inline void avic_post_state_restore(struct kvm_vcpu
*vcpu
)
5929 if (avic_handle_apic_id_update(vcpu
) != 0)
5931 if (avic_handle_dfr_update(vcpu
) != 0)
5933 avic_handle_ldr_update(vcpu
);
5936 static void svm_setup_mce(struct kvm_vcpu
*vcpu
)
5938 /* [63:9] are reserved. */
5939 vcpu
->arch
.mcg_cap
&= 0x1ff;
5942 static int svm_smi_allowed(struct kvm_vcpu
*vcpu
)
5944 struct vcpu_svm
*svm
= to_svm(vcpu
);
5946 /* Per APM Vol.2 15.22.2 "Response to SMI" */
5950 if (is_guest_mode(&svm
->vcpu
) &&
5951 svm
->nested
.intercept
& (1ULL << INTERCEPT_SMI
)) {
5952 /* TODO: Might need to set exit_info_1 and exit_info_2 here */
5953 svm
->vmcb
->control
.exit_code
= SVM_EXIT_SMI
;
5954 svm
->nested
.exit_required
= true;
5961 static int svm_pre_enter_smm(struct kvm_vcpu
*vcpu
, char *smstate
)
5963 struct vcpu_svm
*svm
= to_svm(vcpu
);
5966 if (is_guest_mode(vcpu
)) {
5967 /* FED8h - SVM Guest */
5968 put_smstate(u64
, smstate
, 0x7ed8, 1);
5969 /* FEE0h - SVM Guest VMCB Physical Address */
5970 put_smstate(u64
, smstate
, 0x7ee0, svm
->nested
.vmcb
);
5972 svm
->vmcb
->save
.rax
= vcpu
->arch
.regs
[VCPU_REGS_RAX
];
5973 svm
->vmcb
->save
.rsp
= vcpu
->arch
.regs
[VCPU_REGS_RSP
];
5974 svm
->vmcb
->save
.rip
= vcpu
->arch
.regs
[VCPU_REGS_RIP
];
5976 ret
= nested_svm_vmexit(svm
);
5983 static int svm_pre_leave_smm(struct kvm_vcpu
*vcpu
, u64 smbase
)
5985 struct vcpu_svm
*svm
= to_svm(vcpu
);
5986 struct vmcb
*nested_vmcb
;
5994 ret
= kvm_vcpu_read_guest(vcpu
, smbase
+ 0xfed8, &svm_state_save
,
5995 sizeof(svm_state_save
));
5999 if (svm_state_save
.guest
) {
6000 vcpu
->arch
.hflags
&= ~HF_SMM_MASK
;
6001 nested_vmcb
= nested_svm_map(svm
, svm_state_save
.vmcb
, &page
);
6003 enter_svm_guest_mode(svm
, svm_state_save
.vmcb
, nested_vmcb
, page
);
6006 vcpu
->arch
.hflags
|= HF_SMM_MASK
;
6011 static int enable_smi_window(struct kvm_vcpu
*vcpu
)
6013 struct vcpu_svm
*svm
= to_svm(vcpu
);
6015 if (!gif_set(svm
)) {
6016 if (vgif_enabled(svm
))
6017 set_intercept(svm
, INTERCEPT_STGI
);
6018 /* STGI will cause a vm exit */
6024 static int sev_asid_new(void)
6029 * SEV-enabled guest must use asid from min_sev_asid to max_sev_asid.
6031 pos
= find_next_zero_bit(sev_asid_bitmap
, max_sev_asid
, min_sev_asid
- 1);
6032 if (pos
>= max_sev_asid
)
6035 set_bit(pos
, sev_asid_bitmap
);
6039 static int sev_guest_init(struct kvm
*kvm
, struct kvm_sev_cmd
*argp
)
6041 struct kvm_sev_info
*sev
= &kvm
->arch
.sev_info
;
6045 asid
= sev_asid_new();
6049 ret
= sev_platform_init(&argp
->error
);
6055 INIT_LIST_HEAD(&sev
->regions_list
);
6060 __sev_asid_free(asid
);
6064 static int sev_bind_asid(struct kvm
*kvm
, unsigned int handle
, int *error
)
6066 struct sev_data_activate
*data
;
6067 int asid
= sev_get_asid(kvm
);
6070 wbinvd_on_all_cpus();
6072 ret
= sev_guest_df_flush(error
);
6076 data
= kzalloc(sizeof(*data
), GFP_KERNEL
);
6080 /* activate ASID on the given handle */
6081 data
->handle
= handle
;
6083 ret
= sev_guest_activate(data
, error
);
6089 static int __sev_issue_cmd(int fd
, int id
, void *data
, int *error
)
6098 ret
= sev_issue_cmd_external_user(f
.file
, id
, data
, error
);
6104 static int sev_issue_cmd(struct kvm
*kvm
, int id
, void *data
, int *error
)
6106 struct kvm_sev_info
*sev
= &kvm
->arch
.sev_info
;
6108 return __sev_issue_cmd(sev
->fd
, id
, data
, error
);
6111 static int sev_launch_start(struct kvm
*kvm
, struct kvm_sev_cmd
*argp
)
6113 struct kvm_sev_info
*sev
= &kvm
->arch
.sev_info
;
6114 struct sev_data_launch_start
*start
;
6115 struct kvm_sev_launch_start params
;
6116 void *dh_blob
, *session_blob
;
6117 int *error
= &argp
->error
;
6120 if (!sev_guest(kvm
))
6123 if (copy_from_user(¶ms
, (void __user
*)(uintptr_t)argp
->data
, sizeof(params
)))
6126 start
= kzalloc(sizeof(*start
), GFP_KERNEL
);
6131 if (params
.dh_uaddr
) {
6132 dh_blob
= psp_copy_user_blob(params
.dh_uaddr
, params
.dh_len
);
6133 if (IS_ERR(dh_blob
)) {
6134 ret
= PTR_ERR(dh_blob
);
6138 start
->dh_cert_address
= __sme_set(__pa(dh_blob
));
6139 start
->dh_cert_len
= params
.dh_len
;
6142 session_blob
= NULL
;
6143 if (params
.session_uaddr
) {
6144 session_blob
= psp_copy_user_blob(params
.session_uaddr
, params
.session_len
);
6145 if (IS_ERR(session_blob
)) {
6146 ret
= PTR_ERR(session_blob
);
6150 start
->session_address
= __sme_set(__pa(session_blob
));
6151 start
->session_len
= params
.session_len
;
6154 start
->handle
= params
.handle
;
6155 start
->policy
= params
.policy
;
6157 /* create memory encryption context */
6158 ret
= __sev_issue_cmd(argp
->sev_fd
, SEV_CMD_LAUNCH_START
, start
, error
);
6160 goto e_free_session
;
6162 /* Bind ASID to this guest */
6163 ret
= sev_bind_asid(kvm
, start
->handle
, error
);
6165 goto e_free_session
;
6167 /* return handle to userspace */
6168 params
.handle
= start
->handle
;
6169 if (copy_to_user((void __user
*)(uintptr_t)argp
->data
, ¶ms
, sizeof(params
))) {
6170 sev_unbind_asid(kvm
, start
->handle
);
6172 goto e_free_session
;
6175 sev
->handle
= start
->handle
;
6176 sev
->fd
= argp
->sev_fd
;
6179 kfree(session_blob
);
6187 static int get_num_contig_pages(int idx
, struct page
**inpages
,
6188 unsigned long npages
)
6190 unsigned long paddr
, next_paddr
;
6191 int i
= idx
+ 1, pages
= 1;
6193 /* find the number of contiguous pages starting from idx */
6194 paddr
= __sme_page_pa(inpages
[idx
]);
6195 while (i
< npages
) {
6196 next_paddr
= __sme_page_pa(inpages
[i
++]);
6197 if ((paddr
+ PAGE_SIZE
) == next_paddr
) {
6208 static int sev_launch_update_data(struct kvm
*kvm
, struct kvm_sev_cmd
*argp
)
6210 unsigned long vaddr
, vaddr_end
, next_vaddr
, npages
, size
;
6211 struct kvm_sev_info
*sev
= &kvm
->arch
.sev_info
;
6212 struct kvm_sev_launch_update_data params
;
6213 struct sev_data_launch_update_data
*data
;
6214 struct page
**inpages
;
6217 if (!sev_guest(kvm
))
6220 if (copy_from_user(¶ms
, (void __user
*)(uintptr_t)argp
->data
, sizeof(params
)))
6223 data
= kzalloc(sizeof(*data
), GFP_KERNEL
);
6227 vaddr
= params
.uaddr
;
6229 vaddr_end
= vaddr
+ size
;
6231 /* Lock the user memory. */
6232 inpages
= sev_pin_memory(kvm
, vaddr
, size
, &npages
, 1);
6239 * The LAUNCH_UPDATE command will perform in-place encryption of the
6240 * memory content (i.e it will write the same memory region with C=1).
6241 * It's possible that the cache may contain the data with C=0, i.e.,
6242 * unencrypted so invalidate it first.
6244 sev_clflush_pages(inpages
, npages
);
6246 for (i
= 0; vaddr
< vaddr_end
; vaddr
= next_vaddr
, i
+= pages
) {
6250 * If the user buffer is not page-aligned, calculate the offset
6253 offset
= vaddr
& (PAGE_SIZE
- 1);
6255 /* Calculate the number of pages that can be encrypted in one go. */
6256 pages
= get_num_contig_pages(i
, inpages
, npages
);
6258 len
= min_t(size_t, ((pages
* PAGE_SIZE
) - offset
), size
);
6260 data
->handle
= sev
->handle
;
6262 data
->address
= __sme_page_pa(inpages
[i
]) + offset
;
6263 ret
= sev_issue_cmd(kvm
, SEV_CMD_LAUNCH_UPDATE_DATA
, data
, &argp
->error
);
6268 next_vaddr
= vaddr
+ len
;
6272 /* content of memory is updated, mark pages dirty */
6273 for (i
= 0; i
< npages
; i
++) {
6274 set_page_dirty_lock(inpages
[i
]);
6275 mark_page_accessed(inpages
[i
]);
6277 /* unlock the user pages */
6278 sev_unpin_memory(kvm
, inpages
, npages
);
6284 static int sev_launch_measure(struct kvm
*kvm
, struct kvm_sev_cmd
*argp
)
6286 void __user
*measure
= (void __user
*)(uintptr_t)argp
->data
;
6287 struct kvm_sev_info
*sev
= &kvm
->arch
.sev_info
;
6288 struct sev_data_launch_measure
*data
;
6289 struct kvm_sev_launch_measure params
;
6290 void __user
*p
= NULL
;
6294 if (!sev_guest(kvm
))
6297 if (copy_from_user(¶ms
, measure
, sizeof(params
)))
6300 data
= kzalloc(sizeof(*data
), GFP_KERNEL
);
6304 /* User wants to query the blob length */
6308 p
= (void __user
*)(uintptr_t)params
.uaddr
;
6310 if (params
.len
> SEV_FW_BLOB_MAX_SIZE
) {
6316 blob
= kmalloc(params
.len
, GFP_KERNEL
);
6320 data
->address
= __psp_pa(blob
);
6321 data
->len
= params
.len
;
6325 data
->handle
= sev
->handle
;
6326 ret
= sev_issue_cmd(kvm
, SEV_CMD_LAUNCH_MEASURE
, data
, &argp
->error
);
6329 * If we query the session length, FW responded with expected data.
6338 if (copy_to_user(p
, blob
, params
.len
))
6343 params
.len
= data
->len
;
6344 if (copy_to_user(measure
, ¶ms
, sizeof(params
)))
6353 static int sev_launch_finish(struct kvm
*kvm
, struct kvm_sev_cmd
*argp
)
6355 struct kvm_sev_info
*sev
= &kvm
->arch
.sev_info
;
6356 struct sev_data_launch_finish
*data
;
6359 if (!sev_guest(kvm
))
6362 data
= kzalloc(sizeof(*data
), GFP_KERNEL
);
6366 data
->handle
= sev
->handle
;
6367 ret
= sev_issue_cmd(kvm
, SEV_CMD_LAUNCH_FINISH
, data
, &argp
->error
);
6373 static int sev_guest_status(struct kvm
*kvm
, struct kvm_sev_cmd
*argp
)
6375 struct kvm_sev_info
*sev
= &kvm
->arch
.sev_info
;
6376 struct kvm_sev_guest_status params
;
6377 struct sev_data_guest_status
*data
;
6380 if (!sev_guest(kvm
))
6383 data
= kzalloc(sizeof(*data
), GFP_KERNEL
);
6387 data
->handle
= sev
->handle
;
6388 ret
= sev_issue_cmd(kvm
, SEV_CMD_GUEST_STATUS
, data
, &argp
->error
);
6392 params
.policy
= data
->policy
;
6393 params
.state
= data
->state
;
6394 params
.handle
= data
->handle
;
6396 if (copy_to_user((void __user
*)(uintptr_t)argp
->data
, ¶ms
, sizeof(params
)))
6403 static int __sev_issue_dbg_cmd(struct kvm
*kvm
, unsigned long src
,
6404 unsigned long dst
, int size
,
6405 int *error
, bool enc
)
6407 struct kvm_sev_info
*sev
= &kvm
->arch
.sev_info
;
6408 struct sev_data_dbg
*data
;
6411 data
= kzalloc(sizeof(*data
), GFP_KERNEL
);
6415 data
->handle
= sev
->handle
;
6416 data
->dst_addr
= dst
;
6417 data
->src_addr
= src
;
6420 ret
= sev_issue_cmd(kvm
,
6421 enc
? SEV_CMD_DBG_ENCRYPT
: SEV_CMD_DBG_DECRYPT
,
6427 static int __sev_dbg_decrypt(struct kvm
*kvm
, unsigned long src_paddr
,
6428 unsigned long dst_paddr
, int sz
, int *err
)
6433 * Its safe to read more than we are asked, caller should ensure that
6434 * destination has enough space.
6436 src_paddr
= round_down(src_paddr
, 16);
6437 offset
= src_paddr
& 15;
6438 sz
= round_up(sz
+ offset
, 16);
6440 return __sev_issue_dbg_cmd(kvm
, src_paddr
, dst_paddr
, sz
, err
, false);
6443 static int __sev_dbg_decrypt_user(struct kvm
*kvm
, unsigned long paddr
,
6444 unsigned long __user dst_uaddr
,
6445 unsigned long dst_paddr
,
6448 struct page
*tpage
= NULL
;
6451 /* if inputs are not 16-byte then use intermediate buffer */
6452 if (!IS_ALIGNED(dst_paddr
, 16) ||
6453 !IS_ALIGNED(paddr
, 16) ||
6454 !IS_ALIGNED(size
, 16)) {
6455 tpage
= (void *)alloc_page(GFP_KERNEL
);
6459 dst_paddr
= __sme_page_pa(tpage
);
6462 ret
= __sev_dbg_decrypt(kvm
, paddr
, dst_paddr
, size
, err
);
6467 offset
= paddr
& 15;
6468 if (copy_to_user((void __user
*)(uintptr_t)dst_uaddr
,
6469 page_address(tpage
) + offset
, size
))
6480 static int __sev_dbg_encrypt_user(struct kvm
*kvm
, unsigned long paddr
,
6481 unsigned long __user vaddr
,
6482 unsigned long dst_paddr
,
6483 unsigned long __user dst_vaddr
,
6484 int size
, int *error
)
6486 struct page
*src_tpage
= NULL
;
6487 struct page
*dst_tpage
= NULL
;
6488 int ret
, len
= size
;
6490 /* If source buffer is not aligned then use an intermediate buffer */
6491 if (!IS_ALIGNED(vaddr
, 16)) {
6492 src_tpage
= alloc_page(GFP_KERNEL
);
6496 if (copy_from_user(page_address(src_tpage
),
6497 (void __user
*)(uintptr_t)vaddr
, size
)) {
6498 __free_page(src_tpage
);
6502 paddr
= __sme_page_pa(src_tpage
);
6506 * If destination buffer or length is not aligned then do read-modify-write:
6507 * - decrypt destination in an intermediate buffer
6508 * - copy the source buffer in an intermediate buffer
6509 * - use the intermediate buffer as source buffer
6511 if (!IS_ALIGNED(dst_vaddr
, 16) || !IS_ALIGNED(size
, 16)) {
6514 dst_tpage
= alloc_page(GFP_KERNEL
);
6520 ret
= __sev_dbg_decrypt(kvm
, dst_paddr
,
6521 __sme_page_pa(dst_tpage
), size
, error
);
6526 * If source is kernel buffer then use memcpy() otherwise
6529 dst_offset
= dst_paddr
& 15;
6532 memcpy(page_address(dst_tpage
) + dst_offset
,
6533 page_address(src_tpage
), size
);
6535 if (copy_from_user(page_address(dst_tpage
) + dst_offset
,
6536 (void __user
*)(uintptr_t)vaddr
, size
)) {
6542 paddr
= __sme_page_pa(dst_tpage
);
6543 dst_paddr
= round_down(dst_paddr
, 16);
6544 len
= round_up(size
, 16);
6547 ret
= __sev_issue_dbg_cmd(kvm
, paddr
, dst_paddr
, len
, error
, true);
6551 __free_page(src_tpage
);
6553 __free_page(dst_tpage
);
6557 static int sev_dbg_crypt(struct kvm
*kvm
, struct kvm_sev_cmd
*argp
, bool dec
)
6559 unsigned long vaddr
, vaddr_end
, next_vaddr
;
6560 unsigned long dst_vaddr
, dst_vaddr_end
;
6561 struct page
**src_p
, **dst_p
;
6562 struct kvm_sev_dbg debug
;
6566 if (!sev_guest(kvm
))
6569 if (copy_from_user(&debug
, (void __user
*)(uintptr_t)argp
->data
, sizeof(debug
)))
6572 vaddr
= debug
.src_uaddr
;
6574 vaddr_end
= vaddr
+ size
;
6575 dst_vaddr
= debug
.dst_uaddr
;
6576 dst_vaddr_end
= dst_vaddr
+ size
;
6578 for (; vaddr
< vaddr_end
; vaddr
= next_vaddr
) {
6579 int len
, s_off
, d_off
;
6581 /* lock userspace source and destination page */
6582 src_p
= sev_pin_memory(kvm
, vaddr
& PAGE_MASK
, PAGE_SIZE
, &n
, 0);
6586 dst_p
= sev_pin_memory(kvm
, dst_vaddr
& PAGE_MASK
, PAGE_SIZE
, &n
, 1);
6588 sev_unpin_memory(kvm
, src_p
, n
);
6593 * The DBG_{DE,EN}CRYPT commands will perform {dec,en}cryption of the
6594 * memory content (i.e it will write the same memory region with C=1).
6595 * It's possible that the cache may contain the data with C=0, i.e.,
6596 * unencrypted so invalidate it first.
6598 sev_clflush_pages(src_p
, 1);
6599 sev_clflush_pages(dst_p
, 1);
6602 * Since user buffer may not be page aligned, calculate the
6603 * offset within the page.
6605 s_off
= vaddr
& ~PAGE_MASK
;
6606 d_off
= dst_vaddr
& ~PAGE_MASK
;
6607 len
= min_t(size_t, (PAGE_SIZE
- s_off
), size
);
6610 ret
= __sev_dbg_decrypt_user(kvm
,
6611 __sme_page_pa(src_p
[0]) + s_off
,
6613 __sme_page_pa(dst_p
[0]) + d_off
,
6616 ret
= __sev_dbg_encrypt_user(kvm
,
6617 __sme_page_pa(src_p
[0]) + s_off
,
6619 __sme_page_pa(dst_p
[0]) + d_off
,
6623 sev_unpin_memory(kvm
, src_p
, 1);
6624 sev_unpin_memory(kvm
, dst_p
, 1);
6629 next_vaddr
= vaddr
+ len
;
6630 dst_vaddr
= dst_vaddr
+ len
;
6637 static int sev_launch_secret(struct kvm
*kvm
, struct kvm_sev_cmd
*argp
)
6639 struct kvm_sev_info
*sev
= &kvm
->arch
.sev_info
;
6640 struct sev_data_launch_secret
*data
;
6641 struct kvm_sev_launch_secret params
;
6642 struct page
**pages
;
6647 if (!sev_guest(kvm
))
6650 if (copy_from_user(¶ms
, (void __user
*)(uintptr_t)argp
->data
, sizeof(params
)))
6653 pages
= sev_pin_memory(kvm
, params
.guest_uaddr
, params
.guest_len
, &n
, 1);
6658 * The secret must be copied into contiguous memory region, lets verify
6659 * that userspace memory pages are contiguous before we issue command.
6661 if (get_num_contig_pages(0, pages
, n
) != n
) {
6663 goto e_unpin_memory
;
6667 data
= kzalloc(sizeof(*data
), GFP_KERNEL
);
6669 goto e_unpin_memory
;
6671 offset
= params
.guest_uaddr
& (PAGE_SIZE
- 1);
6672 data
->guest_address
= __sme_page_pa(pages
[0]) + offset
;
6673 data
->guest_len
= params
.guest_len
;
6675 blob
= psp_copy_user_blob(params
.trans_uaddr
, params
.trans_len
);
6677 ret
= PTR_ERR(blob
);
6681 data
->trans_address
= __psp_pa(blob
);
6682 data
->trans_len
= params
.trans_len
;
6684 hdr
= psp_copy_user_blob(params
.hdr_uaddr
, params
.hdr_len
);
6689 data
->hdr_address
= __psp_pa(hdr
);
6690 data
->hdr_len
= params
.hdr_len
;
6692 data
->handle
= sev
->handle
;
6693 ret
= sev_issue_cmd(kvm
, SEV_CMD_LAUNCH_UPDATE_SECRET
, data
, &argp
->error
);
6702 sev_unpin_memory(kvm
, pages
, n
);
6706 static int svm_mem_enc_op(struct kvm
*kvm
, void __user
*argp
)
6708 struct kvm_sev_cmd sev_cmd
;
6711 if (!svm_sev_enabled())
6714 if (copy_from_user(&sev_cmd
, argp
, sizeof(struct kvm_sev_cmd
)))
6717 mutex_lock(&kvm
->lock
);
6719 switch (sev_cmd
.id
) {
6721 r
= sev_guest_init(kvm
, &sev_cmd
);
6723 case KVM_SEV_LAUNCH_START
:
6724 r
= sev_launch_start(kvm
, &sev_cmd
);
6726 case KVM_SEV_LAUNCH_UPDATE_DATA
:
6727 r
= sev_launch_update_data(kvm
, &sev_cmd
);
6729 case KVM_SEV_LAUNCH_MEASURE
:
6730 r
= sev_launch_measure(kvm
, &sev_cmd
);
6732 case KVM_SEV_LAUNCH_FINISH
:
6733 r
= sev_launch_finish(kvm
, &sev_cmd
);
6735 case KVM_SEV_GUEST_STATUS
:
6736 r
= sev_guest_status(kvm
, &sev_cmd
);
6738 case KVM_SEV_DBG_DECRYPT
:
6739 r
= sev_dbg_crypt(kvm
, &sev_cmd
, true);
6741 case KVM_SEV_DBG_ENCRYPT
:
6742 r
= sev_dbg_crypt(kvm
, &sev_cmd
, false);
6744 case KVM_SEV_LAUNCH_SECRET
:
6745 r
= sev_launch_secret(kvm
, &sev_cmd
);
6752 if (copy_to_user(argp
, &sev_cmd
, sizeof(struct kvm_sev_cmd
)))
6756 mutex_unlock(&kvm
->lock
);
6760 static int svm_register_enc_region(struct kvm
*kvm
,
6761 struct kvm_enc_region
*range
)
6763 struct kvm_sev_info
*sev
= &kvm
->arch
.sev_info
;
6764 struct enc_region
*region
;
6767 if (!sev_guest(kvm
))
6770 region
= kzalloc(sizeof(*region
), GFP_KERNEL
);
6774 region
->pages
= sev_pin_memory(kvm
, range
->addr
, range
->size
, ®ion
->npages
, 1);
6775 if (!region
->pages
) {
6781 * The guest may change the memory encryption attribute from C=0 -> C=1
6782 * or vice versa for this memory range. Lets make sure caches are
6783 * flushed to ensure that guest data gets written into memory with
6786 sev_clflush_pages(region
->pages
, region
->npages
);
6788 region
->uaddr
= range
->addr
;
6789 region
->size
= range
->size
;
6791 mutex_lock(&kvm
->lock
);
6792 list_add_tail(®ion
->list
, &sev
->regions_list
);
6793 mutex_unlock(&kvm
->lock
);
6802 static struct enc_region
*
6803 find_enc_region(struct kvm
*kvm
, struct kvm_enc_region
*range
)
6805 struct kvm_sev_info
*sev
= &kvm
->arch
.sev_info
;
6806 struct list_head
*head
= &sev
->regions_list
;
6807 struct enc_region
*i
;
6809 list_for_each_entry(i
, head
, list
) {
6810 if (i
->uaddr
== range
->addr
&&
6811 i
->size
== range
->size
)
6819 static int svm_unregister_enc_region(struct kvm
*kvm
,
6820 struct kvm_enc_region
*range
)
6822 struct enc_region
*region
;
6825 mutex_lock(&kvm
->lock
);
6827 if (!sev_guest(kvm
)) {
6832 region
= find_enc_region(kvm
, range
);
6838 __unregister_enc_region_locked(kvm
, region
);
6840 mutex_unlock(&kvm
->lock
);
6844 mutex_unlock(&kvm
->lock
);
6848 static struct kvm_x86_ops svm_x86_ops __ro_after_init
= {
6849 .cpu_has_kvm_support
= has_svm
,
6850 .disabled_by_bios
= is_disabled
,
6851 .hardware_setup
= svm_hardware_setup
,
6852 .hardware_unsetup
= svm_hardware_unsetup
,
6853 .check_processor_compatibility
= svm_check_processor_compat
,
6854 .hardware_enable
= svm_hardware_enable
,
6855 .hardware_disable
= svm_hardware_disable
,
6856 .cpu_has_accelerated_tpr
= svm_cpu_has_accelerated_tpr
,
6857 .cpu_has_high_real_mode_segbase
= svm_has_high_real_mode_segbase
,
6859 .vcpu_create
= svm_create_vcpu
,
6860 .vcpu_free
= svm_free_vcpu
,
6861 .vcpu_reset
= svm_vcpu_reset
,
6863 .vm_init
= avic_vm_init
,
6864 .vm_destroy
= svm_vm_destroy
,
6866 .prepare_guest_switch
= svm_prepare_guest_switch
,
6867 .vcpu_load
= svm_vcpu_load
,
6868 .vcpu_put
= svm_vcpu_put
,
6869 .vcpu_blocking
= svm_vcpu_blocking
,
6870 .vcpu_unblocking
= svm_vcpu_unblocking
,
6872 .update_bp_intercept
= update_bp_intercept
,
6873 .get_msr_feature
= svm_get_msr_feature
,
6874 .get_msr
= svm_get_msr
,
6875 .set_msr
= svm_set_msr
,
6876 .get_segment_base
= svm_get_segment_base
,
6877 .get_segment
= svm_get_segment
,
6878 .set_segment
= svm_set_segment
,
6879 .get_cpl
= svm_get_cpl
,
6880 .get_cs_db_l_bits
= kvm_get_cs_db_l_bits
,
6881 .decache_cr0_guest_bits
= svm_decache_cr0_guest_bits
,
6882 .decache_cr3
= svm_decache_cr3
,
6883 .decache_cr4_guest_bits
= svm_decache_cr4_guest_bits
,
6884 .set_cr0
= svm_set_cr0
,
6885 .set_cr3
= svm_set_cr3
,
6886 .set_cr4
= svm_set_cr4
,
6887 .set_efer
= svm_set_efer
,
6888 .get_idt
= svm_get_idt
,
6889 .set_idt
= svm_set_idt
,
6890 .get_gdt
= svm_get_gdt
,
6891 .set_gdt
= svm_set_gdt
,
6892 .get_dr6
= svm_get_dr6
,
6893 .set_dr6
= svm_set_dr6
,
6894 .set_dr7
= svm_set_dr7
,
6895 .sync_dirty_debug_regs
= svm_sync_dirty_debug_regs
,
6896 .cache_reg
= svm_cache_reg
,
6897 .get_rflags
= svm_get_rflags
,
6898 .set_rflags
= svm_set_rflags
,
6900 .tlb_flush
= svm_flush_tlb
,
6902 .run
= svm_vcpu_run
,
6903 .handle_exit
= handle_exit
,
6904 .skip_emulated_instruction
= skip_emulated_instruction
,
6905 .set_interrupt_shadow
= svm_set_interrupt_shadow
,
6906 .get_interrupt_shadow
= svm_get_interrupt_shadow
,
6907 .patch_hypercall
= svm_patch_hypercall
,
6908 .set_irq
= svm_set_irq
,
6909 .set_nmi
= svm_inject_nmi
,
6910 .queue_exception
= svm_queue_exception
,
6911 .cancel_injection
= svm_cancel_injection
,
6912 .interrupt_allowed
= svm_interrupt_allowed
,
6913 .nmi_allowed
= svm_nmi_allowed
,
6914 .get_nmi_mask
= svm_get_nmi_mask
,
6915 .set_nmi_mask
= svm_set_nmi_mask
,
6916 .enable_nmi_window
= enable_nmi_window
,
6917 .enable_irq_window
= enable_irq_window
,
6918 .update_cr8_intercept
= update_cr8_intercept
,
6919 .set_virtual_x2apic_mode
= svm_set_virtual_x2apic_mode
,
6920 .get_enable_apicv
= svm_get_enable_apicv
,
6921 .refresh_apicv_exec_ctrl
= svm_refresh_apicv_exec_ctrl
,
6922 .load_eoi_exitmap
= svm_load_eoi_exitmap
,
6923 .hwapic_irr_update
= svm_hwapic_irr_update
,
6924 .hwapic_isr_update
= svm_hwapic_isr_update
,
6925 .sync_pir_to_irr
= kvm_lapic_find_highest_irr
,
6926 .apicv_post_state_restore
= avic_post_state_restore
,
6928 .set_tss_addr
= svm_set_tss_addr
,
6929 .get_tdp_level
= get_npt_level
,
6930 .get_mt_mask
= svm_get_mt_mask
,
6932 .get_exit_info
= svm_get_exit_info
,
6934 .get_lpage_level
= svm_get_lpage_level
,
6936 .cpuid_update
= svm_cpuid_update
,
6938 .rdtscp_supported
= svm_rdtscp_supported
,
6939 .invpcid_supported
= svm_invpcid_supported
,
6940 .mpx_supported
= svm_mpx_supported
,
6941 .xsaves_supported
= svm_xsaves_supported
,
6942 .umip_emulated
= svm_umip_emulated
,
6944 .set_supported_cpuid
= svm_set_supported_cpuid
,
6946 .has_wbinvd_exit
= svm_has_wbinvd_exit
,
6948 .write_tsc_offset
= svm_write_tsc_offset
,
6950 .set_tdp_cr3
= set_tdp_cr3
,
6952 .check_intercept
= svm_check_intercept
,
6953 .handle_external_intr
= svm_handle_external_intr
,
6955 .sched_in
= svm_sched_in
,
6957 .pmu_ops
= &amd_pmu_ops
,
6958 .deliver_posted_interrupt
= svm_deliver_avic_intr
,
6959 .update_pi_irte
= svm_update_pi_irte
,
6960 .setup_mce
= svm_setup_mce
,
6962 .smi_allowed
= svm_smi_allowed
,
6963 .pre_enter_smm
= svm_pre_enter_smm
,
6964 .pre_leave_smm
= svm_pre_leave_smm
,
6965 .enable_smi_window
= enable_smi_window
,
6967 .mem_enc_op
= svm_mem_enc_op
,
6968 .mem_enc_reg_region
= svm_register_enc_region
,
6969 .mem_enc_unreg_region
= svm_unregister_enc_region
,
6972 static int __init
svm_init(void)
6974 return kvm_init(&svm_x86_ops
, sizeof(struct vcpu_svm
),
6975 __alignof__(struct vcpu_svm
), THIS_MODULE
);
6978 static void __exit
svm_exit(void)
6983 module_init(svm_init
)
6984 module_exit(svm_exit
)