2 * Kernel-based Virtual Machine driver for Linux
4 * This module enables machines with Intel VT-x extensions to run virtual
5 * machines without emulation or binary translation.
7 * Copyright (C) 2006 Qumranet, Inc.
8 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
11 * Avi Kivity <avi@qumranet.com>
12 * Yaniv Kamay <yaniv@qumranet.com>
14 * This work is licensed under the terms of the GNU GPL, version 2. See
15 * the COPYING file in the top-level directory.
24 #include <linux/kvm_host.h>
25 #include <linux/module.h>
26 #include <linux/kernel.h>
28 #include <linux/highmem.h>
29 #include <linux/sched.h>
30 #include <linux/moduleparam.h>
31 #include <linux/mod_devicetable.h>
32 #include <linux/trace_events.h>
33 #include <linux/slab.h>
34 #include <linux/tboot.h>
35 #include <linux/hrtimer.h>
36 #include <linux/frame.h>
37 #include <linux/nospec.h>
38 #include "kvm_cache_regs.h"
45 #include <asm/virtext.h>
47 #include <asm/fpu/internal.h>
48 #include <asm/perf_event.h>
49 #include <asm/debugreg.h>
50 #include <asm/kexec.h>
52 #include <asm/irq_remapping.h>
53 #include <asm/mmu_context.h>
54 #include <asm/microcode.h>
55 #include <asm/nospec-branch.h>
60 #define __ex(x) __kvm_handle_fault_on_reboot(x)
61 #define __ex_clear(x, reg) \
62 ____kvm_handle_fault_on_reboot(x, "xor " reg " , " reg)
64 MODULE_AUTHOR("Qumranet");
65 MODULE_LICENSE("GPL");
67 static const struct x86_cpu_id vmx_cpu_id
[] = {
68 X86_FEATURE_MATCH(X86_FEATURE_VMX
),
71 MODULE_DEVICE_TABLE(x86cpu
, vmx_cpu_id
);
73 static bool __read_mostly enable_vpid
= 1;
74 module_param_named(vpid
, enable_vpid
, bool, 0444);
76 static bool __read_mostly enable_vnmi
= 1;
77 module_param_named(vnmi
, enable_vnmi
, bool, S_IRUGO
);
79 static bool __read_mostly flexpriority_enabled
= 1;
80 module_param_named(flexpriority
, flexpriority_enabled
, bool, S_IRUGO
);
82 static bool __read_mostly enable_ept
= 1;
83 module_param_named(ept
, enable_ept
, bool, S_IRUGO
);
85 static bool __read_mostly enable_unrestricted_guest
= 1;
86 module_param_named(unrestricted_guest
,
87 enable_unrestricted_guest
, bool, S_IRUGO
);
89 static bool __read_mostly enable_ept_ad_bits
= 1;
90 module_param_named(eptad
, enable_ept_ad_bits
, bool, S_IRUGO
);
92 static bool __read_mostly emulate_invalid_guest_state
= true;
93 module_param(emulate_invalid_guest_state
, bool, S_IRUGO
);
95 static bool __read_mostly fasteoi
= 1;
96 module_param(fasteoi
, bool, S_IRUGO
);
98 static bool __read_mostly enable_apicv
= 1;
99 module_param(enable_apicv
, bool, S_IRUGO
);
101 static bool __read_mostly enable_shadow_vmcs
= 1;
102 module_param_named(enable_shadow_vmcs
, enable_shadow_vmcs
, bool, S_IRUGO
);
104 * If nested=1, nested virtualization is supported, i.e., guests may use
105 * VMX and be a hypervisor for its own guests. If nested=0, guests may not
106 * use VMX instructions.
108 static bool __read_mostly nested
= 0;
109 module_param(nested
, bool, S_IRUGO
);
111 static u64 __read_mostly host_xss
;
113 static bool __read_mostly enable_pml
= 1;
114 module_param_named(pml
, enable_pml
, bool, S_IRUGO
);
118 #define MSR_TYPE_RW 3
120 #define MSR_BITMAP_MODE_X2APIC 1
121 #define MSR_BITMAP_MODE_X2APIC_APICV 2
122 #define MSR_BITMAP_MODE_LM 4
124 #define KVM_VMX_TSC_MULTIPLIER_MAX 0xffffffffffffffffULL
126 /* Guest_tsc -> host_tsc conversion requires 64-bit division. */
127 static int __read_mostly cpu_preemption_timer_multi
;
128 static bool __read_mostly enable_preemption_timer
= 1;
130 module_param_named(preemption_timer
, enable_preemption_timer
, bool, S_IRUGO
);
133 #define KVM_GUEST_CR0_MASK (X86_CR0_NW | X86_CR0_CD)
134 #define KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST (X86_CR0_WP | X86_CR0_NE)
135 #define KVM_VM_CR0_ALWAYS_ON \
136 (KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST | X86_CR0_PG | X86_CR0_PE)
137 #define KVM_CR4_GUEST_OWNED_BITS \
138 (X86_CR4_PVI | X86_CR4_DE | X86_CR4_PCE | X86_CR4_OSFXSR \
139 | X86_CR4_OSXMMEXCPT | X86_CR4_LA57 | X86_CR4_TSD)
141 #define KVM_PMODE_VM_CR4_ALWAYS_ON (X86_CR4_PAE | X86_CR4_VMXE)
142 #define KVM_RMODE_VM_CR4_ALWAYS_ON (X86_CR4_VME | X86_CR4_PAE | X86_CR4_VMXE)
144 #define RMODE_GUEST_OWNED_EFLAGS_BITS (~(X86_EFLAGS_IOPL | X86_EFLAGS_VM))
146 #define VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE 5
149 * Hyper-V requires all of these, so mark them as supported even though
150 * they are just treated the same as all-context.
152 #define VMX_VPID_EXTENT_SUPPORTED_MASK \
153 (VMX_VPID_EXTENT_INDIVIDUAL_ADDR_BIT | \
154 VMX_VPID_EXTENT_SINGLE_CONTEXT_BIT | \
155 VMX_VPID_EXTENT_GLOBAL_CONTEXT_BIT | \
156 VMX_VPID_EXTENT_SINGLE_NON_GLOBAL_BIT)
159 * These 2 parameters are used to config the controls for Pause-Loop Exiting:
160 * ple_gap: upper bound on the amount of time between two successive
161 * executions of PAUSE in a loop. Also indicate if ple enabled.
162 * According to test, this time is usually smaller than 128 cycles.
163 * ple_window: upper bound on the amount of time a guest is allowed to execute
164 * in a PAUSE loop. Tests indicate that most spinlocks are held for
165 * less than 2^12 cycles
166 * Time is measured based on a counter that runs at the same rate as the TSC,
167 * refer SDM volume 3b section 21.6.13 & 22.1.3.
169 #define KVM_VMX_DEFAULT_PLE_GAP 128
170 #define KVM_VMX_DEFAULT_PLE_WINDOW 4096
171 #define KVM_VMX_DEFAULT_PLE_WINDOW_GROW 2
172 #define KVM_VMX_DEFAULT_PLE_WINDOW_SHRINK 0
173 #define KVM_VMX_DEFAULT_PLE_WINDOW_MAX \
174 INT_MAX / KVM_VMX_DEFAULT_PLE_WINDOW_GROW
176 static int ple_gap
= KVM_VMX_DEFAULT_PLE_GAP
;
177 module_param(ple_gap
, int, S_IRUGO
);
179 static int ple_window
= KVM_VMX_DEFAULT_PLE_WINDOW
;
180 module_param(ple_window
, int, S_IRUGO
);
182 /* Default doubles per-vcpu window every exit. */
183 static int ple_window_grow
= KVM_VMX_DEFAULT_PLE_WINDOW_GROW
;
184 module_param(ple_window_grow
, int, S_IRUGO
);
186 /* Default resets per-vcpu window every exit to ple_window. */
187 static int ple_window_shrink
= KVM_VMX_DEFAULT_PLE_WINDOW_SHRINK
;
188 module_param(ple_window_shrink
, int, S_IRUGO
);
190 /* Default is to compute the maximum so we can never overflow. */
191 static int ple_window_actual_max
= KVM_VMX_DEFAULT_PLE_WINDOW_MAX
;
192 static int ple_window_max
= KVM_VMX_DEFAULT_PLE_WINDOW_MAX
;
193 module_param(ple_window_max
, int, S_IRUGO
);
195 extern const ulong vmx_return
;
197 #define NR_AUTOLOAD_MSRS 8
206 * Track a VMCS that may be loaded on a certain CPU. If it is (cpu!=-1), also
207 * remember whether it was VMLAUNCHed, and maintain a linked list of all VMCSs
208 * loaded on this CPU (so we can clear them if the CPU goes down).
212 struct vmcs
*shadow_vmcs
;
215 bool nmi_known_unmasked
;
216 unsigned long vmcs_host_cr3
; /* May not match real cr3 */
217 unsigned long vmcs_host_cr4
; /* May not match real cr4 */
218 /* Support for vnmi-less CPUs */
219 int soft_vnmi_blocked
;
221 s64 vnmi_blocked_time
;
222 unsigned long *msr_bitmap
;
223 struct list_head loaded_vmcss_on_cpu_link
;
226 struct shared_msr_entry
{
233 * struct vmcs12 describes the state that our guest hypervisor (L1) keeps for a
234 * single nested guest (L2), hence the name vmcs12. Any VMX implementation has
235 * a VMCS structure, and vmcs12 is our emulated VMX's VMCS. This structure is
236 * stored in guest memory specified by VMPTRLD, but is opaque to the guest,
237 * which must access it using VMREAD/VMWRITE/VMCLEAR instructions.
238 * More than one of these structures may exist, if L1 runs multiple L2 guests.
239 * nested_vmx_run() will use the data here to build the vmcs02: a VMCS for the
240 * underlying hardware which will be used to run L2.
241 * This structure is packed to ensure that its layout is identical across
242 * machines (necessary for live migration).
243 * If there are changes in this struct, VMCS12_REVISION must be changed.
245 typedef u64 natural_width
;
246 struct __packed vmcs12
{
247 /* According to the Intel spec, a VMCS region must start with the
248 * following two fields. Then follow implementation-specific data.
253 u32 launch_state
; /* set to 0 by VMCLEAR, to 1 by VMLAUNCH */
254 u32 padding
[7]; /* room for future expansion */
259 u64 vm_exit_msr_store_addr
;
260 u64 vm_exit_msr_load_addr
;
261 u64 vm_entry_msr_load_addr
;
263 u64 virtual_apic_page_addr
;
264 u64 apic_access_addr
;
265 u64 posted_intr_desc_addr
;
266 u64 vm_function_control
;
268 u64 eoi_exit_bitmap0
;
269 u64 eoi_exit_bitmap1
;
270 u64 eoi_exit_bitmap2
;
271 u64 eoi_exit_bitmap3
;
272 u64 eptp_list_address
;
274 u64 guest_physical_address
;
275 u64 vmcs_link_pointer
;
277 u64 guest_ia32_debugctl
;
280 u64 guest_ia32_perf_global_ctrl
;
288 u64 host_ia32_perf_global_ctrl
;
289 u64 padding64
[8]; /* room for future expansion */
291 * To allow migration of L1 (complete with its L2 guests) between
292 * machines of different natural widths (32 or 64 bit), we cannot have
293 * unsigned long fields with no explict size. We use u64 (aliased
294 * natural_width) instead. Luckily, x86 is little-endian.
296 natural_width cr0_guest_host_mask
;
297 natural_width cr4_guest_host_mask
;
298 natural_width cr0_read_shadow
;
299 natural_width cr4_read_shadow
;
300 natural_width cr3_target_value0
;
301 natural_width cr3_target_value1
;
302 natural_width cr3_target_value2
;
303 natural_width cr3_target_value3
;
304 natural_width exit_qualification
;
305 natural_width guest_linear_address
;
306 natural_width guest_cr0
;
307 natural_width guest_cr3
;
308 natural_width guest_cr4
;
309 natural_width guest_es_base
;
310 natural_width guest_cs_base
;
311 natural_width guest_ss_base
;
312 natural_width guest_ds_base
;
313 natural_width guest_fs_base
;
314 natural_width guest_gs_base
;
315 natural_width guest_ldtr_base
;
316 natural_width guest_tr_base
;
317 natural_width guest_gdtr_base
;
318 natural_width guest_idtr_base
;
319 natural_width guest_dr7
;
320 natural_width guest_rsp
;
321 natural_width guest_rip
;
322 natural_width guest_rflags
;
323 natural_width guest_pending_dbg_exceptions
;
324 natural_width guest_sysenter_esp
;
325 natural_width guest_sysenter_eip
;
326 natural_width host_cr0
;
327 natural_width host_cr3
;
328 natural_width host_cr4
;
329 natural_width host_fs_base
;
330 natural_width host_gs_base
;
331 natural_width host_tr_base
;
332 natural_width host_gdtr_base
;
333 natural_width host_idtr_base
;
334 natural_width host_ia32_sysenter_esp
;
335 natural_width host_ia32_sysenter_eip
;
336 natural_width host_rsp
;
337 natural_width host_rip
;
338 natural_width paddingl
[8]; /* room for future expansion */
339 u32 pin_based_vm_exec_control
;
340 u32 cpu_based_vm_exec_control
;
341 u32 exception_bitmap
;
342 u32 page_fault_error_code_mask
;
343 u32 page_fault_error_code_match
;
344 u32 cr3_target_count
;
345 u32 vm_exit_controls
;
346 u32 vm_exit_msr_store_count
;
347 u32 vm_exit_msr_load_count
;
348 u32 vm_entry_controls
;
349 u32 vm_entry_msr_load_count
;
350 u32 vm_entry_intr_info_field
;
351 u32 vm_entry_exception_error_code
;
352 u32 vm_entry_instruction_len
;
354 u32 secondary_vm_exec_control
;
355 u32 vm_instruction_error
;
357 u32 vm_exit_intr_info
;
358 u32 vm_exit_intr_error_code
;
359 u32 idt_vectoring_info_field
;
360 u32 idt_vectoring_error_code
;
361 u32 vm_exit_instruction_len
;
362 u32 vmx_instruction_info
;
369 u32 guest_ldtr_limit
;
371 u32 guest_gdtr_limit
;
372 u32 guest_idtr_limit
;
373 u32 guest_es_ar_bytes
;
374 u32 guest_cs_ar_bytes
;
375 u32 guest_ss_ar_bytes
;
376 u32 guest_ds_ar_bytes
;
377 u32 guest_fs_ar_bytes
;
378 u32 guest_gs_ar_bytes
;
379 u32 guest_ldtr_ar_bytes
;
380 u32 guest_tr_ar_bytes
;
381 u32 guest_interruptibility_info
;
382 u32 guest_activity_state
;
383 u32 guest_sysenter_cs
;
384 u32 host_ia32_sysenter_cs
;
385 u32 vmx_preemption_timer_value
;
386 u32 padding32
[7]; /* room for future expansion */
387 u16 virtual_processor_id
;
389 u16 guest_es_selector
;
390 u16 guest_cs_selector
;
391 u16 guest_ss_selector
;
392 u16 guest_ds_selector
;
393 u16 guest_fs_selector
;
394 u16 guest_gs_selector
;
395 u16 guest_ldtr_selector
;
396 u16 guest_tr_selector
;
397 u16 guest_intr_status
;
399 u16 host_es_selector
;
400 u16 host_cs_selector
;
401 u16 host_ss_selector
;
402 u16 host_ds_selector
;
403 u16 host_fs_selector
;
404 u16 host_gs_selector
;
405 u16 host_tr_selector
;
409 * VMCS12_REVISION is an arbitrary id that should be changed if the content or
410 * layout of struct vmcs12 is changed. MSR_IA32_VMX_BASIC returns this id, and
411 * VMPTRLD verifies that the VMCS region that L1 is loading contains this id.
413 #define VMCS12_REVISION 0x11e57ed0
416 * VMCS12_SIZE is the number of bytes L1 should allocate for the VMXON region
417 * and any VMCS region. Although only sizeof(struct vmcs12) are used by the
418 * current implementation, 4K are reserved to avoid future complications.
420 #define VMCS12_SIZE 0x1000
423 * VMCS12_MAX_FIELD_INDEX is the highest index value used in any
424 * supported VMCS12 field encoding.
426 #define VMCS12_MAX_FIELD_INDEX 0x17
429 * The nested_vmx structure is part of vcpu_vmx, and holds information we need
430 * for correct emulation of VMX (i.e., nested VMX) on this vcpu.
433 /* Has the level1 guest done vmxon? */
438 /* The guest-physical address of the current VMCS L1 keeps for L2 */
441 * Cache of the guest's VMCS, existing outside of guest memory.
442 * Loaded from guest memory during VMPTRLD. Flushed to guest
443 * memory during VMCLEAR and VMPTRLD.
445 struct vmcs12
*cached_vmcs12
;
447 * Indicates if the shadow vmcs must be updated with the
448 * data hold by vmcs12
450 bool sync_shadow_vmcs
;
453 bool change_vmcs01_virtual_x2apic_mode
;
454 /* L2 must run next, and mustn't decide to exit to L1. */
455 bool nested_run_pending
;
457 struct loaded_vmcs vmcs02
;
460 * Guest pages referred to in the vmcs02 with host-physical
461 * pointers, so we must keep them pinned while L2 runs.
463 struct page
*apic_access_page
;
464 struct page
*virtual_apic_page
;
465 struct page
*pi_desc_page
;
466 struct pi_desc
*pi_desc
;
470 struct hrtimer preemption_timer
;
471 bool preemption_timer_expired
;
473 /* to migrate it to L2 if VM_ENTRY_LOAD_DEBUG_CONTROLS is off */
480 * We only store the "true" versions of the VMX capability MSRs. We
481 * generate the "non-true" versions by setting the must-be-1 bits
482 * according to the SDM.
484 u32 nested_vmx_procbased_ctls_low
;
485 u32 nested_vmx_procbased_ctls_high
;
486 u32 nested_vmx_secondary_ctls_low
;
487 u32 nested_vmx_secondary_ctls_high
;
488 u32 nested_vmx_pinbased_ctls_low
;
489 u32 nested_vmx_pinbased_ctls_high
;
490 u32 nested_vmx_exit_ctls_low
;
491 u32 nested_vmx_exit_ctls_high
;
492 u32 nested_vmx_entry_ctls_low
;
493 u32 nested_vmx_entry_ctls_high
;
494 u32 nested_vmx_misc_low
;
495 u32 nested_vmx_misc_high
;
496 u32 nested_vmx_ept_caps
;
497 u32 nested_vmx_vpid_caps
;
498 u64 nested_vmx_basic
;
499 u64 nested_vmx_cr0_fixed0
;
500 u64 nested_vmx_cr0_fixed1
;
501 u64 nested_vmx_cr4_fixed0
;
502 u64 nested_vmx_cr4_fixed1
;
503 u64 nested_vmx_vmcs_enum
;
504 u64 nested_vmx_vmfunc_controls
;
506 /* SMM related state */
508 /* in VMX operation on SMM entry? */
510 /* in guest mode on SMM entry? */
515 #define POSTED_INTR_ON 0
516 #define POSTED_INTR_SN 1
518 /* Posted-Interrupt Descriptor */
520 u32 pir
[8]; /* Posted interrupt requested */
523 /* bit 256 - Outstanding Notification */
525 /* bit 257 - Suppress Notification */
527 /* bit 271:258 - Reserved */
529 /* bit 279:272 - Notification Vector */
531 /* bit 287:280 - Reserved */
533 /* bit 319:288 - Notification Destination */
541 static bool pi_test_and_set_on(struct pi_desc
*pi_desc
)
543 return test_and_set_bit(POSTED_INTR_ON
,
544 (unsigned long *)&pi_desc
->control
);
547 static bool pi_test_and_clear_on(struct pi_desc
*pi_desc
)
549 return test_and_clear_bit(POSTED_INTR_ON
,
550 (unsigned long *)&pi_desc
->control
);
553 static int pi_test_and_set_pir(int vector
, struct pi_desc
*pi_desc
)
555 return test_and_set_bit(vector
, (unsigned long *)pi_desc
->pir
);
558 static inline void pi_clear_sn(struct pi_desc
*pi_desc
)
560 return clear_bit(POSTED_INTR_SN
,
561 (unsigned long *)&pi_desc
->control
);
564 static inline void pi_set_sn(struct pi_desc
*pi_desc
)
566 return set_bit(POSTED_INTR_SN
,
567 (unsigned long *)&pi_desc
->control
);
570 static inline void pi_clear_on(struct pi_desc
*pi_desc
)
572 clear_bit(POSTED_INTR_ON
,
573 (unsigned long *)&pi_desc
->control
);
576 static inline int pi_test_on(struct pi_desc
*pi_desc
)
578 return test_bit(POSTED_INTR_ON
,
579 (unsigned long *)&pi_desc
->control
);
582 static inline int pi_test_sn(struct pi_desc
*pi_desc
)
584 return test_bit(POSTED_INTR_SN
,
585 (unsigned long *)&pi_desc
->control
);
589 struct kvm_vcpu vcpu
;
590 unsigned long host_rsp
;
594 u32 idt_vectoring_info
;
596 struct shared_msr_entry
*guest_msrs
;
599 unsigned long host_idt_base
;
601 u64 msr_host_kernel_gs_base
;
602 u64 msr_guest_kernel_gs_base
;
605 u64 arch_capabilities
;
608 u32 vm_entry_controls_shadow
;
609 u32 vm_exit_controls_shadow
;
610 u32 secondary_exec_control
;
613 * loaded_vmcs points to the VMCS currently used in this vcpu. For a
614 * non-nested (L1) guest, it always points to vmcs01. For a nested
615 * guest (L2), it points to a different VMCS.
617 struct loaded_vmcs vmcs01
;
618 struct loaded_vmcs
*loaded_vmcs
;
619 bool __launched
; /* temporary, used in vmx_vcpu_run */
620 struct msr_autoload
{
622 struct vmx_msr_entry guest
[NR_AUTOLOAD_MSRS
];
623 struct vmx_msr_entry host
[NR_AUTOLOAD_MSRS
];
627 u16 fs_sel
, gs_sel
, ldt_sel
;
631 int gs_ldt_reload_needed
;
632 int fs_reload_needed
;
633 u64 msr_host_bndcfgs
;
638 struct kvm_segment segs
[8];
641 u32 bitmask
; /* 4 bits per segment (1 bit per field) */
642 struct kvm_save_segment
{
650 bool emulation_required
;
654 /* Posted interrupt descriptor */
655 struct pi_desc pi_desc
;
657 /* Support for a guest hypervisor (nested VMX) */
658 struct nested_vmx nested
;
660 /* Dynamic PLE window. */
662 bool ple_window_dirty
;
664 /* Support for PML */
665 #define PML_ENTITY_NUM 512
668 /* apic deadline value in host tsc */
671 u64 current_tsc_ratio
;
675 unsigned long host_debugctlmsr
;
678 * Only bits masked by msr_ia32_feature_control_valid_bits can be set in
679 * msr_ia32_feature_control. FEATURE_CONTROL_LOCKED is always included
680 * in msr_ia32_feature_control_valid_bits.
682 u64 msr_ia32_feature_control
;
683 u64 msr_ia32_feature_control_valid_bits
;
686 enum segment_cache_field
{
695 static inline struct vcpu_vmx
*to_vmx(struct kvm_vcpu
*vcpu
)
697 return container_of(vcpu
, struct vcpu_vmx
, vcpu
);
700 static struct pi_desc
*vcpu_to_pi_desc(struct kvm_vcpu
*vcpu
)
702 return &(to_vmx(vcpu
)->pi_desc
);
705 #define ROL16(val, n) ((u16)(((u16)(val) << (n)) | ((u16)(val) >> (16 - (n)))))
706 #define VMCS12_OFFSET(x) offsetof(struct vmcs12, x)
707 #define FIELD(number, name) [ROL16(number, 6)] = VMCS12_OFFSET(name)
708 #define FIELD64(number, name) \
709 FIELD(number, name), \
710 [ROL16(number##_HIGH, 6)] = VMCS12_OFFSET(name) + sizeof(u32)
713 static u16 shadow_read_only_fields
[] = {
714 #define SHADOW_FIELD_RO(x) x,
715 #include "vmx_shadow_fields.h"
717 static int max_shadow_read_only_fields
=
718 ARRAY_SIZE(shadow_read_only_fields
);
720 static u16 shadow_read_write_fields
[] = {
721 #define SHADOW_FIELD_RW(x) x,
722 #include "vmx_shadow_fields.h"
724 static int max_shadow_read_write_fields
=
725 ARRAY_SIZE(shadow_read_write_fields
);
727 static const unsigned short vmcs_field_to_offset_table
[] = {
728 FIELD(VIRTUAL_PROCESSOR_ID
, virtual_processor_id
),
729 FIELD(POSTED_INTR_NV
, posted_intr_nv
),
730 FIELD(GUEST_ES_SELECTOR
, guest_es_selector
),
731 FIELD(GUEST_CS_SELECTOR
, guest_cs_selector
),
732 FIELD(GUEST_SS_SELECTOR
, guest_ss_selector
),
733 FIELD(GUEST_DS_SELECTOR
, guest_ds_selector
),
734 FIELD(GUEST_FS_SELECTOR
, guest_fs_selector
),
735 FIELD(GUEST_GS_SELECTOR
, guest_gs_selector
),
736 FIELD(GUEST_LDTR_SELECTOR
, guest_ldtr_selector
),
737 FIELD(GUEST_TR_SELECTOR
, guest_tr_selector
),
738 FIELD(GUEST_INTR_STATUS
, guest_intr_status
),
739 FIELD(GUEST_PML_INDEX
, guest_pml_index
),
740 FIELD(HOST_ES_SELECTOR
, host_es_selector
),
741 FIELD(HOST_CS_SELECTOR
, host_cs_selector
),
742 FIELD(HOST_SS_SELECTOR
, host_ss_selector
),
743 FIELD(HOST_DS_SELECTOR
, host_ds_selector
),
744 FIELD(HOST_FS_SELECTOR
, host_fs_selector
),
745 FIELD(HOST_GS_SELECTOR
, host_gs_selector
),
746 FIELD(HOST_TR_SELECTOR
, host_tr_selector
),
747 FIELD64(IO_BITMAP_A
, io_bitmap_a
),
748 FIELD64(IO_BITMAP_B
, io_bitmap_b
),
749 FIELD64(MSR_BITMAP
, msr_bitmap
),
750 FIELD64(VM_EXIT_MSR_STORE_ADDR
, vm_exit_msr_store_addr
),
751 FIELD64(VM_EXIT_MSR_LOAD_ADDR
, vm_exit_msr_load_addr
),
752 FIELD64(VM_ENTRY_MSR_LOAD_ADDR
, vm_entry_msr_load_addr
),
753 FIELD64(TSC_OFFSET
, tsc_offset
),
754 FIELD64(VIRTUAL_APIC_PAGE_ADDR
, virtual_apic_page_addr
),
755 FIELD64(APIC_ACCESS_ADDR
, apic_access_addr
),
756 FIELD64(POSTED_INTR_DESC_ADDR
, posted_intr_desc_addr
),
757 FIELD64(VM_FUNCTION_CONTROL
, vm_function_control
),
758 FIELD64(EPT_POINTER
, ept_pointer
),
759 FIELD64(EOI_EXIT_BITMAP0
, eoi_exit_bitmap0
),
760 FIELD64(EOI_EXIT_BITMAP1
, eoi_exit_bitmap1
),
761 FIELD64(EOI_EXIT_BITMAP2
, eoi_exit_bitmap2
),
762 FIELD64(EOI_EXIT_BITMAP3
, eoi_exit_bitmap3
),
763 FIELD64(EPTP_LIST_ADDRESS
, eptp_list_address
),
764 FIELD64(XSS_EXIT_BITMAP
, xss_exit_bitmap
),
765 FIELD64(GUEST_PHYSICAL_ADDRESS
, guest_physical_address
),
766 FIELD64(VMCS_LINK_POINTER
, vmcs_link_pointer
),
767 FIELD64(PML_ADDRESS
, pml_address
),
768 FIELD64(GUEST_IA32_DEBUGCTL
, guest_ia32_debugctl
),
769 FIELD64(GUEST_IA32_PAT
, guest_ia32_pat
),
770 FIELD64(GUEST_IA32_EFER
, guest_ia32_efer
),
771 FIELD64(GUEST_IA32_PERF_GLOBAL_CTRL
, guest_ia32_perf_global_ctrl
),
772 FIELD64(GUEST_PDPTR0
, guest_pdptr0
),
773 FIELD64(GUEST_PDPTR1
, guest_pdptr1
),
774 FIELD64(GUEST_PDPTR2
, guest_pdptr2
),
775 FIELD64(GUEST_PDPTR3
, guest_pdptr3
),
776 FIELD64(GUEST_BNDCFGS
, guest_bndcfgs
),
777 FIELD64(HOST_IA32_PAT
, host_ia32_pat
),
778 FIELD64(HOST_IA32_EFER
, host_ia32_efer
),
779 FIELD64(HOST_IA32_PERF_GLOBAL_CTRL
, host_ia32_perf_global_ctrl
),
780 FIELD(PIN_BASED_VM_EXEC_CONTROL
, pin_based_vm_exec_control
),
781 FIELD(CPU_BASED_VM_EXEC_CONTROL
, cpu_based_vm_exec_control
),
782 FIELD(EXCEPTION_BITMAP
, exception_bitmap
),
783 FIELD(PAGE_FAULT_ERROR_CODE_MASK
, page_fault_error_code_mask
),
784 FIELD(PAGE_FAULT_ERROR_CODE_MATCH
, page_fault_error_code_match
),
785 FIELD(CR3_TARGET_COUNT
, cr3_target_count
),
786 FIELD(VM_EXIT_CONTROLS
, vm_exit_controls
),
787 FIELD(VM_EXIT_MSR_STORE_COUNT
, vm_exit_msr_store_count
),
788 FIELD(VM_EXIT_MSR_LOAD_COUNT
, vm_exit_msr_load_count
),
789 FIELD(VM_ENTRY_CONTROLS
, vm_entry_controls
),
790 FIELD(VM_ENTRY_MSR_LOAD_COUNT
, vm_entry_msr_load_count
),
791 FIELD(VM_ENTRY_INTR_INFO_FIELD
, vm_entry_intr_info_field
),
792 FIELD(VM_ENTRY_EXCEPTION_ERROR_CODE
, vm_entry_exception_error_code
),
793 FIELD(VM_ENTRY_INSTRUCTION_LEN
, vm_entry_instruction_len
),
794 FIELD(TPR_THRESHOLD
, tpr_threshold
),
795 FIELD(SECONDARY_VM_EXEC_CONTROL
, secondary_vm_exec_control
),
796 FIELD(VM_INSTRUCTION_ERROR
, vm_instruction_error
),
797 FIELD(VM_EXIT_REASON
, vm_exit_reason
),
798 FIELD(VM_EXIT_INTR_INFO
, vm_exit_intr_info
),
799 FIELD(VM_EXIT_INTR_ERROR_CODE
, vm_exit_intr_error_code
),
800 FIELD(IDT_VECTORING_INFO_FIELD
, idt_vectoring_info_field
),
801 FIELD(IDT_VECTORING_ERROR_CODE
, idt_vectoring_error_code
),
802 FIELD(VM_EXIT_INSTRUCTION_LEN
, vm_exit_instruction_len
),
803 FIELD(VMX_INSTRUCTION_INFO
, vmx_instruction_info
),
804 FIELD(GUEST_ES_LIMIT
, guest_es_limit
),
805 FIELD(GUEST_CS_LIMIT
, guest_cs_limit
),
806 FIELD(GUEST_SS_LIMIT
, guest_ss_limit
),
807 FIELD(GUEST_DS_LIMIT
, guest_ds_limit
),
808 FIELD(GUEST_FS_LIMIT
, guest_fs_limit
),
809 FIELD(GUEST_GS_LIMIT
, guest_gs_limit
),
810 FIELD(GUEST_LDTR_LIMIT
, guest_ldtr_limit
),
811 FIELD(GUEST_TR_LIMIT
, guest_tr_limit
),
812 FIELD(GUEST_GDTR_LIMIT
, guest_gdtr_limit
),
813 FIELD(GUEST_IDTR_LIMIT
, guest_idtr_limit
),
814 FIELD(GUEST_ES_AR_BYTES
, guest_es_ar_bytes
),
815 FIELD(GUEST_CS_AR_BYTES
, guest_cs_ar_bytes
),
816 FIELD(GUEST_SS_AR_BYTES
, guest_ss_ar_bytes
),
817 FIELD(GUEST_DS_AR_BYTES
, guest_ds_ar_bytes
),
818 FIELD(GUEST_FS_AR_BYTES
, guest_fs_ar_bytes
),
819 FIELD(GUEST_GS_AR_BYTES
, guest_gs_ar_bytes
),
820 FIELD(GUEST_LDTR_AR_BYTES
, guest_ldtr_ar_bytes
),
821 FIELD(GUEST_TR_AR_BYTES
, guest_tr_ar_bytes
),
822 FIELD(GUEST_INTERRUPTIBILITY_INFO
, guest_interruptibility_info
),
823 FIELD(GUEST_ACTIVITY_STATE
, guest_activity_state
),
824 FIELD(GUEST_SYSENTER_CS
, guest_sysenter_cs
),
825 FIELD(HOST_IA32_SYSENTER_CS
, host_ia32_sysenter_cs
),
826 FIELD(VMX_PREEMPTION_TIMER_VALUE
, vmx_preemption_timer_value
),
827 FIELD(CR0_GUEST_HOST_MASK
, cr0_guest_host_mask
),
828 FIELD(CR4_GUEST_HOST_MASK
, cr4_guest_host_mask
),
829 FIELD(CR0_READ_SHADOW
, cr0_read_shadow
),
830 FIELD(CR4_READ_SHADOW
, cr4_read_shadow
),
831 FIELD(CR3_TARGET_VALUE0
, cr3_target_value0
),
832 FIELD(CR3_TARGET_VALUE1
, cr3_target_value1
),
833 FIELD(CR3_TARGET_VALUE2
, cr3_target_value2
),
834 FIELD(CR3_TARGET_VALUE3
, cr3_target_value3
),
835 FIELD(EXIT_QUALIFICATION
, exit_qualification
),
836 FIELD(GUEST_LINEAR_ADDRESS
, guest_linear_address
),
837 FIELD(GUEST_CR0
, guest_cr0
),
838 FIELD(GUEST_CR3
, guest_cr3
),
839 FIELD(GUEST_CR4
, guest_cr4
),
840 FIELD(GUEST_ES_BASE
, guest_es_base
),
841 FIELD(GUEST_CS_BASE
, guest_cs_base
),
842 FIELD(GUEST_SS_BASE
, guest_ss_base
),
843 FIELD(GUEST_DS_BASE
, guest_ds_base
),
844 FIELD(GUEST_FS_BASE
, guest_fs_base
),
845 FIELD(GUEST_GS_BASE
, guest_gs_base
),
846 FIELD(GUEST_LDTR_BASE
, guest_ldtr_base
),
847 FIELD(GUEST_TR_BASE
, guest_tr_base
),
848 FIELD(GUEST_GDTR_BASE
, guest_gdtr_base
),
849 FIELD(GUEST_IDTR_BASE
, guest_idtr_base
),
850 FIELD(GUEST_DR7
, guest_dr7
),
851 FIELD(GUEST_RSP
, guest_rsp
),
852 FIELD(GUEST_RIP
, guest_rip
),
853 FIELD(GUEST_RFLAGS
, guest_rflags
),
854 FIELD(GUEST_PENDING_DBG_EXCEPTIONS
, guest_pending_dbg_exceptions
),
855 FIELD(GUEST_SYSENTER_ESP
, guest_sysenter_esp
),
856 FIELD(GUEST_SYSENTER_EIP
, guest_sysenter_eip
),
857 FIELD(HOST_CR0
, host_cr0
),
858 FIELD(HOST_CR3
, host_cr3
),
859 FIELD(HOST_CR4
, host_cr4
),
860 FIELD(HOST_FS_BASE
, host_fs_base
),
861 FIELD(HOST_GS_BASE
, host_gs_base
),
862 FIELD(HOST_TR_BASE
, host_tr_base
),
863 FIELD(HOST_GDTR_BASE
, host_gdtr_base
),
864 FIELD(HOST_IDTR_BASE
, host_idtr_base
),
865 FIELD(HOST_IA32_SYSENTER_ESP
, host_ia32_sysenter_esp
),
866 FIELD(HOST_IA32_SYSENTER_EIP
, host_ia32_sysenter_eip
),
867 FIELD(HOST_RSP
, host_rsp
),
868 FIELD(HOST_RIP
, host_rip
),
871 static inline short vmcs_field_to_offset(unsigned long field
)
873 const size_t size
= ARRAY_SIZE(vmcs_field_to_offset_table
);
874 unsigned short offset
;
880 index
= ROL16(field
, 6);
884 index
= array_index_nospec(index
, size
);
885 offset
= vmcs_field_to_offset_table
[index
];
891 static inline struct vmcs12
*get_vmcs12(struct kvm_vcpu
*vcpu
)
893 return to_vmx(vcpu
)->nested
.cached_vmcs12
;
896 static bool nested_ept_ad_enabled(struct kvm_vcpu
*vcpu
);
897 static unsigned long nested_ept_get_cr3(struct kvm_vcpu
*vcpu
);
898 static u64
construct_eptp(struct kvm_vcpu
*vcpu
, unsigned long root_hpa
);
899 static bool vmx_xsaves_supported(void);
900 static void vmx_set_segment(struct kvm_vcpu
*vcpu
,
901 struct kvm_segment
*var
, int seg
);
902 static void vmx_get_segment(struct kvm_vcpu
*vcpu
,
903 struct kvm_segment
*var
, int seg
);
904 static bool guest_state_valid(struct kvm_vcpu
*vcpu
);
905 static u32
vmx_segment_access_rights(struct kvm_segment
*var
);
906 static void copy_shadow_to_vmcs12(struct vcpu_vmx
*vmx
);
907 static bool vmx_get_nmi_mask(struct kvm_vcpu
*vcpu
);
908 static void vmx_set_nmi_mask(struct kvm_vcpu
*vcpu
, bool masked
);
909 static bool nested_vmx_is_page_fault_vmexit(struct vmcs12
*vmcs12
,
911 static void vmx_update_msr_bitmap(struct kvm_vcpu
*vcpu
);
912 static void __always_inline
vmx_disable_intercept_for_msr(unsigned long *msr_bitmap
,
915 static DEFINE_PER_CPU(struct vmcs
*, vmxarea
);
916 static DEFINE_PER_CPU(struct vmcs
*, current_vmcs
);
918 * We maintain a per-CPU linked-list of VMCS loaded on that CPU. This is needed
919 * when a CPU is brought down, and we need to VMCLEAR all VMCSs loaded on it.
921 static DEFINE_PER_CPU(struct list_head
, loaded_vmcss_on_cpu
);
924 * We maintian a per-CPU linked-list of vCPU, so in wakeup_handler() we
925 * can find which vCPU should be waken up.
927 static DEFINE_PER_CPU(struct list_head
, blocked_vcpu_on_cpu
);
928 static DEFINE_PER_CPU(spinlock_t
, blocked_vcpu_on_cpu_lock
);
936 static unsigned long *vmx_bitmap
[VMX_BITMAP_NR
];
938 #define vmx_vmread_bitmap (vmx_bitmap[VMX_VMREAD_BITMAP])
939 #define vmx_vmwrite_bitmap (vmx_bitmap[VMX_VMWRITE_BITMAP])
941 static bool cpu_has_load_ia32_efer
;
942 static bool cpu_has_load_perf_global_ctrl
;
944 static DECLARE_BITMAP(vmx_vpid_bitmap
, VMX_NR_VPIDS
);
945 static DEFINE_SPINLOCK(vmx_vpid_lock
);
947 static struct vmcs_config
{
952 u32 pin_based_exec_ctrl
;
953 u32 cpu_based_exec_ctrl
;
954 u32 cpu_based_2nd_exec_ctrl
;
959 static struct vmx_capability
{
964 #define VMX_SEGMENT_FIELD(seg) \
965 [VCPU_SREG_##seg] = { \
966 .selector = GUEST_##seg##_SELECTOR, \
967 .base = GUEST_##seg##_BASE, \
968 .limit = GUEST_##seg##_LIMIT, \
969 .ar_bytes = GUEST_##seg##_AR_BYTES, \
972 static const struct kvm_vmx_segment_field
{
977 } kvm_vmx_segment_fields
[] = {
978 VMX_SEGMENT_FIELD(CS
),
979 VMX_SEGMENT_FIELD(DS
),
980 VMX_SEGMENT_FIELD(ES
),
981 VMX_SEGMENT_FIELD(FS
),
982 VMX_SEGMENT_FIELD(GS
),
983 VMX_SEGMENT_FIELD(SS
),
984 VMX_SEGMENT_FIELD(TR
),
985 VMX_SEGMENT_FIELD(LDTR
),
988 static u64 host_efer
;
990 static void ept_save_pdptrs(struct kvm_vcpu
*vcpu
);
993 * Keep MSR_STAR at the end, as setup_msrs() will try to optimize it
994 * away by decrementing the array size.
996 static const u32 vmx_msr_index
[] = {
998 MSR_SYSCALL_MASK
, MSR_LSTAR
, MSR_CSTAR
,
1000 MSR_EFER
, MSR_TSC_AUX
, MSR_STAR
,
1003 static inline bool is_exception_n(u32 intr_info
, u8 vector
)
1005 return (intr_info
& (INTR_INFO_INTR_TYPE_MASK
| INTR_INFO_VECTOR_MASK
|
1006 INTR_INFO_VALID_MASK
)) ==
1007 (INTR_TYPE_HARD_EXCEPTION
| vector
| INTR_INFO_VALID_MASK
);
1010 static inline bool is_debug(u32 intr_info
)
1012 return is_exception_n(intr_info
, DB_VECTOR
);
1015 static inline bool is_breakpoint(u32 intr_info
)
1017 return is_exception_n(intr_info
, BP_VECTOR
);
1020 static inline bool is_page_fault(u32 intr_info
)
1022 return is_exception_n(intr_info
, PF_VECTOR
);
1025 static inline bool is_no_device(u32 intr_info
)
1027 return is_exception_n(intr_info
, NM_VECTOR
);
1030 static inline bool is_invalid_opcode(u32 intr_info
)
1032 return is_exception_n(intr_info
, UD_VECTOR
);
1035 static inline bool is_external_interrupt(u32 intr_info
)
1037 return (intr_info
& (INTR_INFO_INTR_TYPE_MASK
| INTR_INFO_VALID_MASK
))
1038 == (INTR_TYPE_EXT_INTR
| INTR_INFO_VALID_MASK
);
1041 static inline bool is_machine_check(u32 intr_info
)
1043 return (intr_info
& (INTR_INFO_INTR_TYPE_MASK
| INTR_INFO_VECTOR_MASK
|
1044 INTR_INFO_VALID_MASK
)) ==
1045 (INTR_TYPE_HARD_EXCEPTION
| MC_VECTOR
| INTR_INFO_VALID_MASK
);
1048 static inline bool cpu_has_vmx_msr_bitmap(void)
1050 return vmcs_config
.cpu_based_exec_ctrl
& CPU_BASED_USE_MSR_BITMAPS
;
1053 static inline bool cpu_has_vmx_tpr_shadow(void)
1055 return vmcs_config
.cpu_based_exec_ctrl
& CPU_BASED_TPR_SHADOW
;
1058 static inline bool cpu_need_tpr_shadow(struct kvm_vcpu
*vcpu
)
1060 return cpu_has_vmx_tpr_shadow() && lapic_in_kernel(vcpu
);
1063 static inline bool cpu_has_secondary_exec_ctrls(void)
1065 return vmcs_config
.cpu_based_exec_ctrl
&
1066 CPU_BASED_ACTIVATE_SECONDARY_CONTROLS
;
1069 static inline bool cpu_has_vmx_virtualize_apic_accesses(void)
1071 return vmcs_config
.cpu_based_2nd_exec_ctrl
&
1072 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES
;
1075 static inline bool cpu_has_vmx_virtualize_x2apic_mode(void)
1077 return vmcs_config
.cpu_based_2nd_exec_ctrl
&
1078 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE
;
1081 static inline bool cpu_has_vmx_apic_register_virt(void)
1083 return vmcs_config
.cpu_based_2nd_exec_ctrl
&
1084 SECONDARY_EXEC_APIC_REGISTER_VIRT
;
1087 static inline bool cpu_has_vmx_virtual_intr_delivery(void)
1089 return vmcs_config
.cpu_based_2nd_exec_ctrl
&
1090 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY
;
1094 * Comment's format: document - errata name - stepping - processor name.
1096 * https://www.virtualbox.org/svn/vbox/trunk/src/VBox/VMM/VMMR0/HMR0.cpp
1098 static u32 vmx_preemption_cpu_tfms
[] = {
1099 /* 323344.pdf - BA86 - D0 - Xeon 7500 Series */
1101 /* 323056.pdf - AAX65 - C2 - Xeon L3406 */
1102 /* 322814.pdf - AAT59 - C2 - i7-600, i5-500, i5-400 and i3-300 Mobile */
1103 /* 322911.pdf - AAU65 - C2 - i5-600, i3-500 Desktop and Pentium G6950 */
1105 /* 322911.pdf - AAU65 - K0 - i5-600, i3-500 Desktop and Pentium G6950 */
1107 /* 322373.pdf - AAO95 - B1 - Xeon 3400 Series */
1108 /* 322166.pdf - AAN92 - B1 - i7-800 and i5-700 Desktop */
1110 * 320767.pdf - AAP86 - B1 -
1111 * i7-900 Mobile Extreme, i7-800 and i7-700 Mobile
1114 /* 321333.pdf - AAM126 - C0 - Xeon 3500 */
1116 /* 321333.pdf - AAM126 - C1 - Xeon 3500 */
1118 /* 320836.pdf - AAJ124 - C0 - i7-900 Desktop Extreme and i7-900 Desktop */
1120 /* 321333.pdf - AAM126 - D0 - Xeon 3500 */
1121 /* 321324.pdf - AAK139 - D0 - Xeon 5500 */
1122 /* 320836.pdf - AAJ124 - D0 - i7-900 Extreme and i7-900 Desktop */
1126 static inline bool cpu_has_broken_vmx_preemption_timer(void)
1128 u32 eax
= cpuid_eax(0x00000001), i
;
1130 /* Clear the reserved bits */
1131 eax
&= ~(0x3U
<< 14 | 0xfU
<< 28);
1132 for (i
= 0; i
< ARRAY_SIZE(vmx_preemption_cpu_tfms
); i
++)
1133 if (eax
== vmx_preemption_cpu_tfms
[i
])
1139 static inline bool cpu_has_vmx_preemption_timer(void)
1141 return vmcs_config
.pin_based_exec_ctrl
&
1142 PIN_BASED_VMX_PREEMPTION_TIMER
;
1145 static inline bool cpu_has_vmx_posted_intr(void)
1147 return IS_ENABLED(CONFIG_X86_LOCAL_APIC
) &&
1148 vmcs_config
.pin_based_exec_ctrl
& PIN_BASED_POSTED_INTR
;
1151 static inline bool cpu_has_vmx_apicv(void)
1153 return cpu_has_vmx_apic_register_virt() &&
1154 cpu_has_vmx_virtual_intr_delivery() &&
1155 cpu_has_vmx_posted_intr();
1158 static inline bool cpu_has_vmx_flexpriority(void)
1160 return cpu_has_vmx_tpr_shadow() &&
1161 cpu_has_vmx_virtualize_apic_accesses();
1164 static inline bool cpu_has_vmx_ept_execute_only(void)
1166 return vmx_capability
.ept
& VMX_EPT_EXECUTE_ONLY_BIT
;
1169 static inline bool cpu_has_vmx_ept_2m_page(void)
1171 return vmx_capability
.ept
& VMX_EPT_2MB_PAGE_BIT
;
1174 static inline bool cpu_has_vmx_ept_1g_page(void)
1176 return vmx_capability
.ept
& VMX_EPT_1GB_PAGE_BIT
;
1179 static inline bool cpu_has_vmx_ept_4levels(void)
1181 return vmx_capability
.ept
& VMX_EPT_PAGE_WALK_4_BIT
;
1184 static inline bool cpu_has_vmx_ept_mt_wb(void)
1186 return vmx_capability
.ept
& VMX_EPTP_WB_BIT
;
1189 static inline bool cpu_has_vmx_ept_5levels(void)
1191 return vmx_capability
.ept
& VMX_EPT_PAGE_WALK_5_BIT
;
1194 static inline bool cpu_has_vmx_ept_ad_bits(void)
1196 return vmx_capability
.ept
& VMX_EPT_AD_BIT
;
1199 static inline bool cpu_has_vmx_invept_context(void)
1201 return vmx_capability
.ept
& VMX_EPT_EXTENT_CONTEXT_BIT
;
1204 static inline bool cpu_has_vmx_invept_global(void)
1206 return vmx_capability
.ept
& VMX_EPT_EXTENT_GLOBAL_BIT
;
1209 static inline bool cpu_has_vmx_invvpid_single(void)
1211 return vmx_capability
.vpid
& VMX_VPID_EXTENT_SINGLE_CONTEXT_BIT
;
1214 static inline bool cpu_has_vmx_invvpid_global(void)
1216 return vmx_capability
.vpid
& VMX_VPID_EXTENT_GLOBAL_CONTEXT_BIT
;
1219 static inline bool cpu_has_vmx_invvpid(void)
1221 return vmx_capability
.vpid
& VMX_VPID_INVVPID_BIT
;
1224 static inline bool cpu_has_vmx_ept(void)
1226 return vmcs_config
.cpu_based_2nd_exec_ctrl
&
1227 SECONDARY_EXEC_ENABLE_EPT
;
1230 static inline bool cpu_has_vmx_unrestricted_guest(void)
1232 return vmcs_config
.cpu_based_2nd_exec_ctrl
&
1233 SECONDARY_EXEC_UNRESTRICTED_GUEST
;
1236 static inline bool cpu_has_vmx_ple(void)
1238 return vmcs_config
.cpu_based_2nd_exec_ctrl
&
1239 SECONDARY_EXEC_PAUSE_LOOP_EXITING
;
1242 static inline bool cpu_has_vmx_basic_inout(void)
1244 return (((u64
)vmcs_config
.basic_cap
<< 32) & VMX_BASIC_INOUT
);
1247 static inline bool cpu_need_virtualize_apic_accesses(struct kvm_vcpu
*vcpu
)
1249 return flexpriority_enabled
&& lapic_in_kernel(vcpu
);
1252 static inline bool cpu_has_vmx_vpid(void)
1254 return vmcs_config
.cpu_based_2nd_exec_ctrl
&
1255 SECONDARY_EXEC_ENABLE_VPID
;
1258 static inline bool cpu_has_vmx_rdtscp(void)
1260 return vmcs_config
.cpu_based_2nd_exec_ctrl
&
1261 SECONDARY_EXEC_RDTSCP
;
1264 static inline bool cpu_has_vmx_invpcid(void)
1266 return vmcs_config
.cpu_based_2nd_exec_ctrl
&
1267 SECONDARY_EXEC_ENABLE_INVPCID
;
1270 static inline bool cpu_has_virtual_nmis(void)
1272 return vmcs_config
.pin_based_exec_ctrl
& PIN_BASED_VIRTUAL_NMIS
;
1275 static inline bool cpu_has_vmx_wbinvd_exit(void)
1277 return vmcs_config
.cpu_based_2nd_exec_ctrl
&
1278 SECONDARY_EXEC_WBINVD_EXITING
;
1281 static inline bool cpu_has_vmx_shadow_vmcs(void)
1284 rdmsrl(MSR_IA32_VMX_MISC
, vmx_msr
);
1285 /* check if the cpu supports writing r/o exit information fields */
1286 if (!(vmx_msr
& MSR_IA32_VMX_MISC_VMWRITE_SHADOW_RO_FIELDS
))
1289 return vmcs_config
.cpu_based_2nd_exec_ctrl
&
1290 SECONDARY_EXEC_SHADOW_VMCS
;
1293 static inline bool cpu_has_vmx_pml(void)
1295 return vmcs_config
.cpu_based_2nd_exec_ctrl
& SECONDARY_EXEC_ENABLE_PML
;
1298 static inline bool cpu_has_vmx_tsc_scaling(void)
1300 return vmcs_config
.cpu_based_2nd_exec_ctrl
&
1301 SECONDARY_EXEC_TSC_SCALING
;
1304 static inline bool cpu_has_vmx_vmfunc(void)
1306 return vmcs_config
.cpu_based_2nd_exec_ctrl
&
1307 SECONDARY_EXEC_ENABLE_VMFUNC
;
1310 static inline bool report_flexpriority(void)
1312 return flexpriority_enabled
;
1315 static inline unsigned nested_cpu_vmx_misc_cr3_count(struct kvm_vcpu
*vcpu
)
1317 return vmx_misc_cr3_count(to_vmx(vcpu
)->nested
.nested_vmx_misc_low
);
1320 static inline bool nested_cpu_has(struct vmcs12
*vmcs12
, u32 bit
)
1322 return vmcs12
->cpu_based_vm_exec_control
& bit
;
1325 static inline bool nested_cpu_has2(struct vmcs12
*vmcs12
, u32 bit
)
1327 return (vmcs12
->cpu_based_vm_exec_control
&
1328 CPU_BASED_ACTIVATE_SECONDARY_CONTROLS
) &&
1329 (vmcs12
->secondary_vm_exec_control
& bit
);
1332 static inline bool nested_cpu_has_preemption_timer(struct vmcs12
*vmcs12
)
1334 return vmcs12
->pin_based_vm_exec_control
&
1335 PIN_BASED_VMX_PREEMPTION_TIMER
;
1338 static inline int nested_cpu_has_ept(struct vmcs12
*vmcs12
)
1340 return nested_cpu_has2(vmcs12
, SECONDARY_EXEC_ENABLE_EPT
);
1343 static inline bool nested_cpu_has_xsaves(struct vmcs12
*vmcs12
)
1345 return nested_cpu_has2(vmcs12
, SECONDARY_EXEC_XSAVES
);
1348 static inline bool nested_cpu_has_pml(struct vmcs12
*vmcs12
)
1350 return nested_cpu_has2(vmcs12
, SECONDARY_EXEC_ENABLE_PML
);
1353 static inline bool nested_cpu_has_virt_x2apic_mode(struct vmcs12
*vmcs12
)
1355 return nested_cpu_has2(vmcs12
, SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE
);
1358 static inline bool nested_cpu_has_vpid(struct vmcs12
*vmcs12
)
1360 return nested_cpu_has2(vmcs12
, SECONDARY_EXEC_ENABLE_VPID
);
1363 static inline bool nested_cpu_has_apic_reg_virt(struct vmcs12
*vmcs12
)
1365 return nested_cpu_has2(vmcs12
, SECONDARY_EXEC_APIC_REGISTER_VIRT
);
1368 static inline bool nested_cpu_has_vid(struct vmcs12
*vmcs12
)
1370 return nested_cpu_has2(vmcs12
, SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY
);
1373 static inline bool nested_cpu_has_posted_intr(struct vmcs12
*vmcs12
)
1375 return vmcs12
->pin_based_vm_exec_control
& PIN_BASED_POSTED_INTR
;
1378 static inline bool nested_cpu_has_vmfunc(struct vmcs12
*vmcs12
)
1380 return nested_cpu_has2(vmcs12
, SECONDARY_EXEC_ENABLE_VMFUNC
);
1383 static inline bool nested_cpu_has_eptp_switching(struct vmcs12
*vmcs12
)
1385 return nested_cpu_has_vmfunc(vmcs12
) &&
1386 (vmcs12
->vm_function_control
&
1387 VMX_VMFUNC_EPTP_SWITCHING
);
1390 static inline bool is_nmi(u32 intr_info
)
1392 return (intr_info
& (INTR_INFO_INTR_TYPE_MASK
| INTR_INFO_VALID_MASK
))
1393 == (INTR_TYPE_NMI_INTR
| INTR_INFO_VALID_MASK
);
1396 static void nested_vmx_vmexit(struct kvm_vcpu
*vcpu
, u32 exit_reason
,
1398 unsigned long exit_qualification
);
1399 static void nested_vmx_entry_failure(struct kvm_vcpu
*vcpu
,
1400 struct vmcs12
*vmcs12
,
1401 u32 reason
, unsigned long qualification
);
1403 static int __find_msr_index(struct vcpu_vmx
*vmx
, u32 msr
)
1407 for (i
= 0; i
< vmx
->nmsrs
; ++i
)
1408 if (vmx_msr_index
[vmx
->guest_msrs
[i
].index
] == msr
)
1413 static inline void __invvpid(int ext
, u16 vpid
, gva_t gva
)
1419 } operand
= { vpid
, 0, gva
};
1421 asm volatile (__ex(ASM_VMX_INVVPID
)
1422 /* CF==1 or ZF==1 --> rc = -1 */
1423 "; ja 1f ; ud2 ; 1:"
1424 : : "a"(&operand
), "c"(ext
) : "cc", "memory");
1427 static inline void __invept(int ext
, u64 eptp
, gpa_t gpa
)
1431 } operand
= {eptp
, gpa
};
1433 asm volatile (__ex(ASM_VMX_INVEPT
)
1434 /* CF==1 or ZF==1 --> rc = -1 */
1435 "; ja 1f ; ud2 ; 1:\n"
1436 : : "a" (&operand
), "c" (ext
) : "cc", "memory");
1439 static struct shared_msr_entry
*find_msr_entry(struct vcpu_vmx
*vmx
, u32 msr
)
1443 i
= __find_msr_index(vmx
, msr
);
1445 return &vmx
->guest_msrs
[i
];
1449 static void vmcs_clear(struct vmcs
*vmcs
)
1451 u64 phys_addr
= __pa(vmcs
);
1454 asm volatile (__ex(ASM_VMX_VMCLEAR_RAX
) "; setna %0"
1455 : "=qm"(error
) : "a"(&phys_addr
), "m"(phys_addr
)
1458 printk(KERN_ERR
"kvm: vmclear fail: %p/%llx\n",
1462 static inline void loaded_vmcs_init(struct loaded_vmcs
*loaded_vmcs
)
1464 vmcs_clear(loaded_vmcs
->vmcs
);
1465 if (loaded_vmcs
->shadow_vmcs
&& loaded_vmcs
->launched
)
1466 vmcs_clear(loaded_vmcs
->shadow_vmcs
);
1467 loaded_vmcs
->cpu
= -1;
1468 loaded_vmcs
->launched
= 0;
1471 static void vmcs_load(struct vmcs
*vmcs
)
1473 u64 phys_addr
= __pa(vmcs
);
1476 asm volatile (__ex(ASM_VMX_VMPTRLD_RAX
) "; setna %0"
1477 : "=qm"(error
) : "a"(&phys_addr
), "m"(phys_addr
)
1480 printk(KERN_ERR
"kvm: vmptrld %p/%llx failed\n",
1484 #ifdef CONFIG_KEXEC_CORE
1486 * This bitmap is used to indicate whether the vmclear
1487 * operation is enabled on all cpus. All disabled by
1490 static cpumask_t crash_vmclear_enabled_bitmap
= CPU_MASK_NONE
;
1492 static inline void crash_enable_local_vmclear(int cpu
)
1494 cpumask_set_cpu(cpu
, &crash_vmclear_enabled_bitmap
);
1497 static inline void crash_disable_local_vmclear(int cpu
)
1499 cpumask_clear_cpu(cpu
, &crash_vmclear_enabled_bitmap
);
1502 static inline int crash_local_vmclear_enabled(int cpu
)
1504 return cpumask_test_cpu(cpu
, &crash_vmclear_enabled_bitmap
);
1507 static void crash_vmclear_local_loaded_vmcss(void)
1509 int cpu
= raw_smp_processor_id();
1510 struct loaded_vmcs
*v
;
1512 if (!crash_local_vmclear_enabled(cpu
))
1515 list_for_each_entry(v
, &per_cpu(loaded_vmcss_on_cpu
, cpu
),
1516 loaded_vmcss_on_cpu_link
)
1517 vmcs_clear(v
->vmcs
);
1520 static inline void crash_enable_local_vmclear(int cpu
) { }
1521 static inline void crash_disable_local_vmclear(int cpu
) { }
1522 #endif /* CONFIG_KEXEC_CORE */
1524 static void __loaded_vmcs_clear(void *arg
)
1526 struct loaded_vmcs
*loaded_vmcs
= arg
;
1527 int cpu
= raw_smp_processor_id();
1529 if (loaded_vmcs
->cpu
!= cpu
)
1530 return; /* vcpu migration can race with cpu offline */
1531 if (per_cpu(current_vmcs
, cpu
) == loaded_vmcs
->vmcs
)
1532 per_cpu(current_vmcs
, cpu
) = NULL
;
1533 crash_disable_local_vmclear(cpu
);
1534 list_del(&loaded_vmcs
->loaded_vmcss_on_cpu_link
);
1537 * we should ensure updating loaded_vmcs->loaded_vmcss_on_cpu_link
1538 * is before setting loaded_vmcs->vcpu to -1 which is done in
1539 * loaded_vmcs_init. Otherwise, other cpu can see vcpu = -1 fist
1540 * then adds the vmcs into percpu list before it is deleted.
1544 loaded_vmcs_init(loaded_vmcs
);
1545 crash_enable_local_vmclear(cpu
);
1548 static void loaded_vmcs_clear(struct loaded_vmcs
*loaded_vmcs
)
1550 int cpu
= loaded_vmcs
->cpu
;
1553 smp_call_function_single(cpu
,
1554 __loaded_vmcs_clear
, loaded_vmcs
, 1);
1557 static inline void vpid_sync_vcpu_single(int vpid
)
1562 if (cpu_has_vmx_invvpid_single())
1563 __invvpid(VMX_VPID_EXTENT_SINGLE_CONTEXT
, vpid
, 0);
1566 static inline void vpid_sync_vcpu_global(void)
1568 if (cpu_has_vmx_invvpid_global())
1569 __invvpid(VMX_VPID_EXTENT_ALL_CONTEXT
, 0, 0);
1572 static inline void vpid_sync_context(int vpid
)
1574 if (cpu_has_vmx_invvpid_single())
1575 vpid_sync_vcpu_single(vpid
);
1577 vpid_sync_vcpu_global();
1580 static inline void ept_sync_global(void)
1582 __invept(VMX_EPT_EXTENT_GLOBAL
, 0, 0);
1585 static inline void ept_sync_context(u64 eptp
)
1587 if (cpu_has_vmx_invept_context())
1588 __invept(VMX_EPT_EXTENT_CONTEXT
, eptp
, 0);
1593 static __always_inline
void vmcs_check16(unsigned long field
)
1595 BUILD_BUG_ON_MSG(__builtin_constant_p(field
) && ((field
) & 0x6001) == 0x2000,
1596 "16-bit accessor invalid for 64-bit field");
1597 BUILD_BUG_ON_MSG(__builtin_constant_p(field
) && ((field
) & 0x6001) == 0x2001,
1598 "16-bit accessor invalid for 64-bit high field");
1599 BUILD_BUG_ON_MSG(__builtin_constant_p(field
) && ((field
) & 0x6000) == 0x4000,
1600 "16-bit accessor invalid for 32-bit high field");
1601 BUILD_BUG_ON_MSG(__builtin_constant_p(field
) && ((field
) & 0x6000) == 0x6000,
1602 "16-bit accessor invalid for natural width field");
1605 static __always_inline
void vmcs_check32(unsigned long field
)
1607 BUILD_BUG_ON_MSG(__builtin_constant_p(field
) && ((field
) & 0x6000) == 0,
1608 "32-bit accessor invalid for 16-bit field");
1609 BUILD_BUG_ON_MSG(__builtin_constant_p(field
) && ((field
) & 0x6000) == 0x6000,
1610 "32-bit accessor invalid for natural width field");
1613 static __always_inline
void vmcs_check64(unsigned long field
)
1615 BUILD_BUG_ON_MSG(__builtin_constant_p(field
) && ((field
) & 0x6000) == 0,
1616 "64-bit accessor invalid for 16-bit field");
1617 BUILD_BUG_ON_MSG(__builtin_constant_p(field
) && ((field
) & 0x6001) == 0x2001,
1618 "64-bit accessor invalid for 64-bit high field");
1619 BUILD_BUG_ON_MSG(__builtin_constant_p(field
) && ((field
) & 0x6000) == 0x4000,
1620 "64-bit accessor invalid for 32-bit field");
1621 BUILD_BUG_ON_MSG(__builtin_constant_p(field
) && ((field
) & 0x6000) == 0x6000,
1622 "64-bit accessor invalid for natural width field");
1625 static __always_inline
void vmcs_checkl(unsigned long field
)
1627 BUILD_BUG_ON_MSG(__builtin_constant_p(field
) && ((field
) & 0x6000) == 0,
1628 "Natural width accessor invalid for 16-bit field");
1629 BUILD_BUG_ON_MSG(__builtin_constant_p(field
) && ((field
) & 0x6001) == 0x2000,
1630 "Natural width accessor invalid for 64-bit field");
1631 BUILD_BUG_ON_MSG(__builtin_constant_p(field
) && ((field
) & 0x6001) == 0x2001,
1632 "Natural width accessor invalid for 64-bit high field");
1633 BUILD_BUG_ON_MSG(__builtin_constant_p(field
) && ((field
) & 0x6000) == 0x4000,
1634 "Natural width accessor invalid for 32-bit field");
1637 static __always_inline
unsigned long __vmcs_readl(unsigned long field
)
1639 unsigned long value
;
1641 asm volatile (__ex_clear(ASM_VMX_VMREAD_RDX_RAX
, "%0")
1642 : "=a"(value
) : "d"(field
) : "cc");
1646 static __always_inline u16
vmcs_read16(unsigned long field
)
1648 vmcs_check16(field
);
1649 return __vmcs_readl(field
);
1652 static __always_inline u32
vmcs_read32(unsigned long field
)
1654 vmcs_check32(field
);
1655 return __vmcs_readl(field
);
1658 static __always_inline u64
vmcs_read64(unsigned long field
)
1660 vmcs_check64(field
);
1661 #ifdef CONFIG_X86_64
1662 return __vmcs_readl(field
);
1664 return __vmcs_readl(field
) | ((u64
)__vmcs_readl(field
+1) << 32);
1668 static __always_inline
unsigned long vmcs_readl(unsigned long field
)
1671 return __vmcs_readl(field
);
1674 static noinline
void vmwrite_error(unsigned long field
, unsigned long value
)
1676 printk(KERN_ERR
"vmwrite error: reg %lx value %lx (err %d)\n",
1677 field
, value
, vmcs_read32(VM_INSTRUCTION_ERROR
));
1681 static __always_inline
void __vmcs_writel(unsigned long field
, unsigned long value
)
1685 asm volatile (__ex(ASM_VMX_VMWRITE_RAX_RDX
) "; setna %0"
1686 : "=q"(error
) : "a"(value
), "d"(field
) : "cc");
1687 if (unlikely(error
))
1688 vmwrite_error(field
, value
);
1691 static __always_inline
void vmcs_write16(unsigned long field
, u16 value
)
1693 vmcs_check16(field
);
1694 __vmcs_writel(field
, value
);
1697 static __always_inline
void vmcs_write32(unsigned long field
, u32 value
)
1699 vmcs_check32(field
);
1700 __vmcs_writel(field
, value
);
1703 static __always_inline
void vmcs_write64(unsigned long field
, u64 value
)
1705 vmcs_check64(field
);
1706 __vmcs_writel(field
, value
);
1707 #ifndef CONFIG_X86_64
1709 __vmcs_writel(field
+1, value
>> 32);
1713 static __always_inline
void vmcs_writel(unsigned long field
, unsigned long value
)
1716 __vmcs_writel(field
, value
);
1719 static __always_inline
void vmcs_clear_bits(unsigned long field
, u32 mask
)
1721 BUILD_BUG_ON_MSG(__builtin_constant_p(field
) && ((field
) & 0x6000) == 0x2000,
1722 "vmcs_clear_bits does not support 64-bit fields");
1723 __vmcs_writel(field
, __vmcs_readl(field
) & ~mask
);
1726 static __always_inline
void vmcs_set_bits(unsigned long field
, u32 mask
)
1728 BUILD_BUG_ON_MSG(__builtin_constant_p(field
) && ((field
) & 0x6000) == 0x2000,
1729 "vmcs_set_bits does not support 64-bit fields");
1730 __vmcs_writel(field
, __vmcs_readl(field
) | mask
);
1733 static inline void vm_entry_controls_reset_shadow(struct vcpu_vmx
*vmx
)
1735 vmx
->vm_entry_controls_shadow
= vmcs_read32(VM_ENTRY_CONTROLS
);
1738 static inline void vm_entry_controls_init(struct vcpu_vmx
*vmx
, u32 val
)
1740 vmcs_write32(VM_ENTRY_CONTROLS
, val
);
1741 vmx
->vm_entry_controls_shadow
= val
;
1744 static inline void vm_entry_controls_set(struct vcpu_vmx
*vmx
, u32 val
)
1746 if (vmx
->vm_entry_controls_shadow
!= val
)
1747 vm_entry_controls_init(vmx
, val
);
1750 static inline u32
vm_entry_controls_get(struct vcpu_vmx
*vmx
)
1752 return vmx
->vm_entry_controls_shadow
;
1756 static inline void vm_entry_controls_setbit(struct vcpu_vmx
*vmx
, u32 val
)
1758 vm_entry_controls_set(vmx
, vm_entry_controls_get(vmx
) | val
);
1761 static inline void vm_entry_controls_clearbit(struct vcpu_vmx
*vmx
, u32 val
)
1763 vm_entry_controls_set(vmx
, vm_entry_controls_get(vmx
) & ~val
);
1766 static inline void vm_exit_controls_reset_shadow(struct vcpu_vmx
*vmx
)
1768 vmx
->vm_exit_controls_shadow
= vmcs_read32(VM_EXIT_CONTROLS
);
1771 static inline void vm_exit_controls_init(struct vcpu_vmx
*vmx
, u32 val
)
1773 vmcs_write32(VM_EXIT_CONTROLS
, val
);
1774 vmx
->vm_exit_controls_shadow
= val
;
1777 static inline void vm_exit_controls_set(struct vcpu_vmx
*vmx
, u32 val
)
1779 if (vmx
->vm_exit_controls_shadow
!= val
)
1780 vm_exit_controls_init(vmx
, val
);
1783 static inline u32
vm_exit_controls_get(struct vcpu_vmx
*vmx
)
1785 return vmx
->vm_exit_controls_shadow
;
1789 static inline void vm_exit_controls_setbit(struct vcpu_vmx
*vmx
, u32 val
)
1791 vm_exit_controls_set(vmx
, vm_exit_controls_get(vmx
) | val
);
1794 static inline void vm_exit_controls_clearbit(struct vcpu_vmx
*vmx
, u32 val
)
1796 vm_exit_controls_set(vmx
, vm_exit_controls_get(vmx
) & ~val
);
1799 static void vmx_segment_cache_clear(struct vcpu_vmx
*vmx
)
1801 vmx
->segment_cache
.bitmask
= 0;
1804 static bool vmx_segment_cache_test_set(struct vcpu_vmx
*vmx
, unsigned seg
,
1808 u32 mask
= 1 << (seg
* SEG_FIELD_NR
+ field
);
1810 if (!(vmx
->vcpu
.arch
.regs_avail
& (1 << VCPU_EXREG_SEGMENTS
))) {
1811 vmx
->vcpu
.arch
.regs_avail
|= (1 << VCPU_EXREG_SEGMENTS
);
1812 vmx
->segment_cache
.bitmask
= 0;
1814 ret
= vmx
->segment_cache
.bitmask
& mask
;
1815 vmx
->segment_cache
.bitmask
|= mask
;
1819 static u16
vmx_read_guest_seg_selector(struct vcpu_vmx
*vmx
, unsigned seg
)
1821 u16
*p
= &vmx
->segment_cache
.seg
[seg
].selector
;
1823 if (!vmx_segment_cache_test_set(vmx
, seg
, SEG_FIELD_SEL
))
1824 *p
= vmcs_read16(kvm_vmx_segment_fields
[seg
].selector
);
1828 static ulong
vmx_read_guest_seg_base(struct vcpu_vmx
*vmx
, unsigned seg
)
1830 ulong
*p
= &vmx
->segment_cache
.seg
[seg
].base
;
1832 if (!vmx_segment_cache_test_set(vmx
, seg
, SEG_FIELD_BASE
))
1833 *p
= vmcs_readl(kvm_vmx_segment_fields
[seg
].base
);
1837 static u32
vmx_read_guest_seg_limit(struct vcpu_vmx
*vmx
, unsigned seg
)
1839 u32
*p
= &vmx
->segment_cache
.seg
[seg
].limit
;
1841 if (!vmx_segment_cache_test_set(vmx
, seg
, SEG_FIELD_LIMIT
))
1842 *p
= vmcs_read32(kvm_vmx_segment_fields
[seg
].limit
);
1846 static u32
vmx_read_guest_seg_ar(struct vcpu_vmx
*vmx
, unsigned seg
)
1848 u32
*p
= &vmx
->segment_cache
.seg
[seg
].ar
;
1850 if (!vmx_segment_cache_test_set(vmx
, seg
, SEG_FIELD_AR
))
1851 *p
= vmcs_read32(kvm_vmx_segment_fields
[seg
].ar_bytes
);
1855 static void update_exception_bitmap(struct kvm_vcpu
*vcpu
)
1859 eb
= (1u << PF_VECTOR
) | (1u << UD_VECTOR
) | (1u << MC_VECTOR
) |
1860 (1u << DB_VECTOR
) | (1u << AC_VECTOR
);
1861 if ((vcpu
->guest_debug
&
1862 (KVM_GUESTDBG_ENABLE
| KVM_GUESTDBG_USE_SW_BP
)) ==
1863 (KVM_GUESTDBG_ENABLE
| KVM_GUESTDBG_USE_SW_BP
))
1864 eb
|= 1u << BP_VECTOR
;
1865 if (to_vmx(vcpu
)->rmode
.vm86_active
)
1868 eb
&= ~(1u << PF_VECTOR
); /* bypass_guest_pf = 0 */
1870 /* When we are running a nested L2 guest and L1 specified for it a
1871 * certain exception bitmap, we must trap the same exceptions and pass
1872 * them to L1. When running L2, we will only handle the exceptions
1873 * specified above if L1 did not want them.
1875 if (is_guest_mode(vcpu
))
1876 eb
|= get_vmcs12(vcpu
)->exception_bitmap
;
1878 vmcs_write32(EXCEPTION_BITMAP
, eb
);
1882 * Check if MSR is intercepted for currently loaded MSR bitmap.
1884 static bool msr_write_intercepted(struct kvm_vcpu
*vcpu
, u32 msr
)
1886 unsigned long *msr_bitmap
;
1887 int f
= sizeof(unsigned long);
1889 if (!cpu_has_vmx_msr_bitmap())
1892 msr_bitmap
= to_vmx(vcpu
)->loaded_vmcs
->msr_bitmap
;
1894 if (msr
<= 0x1fff) {
1895 return !!test_bit(msr
, msr_bitmap
+ 0x800 / f
);
1896 } else if ((msr
>= 0xc0000000) && (msr
<= 0xc0001fff)) {
1898 return !!test_bit(msr
, msr_bitmap
+ 0xc00 / f
);
1905 * Check if MSR is intercepted for L01 MSR bitmap.
1907 static bool msr_write_intercepted_l01(struct kvm_vcpu
*vcpu
, u32 msr
)
1909 unsigned long *msr_bitmap
;
1910 int f
= sizeof(unsigned long);
1912 if (!cpu_has_vmx_msr_bitmap())
1915 msr_bitmap
= to_vmx(vcpu
)->vmcs01
.msr_bitmap
;
1917 if (msr
<= 0x1fff) {
1918 return !!test_bit(msr
, msr_bitmap
+ 0x800 / f
);
1919 } else if ((msr
>= 0xc0000000) && (msr
<= 0xc0001fff)) {
1921 return !!test_bit(msr
, msr_bitmap
+ 0xc00 / f
);
1927 static void clear_atomic_switch_msr_special(struct vcpu_vmx
*vmx
,
1928 unsigned long entry
, unsigned long exit
)
1930 vm_entry_controls_clearbit(vmx
, entry
);
1931 vm_exit_controls_clearbit(vmx
, exit
);
1934 static void clear_atomic_switch_msr(struct vcpu_vmx
*vmx
, unsigned msr
)
1937 struct msr_autoload
*m
= &vmx
->msr_autoload
;
1941 if (cpu_has_load_ia32_efer
) {
1942 clear_atomic_switch_msr_special(vmx
,
1943 VM_ENTRY_LOAD_IA32_EFER
,
1944 VM_EXIT_LOAD_IA32_EFER
);
1948 case MSR_CORE_PERF_GLOBAL_CTRL
:
1949 if (cpu_has_load_perf_global_ctrl
) {
1950 clear_atomic_switch_msr_special(vmx
,
1951 VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL
,
1952 VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL
);
1958 for (i
= 0; i
< m
->nr
; ++i
)
1959 if (m
->guest
[i
].index
== msr
)
1965 m
->guest
[i
] = m
->guest
[m
->nr
];
1966 m
->host
[i
] = m
->host
[m
->nr
];
1967 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT
, m
->nr
);
1968 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT
, m
->nr
);
1971 static void add_atomic_switch_msr_special(struct vcpu_vmx
*vmx
,
1972 unsigned long entry
, unsigned long exit
,
1973 unsigned long guest_val_vmcs
, unsigned long host_val_vmcs
,
1974 u64 guest_val
, u64 host_val
)
1976 vmcs_write64(guest_val_vmcs
, guest_val
);
1977 vmcs_write64(host_val_vmcs
, host_val
);
1978 vm_entry_controls_setbit(vmx
, entry
);
1979 vm_exit_controls_setbit(vmx
, exit
);
1982 static void add_atomic_switch_msr(struct vcpu_vmx
*vmx
, unsigned msr
,
1983 u64 guest_val
, u64 host_val
)
1986 struct msr_autoload
*m
= &vmx
->msr_autoload
;
1990 if (cpu_has_load_ia32_efer
) {
1991 add_atomic_switch_msr_special(vmx
,
1992 VM_ENTRY_LOAD_IA32_EFER
,
1993 VM_EXIT_LOAD_IA32_EFER
,
1996 guest_val
, host_val
);
2000 case MSR_CORE_PERF_GLOBAL_CTRL
:
2001 if (cpu_has_load_perf_global_ctrl
) {
2002 add_atomic_switch_msr_special(vmx
,
2003 VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL
,
2004 VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL
,
2005 GUEST_IA32_PERF_GLOBAL_CTRL
,
2006 HOST_IA32_PERF_GLOBAL_CTRL
,
2007 guest_val
, host_val
);
2011 case MSR_IA32_PEBS_ENABLE
:
2012 /* PEBS needs a quiescent period after being disabled (to write
2013 * a record). Disabling PEBS through VMX MSR swapping doesn't
2014 * provide that period, so a CPU could write host's record into
2017 wrmsrl(MSR_IA32_PEBS_ENABLE
, 0);
2020 for (i
= 0; i
< m
->nr
; ++i
)
2021 if (m
->guest
[i
].index
== msr
)
2024 if (i
== NR_AUTOLOAD_MSRS
) {
2025 printk_once(KERN_WARNING
"Not enough msr switch entries. "
2026 "Can't add msr %x\n", msr
);
2028 } else if (i
== m
->nr
) {
2030 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT
, m
->nr
);
2031 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT
, m
->nr
);
2034 m
->guest
[i
].index
= msr
;
2035 m
->guest
[i
].value
= guest_val
;
2036 m
->host
[i
].index
= msr
;
2037 m
->host
[i
].value
= host_val
;
2040 static bool update_transition_efer(struct vcpu_vmx
*vmx
, int efer_offset
)
2042 u64 guest_efer
= vmx
->vcpu
.arch
.efer
;
2043 u64 ignore_bits
= 0;
2047 * NX is needed to handle CR0.WP=1, CR4.SMEP=1. Testing
2048 * host CPUID is more efficient than testing guest CPUID
2049 * or CR4. Host SMEP is anyway a requirement for guest SMEP.
2051 if (boot_cpu_has(X86_FEATURE_SMEP
))
2052 guest_efer
|= EFER_NX
;
2053 else if (!(guest_efer
& EFER_NX
))
2054 ignore_bits
|= EFER_NX
;
2058 * LMA and LME handled by hardware; SCE meaningless outside long mode.
2060 ignore_bits
|= EFER_SCE
;
2061 #ifdef CONFIG_X86_64
2062 ignore_bits
|= EFER_LMA
| EFER_LME
;
2063 /* SCE is meaningful only in long mode on Intel */
2064 if (guest_efer
& EFER_LMA
)
2065 ignore_bits
&= ~(u64
)EFER_SCE
;
2068 clear_atomic_switch_msr(vmx
, MSR_EFER
);
2071 * On EPT, we can't emulate NX, so we must switch EFER atomically.
2072 * On CPUs that support "load IA32_EFER", always switch EFER
2073 * atomically, since it's faster than switching it manually.
2075 if (cpu_has_load_ia32_efer
||
2076 (enable_ept
&& ((vmx
->vcpu
.arch
.efer
^ host_efer
) & EFER_NX
))) {
2077 if (!(guest_efer
& EFER_LMA
))
2078 guest_efer
&= ~EFER_LME
;
2079 if (guest_efer
!= host_efer
)
2080 add_atomic_switch_msr(vmx
, MSR_EFER
,
2081 guest_efer
, host_efer
);
2084 guest_efer
&= ~ignore_bits
;
2085 guest_efer
|= host_efer
& ignore_bits
;
2087 vmx
->guest_msrs
[efer_offset
].data
= guest_efer
;
2088 vmx
->guest_msrs
[efer_offset
].mask
= ~ignore_bits
;
2094 #ifdef CONFIG_X86_32
2096 * On 32-bit kernels, VM exits still load the FS and GS bases from the
2097 * VMCS rather than the segment table. KVM uses this helper to figure
2098 * out the current bases to poke them into the VMCS before entry.
2100 static unsigned long segment_base(u16 selector
)
2102 struct desc_struct
*table
;
2105 if (!(selector
& ~SEGMENT_RPL_MASK
))
2108 table
= get_current_gdt_ro();
2110 if ((selector
& SEGMENT_TI_MASK
) == SEGMENT_LDT
) {
2111 u16 ldt_selector
= kvm_read_ldt();
2113 if (!(ldt_selector
& ~SEGMENT_RPL_MASK
))
2116 table
= (struct desc_struct
*)segment_base(ldt_selector
);
2118 v
= get_desc_base(&table
[selector
>> 3]);
2123 static void vmx_save_host_state(struct kvm_vcpu
*vcpu
)
2125 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
2128 if (vmx
->host_state
.loaded
)
2131 vmx
->host_state
.loaded
= 1;
2133 * Set host fs and gs selectors. Unfortunately, 22.2.3 does not
2134 * allow segment selectors with cpl > 0 or ti == 1.
2136 vmx
->host_state
.ldt_sel
= kvm_read_ldt();
2137 vmx
->host_state
.gs_ldt_reload_needed
= vmx
->host_state
.ldt_sel
;
2138 savesegment(fs
, vmx
->host_state
.fs_sel
);
2139 if (!(vmx
->host_state
.fs_sel
& 7)) {
2140 vmcs_write16(HOST_FS_SELECTOR
, vmx
->host_state
.fs_sel
);
2141 vmx
->host_state
.fs_reload_needed
= 0;
2143 vmcs_write16(HOST_FS_SELECTOR
, 0);
2144 vmx
->host_state
.fs_reload_needed
= 1;
2146 savesegment(gs
, vmx
->host_state
.gs_sel
);
2147 if (!(vmx
->host_state
.gs_sel
& 7))
2148 vmcs_write16(HOST_GS_SELECTOR
, vmx
->host_state
.gs_sel
);
2150 vmcs_write16(HOST_GS_SELECTOR
, 0);
2151 vmx
->host_state
.gs_ldt_reload_needed
= 1;
2154 #ifdef CONFIG_X86_64
2155 savesegment(ds
, vmx
->host_state
.ds_sel
);
2156 savesegment(es
, vmx
->host_state
.es_sel
);
2159 #ifdef CONFIG_X86_64
2160 vmcs_writel(HOST_FS_BASE
, read_msr(MSR_FS_BASE
));
2161 vmcs_writel(HOST_GS_BASE
, read_msr(MSR_GS_BASE
));
2163 vmcs_writel(HOST_FS_BASE
, segment_base(vmx
->host_state
.fs_sel
));
2164 vmcs_writel(HOST_GS_BASE
, segment_base(vmx
->host_state
.gs_sel
));
2167 #ifdef CONFIG_X86_64
2168 rdmsrl(MSR_KERNEL_GS_BASE
, vmx
->msr_host_kernel_gs_base
);
2169 if (is_long_mode(&vmx
->vcpu
))
2170 wrmsrl(MSR_KERNEL_GS_BASE
, vmx
->msr_guest_kernel_gs_base
);
2172 if (boot_cpu_has(X86_FEATURE_MPX
))
2173 rdmsrl(MSR_IA32_BNDCFGS
, vmx
->host_state
.msr_host_bndcfgs
);
2174 for (i
= 0; i
< vmx
->save_nmsrs
; ++i
)
2175 kvm_set_shared_msr(vmx
->guest_msrs
[i
].index
,
2176 vmx
->guest_msrs
[i
].data
,
2177 vmx
->guest_msrs
[i
].mask
);
2180 static void __vmx_load_host_state(struct vcpu_vmx
*vmx
)
2182 if (!vmx
->host_state
.loaded
)
2185 ++vmx
->vcpu
.stat
.host_state_reload
;
2186 vmx
->host_state
.loaded
= 0;
2187 #ifdef CONFIG_X86_64
2188 if (is_long_mode(&vmx
->vcpu
))
2189 rdmsrl(MSR_KERNEL_GS_BASE
, vmx
->msr_guest_kernel_gs_base
);
2191 if (vmx
->host_state
.gs_ldt_reload_needed
) {
2192 kvm_load_ldt(vmx
->host_state
.ldt_sel
);
2193 #ifdef CONFIG_X86_64
2194 load_gs_index(vmx
->host_state
.gs_sel
);
2196 loadsegment(gs
, vmx
->host_state
.gs_sel
);
2199 if (vmx
->host_state
.fs_reload_needed
)
2200 loadsegment(fs
, vmx
->host_state
.fs_sel
);
2201 #ifdef CONFIG_X86_64
2202 if (unlikely(vmx
->host_state
.ds_sel
| vmx
->host_state
.es_sel
)) {
2203 loadsegment(ds
, vmx
->host_state
.ds_sel
);
2204 loadsegment(es
, vmx
->host_state
.es_sel
);
2207 invalidate_tss_limit();
2208 #ifdef CONFIG_X86_64
2209 wrmsrl(MSR_KERNEL_GS_BASE
, vmx
->msr_host_kernel_gs_base
);
2211 if (vmx
->host_state
.msr_host_bndcfgs
)
2212 wrmsrl(MSR_IA32_BNDCFGS
, vmx
->host_state
.msr_host_bndcfgs
);
2213 load_fixmap_gdt(raw_smp_processor_id());
2216 static void vmx_load_host_state(struct vcpu_vmx
*vmx
)
2219 __vmx_load_host_state(vmx
);
2223 static void vmx_vcpu_pi_load(struct kvm_vcpu
*vcpu
, int cpu
)
2225 struct pi_desc
*pi_desc
= vcpu_to_pi_desc(vcpu
);
2226 struct pi_desc old
, new;
2230 * In case of hot-plug or hot-unplug, we may have to undo
2231 * vmx_vcpu_pi_put even if there is no assigned device. And we
2232 * always keep PI.NDST up to date for simplicity: it makes the
2233 * code easier, and CPU migration is not a fast path.
2235 if (!pi_test_sn(pi_desc
) && vcpu
->cpu
== cpu
)
2239 * First handle the simple case where no cmpxchg is necessary; just
2240 * allow posting non-urgent interrupts.
2242 * If the 'nv' field is POSTED_INTR_WAKEUP_VECTOR, do not change
2243 * PI.NDST: pi_post_block will do it for us and the wakeup_handler
2244 * expects the VCPU to be on the blocked_vcpu_list that matches
2247 if (pi_desc
->nv
== POSTED_INTR_WAKEUP_VECTOR
||
2249 pi_clear_sn(pi_desc
);
2253 /* The full case. */
2255 old
.control
= new.control
= pi_desc
->control
;
2257 dest
= cpu_physical_id(cpu
);
2259 if (x2apic_enabled())
2262 new.ndst
= (dest
<< 8) & 0xFF00;
2265 } while (cmpxchg64(&pi_desc
->control
, old
.control
,
2266 new.control
) != old
.control
);
2269 static void decache_tsc_multiplier(struct vcpu_vmx
*vmx
)
2271 vmx
->current_tsc_ratio
= vmx
->vcpu
.arch
.tsc_scaling_ratio
;
2272 vmcs_write64(TSC_MULTIPLIER
, vmx
->current_tsc_ratio
);
2276 * Switches to specified vcpu, until a matching vcpu_put(), but assumes
2277 * vcpu mutex is already taken.
2279 static void vmx_vcpu_load(struct kvm_vcpu
*vcpu
, int cpu
)
2281 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
2282 bool already_loaded
= vmx
->loaded_vmcs
->cpu
== cpu
;
2284 if (!already_loaded
) {
2285 loaded_vmcs_clear(vmx
->loaded_vmcs
);
2286 local_irq_disable();
2287 crash_disable_local_vmclear(cpu
);
2290 * Read loaded_vmcs->cpu should be before fetching
2291 * loaded_vmcs->loaded_vmcss_on_cpu_link.
2292 * See the comments in __loaded_vmcs_clear().
2296 list_add(&vmx
->loaded_vmcs
->loaded_vmcss_on_cpu_link
,
2297 &per_cpu(loaded_vmcss_on_cpu
, cpu
));
2298 crash_enable_local_vmclear(cpu
);
2302 if (per_cpu(current_vmcs
, cpu
) != vmx
->loaded_vmcs
->vmcs
) {
2303 per_cpu(current_vmcs
, cpu
) = vmx
->loaded_vmcs
->vmcs
;
2304 vmcs_load(vmx
->loaded_vmcs
->vmcs
);
2305 indirect_branch_prediction_barrier();
2308 if (!already_loaded
) {
2309 void *gdt
= get_current_gdt_ro();
2310 unsigned long sysenter_esp
;
2312 kvm_make_request(KVM_REQ_TLB_FLUSH
, vcpu
);
2315 * Linux uses per-cpu TSS and GDT, so set these when switching
2316 * processors. See 22.2.4.
2318 vmcs_writel(HOST_TR_BASE
,
2319 (unsigned long)&get_cpu_entry_area(cpu
)->tss
.x86_tss
);
2320 vmcs_writel(HOST_GDTR_BASE
, (unsigned long)gdt
); /* 22.2.4 */
2323 * VM exits change the host TR limit to 0x67 after a VM
2324 * exit. This is okay, since 0x67 covers everything except
2325 * the IO bitmap and have have code to handle the IO bitmap
2326 * being lost after a VM exit.
2328 BUILD_BUG_ON(IO_BITMAP_OFFSET
- 1 != 0x67);
2330 rdmsrl(MSR_IA32_SYSENTER_ESP
, sysenter_esp
);
2331 vmcs_writel(HOST_IA32_SYSENTER_ESP
, sysenter_esp
); /* 22.2.3 */
2333 vmx
->loaded_vmcs
->cpu
= cpu
;
2336 /* Setup TSC multiplier */
2337 if (kvm_has_tsc_control
&&
2338 vmx
->current_tsc_ratio
!= vcpu
->arch
.tsc_scaling_ratio
)
2339 decache_tsc_multiplier(vmx
);
2341 vmx_vcpu_pi_load(vcpu
, cpu
);
2342 vmx
->host_pkru
= read_pkru();
2343 vmx
->host_debugctlmsr
= get_debugctlmsr();
2346 static void vmx_vcpu_pi_put(struct kvm_vcpu
*vcpu
)
2348 struct pi_desc
*pi_desc
= vcpu_to_pi_desc(vcpu
);
2350 if (!kvm_arch_has_assigned_device(vcpu
->kvm
) ||
2351 !irq_remapping_cap(IRQ_POSTING_CAP
) ||
2352 !kvm_vcpu_apicv_active(vcpu
))
2355 /* Set SN when the vCPU is preempted */
2356 if (vcpu
->preempted
)
2360 static void vmx_vcpu_put(struct kvm_vcpu
*vcpu
)
2362 vmx_vcpu_pi_put(vcpu
);
2364 __vmx_load_host_state(to_vmx(vcpu
));
2367 static bool emulation_required(struct kvm_vcpu
*vcpu
)
2369 return emulate_invalid_guest_state
&& !guest_state_valid(vcpu
);
2372 static void vmx_decache_cr0_guest_bits(struct kvm_vcpu
*vcpu
);
2375 * Return the cr0 value that a nested guest would read. This is a combination
2376 * of the real cr0 used to run the guest (guest_cr0), and the bits shadowed by
2377 * its hypervisor (cr0_read_shadow).
2379 static inline unsigned long nested_read_cr0(struct vmcs12
*fields
)
2381 return (fields
->guest_cr0
& ~fields
->cr0_guest_host_mask
) |
2382 (fields
->cr0_read_shadow
& fields
->cr0_guest_host_mask
);
2384 static inline unsigned long nested_read_cr4(struct vmcs12
*fields
)
2386 return (fields
->guest_cr4
& ~fields
->cr4_guest_host_mask
) |
2387 (fields
->cr4_read_shadow
& fields
->cr4_guest_host_mask
);
2390 static unsigned long vmx_get_rflags(struct kvm_vcpu
*vcpu
)
2392 unsigned long rflags
, save_rflags
;
2394 if (!test_bit(VCPU_EXREG_RFLAGS
, (ulong
*)&vcpu
->arch
.regs_avail
)) {
2395 __set_bit(VCPU_EXREG_RFLAGS
, (ulong
*)&vcpu
->arch
.regs_avail
);
2396 rflags
= vmcs_readl(GUEST_RFLAGS
);
2397 if (to_vmx(vcpu
)->rmode
.vm86_active
) {
2398 rflags
&= RMODE_GUEST_OWNED_EFLAGS_BITS
;
2399 save_rflags
= to_vmx(vcpu
)->rmode
.save_rflags
;
2400 rflags
|= save_rflags
& ~RMODE_GUEST_OWNED_EFLAGS_BITS
;
2402 to_vmx(vcpu
)->rflags
= rflags
;
2404 return to_vmx(vcpu
)->rflags
;
2407 static void vmx_set_rflags(struct kvm_vcpu
*vcpu
, unsigned long rflags
)
2409 unsigned long old_rflags
= vmx_get_rflags(vcpu
);
2411 __set_bit(VCPU_EXREG_RFLAGS
, (ulong
*)&vcpu
->arch
.regs_avail
);
2412 to_vmx(vcpu
)->rflags
= rflags
;
2413 if (to_vmx(vcpu
)->rmode
.vm86_active
) {
2414 to_vmx(vcpu
)->rmode
.save_rflags
= rflags
;
2415 rflags
|= X86_EFLAGS_IOPL
| X86_EFLAGS_VM
;
2417 vmcs_writel(GUEST_RFLAGS
, rflags
);
2419 if ((old_rflags
^ to_vmx(vcpu
)->rflags
) & X86_EFLAGS_VM
)
2420 to_vmx(vcpu
)->emulation_required
= emulation_required(vcpu
);
2423 static u32
vmx_get_interrupt_shadow(struct kvm_vcpu
*vcpu
)
2425 u32 interruptibility
= vmcs_read32(GUEST_INTERRUPTIBILITY_INFO
);
2428 if (interruptibility
& GUEST_INTR_STATE_STI
)
2429 ret
|= KVM_X86_SHADOW_INT_STI
;
2430 if (interruptibility
& GUEST_INTR_STATE_MOV_SS
)
2431 ret
|= KVM_X86_SHADOW_INT_MOV_SS
;
2436 static void vmx_set_interrupt_shadow(struct kvm_vcpu
*vcpu
, int mask
)
2438 u32 interruptibility_old
= vmcs_read32(GUEST_INTERRUPTIBILITY_INFO
);
2439 u32 interruptibility
= interruptibility_old
;
2441 interruptibility
&= ~(GUEST_INTR_STATE_STI
| GUEST_INTR_STATE_MOV_SS
);
2443 if (mask
& KVM_X86_SHADOW_INT_MOV_SS
)
2444 interruptibility
|= GUEST_INTR_STATE_MOV_SS
;
2445 else if (mask
& KVM_X86_SHADOW_INT_STI
)
2446 interruptibility
|= GUEST_INTR_STATE_STI
;
2448 if ((interruptibility
!= interruptibility_old
))
2449 vmcs_write32(GUEST_INTERRUPTIBILITY_INFO
, interruptibility
);
2452 static void skip_emulated_instruction(struct kvm_vcpu
*vcpu
)
2456 rip
= kvm_rip_read(vcpu
);
2457 rip
+= vmcs_read32(VM_EXIT_INSTRUCTION_LEN
);
2458 kvm_rip_write(vcpu
, rip
);
2460 /* skipping an emulated instruction also counts */
2461 vmx_set_interrupt_shadow(vcpu
, 0);
2464 static void nested_vmx_inject_exception_vmexit(struct kvm_vcpu
*vcpu
,
2465 unsigned long exit_qual
)
2467 struct vmcs12
*vmcs12
= get_vmcs12(vcpu
);
2468 unsigned int nr
= vcpu
->arch
.exception
.nr
;
2469 u32 intr_info
= nr
| INTR_INFO_VALID_MASK
;
2471 if (vcpu
->arch
.exception
.has_error_code
) {
2472 vmcs12
->vm_exit_intr_error_code
= vcpu
->arch
.exception
.error_code
;
2473 intr_info
|= INTR_INFO_DELIVER_CODE_MASK
;
2476 if (kvm_exception_is_soft(nr
))
2477 intr_info
|= INTR_TYPE_SOFT_EXCEPTION
;
2479 intr_info
|= INTR_TYPE_HARD_EXCEPTION
;
2481 if (!(vmcs12
->idt_vectoring_info_field
& VECTORING_INFO_VALID_MASK
) &&
2482 vmx_get_nmi_mask(vcpu
))
2483 intr_info
|= INTR_INFO_UNBLOCK_NMI
;
2485 nested_vmx_vmexit(vcpu
, EXIT_REASON_EXCEPTION_NMI
, intr_info
, exit_qual
);
2489 * KVM wants to inject page-faults which it got to the guest. This function
2490 * checks whether in a nested guest, we need to inject them to L1 or L2.
2492 static int nested_vmx_check_exception(struct kvm_vcpu
*vcpu
, unsigned long *exit_qual
)
2494 struct vmcs12
*vmcs12
= get_vmcs12(vcpu
);
2495 unsigned int nr
= vcpu
->arch
.exception
.nr
;
2497 if (nr
== PF_VECTOR
) {
2498 if (vcpu
->arch
.exception
.nested_apf
) {
2499 *exit_qual
= vcpu
->arch
.apf
.nested_apf_token
;
2503 * FIXME: we must not write CR2 when L1 intercepts an L2 #PF exception.
2504 * The fix is to add the ancillary datum (CR2 or DR6) to structs
2505 * kvm_queued_exception and kvm_vcpu_events, so that CR2 and DR6
2506 * can be written only when inject_pending_event runs. This should be
2507 * conditional on a new capability---if the capability is disabled,
2508 * kvm_multiple_exception would write the ancillary information to
2509 * CR2 or DR6, for backwards ABI-compatibility.
2511 if (nested_vmx_is_page_fault_vmexit(vmcs12
,
2512 vcpu
->arch
.exception
.error_code
)) {
2513 *exit_qual
= vcpu
->arch
.cr2
;
2517 if (vmcs12
->exception_bitmap
& (1u << nr
)) {
2518 if (nr
== DB_VECTOR
)
2519 *exit_qual
= vcpu
->arch
.dr6
;
2529 static void vmx_queue_exception(struct kvm_vcpu
*vcpu
)
2531 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
2532 unsigned nr
= vcpu
->arch
.exception
.nr
;
2533 bool has_error_code
= vcpu
->arch
.exception
.has_error_code
;
2534 u32 error_code
= vcpu
->arch
.exception
.error_code
;
2535 u32 intr_info
= nr
| INTR_INFO_VALID_MASK
;
2537 if (has_error_code
) {
2538 vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE
, error_code
);
2539 intr_info
|= INTR_INFO_DELIVER_CODE_MASK
;
2542 if (vmx
->rmode
.vm86_active
) {
2544 if (kvm_exception_is_soft(nr
))
2545 inc_eip
= vcpu
->arch
.event_exit_inst_len
;
2546 if (kvm_inject_realmode_interrupt(vcpu
, nr
, inc_eip
) != EMULATE_DONE
)
2547 kvm_make_request(KVM_REQ_TRIPLE_FAULT
, vcpu
);
2551 if (kvm_exception_is_soft(nr
)) {
2552 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN
,
2553 vmx
->vcpu
.arch
.event_exit_inst_len
);
2554 intr_info
|= INTR_TYPE_SOFT_EXCEPTION
;
2556 intr_info
|= INTR_TYPE_HARD_EXCEPTION
;
2558 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD
, intr_info
);
2561 static bool vmx_rdtscp_supported(void)
2563 return cpu_has_vmx_rdtscp();
2566 static bool vmx_invpcid_supported(void)
2568 return cpu_has_vmx_invpcid() && enable_ept
;
2572 * Swap MSR entry in host/guest MSR entry array.
2574 static void move_msr_up(struct vcpu_vmx
*vmx
, int from
, int to
)
2576 struct shared_msr_entry tmp
;
2578 tmp
= vmx
->guest_msrs
[to
];
2579 vmx
->guest_msrs
[to
] = vmx
->guest_msrs
[from
];
2580 vmx
->guest_msrs
[from
] = tmp
;
2584 * Set up the vmcs to automatically save and restore system
2585 * msrs. Don't touch the 64-bit msrs if the guest is in legacy
2586 * mode, as fiddling with msrs is very expensive.
2588 static void setup_msrs(struct vcpu_vmx
*vmx
)
2590 int save_nmsrs
, index
;
2593 #ifdef CONFIG_X86_64
2594 if (is_long_mode(&vmx
->vcpu
)) {
2595 index
= __find_msr_index(vmx
, MSR_SYSCALL_MASK
);
2597 move_msr_up(vmx
, index
, save_nmsrs
++);
2598 index
= __find_msr_index(vmx
, MSR_LSTAR
);
2600 move_msr_up(vmx
, index
, save_nmsrs
++);
2601 index
= __find_msr_index(vmx
, MSR_CSTAR
);
2603 move_msr_up(vmx
, index
, save_nmsrs
++);
2604 index
= __find_msr_index(vmx
, MSR_TSC_AUX
);
2605 if (index
>= 0 && guest_cpuid_has(&vmx
->vcpu
, X86_FEATURE_RDTSCP
))
2606 move_msr_up(vmx
, index
, save_nmsrs
++);
2608 * MSR_STAR is only needed on long mode guests, and only
2609 * if efer.sce is enabled.
2611 index
= __find_msr_index(vmx
, MSR_STAR
);
2612 if ((index
>= 0) && (vmx
->vcpu
.arch
.efer
& EFER_SCE
))
2613 move_msr_up(vmx
, index
, save_nmsrs
++);
2616 index
= __find_msr_index(vmx
, MSR_EFER
);
2617 if (index
>= 0 && update_transition_efer(vmx
, index
))
2618 move_msr_up(vmx
, index
, save_nmsrs
++);
2620 vmx
->save_nmsrs
= save_nmsrs
;
2622 if (cpu_has_vmx_msr_bitmap())
2623 vmx_update_msr_bitmap(&vmx
->vcpu
);
2627 * reads and returns guest's timestamp counter "register"
2628 * guest_tsc = (host_tsc * tsc multiplier) >> 48 + tsc_offset
2629 * -- Intel TSC Scaling for Virtualization White Paper, sec 1.3
2631 static u64
guest_read_tsc(struct kvm_vcpu
*vcpu
)
2633 u64 host_tsc
, tsc_offset
;
2636 tsc_offset
= vmcs_read64(TSC_OFFSET
);
2637 return kvm_scale_tsc(vcpu
, host_tsc
) + tsc_offset
;
2641 * writes 'offset' into guest's timestamp counter offset register
2643 static void vmx_write_tsc_offset(struct kvm_vcpu
*vcpu
, u64 offset
)
2645 if (is_guest_mode(vcpu
)) {
2647 * We're here if L1 chose not to trap WRMSR to TSC. According
2648 * to the spec, this should set L1's TSC; The offset that L1
2649 * set for L2 remains unchanged, and still needs to be added
2650 * to the newly set TSC to get L2's TSC.
2652 struct vmcs12
*vmcs12
;
2653 /* recalculate vmcs02.TSC_OFFSET: */
2654 vmcs12
= get_vmcs12(vcpu
);
2655 vmcs_write64(TSC_OFFSET
, offset
+
2656 (nested_cpu_has(vmcs12
, CPU_BASED_USE_TSC_OFFSETING
) ?
2657 vmcs12
->tsc_offset
: 0));
2659 trace_kvm_write_tsc_offset(vcpu
->vcpu_id
,
2660 vmcs_read64(TSC_OFFSET
), offset
);
2661 vmcs_write64(TSC_OFFSET
, offset
);
2666 * nested_vmx_allowed() checks whether a guest should be allowed to use VMX
2667 * instructions and MSRs (i.e., nested VMX). Nested VMX is disabled for
2668 * all guests if the "nested" module option is off, and can also be disabled
2669 * for a single guest by disabling its VMX cpuid bit.
2671 static inline bool nested_vmx_allowed(struct kvm_vcpu
*vcpu
)
2673 return nested
&& guest_cpuid_has(vcpu
, X86_FEATURE_VMX
);
2677 * nested_vmx_setup_ctls_msrs() sets up variables containing the values to be
2678 * returned for the various VMX controls MSRs when nested VMX is enabled.
2679 * The same values should also be used to verify that vmcs12 control fields are
2680 * valid during nested entry from L1 to L2.
2681 * Each of these control msrs has a low and high 32-bit half: A low bit is on
2682 * if the corresponding bit in the (32-bit) control field *must* be on, and a
2683 * bit in the high half is on if the corresponding bit in the control field
2684 * may be on. See also vmx_control_verify().
2686 static void nested_vmx_setup_ctls_msrs(struct vcpu_vmx
*vmx
)
2689 * Note that as a general rule, the high half of the MSRs (bits in
2690 * the control fields which may be 1) should be initialized by the
2691 * intersection of the underlying hardware's MSR (i.e., features which
2692 * can be supported) and the list of features we want to expose -
2693 * because they are known to be properly supported in our code.
2694 * Also, usually, the low half of the MSRs (bits which must be 1) can
2695 * be set to 0, meaning that L1 may turn off any of these bits. The
2696 * reason is that if one of these bits is necessary, it will appear
2697 * in vmcs01 and prepare_vmcs02, when it bitwise-or's the control
2698 * fields of vmcs01 and vmcs02, will turn these bits off - and
2699 * nested_vmx_exit_reflected() will not pass related exits to L1.
2700 * These rules have exceptions below.
2703 /* pin-based controls */
2704 rdmsr(MSR_IA32_VMX_PINBASED_CTLS
,
2705 vmx
->nested
.nested_vmx_pinbased_ctls_low
,
2706 vmx
->nested
.nested_vmx_pinbased_ctls_high
);
2707 vmx
->nested
.nested_vmx_pinbased_ctls_low
|=
2708 PIN_BASED_ALWAYSON_WITHOUT_TRUE_MSR
;
2709 vmx
->nested
.nested_vmx_pinbased_ctls_high
&=
2710 PIN_BASED_EXT_INTR_MASK
|
2711 PIN_BASED_NMI_EXITING
|
2712 PIN_BASED_VIRTUAL_NMIS
;
2713 vmx
->nested
.nested_vmx_pinbased_ctls_high
|=
2714 PIN_BASED_ALWAYSON_WITHOUT_TRUE_MSR
|
2715 PIN_BASED_VMX_PREEMPTION_TIMER
;
2716 if (kvm_vcpu_apicv_active(&vmx
->vcpu
))
2717 vmx
->nested
.nested_vmx_pinbased_ctls_high
|=
2718 PIN_BASED_POSTED_INTR
;
2721 rdmsr(MSR_IA32_VMX_EXIT_CTLS
,
2722 vmx
->nested
.nested_vmx_exit_ctls_low
,
2723 vmx
->nested
.nested_vmx_exit_ctls_high
);
2724 vmx
->nested
.nested_vmx_exit_ctls_low
=
2725 VM_EXIT_ALWAYSON_WITHOUT_TRUE_MSR
;
2727 vmx
->nested
.nested_vmx_exit_ctls_high
&=
2728 #ifdef CONFIG_X86_64
2729 VM_EXIT_HOST_ADDR_SPACE_SIZE
|
2731 VM_EXIT_LOAD_IA32_PAT
| VM_EXIT_SAVE_IA32_PAT
;
2732 vmx
->nested
.nested_vmx_exit_ctls_high
|=
2733 VM_EXIT_ALWAYSON_WITHOUT_TRUE_MSR
|
2734 VM_EXIT_LOAD_IA32_EFER
| VM_EXIT_SAVE_IA32_EFER
|
2735 VM_EXIT_SAVE_VMX_PREEMPTION_TIMER
| VM_EXIT_ACK_INTR_ON_EXIT
;
2737 if (kvm_mpx_supported())
2738 vmx
->nested
.nested_vmx_exit_ctls_high
|= VM_EXIT_CLEAR_BNDCFGS
;
2740 /* We support free control of debug control saving. */
2741 vmx
->nested
.nested_vmx_exit_ctls_low
&= ~VM_EXIT_SAVE_DEBUG_CONTROLS
;
2743 /* entry controls */
2744 rdmsr(MSR_IA32_VMX_ENTRY_CTLS
,
2745 vmx
->nested
.nested_vmx_entry_ctls_low
,
2746 vmx
->nested
.nested_vmx_entry_ctls_high
);
2747 vmx
->nested
.nested_vmx_entry_ctls_low
=
2748 VM_ENTRY_ALWAYSON_WITHOUT_TRUE_MSR
;
2749 vmx
->nested
.nested_vmx_entry_ctls_high
&=
2750 #ifdef CONFIG_X86_64
2751 VM_ENTRY_IA32E_MODE
|
2753 VM_ENTRY_LOAD_IA32_PAT
;
2754 vmx
->nested
.nested_vmx_entry_ctls_high
|=
2755 (VM_ENTRY_ALWAYSON_WITHOUT_TRUE_MSR
| VM_ENTRY_LOAD_IA32_EFER
);
2756 if (kvm_mpx_supported())
2757 vmx
->nested
.nested_vmx_entry_ctls_high
|= VM_ENTRY_LOAD_BNDCFGS
;
2759 /* We support free control of debug control loading. */
2760 vmx
->nested
.nested_vmx_entry_ctls_low
&= ~VM_ENTRY_LOAD_DEBUG_CONTROLS
;
2762 /* cpu-based controls */
2763 rdmsr(MSR_IA32_VMX_PROCBASED_CTLS
,
2764 vmx
->nested
.nested_vmx_procbased_ctls_low
,
2765 vmx
->nested
.nested_vmx_procbased_ctls_high
);
2766 vmx
->nested
.nested_vmx_procbased_ctls_low
=
2767 CPU_BASED_ALWAYSON_WITHOUT_TRUE_MSR
;
2768 vmx
->nested
.nested_vmx_procbased_ctls_high
&=
2769 CPU_BASED_VIRTUAL_INTR_PENDING
|
2770 CPU_BASED_VIRTUAL_NMI_PENDING
| CPU_BASED_USE_TSC_OFFSETING
|
2771 CPU_BASED_HLT_EXITING
| CPU_BASED_INVLPG_EXITING
|
2772 CPU_BASED_MWAIT_EXITING
| CPU_BASED_CR3_LOAD_EXITING
|
2773 CPU_BASED_CR3_STORE_EXITING
|
2774 #ifdef CONFIG_X86_64
2775 CPU_BASED_CR8_LOAD_EXITING
| CPU_BASED_CR8_STORE_EXITING
|
2777 CPU_BASED_MOV_DR_EXITING
| CPU_BASED_UNCOND_IO_EXITING
|
2778 CPU_BASED_USE_IO_BITMAPS
| CPU_BASED_MONITOR_TRAP_FLAG
|
2779 CPU_BASED_MONITOR_EXITING
| CPU_BASED_RDPMC_EXITING
|
2780 CPU_BASED_RDTSC_EXITING
| CPU_BASED_PAUSE_EXITING
|
2781 CPU_BASED_TPR_SHADOW
| CPU_BASED_ACTIVATE_SECONDARY_CONTROLS
;
2783 * We can allow some features even when not supported by the
2784 * hardware. For example, L1 can specify an MSR bitmap - and we
2785 * can use it to avoid exits to L1 - even when L0 runs L2
2786 * without MSR bitmaps.
2788 vmx
->nested
.nested_vmx_procbased_ctls_high
|=
2789 CPU_BASED_ALWAYSON_WITHOUT_TRUE_MSR
|
2790 CPU_BASED_USE_MSR_BITMAPS
;
2792 /* We support free control of CR3 access interception. */
2793 vmx
->nested
.nested_vmx_procbased_ctls_low
&=
2794 ~(CPU_BASED_CR3_LOAD_EXITING
| CPU_BASED_CR3_STORE_EXITING
);
2797 * secondary cpu-based controls. Do not include those that
2798 * depend on CPUID bits, they are added later by vmx_cpuid_update.
2800 rdmsr(MSR_IA32_VMX_PROCBASED_CTLS2
,
2801 vmx
->nested
.nested_vmx_secondary_ctls_low
,
2802 vmx
->nested
.nested_vmx_secondary_ctls_high
);
2803 vmx
->nested
.nested_vmx_secondary_ctls_low
= 0;
2804 vmx
->nested
.nested_vmx_secondary_ctls_high
&=
2805 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES
|
2806 SECONDARY_EXEC_DESC
|
2807 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE
|
2808 SECONDARY_EXEC_APIC_REGISTER_VIRT
|
2809 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY
|
2810 SECONDARY_EXEC_WBINVD_EXITING
;
2813 /* nested EPT: emulate EPT also to L1 */
2814 vmx
->nested
.nested_vmx_secondary_ctls_high
|=
2815 SECONDARY_EXEC_ENABLE_EPT
;
2816 vmx
->nested
.nested_vmx_ept_caps
= VMX_EPT_PAGE_WALK_4_BIT
|
2817 VMX_EPTP_WB_BIT
| VMX_EPT_INVEPT_BIT
;
2818 if (cpu_has_vmx_ept_execute_only())
2819 vmx
->nested
.nested_vmx_ept_caps
|=
2820 VMX_EPT_EXECUTE_ONLY_BIT
;
2821 vmx
->nested
.nested_vmx_ept_caps
&= vmx_capability
.ept
;
2822 vmx
->nested
.nested_vmx_ept_caps
|= VMX_EPT_EXTENT_GLOBAL_BIT
|
2823 VMX_EPT_EXTENT_CONTEXT_BIT
| VMX_EPT_2MB_PAGE_BIT
|
2824 VMX_EPT_1GB_PAGE_BIT
;
2825 if (enable_ept_ad_bits
) {
2826 vmx
->nested
.nested_vmx_secondary_ctls_high
|=
2827 SECONDARY_EXEC_ENABLE_PML
;
2828 vmx
->nested
.nested_vmx_ept_caps
|= VMX_EPT_AD_BIT
;
2832 if (cpu_has_vmx_vmfunc()) {
2833 vmx
->nested
.nested_vmx_secondary_ctls_high
|=
2834 SECONDARY_EXEC_ENABLE_VMFUNC
;
2836 * Advertise EPTP switching unconditionally
2837 * since we emulate it
2840 vmx
->nested
.nested_vmx_vmfunc_controls
=
2841 VMX_VMFUNC_EPTP_SWITCHING
;
2845 * Old versions of KVM use the single-context version without
2846 * checking for support, so declare that it is supported even
2847 * though it is treated as global context. The alternative is
2848 * not failing the single-context invvpid, and it is worse.
2851 vmx
->nested
.nested_vmx_secondary_ctls_high
|=
2852 SECONDARY_EXEC_ENABLE_VPID
;
2853 vmx
->nested
.nested_vmx_vpid_caps
= VMX_VPID_INVVPID_BIT
|
2854 VMX_VPID_EXTENT_SUPPORTED_MASK
;
2857 if (enable_unrestricted_guest
)
2858 vmx
->nested
.nested_vmx_secondary_ctls_high
|=
2859 SECONDARY_EXEC_UNRESTRICTED_GUEST
;
2861 /* miscellaneous data */
2862 rdmsr(MSR_IA32_VMX_MISC
,
2863 vmx
->nested
.nested_vmx_misc_low
,
2864 vmx
->nested
.nested_vmx_misc_high
);
2865 vmx
->nested
.nested_vmx_misc_low
&= VMX_MISC_SAVE_EFER_LMA
;
2866 vmx
->nested
.nested_vmx_misc_low
|=
2867 VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE
|
2868 VMX_MISC_ACTIVITY_HLT
;
2869 vmx
->nested
.nested_vmx_misc_high
= 0;
2872 * This MSR reports some information about VMX support. We
2873 * should return information about the VMX we emulate for the
2874 * guest, and the VMCS structure we give it - not about the
2875 * VMX support of the underlying hardware.
2877 vmx
->nested
.nested_vmx_basic
=
2879 VMX_BASIC_TRUE_CTLS
|
2880 ((u64
)VMCS12_SIZE
<< VMX_BASIC_VMCS_SIZE_SHIFT
) |
2881 (VMX_BASIC_MEM_TYPE_WB
<< VMX_BASIC_MEM_TYPE_SHIFT
);
2883 if (cpu_has_vmx_basic_inout())
2884 vmx
->nested
.nested_vmx_basic
|= VMX_BASIC_INOUT
;
2887 * These MSRs specify bits which the guest must keep fixed on
2888 * while L1 is in VMXON mode (in L1's root mode, or running an L2).
2889 * We picked the standard core2 setting.
2891 #define VMXON_CR0_ALWAYSON (X86_CR0_PE | X86_CR0_PG | X86_CR0_NE)
2892 #define VMXON_CR4_ALWAYSON X86_CR4_VMXE
2893 vmx
->nested
.nested_vmx_cr0_fixed0
= VMXON_CR0_ALWAYSON
;
2894 vmx
->nested
.nested_vmx_cr4_fixed0
= VMXON_CR4_ALWAYSON
;
2896 /* These MSRs specify bits which the guest must keep fixed off. */
2897 rdmsrl(MSR_IA32_VMX_CR0_FIXED1
, vmx
->nested
.nested_vmx_cr0_fixed1
);
2898 rdmsrl(MSR_IA32_VMX_CR4_FIXED1
, vmx
->nested
.nested_vmx_cr4_fixed1
);
2900 /* highest index: VMX_PREEMPTION_TIMER_VALUE */
2901 vmx
->nested
.nested_vmx_vmcs_enum
= VMCS12_MAX_FIELD_INDEX
<< 1;
2905 * if fixed0[i] == 1: val[i] must be 1
2906 * if fixed1[i] == 0: val[i] must be 0
2908 static inline bool fixed_bits_valid(u64 val
, u64 fixed0
, u64 fixed1
)
2910 return ((val
& fixed1
) | fixed0
) == val
;
2913 static inline bool vmx_control_verify(u32 control
, u32 low
, u32 high
)
2915 return fixed_bits_valid(control
, low
, high
);
2918 static inline u64
vmx_control_msr(u32 low
, u32 high
)
2920 return low
| ((u64
)high
<< 32);
2923 static bool is_bitwise_subset(u64 superset
, u64 subset
, u64 mask
)
2928 return (superset
| subset
) == superset
;
2931 static int vmx_restore_vmx_basic(struct vcpu_vmx
*vmx
, u64 data
)
2933 const u64 feature_and_reserved
=
2934 /* feature (except bit 48; see below) */
2935 BIT_ULL(49) | BIT_ULL(54) | BIT_ULL(55) |
2937 BIT_ULL(31) | GENMASK_ULL(47, 45) | GENMASK_ULL(63, 56);
2938 u64 vmx_basic
= vmx
->nested
.nested_vmx_basic
;
2940 if (!is_bitwise_subset(vmx_basic
, data
, feature_and_reserved
))
2944 * KVM does not emulate a version of VMX that constrains physical
2945 * addresses of VMX structures (e.g. VMCS) to 32-bits.
2947 if (data
& BIT_ULL(48))
2950 if (vmx_basic_vmcs_revision_id(vmx_basic
) !=
2951 vmx_basic_vmcs_revision_id(data
))
2954 if (vmx_basic_vmcs_size(vmx_basic
) > vmx_basic_vmcs_size(data
))
2957 vmx
->nested
.nested_vmx_basic
= data
;
2962 vmx_restore_control_msr(struct vcpu_vmx
*vmx
, u32 msr_index
, u64 data
)
2967 switch (msr_index
) {
2968 case MSR_IA32_VMX_TRUE_PINBASED_CTLS
:
2969 lowp
= &vmx
->nested
.nested_vmx_pinbased_ctls_low
;
2970 highp
= &vmx
->nested
.nested_vmx_pinbased_ctls_high
;
2972 case MSR_IA32_VMX_TRUE_PROCBASED_CTLS
:
2973 lowp
= &vmx
->nested
.nested_vmx_procbased_ctls_low
;
2974 highp
= &vmx
->nested
.nested_vmx_procbased_ctls_high
;
2976 case MSR_IA32_VMX_TRUE_EXIT_CTLS
:
2977 lowp
= &vmx
->nested
.nested_vmx_exit_ctls_low
;
2978 highp
= &vmx
->nested
.nested_vmx_exit_ctls_high
;
2980 case MSR_IA32_VMX_TRUE_ENTRY_CTLS
:
2981 lowp
= &vmx
->nested
.nested_vmx_entry_ctls_low
;
2982 highp
= &vmx
->nested
.nested_vmx_entry_ctls_high
;
2984 case MSR_IA32_VMX_PROCBASED_CTLS2
:
2985 lowp
= &vmx
->nested
.nested_vmx_secondary_ctls_low
;
2986 highp
= &vmx
->nested
.nested_vmx_secondary_ctls_high
;
2992 supported
= vmx_control_msr(*lowp
, *highp
);
2994 /* Check must-be-1 bits are still 1. */
2995 if (!is_bitwise_subset(data
, supported
, GENMASK_ULL(31, 0)))
2998 /* Check must-be-0 bits are still 0. */
2999 if (!is_bitwise_subset(supported
, data
, GENMASK_ULL(63, 32)))
3003 *highp
= data
>> 32;
3007 static int vmx_restore_vmx_misc(struct vcpu_vmx
*vmx
, u64 data
)
3009 const u64 feature_and_reserved_bits
=
3011 BIT_ULL(5) | GENMASK_ULL(8, 6) | BIT_ULL(14) | BIT_ULL(15) |
3012 BIT_ULL(28) | BIT_ULL(29) | BIT_ULL(30) |
3014 GENMASK_ULL(13, 9) | BIT_ULL(31);
3017 vmx_misc
= vmx_control_msr(vmx
->nested
.nested_vmx_misc_low
,
3018 vmx
->nested
.nested_vmx_misc_high
);
3020 if (!is_bitwise_subset(vmx_misc
, data
, feature_and_reserved_bits
))
3023 if ((vmx
->nested
.nested_vmx_pinbased_ctls_high
&
3024 PIN_BASED_VMX_PREEMPTION_TIMER
) &&
3025 vmx_misc_preemption_timer_rate(data
) !=
3026 vmx_misc_preemption_timer_rate(vmx_misc
))
3029 if (vmx_misc_cr3_count(data
) > vmx_misc_cr3_count(vmx_misc
))
3032 if (vmx_misc_max_msr(data
) > vmx_misc_max_msr(vmx_misc
))
3035 if (vmx_misc_mseg_revid(data
) != vmx_misc_mseg_revid(vmx_misc
))
3038 vmx
->nested
.nested_vmx_misc_low
= data
;
3039 vmx
->nested
.nested_vmx_misc_high
= data
>> 32;
3043 static int vmx_restore_vmx_ept_vpid_cap(struct vcpu_vmx
*vmx
, u64 data
)
3045 u64 vmx_ept_vpid_cap
;
3047 vmx_ept_vpid_cap
= vmx_control_msr(vmx
->nested
.nested_vmx_ept_caps
,
3048 vmx
->nested
.nested_vmx_vpid_caps
);
3050 /* Every bit is either reserved or a feature bit. */
3051 if (!is_bitwise_subset(vmx_ept_vpid_cap
, data
, -1ULL))
3054 vmx
->nested
.nested_vmx_ept_caps
= data
;
3055 vmx
->nested
.nested_vmx_vpid_caps
= data
>> 32;
3059 static int vmx_restore_fixed0_msr(struct vcpu_vmx
*vmx
, u32 msr_index
, u64 data
)
3063 switch (msr_index
) {
3064 case MSR_IA32_VMX_CR0_FIXED0
:
3065 msr
= &vmx
->nested
.nested_vmx_cr0_fixed0
;
3067 case MSR_IA32_VMX_CR4_FIXED0
:
3068 msr
= &vmx
->nested
.nested_vmx_cr4_fixed0
;
3075 * 1 bits (which indicates bits which "must-be-1" during VMX operation)
3076 * must be 1 in the restored value.
3078 if (!is_bitwise_subset(data
, *msr
, -1ULL))
3086 * Called when userspace is restoring VMX MSRs.
3088 * Returns 0 on success, non-0 otherwise.
3090 static int vmx_set_vmx_msr(struct kvm_vcpu
*vcpu
, u32 msr_index
, u64 data
)
3092 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
3094 switch (msr_index
) {
3095 case MSR_IA32_VMX_BASIC
:
3096 return vmx_restore_vmx_basic(vmx
, data
);
3097 case MSR_IA32_VMX_PINBASED_CTLS
:
3098 case MSR_IA32_VMX_PROCBASED_CTLS
:
3099 case MSR_IA32_VMX_EXIT_CTLS
:
3100 case MSR_IA32_VMX_ENTRY_CTLS
:
3102 * The "non-true" VMX capability MSRs are generated from the
3103 * "true" MSRs, so we do not support restoring them directly.
3105 * If userspace wants to emulate VMX_BASIC[55]=0, userspace
3106 * should restore the "true" MSRs with the must-be-1 bits
3107 * set according to the SDM Vol 3. A.2 "RESERVED CONTROLS AND
3108 * DEFAULT SETTINGS".
3111 case MSR_IA32_VMX_TRUE_PINBASED_CTLS
:
3112 case MSR_IA32_VMX_TRUE_PROCBASED_CTLS
:
3113 case MSR_IA32_VMX_TRUE_EXIT_CTLS
:
3114 case MSR_IA32_VMX_TRUE_ENTRY_CTLS
:
3115 case MSR_IA32_VMX_PROCBASED_CTLS2
:
3116 return vmx_restore_control_msr(vmx
, msr_index
, data
);
3117 case MSR_IA32_VMX_MISC
:
3118 return vmx_restore_vmx_misc(vmx
, data
);
3119 case MSR_IA32_VMX_CR0_FIXED0
:
3120 case MSR_IA32_VMX_CR4_FIXED0
:
3121 return vmx_restore_fixed0_msr(vmx
, msr_index
, data
);
3122 case MSR_IA32_VMX_CR0_FIXED1
:
3123 case MSR_IA32_VMX_CR4_FIXED1
:
3125 * These MSRs are generated based on the vCPU's CPUID, so we
3126 * do not support restoring them directly.
3129 case MSR_IA32_VMX_EPT_VPID_CAP
:
3130 return vmx_restore_vmx_ept_vpid_cap(vmx
, data
);
3131 case MSR_IA32_VMX_VMCS_ENUM
:
3132 vmx
->nested
.nested_vmx_vmcs_enum
= data
;
3136 * The rest of the VMX capability MSRs do not support restore.
3142 /* Returns 0 on success, non-0 otherwise. */
3143 static int vmx_get_vmx_msr(struct kvm_vcpu
*vcpu
, u32 msr_index
, u64
*pdata
)
3145 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
3147 switch (msr_index
) {
3148 case MSR_IA32_VMX_BASIC
:
3149 *pdata
= vmx
->nested
.nested_vmx_basic
;
3151 case MSR_IA32_VMX_TRUE_PINBASED_CTLS
:
3152 case MSR_IA32_VMX_PINBASED_CTLS
:
3153 *pdata
= vmx_control_msr(
3154 vmx
->nested
.nested_vmx_pinbased_ctls_low
,
3155 vmx
->nested
.nested_vmx_pinbased_ctls_high
);
3156 if (msr_index
== MSR_IA32_VMX_PINBASED_CTLS
)
3157 *pdata
|= PIN_BASED_ALWAYSON_WITHOUT_TRUE_MSR
;
3159 case MSR_IA32_VMX_TRUE_PROCBASED_CTLS
:
3160 case MSR_IA32_VMX_PROCBASED_CTLS
:
3161 *pdata
= vmx_control_msr(
3162 vmx
->nested
.nested_vmx_procbased_ctls_low
,
3163 vmx
->nested
.nested_vmx_procbased_ctls_high
);
3164 if (msr_index
== MSR_IA32_VMX_PROCBASED_CTLS
)
3165 *pdata
|= CPU_BASED_ALWAYSON_WITHOUT_TRUE_MSR
;
3167 case MSR_IA32_VMX_TRUE_EXIT_CTLS
:
3168 case MSR_IA32_VMX_EXIT_CTLS
:
3169 *pdata
= vmx_control_msr(
3170 vmx
->nested
.nested_vmx_exit_ctls_low
,
3171 vmx
->nested
.nested_vmx_exit_ctls_high
);
3172 if (msr_index
== MSR_IA32_VMX_EXIT_CTLS
)
3173 *pdata
|= VM_EXIT_ALWAYSON_WITHOUT_TRUE_MSR
;
3175 case MSR_IA32_VMX_TRUE_ENTRY_CTLS
:
3176 case MSR_IA32_VMX_ENTRY_CTLS
:
3177 *pdata
= vmx_control_msr(
3178 vmx
->nested
.nested_vmx_entry_ctls_low
,
3179 vmx
->nested
.nested_vmx_entry_ctls_high
);
3180 if (msr_index
== MSR_IA32_VMX_ENTRY_CTLS
)
3181 *pdata
|= VM_ENTRY_ALWAYSON_WITHOUT_TRUE_MSR
;
3183 case MSR_IA32_VMX_MISC
:
3184 *pdata
= vmx_control_msr(
3185 vmx
->nested
.nested_vmx_misc_low
,
3186 vmx
->nested
.nested_vmx_misc_high
);
3188 case MSR_IA32_VMX_CR0_FIXED0
:
3189 *pdata
= vmx
->nested
.nested_vmx_cr0_fixed0
;
3191 case MSR_IA32_VMX_CR0_FIXED1
:
3192 *pdata
= vmx
->nested
.nested_vmx_cr0_fixed1
;
3194 case MSR_IA32_VMX_CR4_FIXED0
:
3195 *pdata
= vmx
->nested
.nested_vmx_cr4_fixed0
;
3197 case MSR_IA32_VMX_CR4_FIXED1
:
3198 *pdata
= vmx
->nested
.nested_vmx_cr4_fixed1
;
3200 case MSR_IA32_VMX_VMCS_ENUM
:
3201 *pdata
= vmx
->nested
.nested_vmx_vmcs_enum
;
3203 case MSR_IA32_VMX_PROCBASED_CTLS2
:
3204 *pdata
= vmx_control_msr(
3205 vmx
->nested
.nested_vmx_secondary_ctls_low
,
3206 vmx
->nested
.nested_vmx_secondary_ctls_high
);
3208 case MSR_IA32_VMX_EPT_VPID_CAP
:
3209 *pdata
= vmx
->nested
.nested_vmx_ept_caps
|
3210 ((u64
)vmx
->nested
.nested_vmx_vpid_caps
<< 32);
3212 case MSR_IA32_VMX_VMFUNC
:
3213 *pdata
= vmx
->nested
.nested_vmx_vmfunc_controls
;
3222 static inline bool vmx_feature_control_msr_valid(struct kvm_vcpu
*vcpu
,
3225 uint64_t valid_bits
= to_vmx(vcpu
)->msr_ia32_feature_control_valid_bits
;
3227 return !(val
& ~valid_bits
);
3230 static int vmx_get_msr_feature(struct kvm_msr_entry
*msr
)
3236 * Reads an msr value (of 'msr_index') into 'pdata'.
3237 * Returns 0 on success, non-0 otherwise.
3238 * Assumes vcpu_load() was already called.
3240 static int vmx_get_msr(struct kvm_vcpu
*vcpu
, struct msr_data
*msr_info
)
3242 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
3243 struct shared_msr_entry
*msr
;
3245 switch (msr_info
->index
) {
3246 #ifdef CONFIG_X86_64
3248 msr_info
->data
= vmcs_readl(GUEST_FS_BASE
);
3251 msr_info
->data
= vmcs_readl(GUEST_GS_BASE
);
3253 case MSR_KERNEL_GS_BASE
:
3254 vmx_load_host_state(vmx
);
3255 msr_info
->data
= vmx
->msr_guest_kernel_gs_base
;
3259 return kvm_get_msr_common(vcpu
, msr_info
);
3261 msr_info
->data
= guest_read_tsc(vcpu
);
3263 case MSR_IA32_SPEC_CTRL
:
3264 if (!msr_info
->host_initiated
&&
3265 !guest_cpuid_has(vcpu
, X86_FEATURE_IBRS
) &&
3266 !guest_cpuid_has(vcpu
, X86_FEATURE_SPEC_CTRL
))
3269 msr_info
->data
= to_vmx(vcpu
)->spec_ctrl
;
3271 case MSR_IA32_ARCH_CAPABILITIES
:
3272 if (!msr_info
->host_initiated
&&
3273 !guest_cpuid_has(vcpu
, X86_FEATURE_ARCH_CAPABILITIES
))
3275 msr_info
->data
= to_vmx(vcpu
)->arch_capabilities
;
3277 case MSR_IA32_SYSENTER_CS
:
3278 msr_info
->data
= vmcs_read32(GUEST_SYSENTER_CS
);
3280 case MSR_IA32_SYSENTER_EIP
:
3281 msr_info
->data
= vmcs_readl(GUEST_SYSENTER_EIP
);
3283 case MSR_IA32_SYSENTER_ESP
:
3284 msr_info
->data
= vmcs_readl(GUEST_SYSENTER_ESP
);
3286 case MSR_IA32_BNDCFGS
:
3287 if (!kvm_mpx_supported() ||
3288 (!msr_info
->host_initiated
&&
3289 !guest_cpuid_has(vcpu
, X86_FEATURE_MPX
)))
3291 msr_info
->data
= vmcs_read64(GUEST_BNDCFGS
);
3293 case MSR_IA32_MCG_EXT_CTL
:
3294 if (!msr_info
->host_initiated
&&
3295 !(vmx
->msr_ia32_feature_control
&
3296 FEATURE_CONTROL_LMCE
))
3298 msr_info
->data
= vcpu
->arch
.mcg_ext_ctl
;
3300 case MSR_IA32_FEATURE_CONTROL
:
3301 msr_info
->data
= vmx
->msr_ia32_feature_control
;
3303 case MSR_IA32_VMX_BASIC
... MSR_IA32_VMX_VMFUNC
:
3304 if (!nested_vmx_allowed(vcpu
))
3306 return vmx_get_vmx_msr(vcpu
, msr_info
->index
, &msr_info
->data
);
3308 if (!vmx_xsaves_supported())
3310 msr_info
->data
= vcpu
->arch
.ia32_xss
;
3313 if (!msr_info
->host_initiated
&&
3314 !guest_cpuid_has(vcpu
, X86_FEATURE_RDTSCP
))
3316 /* Otherwise falls through */
3318 msr
= find_msr_entry(vmx
, msr_info
->index
);
3320 msr_info
->data
= msr
->data
;
3323 return kvm_get_msr_common(vcpu
, msr_info
);
3329 static void vmx_leave_nested(struct kvm_vcpu
*vcpu
);
3332 * Writes msr value into into the appropriate "register".
3333 * Returns 0 on success, non-0 otherwise.
3334 * Assumes vcpu_load() was already called.
3336 static int vmx_set_msr(struct kvm_vcpu
*vcpu
, struct msr_data
*msr_info
)
3338 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
3339 struct shared_msr_entry
*msr
;
3341 u32 msr_index
= msr_info
->index
;
3342 u64 data
= msr_info
->data
;
3344 switch (msr_index
) {
3346 ret
= kvm_set_msr_common(vcpu
, msr_info
);
3348 #ifdef CONFIG_X86_64
3350 vmx_segment_cache_clear(vmx
);
3351 vmcs_writel(GUEST_FS_BASE
, data
);
3354 vmx_segment_cache_clear(vmx
);
3355 vmcs_writel(GUEST_GS_BASE
, data
);
3357 case MSR_KERNEL_GS_BASE
:
3358 vmx_load_host_state(vmx
);
3359 vmx
->msr_guest_kernel_gs_base
= data
;
3362 case MSR_IA32_SYSENTER_CS
:
3363 vmcs_write32(GUEST_SYSENTER_CS
, data
);
3365 case MSR_IA32_SYSENTER_EIP
:
3366 vmcs_writel(GUEST_SYSENTER_EIP
, data
);
3368 case MSR_IA32_SYSENTER_ESP
:
3369 vmcs_writel(GUEST_SYSENTER_ESP
, data
);
3371 case MSR_IA32_BNDCFGS
:
3372 if (!kvm_mpx_supported() ||
3373 (!msr_info
->host_initiated
&&
3374 !guest_cpuid_has(vcpu
, X86_FEATURE_MPX
)))
3376 if (is_noncanonical_address(data
& PAGE_MASK
, vcpu
) ||
3377 (data
& MSR_IA32_BNDCFGS_RSVD
))
3379 vmcs_write64(GUEST_BNDCFGS
, data
);
3382 kvm_write_tsc(vcpu
, msr_info
);
3384 case MSR_IA32_SPEC_CTRL
:
3385 if (!msr_info
->host_initiated
&&
3386 !guest_cpuid_has(vcpu
, X86_FEATURE_IBRS
) &&
3387 !guest_cpuid_has(vcpu
, X86_FEATURE_SPEC_CTRL
))
3390 /* The STIBP bit doesn't fault even if it's not advertised */
3391 if (data
& ~(SPEC_CTRL_IBRS
| SPEC_CTRL_STIBP
))
3394 vmx
->spec_ctrl
= data
;
3401 * When it's written (to non-zero) for the first time, pass
3405 * The handling of the MSR bitmap for L2 guests is done in
3406 * nested_vmx_merge_msr_bitmap. We should not touch the
3407 * vmcs02.msr_bitmap here since it gets completely overwritten
3408 * in the merging. We update the vmcs01 here for L1 as well
3409 * since it will end up touching the MSR anyway now.
3411 vmx_disable_intercept_for_msr(vmx
->vmcs01
.msr_bitmap
,
3415 case MSR_IA32_PRED_CMD
:
3416 if (!msr_info
->host_initiated
&&
3417 !guest_cpuid_has(vcpu
, X86_FEATURE_IBPB
) &&
3418 !guest_cpuid_has(vcpu
, X86_FEATURE_SPEC_CTRL
))
3421 if (data
& ~PRED_CMD_IBPB
)
3427 wrmsrl(MSR_IA32_PRED_CMD
, PRED_CMD_IBPB
);
3431 * When it's written (to non-zero) for the first time, pass
3435 * The handling of the MSR bitmap for L2 guests is done in
3436 * nested_vmx_merge_msr_bitmap. We should not touch the
3437 * vmcs02.msr_bitmap here since it gets completely overwritten
3440 vmx_disable_intercept_for_msr(vmx
->vmcs01
.msr_bitmap
, MSR_IA32_PRED_CMD
,
3443 case MSR_IA32_ARCH_CAPABILITIES
:
3444 if (!msr_info
->host_initiated
)
3446 vmx
->arch_capabilities
= data
;
3448 case MSR_IA32_CR_PAT
:
3449 if (vmcs_config
.vmentry_ctrl
& VM_ENTRY_LOAD_IA32_PAT
) {
3450 if (!kvm_mtrr_valid(vcpu
, MSR_IA32_CR_PAT
, data
))
3452 vmcs_write64(GUEST_IA32_PAT
, data
);
3453 vcpu
->arch
.pat
= data
;
3456 ret
= kvm_set_msr_common(vcpu
, msr_info
);
3458 case MSR_IA32_TSC_ADJUST
:
3459 ret
= kvm_set_msr_common(vcpu
, msr_info
);
3461 case MSR_IA32_MCG_EXT_CTL
:
3462 if ((!msr_info
->host_initiated
&&
3463 !(to_vmx(vcpu
)->msr_ia32_feature_control
&
3464 FEATURE_CONTROL_LMCE
)) ||
3465 (data
& ~MCG_EXT_CTL_LMCE_EN
))
3467 vcpu
->arch
.mcg_ext_ctl
= data
;
3469 case MSR_IA32_FEATURE_CONTROL
:
3470 if (!vmx_feature_control_msr_valid(vcpu
, data
) ||
3471 (to_vmx(vcpu
)->msr_ia32_feature_control
&
3472 FEATURE_CONTROL_LOCKED
&& !msr_info
->host_initiated
))
3474 vmx
->msr_ia32_feature_control
= data
;
3475 if (msr_info
->host_initiated
&& data
== 0)
3476 vmx_leave_nested(vcpu
);
3478 case MSR_IA32_VMX_BASIC
... MSR_IA32_VMX_VMFUNC
:
3479 if (!msr_info
->host_initiated
)
3480 return 1; /* they are read-only */
3481 if (!nested_vmx_allowed(vcpu
))
3483 return vmx_set_vmx_msr(vcpu
, msr_index
, data
);
3485 if (!vmx_xsaves_supported())
3488 * The only supported bit as of Skylake is bit 8, but
3489 * it is not supported on KVM.
3493 vcpu
->arch
.ia32_xss
= data
;
3494 if (vcpu
->arch
.ia32_xss
!= host_xss
)
3495 add_atomic_switch_msr(vmx
, MSR_IA32_XSS
,
3496 vcpu
->arch
.ia32_xss
, host_xss
);
3498 clear_atomic_switch_msr(vmx
, MSR_IA32_XSS
);
3501 if (!msr_info
->host_initiated
&&
3502 !guest_cpuid_has(vcpu
, X86_FEATURE_RDTSCP
))
3504 /* Check reserved bit, higher 32 bits should be zero */
3505 if ((data
>> 32) != 0)
3507 /* Otherwise falls through */
3509 msr
= find_msr_entry(vmx
, msr_index
);
3511 u64 old_msr_data
= msr
->data
;
3513 if (msr
- vmx
->guest_msrs
< vmx
->save_nmsrs
) {
3515 ret
= kvm_set_shared_msr(msr
->index
, msr
->data
,
3519 msr
->data
= old_msr_data
;
3523 ret
= kvm_set_msr_common(vcpu
, msr_info
);
3529 static void vmx_cache_reg(struct kvm_vcpu
*vcpu
, enum kvm_reg reg
)
3531 __set_bit(reg
, (unsigned long *)&vcpu
->arch
.regs_avail
);
3534 vcpu
->arch
.regs
[VCPU_REGS_RSP
] = vmcs_readl(GUEST_RSP
);
3537 vcpu
->arch
.regs
[VCPU_REGS_RIP
] = vmcs_readl(GUEST_RIP
);
3539 case VCPU_EXREG_PDPTR
:
3541 ept_save_pdptrs(vcpu
);
3548 static __init
int cpu_has_kvm_support(void)
3550 return cpu_has_vmx();
3553 static __init
int vmx_disabled_by_bios(void)
3557 rdmsrl(MSR_IA32_FEATURE_CONTROL
, msr
);
3558 if (msr
& FEATURE_CONTROL_LOCKED
) {
3559 /* launched w/ TXT and VMX disabled */
3560 if (!(msr
& FEATURE_CONTROL_VMXON_ENABLED_INSIDE_SMX
)
3563 /* launched w/o TXT and VMX only enabled w/ TXT */
3564 if (!(msr
& FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX
)
3565 && (msr
& FEATURE_CONTROL_VMXON_ENABLED_INSIDE_SMX
)
3566 && !tboot_enabled()) {
3567 printk(KERN_WARNING
"kvm: disable TXT in the BIOS or "
3568 "activate TXT before enabling KVM\n");
3571 /* launched w/o TXT and VMX disabled */
3572 if (!(msr
& FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX
)
3573 && !tboot_enabled())
3580 static void kvm_cpu_vmxon(u64 addr
)
3582 cr4_set_bits(X86_CR4_VMXE
);
3583 intel_pt_handle_vmx(1);
3585 asm volatile (ASM_VMX_VMXON_RAX
3586 : : "a"(&addr
), "m"(addr
)
3590 static int hardware_enable(void)
3592 int cpu
= raw_smp_processor_id();
3593 u64 phys_addr
= __pa(per_cpu(vmxarea
, cpu
));
3596 if (cr4_read_shadow() & X86_CR4_VMXE
)
3599 INIT_LIST_HEAD(&per_cpu(loaded_vmcss_on_cpu
, cpu
));
3600 INIT_LIST_HEAD(&per_cpu(blocked_vcpu_on_cpu
, cpu
));
3601 spin_lock_init(&per_cpu(blocked_vcpu_on_cpu_lock
, cpu
));
3604 * Now we can enable the vmclear operation in kdump
3605 * since the loaded_vmcss_on_cpu list on this cpu
3606 * has been initialized.
3608 * Though the cpu is not in VMX operation now, there
3609 * is no problem to enable the vmclear operation
3610 * for the loaded_vmcss_on_cpu list is empty!
3612 crash_enable_local_vmclear(cpu
);
3614 rdmsrl(MSR_IA32_FEATURE_CONTROL
, old
);
3616 test_bits
= FEATURE_CONTROL_LOCKED
;
3617 test_bits
|= FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX
;
3618 if (tboot_enabled())
3619 test_bits
|= FEATURE_CONTROL_VMXON_ENABLED_INSIDE_SMX
;
3621 if ((old
& test_bits
) != test_bits
) {
3622 /* enable and lock */
3623 wrmsrl(MSR_IA32_FEATURE_CONTROL
, old
| test_bits
);
3625 kvm_cpu_vmxon(phys_addr
);
3632 static void vmclear_local_loaded_vmcss(void)
3634 int cpu
= raw_smp_processor_id();
3635 struct loaded_vmcs
*v
, *n
;
3637 list_for_each_entry_safe(v
, n
, &per_cpu(loaded_vmcss_on_cpu
, cpu
),
3638 loaded_vmcss_on_cpu_link
)
3639 __loaded_vmcs_clear(v
);
3643 /* Just like cpu_vmxoff(), but with the __kvm_handle_fault_on_reboot()
3646 static void kvm_cpu_vmxoff(void)
3648 asm volatile (__ex(ASM_VMX_VMXOFF
) : : : "cc");
3650 intel_pt_handle_vmx(0);
3651 cr4_clear_bits(X86_CR4_VMXE
);
3654 static void hardware_disable(void)
3656 vmclear_local_loaded_vmcss();
3660 static __init
int adjust_vmx_controls(u32 ctl_min
, u32 ctl_opt
,
3661 u32 msr
, u32
*result
)
3663 u32 vmx_msr_low
, vmx_msr_high
;
3664 u32 ctl
= ctl_min
| ctl_opt
;
3666 rdmsr(msr
, vmx_msr_low
, vmx_msr_high
);
3668 ctl
&= vmx_msr_high
; /* bit == 0 in high word ==> must be zero */
3669 ctl
|= vmx_msr_low
; /* bit == 1 in low word ==> must be one */
3671 /* Ensure minimum (required) set of control bits are supported. */
3679 static __init
bool allow_1_setting(u32 msr
, u32 ctl
)
3681 u32 vmx_msr_low
, vmx_msr_high
;
3683 rdmsr(msr
, vmx_msr_low
, vmx_msr_high
);
3684 return vmx_msr_high
& ctl
;
3687 static __init
int setup_vmcs_config(struct vmcs_config
*vmcs_conf
)
3689 u32 vmx_msr_low
, vmx_msr_high
;
3690 u32 min
, opt
, min2
, opt2
;
3691 u32 _pin_based_exec_control
= 0;
3692 u32 _cpu_based_exec_control
= 0;
3693 u32 _cpu_based_2nd_exec_control
= 0;
3694 u32 _vmexit_control
= 0;
3695 u32 _vmentry_control
= 0;
3697 min
= CPU_BASED_HLT_EXITING
|
3698 #ifdef CONFIG_X86_64
3699 CPU_BASED_CR8_LOAD_EXITING
|
3700 CPU_BASED_CR8_STORE_EXITING
|
3702 CPU_BASED_CR3_LOAD_EXITING
|
3703 CPU_BASED_CR3_STORE_EXITING
|
3704 CPU_BASED_UNCOND_IO_EXITING
|
3705 CPU_BASED_MOV_DR_EXITING
|
3706 CPU_BASED_USE_TSC_OFFSETING
|
3707 CPU_BASED_INVLPG_EXITING
|
3708 CPU_BASED_RDPMC_EXITING
;
3710 if (!kvm_mwait_in_guest())
3711 min
|= CPU_BASED_MWAIT_EXITING
|
3712 CPU_BASED_MONITOR_EXITING
;
3714 opt
= CPU_BASED_TPR_SHADOW
|
3715 CPU_BASED_USE_MSR_BITMAPS
|
3716 CPU_BASED_ACTIVATE_SECONDARY_CONTROLS
;
3717 if (adjust_vmx_controls(min
, opt
, MSR_IA32_VMX_PROCBASED_CTLS
,
3718 &_cpu_based_exec_control
) < 0)
3720 #ifdef CONFIG_X86_64
3721 if ((_cpu_based_exec_control
& CPU_BASED_TPR_SHADOW
))
3722 _cpu_based_exec_control
&= ~CPU_BASED_CR8_LOAD_EXITING
&
3723 ~CPU_BASED_CR8_STORE_EXITING
;
3725 if (_cpu_based_exec_control
& CPU_BASED_ACTIVATE_SECONDARY_CONTROLS
) {
3727 opt2
= SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES
|
3728 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE
|
3729 SECONDARY_EXEC_WBINVD_EXITING
|
3730 SECONDARY_EXEC_ENABLE_VPID
|
3731 SECONDARY_EXEC_ENABLE_EPT
|
3732 SECONDARY_EXEC_UNRESTRICTED_GUEST
|
3733 SECONDARY_EXEC_PAUSE_LOOP_EXITING
|
3734 SECONDARY_EXEC_DESC
|
3735 SECONDARY_EXEC_RDTSCP
|
3736 SECONDARY_EXEC_ENABLE_INVPCID
|
3737 SECONDARY_EXEC_APIC_REGISTER_VIRT
|
3738 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY
|
3739 SECONDARY_EXEC_SHADOW_VMCS
|
3740 SECONDARY_EXEC_XSAVES
|
3741 SECONDARY_EXEC_RDSEED_EXITING
|
3742 SECONDARY_EXEC_RDRAND_EXITING
|
3743 SECONDARY_EXEC_ENABLE_PML
|
3744 SECONDARY_EXEC_TSC_SCALING
|
3745 SECONDARY_EXEC_ENABLE_VMFUNC
;
3746 if (adjust_vmx_controls(min2
, opt2
,
3747 MSR_IA32_VMX_PROCBASED_CTLS2
,
3748 &_cpu_based_2nd_exec_control
) < 0)
3751 #ifndef CONFIG_X86_64
3752 if (!(_cpu_based_2nd_exec_control
&
3753 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES
))
3754 _cpu_based_exec_control
&= ~CPU_BASED_TPR_SHADOW
;
3757 if (!(_cpu_based_exec_control
& CPU_BASED_TPR_SHADOW
))
3758 _cpu_based_2nd_exec_control
&= ~(
3759 SECONDARY_EXEC_APIC_REGISTER_VIRT
|
3760 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE
|
3761 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY
);
3763 rdmsr_safe(MSR_IA32_VMX_EPT_VPID_CAP
,
3764 &vmx_capability
.ept
, &vmx_capability
.vpid
);
3766 if (_cpu_based_2nd_exec_control
& SECONDARY_EXEC_ENABLE_EPT
) {
3767 /* CR3 accesses and invlpg don't need to cause VM Exits when EPT
3769 _cpu_based_exec_control
&= ~(CPU_BASED_CR3_LOAD_EXITING
|
3770 CPU_BASED_CR3_STORE_EXITING
|
3771 CPU_BASED_INVLPG_EXITING
);
3772 } else if (vmx_capability
.ept
) {
3773 vmx_capability
.ept
= 0;
3774 pr_warn_once("EPT CAP should not exist if not support "
3775 "1-setting enable EPT VM-execution control\n");
3777 if (!(_cpu_based_2nd_exec_control
& SECONDARY_EXEC_ENABLE_VPID
) &&
3778 vmx_capability
.vpid
) {
3779 vmx_capability
.vpid
= 0;
3780 pr_warn_once("VPID CAP should not exist if not support "
3781 "1-setting enable VPID VM-execution control\n");
3784 min
= VM_EXIT_SAVE_DEBUG_CONTROLS
| VM_EXIT_ACK_INTR_ON_EXIT
;
3785 #ifdef CONFIG_X86_64
3786 min
|= VM_EXIT_HOST_ADDR_SPACE_SIZE
;
3788 opt
= VM_EXIT_SAVE_IA32_PAT
| VM_EXIT_LOAD_IA32_PAT
|
3789 VM_EXIT_CLEAR_BNDCFGS
;
3790 if (adjust_vmx_controls(min
, opt
, MSR_IA32_VMX_EXIT_CTLS
,
3791 &_vmexit_control
) < 0)
3794 min
= PIN_BASED_EXT_INTR_MASK
| PIN_BASED_NMI_EXITING
;
3795 opt
= PIN_BASED_VIRTUAL_NMIS
| PIN_BASED_POSTED_INTR
|
3796 PIN_BASED_VMX_PREEMPTION_TIMER
;
3797 if (adjust_vmx_controls(min
, opt
, MSR_IA32_VMX_PINBASED_CTLS
,
3798 &_pin_based_exec_control
) < 0)
3801 if (cpu_has_broken_vmx_preemption_timer())
3802 _pin_based_exec_control
&= ~PIN_BASED_VMX_PREEMPTION_TIMER
;
3803 if (!(_cpu_based_2nd_exec_control
&
3804 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY
))
3805 _pin_based_exec_control
&= ~PIN_BASED_POSTED_INTR
;
3807 min
= VM_ENTRY_LOAD_DEBUG_CONTROLS
;
3808 opt
= VM_ENTRY_LOAD_IA32_PAT
| VM_ENTRY_LOAD_BNDCFGS
;
3809 if (adjust_vmx_controls(min
, opt
, MSR_IA32_VMX_ENTRY_CTLS
,
3810 &_vmentry_control
) < 0)
3813 rdmsr(MSR_IA32_VMX_BASIC
, vmx_msr_low
, vmx_msr_high
);
3815 /* IA-32 SDM Vol 3B: VMCS size is never greater than 4kB. */
3816 if ((vmx_msr_high
& 0x1fff) > PAGE_SIZE
)
3819 #ifdef CONFIG_X86_64
3820 /* IA-32 SDM Vol 3B: 64-bit CPUs always have VMX_BASIC_MSR[48]==0. */
3821 if (vmx_msr_high
& (1u<<16))
3825 /* Require Write-Back (WB) memory type for VMCS accesses. */
3826 if (((vmx_msr_high
>> 18) & 15) != 6)
3829 vmcs_conf
->size
= vmx_msr_high
& 0x1fff;
3830 vmcs_conf
->order
= get_order(vmcs_conf
->size
);
3831 vmcs_conf
->basic_cap
= vmx_msr_high
& ~0x1fff;
3832 vmcs_conf
->revision_id
= vmx_msr_low
;
3834 vmcs_conf
->pin_based_exec_ctrl
= _pin_based_exec_control
;
3835 vmcs_conf
->cpu_based_exec_ctrl
= _cpu_based_exec_control
;
3836 vmcs_conf
->cpu_based_2nd_exec_ctrl
= _cpu_based_2nd_exec_control
;
3837 vmcs_conf
->vmexit_ctrl
= _vmexit_control
;
3838 vmcs_conf
->vmentry_ctrl
= _vmentry_control
;
3840 cpu_has_load_ia32_efer
=
3841 allow_1_setting(MSR_IA32_VMX_ENTRY_CTLS
,
3842 VM_ENTRY_LOAD_IA32_EFER
)
3843 && allow_1_setting(MSR_IA32_VMX_EXIT_CTLS
,
3844 VM_EXIT_LOAD_IA32_EFER
);
3846 cpu_has_load_perf_global_ctrl
=
3847 allow_1_setting(MSR_IA32_VMX_ENTRY_CTLS
,
3848 VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL
)
3849 && allow_1_setting(MSR_IA32_VMX_EXIT_CTLS
,
3850 VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL
);
3853 * Some cpus support VM_ENTRY_(LOAD|SAVE)_IA32_PERF_GLOBAL_CTRL
3854 * but due to errata below it can't be used. Workaround is to use
3855 * msr load mechanism to switch IA32_PERF_GLOBAL_CTRL.
3857 * VM Exit May Incorrectly Clear IA32_PERF_GLOBAL_CTRL [34:32]
3862 * BC86,AAY89,BD102 (model 44)
3866 if (cpu_has_load_perf_global_ctrl
&& boot_cpu_data
.x86
== 0x6) {
3867 switch (boot_cpu_data
.x86_model
) {
3873 cpu_has_load_perf_global_ctrl
= false;
3874 printk_once(KERN_WARNING
"kvm: VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL "
3875 "does not work properly. Using workaround\n");
3882 if (boot_cpu_has(X86_FEATURE_XSAVES
))
3883 rdmsrl(MSR_IA32_XSS
, host_xss
);
3888 static struct vmcs
*alloc_vmcs_cpu(int cpu
)
3890 int node
= cpu_to_node(cpu
);
3894 pages
= __alloc_pages_node(node
, GFP_KERNEL
, vmcs_config
.order
);
3897 vmcs
= page_address(pages
);
3898 memset(vmcs
, 0, vmcs_config
.size
);
3899 vmcs
->revision_id
= vmcs_config
.revision_id
; /* vmcs revision id */
3903 static void free_vmcs(struct vmcs
*vmcs
)
3905 free_pages((unsigned long)vmcs
, vmcs_config
.order
);
3909 * Free a VMCS, but before that VMCLEAR it on the CPU where it was last loaded
3911 static void free_loaded_vmcs(struct loaded_vmcs
*loaded_vmcs
)
3913 if (!loaded_vmcs
->vmcs
)
3915 loaded_vmcs_clear(loaded_vmcs
);
3916 free_vmcs(loaded_vmcs
->vmcs
);
3917 loaded_vmcs
->vmcs
= NULL
;
3918 if (loaded_vmcs
->msr_bitmap
)
3919 free_page((unsigned long)loaded_vmcs
->msr_bitmap
);
3920 WARN_ON(loaded_vmcs
->shadow_vmcs
!= NULL
);
3923 static struct vmcs
*alloc_vmcs(void)
3925 return alloc_vmcs_cpu(raw_smp_processor_id());
3928 static int alloc_loaded_vmcs(struct loaded_vmcs
*loaded_vmcs
)
3930 loaded_vmcs
->vmcs
= alloc_vmcs();
3931 if (!loaded_vmcs
->vmcs
)
3934 loaded_vmcs
->shadow_vmcs
= NULL
;
3935 loaded_vmcs_init(loaded_vmcs
);
3937 if (cpu_has_vmx_msr_bitmap()) {
3938 loaded_vmcs
->msr_bitmap
= (unsigned long *)__get_free_page(GFP_KERNEL
);
3939 if (!loaded_vmcs
->msr_bitmap
)
3941 memset(loaded_vmcs
->msr_bitmap
, 0xff, PAGE_SIZE
);
3946 free_loaded_vmcs(loaded_vmcs
);
3950 static void free_kvm_area(void)
3954 for_each_possible_cpu(cpu
) {
3955 free_vmcs(per_cpu(vmxarea
, cpu
));
3956 per_cpu(vmxarea
, cpu
) = NULL
;
3960 enum vmcs_field_width
{
3961 VMCS_FIELD_WIDTH_U16
= 0,
3962 VMCS_FIELD_WIDTH_U64
= 1,
3963 VMCS_FIELD_WIDTH_U32
= 2,
3964 VMCS_FIELD_WIDTH_NATURAL_WIDTH
= 3
3967 static inline int vmcs_field_width(unsigned long field
)
3969 if (0x1 & field
) /* the *_HIGH fields are all 32 bit */
3970 return VMCS_FIELD_WIDTH_U32
;
3971 return (field
>> 13) & 0x3 ;
3974 static inline int vmcs_field_readonly(unsigned long field
)
3976 return (((field
>> 10) & 0x3) == 1);
3979 static void init_vmcs_shadow_fields(void)
3983 for (i
= j
= 0; i
< max_shadow_read_only_fields
; i
++) {
3984 u16 field
= shadow_read_only_fields
[i
];
3985 if (vmcs_field_width(field
) == VMCS_FIELD_WIDTH_U64
&&
3986 (i
+ 1 == max_shadow_read_only_fields
||
3987 shadow_read_only_fields
[i
+ 1] != field
+ 1))
3988 pr_err("Missing field from shadow_read_only_field %x\n",
3991 clear_bit(field
, vmx_vmread_bitmap
);
3992 #ifdef CONFIG_X86_64
3997 shadow_read_only_fields
[j
] = field
;
4000 max_shadow_read_only_fields
= j
;
4002 for (i
= j
= 0; i
< max_shadow_read_write_fields
; i
++) {
4003 u16 field
= shadow_read_write_fields
[i
];
4004 if (vmcs_field_width(field
) == VMCS_FIELD_WIDTH_U64
&&
4005 (i
+ 1 == max_shadow_read_write_fields
||
4006 shadow_read_write_fields
[i
+ 1] != field
+ 1))
4007 pr_err("Missing field from shadow_read_write_field %x\n",
4011 * PML and the preemption timer can be emulated, but the
4012 * processor cannot vmwrite to fields that don't exist
4016 case GUEST_PML_INDEX
:
4017 if (!cpu_has_vmx_pml())
4020 case VMX_PREEMPTION_TIMER_VALUE
:
4021 if (!cpu_has_vmx_preemption_timer())
4024 case GUEST_INTR_STATUS
:
4025 if (!cpu_has_vmx_apicv())
4032 clear_bit(field
, vmx_vmwrite_bitmap
);
4033 clear_bit(field
, vmx_vmread_bitmap
);
4034 #ifdef CONFIG_X86_64
4039 shadow_read_write_fields
[j
] = field
;
4042 max_shadow_read_write_fields
= j
;
4045 static __init
int alloc_kvm_area(void)
4049 for_each_possible_cpu(cpu
) {
4052 vmcs
= alloc_vmcs_cpu(cpu
);
4058 per_cpu(vmxarea
, cpu
) = vmcs
;
4063 static void fix_pmode_seg(struct kvm_vcpu
*vcpu
, int seg
,
4064 struct kvm_segment
*save
)
4066 if (!emulate_invalid_guest_state
) {
4068 * CS and SS RPL should be equal during guest entry according
4069 * to VMX spec, but in reality it is not always so. Since vcpu
4070 * is in the middle of the transition from real mode to
4071 * protected mode it is safe to assume that RPL 0 is a good
4074 if (seg
== VCPU_SREG_CS
|| seg
== VCPU_SREG_SS
)
4075 save
->selector
&= ~SEGMENT_RPL_MASK
;
4076 save
->dpl
= save
->selector
& SEGMENT_RPL_MASK
;
4079 vmx_set_segment(vcpu
, save
, seg
);
4082 static void enter_pmode(struct kvm_vcpu
*vcpu
)
4084 unsigned long flags
;
4085 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
4088 * Update real mode segment cache. It may be not up-to-date if sement
4089 * register was written while vcpu was in a guest mode.
4091 vmx_get_segment(vcpu
, &vmx
->rmode
.segs
[VCPU_SREG_ES
], VCPU_SREG_ES
);
4092 vmx_get_segment(vcpu
, &vmx
->rmode
.segs
[VCPU_SREG_DS
], VCPU_SREG_DS
);
4093 vmx_get_segment(vcpu
, &vmx
->rmode
.segs
[VCPU_SREG_FS
], VCPU_SREG_FS
);
4094 vmx_get_segment(vcpu
, &vmx
->rmode
.segs
[VCPU_SREG_GS
], VCPU_SREG_GS
);
4095 vmx_get_segment(vcpu
, &vmx
->rmode
.segs
[VCPU_SREG_SS
], VCPU_SREG_SS
);
4096 vmx_get_segment(vcpu
, &vmx
->rmode
.segs
[VCPU_SREG_CS
], VCPU_SREG_CS
);
4098 vmx
->rmode
.vm86_active
= 0;
4100 vmx_segment_cache_clear(vmx
);
4102 vmx_set_segment(vcpu
, &vmx
->rmode
.segs
[VCPU_SREG_TR
], VCPU_SREG_TR
);
4104 flags
= vmcs_readl(GUEST_RFLAGS
);
4105 flags
&= RMODE_GUEST_OWNED_EFLAGS_BITS
;
4106 flags
|= vmx
->rmode
.save_rflags
& ~RMODE_GUEST_OWNED_EFLAGS_BITS
;
4107 vmcs_writel(GUEST_RFLAGS
, flags
);
4109 vmcs_writel(GUEST_CR4
, (vmcs_readl(GUEST_CR4
) & ~X86_CR4_VME
) |
4110 (vmcs_readl(CR4_READ_SHADOW
) & X86_CR4_VME
));
4112 update_exception_bitmap(vcpu
);
4114 fix_pmode_seg(vcpu
, VCPU_SREG_CS
, &vmx
->rmode
.segs
[VCPU_SREG_CS
]);
4115 fix_pmode_seg(vcpu
, VCPU_SREG_SS
, &vmx
->rmode
.segs
[VCPU_SREG_SS
]);
4116 fix_pmode_seg(vcpu
, VCPU_SREG_ES
, &vmx
->rmode
.segs
[VCPU_SREG_ES
]);
4117 fix_pmode_seg(vcpu
, VCPU_SREG_DS
, &vmx
->rmode
.segs
[VCPU_SREG_DS
]);
4118 fix_pmode_seg(vcpu
, VCPU_SREG_FS
, &vmx
->rmode
.segs
[VCPU_SREG_FS
]);
4119 fix_pmode_seg(vcpu
, VCPU_SREG_GS
, &vmx
->rmode
.segs
[VCPU_SREG_GS
]);
4122 static void fix_rmode_seg(int seg
, struct kvm_segment
*save
)
4124 const struct kvm_vmx_segment_field
*sf
= &kvm_vmx_segment_fields
[seg
];
4125 struct kvm_segment var
= *save
;
4128 if (seg
== VCPU_SREG_CS
)
4131 if (!emulate_invalid_guest_state
) {
4132 var
.selector
= var
.base
>> 4;
4133 var
.base
= var
.base
& 0xffff0;
4143 if (save
->base
& 0xf)
4144 printk_once(KERN_WARNING
"kvm: segment base is not "
4145 "paragraph aligned when entering "
4146 "protected mode (seg=%d)", seg
);
4149 vmcs_write16(sf
->selector
, var
.selector
);
4150 vmcs_writel(sf
->base
, var
.base
);
4151 vmcs_write32(sf
->limit
, var
.limit
);
4152 vmcs_write32(sf
->ar_bytes
, vmx_segment_access_rights(&var
));
4155 static void enter_rmode(struct kvm_vcpu
*vcpu
)
4157 unsigned long flags
;
4158 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
4160 vmx_get_segment(vcpu
, &vmx
->rmode
.segs
[VCPU_SREG_TR
], VCPU_SREG_TR
);
4161 vmx_get_segment(vcpu
, &vmx
->rmode
.segs
[VCPU_SREG_ES
], VCPU_SREG_ES
);
4162 vmx_get_segment(vcpu
, &vmx
->rmode
.segs
[VCPU_SREG_DS
], VCPU_SREG_DS
);
4163 vmx_get_segment(vcpu
, &vmx
->rmode
.segs
[VCPU_SREG_FS
], VCPU_SREG_FS
);
4164 vmx_get_segment(vcpu
, &vmx
->rmode
.segs
[VCPU_SREG_GS
], VCPU_SREG_GS
);
4165 vmx_get_segment(vcpu
, &vmx
->rmode
.segs
[VCPU_SREG_SS
], VCPU_SREG_SS
);
4166 vmx_get_segment(vcpu
, &vmx
->rmode
.segs
[VCPU_SREG_CS
], VCPU_SREG_CS
);
4168 vmx
->rmode
.vm86_active
= 1;
4171 * Very old userspace does not call KVM_SET_TSS_ADDR before entering
4172 * vcpu. Warn the user that an update is overdue.
4174 if (!vcpu
->kvm
->arch
.tss_addr
)
4175 printk_once(KERN_WARNING
"kvm: KVM_SET_TSS_ADDR need to be "
4176 "called before entering vcpu\n");
4178 vmx_segment_cache_clear(vmx
);
4180 vmcs_writel(GUEST_TR_BASE
, vcpu
->kvm
->arch
.tss_addr
);
4181 vmcs_write32(GUEST_TR_LIMIT
, RMODE_TSS_SIZE
- 1);
4182 vmcs_write32(GUEST_TR_AR_BYTES
, 0x008b);
4184 flags
= vmcs_readl(GUEST_RFLAGS
);
4185 vmx
->rmode
.save_rflags
= flags
;
4187 flags
|= X86_EFLAGS_IOPL
| X86_EFLAGS_VM
;
4189 vmcs_writel(GUEST_RFLAGS
, flags
);
4190 vmcs_writel(GUEST_CR4
, vmcs_readl(GUEST_CR4
) | X86_CR4_VME
);
4191 update_exception_bitmap(vcpu
);
4193 fix_rmode_seg(VCPU_SREG_SS
, &vmx
->rmode
.segs
[VCPU_SREG_SS
]);
4194 fix_rmode_seg(VCPU_SREG_CS
, &vmx
->rmode
.segs
[VCPU_SREG_CS
]);
4195 fix_rmode_seg(VCPU_SREG_ES
, &vmx
->rmode
.segs
[VCPU_SREG_ES
]);
4196 fix_rmode_seg(VCPU_SREG_DS
, &vmx
->rmode
.segs
[VCPU_SREG_DS
]);
4197 fix_rmode_seg(VCPU_SREG_GS
, &vmx
->rmode
.segs
[VCPU_SREG_GS
]);
4198 fix_rmode_seg(VCPU_SREG_FS
, &vmx
->rmode
.segs
[VCPU_SREG_FS
]);
4200 kvm_mmu_reset_context(vcpu
);
4203 static void vmx_set_efer(struct kvm_vcpu
*vcpu
, u64 efer
)
4205 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
4206 struct shared_msr_entry
*msr
= find_msr_entry(vmx
, MSR_EFER
);
4212 * Force kernel_gs_base reloading before EFER changes, as control
4213 * of this msr depends on is_long_mode().
4215 vmx_load_host_state(to_vmx(vcpu
));
4216 vcpu
->arch
.efer
= efer
;
4217 if (efer
& EFER_LMA
) {
4218 vm_entry_controls_setbit(to_vmx(vcpu
), VM_ENTRY_IA32E_MODE
);
4221 vm_entry_controls_clearbit(to_vmx(vcpu
), VM_ENTRY_IA32E_MODE
);
4223 msr
->data
= efer
& ~EFER_LME
;
4228 #ifdef CONFIG_X86_64
4230 static void enter_lmode(struct kvm_vcpu
*vcpu
)
4234 vmx_segment_cache_clear(to_vmx(vcpu
));
4236 guest_tr_ar
= vmcs_read32(GUEST_TR_AR_BYTES
);
4237 if ((guest_tr_ar
& VMX_AR_TYPE_MASK
) != VMX_AR_TYPE_BUSY_64_TSS
) {
4238 pr_debug_ratelimited("%s: tss fixup for long mode. \n",
4240 vmcs_write32(GUEST_TR_AR_BYTES
,
4241 (guest_tr_ar
& ~VMX_AR_TYPE_MASK
)
4242 | VMX_AR_TYPE_BUSY_64_TSS
);
4244 vmx_set_efer(vcpu
, vcpu
->arch
.efer
| EFER_LMA
);
4247 static void exit_lmode(struct kvm_vcpu
*vcpu
)
4249 vm_entry_controls_clearbit(to_vmx(vcpu
), VM_ENTRY_IA32E_MODE
);
4250 vmx_set_efer(vcpu
, vcpu
->arch
.efer
& ~EFER_LMA
);
4255 static inline void __vmx_flush_tlb(struct kvm_vcpu
*vcpu
, int vpid
,
4256 bool invalidate_gpa
)
4258 if (enable_ept
&& (invalidate_gpa
|| !enable_vpid
)) {
4259 if (!VALID_PAGE(vcpu
->arch
.mmu
.root_hpa
))
4261 ept_sync_context(construct_eptp(vcpu
, vcpu
->arch
.mmu
.root_hpa
));
4263 vpid_sync_context(vpid
);
4267 static void vmx_flush_tlb(struct kvm_vcpu
*vcpu
, bool invalidate_gpa
)
4269 __vmx_flush_tlb(vcpu
, to_vmx(vcpu
)->vpid
, invalidate_gpa
);
4272 static void vmx_flush_tlb_ept_only(struct kvm_vcpu
*vcpu
)
4275 vmx_flush_tlb(vcpu
, true);
4278 static void vmx_decache_cr0_guest_bits(struct kvm_vcpu
*vcpu
)
4280 ulong cr0_guest_owned_bits
= vcpu
->arch
.cr0_guest_owned_bits
;
4282 vcpu
->arch
.cr0
&= ~cr0_guest_owned_bits
;
4283 vcpu
->arch
.cr0
|= vmcs_readl(GUEST_CR0
) & cr0_guest_owned_bits
;
4286 static void vmx_decache_cr3(struct kvm_vcpu
*vcpu
)
4288 if (enable_ept
&& is_paging(vcpu
))
4289 vcpu
->arch
.cr3
= vmcs_readl(GUEST_CR3
);
4290 __set_bit(VCPU_EXREG_CR3
, (ulong
*)&vcpu
->arch
.regs_avail
);
4293 static void vmx_decache_cr4_guest_bits(struct kvm_vcpu
*vcpu
)
4295 ulong cr4_guest_owned_bits
= vcpu
->arch
.cr4_guest_owned_bits
;
4297 vcpu
->arch
.cr4
&= ~cr4_guest_owned_bits
;
4298 vcpu
->arch
.cr4
|= vmcs_readl(GUEST_CR4
) & cr4_guest_owned_bits
;
4301 static void ept_load_pdptrs(struct kvm_vcpu
*vcpu
)
4303 struct kvm_mmu
*mmu
= vcpu
->arch
.walk_mmu
;
4305 if (!test_bit(VCPU_EXREG_PDPTR
,
4306 (unsigned long *)&vcpu
->arch
.regs_dirty
))
4309 if (is_paging(vcpu
) && is_pae(vcpu
) && !is_long_mode(vcpu
)) {
4310 vmcs_write64(GUEST_PDPTR0
, mmu
->pdptrs
[0]);
4311 vmcs_write64(GUEST_PDPTR1
, mmu
->pdptrs
[1]);
4312 vmcs_write64(GUEST_PDPTR2
, mmu
->pdptrs
[2]);
4313 vmcs_write64(GUEST_PDPTR3
, mmu
->pdptrs
[3]);
4317 static void ept_save_pdptrs(struct kvm_vcpu
*vcpu
)
4319 struct kvm_mmu
*mmu
= vcpu
->arch
.walk_mmu
;
4321 if (is_paging(vcpu
) && is_pae(vcpu
) && !is_long_mode(vcpu
)) {
4322 mmu
->pdptrs
[0] = vmcs_read64(GUEST_PDPTR0
);
4323 mmu
->pdptrs
[1] = vmcs_read64(GUEST_PDPTR1
);
4324 mmu
->pdptrs
[2] = vmcs_read64(GUEST_PDPTR2
);
4325 mmu
->pdptrs
[3] = vmcs_read64(GUEST_PDPTR3
);
4328 __set_bit(VCPU_EXREG_PDPTR
,
4329 (unsigned long *)&vcpu
->arch
.regs_avail
);
4330 __set_bit(VCPU_EXREG_PDPTR
,
4331 (unsigned long *)&vcpu
->arch
.regs_dirty
);
4334 static bool nested_guest_cr0_valid(struct kvm_vcpu
*vcpu
, unsigned long val
)
4336 u64 fixed0
= to_vmx(vcpu
)->nested
.nested_vmx_cr0_fixed0
;
4337 u64 fixed1
= to_vmx(vcpu
)->nested
.nested_vmx_cr0_fixed1
;
4338 struct vmcs12
*vmcs12
= get_vmcs12(vcpu
);
4340 if (to_vmx(vcpu
)->nested
.nested_vmx_secondary_ctls_high
&
4341 SECONDARY_EXEC_UNRESTRICTED_GUEST
&&
4342 nested_cpu_has2(vmcs12
, SECONDARY_EXEC_UNRESTRICTED_GUEST
))
4343 fixed0
&= ~(X86_CR0_PE
| X86_CR0_PG
);
4345 return fixed_bits_valid(val
, fixed0
, fixed1
);
4348 static bool nested_host_cr0_valid(struct kvm_vcpu
*vcpu
, unsigned long val
)
4350 u64 fixed0
= to_vmx(vcpu
)->nested
.nested_vmx_cr0_fixed0
;
4351 u64 fixed1
= to_vmx(vcpu
)->nested
.nested_vmx_cr0_fixed1
;
4353 return fixed_bits_valid(val
, fixed0
, fixed1
);
4356 static bool nested_cr4_valid(struct kvm_vcpu
*vcpu
, unsigned long val
)
4358 u64 fixed0
= to_vmx(vcpu
)->nested
.nested_vmx_cr4_fixed0
;
4359 u64 fixed1
= to_vmx(vcpu
)->nested
.nested_vmx_cr4_fixed1
;
4361 return fixed_bits_valid(val
, fixed0
, fixed1
);
4364 /* No difference in the restrictions on guest and host CR4 in VMX operation. */
4365 #define nested_guest_cr4_valid nested_cr4_valid
4366 #define nested_host_cr4_valid nested_cr4_valid
4368 static int vmx_set_cr4(struct kvm_vcpu
*vcpu
, unsigned long cr4
);
4370 static void ept_update_paging_mode_cr0(unsigned long *hw_cr0
,
4372 struct kvm_vcpu
*vcpu
)
4374 if (!test_bit(VCPU_EXREG_CR3
, (ulong
*)&vcpu
->arch
.regs_avail
))
4375 vmx_decache_cr3(vcpu
);
4376 if (!(cr0
& X86_CR0_PG
)) {
4377 /* From paging/starting to nonpaging */
4378 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL
,
4379 vmcs_read32(CPU_BASED_VM_EXEC_CONTROL
) |
4380 (CPU_BASED_CR3_LOAD_EXITING
|
4381 CPU_BASED_CR3_STORE_EXITING
));
4382 vcpu
->arch
.cr0
= cr0
;
4383 vmx_set_cr4(vcpu
, kvm_read_cr4(vcpu
));
4384 } else if (!is_paging(vcpu
)) {
4385 /* From nonpaging to paging */
4386 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL
,
4387 vmcs_read32(CPU_BASED_VM_EXEC_CONTROL
) &
4388 ~(CPU_BASED_CR3_LOAD_EXITING
|
4389 CPU_BASED_CR3_STORE_EXITING
));
4390 vcpu
->arch
.cr0
= cr0
;
4391 vmx_set_cr4(vcpu
, kvm_read_cr4(vcpu
));
4394 if (!(cr0
& X86_CR0_WP
))
4395 *hw_cr0
&= ~X86_CR0_WP
;
4398 static void vmx_set_cr0(struct kvm_vcpu
*vcpu
, unsigned long cr0
)
4400 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
4401 unsigned long hw_cr0
;
4403 hw_cr0
= (cr0
& ~KVM_GUEST_CR0_MASK
);
4404 if (enable_unrestricted_guest
)
4405 hw_cr0
|= KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST
;
4407 hw_cr0
|= KVM_VM_CR0_ALWAYS_ON
;
4409 if (vmx
->rmode
.vm86_active
&& (cr0
& X86_CR0_PE
))
4412 if (!vmx
->rmode
.vm86_active
&& !(cr0
& X86_CR0_PE
))
4416 #ifdef CONFIG_X86_64
4417 if (vcpu
->arch
.efer
& EFER_LME
) {
4418 if (!is_paging(vcpu
) && (cr0
& X86_CR0_PG
))
4420 if (is_paging(vcpu
) && !(cr0
& X86_CR0_PG
))
4426 ept_update_paging_mode_cr0(&hw_cr0
, cr0
, vcpu
);
4428 vmcs_writel(CR0_READ_SHADOW
, cr0
);
4429 vmcs_writel(GUEST_CR0
, hw_cr0
);
4430 vcpu
->arch
.cr0
= cr0
;
4432 /* depends on vcpu->arch.cr0 to be set to a new value */
4433 vmx
->emulation_required
= emulation_required(vcpu
);
4436 static int get_ept_level(struct kvm_vcpu
*vcpu
)
4438 if (cpu_has_vmx_ept_5levels() && (cpuid_maxphyaddr(vcpu
) > 48))
4443 static u64
construct_eptp(struct kvm_vcpu
*vcpu
, unsigned long root_hpa
)
4445 u64 eptp
= VMX_EPTP_MT_WB
;
4447 eptp
|= (get_ept_level(vcpu
) == 5) ? VMX_EPTP_PWL_5
: VMX_EPTP_PWL_4
;
4449 if (enable_ept_ad_bits
&&
4450 (!is_guest_mode(vcpu
) || nested_ept_ad_enabled(vcpu
)))
4451 eptp
|= VMX_EPTP_AD_ENABLE_BIT
;
4452 eptp
|= (root_hpa
& PAGE_MASK
);
4457 static void vmx_set_cr3(struct kvm_vcpu
*vcpu
, unsigned long cr3
)
4459 unsigned long guest_cr3
;
4464 eptp
= construct_eptp(vcpu
, cr3
);
4465 vmcs_write64(EPT_POINTER
, eptp
);
4466 if (is_paging(vcpu
) || is_guest_mode(vcpu
))
4467 guest_cr3
= kvm_read_cr3(vcpu
);
4469 guest_cr3
= vcpu
->kvm
->arch
.ept_identity_map_addr
;
4470 ept_load_pdptrs(vcpu
);
4473 vmx_flush_tlb(vcpu
, true);
4474 vmcs_writel(GUEST_CR3
, guest_cr3
);
4477 static int vmx_set_cr4(struct kvm_vcpu
*vcpu
, unsigned long cr4
)
4480 * Pass through host's Machine Check Enable value to hw_cr4, which
4481 * is in force while we are in guest mode. Do not let guests control
4482 * this bit, even if host CR4.MCE == 0.
4484 unsigned long hw_cr4
=
4485 (cr4_read_shadow() & X86_CR4_MCE
) |
4486 (cr4
& ~X86_CR4_MCE
) |
4487 (to_vmx(vcpu
)->rmode
.vm86_active
?
4488 KVM_RMODE_VM_CR4_ALWAYS_ON
: KVM_PMODE_VM_CR4_ALWAYS_ON
);
4490 if ((cr4
& X86_CR4_UMIP
) && !boot_cpu_has(X86_FEATURE_UMIP
)) {
4491 vmcs_set_bits(SECONDARY_VM_EXEC_CONTROL
,
4492 SECONDARY_EXEC_DESC
);
4493 hw_cr4
&= ~X86_CR4_UMIP
;
4494 } else if (!is_guest_mode(vcpu
) ||
4495 !nested_cpu_has2(get_vmcs12(vcpu
), SECONDARY_EXEC_DESC
))
4496 vmcs_clear_bits(SECONDARY_VM_EXEC_CONTROL
,
4497 SECONDARY_EXEC_DESC
);
4499 if (cr4
& X86_CR4_VMXE
) {
4501 * To use VMXON (and later other VMX instructions), a guest
4502 * must first be able to turn on cr4.VMXE (see handle_vmon()).
4503 * So basically the check on whether to allow nested VMX
4506 if (!nested_vmx_allowed(vcpu
))
4510 if (to_vmx(vcpu
)->nested
.vmxon
&& !nested_cr4_valid(vcpu
, cr4
))
4513 vcpu
->arch
.cr4
= cr4
;
4515 if (!is_paging(vcpu
)) {
4516 hw_cr4
&= ~X86_CR4_PAE
;
4517 hw_cr4
|= X86_CR4_PSE
;
4518 } else if (!(cr4
& X86_CR4_PAE
)) {
4519 hw_cr4
&= ~X86_CR4_PAE
;
4523 if (!enable_unrestricted_guest
&& !is_paging(vcpu
))
4525 * SMEP/SMAP/PKU is disabled if CPU is in non-paging mode in
4526 * hardware. To emulate this behavior, SMEP/SMAP/PKU needs
4527 * to be manually disabled when guest switches to non-paging
4530 * If !enable_unrestricted_guest, the CPU is always running
4531 * with CR0.PG=1 and CR4 needs to be modified.
4532 * If enable_unrestricted_guest, the CPU automatically
4533 * disables SMEP/SMAP/PKU when the guest sets CR0.PG=0.
4535 hw_cr4
&= ~(X86_CR4_SMEP
| X86_CR4_SMAP
| X86_CR4_PKE
);
4537 vmcs_writel(CR4_READ_SHADOW
, cr4
);
4538 vmcs_writel(GUEST_CR4
, hw_cr4
);
4542 static void vmx_get_segment(struct kvm_vcpu
*vcpu
,
4543 struct kvm_segment
*var
, int seg
)
4545 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
4548 if (vmx
->rmode
.vm86_active
&& seg
!= VCPU_SREG_LDTR
) {
4549 *var
= vmx
->rmode
.segs
[seg
];
4550 if (seg
== VCPU_SREG_TR
4551 || var
->selector
== vmx_read_guest_seg_selector(vmx
, seg
))
4553 var
->base
= vmx_read_guest_seg_base(vmx
, seg
);
4554 var
->selector
= vmx_read_guest_seg_selector(vmx
, seg
);
4557 var
->base
= vmx_read_guest_seg_base(vmx
, seg
);
4558 var
->limit
= vmx_read_guest_seg_limit(vmx
, seg
);
4559 var
->selector
= vmx_read_guest_seg_selector(vmx
, seg
);
4560 ar
= vmx_read_guest_seg_ar(vmx
, seg
);
4561 var
->unusable
= (ar
>> 16) & 1;
4562 var
->type
= ar
& 15;
4563 var
->s
= (ar
>> 4) & 1;
4564 var
->dpl
= (ar
>> 5) & 3;
4566 * Some userspaces do not preserve unusable property. Since usable
4567 * segment has to be present according to VMX spec we can use present
4568 * property to amend userspace bug by making unusable segment always
4569 * nonpresent. vmx_segment_access_rights() already marks nonpresent
4570 * segment as unusable.
4572 var
->present
= !var
->unusable
;
4573 var
->avl
= (ar
>> 12) & 1;
4574 var
->l
= (ar
>> 13) & 1;
4575 var
->db
= (ar
>> 14) & 1;
4576 var
->g
= (ar
>> 15) & 1;
4579 static u64
vmx_get_segment_base(struct kvm_vcpu
*vcpu
, int seg
)
4581 struct kvm_segment s
;
4583 if (to_vmx(vcpu
)->rmode
.vm86_active
) {
4584 vmx_get_segment(vcpu
, &s
, seg
);
4587 return vmx_read_guest_seg_base(to_vmx(vcpu
), seg
);
4590 static int vmx_get_cpl(struct kvm_vcpu
*vcpu
)
4592 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
4594 if (unlikely(vmx
->rmode
.vm86_active
))
4597 int ar
= vmx_read_guest_seg_ar(vmx
, VCPU_SREG_SS
);
4598 return VMX_AR_DPL(ar
);
4602 static u32
vmx_segment_access_rights(struct kvm_segment
*var
)
4606 if (var
->unusable
|| !var
->present
)
4609 ar
= var
->type
& 15;
4610 ar
|= (var
->s
& 1) << 4;
4611 ar
|= (var
->dpl
& 3) << 5;
4612 ar
|= (var
->present
& 1) << 7;
4613 ar
|= (var
->avl
& 1) << 12;
4614 ar
|= (var
->l
& 1) << 13;
4615 ar
|= (var
->db
& 1) << 14;
4616 ar
|= (var
->g
& 1) << 15;
4622 static void vmx_set_segment(struct kvm_vcpu
*vcpu
,
4623 struct kvm_segment
*var
, int seg
)
4625 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
4626 const struct kvm_vmx_segment_field
*sf
= &kvm_vmx_segment_fields
[seg
];
4628 vmx_segment_cache_clear(vmx
);
4630 if (vmx
->rmode
.vm86_active
&& seg
!= VCPU_SREG_LDTR
) {
4631 vmx
->rmode
.segs
[seg
] = *var
;
4632 if (seg
== VCPU_SREG_TR
)
4633 vmcs_write16(sf
->selector
, var
->selector
);
4635 fix_rmode_seg(seg
, &vmx
->rmode
.segs
[seg
]);
4639 vmcs_writel(sf
->base
, var
->base
);
4640 vmcs_write32(sf
->limit
, var
->limit
);
4641 vmcs_write16(sf
->selector
, var
->selector
);
4644 * Fix the "Accessed" bit in AR field of segment registers for older
4646 * IA32 arch specifies that at the time of processor reset the
4647 * "Accessed" bit in the AR field of segment registers is 1. And qemu
4648 * is setting it to 0 in the userland code. This causes invalid guest
4649 * state vmexit when "unrestricted guest" mode is turned on.
4650 * Fix for this setup issue in cpu_reset is being pushed in the qemu
4651 * tree. Newer qemu binaries with that qemu fix would not need this
4654 if (enable_unrestricted_guest
&& (seg
!= VCPU_SREG_LDTR
))
4655 var
->type
|= 0x1; /* Accessed */
4657 vmcs_write32(sf
->ar_bytes
, vmx_segment_access_rights(var
));
4660 vmx
->emulation_required
= emulation_required(vcpu
);
4663 static void vmx_get_cs_db_l_bits(struct kvm_vcpu
*vcpu
, int *db
, int *l
)
4665 u32 ar
= vmx_read_guest_seg_ar(to_vmx(vcpu
), VCPU_SREG_CS
);
4667 *db
= (ar
>> 14) & 1;
4668 *l
= (ar
>> 13) & 1;
4671 static void vmx_get_idt(struct kvm_vcpu
*vcpu
, struct desc_ptr
*dt
)
4673 dt
->size
= vmcs_read32(GUEST_IDTR_LIMIT
);
4674 dt
->address
= vmcs_readl(GUEST_IDTR_BASE
);
4677 static void vmx_set_idt(struct kvm_vcpu
*vcpu
, struct desc_ptr
*dt
)
4679 vmcs_write32(GUEST_IDTR_LIMIT
, dt
->size
);
4680 vmcs_writel(GUEST_IDTR_BASE
, dt
->address
);
4683 static void vmx_get_gdt(struct kvm_vcpu
*vcpu
, struct desc_ptr
*dt
)
4685 dt
->size
= vmcs_read32(GUEST_GDTR_LIMIT
);
4686 dt
->address
= vmcs_readl(GUEST_GDTR_BASE
);
4689 static void vmx_set_gdt(struct kvm_vcpu
*vcpu
, struct desc_ptr
*dt
)
4691 vmcs_write32(GUEST_GDTR_LIMIT
, dt
->size
);
4692 vmcs_writel(GUEST_GDTR_BASE
, dt
->address
);
4695 static bool rmode_segment_valid(struct kvm_vcpu
*vcpu
, int seg
)
4697 struct kvm_segment var
;
4700 vmx_get_segment(vcpu
, &var
, seg
);
4702 if (seg
== VCPU_SREG_CS
)
4704 ar
= vmx_segment_access_rights(&var
);
4706 if (var
.base
!= (var
.selector
<< 4))
4708 if (var
.limit
!= 0xffff)
4716 static bool code_segment_valid(struct kvm_vcpu
*vcpu
)
4718 struct kvm_segment cs
;
4719 unsigned int cs_rpl
;
4721 vmx_get_segment(vcpu
, &cs
, VCPU_SREG_CS
);
4722 cs_rpl
= cs
.selector
& SEGMENT_RPL_MASK
;
4726 if (~cs
.type
& (VMX_AR_TYPE_CODE_MASK
|VMX_AR_TYPE_ACCESSES_MASK
))
4730 if (cs
.type
& VMX_AR_TYPE_WRITEABLE_MASK
) {
4731 if (cs
.dpl
> cs_rpl
)
4734 if (cs
.dpl
!= cs_rpl
)
4740 /* TODO: Add Reserved field check, this'll require a new member in the kvm_segment_field structure */
4744 static bool stack_segment_valid(struct kvm_vcpu
*vcpu
)
4746 struct kvm_segment ss
;
4747 unsigned int ss_rpl
;
4749 vmx_get_segment(vcpu
, &ss
, VCPU_SREG_SS
);
4750 ss_rpl
= ss
.selector
& SEGMENT_RPL_MASK
;
4754 if (ss
.type
!= 3 && ss
.type
!= 7)
4758 if (ss
.dpl
!= ss_rpl
) /* DPL != RPL */
4766 static bool data_segment_valid(struct kvm_vcpu
*vcpu
, int seg
)
4768 struct kvm_segment var
;
4771 vmx_get_segment(vcpu
, &var
, seg
);
4772 rpl
= var
.selector
& SEGMENT_RPL_MASK
;
4780 if (~var
.type
& (VMX_AR_TYPE_CODE_MASK
|VMX_AR_TYPE_WRITEABLE_MASK
)) {
4781 if (var
.dpl
< rpl
) /* DPL < RPL */
4785 /* TODO: Add other members to kvm_segment_field to allow checking for other access
4791 static bool tr_valid(struct kvm_vcpu
*vcpu
)
4793 struct kvm_segment tr
;
4795 vmx_get_segment(vcpu
, &tr
, VCPU_SREG_TR
);
4799 if (tr
.selector
& SEGMENT_TI_MASK
) /* TI = 1 */
4801 if (tr
.type
!= 3 && tr
.type
!= 11) /* TODO: Check if guest is in IA32e mode */
4809 static bool ldtr_valid(struct kvm_vcpu
*vcpu
)
4811 struct kvm_segment ldtr
;
4813 vmx_get_segment(vcpu
, &ldtr
, VCPU_SREG_LDTR
);
4817 if (ldtr
.selector
& SEGMENT_TI_MASK
) /* TI = 1 */
4827 static bool cs_ss_rpl_check(struct kvm_vcpu
*vcpu
)
4829 struct kvm_segment cs
, ss
;
4831 vmx_get_segment(vcpu
, &cs
, VCPU_SREG_CS
);
4832 vmx_get_segment(vcpu
, &ss
, VCPU_SREG_SS
);
4834 return ((cs
.selector
& SEGMENT_RPL_MASK
) ==
4835 (ss
.selector
& SEGMENT_RPL_MASK
));
4839 * Check if guest state is valid. Returns true if valid, false if
4841 * We assume that registers are always usable
4843 static bool guest_state_valid(struct kvm_vcpu
*vcpu
)
4845 if (enable_unrestricted_guest
)
4848 /* real mode guest state checks */
4849 if (!is_protmode(vcpu
) || (vmx_get_rflags(vcpu
) & X86_EFLAGS_VM
)) {
4850 if (!rmode_segment_valid(vcpu
, VCPU_SREG_CS
))
4852 if (!rmode_segment_valid(vcpu
, VCPU_SREG_SS
))
4854 if (!rmode_segment_valid(vcpu
, VCPU_SREG_DS
))
4856 if (!rmode_segment_valid(vcpu
, VCPU_SREG_ES
))
4858 if (!rmode_segment_valid(vcpu
, VCPU_SREG_FS
))
4860 if (!rmode_segment_valid(vcpu
, VCPU_SREG_GS
))
4863 /* protected mode guest state checks */
4864 if (!cs_ss_rpl_check(vcpu
))
4866 if (!code_segment_valid(vcpu
))
4868 if (!stack_segment_valid(vcpu
))
4870 if (!data_segment_valid(vcpu
, VCPU_SREG_DS
))
4872 if (!data_segment_valid(vcpu
, VCPU_SREG_ES
))
4874 if (!data_segment_valid(vcpu
, VCPU_SREG_FS
))
4876 if (!data_segment_valid(vcpu
, VCPU_SREG_GS
))
4878 if (!tr_valid(vcpu
))
4880 if (!ldtr_valid(vcpu
))
4884 * - Add checks on RIP
4885 * - Add checks on RFLAGS
4891 static bool page_address_valid(struct kvm_vcpu
*vcpu
, gpa_t gpa
)
4893 return PAGE_ALIGNED(gpa
) && !(gpa
>> cpuid_maxphyaddr(vcpu
));
4896 static int init_rmode_tss(struct kvm
*kvm
)
4902 idx
= srcu_read_lock(&kvm
->srcu
);
4903 fn
= kvm
->arch
.tss_addr
>> PAGE_SHIFT
;
4904 r
= kvm_clear_guest_page(kvm
, fn
, 0, PAGE_SIZE
);
4907 data
= TSS_BASE_SIZE
+ TSS_REDIRECTION_SIZE
;
4908 r
= kvm_write_guest_page(kvm
, fn
++, &data
,
4909 TSS_IOPB_BASE_OFFSET
, sizeof(u16
));
4912 r
= kvm_clear_guest_page(kvm
, fn
++, 0, PAGE_SIZE
);
4915 r
= kvm_clear_guest_page(kvm
, fn
, 0, PAGE_SIZE
);
4919 r
= kvm_write_guest_page(kvm
, fn
, &data
,
4920 RMODE_TSS_SIZE
- 2 * PAGE_SIZE
- 1,
4923 srcu_read_unlock(&kvm
->srcu
, idx
);
4927 static int init_rmode_identity_map(struct kvm
*kvm
)
4930 kvm_pfn_t identity_map_pfn
;
4933 /* Protect kvm->arch.ept_identity_pagetable_done. */
4934 mutex_lock(&kvm
->slots_lock
);
4936 if (likely(kvm
->arch
.ept_identity_pagetable_done
))
4939 if (!kvm
->arch
.ept_identity_map_addr
)
4940 kvm
->arch
.ept_identity_map_addr
= VMX_EPT_IDENTITY_PAGETABLE_ADDR
;
4941 identity_map_pfn
= kvm
->arch
.ept_identity_map_addr
>> PAGE_SHIFT
;
4943 r
= __x86_set_memory_region(kvm
, IDENTITY_PAGETABLE_PRIVATE_MEMSLOT
,
4944 kvm
->arch
.ept_identity_map_addr
, PAGE_SIZE
);
4948 idx
= srcu_read_lock(&kvm
->srcu
);
4949 r
= kvm_clear_guest_page(kvm
, identity_map_pfn
, 0, PAGE_SIZE
);
4952 /* Set up identity-mapping pagetable for EPT in real mode */
4953 for (i
= 0; i
< PT32_ENT_PER_PAGE
; i
++) {
4954 tmp
= (i
<< 22) + (_PAGE_PRESENT
| _PAGE_RW
| _PAGE_USER
|
4955 _PAGE_ACCESSED
| _PAGE_DIRTY
| _PAGE_PSE
);
4956 r
= kvm_write_guest_page(kvm
, identity_map_pfn
,
4957 &tmp
, i
* sizeof(tmp
), sizeof(tmp
));
4961 kvm
->arch
.ept_identity_pagetable_done
= true;
4964 srcu_read_unlock(&kvm
->srcu
, idx
);
4967 mutex_unlock(&kvm
->slots_lock
);
4971 static void seg_setup(int seg
)
4973 const struct kvm_vmx_segment_field
*sf
= &kvm_vmx_segment_fields
[seg
];
4976 vmcs_write16(sf
->selector
, 0);
4977 vmcs_writel(sf
->base
, 0);
4978 vmcs_write32(sf
->limit
, 0xffff);
4980 if (seg
== VCPU_SREG_CS
)
4981 ar
|= 0x08; /* code segment */
4983 vmcs_write32(sf
->ar_bytes
, ar
);
4986 static int alloc_apic_access_page(struct kvm
*kvm
)
4991 mutex_lock(&kvm
->slots_lock
);
4992 if (kvm
->arch
.apic_access_page_done
)
4994 r
= __x86_set_memory_region(kvm
, APIC_ACCESS_PAGE_PRIVATE_MEMSLOT
,
4995 APIC_DEFAULT_PHYS_BASE
, PAGE_SIZE
);
4999 page
= gfn_to_page(kvm
, APIC_DEFAULT_PHYS_BASE
>> PAGE_SHIFT
);
5000 if (is_error_page(page
)) {
5006 * Do not pin the page in memory, so that memory hot-unplug
5007 * is able to migrate it.
5010 kvm
->arch
.apic_access_page_done
= true;
5012 mutex_unlock(&kvm
->slots_lock
);
5016 static int allocate_vpid(void)
5022 spin_lock(&vmx_vpid_lock
);
5023 vpid
= find_first_zero_bit(vmx_vpid_bitmap
, VMX_NR_VPIDS
);
5024 if (vpid
< VMX_NR_VPIDS
)
5025 __set_bit(vpid
, vmx_vpid_bitmap
);
5028 spin_unlock(&vmx_vpid_lock
);
5032 static void free_vpid(int vpid
)
5034 if (!enable_vpid
|| vpid
== 0)
5036 spin_lock(&vmx_vpid_lock
);
5037 __clear_bit(vpid
, vmx_vpid_bitmap
);
5038 spin_unlock(&vmx_vpid_lock
);
5041 static void __always_inline
vmx_disable_intercept_for_msr(unsigned long *msr_bitmap
,
5044 int f
= sizeof(unsigned long);
5046 if (!cpu_has_vmx_msr_bitmap())
5050 * See Intel PRM Vol. 3, 20.6.9 (MSR-Bitmap Address). Early manuals
5051 * have the write-low and read-high bitmap offsets the wrong way round.
5052 * We can control MSRs 0x00000000-0x00001fff and 0xc0000000-0xc0001fff.
5054 if (msr
<= 0x1fff) {
5055 if (type
& MSR_TYPE_R
)
5057 __clear_bit(msr
, msr_bitmap
+ 0x000 / f
);
5059 if (type
& MSR_TYPE_W
)
5061 __clear_bit(msr
, msr_bitmap
+ 0x800 / f
);
5063 } else if ((msr
>= 0xc0000000) && (msr
<= 0xc0001fff)) {
5065 if (type
& MSR_TYPE_R
)
5067 __clear_bit(msr
, msr_bitmap
+ 0x400 / f
);
5069 if (type
& MSR_TYPE_W
)
5071 __clear_bit(msr
, msr_bitmap
+ 0xc00 / f
);
5076 static void __always_inline
vmx_enable_intercept_for_msr(unsigned long *msr_bitmap
,
5079 int f
= sizeof(unsigned long);
5081 if (!cpu_has_vmx_msr_bitmap())
5085 * See Intel PRM Vol. 3, 20.6.9 (MSR-Bitmap Address). Early manuals
5086 * have the write-low and read-high bitmap offsets the wrong way round.
5087 * We can control MSRs 0x00000000-0x00001fff and 0xc0000000-0xc0001fff.
5089 if (msr
<= 0x1fff) {
5090 if (type
& MSR_TYPE_R
)
5092 __set_bit(msr
, msr_bitmap
+ 0x000 / f
);
5094 if (type
& MSR_TYPE_W
)
5096 __set_bit(msr
, msr_bitmap
+ 0x800 / f
);
5098 } else if ((msr
>= 0xc0000000) && (msr
<= 0xc0001fff)) {
5100 if (type
& MSR_TYPE_R
)
5102 __set_bit(msr
, msr_bitmap
+ 0x400 / f
);
5104 if (type
& MSR_TYPE_W
)
5106 __set_bit(msr
, msr_bitmap
+ 0xc00 / f
);
5111 static void __always_inline
vmx_set_intercept_for_msr(unsigned long *msr_bitmap
,
5112 u32 msr
, int type
, bool value
)
5115 vmx_enable_intercept_for_msr(msr_bitmap
, msr
, type
);
5117 vmx_disable_intercept_for_msr(msr_bitmap
, msr
, type
);
5121 * If a msr is allowed by L0, we should check whether it is allowed by L1.
5122 * The corresponding bit will be cleared unless both of L0 and L1 allow it.
5124 static void nested_vmx_disable_intercept_for_msr(unsigned long *msr_bitmap_l1
,
5125 unsigned long *msr_bitmap_nested
,
5128 int f
= sizeof(unsigned long);
5131 * See Intel PRM Vol. 3, 20.6.9 (MSR-Bitmap Address). Early manuals
5132 * have the write-low and read-high bitmap offsets the wrong way round.
5133 * We can control MSRs 0x00000000-0x00001fff and 0xc0000000-0xc0001fff.
5135 if (msr
<= 0x1fff) {
5136 if (type
& MSR_TYPE_R
&&
5137 !test_bit(msr
, msr_bitmap_l1
+ 0x000 / f
))
5139 __clear_bit(msr
, msr_bitmap_nested
+ 0x000 / f
);
5141 if (type
& MSR_TYPE_W
&&
5142 !test_bit(msr
, msr_bitmap_l1
+ 0x800 / f
))
5144 __clear_bit(msr
, msr_bitmap_nested
+ 0x800 / f
);
5146 } else if ((msr
>= 0xc0000000) && (msr
<= 0xc0001fff)) {
5148 if (type
& MSR_TYPE_R
&&
5149 !test_bit(msr
, msr_bitmap_l1
+ 0x400 / f
))
5151 __clear_bit(msr
, msr_bitmap_nested
+ 0x400 / f
);
5153 if (type
& MSR_TYPE_W
&&
5154 !test_bit(msr
, msr_bitmap_l1
+ 0xc00 / f
))
5156 __clear_bit(msr
, msr_bitmap_nested
+ 0xc00 / f
);
5161 static u8
vmx_msr_bitmap_mode(struct kvm_vcpu
*vcpu
)
5165 if (cpu_has_secondary_exec_ctrls() &&
5166 (vmcs_read32(SECONDARY_VM_EXEC_CONTROL
) &
5167 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE
)) {
5168 mode
|= MSR_BITMAP_MODE_X2APIC
;
5169 if (enable_apicv
&& kvm_vcpu_apicv_active(vcpu
))
5170 mode
|= MSR_BITMAP_MODE_X2APIC_APICV
;
5173 if (is_long_mode(vcpu
))
5174 mode
|= MSR_BITMAP_MODE_LM
;
5179 #define X2APIC_MSR(r) (APIC_BASE_MSR + ((r) >> 4))
5181 static void vmx_update_msr_bitmap_x2apic(unsigned long *msr_bitmap
,
5186 for (msr
= 0x800; msr
<= 0x8ff; msr
+= BITS_PER_LONG
) {
5187 unsigned word
= msr
/ BITS_PER_LONG
;
5188 msr_bitmap
[word
] = (mode
& MSR_BITMAP_MODE_X2APIC_APICV
) ? 0 : ~0;
5189 msr_bitmap
[word
+ (0x800 / sizeof(long))] = ~0;
5192 if (mode
& MSR_BITMAP_MODE_X2APIC
) {
5194 * TPR reads and writes can be virtualized even if virtual interrupt
5195 * delivery is not in use.
5197 vmx_disable_intercept_for_msr(msr_bitmap
, X2APIC_MSR(APIC_TASKPRI
), MSR_TYPE_RW
);
5198 if (mode
& MSR_BITMAP_MODE_X2APIC_APICV
) {
5199 vmx_enable_intercept_for_msr(msr_bitmap
, X2APIC_MSR(APIC_TMCCT
), MSR_TYPE_R
);
5200 vmx_disable_intercept_for_msr(msr_bitmap
, X2APIC_MSR(APIC_EOI
), MSR_TYPE_W
);
5201 vmx_disable_intercept_for_msr(msr_bitmap
, X2APIC_MSR(APIC_SELF_IPI
), MSR_TYPE_W
);
5206 static void vmx_update_msr_bitmap(struct kvm_vcpu
*vcpu
)
5208 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
5209 unsigned long *msr_bitmap
= vmx
->vmcs01
.msr_bitmap
;
5210 u8 mode
= vmx_msr_bitmap_mode(vcpu
);
5211 u8 changed
= mode
^ vmx
->msr_bitmap_mode
;
5216 vmx_set_intercept_for_msr(msr_bitmap
, MSR_KERNEL_GS_BASE
, MSR_TYPE_RW
,
5217 !(mode
& MSR_BITMAP_MODE_LM
));
5219 if (changed
& (MSR_BITMAP_MODE_X2APIC
| MSR_BITMAP_MODE_X2APIC_APICV
))
5220 vmx_update_msr_bitmap_x2apic(msr_bitmap
, mode
);
5222 vmx
->msr_bitmap_mode
= mode
;
5225 static bool vmx_get_enable_apicv(struct kvm_vcpu
*vcpu
)
5227 return enable_apicv
;
5230 static void nested_mark_vmcs12_pages_dirty(struct kvm_vcpu
*vcpu
)
5232 struct vmcs12
*vmcs12
= get_vmcs12(vcpu
);
5236 * Don't need to mark the APIC access page dirty; it is never
5237 * written to by the CPU during APIC virtualization.
5240 if (nested_cpu_has(vmcs12
, CPU_BASED_TPR_SHADOW
)) {
5241 gfn
= vmcs12
->virtual_apic_page_addr
>> PAGE_SHIFT
;
5242 kvm_vcpu_mark_page_dirty(vcpu
, gfn
);
5245 if (nested_cpu_has_posted_intr(vmcs12
)) {
5246 gfn
= vmcs12
->posted_intr_desc_addr
>> PAGE_SHIFT
;
5247 kvm_vcpu_mark_page_dirty(vcpu
, gfn
);
5252 static void vmx_complete_nested_posted_interrupt(struct kvm_vcpu
*vcpu
)
5254 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
5259 if (!vmx
->nested
.pi_desc
|| !vmx
->nested
.pi_pending
)
5262 vmx
->nested
.pi_pending
= false;
5263 if (!pi_test_and_clear_on(vmx
->nested
.pi_desc
))
5266 max_irr
= find_last_bit((unsigned long *)vmx
->nested
.pi_desc
->pir
, 256);
5267 if (max_irr
!= 256) {
5268 vapic_page
= kmap(vmx
->nested
.virtual_apic_page
);
5269 __kvm_apic_update_irr(vmx
->nested
.pi_desc
->pir
,
5270 vapic_page
, &max_irr
);
5271 kunmap(vmx
->nested
.virtual_apic_page
);
5273 status
= vmcs_read16(GUEST_INTR_STATUS
);
5274 if ((u8
)max_irr
> ((u8
)status
& 0xff)) {
5276 status
|= (u8
)max_irr
;
5277 vmcs_write16(GUEST_INTR_STATUS
, status
);
5281 nested_mark_vmcs12_pages_dirty(vcpu
);
5284 static inline bool kvm_vcpu_trigger_posted_interrupt(struct kvm_vcpu
*vcpu
,
5288 int pi_vec
= nested
? POSTED_INTR_NESTED_VECTOR
: POSTED_INTR_VECTOR
;
5290 if (vcpu
->mode
== IN_GUEST_MODE
) {
5292 * The vector of interrupt to be delivered to vcpu had
5293 * been set in PIR before this function.
5295 * Following cases will be reached in this block, and
5296 * we always send a notification event in all cases as
5299 * Case 1: vcpu keeps in non-root mode. Sending a
5300 * notification event posts the interrupt to vcpu.
5302 * Case 2: vcpu exits to root mode and is still
5303 * runnable. PIR will be synced to vIRR before the
5304 * next vcpu entry. Sending a notification event in
5305 * this case has no effect, as vcpu is not in root
5308 * Case 3: vcpu exits to root mode and is blocked.
5309 * vcpu_block() has already synced PIR to vIRR and
5310 * never blocks vcpu if vIRR is not cleared. Therefore,
5311 * a blocked vcpu here does not wait for any requested
5312 * interrupts in PIR, and sending a notification event
5313 * which has no effect is safe here.
5316 apic
->send_IPI_mask(get_cpu_mask(vcpu
->cpu
), pi_vec
);
5323 static int vmx_deliver_nested_posted_interrupt(struct kvm_vcpu
*vcpu
,
5326 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
5328 if (is_guest_mode(vcpu
) &&
5329 vector
== vmx
->nested
.posted_intr_nv
) {
5331 * If a posted intr is not recognized by hardware,
5332 * we will accomplish it in the next vmentry.
5334 vmx
->nested
.pi_pending
= true;
5335 kvm_make_request(KVM_REQ_EVENT
, vcpu
);
5336 /* the PIR and ON have been set by L1. */
5337 if (!kvm_vcpu_trigger_posted_interrupt(vcpu
, true))
5338 kvm_vcpu_kick(vcpu
);
5344 * Send interrupt to vcpu via posted interrupt way.
5345 * 1. If target vcpu is running(non-root mode), send posted interrupt
5346 * notification to vcpu and hardware will sync PIR to vIRR atomically.
5347 * 2. If target vcpu isn't running(root mode), kick it to pick up the
5348 * interrupt from PIR in next vmentry.
5350 static void vmx_deliver_posted_interrupt(struct kvm_vcpu
*vcpu
, int vector
)
5352 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
5355 r
= vmx_deliver_nested_posted_interrupt(vcpu
, vector
);
5359 if (pi_test_and_set_pir(vector
, &vmx
->pi_desc
))
5362 /* If a previous notification has sent the IPI, nothing to do. */
5363 if (pi_test_and_set_on(&vmx
->pi_desc
))
5366 if (!kvm_vcpu_trigger_posted_interrupt(vcpu
, false))
5367 kvm_vcpu_kick(vcpu
);
5371 * Set up the vmcs's constant host-state fields, i.e., host-state fields that
5372 * will not change in the lifetime of the guest.
5373 * Note that host-state that does change is set elsewhere. E.g., host-state
5374 * that is set differently for each CPU is set in vmx_vcpu_load(), not here.
5376 static void vmx_set_constant_host_state(struct vcpu_vmx
*vmx
)
5381 unsigned long cr0
, cr3
, cr4
;
5384 WARN_ON(cr0
& X86_CR0_TS
);
5385 vmcs_writel(HOST_CR0
, cr0
); /* 22.2.3 */
5388 * Save the most likely value for this task's CR3 in the VMCS.
5389 * We can't use __get_current_cr3_fast() because we're not atomic.
5392 vmcs_writel(HOST_CR3
, cr3
); /* 22.2.3 FIXME: shadow tables */
5393 vmx
->loaded_vmcs
->vmcs_host_cr3
= cr3
;
5395 /* Save the most likely value for this task's CR4 in the VMCS. */
5396 cr4
= cr4_read_shadow();
5397 vmcs_writel(HOST_CR4
, cr4
); /* 22.2.3, 22.2.5 */
5398 vmx
->loaded_vmcs
->vmcs_host_cr4
= cr4
;
5400 vmcs_write16(HOST_CS_SELECTOR
, __KERNEL_CS
); /* 22.2.4 */
5401 #ifdef CONFIG_X86_64
5403 * Load null selectors, so we can avoid reloading them in
5404 * __vmx_load_host_state(), in case userspace uses the null selectors
5405 * too (the expected case).
5407 vmcs_write16(HOST_DS_SELECTOR
, 0);
5408 vmcs_write16(HOST_ES_SELECTOR
, 0);
5410 vmcs_write16(HOST_DS_SELECTOR
, __KERNEL_DS
); /* 22.2.4 */
5411 vmcs_write16(HOST_ES_SELECTOR
, __KERNEL_DS
); /* 22.2.4 */
5413 vmcs_write16(HOST_SS_SELECTOR
, __KERNEL_DS
); /* 22.2.4 */
5414 vmcs_write16(HOST_TR_SELECTOR
, GDT_ENTRY_TSS
*8); /* 22.2.4 */
5417 vmcs_writel(HOST_IDTR_BASE
, dt
.address
); /* 22.2.4 */
5418 vmx
->host_idt_base
= dt
.address
;
5420 vmcs_writel(HOST_RIP
, vmx_return
); /* 22.2.5 */
5422 rdmsr(MSR_IA32_SYSENTER_CS
, low32
, high32
);
5423 vmcs_write32(HOST_IA32_SYSENTER_CS
, low32
);
5424 rdmsrl(MSR_IA32_SYSENTER_EIP
, tmpl
);
5425 vmcs_writel(HOST_IA32_SYSENTER_EIP
, tmpl
); /* 22.2.3 */
5427 if (vmcs_config
.vmexit_ctrl
& VM_EXIT_LOAD_IA32_PAT
) {
5428 rdmsr(MSR_IA32_CR_PAT
, low32
, high32
);
5429 vmcs_write64(HOST_IA32_PAT
, low32
| ((u64
) high32
<< 32));
5433 static void set_cr4_guest_host_mask(struct vcpu_vmx
*vmx
)
5435 vmx
->vcpu
.arch
.cr4_guest_owned_bits
= KVM_CR4_GUEST_OWNED_BITS
;
5437 vmx
->vcpu
.arch
.cr4_guest_owned_bits
|= X86_CR4_PGE
;
5438 if (is_guest_mode(&vmx
->vcpu
))
5439 vmx
->vcpu
.arch
.cr4_guest_owned_bits
&=
5440 ~get_vmcs12(&vmx
->vcpu
)->cr4_guest_host_mask
;
5441 vmcs_writel(CR4_GUEST_HOST_MASK
, ~vmx
->vcpu
.arch
.cr4_guest_owned_bits
);
5444 static u32
vmx_pin_based_exec_ctrl(struct vcpu_vmx
*vmx
)
5446 u32 pin_based_exec_ctrl
= vmcs_config
.pin_based_exec_ctrl
;
5448 if (!kvm_vcpu_apicv_active(&vmx
->vcpu
))
5449 pin_based_exec_ctrl
&= ~PIN_BASED_POSTED_INTR
;
5452 pin_based_exec_ctrl
&= ~PIN_BASED_VIRTUAL_NMIS
;
5454 /* Enable the preemption timer dynamically */
5455 pin_based_exec_ctrl
&= ~PIN_BASED_VMX_PREEMPTION_TIMER
;
5456 return pin_based_exec_ctrl
;
5459 static void vmx_refresh_apicv_exec_ctrl(struct kvm_vcpu
*vcpu
)
5461 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
5463 vmcs_write32(PIN_BASED_VM_EXEC_CONTROL
, vmx_pin_based_exec_ctrl(vmx
));
5464 if (cpu_has_secondary_exec_ctrls()) {
5465 if (kvm_vcpu_apicv_active(vcpu
))
5466 vmcs_set_bits(SECONDARY_VM_EXEC_CONTROL
,
5467 SECONDARY_EXEC_APIC_REGISTER_VIRT
|
5468 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY
);
5470 vmcs_clear_bits(SECONDARY_VM_EXEC_CONTROL
,
5471 SECONDARY_EXEC_APIC_REGISTER_VIRT
|
5472 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY
);
5475 if (cpu_has_vmx_msr_bitmap())
5476 vmx_update_msr_bitmap(vcpu
);
5479 static u32
vmx_exec_control(struct vcpu_vmx
*vmx
)
5481 u32 exec_control
= vmcs_config
.cpu_based_exec_ctrl
;
5483 if (vmx
->vcpu
.arch
.switch_db_regs
& KVM_DEBUGREG_WONT_EXIT
)
5484 exec_control
&= ~CPU_BASED_MOV_DR_EXITING
;
5486 if (!cpu_need_tpr_shadow(&vmx
->vcpu
)) {
5487 exec_control
&= ~CPU_BASED_TPR_SHADOW
;
5488 #ifdef CONFIG_X86_64
5489 exec_control
|= CPU_BASED_CR8_STORE_EXITING
|
5490 CPU_BASED_CR8_LOAD_EXITING
;
5494 exec_control
|= CPU_BASED_CR3_STORE_EXITING
|
5495 CPU_BASED_CR3_LOAD_EXITING
|
5496 CPU_BASED_INVLPG_EXITING
;
5497 return exec_control
;
5500 static bool vmx_rdrand_supported(void)
5502 return vmcs_config
.cpu_based_2nd_exec_ctrl
&
5503 SECONDARY_EXEC_RDRAND_EXITING
;
5506 static bool vmx_rdseed_supported(void)
5508 return vmcs_config
.cpu_based_2nd_exec_ctrl
&
5509 SECONDARY_EXEC_RDSEED_EXITING
;
5512 static void vmx_compute_secondary_exec_control(struct vcpu_vmx
*vmx
)
5514 struct kvm_vcpu
*vcpu
= &vmx
->vcpu
;
5516 u32 exec_control
= vmcs_config
.cpu_based_2nd_exec_ctrl
;
5518 if (!cpu_need_virtualize_apic_accesses(vcpu
))
5519 exec_control
&= ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES
;
5521 exec_control
&= ~SECONDARY_EXEC_ENABLE_VPID
;
5523 exec_control
&= ~SECONDARY_EXEC_ENABLE_EPT
;
5524 enable_unrestricted_guest
= 0;
5525 /* Enable INVPCID for non-ept guests may cause performance regression. */
5526 exec_control
&= ~SECONDARY_EXEC_ENABLE_INVPCID
;
5528 if (!enable_unrestricted_guest
)
5529 exec_control
&= ~SECONDARY_EXEC_UNRESTRICTED_GUEST
;
5531 exec_control
&= ~SECONDARY_EXEC_PAUSE_LOOP_EXITING
;
5532 if (!kvm_vcpu_apicv_active(vcpu
))
5533 exec_control
&= ~(SECONDARY_EXEC_APIC_REGISTER_VIRT
|
5534 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY
);
5535 exec_control
&= ~SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE
;
5537 /* SECONDARY_EXEC_DESC is enabled/disabled on writes to CR4.UMIP,
5538 * in vmx_set_cr4. */
5539 exec_control
&= ~SECONDARY_EXEC_DESC
;
5541 /* SECONDARY_EXEC_SHADOW_VMCS is enabled when L1 executes VMPTRLD
5543 We can NOT enable shadow_vmcs here because we don't have yet
5546 exec_control
&= ~SECONDARY_EXEC_SHADOW_VMCS
;
5549 exec_control
&= ~SECONDARY_EXEC_ENABLE_PML
;
5551 if (vmx_xsaves_supported()) {
5552 /* Exposing XSAVES only when XSAVE is exposed */
5553 bool xsaves_enabled
=
5554 guest_cpuid_has(vcpu
, X86_FEATURE_XSAVE
) &&
5555 guest_cpuid_has(vcpu
, X86_FEATURE_XSAVES
);
5557 if (!xsaves_enabled
)
5558 exec_control
&= ~SECONDARY_EXEC_XSAVES
;
5562 vmx
->nested
.nested_vmx_secondary_ctls_high
|=
5563 SECONDARY_EXEC_XSAVES
;
5565 vmx
->nested
.nested_vmx_secondary_ctls_high
&=
5566 ~SECONDARY_EXEC_XSAVES
;
5570 if (vmx_rdtscp_supported()) {
5571 bool rdtscp_enabled
= guest_cpuid_has(vcpu
, X86_FEATURE_RDTSCP
);
5572 if (!rdtscp_enabled
)
5573 exec_control
&= ~SECONDARY_EXEC_RDTSCP
;
5577 vmx
->nested
.nested_vmx_secondary_ctls_high
|=
5578 SECONDARY_EXEC_RDTSCP
;
5580 vmx
->nested
.nested_vmx_secondary_ctls_high
&=
5581 ~SECONDARY_EXEC_RDTSCP
;
5585 if (vmx_invpcid_supported()) {
5586 /* Exposing INVPCID only when PCID is exposed */
5587 bool invpcid_enabled
=
5588 guest_cpuid_has(vcpu
, X86_FEATURE_INVPCID
) &&
5589 guest_cpuid_has(vcpu
, X86_FEATURE_PCID
);
5591 if (!invpcid_enabled
) {
5592 exec_control
&= ~SECONDARY_EXEC_ENABLE_INVPCID
;
5593 guest_cpuid_clear(vcpu
, X86_FEATURE_INVPCID
);
5597 if (invpcid_enabled
)
5598 vmx
->nested
.nested_vmx_secondary_ctls_high
|=
5599 SECONDARY_EXEC_ENABLE_INVPCID
;
5601 vmx
->nested
.nested_vmx_secondary_ctls_high
&=
5602 ~SECONDARY_EXEC_ENABLE_INVPCID
;
5606 if (vmx_rdrand_supported()) {
5607 bool rdrand_enabled
= guest_cpuid_has(vcpu
, X86_FEATURE_RDRAND
);
5609 exec_control
&= ~SECONDARY_EXEC_RDRAND_EXITING
;
5613 vmx
->nested
.nested_vmx_secondary_ctls_high
|=
5614 SECONDARY_EXEC_RDRAND_EXITING
;
5616 vmx
->nested
.nested_vmx_secondary_ctls_high
&=
5617 ~SECONDARY_EXEC_RDRAND_EXITING
;
5621 if (vmx_rdseed_supported()) {
5622 bool rdseed_enabled
= guest_cpuid_has(vcpu
, X86_FEATURE_RDSEED
);
5624 exec_control
&= ~SECONDARY_EXEC_RDSEED_EXITING
;
5628 vmx
->nested
.nested_vmx_secondary_ctls_high
|=
5629 SECONDARY_EXEC_RDSEED_EXITING
;
5631 vmx
->nested
.nested_vmx_secondary_ctls_high
&=
5632 ~SECONDARY_EXEC_RDSEED_EXITING
;
5636 vmx
->secondary_exec_control
= exec_control
;
5639 static void ept_set_mmio_spte_mask(void)
5642 * EPT Misconfigurations can be generated if the value of bits 2:0
5643 * of an EPT paging-structure entry is 110b (write/execute).
5645 kvm_mmu_set_mmio_spte_mask(VMX_EPT_RWX_MASK
,
5646 VMX_EPT_MISCONFIG_WX_VALUE
);
5649 #define VMX_XSS_EXIT_BITMAP 0
5651 * Sets up the vmcs for emulated real mode.
5653 static void vmx_vcpu_setup(struct vcpu_vmx
*vmx
)
5655 #ifdef CONFIG_X86_64
5660 if (enable_shadow_vmcs
) {
5661 vmcs_write64(VMREAD_BITMAP
, __pa(vmx_vmread_bitmap
));
5662 vmcs_write64(VMWRITE_BITMAP
, __pa(vmx_vmwrite_bitmap
));
5664 if (cpu_has_vmx_msr_bitmap())
5665 vmcs_write64(MSR_BITMAP
, __pa(vmx
->vmcs01
.msr_bitmap
));
5667 vmcs_write64(VMCS_LINK_POINTER
, -1ull); /* 22.3.1.5 */
5670 vmcs_write32(PIN_BASED_VM_EXEC_CONTROL
, vmx_pin_based_exec_ctrl(vmx
));
5671 vmx
->hv_deadline_tsc
= -1;
5673 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL
, vmx_exec_control(vmx
));
5675 if (cpu_has_secondary_exec_ctrls()) {
5676 vmx_compute_secondary_exec_control(vmx
);
5677 vmcs_write32(SECONDARY_VM_EXEC_CONTROL
,
5678 vmx
->secondary_exec_control
);
5681 if (kvm_vcpu_apicv_active(&vmx
->vcpu
)) {
5682 vmcs_write64(EOI_EXIT_BITMAP0
, 0);
5683 vmcs_write64(EOI_EXIT_BITMAP1
, 0);
5684 vmcs_write64(EOI_EXIT_BITMAP2
, 0);
5685 vmcs_write64(EOI_EXIT_BITMAP3
, 0);
5687 vmcs_write16(GUEST_INTR_STATUS
, 0);
5689 vmcs_write16(POSTED_INTR_NV
, POSTED_INTR_VECTOR
);
5690 vmcs_write64(POSTED_INTR_DESC_ADDR
, __pa((&vmx
->pi_desc
)));
5694 vmcs_write32(PLE_GAP
, ple_gap
);
5695 vmx
->ple_window
= ple_window
;
5696 vmx
->ple_window_dirty
= true;
5699 vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK
, 0);
5700 vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH
, 0);
5701 vmcs_write32(CR3_TARGET_COUNT
, 0); /* 22.2.1 */
5703 vmcs_write16(HOST_FS_SELECTOR
, 0); /* 22.2.4 */
5704 vmcs_write16(HOST_GS_SELECTOR
, 0); /* 22.2.4 */
5705 vmx_set_constant_host_state(vmx
);
5706 #ifdef CONFIG_X86_64
5707 rdmsrl(MSR_FS_BASE
, a
);
5708 vmcs_writel(HOST_FS_BASE
, a
); /* 22.2.4 */
5709 rdmsrl(MSR_GS_BASE
, a
);
5710 vmcs_writel(HOST_GS_BASE
, a
); /* 22.2.4 */
5712 vmcs_writel(HOST_FS_BASE
, 0); /* 22.2.4 */
5713 vmcs_writel(HOST_GS_BASE
, 0); /* 22.2.4 */
5716 if (cpu_has_vmx_vmfunc())
5717 vmcs_write64(VM_FUNCTION_CONTROL
, 0);
5719 vmcs_write32(VM_EXIT_MSR_STORE_COUNT
, 0);
5720 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT
, 0);
5721 vmcs_write64(VM_EXIT_MSR_LOAD_ADDR
, __pa(vmx
->msr_autoload
.host
));
5722 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT
, 0);
5723 vmcs_write64(VM_ENTRY_MSR_LOAD_ADDR
, __pa(vmx
->msr_autoload
.guest
));
5725 if (vmcs_config
.vmentry_ctrl
& VM_ENTRY_LOAD_IA32_PAT
)
5726 vmcs_write64(GUEST_IA32_PAT
, vmx
->vcpu
.arch
.pat
);
5728 for (i
= 0; i
< ARRAY_SIZE(vmx_msr_index
); ++i
) {
5729 u32 index
= vmx_msr_index
[i
];
5730 u32 data_low
, data_high
;
5733 if (rdmsr_safe(index
, &data_low
, &data_high
) < 0)
5735 if (wrmsr_safe(index
, data_low
, data_high
) < 0)
5737 vmx
->guest_msrs
[j
].index
= i
;
5738 vmx
->guest_msrs
[j
].data
= 0;
5739 vmx
->guest_msrs
[j
].mask
= -1ull;
5743 if (boot_cpu_has(X86_FEATURE_ARCH_CAPABILITIES
))
5744 rdmsrl(MSR_IA32_ARCH_CAPABILITIES
, vmx
->arch_capabilities
);
5746 vm_exit_controls_init(vmx
, vmcs_config
.vmexit_ctrl
);
5748 /* 22.2.1, 20.8.1 */
5749 vm_entry_controls_init(vmx
, vmcs_config
.vmentry_ctrl
);
5751 vmx
->vcpu
.arch
.cr0_guest_owned_bits
= X86_CR0_TS
;
5752 vmcs_writel(CR0_GUEST_HOST_MASK
, ~X86_CR0_TS
);
5754 set_cr4_guest_host_mask(vmx
);
5756 if (vmx_xsaves_supported())
5757 vmcs_write64(XSS_EXIT_BITMAP
, VMX_XSS_EXIT_BITMAP
);
5760 ASSERT(vmx
->pml_pg
);
5761 vmcs_write64(PML_ADDRESS
, page_to_phys(vmx
->pml_pg
));
5762 vmcs_write16(GUEST_PML_INDEX
, PML_ENTITY_NUM
- 1);
5766 static void vmx_vcpu_reset(struct kvm_vcpu
*vcpu
, bool init_event
)
5768 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
5769 struct msr_data apic_base_msr
;
5772 vmx
->rmode
.vm86_active
= 0;
5775 vcpu
->arch
.microcode_version
= 0x100000000ULL
;
5776 vmx
->vcpu
.arch
.regs
[VCPU_REGS_RDX
] = get_rdx_init_val();
5777 kvm_set_cr8(vcpu
, 0);
5780 apic_base_msr
.data
= APIC_DEFAULT_PHYS_BASE
|
5781 MSR_IA32_APICBASE_ENABLE
;
5782 if (kvm_vcpu_is_reset_bsp(vcpu
))
5783 apic_base_msr
.data
|= MSR_IA32_APICBASE_BSP
;
5784 apic_base_msr
.host_initiated
= true;
5785 kvm_set_apic_base(vcpu
, &apic_base_msr
);
5788 vmx_segment_cache_clear(vmx
);
5790 seg_setup(VCPU_SREG_CS
);
5791 vmcs_write16(GUEST_CS_SELECTOR
, 0xf000);
5792 vmcs_writel(GUEST_CS_BASE
, 0xffff0000ul
);
5794 seg_setup(VCPU_SREG_DS
);
5795 seg_setup(VCPU_SREG_ES
);
5796 seg_setup(VCPU_SREG_FS
);
5797 seg_setup(VCPU_SREG_GS
);
5798 seg_setup(VCPU_SREG_SS
);
5800 vmcs_write16(GUEST_TR_SELECTOR
, 0);
5801 vmcs_writel(GUEST_TR_BASE
, 0);
5802 vmcs_write32(GUEST_TR_LIMIT
, 0xffff);
5803 vmcs_write32(GUEST_TR_AR_BYTES
, 0x008b);
5805 vmcs_write16(GUEST_LDTR_SELECTOR
, 0);
5806 vmcs_writel(GUEST_LDTR_BASE
, 0);
5807 vmcs_write32(GUEST_LDTR_LIMIT
, 0xffff);
5808 vmcs_write32(GUEST_LDTR_AR_BYTES
, 0x00082);
5811 vmcs_write32(GUEST_SYSENTER_CS
, 0);
5812 vmcs_writel(GUEST_SYSENTER_ESP
, 0);
5813 vmcs_writel(GUEST_SYSENTER_EIP
, 0);
5814 vmcs_write64(GUEST_IA32_DEBUGCTL
, 0);
5817 kvm_set_rflags(vcpu
, X86_EFLAGS_FIXED
);
5818 kvm_rip_write(vcpu
, 0xfff0);
5820 vmcs_writel(GUEST_GDTR_BASE
, 0);
5821 vmcs_write32(GUEST_GDTR_LIMIT
, 0xffff);
5823 vmcs_writel(GUEST_IDTR_BASE
, 0);
5824 vmcs_write32(GUEST_IDTR_LIMIT
, 0xffff);
5826 vmcs_write32(GUEST_ACTIVITY_STATE
, GUEST_ACTIVITY_ACTIVE
);
5827 vmcs_write32(GUEST_INTERRUPTIBILITY_INFO
, 0);
5828 vmcs_writel(GUEST_PENDING_DBG_EXCEPTIONS
, 0);
5829 if (kvm_mpx_supported())
5830 vmcs_write64(GUEST_BNDCFGS
, 0);
5834 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD
, 0); /* 22.2.1 */
5836 if (cpu_has_vmx_tpr_shadow() && !init_event
) {
5837 vmcs_write64(VIRTUAL_APIC_PAGE_ADDR
, 0);
5838 if (cpu_need_tpr_shadow(vcpu
))
5839 vmcs_write64(VIRTUAL_APIC_PAGE_ADDR
,
5840 __pa(vcpu
->arch
.apic
->regs
));
5841 vmcs_write32(TPR_THRESHOLD
, 0);
5844 kvm_make_request(KVM_REQ_APIC_PAGE_RELOAD
, vcpu
);
5847 vmcs_write16(VIRTUAL_PROCESSOR_ID
, vmx
->vpid
);
5849 cr0
= X86_CR0_NW
| X86_CR0_CD
| X86_CR0_ET
;
5850 vmx
->vcpu
.arch
.cr0
= cr0
;
5851 vmx_set_cr0(vcpu
, cr0
); /* enter rmode */
5852 vmx_set_cr4(vcpu
, 0);
5853 vmx_set_efer(vcpu
, 0);
5855 update_exception_bitmap(vcpu
);
5857 vpid_sync_context(vmx
->vpid
);
5861 * In nested virtualization, check if L1 asked to exit on external interrupts.
5862 * For most existing hypervisors, this will always return true.
5864 static bool nested_exit_on_intr(struct kvm_vcpu
*vcpu
)
5866 return get_vmcs12(vcpu
)->pin_based_vm_exec_control
&
5867 PIN_BASED_EXT_INTR_MASK
;
5871 * In nested virtualization, check if L1 has set
5872 * VM_EXIT_ACK_INTR_ON_EXIT
5874 static bool nested_exit_intr_ack_set(struct kvm_vcpu
*vcpu
)
5876 return get_vmcs12(vcpu
)->vm_exit_controls
&
5877 VM_EXIT_ACK_INTR_ON_EXIT
;
5880 static bool nested_exit_on_nmi(struct kvm_vcpu
*vcpu
)
5882 return get_vmcs12(vcpu
)->pin_based_vm_exec_control
&
5883 PIN_BASED_NMI_EXITING
;
5886 static void enable_irq_window(struct kvm_vcpu
*vcpu
)
5888 vmcs_set_bits(CPU_BASED_VM_EXEC_CONTROL
,
5889 CPU_BASED_VIRTUAL_INTR_PENDING
);
5892 static void enable_nmi_window(struct kvm_vcpu
*vcpu
)
5895 vmcs_read32(GUEST_INTERRUPTIBILITY_INFO
) & GUEST_INTR_STATE_STI
) {
5896 enable_irq_window(vcpu
);
5900 vmcs_set_bits(CPU_BASED_VM_EXEC_CONTROL
,
5901 CPU_BASED_VIRTUAL_NMI_PENDING
);
5904 static void vmx_inject_irq(struct kvm_vcpu
*vcpu
)
5906 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
5908 int irq
= vcpu
->arch
.interrupt
.nr
;
5910 trace_kvm_inj_virq(irq
);
5912 ++vcpu
->stat
.irq_injections
;
5913 if (vmx
->rmode
.vm86_active
) {
5915 if (vcpu
->arch
.interrupt
.soft
)
5916 inc_eip
= vcpu
->arch
.event_exit_inst_len
;
5917 if (kvm_inject_realmode_interrupt(vcpu
, irq
, inc_eip
) != EMULATE_DONE
)
5918 kvm_make_request(KVM_REQ_TRIPLE_FAULT
, vcpu
);
5921 intr
= irq
| INTR_INFO_VALID_MASK
;
5922 if (vcpu
->arch
.interrupt
.soft
) {
5923 intr
|= INTR_TYPE_SOFT_INTR
;
5924 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN
,
5925 vmx
->vcpu
.arch
.event_exit_inst_len
);
5927 intr
|= INTR_TYPE_EXT_INTR
;
5928 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD
, intr
);
5931 static void vmx_inject_nmi(struct kvm_vcpu
*vcpu
)
5933 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
5937 * Tracking the NMI-blocked state in software is built upon
5938 * finding the next open IRQ window. This, in turn, depends on
5939 * well-behaving guests: They have to keep IRQs disabled at
5940 * least as long as the NMI handler runs. Otherwise we may
5941 * cause NMI nesting, maybe breaking the guest. But as this is
5942 * highly unlikely, we can live with the residual risk.
5944 vmx
->loaded_vmcs
->soft_vnmi_blocked
= 1;
5945 vmx
->loaded_vmcs
->vnmi_blocked_time
= 0;
5948 ++vcpu
->stat
.nmi_injections
;
5949 vmx
->loaded_vmcs
->nmi_known_unmasked
= false;
5951 if (vmx
->rmode
.vm86_active
) {
5952 if (kvm_inject_realmode_interrupt(vcpu
, NMI_VECTOR
, 0) != EMULATE_DONE
)
5953 kvm_make_request(KVM_REQ_TRIPLE_FAULT
, vcpu
);
5957 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD
,
5958 INTR_TYPE_NMI_INTR
| INTR_INFO_VALID_MASK
| NMI_VECTOR
);
5961 static bool vmx_get_nmi_mask(struct kvm_vcpu
*vcpu
)
5963 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
5967 return vmx
->loaded_vmcs
->soft_vnmi_blocked
;
5968 if (vmx
->loaded_vmcs
->nmi_known_unmasked
)
5970 masked
= vmcs_read32(GUEST_INTERRUPTIBILITY_INFO
) & GUEST_INTR_STATE_NMI
;
5971 vmx
->loaded_vmcs
->nmi_known_unmasked
= !masked
;
5975 static void vmx_set_nmi_mask(struct kvm_vcpu
*vcpu
, bool masked
)
5977 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
5980 if (vmx
->loaded_vmcs
->soft_vnmi_blocked
!= masked
) {
5981 vmx
->loaded_vmcs
->soft_vnmi_blocked
= masked
;
5982 vmx
->loaded_vmcs
->vnmi_blocked_time
= 0;
5985 vmx
->loaded_vmcs
->nmi_known_unmasked
= !masked
;
5987 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO
,
5988 GUEST_INTR_STATE_NMI
);
5990 vmcs_clear_bits(GUEST_INTERRUPTIBILITY_INFO
,
5991 GUEST_INTR_STATE_NMI
);
5995 static int vmx_nmi_allowed(struct kvm_vcpu
*vcpu
)
5997 if (to_vmx(vcpu
)->nested
.nested_run_pending
)
6001 to_vmx(vcpu
)->loaded_vmcs
->soft_vnmi_blocked
)
6004 return !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO
) &
6005 (GUEST_INTR_STATE_MOV_SS
| GUEST_INTR_STATE_STI
6006 | GUEST_INTR_STATE_NMI
));
6009 static int vmx_interrupt_allowed(struct kvm_vcpu
*vcpu
)
6011 return (!to_vmx(vcpu
)->nested
.nested_run_pending
&&
6012 vmcs_readl(GUEST_RFLAGS
) & X86_EFLAGS_IF
) &&
6013 !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO
) &
6014 (GUEST_INTR_STATE_STI
| GUEST_INTR_STATE_MOV_SS
));
6017 static int vmx_set_tss_addr(struct kvm
*kvm
, unsigned int addr
)
6021 ret
= x86_set_memory_region(kvm
, TSS_PRIVATE_MEMSLOT
, addr
,
6025 kvm
->arch
.tss_addr
= addr
;
6026 return init_rmode_tss(kvm
);
6029 static bool rmode_exception(struct kvm_vcpu
*vcpu
, int vec
)
6034 * Update instruction length as we may reinject the exception
6035 * from user space while in guest debugging mode.
6037 to_vmx(vcpu
)->vcpu
.arch
.event_exit_inst_len
=
6038 vmcs_read32(VM_EXIT_INSTRUCTION_LEN
);
6039 if (vcpu
->guest_debug
& KVM_GUESTDBG_USE_SW_BP
)
6043 if (vcpu
->guest_debug
&
6044 (KVM_GUESTDBG_SINGLESTEP
| KVM_GUESTDBG_USE_HW_BP
))
6061 static int handle_rmode_exception(struct kvm_vcpu
*vcpu
,
6062 int vec
, u32 err_code
)
6065 * Instruction with address size override prefix opcode 0x67
6066 * Cause the #SS fault with 0 error code in VM86 mode.
6068 if (((vec
== GP_VECTOR
) || (vec
== SS_VECTOR
)) && err_code
== 0) {
6069 if (emulate_instruction(vcpu
, 0) == EMULATE_DONE
) {
6070 if (vcpu
->arch
.halt_request
) {
6071 vcpu
->arch
.halt_request
= 0;
6072 return kvm_vcpu_halt(vcpu
);
6080 * Forward all other exceptions that are valid in real mode.
6081 * FIXME: Breaks guest debugging in real mode, needs to be fixed with
6082 * the required debugging infrastructure rework.
6084 kvm_queue_exception(vcpu
, vec
);
6089 * Trigger machine check on the host. We assume all the MSRs are already set up
6090 * by the CPU and that we still run on the same CPU as the MCE occurred on.
6091 * We pass a fake environment to the machine check handler because we want
6092 * the guest to be always treated like user space, no matter what context
6093 * it used internally.
6095 static void kvm_machine_check(void)
6097 #if defined(CONFIG_X86_MCE) && defined(CONFIG_X86_64)
6098 struct pt_regs regs
= {
6099 .cs
= 3, /* Fake ring 3 no matter what the guest ran on */
6100 .flags
= X86_EFLAGS_IF
,
6103 do_machine_check(®s
, 0);
6107 static int handle_machine_check(struct kvm_vcpu
*vcpu
)
6109 /* already handled by vcpu_run */
6113 static int handle_exception(struct kvm_vcpu
*vcpu
)
6115 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
6116 struct kvm_run
*kvm_run
= vcpu
->run
;
6117 u32 intr_info
, ex_no
, error_code
;
6118 unsigned long cr2
, rip
, dr6
;
6120 enum emulation_result er
;
6122 vect_info
= vmx
->idt_vectoring_info
;
6123 intr_info
= vmx
->exit_intr_info
;
6125 if (is_machine_check(intr_info
))
6126 return handle_machine_check(vcpu
);
6128 if (is_nmi(intr_info
))
6129 return 1; /* already handled by vmx_vcpu_run() */
6131 if (is_invalid_opcode(intr_info
)) {
6132 er
= emulate_instruction(vcpu
, EMULTYPE_TRAP_UD
);
6133 if (er
== EMULATE_USER_EXIT
)
6135 if (er
!= EMULATE_DONE
)
6136 kvm_queue_exception(vcpu
, UD_VECTOR
);
6141 if (intr_info
& INTR_INFO_DELIVER_CODE_MASK
)
6142 error_code
= vmcs_read32(VM_EXIT_INTR_ERROR_CODE
);
6145 * The #PF with PFEC.RSVD = 1 indicates the guest is accessing
6146 * MMIO, it is better to report an internal error.
6147 * See the comments in vmx_handle_exit.
6149 if ((vect_info
& VECTORING_INFO_VALID_MASK
) &&
6150 !(is_page_fault(intr_info
) && !(error_code
& PFERR_RSVD_MASK
))) {
6151 vcpu
->run
->exit_reason
= KVM_EXIT_INTERNAL_ERROR
;
6152 vcpu
->run
->internal
.suberror
= KVM_INTERNAL_ERROR_SIMUL_EX
;
6153 vcpu
->run
->internal
.ndata
= 3;
6154 vcpu
->run
->internal
.data
[0] = vect_info
;
6155 vcpu
->run
->internal
.data
[1] = intr_info
;
6156 vcpu
->run
->internal
.data
[2] = error_code
;
6160 if (is_page_fault(intr_info
)) {
6161 cr2
= vmcs_readl(EXIT_QUALIFICATION
);
6162 /* EPT won't cause page fault directly */
6163 WARN_ON_ONCE(!vcpu
->arch
.apf
.host_apf_reason
&& enable_ept
);
6164 return kvm_handle_page_fault(vcpu
, error_code
, cr2
, NULL
, 0);
6167 ex_no
= intr_info
& INTR_INFO_VECTOR_MASK
;
6169 if (vmx
->rmode
.vm86_active
&& rmode_exception(vcpu
, ex_no
))
6170 return handle_rmode_exception(vcpu
, ex_no
, error_code
);
6174 kvm_queue_exception_e(vcpu
, AC_VECTOR
, error_code
);
6177 dr6
= vmcs_readl(EXIT_QUALIFICATION
);
6178 if (!(vcpu
->guest_debug
&
6179 (KVM_GUESTDBG_SINGLESTEP
| KVM_GUESTDBG_USE_HW_BP
))) {
6180 vcpu
->arch
.dr6
&= ~15;
6181 vcpu
->arch
.dr6
|= dr6
| DR6_RTM
;
6182 if (!(dr6
& ~DR6_RESERVED
)) /* icebp */
6183 skip_emulated_instruction(vcpu
);
6185 kvm_queue_exception(vcpu
, DB_VECTOR
);
6188 kvm_run
->debug
.arch
.dr6
= dr6
| DR6_FIXED_1
;
6189 kvm_run
->debug
.arch
.dr7
= vmcs_readl(GUEST_DR7
);
6193 * Update instruction length as we may reinject #BP from
6194 * user space while in guest debugging mode. Reading it for
6195 * #DB as well causes no harm, it is not used in that case.
6197 vmx
->vcpu
.arch
.event_exit_inst_len
=
6198 vmcs_read32(VM_EXIT_INSTRUCTION_LEN
);
6199 kvm_run
->exit_reason
= KVM_EXIT_DEBUG
;
6200 rip
= kvm_rip_read(vcpu
);
6201 kvm_run
->debug
.arch
.pc
= vmcs_readl(GUEST_CS_BASE
) + rip
;
6202 kvm_run
->debug
.arch
.exception
= ex_no
;
6205 kvm_run
->exit_reason
= KVM_EXIT_EXCEPTION
;
6206 kvm_run
->ex
.exception
= ex_no
;
6207 kvm_run
->ex
.error_code
= error_code
;
6213 static int handle_external_interrupt(struct kvm_vcpu
*vcpu
)
6215 ++vcpu
->stat
.irq_exits
;
6219 static int handle_triple_fault(struct kvm_vcpu
*vcpu
)
6221 vcpu
->run
->exit_reason
= KVM_EXIT_SHUTDOWN
;
6222 vcpu
->mmio_needed
= 0;
6226 static int handle_io(struct kvm_vcpu
*vcpu
)
6228 unsigned long exit_qualification
;
6229 int size
, in
, string
, ret
;
6232 exit_qualification
= vmcs_readl(EXIT_QUALIFICATION
);
6233 string
= (exit_qualification
& 16) != 0;
6234 in
= (exit_qualification
& 8) != 0;
6236 ++vcpu
->stat
.io_exits
;
6239 return emulate_instruction(vcpu
, 0) == EMULATE_DONE
;
6241 port
= exit_qualification
>> 16;
6242 size
= (exit_qualification
& 7) + 1;
6244 ret
= kvm_skip_emulated_instruction(vcpu
);
6247 * TODO: we might be squashing a KVM_GUESTDBG_SINGLESTEP-triggered
6248 * KVM_EXIT_DEBUG here.
6250 return kvm_fast_pio_out(vcpu
, size
, port
) && ret
;
6254 vmx_patch_hypercall(struct kvm_vcpu
*vcpu
, unsigned char *hypercall
)
6257 * Patch in the VMCALL instruction:
6259 hypercall
[0] = 0x0f;
6260 hypercall
[1] = 0x01;
6261 hypercall
[2] = 0xc1;
6264 /* called to set cr0 as appropriate for a mov-to-cr0 exit. */
6265 static int handle_set_cr0(struct kvm_vcpu
*vcpu
, unsigned long val
)
6267 if (is_guest_mode(vcpu
)) {
6268 struct vmcs12
*vmcs12
= get_vmcs12(vcpu
);
6269 unsigned long orig_val
= val
;
6272 * We get here when L2 changed cr0 in a way that did not change
6273 * any of L1's shadowed bits (see nested_vmx_exit_handled_cr),
6274 * but did change L0 shadowed bits. So we first calculate the
6275 * effective cr0 value that L1 would like to write into the
6276 * hardware. It consists of the L2-owned bits from the new
6277 * value combined with the L1-owned bits from L1's guest_cr0.
6279 val
= (val
& ~vmcs12
->cr0_guest_host_mask
) |
6280 (vmcs12
->guest_cr0
& vmcs12
->cr0_guest_host_mask
);
6282 if (!nested_guest_cr0_valid(vcpu
, val
))
6285 if (kvm_set_cr0(vcpu
, val
))
6287 vmcs_writel(CR0_READ_SHADOW
, orig_val
);
6290 if (to_vmx(vcpu
)->nested
.vmxon
&&
6291 !nested_host_cr0_valid(vcpu
, val
))
6294 return kvm_set_cr0(vcpu
, val
);
6298 static int handle_set_cr4(struct kvm_vcpu
*vcpu
, unsigned long val
)
6300 if (is_guest_mode(vcpu
)) {
6301 struct vmcs12
*vmcs12
= get_vmcs12(vcpu
);
6302 unsigned long orig_val
= val
;
6304 /* analogously to handle_set_cr0 */
6305 val
= (val
& ~vmcs12
->cr4_guest_host_mask
) |
6306 (vmcs12
->guest_cr4
& vmcs12
->cr4_guest_host_mask
);
6307 if (kvm_set_cr4(vcpu
, val
))
6309 vmcs_writel(CR4_READ_SHADOW
, orig_val
);
6312 return kvm_set_cr4(vcpu
, val
);
6315 static int handle_desc(struct kvm_vcpu
*vcpu
)
6317 WARN_ON(!(vcpu
->arch
.cr4
& X86_CR4_UMIP
));
6318 return emulate_instruction(vcpu
, 0) == EMULATE_DONE
;
6321 static int handle_cr(struct kvm_vcpu
*vcpu
)
6323 unsigned long exit_qualification
, val
;
6329 exit_qualification
= vmcs_readl(EXIT_QUALIFICATION
);
6330 cr
= exit_qualification
& 15;
6331 reg
= (exit_qualification
>> 8) & 15;
6332 switch ((exit_qualification
>> 4) & 3) {
6333 case 0: /* mov to cr */
6334 val
= kvm_register_readl(vcpu
, reg
);
6335 trace_kvm_cr_write(cr
, val
);
6338 err
= handle_set_cr0(vcpu
, val
);
6339 return kvm_complete_insn_gp(vcpu
, err
);
6341 err
= kvm_set_cr3(vcpu
, val
);
6342 return kvm_complete_insn_gp(vcpu
, err
);
6344 err
= handle_set_cr4(vcpu
, val
);
6345 return kvm_complete_insn_gp(vcpu
, err
);
6347 u8 cr8_prev
= kvm_get_cr8(vcpu
);
6349 err
= kvm_set_cr8(vcpu
, cr8
);
6350 ret
= kvm_complete_insn_gp(vcpu
, err
);
6351 if (lapic_in_kernel(vcpu
))
6353 if (cr8_prev
<= cr8
)
6356 * TODO: we might be squashing a
6357 * KVM_GUESTDBG_SINGLESTEP-triggered
6358 * KVM_EXIT_DEBUG here.
6360 vcpu
->run
->exit_reason
= KVM_EXIT_SET_TPR
;
6366 WARN_ONCE(1, "Guest should always own CR0.TS");
6367 vmx_set_cr0(vcpu
, kvm_read_cr0_bits(vcpu
, ~X86_CR0_TS
));
6368 trace_kvm_cr_write(0, kvm_read_cr0(vcpu
));
6369 return kvm_skip_emulated_instruction(vcpu
);
6370 case 1: /*mov from cr*/
6373 val
= kvm_read_cr3(vcpu
);
6374 kvm_register_write(vcpu
, reg
, val
);
6375 trace_kvm_cr_read(cr
, val
);
6376 return kvm_skip_emulated_instruction(vcpu
);
6378 val
= kvm_get_cr8(vcpu
);
6379 kvm_register_write(vcpu
, reg
, val
);
6380 trace_kvm_cr_read(cr
, val
);
6381 return kvm_skip_emulated_instruction(vcpu
);
6385 val
= (exit_qualification
>> LMSW_SOURCE_DATA_SHIFT
) & 0x0f;
6386 trace_kvm_cr_write(0, (kvm_read_cr0(vcpu
) & ~0xful
) | val
);
6387 kvm_lmsw(vcpu
, val
);
6389 return kvm_skip_emulated_instruction(vcpu
);
6393 vcpu
->run
->exit_reason
= 0;
6394 vcpu_unimpl(vcpu
, "unhandled control register: op %d cr %d\n",
6395 (int)(exit_qualification
>> 4) & 3, cr
);
6399 static int handle_dr(struct kvm_vcpu
*vcpu
)
6401 unsigned long exit_qualification
;
6404 exit_qualification
= vmcs_readl(EXIT_QUALIFICATION
);
6405 dr
= exit_qualification
& DEBUG_REG_ACCESS_NUM
;
6407 /* First, if DR does not exist, trigger UD */
6408 if (!kvm_require_dr(vcpu
, dr
))
6411 /* Do not handle if the CPL > 0, will trigger GP on re-entry */
6412 if (!kvm_require_cpl(vcpu
, 0))
6414 dr7
= vmcs_readl(GUEST_DR7
);
6417 * As the vm-exit takes precedence over the debug trap, we
6418 * need to emulate the latter, either for the host or the
6419 * guest debugging itself.
6421 if (vcpu
->guest_debug
& KVM_GUESTDBG_USE_HW_BP
) {
6422 vcpu
->run
->debug
.arch
.dr6
= vcpu
->arch
.dr6
;
6423 vcpu
->run
->debug
.arch
.dr7
= dr7
;
6424 vcpu
->run
->debug
.arch
.pc
= kvm_get_linear_rip(vcpu
);
6425 vcpu
->run
->debug
.arch
.exception
= DB_VECTOR
;
6426 vcpu
->run
->exit_reason
= KVM_EXIT_DEBUG
;
6429 vcpu
->arch
.dr6
&= ~15;
6430 vcpu
->arch
.dr6
|= DR6_BD
| DR6_RTM
;
6431 kvm_queue_exception(vcpu
, DB_VECTOR
);
6436 if (vcpu
->guest_debug
== 0) {
6437 vmcs_clear_bits(CPU_BASED_VM_EXEC_CONTROL
,
6438 CPU_BASED_MOV_DR_EXITING
);
6441 * No more DR vmexits; force a reload of the debug registers
6442 * and reenter on this instruction. The next vmexit will
6443 * retrieve the full state of the debug registers.
6445 vcpu
->arch
.switch_db_regs
|= KVM_DEBUGREG_WONT_EXIT
;
6449 reg
= DEBUG_REG_ACCESS_REG(exit_qualification
);
6450 if (exit_qualification
& TYPE_MOV_FROM_DR
) {
6453 if (kvm_get_dr(vcpu
, dr
, &val
))
6455 kvm_register_write(vcpu
, reg
, val
);
6457 if (kvm_set_dr(vcpu
, dr
, kvm_register_readl(vcpu
, reg
)))
6460 return kvm_skip_emulated_instruction(vcpu
);
6463 static u64
vmx_get_dr6(struct kvm_vcpu
*vcpu
)
6465 return vcpu
->arch
.dr6
;
6468 static void vmx_set_dr6(struct kvm_vcpu
*vcpu
, unsigned long val
)
6472 static void vmx_sync_dirty_debug_regs(struct kvm_vcpu
*vcpu
)
6474 get_debugreg(vcpu
->arch
.db
[0], 0);
6475 get_debugreg(vcpu
->arch
.db
[1], 1);
6476 get_debugreg(vcpu
->arch
.db
[2], 2);
6477 get_debugreg(vcpu
->arch
.db
[3], 3);
6478 get_debugreg(vcpu
->arch
.dr6
, 6);
6479 vcpu
->arch
.dr7
= vmcs_readl(GUEST_DR7
);
6481 vcpu
->arch
.switch_db_regs
&= ~KVM_DEBUGREG_WONT_EXIT
;
6482 vmcs_set_bits(CPU_BASED_VM_EXEC_CONTROL
, CPU_BASED_MOV_DR_EXITING
);
6485 static void vmx_set_dr7(struct kvm_vcpu
*vcpu
, unsigned long val
)
6487 vmcs_writel(GUEST_DR7
, val
);
6490 static int handle_cpuid(struct kvm_vcpu
*vcpu
)
6492 return kvm_emulate_cpuid(vcpu
);
6495 static int handle_rdmsr(struct kvm_vcpu
*vcpu
)
6497 u32 ecx
= vcpu
->arch
.regs
[VCPU_REGS_RCX
];
6498 struct msr_data msr_info
;
6500 msr_info
.index
= ecx
;
6501 msr_info
.host_initiated
= false;
6502 if (vmx_get_msr(vcpu
, &msr_info
)) {
6503 trace_kvm_msr_read_ex(ecx
);
6504 kvm_inject_gp(vcpu
, 0);
6508 trace_kvm_msr_read(ecx
, msr_info
.data
);
6510 /* FIXME: handling of bits 32:63 of rax, rdx */
6511 vcpu
->arch
.regs
[VCPU_REGS_RAX
] = msr_info
.data
& -1u;
6512 vcpu
->arch
.regs
[VCPU_REGS_RDX
] = (msr_info
.data
>> 32) & -1u;
6513 return kvm_skip_emulated_instruction(vcpu
);
6516 static int handle_wrmsr(struct kvm_vcpu
*vcpu
)
6518 struct msr_data msr
;
6519 u32 ecx
= vcpu
->arch
.regs
[VCPU_REGS_RCX
];
6520 u64 data
= (vcpu
->arch
.regs
[VCPU_REGS_RAX
] & -1u)
6521 | ((u64
)(vcpu
->arch
.regs
[VCPU_REGS_RDX
] & -1u) << 32);
6525 msr
.host_initiated
= false;
6526 if (kvm_set_msr(vcpu
, &msr
) != 0) {
6527 trace_kvm_msr_write_ex(ecx
, data
);
6528 kvm_inject_gp(vcpu
, 0);
6532 trace_kvm_msr_write(ecx
, data
);
6533 return kvm_skip_emulated_instruction(vcpu
);
6536 static int handle_tpr_below_threshold(struct kvm_vcpu
*vcpu
)
6538 kvm_apic_update_ppr(vcpu
);
6542 static int handle_interrupt_window(struct kvm_vcpu
*vcpu
)
6544 vmcs_clear_bits(CPU_BASED_VM_EXEC_CONTROL
,
6545 CPU_BASED_VIRTUAL_INTR_PENDING
);
6547 kvm_make_request(KVM_REQ_EVENT
, vcpu
);
6549 ++vcpu
->stat
.irq_window_exits
;
6553 static int handle_halt(struct kvm_vcpu
*vcpu
)
6555 return kvm_emulate_halt(vcpu
);
6558 static int handle_vmcall(struct kvm_vcpu
*vcpu
)
6560 return kvm_emulate_hypercall(vcpu
);
6563 static int handle_invd(struct kvm_vcpu
*vcpu
)
6565 return emulate_instruction(vcpu
, 0) == EMULATE_DONE
;
6568 static int handle_invlpg(struct kvm_vcpu
*vcpu
)
6570 unsigned long exit_qualification
= vmcs_readl(EXIT_QUALIFICATION
);
6572 kvm_mmu_invlpg(vcpu
, exit_qualification
);
6573 return kvm_skip_emulated_instruction(vcpu
);
6576 static int handle_rdpmc(struct kvm_vcpu
*vcpu
)
6580 err
= kvm_rdpmc(vcpu
);
6581 return kvm_complete_insn_gp(vcpu
, err
);
6584 static int handle_wbinvd(struct kvm_vcpu
*vcpu
)
6586 return kvm_emulate_wbinvd(vcpu
);
6589 static int handle_xsetbv(struct kvm_vcpu
*vcpu
)
6591 u64 new_bv
= kvm_read_edx_eax(vcpu
);
6592 u32 index
= kvm_register_read(vcpu
, VCPU_REGS_RCX
);
6594 if (kvm_set_xcr(vcpu
, index
, new_bv
) == 0)
6595 return kvm_skip_emulated_instruction(vcpu
);
6599 static int handle_xsaves(struct kvm_vcpu
*vcpu
)
6601 kvm_skip_emulated_instruction(vcpu
);
6602 WARN(1, "this should never happen\n");
6606 static int handle_xrstors(struct kvm_vcpu
*vcpu
)
6608 kvm_skip_emulated_instruction(vcpu
);
6609 WARN(1, "this should never happen\n");
6613 static int handle_apic_access(struct kvm_vcpu
*vcpu
)
6615 if (likely(fasteoi
)) {
6616 unsigned long exit_qualification
= vmcs_readl(EXIT_QUALIFICATION
);
6617 int access_type
, offset
;
6619 access_type
= exit_qualification
& APIC_ACCESS_TYPE
;
6620 offset
= exit_qualification
& APIC_ACCESS_OFFSET
;
6622 * Sane guest uses MOV to write EOI, with written value
6623 * not cared. So make a short-circuit here by avoiding
6624 * heavy instruction emulation.
6626 if ((access_type
== TYPE_LINEAR_APIC_INST_WRITE
) &&
6627 (offset
== APIC_EOI
)) {
6628 kvm_lapic_set_eoi(vcpu
);
6629 return kvm_skip_emulated_instruction(vcpu
);
6632 return emulate_instruction(vcpu
, 0) == EMULATE_DONE
;
6635 static int handle_apic_eoi_induced(struct kvm_vcpu
*vcpu
)
6637 unsigned long exit_qualification
= vmcs_readl(EXIT_QUALIFICATION
);
6638 int vector
= exit_qualification
& 0xff;
6640 /* EOI-induced VM exit is trap-like and thus no need to adjust IP */
6641 kvm_apic_set_eoi_accelerated(vcpu
, vector
);
6645 static int handle_apic_write(struct kvm_vcpu
*vcpu
)
6647 unsigned long exit_qualification
= vmcs_readl(EXIT_QUALIFICATION
);
6648 u32 offset
= exit_qualification
& 0xfff;
6650 /* APIC-write VM exit is trap-like and thus no need to adjust IP */
6651 kvm_apic_write_nodecode(vcpu
, offset
);
6655 static int handle_task_switch(struct kvm_vcpu
*vcpu
)
6657 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
6658 unsigned long exit_qualification
;
6659 bool has_error_code
= false;
6662 int reason
, type
, idt_v
, idt_index
;
6664 idt_v
= (vmx
->idt_vectoring_info
& VECTORING_INFO_VALID_MASK
);
6665 idt_index
= (vmx
->idt_vectoring_info
& VECTORING_INFO_VECTOR_MASK
);
6666 type
= (vmx
->idt_vectoring_info
& VECTORING_INFO_TYPE_MASK
);
6668 exit_qualification
= vmcs_readl(EXIT_QUALIFICATION
);
6670 reason
= (u32
)exit_qualification
>> 30;
6671 if (reason
== TASK_SWITCH_GATE
&& idt_v
) {
6673 case INTR_TYPE_NMI_INTR
:
6674 vcpu
->arch
.nmi_injected
= false;
6675 vmx_set_nmi_mask(vcpu
, true);
6677 case INTR_TYPE_EXT_INTR
:
6678 case INTR_TYPE_SOFT_INTR
:
6679 kvm_clear_interrupt_queue(vcpu
);
6681 case INTR_TYPE_HARD_EXCEPTION
:
6682 if (vmx
->idt_vectoring_info
&
6683 VECTORING_INFO_DELIVER_CODE_MASK
) {
6684 has_error_code
= true;
6686 vmcs_read32(IDT_VECTORING_ERROR_CODE
);
6689 case INTR_TYPE_SOFT_EXCEPTION
:
6690 kvm_clear_exception_queue(vcpu
);
6696 tss_selector
= exit_qualification
;
6698 if (!idt_v
|| (type
!= INTR_TYPE_HARD_EXCEPTION
&&
6699 type
!= INTR_TYPE_EXT_INTR
&&
6700 type
!= INTR_TYPE_NMI_INTR
))
6701 skip_emulated_instruction(vcpu
);
6703 if (kvm_task_switch(vcpu
, tss_selector
,
6704 type
== INTR_TYPE_SOFT_INTR
? idt_index
: -1, reason
,
6705 has_error_code
, error_code
) == EMULATE_FAIL
) {
6706 vcpu
->run
->exit_reason
= KVM_EXIT_INTERNAL_ERROR
;
6707 vcpu
->run
->internal
.suberror
= KVM_INTERNAL_ERROR_EMULATION
;
6708 vcpu
->run
->internal
.ndata
= 0;
6713 * TODO: What about debug traps on tss switch?
6714 * Are we supposed to inject them and update dr6?
6720 static int handle_ept_violation(struct kvm_vcpu
*vcpu
)
6722 unsigned long exit_qualification
;
6726 exit_qualification
= vmcs_readl(EXIT_QUALIFICATION
);
6729 * EPT violation happened while executing iret from NMI,
6730 * "blocked by NMI" bit has to be set before next VM entry.
6731 * There are errata that may cause this bit to not be set:
6734 if (!(to_vmx(vcpu
)->idt_vectoring_info
& VECTORING_INFO_VALID_MASK
) &&
6736 (exit_qualification
& INTR_INFO_UNBLOCK_NMI
))
6737 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO
, GUEST_INTR_STATE_NMI
);
6739 gpa
= vmcs_read64(GUEST_PHYSICAL_ADDRESS
);
6740 trace_kvm_page_fault(gpa
, exit_qualification
);
6742 /* Is it a read fault? */
6743 error_code
= (exit_qualification
& EPT_VIOLATION_ACC_READ
)
6744 ? PFERR_USER_MASK
: 0;
6745 /* Is it a write fault? */
6746 error_code
|= (exit_qualification
& EPT_VIOLATION_ACC_WRITE
)
6747 ? PFERR_WRITE_MASK
: 0;
6748 /* Is it a fetch fault? */
6749 error_code
|= (exit_qualification
& EPT_VIOLATION_ACC_INSTR
)
6750 ? PFERR_FETCH_MASK
: 0;
6751 /* ept page table entry is present? */
6752 error_code
|= (exit_qualification
&
6753 (EPT_VIOLATION_READABLE
| EPT_VIOLATION_WRITABLE
|
6754 EPT_VIOLATION_EXECUTABLE
))
6755 ? PFERR_PRESENT_MASK
: 0;
6757 error_code
|= (exit_qualification
& 0x100) != 0 ?
6758 PFERR_GUEST_FINAL_MASK
: PFERR_GUEST_PAGE_MASK
;
6760 vcpu
->arch
.exit_qualification
= exit_qualification
;
6761 return kvm_mmu_page_fault(vcpu
, gpa
, error_code
, NULL
, 0);
6764 static int handle_ept_misconfig(struct kvm_vcpu
*vcpu
)
6770 * A nested guest cannot optimize MMIO vmexits, because we have an
6771 * nGPA here instead of the required GPA.
6773 gpa
= vmcs_read64(GUEST_PHYSICAL_ADDRESS
);
6774 if (!is_guest_mode(vcpu
) &&
6775 !kvm_io_bus_write(vcpu
, KVM_FAST_MMIO_BUS
, gpa
, 0, NULL
)) {
6776 trace_kvm_fast_mmio(gpa
);
6778 * Doing kvm_skip_emulated_instruction() depends on undefined
6779 * behavior: Intel's manual doesn't mandate
6780 * VM_EXIT_INSTRUCTION_LEN to be set in VMCS when EPT MISCONFIG
6781 * occurs and while on real hardware it was observed to be set,
6782 * other hypervisors (namely Hyper-V) don't set it, we end up
6783 * advancing IP with some random value. Disable fast mmio when
6784 * running nested and keep it for real hardware in hope that
6785 * VM_EXIT_INSTRUCTION_LEN will always be set correctly.
6787 if (!static_cpu_has(X86_FEATURE_HYPERVISOR
))
6788 return kvm_skip_emulated_instruction(vcpu
);
6790 return x86_emulate_instruction(vcpu
, gpa
, EMULTYPE_SKIP
,
6791 NULL
, 0) == EMULATE_DONE
;
6794 ret
= kvm_mmu_page_fault(vcpu
, gpa
, PFERR_RSVD_MASK
, NULL
, 0);
6798 /* It is the real ept misconfig */
6801 vcpu
->run
->exit_reason
= KVM_EXIT_UNKNOWN
;
6802 vcpu
->run
->hw
.hardware_exit_reason
= EXIT_REASON_EPT_MISCONFIG
;
6807 static int handle_nmi_window(struct kvm_vcpu
*vcpu
)
6809 WARN_ON_ONCE(!enable_vnmi
);
6810 vmcs_clear_bits(CPU_BASED_VM_EXEC_CONTROL
,
6811 CPU_BASED_VIRTUAL_NMI_PENDING
);
6812 ++vcpu
->stat
.nmi_window_exits
;
6813 kvm_make_request(KVM_REQ_EVENT
, vcpu
);
6818 static int handle_invalid_guest_state(struct kvm_vcpu
*vcpu
)
6820 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
6821 enum emulation_result err
= EMULATE_DONE
;
6824 bool intr_window_requested
;
6825 unsigned count
= 130;
6827 cpu_exec_ctrl
= vmcs_read32(CPU_BASED_VM_EXEC_CONTROL
);
6828 intr_window_requested
= cpu_exec_ctrl
& CPU_BASED_VIRTUAL_INTR_PENDING
;
6830 while (vmx
->emulation_required
&& count
-- != 0) {
6831 if (intr_window_requested
&& vmx_interrupt_allowed(vcpu
))
6832 return handle_interrupt_window(&vmx
->vcpu
);
6834 if (kvm_test_request(KVM_REQ_EVENT
, vcpu
))
6837 err
= emulate_instruction(vcpu
, 0);
6839 if (err
== EMULATE_USER_EXIT
) {
6840 ++vcpu
->stat
.mmio_exits
;
6845 if (err
!= EMULATE_DONE
) {
6846 vcpu
->run
->exit_reason
= KVM_EXIT_INTERNAL_ERROR
;
6847 vcpu
->run
->internal
.suberror
= KVM_INTERNAL_ERROR_EMULATION
;
6848 vcpu
->run
->internal
.ndata
= 0;
6852 if (vcpu
->arch
.halt_request
) {
6853 vcpu
->arch
.halt_request
= 0;
6854 ret
= kvm_vcpu_halt(vcpu
);
6858 if (signal_pending(current
))
6868 static int __grow_ple_window(int val
)
6870 if (ple_window_grow
< 1)
6873 val
= min(val
, ple_window_actual_max
);
6875 if (ple_window_grow
< ple_window
)
6876 val
*= ple_window_grow
;
6878 val
+= ple_window_grow
;
6883 static int __shrink_ple_window(int val
, int modifier
, int minimum
)
6888 if (modifier
< ple_window
)
6893 return max(val
, minimum
);
6896 static void grow_ple_window(struct kvm_vcpu
*vcpu
)
6898 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
6899 int old
= vmx
->ple_window
;
6901 vmx
->ple_window
= __grow_ple_window(old
);
6903 if (vmx
->ple_window
!= old
)
6904 vmx
->ple_window_dirty
= true;
6906 trace_kvm_ple_window_grow(vcpu
->vcpu_id
, vmx
->ple_window
, old
);
6909 static void shrink_ple_window(struct kvm_vcpu
*vcpu
)
6911 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
6912 int old
= vmx
->ple_window
;
6914 vmx
->ple_window
= __shrink_ple_window(old
,
6915 ple_window_shrink
, ple_window
);
6917 if (vmx
->ple_window
!= old
)
6918 vmx
->ple_window_dirty
= true;
6920 trace_kvm_ple_window_shrink(vcpu
->vcpu_id
, vmx
->ple_window
, old
);
6924 * ple_window_actual_max is computed to be one grow_ple_window() below
6925 * ple_window_max. (See __grow_ple_window for the reason.)
6926 * This prevents overflows, because ple_window_max is int.
6927 * ple_window_max effectively rounded down to a multiple of ple_window_grow in
6929 * ple_window_max is also prevented from setting vmx->ple_window < ple_window.
6931 static void update_ple_window_actual_max(void)
6933 ple_window_actual_max
=
6934 __shrink_ple_window(max(ple_window_max
, ple_window
),
6935 ple_window_grow
, INT_MIN
);
6939 * Handler for POSTED_INTERRUPT_WAKEUP_VECTOR.
6941 static void wakeup_handler(void)
6943 struct kvm_vcpu
*vcpu
;
6944 int cpu
= smp_processor_id();
6946 spin_lock(&per_cpu(blocked_vcpu_on_cpu_lock
, cpu
));
6947 list_for_each_entry(vcpu
, &per_cpu(blocked_vcpu_on_cpu
, cpu
),
6948 blocked_vcpu_list
) {
6949 struct pi_desc
*pi_desc
= vcpu_to_pi_desc(vcpu
);
6951 if (pi_test_on(pi_desc
) == 1)
6952 kvm_vcpu_kick(vcpu
);
6954 spin_unlock(&per_cpu(blocked_vcpu_on_cpu_lock
, cpu
));
6957 void vmx_enable_tdp(void)
6959 kvm_mmu_set_mask_ptes(VMX_EPT_READABLE_MASK
,
6960 enable_ept_ad_bits
? VMX_EPT_ACCESS_BIT
: 0ull,
6961 enable_ept_ad_bits
? VMX_EPT_DIRTY_BIT
: 0ull,
6962 0ull, VMX_EPT_EXECUTABLE_MASK
,
6963 cpu_has_vmx_ept_execute_only() ? 0ull : VMX_EPT_READABLE_MASK
,
6964 VMX_EPT_RWX_MASK
, 0ull);
6966 ept_set_mmio_spte_mask();
6970 static __init
int hardware_setup(void)
6974 rdmsrl_safe(MSR_EFER
, &host_efer
);
6976 for (i
= 0; i
< ARRAY_SIZE(vmx_msr_index
); ++i
)
6977 kvm_define_shared_msr(i
, vmx_msr_index
[i
]);
6979 for (i
= 0; i
< VMX_BITMAP_NR
; i
++) {
6980 vmx_bitmap
[i
] = (unsigned long *)__get_free_page(GFP_KERNEL
);
6985 memset(vmx_vmread_bitmap
, 0xff, PAGE_SIZE
);
6986 memset(vmx_vmwrite_bitmap
, 0xff, PAGE_SIZE
);
6988 if (setup_vmcs_config(&vmcs_config
) < 0) {
6993 if (boot_cpu_has(X86_FEATURE_NX
))
6994 kvm_enable_efer_bits(EFER_NX
);
6996 if (!cpu_has_vmx_vpid() || !cpu_has_vmx_invvpid() ||
6997 !(cpu_has_vmx_invvpid_single() || cpu_has_vmx_invvpid_global()))
7000 if (!cpu_has_vmx_ept() ||
7001 !cpu_has_vmx_ept_4levels() ||
7002 !cpu_has_vmx_ept_mt_wb() ||
7003 !cpu_has_vmx_invept_global())
7006 if (!cpu_has_vmx_ept_ad_bits() || !enable_ept
)
7007 enable_ept_ad_bits
= 0;
7009 if (!cpu_has_vmx_unrestricted_guest() || !enable_ept
)
7010 enable_unrestricted_guest
= 0;
7012 if (!cpu_has_vmx_flexpriority())
7013 flexpriority_enabled
= 0;
7015 if (!cpu_has_virtual_nmis())
7019 * set_apic_access_page_addr() is used to reload apic access
7020 * page upon invalidation. No need to do anything if not
7021 * using the APIC_ACCESS_ADDR VMCS field.
7023 if (!flexpriority_enabled
)
7024 kvm_x86_ops
->set_apic_access_page_addr
= NULL
;
7026 if (!cpu_has_vmx_tpr_shadow())
7027 kvm_x86_ops
->update_cr8_intercept
= NULL
;
7029 if (enable_ept
&& !cpu_has_vmx_ept_2m_page())
7030 kvm_disable_largepages();
7032 if (!cpu_has_vmx_ple()) {
7035 ple_window_grow
= 0;
7037 ple_window_shrink
= 0;
7040 if (!cpu_has_vmx_apicv()) {
7042 kvm_x86_ops
->sync_pir_to_irr
= NULL
;
7045 if (cpu_has_vmx_tsc_scaling()) {
7046 kvm_has_tsc_control
= true;
7047 kvm_max_tsc_scaling_ratio
= KVM_VMX_TSC_MULTIPLIER_MAX
;
7048 kvm_tsc_scaling_ratio_frac_bits
= 48;
7051 set_bit(0, vmx_vpid_bitmap
); /* 0 is reserved for host */
7058 update_ple_window_actual_max();
7061 * Only enable PML when hardware supports PML feature, and both EPT
7062 * and EPT A/D bit features are enabled -- PML depends on them to work.
7064 if (!enable_ept
|| !enable_ept_ad_bits
|| !cpu_has_vmx_pml())
7068 kvm_x86_ops
->slot_enable_log_dirty
= NULL
;
7069 kvm_x86_ops
->slot_disable_log_dirty
= NULL
;
7070 kvm_x86_ops
->flush_log_dirty
= NULL
;
7071 kvm_x86_ops
->enable_log_dirty_pt_masked
= NULL
;
7074 if (cpu_has_vmx_preemption_timer() && enable_preemption_timer
) {
7077 rdmsrl(MSR_IA32_VMX_MISC
, vmx_msr
);
7078 cpu_preemption_timer_multi
=
7079 vmx_msr
& VMX_MISC_PREEMPTION_TIMER_RATE_MASK
;
7081 kvm_x86_ops
->set_hv_timer
= NULL
;
7082 kvm_x86_ops
->cancel_hv_timer
= NULL
;
7085 if (!cpu_has_vmx_shadow_vmcs())
7086 enable_shadow_vmcs
= 0;
7087 if (enable_shadow_vmcs
)
7088 init_vmcs_shadow_fields();
7090 kvm_set_posted_intr_wakeup_handler(wakeup_handler
);
7092 kvm_mce_cap_supported
|= MCG_LMCE_P
;
7094 return alloc_kvm_area();
7097 for (i
= 0; i
< VMX_BITMAP_NR
; i
++)
7098 free_page((unsigned long)vmx_bitmap
[i
]);
7103 static __exit
void hardware_unsetup(void)
7107 for (i
= 0; i
< VMX_BITMAP_NR
; i
++)
7108 free_page((unsigned long)vmx_bitmap
[i
]);
7114 * Indicate a busy-waiting vcpu in spinlock. We do not enable the PAUSE
7115 * exiting, so only get here on cpu with PAUSE-Loop-Exiting.
7117 static int handle_pause(struct kvm_vcpu
*vcpu
)
7120 grow_ple_window(vcpu
);
7123 * Intel sdm vol3 ch-25.1.3 says: The "PAUSE-loop exiting"
7124 * VM-execution control is ignored if CPL > 0. OTOH, KVM
7125 * never set PAUSE_EXITING and just set PLE if supported,
7126 * so the vcpu must be CPL=0 if it gets a PAUSE exit.
7128 kvm_vcpu_on_spin(vcpu
, true);
7129 return kvm_skip_emulated_instruction(vcpu
);
7132 static int handle_nop(struct kvm_vcpu
*vcpu
)
7134 return kvm_skip_emulated_instruction(vcpu
);
7137 static int handle_mwait(struct kvm_vcpu
*vcpu
)
7139 printk_once(KERN_WARNING
"kvm: MWAIT instruction emulated as NOP!\n");
7140 return handle_nop(vcpu
);
7143 static int handle_invalid_op(struct kvm_vcpu
*vcpu
)
7145 kvm_queue_exception(vcpu
, UD_VECTOR
);
7149 static int handle_monitor_trap(struct kvm_vcpu
*vcpu
)
7154 static int handle_monitor(struct kvm_vcpu
*vcpu
)
7156 printk_once(KERN_WARNING
"kvm: MONITOR instruction emulated as NOP!\n");
7157 return handle_nop(vcpu
);
7161 * The following 3 functions, nested_vmx_succeed()/failValid()/failInvalid(),
7162 * set the success or error code of an emulated VMX instruction, as specified
7163 * by Vol 2B, VMX Instruction Reference, "Conventions".
7165 static void nested_vmx_succeed(struct kvm_vcpu
*vcpu
)
7167 vmx_set_rflags(vcpu
, vmx_get_rflags(vcpu
)
7168 & ~(X86_EFLAGS_CF
| X86_EFLAGS_PF
| X86_EFLAGS_AF
|
7169 X86_EFLAGS_ZF
| X86_EFLAGS_SF
| X86_EFLAGS_OF
));
7172 static void nested_vmx_failInvalid(struct kvm_vcpu
*vcpu
)
7174 vmx_set_rflags(vcpu
, (vmx_get_rflags(vcpu
)
7175 & ~(X86_EFLAGS_PF
| X86_EFLAGS_AF
| X86_EFLAGS_ZF
|
7176 X86_EFLAGS_SF
| X86_EFLAGS_OF
))
7180 static void nested_vmx_failValid(struct kvm_vcpu
*vcpu
,
7181 u32 vm_instruction_error
)
7183 if (to_vmx(vcpu
)->nested
.current_vmptr
== -1ull) {
7185 * failValid writes the error number to the current VMCS, which
7186 * can't be done there isn't a current VMCS.
7188 nested_vmx_failInvalid(vcpu
);
7191 vmx_set_rflags(vcpu
, (vmx_get_rflags(vcpu
)
7192 & ~(X86_EFLAGS_CF
| X86_EFLAGS_PF
| X86_EFLAGS_AF
|
7193 X86_EFLAGS_SF
| X86_EFLAGS_OF
))
7195 get_vmcs12(vcpu
)->vm_instruction_error
= vm_instruction_error
;
7197 * We don't need to force a shadow sync because
7198 * VM_INSTRUCTION_ERROR is not shadowed
7202 static void nested_vmx_abort(struct kvm_vcpu
*vcpu
, u32 indicator
)
7204 /* TODO: not to reset guest simply here. */
7205 kvm_make_request(KVM_REQ_TRIPLE_FAULT
, vcpu
);
7206 pr_debug_ratelimited("kvm: nested vmx abort, indicator %d\n", indicator
);
7209 static enum hrtimer_restart
vmx_preemption_timer_fn(struct hrtimer
*timer
)
7211 struct vcpu_vmx
*vmx
=
7212 container_of(timer
, struct vcpu_vmx
, nested
.preemption_timer
);
7214 vmx
->nested
.preemption_timer_expired
= true;
7215 kvm_make_request(KVM_REQ_EVENT
, &vmx
->vcpu
);
7216 kvm_vcpu_kick(&vmx
->vcpu
);
7218 return HRTIMER_NORESTART
;
7222 * Decode the memory-address operand of a vmx instruction, as recorded on an
7223 * exit caused by such an instruction (run by a guest hypervisor).
7224 * On success, returns 0. When the operand is invalid, returns 1 and throws
7227 static int get_vmx_mem_address(struct kvm_vcpu
*vcpu
,
7228 unsigned long exit_qualification
,
7229 u32 vmx_instruction_info
, bool wr
, gva_t
*ret
)
7233 struct kvm_segment s
;
7236 * According to Vol. 3B, "Information for VM Exits Due to Instruction
7237 * Execution", on an exit, vmx_instruction_info holds most of the
7238 * addressing components of the operand. Only the displacement part
7239 * is put in exit_qualification (see 3B, "Basic VM-Exit Information").
7240 * For how an actual address is calculated from all these components,
7241 * refer to Vol. 1, "Operand Addressing".
7243 int scaling
= vmx_instruction_info
& 3;
7244 int addr_size
= (vmx_instruction_info
>> 7) & 7;
7245 bool is_reg
= vmx_instruction_info
& (1u << 10);
7246 int seg_reg
= (vmx_instruction_info
>> 15) & 7;
7247 int index_reg
= (vmx_instruction_info
>> 18) & 0xf;
7248 bool index_is_valid
= !(vmx_instruction_info
& (1u << 22));
7249 int base_reg
= (vmx_instruction_info
>> 23) & 0xf;
7250 bool base_is_valid
= !(vmx_instruction_info
& (1u << 27));
7253 kvm_queue_exception(vcpu
, UD_VECTOR
);
7257 /* Addr = segment_base + offset */
7258 /* offset = base + [index * scale] + displacement */
7259 off
= exit_qualification
; /* holds the displacement */
7261 off
+= kvm_register_read(vcpu
, base_reg
);
7263 off
+= kvm_register_read(vcpu
, index_reg
)<<scaling
;
7264 vmx_get_segment(vcpu
, &s
, seg_reg
);
7265 *ret
= s
.base
+ off
;
7267 if (addr_size
== 1) /* 32 bit */
7270 /* Checks for #GP/#SS exceptions. */
7272 if (is_long_mode(vcpu
)) {
7273 /* Long mode: #GP(0)/#SS(0) if the memory address is in a
7274 * non-canonical form. This is the only check on the memory
7275 * destination for long mode!
7277 exn
= is_noncanonical_address(*ret
, vcpu
);
7278 } else if (is_protmode(vcpu
)) {
7279 /* Protected mode: apply checks for segment validity in the
7281 * - segment type check (#GP(0) may be thrown)
7282 * - usability check (#GP(0)/#SS(0))
7283 * - limit check (#GP(0)/#SS(0))
7286 /* #GP(0) if the destination operand is located in a
7287 * read-only data segment or any code segment.
7289 exn
= ((s
.type
& 0xa) == 0 || (s
.type
& 8));
7291 /* #GP(0) if the source operand is located in an
7292 * execute-only code segment
7294 exn
= ((s
.type
& 0xa) == 8);
7296 kvm_queue_exception_e(vcpu
, GP_VECTOR
, 0);
7299 /* Protected mode: #GP(0)/#SS(0) if the segment is unusable.
7301 exn
= (s
.unusable
!= 0);
7302 /* Protected mode: #GP(0)/#SS(0) if the memory
7303 * operand is outside the segment limit.
7305 exn
= exn
|| (off
+ sizeof(u64
) > s
.limit
);
7308 kvm_queue_exception_e(vcpu
,
7309 seg_reg
== VCPU_SREG_SS
?
7310 SS_VECTOR
: GP_VECTOR
,
7318 static int nested_vmx_get_vmptr(struct kvm_vcpu
*vcpu
, gpa_t
*vmpointer
)
7321 struct x86_exception e
;
7323 if (get_vmx_mem_address(vcpu
, vmcs_readl(EXIT_QUALIFICATION
),
7324 vmcs_read32(VMX_INSTRUCTION_INFO
), false, &gva
))
7327 if (kvm_read_guest_virt(&vcpu
->arch
.emulate_ctxt
, gva
, vmpointer
,
7328 sizeof(*vmpointer
), &e
)) {
7329 kvm_inject_page_fault(vcpu
, &e
);
7336 static int enter_vmx_operation(struct kvm_vcpu
*vcpu
)
7338 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
7339 struct vmcs
*shadow_vmcs
;
7342 r
= alloc_loaded_vmcs(&vmx
->nested
.vmcs02
);
7346 vmx
->nested
.cached_vmcs12
= kmalloc(VMCS12_SIZE
, GFP_KERNEL
);
7347 if (!vmx
->nested
.cached_vmcs12
)
7348 goto out_cached_vmcs12
;
7350 if (enable_shadow_vmcs
) {
7351 shadow_vmcs
= alloc_vmcs();
7353 goto out_shadow_vmcs
;
7354 /* mark vmcs as shadow */
7355 shadow_vmcs
->revision_id
|= (1u << 31);
7356 /* init shadow vmcs */
7357 vmcs_clear(shadow_vmcs
);
7358 vmx
->vmcs01
.shadow_vmcs
= shadow_vmcs
;
7361 hrtimer_init(&vmx
->nested
.preemption_timer
, CLOCK_MONOTONIC
,
7362 HRTIMER_MODE_REL_PINNED
);
7363 vmx
->nested
.preemption_timer
.function
= vmx_preemption_timer_fn
;
7365 vmx
->nested
.vmxon
= true;
7369 kfree(vmx
->nested
.cached_vmcs12
);
7372 free_loaded_vmcs(&vmx
->nested
.vmcs02
);
7379 * Emulate the VMXON instruction.
7380 * Currently, we just remember that VMX is active, and do not save or even
7381 * inspect the argument to VMXON (the so-called "VMXON pointer") because we
7382 * do not currently need to store anything in that guest-allocated memory
7383 * region. Consequently, VMCLEAR and VMPTRLD also do not verify that the their
7384 * argument is different from the VMXON pointer (which the spec says they do).
7386 static int handle_vmon(struct kvm_vcpu
*vcpu
)
7391 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
7392 const u64 VMXON_NEEDED_FEATURES
= FEATURE_CONTROL_LOCKED
7393 | FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX
;
7396 * The Intel VMX Instruction Reference lists a bunch of bits that are
7397 * prerequisite to running VMXON, most notably cr4.VMXE must be set to
7398 * 1 (see vmx_set_cr4() for when we allow the guest to set this).
7399 * Otherwise, we should fail with #UD. But most faulting conditions
7400 * have already been checked by hardware, prior to the VM-exit for
7401 * VMXON. We do test guest cr4.VMXE because processor CR4 always has
7402 * that bit set to 1 in non-root mode.
7404 if (!kvm_read_cr4_bits(vcpu
, X86_CR4_VMXE
)) {
7405 kvm_queue_exception(vcpu
, UD_VECTOR
);
7409 if (vmx
->nested
.vmxon
) {
7410 nested_vmx_failValid(vcpu
, VMXERR_VMXON_IN_VMX_ROOT_OPERATION
);
7411 return kvm_skip_emulated_instruction(vcpu
);
7414 if ((vmx
->msr_ia32_feature_control
& VMXON_NEEDED_FEATURES
)
7415 != VMXON_NEEDED_FEATURES
) {
7416 kvm_inject_gp(vcpu
, 0);
7420 if (nested_vmx_get_vmptr(vcpu
, &vmptr
))
7425 * The first 4 bytes of VMXON region contain the supported
7426 * VMCS revision identifier
7428 * Note - IA32_VMX_BASIC[48] will never be 1 for the nested case;
7429 * which replaces physical address width with 32
7431 if (!PAGE_ALIGNED(vmptr
) || (vmptr
>> cpuid_maxphyaddr(vcpu
))) {
7432 nested_vmx_failInvalid(vcpu
);
7433 return kvm_skip_emulated_instruction(vcpu
);
7436 page
= kvm_vcpu_gpa_to_page(vcpu
, vmptr
);
7437 if (is_error_page(page
)) {
7438 nested_vmx_failInvalid(vcpu
);
7439 return kvm_skip_emulated_instruction(vcpu
);
7441 if (*(u32
*)kmap(page
) != VMCS12_REVISION
) {
7443 kvm_release_page_clean(page
);
7444 nested_vmx_failInvalid(vcpu
);
7445 return kvm_skip_emulated_instruction(vcpu
);
7448 kvm_release_page_clean(page
);
7450 vmx
->nested
.vmxon_ptr
= vmptr
;
7451 ret
= enter_vmx_operation(vcpu
);
7455 nested_vmx_succeed(vcpu
);
7456 return kvm_skip_emulated_instruction(vcpu
);
7460 * Intel's VMX Instruction Reference specifies a common set of prerequisites
7461 * for running VMX instructions (except VMXON, whose prerequisites are
7462 * slightly different). It also specifies what exception to inject otherwise.
7463 * Note that many of these exceptions have priority over VM exits, so they
7464 * don't have to be checked again here.
7466 static int nested_vmx_check_permission(struct kvm_vcpu
*vcpu
)
7468 if (!to_vmx(vcpu
)->nested
.vmxon
) {
7469 kvm_queue_exception(vcpu
, UD_VECTOR
);
7475 static void vmx_disable_shadow_vmcs(struct vcpu_vmx
*vmx
)
7477 vmcs_clear_bits(SECONDARY_VM_EXEC_CONTROL
, SECONDARY_EXEC_SHADOW_VMCS
);
7478 vmcs_write64(VMCS_LINK_POINTER
, -1ull);
7481 static inline void nested_release_vmcs12(struct vcpu_vmx
*vmx
)
7483 if (vmx
->nested
.current_vmptr
== -1ull)
7486 if (enable_shadow_vmcs
) {
7487 /* copy to memory all shadowed fields in case
7488 they were modified */
7489 copy_shadow_to_vmcs12(vmx
);
7490 vmx
->nested
.sync_shadow_vmcs
= false;
7491 vmx_disable_shadow_vmcs(vmx
);
7493 vmx
->nested
.posted_intr_nv
= -1;
7495 /* Flush VMCS12 to guest memory */
7496 kvm_vcpu_write_guest_page(&vmx
->vcpu
,
7497 vmx
->nested
.current_vmptr
>> PAGE_SHIFT
,
7498 vmx
->nested
.cached_vmcs12
, 0, VMCS12_SIZE
);
7500 vmx
->nested
.current_vmptr
= -1ull;
7504 * Free whatever needs to be freed from vmx->nested when L1 goes down, or
7505 * just stops using VMX.
7507 static void free_nested(struct vcpu_vmx
*vmx
)
7509 if (!vmx
->nested
.vmxon
&& !vmx
->nested
.smm
.vmxon
)
7512 vmx
->nested
.vmxon
= false;
7513 vmx
->nested
.smm
.vmxon
= false;
7514 free_vpid(vmx
->nested
.vpid02
);
7515 vmx
->nested
.posted_intr_nv
= -1;
7516 vmx
->nested
.current_vmptr
= -1ull;
7517 if (enable_shadow_vmcs
) {
7518 vmx_disable_shadow_vmcs(vmx
);
7519 vmcs_clear(vmx
->vmcs01
.shadow_vmcs
);
7520 free_vmcs(vmx
->vmcs01
.shadow_vmcs
);
7521 vmx
->vmcs01
.shadow_vmcs
= NULL
;
7523 kfree(vmx
->nested
.cached_vmcs12
);
7524 /* Unpin physical memory we referred to in the vmcs02 */
7525 if (vmx
->nested
.apic_access_page
) {
7526 kvm_release_page_dirty(vmx
->nested
.apic_access_page
);
7527 vmx
->nested
.apic_access_page
= NULL
;
7529 if (vmx
->nested
.virtual_apic_page
) {
7530 kvm_release_page_dirty(vmx
->nested
.virtual_apic_page
);
7531 vmx
->nested
.virtual_apic_page
= NULL
;
7533 if (vmx
->nested
.pi_desc_page
) {
7534 kunmap(vmx
->nested
.pi_desc_page
);
7535 kvm_release_page_dirty(vmx
->nested
.pi_desc_page
);
7536 vmx
->nested
.pi_desc_page
= NULL
;
7537 vmx
->nested
.pi_desc
= NULL
;
7540 free_loaded_vmcs(&vmx
->nested
.vmcs02
);
7543 /* Emulate the VMXOFF instruction */
7544 static int handle_vmoff(struct kvm_vcpu
*vcpu
)
7546 if (!nested_vmx_check_permission(vcpu
))
7548 free_nested(to_vmx(vcpu
));
7549 nested_vmx_succeed(vcpu
);
7550 return kvm_skip_emulated_instruction(vcpu
);
7553 /* Emulate the VMCLEAR instruction */
7554 static int handle_vmclear(struct kvm_vcpu
*vcpu
)
7556 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
7560 if (!nested_vmx_check_permission(vcpu
))
7563 if (nested_vmx_get_vmptr(vcpu
, &vmptr
))
7566 if (!PAGE_ALIGNED(vmptr
) || (vmptr
>> cpuid_maxphyaddr(vcpu
))) {
7567 nested_vmx_failValid(vcpu
, VMXERR_VMCLEAR_INVALID_ADDRESS
);
7568 return kvm_skip_emulated_instruction(vcpu
);
7571 if (vmptr
== vmx
->nested
.vmxon_ptr
) {
7572 nested_vmx_failValid(vcpu
, VMXERR_VMCLEAR_VMXON_POINTER
);
7573 return kvm_skip_emulated_instruction(vcpu
);
7576 if (vmptr
== vmx
->nested
.current_vmptr
)
7577 nested_release_vmcs12(vmx
);
7579 kvm_vcpu_write_guest(vcpu
,
7580 vmptr
+ offsetof(struct vmcs12
, launch_state
),
7581 &zero
, sizeof(zero
));
7583 nested_vmx_succeed(vcpu
);
7584 return kvm_skip_emulated_instruction(vcpu
);
7587 static int nested_vmx_run(struct kvm_vcpu
*vcpu
, bool launch
);
7589 /* Emulate the VMLAUNCH instruction */
7590 static int handle_vmlaunch(struct kvm_vcpu
*vcpu
)
7592 return nested_vmx_run(vcpu
, true);
7595 /* Emulate the VMRESUME instruction */
7596 static int handle_vmresume(struct kvm_vcpu
*vcpu
)
7599 return nested_vmx_run(vcpu
, false);
7603 * Read a vmcs12 field. Since these can have varying lengths and we return
7604 * one type, we chose the biggest type (u64) and zero-extend the return value
7605 * to that size. Note that the caller, handle_vmread, might need to use only
7606 * some of the bits we return here (e.g., on 32-bit guests, only 32 bits of
7607 * 64-bit fields are to be returned).
7609 static inline int vmcs12_read_any(struct kvm_vcpu
*vcpu
,
7610 unsigned long field
, u64
*ret
)
7612 short offset
= vmcs_field_to_offset(field
);
7618 p
= ((char *)(get_vmcs12(vcpu
))) + offset
;
7620 switch (vmcs_field_width(field
)) {
7621 case VMCS_FIELD_WIDTH_NATURAL_WIDTH
:
7622 *ret
= *((natural_width
*)p
);
7624 case VMCS_FIELD_WIDTH_U16
:
7627 case VMCS_FIELD_WIDTH_U32
:
7630 case VMCS_FIELD_WIDTH_U64
:
7640 static inline int vmcs12_write_any(struct kvm_vcpu
*vcpu
,
7641 unsigned long field
, u64 field_value
){
7642 short offset
= vmcs_field_to_offset(field
);
7643 char *p
= ((char *) get_vmcs12(vcpu
)) + offset
;
7647 switch (vmcs_field_width(field
)) {
7648 case VMCS_FIELD_WIDTH_U16
:
7649 *(u16
*)p
= field_value
;
7651 case VMCS_FIELD_WIDTH_U32
:
7652 *(u32
*)p
= field_value
;
7654 case VMCS_FIELD_WIDTH_U64
:
7655 *(u64
*)p
= field_value
;
7657 case VMCS_FIELD_WIDTH_NATURAL_WIDTH
:
7658 *(natural_width
*)p
= field_value
;
7667 static void copy_shadow_to_vmcs12(struct vcpu_vmx
*vmx
)
7670 unsigned long field
;
7672 struct vmcs
*shadow_vmcs
= vmx
->vmcs01
.shadow_vmcs
;
7673 const u16
*fields
= shadow_read_write_fields
;
7674 const int num_fields
= max_shadow_read_write_fields
;
7678 vmcs_load(shadow_vmcs
);
7680 for (i
= 0; i
< num_fields
; i
++) {
7682 field_value
= __vmcs_readl(field
);
7683 vmcs12_write_any(&vmx
->vcpu
, field
, field_value
);
7686 vmcs_clear(shadow_vmcs
);
7687 vmcs_load(vmx
->loaded_vmcs
->vmcs
);
7692 static void copy_vmcs12_to_shadow(struct vcpu_vmx
*vmx
)
7694 const u16
*fields
[] = {
7695 shadow_read_write_fields
,
7696 shadow_read_only_fields
7698 const int max_fields
[] = {
7699 max_shadow_read_write_fields
,
7700 max_shadow_read_only_fields
7703 unsigned long field
;
7704 u64 field_value
= 0;
7705 struct vmcs
*shadow_vmcs
= vmx
->vmcs01
.shadow_vmcs
;
7707 vmcs_load(shadow_vmcs
);
7709 for (q
= 0; q
< ARRAY_SIZE(fields
); q
++) {
7710 for (i
= 0; i
< max_fields
[q
]; i
++) {
7711 field
= fields
[q
][i
];
7712 vmcs12_read_any(&vmx
->vcpu
, field
, &field_value
);
7713 __vmcs_writel(field
, field_value
);
7717 vmcs_clear(shadow_vmcs
);
7718 vmcs_load(vmx
->loaded_vmcs
->vmcs
);
7722 * VMX instructions which assume a current vmcs12 (i.e., that VMPTRLD was
7723 * used before) all generate the same failure when it is missing.
7725 static int nested_vmx_check_vmcs12(struct kvm_vcpu
*vcpu
)
7727 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
7728 if (vmx
->nested
.current_vmptr
== -1ull) {
7729 nested_vmx_failInvalid(vcpu
);
7735 static int handle_vmread(struct kvm_vcpu
*vcpu
)
7737 unsigned long field
;
7739 unsigned long exit_qualification
= vmcs_readl(EXIT_QUALIFICATION
);
7740 u32 vmx_instruction_info
= vmcs_read32(VMX_INSTRUCTION_INFO
);
7743 if (!nested_vmx_check_permission(vcpu
))
7746 if (!nested_vmx_check_vmcs12(vcpu
))
7747 return kvm_skip_emulated_instruction(vcpu
);
7749 /* Decode instruction info and find the field to read */
7750 field
= kvm_register_readl(vcpu
, (((vmx_instruction_info
) >> 28) & 0xf));
7751 /* Read the field, zero-extended to a u64 field_value */
7752 if (vmcs12_read_any(vcpu
, field
, &field_value
) < 0) {
7753 nested_vmx_failValid(vcpu
, VMXERR_UNSUPPORTED_VMCS_COMPONENT
);
7754 return kvm_skip_emulated_instruction(vcpu
);
7757 * Now copy part of this value to register or memory, as requested.
7758 * Note that the number of bits actually copied is 32 or 64 depending
7759 * on the guest's mode (32 or 64 bit), not on the given field's length.
7761 if (vmx_instruction_info
& (1u << 10)) {
7762 kvm_register_writel(vcpu
, (((vmx_instruction_info
) >> 3) & 0xf),
7765 if (get_vmx_mem_address(vcpu
, exit_qualification
,
7766 vmx_instruction_info
, true, &gva
))
7768 /* _system ok, as hardware has verified cpl=0 */
7769 kvm_write_guest_virt_system(&vcpu
->arch
.emulate_ctxt
, gva
,
7770 &field_value
, (is_long_mode(vcpu
) ? 8 : 4), NULL
);
7773 nested_vmx_succeed(vcpu
);
7774 return kvm_skip_emulated_instruction(vcpu
);
7778 static int handle_vmwrite(struct kvm_vcpu
*vcpu
)
7780 unsigned long field
;
7782 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
7783 unsigned long exit_qualification
= vmcs_readl(EXIT_QUALIFICATION
);
7784 u32 vmx_instruction_info
= vmcs_read32(VMX_INSTRUCTION_INFO
);
7786 /* The value to write might be 32 or 64 bits, depending on L1's long
7787 * mode, and eventually we need to write that into a field of several
7788 * possible lengths. The code below first zero-extends the value to 64
7789 * bit (field_value), and then copies only the appropriate number of
7790 * bits into the vmcs12 field.
7792 u64 field_value
= 0;
7793 struct x86_exception e
;
7795 if (!nested_vmx_check_permission(vcpu
))
7798 if (!nested_vmx_check_vmcs12(vcpu
))
7799 return kvm_skip_emulated_instruction(vcpu
);
7801 if (vmx_instruction_info
& (1u << 10))
7802 field_value
= kvm_register_readl(vcpu
,
7803 (((vmx_instruction_info
) >> 3) & 0xf));
7805 if (get_vmx_mem_address(vcpu
, exit_qualification
,
7806 vmx_instruction_info
, false, &gva
))
7808 if (kvm_read_guest_virt(&vcpu
->arch
.emulate_ctxt
, gva
,
7809 &field_value
, (is_64_bit_mode(vcpu
) ? 8 : 4), &e
)) {
7810 kvm_inject_page_fault(vcpu
, &e
);
7816 field
= kvm_register_readl(vcpu
, (((vmx_instruction_info
) >> 28) & 0xf));
7817 if (vmcs_field_readonly(field
)) {
7818 nested_vmx_failValid(vcpu
,
7819 VMXERR_VMWRITE_READ_ONLY_VMCS_COMPONENT
);
7820 return kvm_skip_emulated_instruction(vcpu
);
7823 if (vmcs12_write_any(vcpu
, field
, field_value
) < 0) {
7824 nested_vmx_failValid(vcpu
, VMXERR_UNSUPPORTED_VMCS_COMPONENT
);
7825 return kvm_skip_emulated_instruction(vcpu
);
7829 #define SHADOW_FIELD_RW(x) case x:
7830 #include "vmx_shadow_fields.h"
7832 * The fields that can be updated by L1 without a vmexit are
7833 * always updated in the vmcs02, the others go down the slow
7834 * path of prepare_vmcs02.
7838 vmx
->nested
.dirty_vmcs12
= true;
7842 nested_vmx_succeed(vcpu
);
7843 return kvm_skip_emulated_instruction(vcpu
);
7846 static void set_current_vmptr(struct vcpu_vmx
*vmx
, gpa_t vmptr
)
7848 vmx
->nested
.current_vmptr
= vmptr
;
7849 if (enable_shadow_vmcs
) {
7850 vmcs_set_bits(SECONDARY_VM_EXEC_CONTROL
,
7851 SECONDARY_EXEC_SHADOW_VMCS
);
7852 vmcs_write64(VMCS_LINK_POINTER
,
7853 __pa(vmx
->vmcs01
.shadow_vmcs
));
7854 vmx
->nested
.sync_shadow_vmcs
= true;
7856 vmx
->nested
.dirty_vmcs12
= true;
7859 /* Emulate the VMPTRLD instruction */
7860 static int handle_vmptrld(struct kvm_vcpu
*vcpu
)
7862 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
7865 if (!nested_vmx_check_permission(vcpu
))
7868 if (nested_vmx_get_vmptr(vcpu
, &vmptr
))
7871 if (!PAGE_ALIGNED(vmptr
) || (vmptr
>> cpuid_maxphyaddr(vcpu
))) {
7872 nested_vmx_failValid(vcpu
, VMXERR_VMPTRLD_INVALID_ADDRESS
);
7873 return kvm_skip_emulated_instruction(vcpu
);
7876 if (vmptr
== vmx
->nested
.vmxon_ptr
) {
7877 nested_vmx_failValid(vcpu
, VMXERR_VMPTRLD_VMXON_POINTER
);
7878 return kvm_skip_emulated_instruction(vcpu
);
7881 if (vmx
->nested
.current_vmptr
!= vmptr
) {
7882 struct vmcs12
*new_vmcs12
;
7884 page
= kvm_vcpu_gpa_to_page(vcpu
, vmptr
);
7885 if (is_error_page(page
)) {
7886 nested_vmx_failInvalid(vcpu
);
7887 return kvm_skip_emulated_instruction(vcpu
);
7889 new_vmcs12
= kmap(page
);
7890 if (new_vmcs12
->revision_id
!= VMCS12_REVISION
) {
7892 kvm_release_page_clean(page
);
7893 nested_vmx_failValid(vcpu
,
7894 VMXERR_VMPTRLD_INCORRECT_VMCS_REVISION_ID
);
7895 return kvm_skip_emulated_instruction(vcpu
);
7898 nested_release_vmcs12(vmx
);
7900 * Load VMCS12 from guest memory since it is not already
7903 memcpy(vmx
->nested
.cached_vmcs12
, new_vmcs12
, VMCS12_SIZE
);
7905 kvm_release_page_clean(page
);
7907 set_current_vmptr(vmx
, vmptr
);
7910 nested_vmx_succeed(vcpu
);
7911 return kvm_skip_emulated_instruction(vcpu
);
7914 /* Emulate the VMPTRST instruction */
7915 static int handle_vmptrst(struct kvm_vcpu
*vcpu
)
7917 unsigned long exit_qualification
= vmcs_readl(EXIT_QUALIFICATION
);
7918 u32 vmx_instruction_info
= vmcs_read32(VMX_INSTRUCTION_INFO
);
7920 struct x86_exception e
;
7922 if (!nested_vmx_check_permission(vcpu
))
7925 if (get_vmx_mem_address(vcpu
, exit_qualification
,
7926 vmx_instruction_info
, true, &vmcs_gva
))
7928 /* ok to use *_system, as hardware has verified cpl=0 */
7929 if (kvm_write_guest_virt_system(&vcpu
->arch
.emulate_ctxt
, vmcs_gva
,
7930 (void *)&to_vmx(vcpu
)->nested
.current_vmptr
,
7932 kvm_inject_page_fault(vcpu
, &e
);
7935 nested_vmx_succeed(vcpu
);
7936 return kvm_skip_emulated_instruction(vcpu
);
7939 /* Emulate the INVEPT instruction */
7940 static int handle_invept(struct kvm_vcpu
*vcpu
)
7942 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
7943 u32 vmx_instruction_info
, types
;
7946 struct x86_exception e
;
7951 if (!(vmx
->nested
.nested_vmx_secondary_ctls_high
&
7952 SECONDARY_EXEC_ENABLE_EPT
) ||
7953 !(vmx
->nested
.nested_vmx_ept_caps
& VMX_EPT_INVEPT_BIT
)) {
7954 kvm_queue_exception(vcpu
, UD_VECTOR
);
7958 if (!nested_vmx_check_permission(vcpu
))
7961 vmx_instruction_info
= vmcs_read32(VMX_INSTRUCTION_INFO
);
7962 type
= kvm_register_readl(vcpu
, (vmx_instruction_info
>> 28) & 0xf);
7964 types
= (vmx
->nested
.nested_vmx_ept_caps
>> VMX_EPT_EXTENT_SHIFT
) & 6;
7966 if (type
>= 32 || !(types
& (1 << type
))) {
7967 nested_vmx_failValid(vcpu
,
7968 VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID
);
7969 return kvm_skip_emulated_instruction(vcpu
);
7972 /* According to the Intel VMX instruction reference, the memory
7973 * operand is read even if it isn't needed (e.g., for type==global)
7975 if (get_vmx_mem_address(vcpu
, vmcs_readl(EXIT_QUALIFICATION
),
7976 vmx_instruction_info
, false, &gva
))
7978 if (kvm_read_guest_virt(&vcpu
->arch
.emulate_ctxt
, gva
, &operand
,
7979 sizeof(operand
), &e
)) {
7980 kvm_inject_page_fault(vcpu
, &e
);
7985 case VMX_EPT_EXTENT_GLOBAL
:
7987 * TODO: track mappings and invalidate
7988 * single context requests appropriately
7990 case VMX_EPT_EXTENT_CONTEXT
:
7991 kvm_mmu_sync_roots(vcpu
);
7992 kvm_make_request(KVM_REQ_TLB_FLUSH
, vcpu
);
7993 nested_vmx_succeed(vcpu
);
8000 return kvm_skip_emulated_instruction(vcpu
);
8003 static int handle_invvpid(struct kvm_vcpu
*vcpu
)
8005 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
8006 u32 vmx_instruction_info
;
8007 unsigned long type
, types
;
8009 struct x86_exception e
;
8015 if (!(vmx
->nested
.nested_vmx_secondary_ctls_high
&
8016 SECONDARY_EXEC_ENABLE_VPID
) ||
8017 !(vmx
->nested
.nested_vmx_vpid_caps
& VMX_VPID_INVVPID_BIT
)) {
8018 kvm_queue_exception(vcpu
, UD_VECTOR
);
8022 if (!nested_vmx_check_permission(vcpu
))
8025 vmx_instruction_info
= vmcs_read32(VMX_INSTRUCTION_INFO
);
8026 type
= kvm_register_readl(vcpu
, (vmx_instruction_info
>> 28) & 0xf);
8028 types
= (vmx
->nested
.nested_vmx_vpid_caps
&
8029 VMX_VPID_EXTENT_SUPPORTED_MASK
) >> 8;
8031 if (type
>= 32 || !(types
& (1 << type
))) {
8032 nested_vmx_failValid(vcpu
,
8033 VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID
);
8034 return kvm_skip_emulated_instruction(vcpu
);
8037 /* according to the intel vmx instruction reference, the memory
8038 * operand is read even if it isn't needed (e.g., for type==global)
8040 if (get_vmx_mem_address(vcpu
, vmcs_readl(EXIT_QUALIFICATION
),
8041 vmx_instruction_info
, false, &gva
))
8043 if (kvm_read_guest_virt(&vcpu
->arch
.emulate_ctxt
, gva
, &operand
,
8044 sizeof(operand
), &e
)) {
8045 kvm_inject_page_fault(vcpu
, &e
);
8048 if (operand
.vpid
>> 16) {
8049 nested_vmx_failValid(vcpu
,
8050 VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID
);
8051 return kvm_skip_emulated_instruction(vcpu
);
8055 case VMX_VPID_EXTENT_INDIVIDUAL_ADDR
:
8056 if (is_noncanonical_address(operand
.gla
, vcpu
)) {
8057 nested_vmx_failValid(vcpu
,
8058 VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID
);
8059 return kvm_skip_emulated_instruction(vcpu
);
8062 case VMX_VPID_EXTENT_SINGLE_CONTEXT
:
8063 case VMX_VPID_EXTENT_SINGLE_NON_GLOBAL
:
8064 if (!operand
.vpid
) {
8065 nested_vmx_failValid(vcpu
,
8066 VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID
);
8067 return kvm_skip_emulated_instruction(vcpu
);
8070 case VMX_VPID_EXTENT_ALL_CONTEXT
:
8074 return kvm_skip_emulated_instruction(vcpu
);
8077 __vmx_flush_tlb(vcpu
, vmx
->nested
.vpid02
, true);
8078 nested_vmx_succeed(vcpu
);
8080 return kvm_skip_emulated_instruction(vcpu
);
8083 static int handle_pml_full(struct kvm_vcpu
*vcpu
)
8085 unsigned long exit_qualification
;
8087 trace_kvm_pml_full(vcpu
->vcpu_id
);
8089 exit_qualification
= vmcs_readl(EXIT_QUALIFICATION
);
8092 * PML buffer FULL happened while executing iret from NMI,
8093 * "blocked by NMI" bit has to be set before next VM entry.
8095 if (!(to_vmx(vcpu
)->idt_vectoring_info
& VECTORING_INFO_VALID_MASK
) &&
8097 (exit_qualification
& INTR_INFO_UNBLOCK_NMI
))
8098 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO
,
8099 GUEST_INTR_STATE_NMI
);
8102 * PML buffer already flushed at beginning of VMEXIT. Nothing to do
8103 * here.., and there's no userspace involvement needed for PML.
8108 static int handle_preemption_timer(struct kvm_vcpu
*vcpu
)
8110 kvm_lapic_expired_hv_timer(vcpu
);
8114 static bool valid_ept_address(struct kvm_vcpu
*vcpu
, u64 address
)
8116 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
8117 int maxphyaddr
= cpuid_maxphyaddr(vcpu
);
8119 /* Check for memory type validity */
8120 switch (address
& VMX_EPTP_MT_MASK
) {
8121 case VMX_EPTP_MT_UC
:
8122 if (!(vmx
->nested
.nested_vmx_ept_caps
& VMX_EPTP_UC_BIT
))
8125 case VMX_EPTP_MT_WB
:
8126 if (!(vmx
->nested
.nested_vmx_ept_caps
& VMX_EPTP_WB_BIT
))
8133 /* only 4 levels page-walk length are valid */
8134 if ((address
& VMX_EPTP_PWL_MASK
) != VMX_EPTP_PWL_4
)
8137 /* Reserved bits should not be set */
8138 if (address
>> maxphyaddr
|| ((address
>> 7) & 0x1f))
8141 /* AD, if set, should be supported */
8142 if (address
& VMX_EPTP_AD_ENABLE_BIT
) {
8143 if (!(vmx
->nested
.nested_vmx_ept_caps
& VMX_EPT_AD_BIT
))
8150 static int nested_vmx_eptp_switching(struct kvm_vcpu
*vcpu
,
8151 struct vmcs12
*vmcs12
)
8153 u32 index
= vcpu
->arch
.regs
[VCPU_REGS_RCX
];
8155 bool accessed_dirty
;
8156 struct kvm_mmu
*mmu
= vcpu
->arch
.walk_mmu
;
8158 if (!nested_cpu_has_eptp_switching(vmcs12
) ||
8159 !nested_cpu_has_ept(vmcs12
))
8162 if (index
>= VMFUNC_EPTP_ENTRIES
)
8166 if (kvm_vcpu_read_guest_page(vcpu
, vmcs12
->eptp_list_address
>> PAGE_SHIFT
,
8167 &address
, index
* 8, 8))
8170 accessed_dirty
= !!(address
& VMX_EPTP_AD_ENABLE_BIT
);
8173 * If the (L2) guest does a vmfunc to the currently
8174 * active ept pointer, we don't have to do anything else
8176 if (vmcs12
->ept_pointer
!= address
) {
8177 if (!valid_ept_address(vcpu
, address
))
8180 kvm_mmu_unload(vcpu
);
8181 mmu
->ept_ad
= accessed_dirty
;
8182 mmu
->base_role
.ad_disabled
= !accessed_dirty
;
8183 vmcs12
->ept_pointer
= address
;
8185 * TODO: Check what's the correct approach in case
8186 * mmu reload fails. Currently, we just let the next
8187 * reload potentially fail
8189 kvm_mmu_reload(vcpu
);
8195 static int handle_vmfunc(struct kvm_vcpu
*vcpu
)
8197 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
8198 struct vmcs12
*vmcs12
;
8199 u32 function
= vcpu
->arch
.regs
[VCPU_REGS_RAX
];
8202 * VMFUNC is only supported for nested guests, but we always enable the
8203 * secondary control for simplicity; for non-nested mode, fake that we
8204 * didn't by injecting #UD.
8206 if (!is_guest_mode(vcpu
)) {
8207 kvm_queue_exception(vcpu
, UD_VECTOR
);
8211 vmcs12
= get_vmcs12(vcpu
);
8212 if ((vmcs12
->vm_function_control
& (1 << function
)) == 0)
8217 if (nested_vmx_eptp_switching(vcpu
, vmcs12
))
8223 return kvm_skip_emulated_instruction(vcpu
);
8226 nested_vmx_vmexit(vcpu
, vmx
->exit_reason
,
8227 vmcs_read32(VM_EXIT_INTR_INFO
),
8228 vmcs_readl(EXIT_QUALIFICATION
));
8233 * The exit handlers return 1 if the exit was handled fully and guest execution
8234 * may resume. Otherwise they set the kvm_run parameter to indicate what needs
8235 * to be done to userspace and return 0.
8237 static int (*const kvm_vmx_exit_handlers
[])(struct kvm_vcpu
*vcpu
) = {
8238 [EXIT_REASON_EXCEPTION_NMI
] = handle_exception
,
8239 [EXIT_REASON_EXTERNAL_INTERRUPT
] = handle_external_interrupt
,
8240 [EXIT_REASON_TRIPLE_FAULT
] = handle_triple_fault
,
8241 [EXIT_REASON_NMI_WINDOW
] = handle_nmi_window
,
8242 [EXIT_REASON_IO_INSTRUCTION
] = handle_io
,
8243 [EXIT_REASON_CR_ACCESS
] = handle_cr
,
8244 [EXIT_REASON_DR_ACCESS
] = handle_dr
,
8245 [EXIT_REASON_CPUID
] = handle_cpuid
,
8246 [EXIT_REASON_MSR_READ
] = handle_rdmsr
,
8247 [EXIT_REASON_MSR_WRITE
] = handle_wrmsr
,
8248 [EXIT_REASON_PENDING_INTERRUPT
] = handle_interrupt_window
,
8249 [EXIT_REASON_HLT
] = handle_halt
,
8250 [EXIT_REASON_INVD
] = handle_invd
,
8251 [EXIT_REASON_INVLPG
] = handle_invlpg
,
8252 [EXIT_REASON_RDPMC
] = handle_rdpmc
,
8253 [EXIT_REASON_VMCALL
] = handle_vmcall
,
8254 [EXIT_REASON_VMCLEAR
] = handle_vmclear
,
8255 [EXIT_REASON_VMLAUNCH
] = handle_vmlaunch
,
8256 [EXIT_REASON_VMPTRLD
] = handle_vmptrld
,
8257 [EXIT_REASON_VMPTRST
] = handle_vmptrst
,
8258 [EXIT_REASON_VMREAD
] = handle_vmread
,
8259 [EXIT_REASON_VMRESUME
] = handle_vmresume
,
8260 [EXIT_REASON_VMWRITE
] = handle_vmwrite
,
8261 [EXIT_REASON_VMOFF
] = handle_vmoff
,
8262 [EXIT_REASON_VMON
] = handle_vmon
,
8263 [EXIT_REASON_TPR_BELOW_THRESHOLD
] = handle_tpr_below_threshold
,
8264 [EXIT_REASON_APIC_ACCESS
] = handle_apic_access
,
8265 [EXIT_REASON_APIC_WRITE
] = handle_apic_write
,
8266 [EXIT_REASON_EOI_INDUCED
] = handle_apic_eoi_induced
,
8267 [EXIT_REASON_WBINVD
] = handle_wbinvd
,
8268 [EXIT_REASON_XSETBV
] = handle_xsetbv
,
8269 [EXIT_REASON_TASK_SWITCH
] = handle_task_switch
,
8270 [EXIT_REASON_MCE_DURING_VMENTRY
] = handle_machine_check
,
8271 [EXIT_REASON_GDTR_IDTR
] = handle_desc
,
8272 [EXIT_REASON_LDTR_TR
] = handle_desc
,
8273 [EXIT_REASON_EPT_VIOLATION
] = handle_ept_violation
,
8274 [EXIT_REASON_EPT_MISCONFIG
] = handle_ept_misconfig
,
8275 [EXIT_REASON_PAUSE_INSTRUCTION
] = handle_pause
,
8276 [EXIT_REASON_MWAIT_INSTRUCTION
] = handle_mwait
,
8277 [EXIT_REASON_MONITOR_TRAP_FLAG
] = handle_monitor_trap
,
8278 [EXIT_REASON_MONITOR_INSTRUCTION
] = handle_monitor
,
8279 [EXIT_REASON_INVEPT
] = handle_invept
,
8280 [EXIT_REASON_INVVPID
] = handle_invvpid
,
8281 [EXIT_REASON_RDRAND
] = handle_invalid_op
,
8282 [EXIT_REASON_RDSEED
] = handle_invalid_op
,
8283 [EXIT_REASON_XSAVES
] = handle_xsaves
,
8284 [EXIT_REASON_XRSTORS
] = handle_xrstors
,
8285 [EXIT_REASON_PML_FULL
] = handle_pml_full
,
8286 [EXIT_REASON_VMFUNC
] = handle_vmfunc
,
8287 [EXIT_REASON_PREEMPTION_TIMER
] = handle_preemption_timer
,
8290 static const int kvm_vmx_max_exit_handlers
=
8291 ARRAY_SIZE(kvm_vmx_exit_handlers
);
8293 static bool nested_vmx_exit_handled_io(struct kvm_vcpu
*vcpu
,
8294 struct vmcs12
*vmcs12
)
8296 unsigned long exit_qualification
;
8297 gpa_t bitmap
, last_bitmap
;
8302 if (!nested_cpu_has(vmcs12
, CPU_BASED_USE_IO_BITMAPS
))
8303 return nested_cpu_has(vmcs12
, CPU_BASED_UNCOND_IO_EXITING
);
8305 exit_qualification
= vmcs_readl(EXIT_QUALIFICATION
);
8307 port
= exit_qualification
>> 16;
8308 size
= (exit_qualification
& 7) + 1;
8310 last_bitmap
= (gpa_t
)-1;
8315 bitmap
= vmcs12
->io_bitmap_a
;
8316 else if (port
< 0x10000)
8317 bitmap
= vmcs12
->io_bitmap_b
;
8320 bitmap
+= (port
& 0x7fff) / 8;
8322 if (last_bitmap
!= bitmap
)
8323 if (kvm_vcpu_read_guest(vcpu
, bitmap
, &b
, 1))
8325 if (b
& (1 << (port
& 7)))
8330 last_bitmap
= bitmap
;
8337 * Return 1 if we should exit from L2 to L1 to handle an MSR access access,
8338 * rather than handle it ourselves in L0. I.e., check whether L1 expressed
8339 * disinterest in the current event (read or write a specific MSR) by using an
8340 * MSR bitmap. This may be the case even when L0 doesn't use MSR bitmaps.
8342 static bool nested_vmx_exit_handled_msr(struct kvm_vcpu
*vcpu
,
8343 struct vmcs12
*vmcs12
, u32 exit_reason
)
8345 u32 msr_index
= vcpu
->arch
.regs
[VCPU_REGS_RCX
];
8348 if (!nested_cpu_has(vmcs12
, CPU_BASED_USE_MSR_BITMAPS
))
8352 * The MSR_BITMAP page is divided into four 1024-byte bitmaps,
8353 * for the four combinations of read/write and low/high MSR numbers.
8354 * First we need to figure out which of the four to use:
8356 bitmap
= vmcs12
->msr_bitmap
;
8357 if (exit_reason
== EXIT_REASON_MSR_WRITE
)
8359 if (msr_index
>= 0xc0000000) {
8360 msr_index
-= 0xc0000000;
8364 /* Then read the msr_index'th bit from this bitmap: */
8365 if (msr_index
< 1024*8) {
8367 if (kvm_vcpu_read_guest(vcpu
, bitmap
+ msr_index
/8, &b
, 1))
8369 return 1 & (b
>> (msr_index
& 7));
8371 return true; /* let L1 handle the wrong parameter */
8375 * Return 1 if we should exit from L2 to L1 to handle a CR access exit,
8376 * rather than handle it ourselves in L0. I.e., check if L1 wanted to
8377 * intercept (via guest_host_mask etc.) the current event.
8379 static bool nested_vmx_exit_handled_cr(struct kvm_vcpu
*vcpu
,
8380 struct vmcs12
*vmcs12
)
8382 unsigned long exit_qualification
= vmcs_readl(EXIT_QUALIFICATION
);
8383 int cr
= exit_qualification
& 15;
8387 switch ((exit_qualification
>> 4) & 3) {
8388 case 0: /* mov to cr */
8389 reg
= (exit_qualification
>> 8) & 15;
8390 val
= kvm_register_readl(vcpu
, reg
);
8393 if (vmcs12
->cr0_guest_host_mask
&
8394 (val
^ vmcs12
->cr0_read_shadow
))
8398 if ((vmcs12
->cr3_target_count
>= 1 &&
8399 vmcs12
->cr3_target_value0
== val
) ||
8400 (vmcs12
->cr3_target_count
>= 2 &&
8401 vmcs12
->cr3_target_value1
== val
) ||
8402 (vmcs12
->cr3_target_count
>= 3 &&
8403 vmcs12
->cr3_target_value2
== val
) ||
8404 (vmcs12
->cr3_target_count
>= 4 &&
8405 vmcs12
->cr3_target_value3
== val
))
8407 if (nested_cpu_has(vmcs12
, CPU_BASED_CR3_LOAD_EXITING
))
8411 if (vmcs12
->cr4_guest_host_mask
&
8412 (vmcs12
->cr4_read_shadow
^ val
))
8416 if (nested_cpu_has(vmcs12
, CPU_BASED_CR8_LOAD_EXITING
))
8422 if ((vmcs12
->cr0_guest_host_mask
& X86_CR0_TS
) &&
8423 (vmcs12
->cr0_read_shadow
& X86_CR0_TS
))
8426 case 1: /* mov from cr */
8429 if (vmcs12
->cpu_based_vm_exec_control
&
8430 CPU_BASED_CR3_STORE_EXITING
)
8434 if (vmcs12
->cpu_based_vm_exec_control
&
8435 CPU_BASED_CR8_STORE_EXITING
)
8442 * lmsw can change bits 1..3 of cr0, and only set bit 0 of
8443 * cr0. Other attempted changes are ignored, with no exit.
8445 val
= (exit_qualification
>> LMSW_SOURCE_DATA_SHIFT
) & 0x0f;
8446 if (vmcs12
->cr0_guest_host_mask
& 0xe &
8447 (val
^ vmcs12
->cr0_read_shadow
))
8449 if ((vmcs12
->cr0_guest_host_mask
& 0x1) &&
8450 !(vmcs12
->cr0_read_shadow
& 0x1) &&
8459 * Return 1 if we should exit from L2 to L1 to handle an exit, or 0 if we
8460 * should handle it ourselves in L0 (and then continue L2). Only call this
8461 * when in is_guest_mode (L2).
8463 static bool nested_vmx_exit_reflected(struct kvm_vcpu
*vcpu
, u32 exit_reason
)
8465 u32 intr_info
= vmcs_read32(VM_EXIT_INTR_INFO
);
8466 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
8467 struct vmcs12
*vmcs12
= get_vmcs12(vcpu
);
8469 if (vmx
->nested
.nested_run_pending
)
8472 if (unlikely(vmx
->fail
)) {
8473 pr_info_ratelimited("%s failed vm entry %x\n", __func__
,
8474 vmcs_read32(VM_INSTRUCTION_ERROR
));
8479 * The host physical addresses of some pages of guest memory
8480 * are loaded into the vmcs02 (e.g. vmcs12's Virtual APIC
8481 * Page). The CPU may write to these pages via their host
8482 * physical address while L2 is running, bypassing any
8483 * address-translation-based dirty tracking (e.g. EPT write
8486 * Mark them dirty on every exit from L2 to prevent them from
8487 * getting out of sync with dirty tracking.
8489 nested_mark_vmcs12_pages_dirty(vcpu
);
8491 trace_kvm_nested_vmexit(kvm_rip_read(vcpu
), exit_reason
,
8492 vmcs_readl(EXIT_QUALIFICATION
),
8493 vmx
->idt_vectoring_info
,
8495 vmcs_read32(VM_EXIT_INTR_ERROR_CODE
),
8498 switch (exit_reason
) {
8499 case EXIT_REASON_EXCEPTION_NMI
:
8500 if (is_nmi(intr_info
))
8502 else if (is_page_fault(intr_info
))
8503 return !vmx
->vcpu
.arch
.apf
.host_apf_reason
&& enable_ept
;
8504 else if (is_no_device(intr_info
) &&
8505 !(vmcs12
->guest_cr0
& X86_CR0_TS
))
8507 else if (is_debug(intr_info
) &&
8509 (KVM_GUESTDBG_SINGLESTEP
| KVM_GUESTDBG_USE_HW_BP
))
8511 else if (is_breakpoint(intr_info
) &&
8512 vcpu
->guest_debug
& KVM_GUESTDBG_USE_SW_BP
)
8514 return vmcs12
->exception_bitmap
&
8515 (1u << (intr_info
& INTR_INFO_VECTOR_MASK
));
8516 case EXIT_REASON_EXTERNAL_INTERRUPT
:
8518 case EXIT_REASON_TRIPLE_FAULT
:
8520 case EXIT_REASON_PENDING_INTERRUPT
:
8521 return nested_cpu_has(vmcs12
, CPU_BASED_VIRTUAL_INTR_PENDING
);
8522 case EXIT_REASON_NMI_WINDOW
:
8523 return nested_cpu_has(vmcs12
, CPU_BASED_VIRTUAL_NMI_PENDING
);
8524 case EXIT_REASON_TASK_SWITCH
:
8526 case EXIT_REASON_CPUID
:
8528 case EXIT_REASON_HLT
:
8529 return nested_cpu_has(vmcs12
, CPU_BASED_HLT_EXITING
);
8530 case EXIT_REASON_INVD
:
8532 case EXIT_REASON_INVLPG
:
8533 return nested_cpu_has(vmcs12
, CPU_BASED_INVLPG_EXITING
);
8534 case EXIT_REASON_RDPMC
:
8535 return nested_cpu_has(vmcs12
, CPU_BASED_RDPMC_EXITING
);
8536 case EXIT_REASON_RDRAND
:
8537 return nested_cpu_has2(vmcs12
, SECONDARY_EXEC_RDRAND_EXITING
);
8538 case EXIT_REASON_RDSEED
:
8539 return nested_cpu_has2(vmcs12
, SECONDARY_EXEC_RDSEED_EXITING
);
8540 case EXIT_REASON_RDTSC
: case EXIT_REASON_RDTSCP
:
8541 return nested_cpu_has(vmcs12
, CPU_BASED_RDTSC_EXITING
);
8542 case EXIT_REASON_VMCALL
: case EXIT_REASON_VMCLEAR
:
8543 case EXIT_REASON_VMLAUNCH
: case EXIT_REASON_VMPTRLD
:
8544 case EXIT_REASON_VMPTRST
: case EXIT_REASON_VMREAD
:
8545 case EXIT_REASON_VMRESUME
: case EXIT_REASON_VMWRITE
:
8546 case EXIT_REASON_VMOFF
: case EXIT_REASON_VMON
:
8547 case EXIT_REASON_INVEPT
: case EXIT_REASON_INVVPID
:
8549 * VMX instructions trap unconditionally. This allows L1 to
8550 * emulate them for its L2 guest, i.e., allows 3-level nesting!
8553 case EXIT_REASON_CR_ACCESS
:
8554 return nested_vmx_exit_handled_cr(vcpu
, vmcs12
);
8555 case EXIT_REASON_DR_ACCESS
:
8556 return nested_cpu_has(vmcs12
, CPU_BASED_MOV_DR_EXITING
);
8557 case EXIT_REASON_IO_INSTRUCTION
:
8558 return nested_vmx_exit_handled_io(vcpu
, vmcs12
);
8559 case EXIT_REASON_GDTR_IDTR
: case EXIT_REASON_LDTR_TR
:
8560 return nested_cpu_has2(vmcs12
, SECONDARY_EXEC_DESC
);
8561 case EXIT_REASON_MSR_READ
:
8562 case EXIT_REASON_MSR_WRITE
:
8563 return nested_vmx_exit_handled_msr(vcpu
, vmcs12
, exit_reason
);
8564 case EXIT_REASON_INVALID_STATE
:
8566 case EXIT_REASON_MWAIT_INSTRUCTION
:
8567 return nested_cpu_has(vmcs12
, CPU_BASED_MWAIT_EXITING
);
8568 case EXIT_REASON_MONITOR_TRAP_FLAG
:
8569 return nested_cpu_has(vmcs12
, CPU_BASED_MONITOR_TRAP_FLAG
);
8570 case EXIT_REASON_MONITOR_INSTRUCTION
:
8571 return nested_cpu_has(vmcs12
, CPU_BASED_MONITOR_EXITING
);
8572 case EXIT_REASON_PAUSE_INSTRUCTION
:
8573 return nested_cpu_has(vmcs12
, CPU_BASED_PAUSE_EXITING
) ||
8574 nested_cpu_has2(vmcs12
,
8575 SECONDARY_EXEC_PAUSE_LOOP_EXITING
);
8576 case EXIT_REASON_MCE_DURING_VMENTRY
:
8578 case EXIT_REASON_TPR_BELOW_THRESHOLD
:
8579 return nested_cpu_has(vmcs12
, CPU_BASED_TPR_SHADOW
);
8580 case EXIT_REASON_APIC_ACCESS
:
8581 return nested_cpu_has2(vmcs12
,
8582 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES
);
8583 case EXIT_REASON_APIC_WRITE
:
8584 case EXIT_REASON_EOI_INDUCED
:
8585 /* apic_write and eoi_induced should exit unconditionally. */
8587 case EXIT_REASON_EPT_VIOLATION
:
8589 * L0 always deals with the EPT violation. If nested EPT is
8590 * used, and the nested mmu code discovers that the address is
8591 * missing in the guest EPT table (EPT12), the EPT violation
8592 * will be injected with nested_ept_inject_page_fault()
8595 case EXIT_REASON_EPT_MISCONFIG
:
8597 * L2 never uses directly L1's EPT, but rather L0's own EPT
8598 * table (shadow on EPT) or a merged EPT table that L0 built
8599 * (EPT on EPT). So any problems with the structure of the
8600 * table is L0's fault.
8603 case EXIT_REASON_INVPCID
:
8605 nested_cpu_has2(vmcs12
, SECONDARY_EXEC_ENABLE_INVPCID
) &&
8606 nested_cpu_has(vmcs12
, CPU_BASED_INVLPG_EXITING
);
8607 case EXIT_REASON_WBINVD
:
8608 return nested_cpu_has2(vmcs12
, SECONDARY_EXEC_WBINVD_EXITING
);
8609 case EXIT_REASON_XSETBV
:
8611 case EXIT_REASON_XSAVES
: case EXIT_REASON_XRSTORS
:
8613 * This should never happen, since it is not possible to
8614 * set XSS to a non-zero value---neither in L1 nor in L2.
8615 * If if it were, XSS would have to be checked against
8616 * the XSS exit bitmap in vmcs12.
8618 return nested_cpu_has2(vmcs12
, SECONDARY_EXEC_XSAVES
);
8619 case EXIT_REASON_PREEMPTION_TIMER
:
8621 case EXIT_REASON_PML_FULL
:
8622 /* We emulate PML support to L1. */
8624 case EXIT_REASON_VMFUNC
:
8625 /* VM functions are emulated through L2->L0 vmexits. */
8632 static int nested_vmx_reflect_vmexit(struct kvm_vcpu
*vcpu
, u32 exit_reason
)
8634 u32 exit_intr_info
= vmcs_read32(VM_EXIT_INTR_INFO
);
8637 * At this point, the exit interruption info in exit_intr_info
8638 * is only valid for EXCEPTION_NMI exits. For EXTERNAL_INTERRUPT
8639 * we need to query the in-kernel LAPIC.
8641 WARN_ON(exit_reason
== EXIT_REASON_EXTERNAL_INTERRUPT
);
8642 if ((exit_intr_info
&
8643 (INTR_INFO_VALID_MASK
| INTR_INFO_DELIVER_CODE_MASK
)) ==
8644 (INTR_INFO_VALID_MASK
| INTR_INFO_DELIVER_CODE_MASK
)) {
8645 struct vmcs12
*vmcs12
= get_vmcs12(vcpu
);
8646 vmcs12
->vm_exit_intr_error_code
=
8647 vmcs_read32(VM_EXIT_INTR_ERROR_CODE
);
8650 nested_vmx_vmexit(vcpu
, exit_reason
, exit_intr_info
,
8651 vmcs_readl(EXIT_QUALIFICATION
));
8655 static void vmx_get_exit_info(struct kvm_vcpu
*vcpu
, u64
*info1
, u64
*info2
)
8657 *info1
= vmcs_readl(EXIT_QUALIFICATION
);
8658 *info2
= vmcs_read32(VM_EXIT_INTR_INFO
);
8661 static void vmx_destroy_pml_buffer(struct vcpu_vmx
*vmx
)
8664 __free_page(vmx
->pml_pg
);
8669 static void vmx_flush_pml_buffer(struct kvm_vcpu
*vcpu
)
8671 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
8675 pml_idx
= vmcs_read16(GUEST_PML_INDEX
);
8677 /* Do nothing if PML buffer is empty */
8678 if (pml_idx
== (PML_ENTITY_NUM
- 1))
8681 /* PML index always points to next available PML buffer entity */
8682 if (pml_idx
>= PML_ENTITY_NUM
)
8687 pml_buf
= page_address(vmx
->pml_pg
);
8688 for (; pml_idx
< PML_ENTITY_NUM
; pml_idx
++) {
8691 gpa
= pml_buf
[pml_idx
];
8692 WARN_ON(gpa
& (PAGE_SIZE
- 1));
8693 kvm_vcpu_mark_page_dirty(vcpu
, gpa
>> PAGE_SHIFT
);
8696 /* reset PML index */
8697 vmcs_write16(GUEST_PML_INDEX
, PML_ENTITY_NUM
- 1);
8701 * Flush all vcpus' PML buffer and update logged GPAs to dirty_bitmap.
8702 * Called before reporting dirty_bitmap to userspace.
8704 static void kvm_flush_pml_buffers(struct kvm
*kvm
)
8707 struct kvm_vcpu
*vcpu
;
8709 * We only need to kick vcpu out of guest mode here, as PML buffer
8710 * is flushed at beginning of all VMEXITs, and it's obvious that only
8711 * vcpus running in guest are possible to have unflushed GPAs in PML
8714 kvm_for_each_vcpu(i
, vcpu
, kvm
)
8715 kvm_vcpu_kick(vcpu
);
8718 static void vmx_dump_sel(char *name
, uint32_t sel
)
8720 pr_err("%s sel=0x%04x, attr=0x%05x, limit=0x%08x, base=0x%016lx\n",
8721 name
, vmcs_read16(sel
),
8722 vmcs_read32(sel
+ GUEST_ES_AR_BYTES
- GUEST_ES_SELECTOR
),
8723 vmcs_read32(sel
+ GUEST_ES_LIMIT
- GUEST_ES_SELECTOR
),
8724 vmcs_readl(sel
+ GUEST_ES_BASE
- GUEST_ES_SELECTOR
));
8727 static void vmx_dump_dtsel(char *name
, uint32_t limit
)
8729 pr_err("%s limit=0x%08x, base=0x%016lx\n",
8730 name
, vmcs_read32(limit
),
8731 vmcs_readl(limit
+ GUEST_GDTR_BASE
- GUEST_GDTR_LIMIT
));
8734 static void dump_vmcs(void)
8736 u32 vmentry_ctl
= vmcs_read32(VM_ENTRY_CONTROLS
);
8737 u32 vmexit_ctl
= vmcs_read32(VM_EXIT_CONTROLS
);
8738 u32 cpu_based_exec_ctrl
= vmcs_read32(CPU_BASED_VM_EXEC_CONTROL
);
8739 u32 pin_based_exec_ctrl
= vmcs_read32(PIN_BASED_VM_EXEC_CONTROL
);
8740 u32 secondary_exec_control
= 0;
8741 unsigned long cr4
= vmcs_readl(GUEST_CR4
);
8742 u64 efer
= vmcs_read64(GUEST_IA32_EFER
);
8745 if (cpu_has_secondary_exec_ctrls())
8746 secondary_exec_control
= vmcs_read32(SECONDARY_VM_EXEC_CONTROL
);
8748 pr_err("*** Guest State ***\n");
8749 pr_err("CR0: actual=0x%016lx, shadow=0x%016lx, gh_mask=%016lx\n",
8750 vmcs_readl(GUEST_CR0
), vmcs_readl(CR0_READ_SHADOW
),
8751 vmcs_readl(CR0_GUEST_HOST_MASK
));
8752 pr_err("CR4: actual=0x%016lx, shadow=0x%016lx, gh_mask=%016lx\n",
8753 cr4
, vmcs_readl(CR4_READ_SHADOW
), vmcs_readl(CR4_GUEST_HOST_MASK
));
8754 pr_err("CR3 = 0x%016lx\n", vmcs_readl(GUEST_CR3
));
8755 if ((secondary_exec_control
& SECONDARY_EXEC_ENABLE_EPT
) &&
8756 (cr4
& X86_CR4_PAE
) && !(efer
& EFER_LMA
))
8758 pr_err("PDPTR0 = 0x%016llx PDPTR1 = 0x%016llx\n",
8759 vmcs_read64(GUEST_PDPTR0
), vmcs_read64(GUEST_PDPTR1
));
8760 pr_err("PDPTR2 = 0x%016llx PDPTR3 = 0x%016llx\n",
8761 vmcs_read64(GUEST_PDPTR2
), vmcs_read64(GUEST_PDPTR3
));
8763 pr_err("RSP = 0x%016lx RIP = 0x%016lx\n",
8764 vmcs_readl(GUEST_RSP
), vmcs_readl(GUEST_RIP
));
8765 pr_err("RFLAGS=0x%08lx DR7 = 0x%016lx\n",
8766 vmcs_readl(GUEST_RFLAGS
), vmcs_readl(GUEST_DR7
));
8767 pr_err("Sysenter RSP=%016lx CS:RIP=%04x:%016lx\n",
8768 vmcs_readl(GUEST_SYSENTER_ESP
),
8769 vmcs_read32(GUEST_SYSENTER_CS
), vmcs_readl(GUEST_SYSENTER_EIP
));
8770 vmx_dump_sel("CS: ", GUEST_CS_SELECTOR
);
8771 vmx_dump_sel("DS: ", GUEST_DS_SELECTOR
);
8772 vmx_dump_sel("SS: ", GUEST_SS_SELECTOR
);
8773 vmx_dump_sel("ES: ", GUEST_ES_SELECTOR
);
8774 vmx_dump_sel("FS: ", GUEST_FS_SELECTOR
);
8775 vmx_dump_sel("GS: ", GUEST_GS_SELECTOR
);
8776 vmx_dump_dtsel("GDTR:", GUEST_GDTR_LIMIT
);
8777 vmx_dump_sel("LDTR:", GUEST_LDTR_SELECTOR
);
8778 vmx_dump_dtsel("IDTR:", GUEST_IDTR_LIMIT
);
8779 vmx_dump_sel("TR: ", GUEST_TR_SELECTOR
);
8780 if ((vmexit_ctl
& (VM_EXIT_SAVE_IA32_PAT
| VM_EXIT_SAVE_IA32_EFER
)) ||
8781 (vmentry_ctl
& (VM_ENTRY_LOAD_IA32_PAT
| VM_ENTRY_LOAD_IA32_EFER
)))
8782 pr_err("EFER = 0x%016llx PAT = 0x%016llx\n",
8783 efer
, vmcs_read64(GUEST_IA32_PAT
));
8784 pr_err("DebugCtl = 0x%016llx DebugExceptions = 0x%016lx\n",
8785 vmcs_read64(GUEST_IA32_DEBUGCTL
),
8786 vmcs_readl(GUEST_PENDING_DBG_EXCEPTIONS
));
8787 if (vmentry_ctl
& VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL
)
8788 pr_err("PerfGlobCtl = 0x%016llx\n",
8789 vmcs_read64(GUEST_IA32_PERF_GLOBAL_CTRL
));
8790 if (vmentry_ctl
& VM_ENTRY_LOAD_BNDCFGS
)
8791 pr_err("BndCfgS = 0x%016llx\n", vmcs_read64(GUEST_BNDCFGS
));
8792 pr_err("Interruptibility = %08x ActivityState = %08x\n",
8793 vmcs_read32(GUEST_INTERRUPTIBILITY_INFO
),
8794 vmcs_read32(GUEST_ACTIVITY_STATE
));
8795 if (secondary_exec_control
& SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY
)
8796 pr_err("InterruptStatus = %04x\n",
8797 vmcs_read16(GUEST_INTR_STATUS
));
8799 pr_err("*** Host State ***\n");
8800 pr_err("RIP = 0x%016lx RSP = 0x%016lx\n",
8801 vmcs_readl(HOST_RIP
), vmcs_readl(HOST_RSP
));
8802 pr_err("CS=%04x SS=%04x DS=%04x ES=%04x FS=%04x GS=%04x TR=%04x\n",
8803 vmcs_read16(HOST_CS_SELECTOR
), vmcs_read16(HOST_SS_SELECTOR
),
8804 vmcs_read16(HOST_DS_SELECTOR
), vmcs_read16(HOST_ES_SELECTOR
),
8805 vmcs_read16(HOST_FS_SELECTOR
), vmcs_read16(HOST_GS_SELECTOR
),
8806 vmcs_read16(HOST_TR_SELECTOR
));
8807 pr_err("FSBase=%016lx GSBase=%016lx TRBase=%016lx\n",
8808 vmcs_readl(HOST_FS_BASE
), vmcs_readl(HOST_GS_BASE
),
8809 vmcs_readl(HOST_TR_BASE
));
8810 pr_err("GDTBase=%016lx IDTBase=%016lx\n",
8811 vmcs_readl(HOST_GDTR_BASE
), vmcs_readl(HOST_IDTR_BASE
));
8812 pr_err("CR0=%016lx CR3=%016lx CR4=%016lx\n",
8813 vmcs_readl(HOST_CR0
), vmcs_readl(HOST_CR3
),
8814 vmcs_readl(HOST_CR4
));
8815 pr_err("Sysenter RSP=%016lx CS:RIP=%04x:%016lx\n",
8816 vmcs_readl(HOST_IA32_SYSENTER_ESP
),
8817 vmcs_read32(HOST_IA32_SYSENTER_CS
),
8818 vmcs_readl(HOST_IA32_SYSENTER_EIP
));
8819 if (vmexit_ctl
& (VM_EXIT_LOAD_IA32_PAT
| VM_EXIT_LOAD_IA32_EFER
))
8820 pr_err("EFER = 0x%016llx PAT = 0x%016llx\n",
8821 vmcs_read64(HOST_IA32_EFER
),
8822 vmcs_read64(HOST_IA32_PAT
));
8823 if (vmexit_ctl
& VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL
)
8824 pr_err("PerfGlobCtl = 0x%016llx\n",
8825 vmcs_read64(HOST_IA32_PERF_GLOBAL_CTRL
));
8827 pr_err("*** Control State ***\n");
8828 pr_err("PinBased=%08x CPUBased=%08x SecondaryExec=%08x\n",
8829 pin_based_exec_ctrl
, cpu_based_exec_ctrl
, secondary_exec_control
);
8830 pr_err("EntryControls=%08x ExitControls=%08x\n", vmentry_ctl
, vmexit_ctl
);
8831 pr_err("ExceptionBitmap=%08x PFECmask=%08x PFECmatch=%08x\n",
8832 vmcs_read32(EXCEPTION_BITMAP
),
8833 vmcs_read32(PAGE_FAULT_ERROR_CODE_MASK
),
8834 vmcs_read32(PAGE_FAULT_ERROR_CODE_MATCH
));
8835 pr_err("VMEntry: intr_info=%08x errcode=%08x ilen=%08x\n",
8836 vmcs_read32(VM_ENTRY_INTR_INFO_FIELD
),
8837 vmcs_read32(VM_ENTRY_EXCEPTION_ERROR_CODE
),
8838 vmcs_read32(VM_ENTRY_INSTRUCTION_LEN
));
8839 pr_err("VMExit: intr_info=%08x errcode=%08x ilen=%08x\n",
8840 vmcs_read32(VM_EXIT_INTR_INFO
),
8841 vmcs_read32(VM_EXIT_INTR_ERROR_CODE
),
8842 vmcs_read32(VM_EXIT_INSTRUCTION_LEN
));
8843 pr_err(" reason=%08x qualification=%016lx\n",
8844 vmcs_read32(VM_EXIT_REASON
), vmcs_readl(EXIT_QUALIFICATION
));
8845 pr_err("IDTVectoring: info=%08x errcode=%08x\n",
8846 vmcs_read32(IDT_VECTORING_INFO_FIELD
),
8847 vmcs_read32(IDT_VECTORING_ERROR_CODE
));
8848 pr_err("TSC Offset = 0x%016llx\n", vmcs_read64(TSC_OFFSET
));
8849 if (secondary_exec_control
& SECONDARY_EXEC_TSC_SCALING
)
8850 pr_err("TSC Multiplier = 0x%016llx\n",
8851 vmcs_read64(TSC_MULTIPLIER
));
8852 if (cpu_based_exec_ctrl
& CPU_BASED_TPR_SHADOW
)
8853 pr_err("TPR Threshold = 0x%02x\n", vmcs_read32(TPR_THRESHOLD
));
8854 if (pin_based_exec_ctrl
& PIN_BASED_POSTED_INTR
)
8855 pr_err("PostedIntrVec = 0x%02x\n", vmcs_read16(POSTED_INTR_NV
));
8856 if ((secondary_exec_control
& SECONDARY_EXEC_ENABLE_EPT
))
8857 pr_err("EPT pointer = 0x%016llx\n", vmcs_read64(EPT_POINTER
));
8858 n
= vmcs_read32(CR3_TARGET_COUNT
);
8859 for (i
= 0; i
+ 1 < n
; i
+= 4)
8860 pr_err("CR3 target%u=%016lx target%u=%016lx\n",
8861 i
, vmcs_readl(CR3_TARGET_VALUE0
+ i
* 2),
8862 i
+ 1, vmcs_readl(CR3_TARGET_VALUE0
+ i
* 2 + 2));
8864 pr_err("CR3 target%u=%016lx\n",
8865 i
, vmcs_readl(CR3_TARGET_VALUE0
+ i
* 2));
8866 if (secondary_exec_control
& SECONDARY_EXEC_PAUSE_LOOP_EXITING
)
8867 pr_err("PLE Gap=%08x Window=%08x\n",
8868 vmcs_read32(PLE_GAP
), vmcs_read32(PLE_WINDOW
));
8869 if (secondary_exec_control
& SECONDARY_EXEC_ENABLE_VPID
)
8870 pr_err("Virtual processor ID = 0x%04x\n",
8871 vmcs_read16(VIRTUAL_PROCESSOR_ID
));
8875 * The guest has exited. See if we can fix it or if we need userspace
8878 static int vmx_handle_exit(struct kvm_vcpu
*vcpu
)
8880 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
8881 u32 exit_reason
= vmx
->exit_reason
;
8882 u32 vectoring_info
= vmx
->idt_vectoring_info
;
8884 trace_kvm_exit(exit_reason
, vcpu
, KVM_ISA_VMX
);
8887 * Flush logged GPAs PML buffer, this will make dirty_bitmap more
8888 * updated. Another good is, in kvm_vm_ioctl_get_dirty_log, before
8889 * querying dirty_bitmap, we only need to kick all vcpus out of guest
8890 * mode as if vcpus is in root mode, the PML buffer must has been
8894 vmx_flush_pml_buffer(vcpu
);
8896 /* If guest state is invalid, start emulating */
8897 if (vmx
->emulation_required
)
8898 return handle_invalid_guest_state(vcpu
);
8900 if (is_guest_mode(vcpu
) && nested_vmx_exit_reflected(vcpu
, exit_reason
))
8901 return nested_vmx_reflect_vmexit(vcpu
, exit_reason
);
8903 if (exit_reason
& VMX_EXIT_REASONS_FAILED_VMENTRY
) {
8905 vcpu
->run
->exit_reason
= KVM_EXIT_FAIL_ENTRY
;
8906 vcpu
->run
->fail_entry
.hardware_entry_failure_reason
8911 if (unlikely(vmx
->fail
)) {
8912 vcpu
->run
->exit_reason
= KVM_EXIT_FAIL_ENTRY
;
8913 vcpu
->run
->fail_entry
.hardware_entry_failure_reason
8914 = vmcs_read32(VM_INSTRUCTION_ERROR
);
8920 * Do not try to fix EXIT_REASON_EPT_MISCONFIG if it caused by
8921 * delivery event since it indicates guest is accessing MMIO.
8922 * The vm-exit can be triggered again after return to guest that
8923 * will cause infinite loop.
8925 if ((vectoring_info
& VECTORING_INFO_VALID_MASK
) &&
8926 (exit_reason
!= EXIT_REASON_EXCEPTION_NMI
&&
8927 exit_reason
!= EXIT_REASON_EPT_VIOLATION
&&
8928 exit_reason
!= EXIT_REASON_PML_FULL
&&
8929 exit_reason
!= EXIT_REASON_TASK_SWITCH
)) {
8930 vcpu
->run
->exit_reason
= KVM_EXIT_INTERNAL_ERROR
;
8931 vcpu
->run
->internal
.suberror
= KVM_INTERNAL_ERROR_DELIVERY_EV
;
8932 vcpu
->run
->internal
.ndata
= 3;
8933 vcpu
->run
->internal
.data
[0] = vectoring_info
;
8934 vcpu
->run
->internal
.data
[1] = exit_reason
;
8935 vcpu
->run
->internal
.data
[2] = vcpu
->arch
.exit_qualification
;
8936 if (exit_reason
== EXIT_REASON_EPT_MISCONFIG
) {
8937 vcpu
->run
->internal
.ndata
++;
8938 vcpu
->run
->internal
.data
[3] =
8939 vmcs_read64(GUEST_PHYSICAL_ADDRESS
);
8944 if (unlikely(!enable_vnmi
&&
8945 vmx
->loaded_vmcs
->soft_vnmi_blocked
)) {
8946 if (vmx_interrupt_allowed(vcpu
)) {
8947 vmx
->loaded_vmcs
->soft_vnmi_blocked
= 0;
8948 } else if (vmx
->loaded_vmcs
->vnmi_blocked_time
> 1000000000LL &&
8949 vcpu
->arch
.nmi_pending
) {
8951 * This CPU don't support us in finding the end of an
8952 * NMI-blocked window if the guest runs with IRQs
8953 * disabled. So we pull the trigger after 1 s of
8954 * futile waiting, but inform the user about this.
8956 printk(KERN_WARNING
"%s: Breaking out of NMI-blocked "
8957 "state on VCPU %d after 1 s timeout\n",
8958 __func__
, vcpu
->vcpu_id
);
8959 vmx
->loaded_vmcs
->soft_vnmi_blocked
= 0;
8963 if (exit_reason
< kvm_vmx_max_exit_handlers
8964 && kvm_vmx_exit_handlers
[exit_reason
])
8965 return kvm_vmx_exit_handlers
[exit_reason
](vcpu
);
8967 vcpu_unimpl(vcpu
, "vmx: unexpected exit reason 0x%x\n",
8969 kvm_queue_exception(vcpu
, UD_VECTOR
);
8974 static void update_cr8_intercept(struct kvm_vcpu
*vcpu
, int tpr
, int irr
)
8976 struct vmcs12
*vmcs12
= get_vmcs12(vcpu
);
8978 if (is_guest_mode(vcpu
) &&
8979 nested_cpu_has(vmcs12
, CPU_BASED_TPR_SHADOW
))
8982 if (irr
== -1 || tpr
< irr
) {
8983 vmcs_write32(TPR_THRESHOLD
, 0);
8987 vmcs_write32(TPR_THRESHOLD
, irr
);
8990 static void vmx_set_virtual_x2apic_mode(struct kvm_vcpu
*vcpu
, bool set
)
8992 u32 sec_exec_control
;
8994 /* Postpone execution until vmcs01 is the current VMCS. */
8995 if (is_guest_mode(vcpu
)) {
8996 to_vmx(vcpu
)->nested
.change_vmcs01_virtual_x2apic_mode
= true;
9000 if (!cpu_has_vmx_virtualize_x2apic_mode())
9003 if (!cpu_need_tpr_shadow(vcpu
))
9006 sec_exec_control
= vmcs_read32(SECONDARY_VM_EXEC_CONTROL
);
9009 sec_exec_control
&= ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES
;
9010 sec_exec_control
|= SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE
;
9012 sec_exec_control
&= ~SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE
;
9013 sec_exec_control
|= SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES
;
9014 vmx_flush_tlb_ept_only(vcpu
);
9016 vmcs_write32(SECONDARY_VM_EXEC_CONTROL
, sec_exec_control
);
9018 vmx_update_msr_bitmap(vcpu
);
9021 static void vmx_set_apic_access_page_addr(struct kvm_vcpu
*vcpu
, hpa_t hpa
)
9023 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
9026 * Currently we do not handle the nested case where L2 has an
9027 * APIC access page of its own; that page is still pinned.
9028 * Hence, we skip the case where the VCPU is in guest mode _and_
9029 * L1 prepared an APIC access page for L2.
9031 * For the case where L1 and L2 share the same APIC access page
9032 * (flexpriority=Y but SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES clear
9033 * in the vmcs12), this function will only update either the vmcs01
9034 * or the vmcs02. If the former, the vmcs02 will be updated by
9035 * prepare_vmcs02. If the latter, the vmcs01 will be updated in
9036 * the next L2->L1 exit.
9038 if (!is_guest_mode(vcpu
) ||
9039 !nested_cpu_has2(get_vmcs12(&vmx
->vcpu
),
9040 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES
)) {
9041 vmcs_write64(APIC_ACCESS_ADDR
, hpa
);
9042 vmx_flush_tlb_ept_only(vcpu
);
9046 static void vmx_hwapic_isr_update(struct kvm_vcpu
*vcpu
, int max_isr
)
9054 status
= vmcs_read16(GUEST_INTR_STATUS
);
9056 if (max_isr
!= old
) {
9058 status
|= max_isr
<< 8;
9059 vmcs_write16(GUEST_INTR_STATUS
, status
);
9063 static void vmx_set_rvi(int vector
)
9071 status
= vmcs_read16(GUEST_INTR_STATUS
);
9072 old
= (u8
)status
& 0xff;
9073 if ((u8
)vector
!= old
) {
9075 status
|= (u8
)vector
;
9076 vmcs_write16(GUEST_INTR_STATUS
, status
);
9080 static void vmx_hwapic_irr_update(struct kvm_vcpu
*vcpu
, int max_irr
)
9083 * When running L2, updating RVI is only relevant when
9084 * vmcs12 virtual-interrupt-delivery enabled.
9085 * However, it can be enabled only when L1 also
9086 * intercepts external-interrupts and in that case
9087 * we should not update vmcs02 RVI but instead intercept
9088 * interrupt. Therefore, do nothing when running L2.
9090 if (!is_guest_mode(vcpu
))
9091 vmx_set_rvi(max_irr
);
9094 static int vmx_sync_pir_to_irr(struct kvm_vcpu
*vcpu
)
9096 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
9098 bool max_irr_updated
;
9100 WARN_ON(!vcpu
->arch
.apicv_active
);
9101 if (pi_test_on(&vmx
->pi_desc
)) {
9102 pi_clear_on(&vmx
->pi_desc
);
9104 * IOMMU can write to PIR.ON, so the barrier matters even on UP.
9105 * But on x86 this is just a compiler barrier anyway.
9107 smp_mb__after_atomic();
9109 kvm_apic_update_irr(vcpu
, vmx
->pi_desc
.pir
, &max_irr
);
9112 * If we are running L2 and L1 has a new pending interrupt
9113 * which can be injected, we should re-evaluate
9114 * what should be done with this new L1 interrupt.
9115 * If L1 intercepts external-interrupts, we should
9116 * exit from L2 to L1. Otherwise, interrupt should be
9117 * delivered directly to L2.
9119 if (is_guest_mode(vcpu
) && max_irr_updated
) {
9120 if (nested_exit_on_intr(vcpu
))
9121 kvm_vcpu_exiting_guest_mode(vcpu
);
9123 kvm_make_request(KVM_REQ_EVENT
, vcpu
);
9126 max_irr
= kvm_lapic_find_highest_irr(vcpu
);
9128 vmx_hwapic_irr_update(vcpu
, max_irr
);
9132 static void vmx_load_eoi_exitmap(struct kvm_vcpu
*vcpu
, u64
*eoi_exit_bitmap
)
9134 if (!kvm_vcpu_apicv_active(vcpu
))
9137 vmcs_write64(EOI_EXIT_BITMAP0
, eoi_exit_bitmap
[0]);
9138 vmcs_write64(EOI_EXIT_BITMAP1
, eoi_exit_bitmap
[1]);
9139 vmcs_write64(EOI_EXIT_BITMAP2
, eoi_exit_bitmap
[2]);
9140 vmcs_write64(EOI_EXIT_BITMAP3
, eoi_exit_bitmap
[3]);
9143 static void vmx_apicv_post_state_restore(struct kvm_vcpu
*vcpu
)
9145 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
9147 pi_clear_on(&vmx
->pi_desc
);
9148 memset(vmx
->pi_desc
.pir
, 0, sizeof(vmx
->pi_desc
.pir
));
9151 static void vmx_complete_atomic_exit(struct vcpu_vmx
*vmx
)
9153 u32 exit_intr_info
= 0;
9154 u16 basic_exit_reason
= (u16
)vmx
->exit_reason
;
9156 if (!(basic_exit_reason
== EXIT_REASON_MCE_DURING_VMENTRY
9157 || basic_exit_reason
== EXIT_REASON_EXCEPTION_NMI
))
9160 if (!(vmx
->exit_reason
& VMX_EXIT_REASONS_FAILED_VMENTRY
))
9161 exit_intr_info
= vmcs_read32(VM_EXIT_INTR_INFO
);
9162 vmx
->exit_intr_info
= exit_intr_info
;
9164 /* if exit due to PF check for async PF */
9165 if (is_page_fault(exit_intr_info
))
9166 vmx
->vcpu
.arch
.apf
.host_apf_reason
= kvm_read_and_reset_pf_reason();
9168 /* Handle machine checks before interrupts are enabled */
9169 if (basic_exit_reason
== EXIT_REASON_MCE_DURING_VMENTRY
||
9170 is_machine_check(exit_intr_info
))
9171 kvm_machine_check();
9173 /* We need to handle NMIs before interrupts are enabled */
9174 if (is_nmi(exit_intr_info
)) {
9175 kvm_before_handle_nmi(&vmx
->vcpu
);
9177 kvm_after_handle_nmi(&vmx
->vcpu
);
9181 static void vmx_handle_external_intr(struct kvm_vcpu
*vcpu
)
9183 u32 exit_intr_info
= vmcs_read32(VM_EXIT_INTR_INFO
);
9185 if ((exit_intr_info
& (INTR_INFO_VALID_MASK
| INTR_INFO_INTR_TYPE_MASK
))
9186 == (INTR_INFO_VALID_MASK
| INTR_TYPE_EXT_INTR
)) {
9187 unsigned int vector
;
9188 unsigned long entry
;
9190 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
9191 #ifdef CONFIG_X86_64
9195 vector
= exit_intr_info
& INTR_INFO_VECTOR_MASK
;
9196 desc
= (gate_desc
*)vmx
->host_idt_base
+ vector
;
9197 entry
= gate_offset(desc
);
9199 #ifdef CONFIG_X86_64
9200 "mov %%" _ASM_SP
", %[sp]\n\t"
9201 "and $0xfffffffffffffff0, %%" _ASM_SP
"\n\t"
9206 __ASM_SIZE(push
) " $%c[cs]\n\t"
9209 #ifdef CONFIG_X86_64
9214 THUNK_TARGET(entry
),
9215 [ss
]"i"(__KERNEL_DS
),
9216 [cs
]"i"(__KERNEL_CS
)
9220 STACK_FRAME_NON_STANDARD(vmx_handle_external_intr
);
9222 static bool vmx_has_high_real_mode_segbase(void)
9224 return enable_unrestricted_guest
|| emulate_invalid_guest_state
;
9227 static bool vmx_mpx_supported(void)
9229 return (vmcs_config
.vmexit_ctrl
& VM_EXIT_CLEAR_BNDCFGS
) &&
9230 (vmcs_config
.vmentry_ctrl
& VM_ENTRY_LOAD_BNDCFGS
);
9233 static bool vmx_xsaves_supported(void)
9235 return vmcs_config
.cpu_based_2nd_exec_ctrl
&
9236 SECONDARY_EXEC_XSAVES
;
9239 static bool vmx_umip_emulated(void)
9241 return vmcs_config
.cpu_based_2nd_exec_ctrl
&
9242 SECONDARY_EXEC_DESC
;
9245 static void vmx_recover_nmi_blocking(struct vcpu_vmx
*vmx
)
9250 bool idtv_info_valid
;
9252 idtv_info_valid
= vmx
->idt_vectoring_info
& VECTORING_INFO_VALID_MASK
;
9255 if (vmx
->loaded_vmcs
->nmi_known_unmasked
)
9258 * Can't use vmx->exit_intr_info since we're not sure what
9259 * the exit reason is.
9261 exit_intr_info
= vmcs_read32(VM_EXIT_INTR_INFO
);
9262 unblock_nmi
= (exit_intr_info
& INTR_INFO_UNBLOCK_NMI
) != 0;
9263 vector
= exit_intr_info
& INTR_INFO_VECTOR_MASK
;
9265 * SDM 3: 27.7.1.2 (September 2008)
9266 * Re-set bit "block by NMI" before VM entry if vmexit caused by
9267 * a guest IRET fault.
9268 * SDM 3: 23.2.2 (September 2008)
9269 * Bit 12 is undefined in any of the following cases:
9270 * If the VM exit sets the valid bit in the IDT-vectoring
9271 * information field.
9272 * If the VM exit is due to a double fault.
9274 if ((exit_intr_info
& INTR_INFO_VALID_MASK
) && unblock_nmi
&&
9275 vector
!= DF_VECTOR
&& !idtv_info_valid
)
9276 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO
,
9277 GUEST_INTR_STATE_NMI
);
9279 vmx
->loaded_vmcs
->nmi_known_unmasked
=
9280 !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO
)
9281 & GUEST_INTR_STATE_NMI
);
9282 } else if (unlikely(vmx
->loaded_vmcs
->soft_vnmi_blocked
))
9283 vmx
->loaded_vmcs
->vnmi_blocked_time
+=
9284 ktime_to_ns(ktime_sub(ktime_get(),
9285 vmx
->loaded_vmcs
->entry_time
));
9288 static void __vmx_complete_interrupts(struct kvm_vcpu
*vcpu
,
9289 u32 idt_vectoring_info
,
9290 int instr_len_field
,
9291 int error_code_field
)
9295 bool idtv_info_valid
;
9297 idtv_info_valid
= idt_vectoring_info
& VECTORING_INFO_VALID_MASK
;
9299 vcpu
->arch
.nmi_injected
= false;
9300 kvm_clear_exception_queue(vcpu
);
9301 kvm_clear_interrupt_queue(vcpu
);
9303 if (!idtv_info_valid
)
9306 kvm_make_request(KVM_REQ_EVENT
, vcpu
);
9308 vector
= idt_vectoring_info
& VECTORING_INFO_VECTOR_MASK
;
9309 type
= idt_vectoring_info
& VECTORING_INFO_TYPE_MASK
;
9312 case INTR_TYPE_NMI_INTR
:
9313 vcpu
->arch
.nmi_injected
= true;
9315 * SDM 3: 27.7.1.2 (September 2008)
9316 * Clear bit "block by NMI" before VM entry if a NMI
9319 vmx_set_nmi_mask(vcpu
, false);
9321 case INTR_TYPE_SOFT_EXCEPTION
:
9322 vcpu
->arch
.event_exit_inst_len
= vmcs_read32(instr_len_field
);
9324 case INTR_TYPE_HARD_EXCEPTION
:
9325 if (idt_vectoring_info
& VECTORING_INFO_DELIVER_CODE_MASK
) {
9326 u32 err
= vmcs_read32(error_code_field
);
9327 kvm_requeue_exception_e(vcpu
, vector
, err
);
9329 kvm_requeue_exception(vcpu
, vector
);
9331 case INTR_TYPE_SOFT_INTR
:
9332 vcpu
->arch
.event_exit_inst_len
= vmcs_read32(instr_len_field
);
9334 case INTR_TYPE_EXT_INTR
:
9335 kvm_queue_interrupt(vcpu
, vector
, type
== INTR_TYPE_SOFT_INTR
);
9342 static void vmx_complete_interrupts(struct vcpu_vmx
*vmx
)
9344 __vmx_complete_interrupts(&vmx
->vcpu
, vmx
->idt_vectoring_info
,
9345 VM_EXIT_INSTRUCTION_LEN
,
9346 IDT_VECTORING_ERROR_CODE
);
9349 static void vmx_cancel_injection(struct kvm_vcpu
*vcpu
)
9351 __vmx_complete_interrupts(vcpu
,
9352 vmcs_read32(VM_ENTRY_INTR_INFO_FIELD
),
9353 VM_ENTRY_INSTRUCTION_LEN
,
9354 VM_ENTRY_EXCEPTION_ERROR_CODE
);
9356 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD
, 0);
9359 static void atomic_switch_perf_msrs(struct vcpu_vmx
*vmx
)
9362 struct perf_guest_switch_msr
*msrs
;
9364 msrs
= perf_guest_get_msrs(&nr_msrs
);
9369 for (i
= 0; i
< nr_msrs
; i
++)
9370 if (msrs
[i
].host
== msrs
[i
].guest
)
9371 clear_atomic_switch_msr(vmx
, msrs
[i
].msr
);
9373 add_atomic_switch_msr(vmx
, msrs
[i
].msr
, msrs
[i
].guest
,
9377 static void vmx_arm_hv_timer(struct kvm_vcpu
*vcpu
)
9379 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
9383 if (vmx
->hv_deadline_tsc
== -1)
9387 if (vmx
->hv_deadline_tsc
> tscl
)
9388 /* sure to be 32 bit only because checked on set_hv_timer */
9389 delta_tsc
= (u32
)((vmx
->hv_deadline_tsc
- tscl
) >>
9390 cpu_preemption_timer_multi
);
9394 vmcs_write32(VMX_PREEMPTION_TIMER_VALUE
, delta_tsc
);
9397 static void __noclone
vmx_vcpu_run(struct kvm_vcpu
*vcpu
)
9399 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
9400 unsigned long cr3
, cr4
;
9402 /* Record the guest's net vcpu time for enforced NMI injections. */
9403 if (unlikely(!enable_vnmi
&&
9404 vmx
->loaded_vmcs
->soft_vnmi_blocked
))
9405 vmx
->loaded_vmcs
->entry_time
= ktime_get();
9407 /* Don't enter VMX if guest state is invalid, let the exit handler
9408 start emulation until we arrive back to a valid state */
9409 if (vmx
->emulation_required
)
9412 if (vmx
->ple_window_dirty
) {
9413 vmx
->ple_window_dirty
= false;
9414 vmcs_write32(PLE_WINDOW
, vmx
->ple_window
);
9417 if (vmx
->nested
.sync_shadow_vmcs
) {
9418 copy_vmcs12_to_shadow(vmx
);
9419 vmx
->nested
.sync_shadow_vmcs
= false;
9422 if (test_bit(VCPU_REGS_RSP
, (unsigned long *)&vcpu
->arch
.regs_dirty
))
9423 vmcs_writel(GUEST_RSP
, vcpu
->arch
.regs
[VCPU_REGS_RSP
]);
9424 if (test_bit(VCPU_REGS_RIP
, (unsigned long *)&vcpu
->arch
.regs_dirty
))
9425 vmcs_writel(GUEST_RIP
, vcpu
->arch
.regs
[VCPU_REGS_RIP
]);
9427 cr3
= __get_current_cr3_fast();
9428 if (unlikely(cr3
!= vmx
->loaded_vmcs
->vmcs_host_cr3
)) {
9429 vmcs_writel(HOST_CR3
, cr3
);
9430 vmx
->loaded_vmcs
->vmcs_host_cr3
= cr3
;
9433 cr4
= cr4_read_shadow();
9434 if (unlikely(cr4
!= vmx
->loaded_vmcs
->vmcs_host_cr4
)) {
9435 vmcs_writel(HOST_CR4
, cr4
);
9436 vmx
->loaded_vmcs
->vmcs_host_cr4
= cr4
;
9439 /* When single-stepping over STI and MOV SS, we must clear the
9440 * corresponding interruptibility bits in the guest state. Otherwise
9441 * vmentry fails as it then expects bit 14 (BS) in pending debug
9442 * exceptions being set, but that's not correct for the guest debugging
9444 if (vcpu
->guest_debug
& KVM_GUESTDBG_SINGLESTEP
)
9445 vmx_set_interrupt_shadow(vcpu
, 0);
9447 if (static_cpu_has(X86_FEATURE_PKU
) &&
9448 kvm_read_cr4_bits(vcpu
, X86_CR4_PKE
) &&
9449 vcpu
->arch
.pkru
!= vmx
->host_pkru
)
9450 __write_pkru(vcpu
->arch
.pkru
);
9452 atomic_switch_perf_msrs(vmx
);
9454 vmx_arm_hv_timer(vcpu
);
9457 * If this vCPU has touched SPEC_CTRL, restore the guest's value if
9458 * it's non-zero. Since vmentry is serialising on affected CPUs, there
9459 * is no need to worry about the conditional branch over the wrmsr
9460 * being speculatively taken.
9463 native_wrmsrl(MSR_IA32_SPEC_CTRL
, vmx
->spec_ctrl
);
9465 vmx
->__launched
= vmx
->loaded_vmcs
->launched
;
9467 /* Store host registers */
9468 "push %%" _ASM_DX
"; push %%" _ASM_BP
";"
9469 "push %%" _ASM_CX
" \n\t" /* placeholder for guest rcx */
9470 "push %%" _ASM_CX
" \n\t"
9471 "cmp %%" _ASM_SP
", %c[host_rsp](%0) \n\t"
9473 "mov %%" _ASM_SP
", %c[host_rsp](%0) \n\t"
9474 __ex(ASM_VMX_VMWRITE_RSP_RDX
) "\n\t"
9476 /* Reload cr2 if changed */
9477 "mov %c[cr2](%0), %%" _ASM_AX
" \n\t"
9478 "mov %%cr2, %%" _ASM_DX
" \n\t"
9479 "cmp %%" _ASM_AX
", %%" _ASM_DX
" \n\t"
9481 "mov %%" _ASM_AX
", %%cr2 \n\t"
9483 /* Check if vmlaunch of vmresume is needed */
9484 "cmpl $0, %c[launched](%0) \n\t"
9485 /* Load guest registers. Don't clobber flags. */
9486 "mov %c[rax](%0), %%" _ASM_AX
" \n\t"
9487 "mov %c[rbx](%0), %%" _ASM_BX
" \n\t"
9488 "mov %c[rdx](%0), %%" _ASM_DX
" \n\t"
9489 "mov %c[rsi](%0), %%" _ASM_SI
" \n\t"
9490 "mov %c[rdi](%0), %%" _ASM_DI
" \n\t"
9491 "mov %c[rbp](%0), %%" _ASM_BP
" \n\t"
9492 #ifdef CONFIG_X86_64
9493 "mov %c[r8](%0), %%r8 \n\t"
9494 "mov %c[r9](%0), %%r9 \n\t"
9495 "mov %c[r10](%0), %%r10 \n\t"
9496 "mov %c[r11](%0), %%r11 \n\t"
9497 "mov %c[r12](%0), %%r12 \n\t"
9498 "mov %c[r13](%0), %%r13 \n\t"
9499 "mov %c[r14](%0), %%r14 \n\t"
9500 "mov %c[r15](%0), %%r15 \n\t"
9502 "mov %c[rcx](%0), %%" _ASM_CX
" \n\t" /* kills %0 (ecx) */
9504 /* Enter guest mode */
9506 __ex(ASM_VMX_VMLAUNCH
) "\n\t"
9508 "1: " __ex(ASM_VMX_VMRESUME
) "\n\t"
9510 /* Save guest registers, load host registers, keep flags */
9511 "mov %0, %c[wordsize](%%" _ASM_SP
") \n\t"
9513 "setbe %c[fail](%0)\n\t"
9514 "mov %%" _ASM_AX
", %c[rax](%0) \n\t"
9515 "mov %%" _ASM_BX
", %c[rbx](%0) \n\t"
9516 __ASM_SIZE(pop
) " %c[rcx](%0) \n\t"
9517 "mov %%" _ASM_DX
", %c[rdx](%0) \n\t"
9518 "mov %%" _ASM_SI
", %c[rsi](%0) \n\t"
9519 "mov %%" _ASM_DI
", %c[rdi](%0) \n\t"
9520 "mov %%" _ASM_BP
", %c[rbp](%0) \n\t"
9521 #ifdef CONFIG_X86_64
9522 "mov %%r8, %c[r8](%0) \n\t"
9523 "mov %%r9, %c[r9](%0) \n\t"
9524 "mov %%r10, %c[r10](%0) \n\t"
9525 "mov %%r11, %c[r11](%0) \n\t"
9526 "mov %%r12, %c[r12](%0) \n\t"
9527 "mov %%r13, %c[r13](%0) \n\t"
9528 "mov %%r14, %c[r14](%0) \n\t"
9529 "mov %%r15, %c[r15](%0) \n\t"
9530 "xor %%r8d, %%r8d \n\t"
9531 "xor %%r9d, %%r9d \n\t"
9532 "xor %%r10d, %%r10d \n\t"
9533 "xor %%r11d, %%r11d \n\t"
9534 "xor %%r12d, %%r12d \n\t"
9535 "xor %%r13d, %%r13d \n\t"
9536 "xor %%r14d, %%r14d \n\t"
9537 "xor %%r15d, %%r15d \n\t"
9539 "mov %%cr2, %%" _ASM_AX
" \n\t"
9540 "mov %%" _ASM_AX
", %c[cr2](%0) \n\t"
9542 "xor %%eax, %%eax \n\t"
9543 "xor %%ebx, %%ebx \n\t"
9544 "xor %%esi, %%esi \n\t"
9545 "xor %%edi, %%edi \n\t"
9546 "pop %%" _ASM_BP
"; pop %%" _ASM_DX
" \n\t"
9547 ".pushsection .rodata \n\t"
9548 ".global vmx_return \n\t"
9549 "vmx_return: " _ASM_PTR
" 2b \n\t"
9551 : : "c"(vmx
), "d"((unsigned long)HOST_RSP
),
9552 [launched
]"i"(offsetof(struct vcpu_vmx
, __launched
)),
9553 [fail
]"i"(offsetof(struct vcpu_vmx
, fail
)),
9554 [host_rsp
]"i"(offsetof(struct vcpu_vmx
, host_rsp
)),
9555 [rax
]"i"(offsetof(struct vcpu_vmx
, vcpu
.arch
.regs
[VCPU_REGS_RAX
])),
9556 [rbx
]"i"(offsetof(struct vcpu_vmx
, vcpu
.arch
.regs
[VCPU_REGS_RBX
])),
9557 [rcx
]"i"(offsetof(struct vcpu_vmx
, vcpu
.arch
.regs
[VCPU_REGS_RCX
])),
9558 [rdx
]"i"(offsetof(struct vcpu_vmx
, vcpu
.arch
.regs
[VCPU_REGS_RDX
])),
9559 [rsi
]"i"(offsetof(struct vcpu_vmx
, vcpu
.arch
.regs
[VCPU_REGS_RSI
])),
9560 [rdi
]"i"(offsetof(struct vcpu_vmx
, vcpu
.arch
.regs
[VCPU_REGS_RDI
])),
9561 [rbp
]"i"(offsetof(struct vcpu_vmx
, vcpu
.arch
.regs
[VCPU_REGS_RBP
])),
9562 #ifdef CONFIG_X86_64
9563 [r8
]"i"(offsetof(struct vcpu_vmx
, vcpu
.arch
.regs
[VCPU_REGS_R8
])),
9564 [r9
]"i"(offsetof(struct vcpu_vmx
, vcpu
.arch
.regs
[VCPU_REGS_R9
])),
9565 [r10
]"i"(offsetof(struct vcpu_vmx
, vcpu
.arch
.regs
[VCPU_REGS_R10
])),
9566 [r11
]"i"(offsetof(struct vcpu_vmx
, vcpu
.arch
.regs
[VCPU_REGS_R11
])),
9567 [r12
]"i"(offsetof(struct vcpu_vmx
, vcpu
.arch
.regs
[VCPU_REGS_R12
])),
9568 [r13
]"i"(offsetof(struct vcpu_vmx
, vcpu
.arch
.regs
[VCPU_REGS_R13
])),
9569 [r14
]"i"(offsetof(struct vcpu_vmx
, vcpu
.arch
.regs
[VCPU_REGS_R14
])),
9570 [r15
]"i"(offsetof(struct vcpu_vmx
, vcpu
.arch
.regs
[VCPU_REGS_R15
])),
9572 [cr2
]"i"(offsetof(struct vcpu_vmx
, vcpu
.arch
.cr2
)),
9573 [wordsize
]"i"(sizeof(ulong
))
9575 #ifdef CONFIG_X86_64
9576 , "rax", "rbx", "rdi", "rsi"
9577 , "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15"
9579 , "eax", "ebx", "edi", "esi"
9584 * We do not use IBRS in the kernel. If this vCPU has used the
9585 * SPEC_CTRL MSR it may have left it on; save the value and
9586 * turn it off. This is much more efficient than blindly adding
9587 * it to the atomic save/restore list. Especially as the former
9588 * (Saving guest MSRs on vmexit) doesn't even exist in KVM.
9590 * For non-nested case:
9591 * If the L01 MSR bitmap does not intercept the MSR, then we need to
9595 * If the L02 MSR bitmap does not intercept the MSR, then we need to
9598 if (unlikely(!msr_write_intercepted(vcpu
, MSR_IA32_SPEC_CTRL
)))
9599 vmx
->spec_ctrl
= native_read_msr(MSR_IA32_SPEC_CTRL
);
9602 native_wrmsrl(MSR_IA32_SPEC_CTRL
, 0);
9604 /* Eliminate branch target predictions from guest mode */
9607 /* MSR_IA32_DEBUGCTLMSR is zeroed on vmexit. Restore it if needed */
9608 if (vmx
->host_debugctlmsr
)
9609 update_debugctlmsr(vmx
->host_debugctlmsr
);
9611 #ifndef CONFIG_X86_64
9613 * The sysexit path does not restore ds/es, so we must set them to
9614 * a reasonable value ourselves.
9616 * We can't defer this to vmx_load_host_state() since that function
9617 * may be executed in interrupt context, which saves and restore segments
9618 * around it, nullifying its effect.
9620 loadsegment(ds
, __USER_DS
);
9621 loadsegment(es
, __USER_DS
);
9624 vcpu
->arch
.regs_avail
= ~((1 << VCPU_REGS_RIP
) | (1 << VCPU_REGS_RSP
)
9625 | (1 << VCPU_EXREG_RFLAGS
)
9626 | (1 << VCPU_EXREG_PDPTR
)
9627 | (1 << VCPU_EXREG_SEGMENTS
)
9628 | (1 << VCPU_EXREG_CR3
));
9629 vcpu
->arch
.regs_dirty
= 0;
9632 * eager fpu is enabled if PKEY is supported and CR4 is switched
9633 * back on host, so it is safe to read guest PKRU from current
9636 if (static_cpu_has(X86_FEATURE_PKU
) &&
9637 kvm_read_cr4_bits(vcpu
, X86_CR4_PKE
)) {
9638 vcpu
->arch
.pkru
= __read_pkru();
9639 if (vcpu
->arch
.pkru
!= vmx
->host_pkru
)
9640 __write_pkru(vmx
->host_pkru
);
9644 * the KVM_REQ_EVENT optimization bit is only on for one entry, and if
9645 * we did not inject a still-pending event to L1 now because of
9646 * nested_run_pending, we need to re-enable this bit.
9648 if (vmx
->nested
.nested_run_pending
)
9649 kvm_make_request(KVM_REQ_EVENT
, vcpu
);
9651 vmx
->nested
.nested_run_pending
= 0;
9652 vmx
->idt_vectoring_info
= 0;
9654 vmx
->exit_reason
= vmx
->fail
? 0xdead : vmcs_read32(VM_EXIT_REASON
);
9655 if (vmx
->fail
|| (vmx
->exit_reason
& VMX_EXIT_REASONS_FAILED_VMENTRY
))
9658 vmx
->loaded_vmcs
->launched
= 1;
9659 vmx
->idt_vectoring_info
= vmcs_read32(IDT_VECTORING_INFO_FIELD
);
9661 vmx_complete_atomic_exit(vmx
);
9662 vmx_recover_nmi_blocking(vmx
);
9663 vmx_complete_interrupts(vmx
);
9665 STACK_FRAME_NON_STANDARD(vmx_vcpu_run
);
9667 static void vmx_switch_vmcs(struct kvm_vcpu
*vcpu
, struct loaded_vmcs
*vmcs
)
9669 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
9672 if (vmx
->loaded_vmcs
== vmcs
)
9676 vmx
->loaded_vmcs
= vmcs
;
9678 vmx_vcpu_load(vcpu
, cpu
);
9683 * Ensure that the current vmcs of the logical processor is the
9684 * vmcs01 of the vcpu before calling free_nested().
9686 static void vmx_free_vcpu_nested(struct kvm_vcpu
*vcpu
)
9688 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
9691 vmx_switch_vmcs(vcpu
, &vmx
->vmcs01
);
9696 static void vmx_free_vcpu(struct kvm_vcpu
*vcpu
)
9698 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
9701 vmx_destroy_pml_buffer(vmx
);
9702 free_vpid(vmx
->vpid
);
9703 leave_guest_mode(vcpu
);
9704 vmx_free_vcpu_nested(vcpu
);
9705 free_loaded_vmcs(vmx
->loaded_vmcs
);
9706 kfree(vmx
->guest_msrs
);
9707 kvm_vcpu_uninit(vcpu
);
9708 kmem_cache_free(kvm_vcpu_cache
, vmx
);
9711 static struct kvm_vcpu
*vmx_create_vcpu(struct kvm
*kvm
, unsigned int id
)
9714 struct vcpu_vmx
*vmx
= kmem_cache_zalloc(kvm_vcpu_cache
, GFP_KERNEL
);
9715 unsigned long *msr_bitmap
;
9719 return ERR_PTR(-ENOMEM
);
9721 vmx
->vpid
= allocate_vpid();
9723 err
= kvm_vcpu_init(&vmx
->vcpu
, kvm
, id
);
9730 * If PML is turned on, failure on enabling PML just results in failure
9731 * of creating the vcpu, therefore we can simplify PML logic (by
9732 * avoiding dealing with cases, such as enabling PML partially on vcpus
9733 * for the guest, etc.
9736 vmx
->pml_pg
= alloc_page(GFP_KERNEL
| __GFP_ZERO
);
9741 vmx
->guest_msrs
= kmalloc(PAGE_SIZE
, GFP_KERNEL
);
9742 BUILD_BUG_ON(ARRAY_SIZE(vmx_msr_index
) * sizeof(vmx
->guest_msrs
[0])
9745 if (!vmx
->guest_msrs
)
9748 err
= alloc_loaded_vmcs(&vmx
->vmcs01
);
9752 msr_bitmap
= vmx
->vmcs01
.msr_bitmap
;
9753 vmx_disable_intercept_for_msr(msr_bitmap
, MSR_FS_BASE
, MSR_TYPE_RW
);
9754 vmx_disable_intercept_for_msr(msr_bitmap
, MSR_GS_BASE
, MSR_TYPE_RW
);
9755 vmx_disable_intercept_for_msr(msr_bitmap
, MSR_KERNEL_GS_BASE
, MSR_TYPE_RW
);
9756 vmx_disable_intercept_for_msr(msr_bitmap
, MSR_IA32_SYSENTER_CS
, MSR_TYPE_RW
);
9757 vmx_disable_intercept_for_msr(msr_bitmap
, MSR_IA32_SYSENTER_ESP
, MSR_TYPE_RW
);
9758 vmx_disable_intercept_for_msr(msr_bitmap
, MSR_IA32_SYSENTER_EIP
, MSR_TYPE_RW
);
9759 vmx
->msr_bitmap_mode
= 0;
9761 vmx
->loaded_vmcs
= &vmx
->vmcs01
;
9763 vmx_vcpu_load(&vmx
->vcpu
, cpu
);
9764 vmx
->vcpu
.cpu
= cpu
;
9765 vmx_vcpu_setup(vmx
);
9766 vmx_vcpu_put(&vmx
->vcpu
);
9768 if (cpu_need_virtualize_apic_accesses(&vmx
->vcpu
)) {
9769 err
= alloc_apic_access_page(kvm
);
9775 err
= init_rmode_identity_map(kvm
);
9781 nested_vmx_setup_ctls_msrs(vmx
);
9782 vmx
->nested
.vpid02
= allocate_vpid();
9785 vmx
->nested
.posted_intr_nv
= -1;
9786 vmx
->nested
.current_vmptr
= -1ull;
9788 vmx
->msr_ia32_feature_control_valid_bits
= FEATURE_CONTROL_LOCKED
;
9791 * Enforce invariant: pi_desc.nv is always either POSTED_INTR_VECTOR
9792 * or POSTED_INTR_WAKEUP_VECTOR.
9794 vmx
->pi_desc
.nv
= POSTED_INTR_VECTOR
;
9795 vmx
->pi_desc
.sn
= 1;
9800 free_vpid(vmx
->nested
.vpid02
);
9801 free_loaded_vmcs(vmx
->loaded_vmcs
);
9803 kfree(vmx
->guest_msrs
);
9805 vmx_destroy_pml_buffer(vmx
);
9807 kvm_vcpu_uninit(&vmx
->vcpu
);
9809 free_vpid(vmx
->vpid
);
9810 kmem_cache_free(kvm_vcpu_cache
, vmx
);
9811 return ERR_PTR(err
);
9814 static void __init
vmx_check_processor_compat(void *rtn
)
9816 struct vmcs_config vmcs_conf
;
9819 if (setup_vmcs_config(&vmcs_conf
) < 0)
9821 if (memcmp(&vmcs_config
, &vmcs_conf
, sizeof(struct vmcs_config
)) != 0) {
9822 printk(KERN_ERR
"kvm: CPU %d feature inconsistency!\n",
9823 smp_processor_id());
9828 static u64
vmx_get_mt_mask(struct kvm_vcpu
*vcpu
, gfn_t gfn
, bool is_mmio
)
9833 /* For VT-d and EPT combination
9834 * 1. MMIO: always map as UC
9836 * a. VT-d without snooping control feature: can't guarantee the
9837 * result, try to trust guest.
9838 * b. VT-d with snooping control feature: snooping control feature of
9839 * VT-d engine can guarantee the cache correctness. Just set it
9840 * to WB to keep consistent with host. So the same as item 3.
9841 * 3. EPT without VT-d: always map as WB and set IPAT=1 to keep
9842 * consistent with host MTRR
9845 cache
= MTRR_TYPE_UNCACHABLE
;
9849 if (!kvm_arch_has_noncoherent_dma(vcpu
->kvm
)) {
9850 ipat
= VMX_EPT_IPAT_BIT
;
9851 cache
= MTRR_TYPE_WRBACK
;
9855 if (kvm_read_cr0(vcpu
) & X86_CR0_CD
) {
9856 ipat
= VMX_EPT_IPAT_BIT
;
9857 if (kvm_check_has_quirk(vcpu
->kvm
, KVM_X86_QUIRK_CD_NW_CLEARED
))
9858 cache
= MTRR_TYPE_WRBACK
;
9860 cache
= MTRR_TYPE_UNCACHABLE
;
9864 cache
= kvm_mtrr_get_guest_memory_type(vcpu
, gfn
);
9867 return (cache
<< VMX_EPT_MT_EPTE_SHIFT
) | ipat
;
9870 static int vmx_get_lpage_level(void)
9872 if (enable_ept
&& !cpu_has_vmx_ept_1g_page())
9873 return PT_DIRECTORY_LEVEL
;
9875 /* For shadow and EPT supported 1GB page */
9876 return PT_PDPE_LEVEL
;
9879 static void vmcs_set_secondary_exec_control(u32 new_ctl
)
9882 * These bits in the secondary execution controls field
9883 * are dynamic, the others are mostly based on the hypervisor
9884 * architecture and the guest's CPUID. Do not touch the
9888 SECONDARY_EXEC_SHADOW_VMCS
|
9889 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE
|
9890 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES
|
9891 SECONDARY_EXEC_DESC
;
9893 u32 cur_ctl
= vmcs_read32(SECONDARY_VM_EXEC_CONTROL
);
9895 vmcs_write32(SECONDARY_VM_EXEC_CONTROL
,
9896 (new_ctl
& ~mask
) | (cur_ctl
& mask
));
9900 * Generate MSR_IA32_VMX_CR{0,4}_FIXED1 according to CPUID. Only set bits
9901 * (indicating "allowed-1") if they are supported in the guest's CPUID.
9903 static void nested_vmx_cr_fixed1_bits_update(struct kvm_vcpu
*vcpu
)
9905 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
9906 struct kvm_cpuid_entry2
*entry
;
9908 vmx
->nested
.nested_vmx_cr0_fixed1
= 0xffffffff;
9909 vmx
->nested
.nested_vmx_cr4_fixed1
= X86_CR4_PCE
;
9911 #define cr4_fixed1_update(_cr4_mask, _reg, _cpuid_mask) do { \
9912 if (entry && (entry->_reg & (_cpuid_mask))) \
9913 vmx->nested.nested_vmx_cr4_fixed1 |= (_cr4_mask); \
9916 entry
= kvm_find_cpuid_entry(vcpu
, 0x1, 0);
9917 cr4_fixed1_update(X86_CR4_VME
, edx
, bit(X86_FEATURE_VME
));
9918 cr4_fixed1_update(X86_CR4_PVI
, edx
, bit(X86_FEATURE_VME
));
9919 cr4_fixed1_update(X86_CR4_TSD
, edx
, bit(X86_FEATURE_TSC
));
9920 cr4_fixed1_update(X86_CR4_DE
, edx
, bit(X86_FEATURE_DE
));
9921 cr4_fixed1_update(X86_CR4_PSE
, edx
, bit(X86_FEATURE_PSE
));
9922 cr4_fixed1_update(X86_CR4_PAE
, edx
, bit(X86_FEATURE_PAE
));
9923 cr4_fixed1_update(X86_CR4_MCE
, edx
, bit(X86_FEATURE_MCE
));
9924 cr4_fixed1_update(X86_CR4_PGE
, edx
, bit(X86_FEATURE_PGE
));
9925 cr4_fixed1_update(X86_CR4_OSFXSR
, edx
, bit(X86_FEATURE_FXSR
));
9926 cr4_fixed1_update(X86_CR4_OSXMMEXCPT
, edx
, bit(X86_FEATURE_XMM
));
9927 cr4_fixed1_update(X86_CR4_VMXE
, ecx
, bit(X86_FEATURE_VMX
));
9928 cr4_fixed1_update(X86_CR4_SMXE
, ecx
, bit(X86_FEATURE_SMX
));
9929 cr4_fixed1_update(X86_CR4_PCIDE
, ecx
, bit(X86_FEATURE_PCID
));
9930 cr4_fixed1_update(X86_CR4_OSXSAVE
, ecx
, bit(X86_FEATURE_XSAVE
));
9932 entry
= kvm_find_cpuid_entry(vcpu
, 0x7, 0);
9933 cr4_fixed1_update(X86_CR4_FSGSBASE
, ebx
, bit(X86_FEATURE_FSGSBASE
));
9934 cr4_fixed1_update(X86_CR4_SMEP
, ebx
, bit(X86_FEATURE_SMEP
));
9935 cr4_fixed1_update(X86_CR4_SMAP
, ebx
, bit(X86_FEATURE_SMAP
));
9936 cr4_fixed1_update(X86_CR4_PKE
, ecx
, bit(X86_FEATURE_PKU
));
9937 cr4_fixed1_update(X86_CR4_UMIP
, ecx
, bit(X86_FEATURE_UMIP
));
9939 #undef cr4_fixed1_update
9942 static void vmx_cpuid_update(struct kvm_vcpu
*vcpu
)
9944 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
9946 if (cpu_has_secondary_exec_ctrls()) {
9947 vmx_compute_secondary_exec_control(vmx
);
9948 vmcs_set_secondary_exec_control(vmx
->secondary_exec_control
);
9951 if (nested_vmx_allowed(vcpu
))
9952 to_vmx(vcpu
)->msr_ia32_feature_control_valid_bits
|=
9953 FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX
;
9955 to_vmx(vcpu
)->msr_ia32_feature_control_valid_bits
&=
9956 ~FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX
;
9958 if (nested_vmx_allowed(vcpu
))
9959 nested_vmx_cr_fixed1_bits_update(vcpu
);
9962 static void vmx_set_supported_cpuid(u32 func
, struct kvm_cpuid_entry2
*entry
)
9964 if (func
== 1 && nested
)
9965 entry
->ecx
|= bit(X86_FEATURE_VMX
);
9968 static void nested_ept_inject_page_fault(struct kvm_vcpu
*vcpu
,
9969 struct x86_exception
*fault
)
9971 struct vmcs12
*vmcs12
= get_vmcs12(vcpu
);
9972 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
9974 unsigned long exit_qualification
= vcpu
->arch
.exit_qualification
;
9976 if (vmx
->nested
.pml_full
) {
9977 exit_reason
= EXIT_REASON_PML_FULL
;
9978 vmx
->nested
.pml_full
= false;
9979 exit_qualification
&= INTR_INFO_UNBLOCK_NMI
;
9980 } else if (fault
->error_code
& PFERR_RSVD_MASK
)
9981 exit_reason
= EXIT_REASON_EPT_MISCONFIG
;
9983 exit_reason
= EXIT_REASON_EPT_VIOLATION
;
9985 nested_vmx_vmexit(vcpu
, exit_reason
, 0, exit_qualification
);
9986 vmcs12
->guest_physical_address
= fault
->address
;
9989 static bool nested_ept_ad_enabled(struct kvm_vcpu
*vcpu
)
9991 return nested_ept_get_cr3(vcpu
) & VMX_EPTP_AD_ENABLE_BIT
;
9994 /* Callbacks for nested_ept_init_mmu_context: */
9996 static unsigned long nested_ept_get_cr3(struct kvm_vcpu
*vcpu
)
9998 /* return the page table to be shadowed - in our case, EPT12 */
9999 return get_vmcs12(vcpu
)->ept_pointer
;
10002 static int nested_ept_init_mmu_context(struct kvm_vcpu
*vcpu
)
10004 WARN_ON(mmu_is_nested(vcpu
));
10005 if (!valid_ept_address(vcpu
, nested_ept_get_cr3(vcpu
)))
10008 kvm_mmu_unload(vcpu
);
10009 kvm_init_shadow_ept_mmu(vcpu
,
10010 to_vmx(vcpu
)->nested
.nested_vmx_ept_caps
&
10011 VMX_EPT_EXECUTE_ONLY_BIT
,
10012 nested_ept_ad_enabled(vcpu
));
10013 vcpu
->arch
.mmu
.set_cr3
= vmx_set_cr3
;
10014 vcpu
->arch
.mmu
.get_cr3
= nested_ept_get_cr3
;
10015 vcpu
->arch
.mmu
.inject_page_fault
= nested_ept_inject_page_fault
;
10017 vcpu
->arch
.walk_mmu
= &vcpu
->arch
.nested_mmu
;
10021 static void nested_ept_uninit_mmu_context(struct kvm_vcpu
*vcpu
)
10023 vcpu
->arch
.walk_mmu
= &vcpu
->arch
.mmu
;
10026 static bool nested_vmx_is_page_fault_vmexit(struct vmcs12
*vmcs12
,
10029 bool inequality
, bit
;
10031 bit
= (vmcs12
->exception_bitmap
& (1u << PF_VECTOR
)) != 0;
10033 (error_code
& vmcs12
->page_fault_error_code_mask
) !=
10034 vmcs12
->page_fault_error_code_match
;
10035 return inequality
^ bit
;
10038 static void vmx_inject_page_fault_nested(struct kvm_vcpu
*vcpu
,
10039 struct x86_exception
*fault
)
10041 struct vmcs12
*vmcs12
= get_vmcs12(vcpu
);
10043 WARN_ON(!is_guest_mode(vcpu
));
10045 if (nested_vmx_is_page_fault_vmexit(vmcs12
, fault
->error_code
) &&
10046 !to_vmx(vcpu
)->nested
.nested_run_pending
) {
10047 vmcs12
->vm_exit_intr_error_code
= fault
->error_code
;
10048 nested_vmx_vmexit(vcpu
, EXIT_REASON_EXCEPTION_NMI
,
10049 PF_VECTOR
| INTR_TYPE_HARD_EXCEPTION
|
10050 INTR_INFO_DELIVER_CODE_MASK
| INTR_INFO_VALID_MASK
,
10053 kvm_inject_page_fault(vcpu
, fault
);
10057 static inline bool nested_vmx_prepare_msr_bitmap(struct kvm_vcpu
*vcpu
,
10058 struct vmcs12
*vmcs12
);
10060 static void nested_get_vmcs12_pages(struct kvm_vcpu
*vcpu
,
10061 struct vmcs12
*vmcs12
)
10063 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
10067 if (nested_cpu_has2(vmcs12
, SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES
)) {
10069 * Translate L1 physical address to host physical
10070 * address for vmcs02. Keep the page pinned, so this
10071 * physical address remains valid. We keep a reference
10072 * to it so we can release it later.
10074 if (vmx
->nested
.apic_access_page
) { /* shouldn't happen */
10075 kvm_release_page_dirty(vmx
->nested
.apic_access_page
);
10076 vmx
->nested
.apic_access_page
= NULL
;
10078 page
= kvm_vcpu_gpa_to_page(vcpu
, vmcs12
->apic_access_addr
);
10080 * If translation failed, no matter: This feature asks
10081 * to exit when accessing the given address, and if it
10082 * can never be accessed, this feature won't do
10085 if (!is_error_page(page
)) {
10086 vmx
->nested
.apic_access_page
= page
;
10087 hpa
= page_to_phys(vmx
->nested
.apic_access_page
);
10088 vmcs_write64(APIC_ACCESS_ADDR
, hpa
);
10090 vmcs_clear_bits(SECONDARY_VM_EXEC_CONTROL
,
10091 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES
);
10093 } else if (!(nested_cpu_has_virt_x2apic_mode(vmcs12
)) &&
10094 cpu_need_virtualize_apic_accesses(&vmx
->vcpu
)) {
10095 vmcs_set_bits(SECONDARY_VM_EXEC_CONTROL
,
10096 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES
);
10097 kvm_vcpu_reload_apic_access_page(vcpu
);
10100 if (nested_cpu_has(vmcs12
, CPU_BASED_TPR_SHADOW
)) {
10101 if (vmx
->nested
.virtual_apic_page
) { /* shouldn't happen */
10102 kvm_release_page_dirty(vmx
->nested
.virtual_apic_page
);
10103 vmx
->nested
.virtual_apic_page
= NULL
;
10105 page
= kvm_vcpu_gpa_to_page(vcpu
, vmcs12
->virtual_apic_page_addr
);
10108 * If translation failed, VM entry will fail because
10109 * prepare_vmcs02 set VIRTUAL_APIC_PAGE_ADDR to -1ull.
10110 * Failing the vm entry is _not_ what the processor
10111 * does but it's basically the only possibility we
10112 * have. We could still enter the guest if CR8 load
10113 * exits are enabled, CR8 store exits are enabled, and
10114 * virtualize APIC access is disabled; in this case
10115 * the processor would never use the TPR shadow and we
10116 * could simply clear the bit from the execution
10117 * control. But such a configuration is useless, so
10118 * let's keep the code simple.
10120 if (!is_error_page(page
)) {
10121 vmx
->nested
.virtual_apic_page
= page
;
10122 hpa
= page_to_phys(vmx
->nested
.virtual_apic_page
);
10123 vmcs_write64(VIRTUAL_APIC_PAGE_ADDR
, hpa
);
10127 if (nested_cpu_has_posted_intr(vmcs12
)) {
10128 if (vmx
->nested
.pi_desc_page
) { /* shouldn't happen */
10129 kunmap(vmx
->nested
.pi_desc_page
);
10130 kvm_release_page_dirty(vmx
->nested
.pi_desc_page
);
10131 vmx
->nested
.pi_desc_page
= NULL
;
10133 page
= kvm_vcpu_gpa_to_page(vcpu
, vmcs12
->posted_intr_desc_addr
);
10134 if (is_error_page(page
))
10136 vmx
->nested
.pi_desc_page
= page
;
10137 vmx
->nested
.pi_desc
= kmap(vmx
->nested
.pi_desc_page
);
10138 vmx
->nested
.pi_desc
=
10139 (struct pi_desc
*)((void *)vmx
->nested
.pi_desc
+
10140 (unsigned long)(vmcs12
->posted_intr_desc_addr
&
10142 vmcs_write64(POSTED_INTR_DESC_ADDR
,
10143 page_to_phys(vmx
->nested
.pi_desc_page
) +
10144 (unsigned long)(vmcs12
->posted_intr_desc_addr
&
10147 if (nested_vmx_prepare_msr_bitmap(vcpu
, vmcs12
))
10148 vmcs_set_bits(CPU_BASED_VM_EXEC_CONTROL
,
10149 CPU_BASED_USE_MSR_BITMAPS
);
10151 vmcs_clear_bits(CPU_BASED_VM_EXEC_CONTROL
,
10152 CPU_BASED_USE_MSR_BITMAPS
);
10155 static void vmx_start_preemption_timer(struct kvm_vcpu
*vcpu
)
10157 u64 preemption_timeout
= get_vmcs12(vcpu
)->vmx_preemption_timer_value
;
10158 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
10160 if (vcpu
->arch
.virtual_tsc_khz
== 0)
10163 /* Make sure short timeouts reliably trigger an immediate vmexit.
10164 * hrtimer_start does not guarantee this. */
10165 if (preemption_timeout
<= 1) {
10166 vmx_preemption_timer_fn(&vmx
->nested
.preemption_timer
);
10170 preemption_timeout
<<= VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE
;
10171 preemption_timeout
*= 1000000;
10172 do_div(preemption_timeout
, vcpu
->arch
.virtual_tsc_khz
);
10173 hrtimer_start(&vmx
->nested
.preemption_timer
,
10174 ns_to_ktime(preemption_timeout
), HRTIMER_MODE_REL
);
10177 static int nested_vmx_check_io_bitmap_controls(struct kvm_vcpu
*vcpu
,
10178 struct vmcs12
*vmcs12
)
10180 if (!nested_cpu_has(vmcs12
, CPU_BASED_USE_IO_BITMAPS
))
10183 if (!page_address_valid(vcpu
, vmcs12
->io_bitmap_a
) ||
10184 !page_address_valid(vcpu
, vmcs12
->io_bitmap_b
))
10190 static int nested_vmx_check_msr_bitmap_controls(struct kvm_vcpu
*vcpu
,
10191 struct vmcs12
*vmcs12
)
10193 if (!nested_cpu_has(vmcs12
, CPU_BASED_USE_MSR_BITMAPS
))
10196 if (!page_address_valid(vcpu
, vmcs12
->msr_bitmap
))
10202 static int nested_vmx_check_tpr_shadow_controls(struct kvm_vcpu
*vcpu
,
10203 struct vmcs12
*vmcs12
)
10205 if (!nested_cpu_has(vmcs12
, CPU_BASED_TPR_SHADOW
))
10208 if (!page_address_valid(vcpu
, vmcs12
->virtual_apic_page_addr
))
10215 * Merge L0's and L1's MSR bitmap, return false to indicate that
10216 * we do not use the hardware.
10218 static inline bool nested_vmx_prepare_msr_bitmap(struct kvm_vcpu
*vcpu
,
10219 struct vmcs12
*vmcs12
)
10223 unsigned long *msr_bitmap_l1
;
10224 unsigned long *msr_bitmap_l0
= to_vmx(vcpu
)->nested
.vmcs02
.msr_bitmap
;
10226 * pred_cmd & spec_ctrl are trying to verify two things:
10228 * 1. L0 gave a permission to L1 to actually passthrough the MSR. This
10229 * ensures that we do not accidentally generate an L02 MSR bitmap
10230 * from the L12 MSR bitmap that is too permissive.
10231 * 2. That L1 or L2s have actually used the MSR. This avoids
10232 * unnecessarily merging of the bitmap if the MSR is unused. This
10233 * works properly because we only update the L01 MSR bitmap lazily.
10234 * So even if L0 should pass L1 these MSRs, the L01 bitmap is only
10235 * updated to reflect this when L1 (or its L2s) actually write to
10238 bool pred_cmd
= !msr_write_intercepted_l01(vcpu
, MSR_IA32_PRED_CMD
);
10239 bool spec_ctrl
= !msr_write_intercepted_l01(vcpu
, MSR_IA32_SPEC_CTRL
);
10241 /* Nothing to do if the MSR bitmap is not in use. */
10242 if (!cpu_has_vmx_msr_bitmap() ||
10243 !nested_cpu_has(vmcs12
, CPU_BASED_USE_MSR_BITMAPS
))
10246 if (!nested_cpu_has_virt_x2apic_mode(vmcs12
) &&
10247 !pred_cmd
&& !spec_ctrl
)
10250 page
= kvm_vcpu_gpa_to_page(vcpu
, vmcs12
->msr_bitmap
);
10251 if (is_error_page(page
))
10254 msr_bitmap_l1
= (unsigned long *)kmap(page
);
10255 if (nested_cpu_has_apic_reg_virt(vmcs12
)) {
10257 * L0 need not intercept reads for MSRs between 0x800 and 0x8ff, it
10258 * just lets the processor take the value from the virtual-APIC page;
10259 * take those 256 bits directly from the L1 bitmap.
10261 for (msr
= 0x800; msr
<= 0x8ff; msr
+= BITS_PER_LONG
) {
10262 unsigned word
= msr
/ BITS_PER_LONG
;
10263 msr_bitmap_l0
[word
] = msr_bitmap_l1
[word
];
10264 msr_bitmap_l0
[word
+ (0x800 / sizeof(long))] = ~0;
10267 for (msr
= 0x800; msr
<= 0x8ff; msr
+= BITS_PER_LONG
) {
10268 unsigned word
= msr
/ BITS_PER_LONG
;
10269 msr_bitmap_l0
[word
] = ~0;
10270 msr_bitmap_l0
[word
+ (0x800 / sizeof(long))] = ~0;
10274 nested_vmx_disable_intercept_for_msr(
10275 msr_bitmap_l1
, msr_bitmap_l0
,
10276 X2APIC_MSR(APIC_TASKPRI
),
10279 if (nested_cpu_has_vid(vmcs12
)) {
10280 nested_vmx_disable_intercept_for_msr(
10281 msr_bitmap_l1
, msr_bitmap_l0
,
10282 X2APIC_MSR(APIC_EOI
),
10284 nested_vmx_disable_intercept_for_msr(
10285 msr_bitmap_l1
, msr_bitmap_l0
,
10286 X2APIC_MSR(APIC_SELF_IPI
),
10291 nested_vmx_disable_intercept_for_msr(
10292 msr_bitmap_l1
, msr_bitmap_l0
,
10293 MSR_IA32_SPEC_CTRL
,
10294 MSR_TYPE_R
| MSR_TYPE_W
);
10297 nested_vmx_disable_intercept_for_msr(
10298 msr_bitmap_l1
, msr_bitmap_l0
,
10303 kvm_release_page_clean(page
);
10308 static int nested_vmx_check_apicv_controls(struct kvm_vcpu
*vcpu
,
10309 struct vmcs12
*vmcs12
)
10311 if (!nested_cpu_has_virt_x2apic_mode(vmcs12
) &&
10312 !nested_cpu_has_apic_reg_virt(vmcs12
) &&
10313 !nested_cpu_has_vid(vmcs12
) &&
10314 !nested_cpu_has_posted_intr(vmcs12
))
10318 * If virtualize x2apic mode is enabled,
10319 * virtualize apic access must be disabled.
10321 if (nested_cpu_has_virt_x2apic_mode(vmcs12
) &&
10322 nested_cpu_has2(vmcs12
, SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES
))
10326 * If virtual interrupt delivery is enabled,
10327 * we must exit on external interrupts.
10329 if (nested_cpu_has_vid(vmcs12
) &&
10330 !nested_exit_on_intr(vcpu
))
10334 * bits 15:8 should be zero in posted_intr_nv,
10335 * the descriptor address has been already checked
10336 * in nested_get_vmcs12_pages.
10338 if (nested_cpu_has_posted_intr(vmcs12
) &&
10339 (!nested_cpu_has_vid(vmcs12
) ||
10340 !nested_exit_intr_ack_set(vcpu
) ||
10341 vmcs12
->posted_intr_nv
& 0xff00))
10344 /* tpr shadow is needed by all apicv features. */
10345 if (!nested_cpu_has(vmcs12
, CPU_BASED_TPR_SHADOW
))
10351 static int nested_vmx_check_msr_switch(struct kvm_vcpu
*vcpu
,
10352 unsigned long count_field
,
10353 unsigned long addr_field
)
10358 if (vmcs12_read_any(vcpu
, count_field
, &count
) ||
10359 vmcs12_read_any(vcpu
, addr_field
, &addr
)) {
10365 maxphyaddr
= cpuid_maxphyaddr(vcpu
);
10366 if (!IS_ALIGNED(addr
, 16) || addr
>> maxphyaddr
||
10367 (addr
+ count
* sizeof(struct vmx_msr_entry
) - 1) >> maxphyaddr
) {
10368 pr_debug_ratelimited(
10369 "nVMX: invalid MSR switch (0x%lx, %d, %llu, 0x%08llx)",
10370 addr_field
, maxphyaddr
, count
, addr
);
10376 static int nested_vmx_check_msr_switch_controls(struct kvm_vcpu
*vcpu
,
10377 struct vmcs12
*vmcs12
)
10379 if (vmcs12
->vm_exit_msr_load_count
== 0 &&
10380 vmcs12
->vm_exit_msr_store_count
== 0 &&
10381 vmcs12
->vm_entry_msr_load_count
== 0)
10382 return 0; /* Fast path */
10383 if (nested_vmx_check_msr_switch(vcpu
, VM_EXIT_MSR_LOAD_COUNT
,
10384 VM_EXIT_MSR_LOAD_ADDR
) ||
10385 nested_vmx_check_msr_switch(vcpu
, VM_EXIT_MSR_STORE_COUNT
,
10386 VM_EXIT_MSR_STORE_ADDR
) ||
10387 nested_vmx_check_msr_switch(vcpu
, VM_ENTRY_MSR_LOAD_COUNT
,
10388 VM_ENTRY_MSR_LOAD_ADDR
))
10393 static int nested_vmx_check_pml_controls(struct kvm_vcpu
*vcpu
,
10394 struct vmcs12
*vmcs12
)
10396 u64 address
= vmcs12
->pml_address
;
10397 int maxphyaddr
= cpuid_maxphyaddr(vcpu
);
10399 if (nested_cpu_has2(vmcs12
, SECONDARY_EXEC_ENABLE_PML
)) {
10400 if (!nested_cpu_has_ept(vmcs12
) ||
10401 !IS_ALIGNED(address
, 4096) ||
10402 address
>> maxphyaddr
)
10409 static int nested_vmx_msr_check_common(struct kvm_vcpu
*vcpu
,
10410 struct vmx_msr_entry
*e
)
10412 /* x2APIC MSR accesses are not allowed */
10413 if (vcpu
->arch
.apic_base
& X2APIC_ENABLE
&& e
->index
>> 8 == 0x8)
10415 if (e
->index
== MSR_IA32_UCODE_WRITE
|| /* SDM Table 35-2 */
10416 e
->index
== MSR_IA32_UCODE_REV
)
10418 if (e
->reserved
!= 0)
10423 static int nested_vmx_load_msr_check(struct kvm_vcpu
*vcpu
,
10424 struct vmx_msr_entry
*e
)
10426 if (e
->index
== MSR_FS_BASE
||
10427 e
->index
== MSR_GS_BASE
||
10428 e
->index
== MSR_IA32_SMM_MONITOR_CTL
|| /* SMM is not supported */
10429 nested_vmx_msr_check_common(vcpu
, e
))
10434 static int nested_vmx_store_msr_check(struct kvm_vcpu
*vcpu
,
10435 struct vmx_msr_entry
*e
)
10437 if (e
->index
== MSR_IA32_SMBASE
|| /* SMM is not supported */
10438 nested_vmx_msr_check_common(vcpu
, e
))
10444 * Load guest's/host's msr at nested entry/exit.
10445 * return 0 for success, entry index for failure.
10447 static u32
nested_vmx_load_msr(struct kvm_vcpu
*vcpu
, u64 gpa
, u32 count
)
10450 struct vmx_msr_entry e
;
10451 struct msr_data msr
;
10453 msr
.host_initiated
= false;
10454 for (i
= 0; i
< count
; i
++) {
10455 if (kvm_vcpu_read_guest(vcpu
, gpa
+ i
* sizeof(e
),
10457 pr_debug_ratelimited(
10458 "%s cannot read MSR entry (%u, 0x%08llx)\n",
10459 __func__
, i
, gpa
+ i
* sizeof(e
));
10462 if (nested_vmx_load_msr_check(vcpu
, &e
)) {
10463 pr_debug_ratelimited(
10464 "%s check failed (%u, 0x%x, 0x%x)\n",
10465 __func__
, i
, e
.index
, e
.reserved
);
10468 msr
.index
= e
.index
;
10469 msr
.data
= e
.value
;
10470 if (kvm_set_msr(vcpu
, &msr
)) {
10471 pr_debug_ratelimited(
10472 "%s cannot write MSR (%u, 0x%x, 0x%llx)\n",
10473 __func__
, i
, e
.index
, e
.value
);
10482 static int nested_vmx_store_msr(struct kvm_vcpu
*vcpu
, u64 gpa
, u32 count
)
10485 struct vmx_msr_entry e
;
10487 for (i
= 0; i
< count
; i
++) {
10488 struct msr_data msr_info
;
10489 if (kvm_vcpu_read_guest(vcpu
,
10490 gpa
+ i
* sizeof(e
),
10491 &e
, 2 * sizeof(u32
))) {
10492 pr_debug_ratelimited(
10493 "%s cannot read MSR entry (%u, 0x%08llx)\n",
10494 __func__
, i
, gpa
+ i
* sizeof(e
));
10497 if (nested_vmx_store_msr_check(vcpu
, &e
)) {
10498 pr_debug_ratelimited(
10499 "%s check failed (%u, 0x%x, 0x%x)\n",
10500 __func__
, i
, e
.index
, e
.reserved
);
10503 msr_info
.host_initiated
= false;
10504 msr_info
.index
= e
.index
;
10505 if (kvm_get_msr(vcpu
, &msr_info
)) {
10506 pr_debug_ratelimited(
10507 "%s cannot read MSR (%u, 0x%x)\n",
10508 __func__
, i
, e
.index
);
10511 if (kvm_vcpu_write_guest(vcpu
,
10512 gpa
+ i
* sizeof(e
) +
10513 offsetof(struct vmx_msr_entry
, value
),
10514 &msr_info
.data
, sizeof(msr_info
.data
))) {
10515 pr_debug_ratelimited(
10516 "%s cannot write MSR (%u, 0x%x, 0x%llx)\n",
10517 __func__
, i
, e
.index
, msr_info
.data
);
10524 static bool nested_cr3_valid(struct kvm_vcpu
*vcpu
, unsigned long val
)
10526 unsigned long invalid_mask
;
10528 invalid_mask
= (~0ULL) << cpuid_maxphyaddr(vcpu
);
10529 return (val
& invalid_mask
) == 0;
10533 * Load guest's/host's cr3 at nested entry/exit. nested_ept is true if we are
10534 * emulating VM entry into a guest with EPT enabled.
10535 * Returns 0 on success, 1 on failure. Invalid state exit qualification code
10536 * is assigned to entry_failure_code on failure.
10538 static int nested_vmx_load_cr3(struct kvm_vcpu
*vcpu
, unsigned long cr3
, bool nested_ept
,
10539 u32
*entry_failure_code
)
10541 if (cr3
!= kvm_read_cr3(vcpu
) || (!nested_ept
&& pdptrs_changed(vcpu
))) {
10542 if (!nested_cr3_valid(vcpu
, cr3
)) {
10543 *entry_failure_code
= ENTRY_FAIL_DEFAULT
;
10548 * If PAE paging and EPT are both on, CR3 is not used by the CPU and
10549 * must not be dereferenced.
10551 if (!is_long_mode(vcpu
) && is_pae(vcpu
) && is_paging(vcpu
) &&
10553 if (!load_pdptrs(vcpu
, vcpu
->arch
.walk_mmu
, cr3
)) {
10554 *entry_failure_code
= ENTRY_FAIL_PDPTE
;
10559 vcpu
->arch
.cr3
= cr3
;
10560 __set_bit(VCPU_EXREG_CR3
, (ulong
*)&vcpu
->arch
.regs_avail
);
10563 kvm_mmu_reset_context(vcpu
);
10567 static void prepare_vmcs02_full(struct kvm_vcpu
*vcpu
, struct vmcs12
*vmcs12
,
10570 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
10572 vmcs_write16(GUEST_ES_SELECTOR
, vmcs12
->guest_es_selector
);
10573 vmcs_write16(GUEST_SS_SELECTOR
, vmcs12
->guest_ss_selector
);
10574 vmcs_write16(GUEST_DS_SELECTOR
, vmcs12
->guest_ds_selector
);
10575 vmcs_write16(GUEST_FS_SELECTOR
, vmcs12
->guest_fs_selector
);
10576 vmcs_write16(GUEST_GS_SELECTOR
, vmcs12
->guest_gs_selector
);
10577 vmcs_write16(GUEST_LDTR_SELECTOR
, vmcs12
->guest_ldtr_selector
);
10578 vmcs_write16(GUEST_TR_SELECTOR
, vmcs12
->guest_tr_selector
);
10579 vmcs_write32(GUEST_ES_LIMIT
, vmcs12
->guest_es_limit
);
10580 vmcs_write32(GUEST_SS_LIMIT
, vmcs12
->guest_ss_limit
);
10581 vmcs_write32(GUEST_DS_LIMIT
, vmcs12
->guest_ds_limit
);
10582 vmcs_write32(GUEST_FS_LIMIT
, vmcs12
->guest_fs_limit
);
10583 vmcs_write32(GUEST_GS_LIMIT
, vmcs12
->guest_gs_limit
);
10584 vmcs_write32(GUEST_LDTR_LIMIT
, vmcs12
->guest_ldtr_limit
);
10585 vmcs_write32(GUEST_TR_LIMIT
, vmcs12
->guest_tr_limit
);
10586 vmcs_write32(GUEST_GDTR_LIMIT
, vmcs12
->guest_gdtr_limit
);
10587 vmcs_write32(GUEST_IDTR_LIMIT
, vmcs12
->guest_idtr_limit
);
10588 vmcs_write32(GUEST_ES_AR_BYTES
, vmcs12
->guest_es_ar_bytes
);
10589 vmcs_write32(GUEST_SS_AR_BYTES
, vmcs12
->guest_ss_ar_bytes
);
10590 vmcs_write32(GUEST_DS_AR_BYTES
, vmcs12
->guest_ds_ar_bytes
);
10591 vmcs_write32(GUEST_FS_AR_BYTES
, vmcs12
->guest_fs_ar_bytes
);
10592 vmcs_write32(GUEST_GS_AR_BYTES
, vmcs12
->guest_gs_ar_bytes
);
10593 vmcs_write32(GUEST_LDTR_AR_BYTES
, vmcs12
->guest_ldtr_ar_bytes
);
10594 vmcs_write32(GUEST_TR_AR_BYTES
, vmcs12
->guest_tr_ar_bytes
);
10595 vmcs_writel(GUEST_SS_BASE
, vmcs12
->guest_ss_base
);
10596 vmcs_writel(GUEST_DS_BASE
, vmcs12
->guest_ds_base
);
10597 vmcs_writel(GUEST_FS_BASE
, vmcs12
->guest_fs_base
);
10598 vmcs_writel(GUEST_GS_BASE
, vmcs12
->guest_gs_base
);
10599 vmcs_writel(GUEST_LDTR_BASE
, vmcs12
->guest_ldtr_base
);
10600 vmcs_writel(GUEST_TR_BASE
, vmcs12
->guest_tr_base
);
10601 vmcs_writel(GUEST_GDTR_BASE
, vmcs12
->guest_gdtr_base
);
10602 vmcs_writel(GUEST_IDTR_BASE
, vmcs12
->guest_idtr_base
);
10604 vmcs_write32(GUEST_SYSENTER_CS
, vmcs12
->guest_sysenter_cs
);
10605 vmcs_writel(GUEST_PENDING_DBG_EXCEPTIONS
,
10606 vmcs12
->guest_pending_dbg_exceptions
);
10607 vmcs_writel(GUEST_SYSENTER_ESP
, vmcs12
->guest_sysenter_esp
);
10608 vmcs_writel(GUEST_SYSENTER_EIP
, vmcs12
->guest_sysenter_eip
);
10610 if (nested_cpu_has_xsaves(vmcs12
))
10611 vmcs_write64(XSS_EXIT_BITMAP
, vmcs12
->xss_exit_bitmap
);
10612 vmcs_write64(VMCS_LINK_POINTER
, -1ull);
10614 if (cpu_has_vmx_posted_intr())
10615 vmcs_write16(POSTED_INTR_NV
, POSTED_INTR_NESTED_VECTOR
);
10618 * Whether page-faults are trapped is determined by a combination of
10619 * 3 settings: PFEC_MASK, PFEC_MATCH and EXCEPTION_BITMAP.PF.
10620 * If enable_ept, L0 doesn't care about page faults and we should
10621 * set all of these to L1's desires. However, if !enable_ept, L0 does
10622 * care about (at least some) page faults, and because it is not easy
10623 * (if at all possible?) to merge L0 and L1's desires, we simply ask
10624 * to exit on each and every L2 page fault. This is done by setting
10625 * MASK=MATCH=0 and (see below) EB.PF=1.
10626 * Note that below we don't need special code to set EB.PF beyond the
10627 * "or"ing of the EB of vmcs01 and vmcs12, because when enable_ept,
10628 * vmcs01's EB.PF is 0 so the "or" will take vmcs12's value, and when
10629 * !enable_ept, EB.PF is 1, so the "or" will always be 1.
10631 vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK
,
10632 enable_ept
? vmcs12
->page_fault_error_code_mask
: 0);
10633 vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH
,
10634 enable_ept
? vmcs12
->page_fault_error_code_match
: 0);
10636 /* All VMFUNCs are currently emulated through L0 vmexits. */
10637 if (cpu_has_vmx_vmfunc())
10638 vmcs_write64(VM_FUNCTION_CONTROL
, 0);
10640 if (cpu_has_vmx_apicv()) {
10641 vmcs_write64(EOI_EXIT_BITMAP0
, vmcs12
->eoi_exit_bitmap0
);
10642 vmcs_write64(EOI_EXIT_BITMAP1
, vmcs12
->eoi_exit_bitmap1
);
10643 vmcs_write64(EOI_EXIT_BITMAP2
, vmcs12
->eoi_exit_bitmap2
);
10644 vmcs_write64(EOI_EXIT_BITMAP3
, vmcs12
->eoi_exit_bitmap3
);
10648 * Set host-state according to L0's settings (vmcs12 is irrelevant here)
10649 * Some constant fields are set here by vmx_set_constant_host_state().
10650 * Other fields are different per CPU, and will be set later when
10651 * vmx_vcpu_load() is called, and when vmx_save_host_state() is called.
10653 vmx_set_constant_host_state(vmx
);
10656 * Set the MSR load/store lists to match L0's settings.
10658 vmcs_write32(VM_EXIT_MSR_STORE_COUNT
, 0);
10659 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT
, vmx
->msr_autoload
.nr
);
10660 vmcs_write64(VM_EXIT_MSR_LOAD_ADDR
, __pa(vmx
->msr_autoload
.host
));
10661 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT
, vmx
->msr_autoload
.nr
);
10662 vmcs_write64(VM_ENTRY_MSR_LOAD_ADDR
, __pa(vmx
->msr_autoload
.guest
));
10664 set_cr4_guest_host_mask(vmx
);
10666 if (vmx_mpx_supported())
10667 vmcs_write64(GUEST_BNDCFGS
, vmcs12
->guest_bndcfgs
);
10670 if (nested_cpu_has_vpid(vmcs12
) && vmx
->nested
.vpid02
)
10671 vmcs_write16(VIRTUAL_PROCESSOR_ID
, vmx
->nested
.vpid02
);
10673 vmcs_write16(VIRTUAL_PROCESSOR_ID
, vmx
->vpid
);
10677 * L1 may access the L2's PDPTR, so save them to construct vmcs12
10680 vmcs_write64(GUEST_PDPTR0
, vmcs12
->guest_pdptr0
);
10681 vmcs_write64(GUEST_PDPTR1
, vmcs12
->guest_pdptr1
);
10682 vmcs_write64(GUEST_PDPTR2
, vmcs12
->guest_pdptr2
);
10683 vmcs_write64(GUEST_PDPTR3
, vmcs12
->guest_pdptr3
);
10686 if (cpu_has_vmx_msr_bitmap())
10687 vmcs_write64(MSR_BITMAP
, __pa(vmx
->nested
.vmcs02
.msr_bitmap
));
10691 * prepare_vmcs02 is called when the L1 guest hypervisor runs its nested
10692 * L2 guest. L1 has a vmcs for L2 (vmcs12), and this function "merges" it
10693 * with L0's requirements for its guest (a.k.a. vmcs01), so we can run the L2
10694 * guest in a way that will both be appropriate to L1's requests, and our
10695 * needs. In addition to modifying the active vmcs (which is vmcs02), this
10696 * function also has additional necessary side-effects, like setting various
10697 * vcpu->arch fields.
10698 * Returns 0 on success, 1 on failure. Invalid state exit qualification code
10699 * is assigned to entry_failure_code on failure.
10701 static int prepare_vmcs02(struct kvm_vcpu
*vcpu
, struct vmcs12
*vmcs12
,
10702 bool from_vmentry
, u32
*entry_failure_code
)
10704 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
10705 u32 exec_control
, vmcs12_exec_ctrl
;
10708 * First, the fields that are shadowed. This must be kept in sync
10709 * with vmx_shadow_fields.h.
10712 vmcs_write16(GUEST_CS_SELECTOR
, vmcs12
->guest_cs_selector
);
10713 vmcs_write32(GUEST_CS_LIMIT
, vmcs12
->guest_cs_limit
);
10714 vmcs_write32(GUEST_CS_AR_BYTES
, vmcs12
->guest_cs_ar_bytes
);
10715 vmcs_writel(GUEST_ES_BASE
, vmcs12
->guest_es_base
);
10716 vmcs_writel(GUEST_CS_BASE
, vmcs12
->guest_cs_base
);
10719 * Not in vmcs02: GUEST_PML_INDEX, HOST_FS_SELECTOR, HOST_GS_SELECTOR,
10720 * HOST_FS_BASE, HOST_GS_BASE.
10723 if (from_vmentry
&&
10724 (vmcs12
->vm_entry_controls
& VM_ENTRY_LOAD_DEBUG_CONTROLS
)) {
10725 kvm_set_dr(vcpu
, 7, vmcs12
->guest_dr7
);
10726 vmcs_write64(GUEST_IA32_DEBUGCTL
, vmcs12
->guest_ia32_debugctl
);
10728 kvm_set_dr(vcpu
, 7, vcpu
->arch
.dr7
);
10729 vmcs_write64(GUEST_IA32_DEBUGCTL
, vmx
->nested
.vmcs01_debugctl
);
10731 if (from_vmentry
) {
10732 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD
,
10733 vmcs12
->vm_entry_intr_info_field
);
10734 vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE
,
10735 vmcs12
->vm_entry_exception_error_code
);
10736 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN
,
10737 vmcs12
->vm_entry_instruction_len
);
10738 vmcs_write32(GUEST_INTERRUPTIBILITY_INFO
,
10739 vmcs12
->guest_interruptibility_info
);
10740 vmx
->loaded_vmcs
->nmi_known_unmasked
=
10741 !(vmcs12
->guest_interruptibility_info
& GUEST_INTR_STATE_NMI
);
10743 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD
, 0);
10745 vmx_set_rflags(vcpu
, vmcs12
->guest_rflags
);
10747 exec_control
= vmcs12
->pin_based_vm_exec_control
;
10749 /* Preemption timer setting is only taken from vmcs01. */
10750 exec_control
&= ~PIN_BASED_VMX_PREEMPTION_TIMER
;
10751 exec_control
|= vmcs_config
.pin_based_exec_ctrl
;
10752 if (vmx
->hv_deadline_tsc
== -1)
10753 exec_control
&= ~PIN_BASED_VMX_PREEMPTION_TIMER
;
10755 /* Posted interrupts setting is only taken from vmcs12. */
10756 if (nested_cpu_has_posted_intr(vmcs12
)) {
10757 vmx
->nested
.posted_intr_nv
= vmcs12
->posted_intr_nv
;
10758 vmx
->nested
.pi_pending
= false;
10760 exec_control
&= ~PIN_BASED_POSTED_INTR
;
10763 vmcs_write32(PIN_BASED_VM_EXEC_CONTROL
, exec_control
);
10765 vmx
->nested
.preemption_timer_expired
= false;
10766 if (nested_cpu_has_preemption_timer(vmcs12
))
10767 vmx_start_preemption_timer(vcpu
);
10769 if (cpu_has_secondary_exec_ctrls()) {
10770 exec_control
= vmx
->secondary_exec_control
;
10772 /* Take the following fields only from vmcs12 */
10773 exec_control
&= ~(SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES
|
10774 SECONDARY_EXEC_ENABLE_INVPCID
|
10775 SECONDARY_EXEC_RDTSCP
|
10776 SECONDARY_EXEC_XSAVES
|
10777 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY
|
10778 SECONDARY_EXEC_APIC_REGISTER_VIRT
|
10779 SECONDARY_EXEC_ENABLE_VMFUNC
);
10780 if (nested_cpu_has(vmcs12
,
10781 CPU_BASED_ACTIVATE_SECONDARY_CONTROLS
)) {
10782 vmcs12_exec_ctrl
= vmcs12
->secondary_vm_exec_control
&
10783 ~SECONDARY_EXEC_ENABLE_PML
;
10784 exec_control
|= vmcs12_exec_ctrl
;
10787 if (exec_control
& SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY
)
10788 vmcs_write16(GUEST_INTR_STATUS
,
10789 vmcs12
->guest_intr_status
);
10792 * Write an illegal value to APIC_ACCESS_ADDR. Later,
10793 * nested_get_vmcs12_pages will either fix it up or
10794 * remove the VM execution control.
10796 if (exec_control
& SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES
)
10797 vmcs_write64(APIC_ACCESS_ADDR
, -1ull);
10799 vmcs_write32(SECONDARY_VM_EXEC_CONTROL
, exec_control
);
10803 * HOST_RSP is normally set correctly in vmx_vcpu_run() just before
10804 * entry, but only if the current (host) sp changed from the value
10805 * we wrote last (vmx->host_rsp). This cache is no longer relevant
10806 * if we switch vmcs, and rather than hold a separate cache per vmcs,
10807 * here we just force the write to happen on entry.
10811 exec_control
= vmx_exec_control(vmx
); /* L0's desires */
10812 exec_control
&= ~CPU_BASED_VIRTUAL_INTR_PENDING
;
10813 exec_control
&= ~CPU_BASED_VIRTUAL_NMI_PENDING
;
10814 exec_control
&= ~CPU_BASED_TPR_SHADOW
;
10815 exec_control
|= vmcs12
->cpu_based_vm_exec_control
;
10818 * Write an illegal value to VIRTUAL_APIC_PAGE_ADDR. Later, if
10819 * nested_get_vmcs12_pages can't fix it up, the illegal value
10820 * will result in a VM entry failure.
10822 if (exec_control
& CPU_BASED_TPR_SHADOW
) {
10823 vmcs_write64(VIRTUAL_APIC_PAGE_ADDR
, -1ull);
10824 vmcs_write32(TPR_THRESHOLD
, vmcs12
->tpr_threshold
);
10826 #ifdef CONFIG_X86_64
10827 exec_control
|= CPU_BASED_CR8_LOAD_EXITING
|
10828 CPU_BASED_CR8_STORE_EXITING
;
10833 * A vmexit (to either L1 hypervisor or L0 userspace) is always needed
10834 * for I/O port accesses.
10836 exec_control
&= ~CPU_BASED_USE_IO_BITMAPS
;
10837 exec_control
|= CPU_BASED_UNCOND_IO_EXITING
;
10839 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL
, exec_control
);
10841 /* EXCEPTION_BITMAP and CR0_GUEST_HOST_MASK should basically be the
10842 * bitwise-or of what L1 wants to trap for L2, and what we want to
10843 * trap. Note that CR0.TS also needs updating - we do this later.
10845 update_exception_bitmap(vcpu
);
10846 vcpu
->arch
.cr0_guest_owned_bits
&= ~vmcs12
->cr0_guest_host_mask
;
10847 vmcs_writel(CR0_GUEST_HOST_MASK
, ~vcpu
->arch
.cr0_guest_owned_bits
);
10849 /* L2->L1 exit controls are emulated - the hardware exit is to L0 so
10850 * we should use its exit controls. Note that VM_EXIT_LOAD_IA32_EFER
10851 * bits are further modified by vmx_set_efer() below.
10853 vmcs_write32(VM_EXIT_CONTROLS
, vmcs_config
.vmexit_ctrl
);
10855 /* vmcs12's VM_ENTRY_LOAD_IA32_EFER and VM_ENTRY_IA32E_MODE are
10856 * emulated by vmx_set_efer(), below.
10858 vm_entry_controls_init(vmx
,
10859 (vmcs12
->vm_entry_controls
& ~VM_ENTRY_LOAD_IA32_EFER
&
10860 ~VM_ENTRY_IA32E_MODE
) |
10861 (vmcs_config
.vmentry_ctrl
& ~VM_ENTRY_IA32E_MODE
));
10863 if (from_vmentry
&&
10864 (vmcs12
->vm_entry_controls
& VM_ENTRY_LOAD_IA32_PAT
)) {
10865 vmcs_write64(GUEST_IA32_PAT
, vmcs12
->guest_ia32_pat
);
10866 vcpu
->arch
.pat
= vmcs12
->guest_ia32_pat
;
10867 } else if (vmcs_config
.vmentry_ctrl
& VM_ENTRY_LOAD_IA32_PAT
) {
10868 vmcs_write64(GUEST_IA32_PAT
, vmx
->vcpu
.arch
.pat
);
10871 if (vmcs12
->cpu_based_vm_exec_control
& CPU_BASED_USE_TSC_OFFSETING
)
10872 vmcs_write64(TSC_OFFSET
,
10873 vcpu
->arch
.tsc_offset
+ vmcs12
->tsc_offset
);
10875 vmcs_write64(TSC_OFFSET
, vcpu
->arch
.tsc_offset
);
10876 if (kvm_has_tsc_control
)
10877 decache_tsc_multiplier(vmx
);
10881 * There is no direct mapping between vpid02 and vpid12, the
10882 * vpid02 is per-vCPU for L0 and reused while the value of
10883 * vpid12 is changed w/ one invvpid during nested vmentry.
10884 * The vpid12 is allocated by L1 for L2, so it will not
10885 * influence global bitmap(for vpid01 and vpid02 allocation)
10886 * even if spawn a lot of nested vCPUs.
10888 if (nested_cpu_has_vpid(vmcs12
) && vmx
->nested
.vpid02
) {
10889 if (vmcs12
->virtual_processor_id
!= vmx
->nested
.last_vpid
) {
10890 vmx
->nested
.last_vpid
= vmcs12
->virtual_processor_id
;
10891 __vmx_flush_tlb(vcpu
, to_vmx(vcpu
)->nested
.vpid02
, true);
10894 vmx_flush_tlb(vcpu
, true);
10900 * Conceptually we want to copy the PML address and index from
10901 * vmcs01 here, and then back to vmcs01 on nested vmexit. But,
10902 * since we always flush the log on each vmexit, this happens
10903 * to be equivalent to simply resetting the fields in vmcs02.
10905 ASSERT(vmx
->pml_pg
);
10906 vmcs_write64(PML_ADDRESS
, page_to_phys(vmx
->pml_pg
));
10907 vmcs_write16(GUEST_PML_INDEX
, PML_ENTITY_NUM
- 1);
10910 if (nested_cpu_has_ept(vmcs12
)) {
10911 if (nested_ept_init_mmu_context(vcpu
)) {
10912 *entry_failure_code
= ENTRY_FAIL_DEFAULT
;
10915 } else if (nested_cpu_has2(vmcs12
,
10916 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES
)) {
10917 vmx_flush_tlb_ept_only(vcpu
);
10921 * This sets GUEST_CR0 to vmcs12->guest_cr0, possibly modifying those
10922 * bits which we consider mandatory enabled.
10923 * The CR0_READ_SHADOW is what L2 should have expected to read given
10924 * the specifications by L1; It's not enough to take
10925 * vmcs12->cr0_read_shadow because on our cr0_guest_host_mask we we
10926 * have more bits than L1 expected.
10928 vmx_set_cr0(vcpu
, vmcs12
->guest_cr0
);
10929 vmcs_writel(CR0_READ_SHADOW
, nested_read_cr0(vmcs12
));
10931 vmx_set_cr4(vcpu
, vmcs12
->guest_cr4
);
10932 vmcs_writel(CR4_READ_SHADOW
, nested_read_cr4(vmcs12
));
10934 if (from_vmentry
&&
10935 (vmcs12
->vm_entry_controls
& VM_ENTRY_LOAD_IA32_EFER
))
10936 vcpu
->arch
.efer
= vmcs12
->guest_ia32_efer
;
10937 else if (vmcs12
->vm_entry_controls
& VM_ENTRY_IA32E_MODE
)
10938 vcpu
->arch
.efer
|= (EFER_LMA
| EFER_LME
);
10940 vcpu
->arch
.efer
&= ~(EFER_LMA
| EFER_LME
);
10941 /* Note: modifies VM_ENTRY/EXIT_CONTROLS and GUEST/HOST_IA32_EFER */
10942 vmx_set_efer(vcpu
, vcpu
->arch
.efer
);
10944 if (vmx
->nested
.dirty_vmcs12
) {
10945 prepare_vmcs02_full(vcpu
, vmcs12
, from_vmentry
);
10946 vmx
->nested
.dirty_vmcs12
= false;
10949 /* Shadow page tables on either EPT or shadow page tables. */
10950 if (nested_vmx_load_cr3(vcpu
, vmcs12
->guest_cr3
, nested_cpu_has_ept(vmcs12
),
10951 entry_failure_code
))
10955 vcpu
->arch
.walk_mmu
->inject_page_fault
= vmx_inject_page_fault_nested
;
10957 kvm_register_write(vcpu
, VCPU_REGS_RSP
, vmcs12
->guest_rsp
);
10958 kvm_register_write(vcpu
, VCPU_REGS_RIP
, vmcs12
->guest_rip
);
10962 static int check_vmentry_prereqs(struct kvm_vcpu
*vcpu
, struct vmcs12
*vmcs12
)
10964 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
10966 if (vmcs12
->guest_activity_state
!= GUEST_ACTIVITY_ACTIVE
&&
10967 vmcs12
->guest_activity_state
!= GUEST_ACTIVITY_HLT
)
10968 return VMXERR_ENTRY_INVALID_CONTROL_FIELD
;
10970 if (nested_vmx_check_io_bitmap_controls(vcpu
, vmcs12
))
10971 return VMXERR_ENTRY_INVALID_CONTROL_FIELD
;
10973 if (nested_vmx_check_msr_bitmap_controls(vcpu
, vmcs12
))
10974 return VMXERR_ENTRY_INVALID_CONTROL_FIELD
;
10976 if (nested_vmx_check_tpr_shadow_controls(vcpu
, vmcs12
))
10977 return VMXERR_ENTRY_INVALID_CONTROL_FIELD
;
10979 if (nested_vmx_check_apicv_controls(vcpu
, vmcs12
))
10980 return VMXERR_ENTRY_INVALID_CONTROL_FIELD
;
10982 if (nested_vmx_check_msr_switch_controls(vcpu
, vmcs12
))
10983 return VMXERR_ENTRY_INVALID_CONTROL_FIELD
;
10985 if (nested_vmx_check_pml_controls(vcpu
, vmcs12
))
10986 return VMXERR_ENTRY_INVALID_CONTROL_FIELD
;
10988 if (!vmx_control_verify(vmcs12
->cpu_based_vm_exec_control
,
10989 vmx
->nested
.nested_vmx_procbased_ctls_low
,
10990 vmx
->nested
.nested_vmx_procbased_ctls_high
) ||
10991 (nested_cpu_has(vmcs12
, CPU_BASED_ACTIVATE_SECONDARY_CONTROLS
) &&
10992 !vmx_control_verify(vmcs12
->secondary_vm_exec_control
,
10993 vmx
->nested
.nested_vmx_secondary_ctls_low
,
10994 vmx
->nested
.nested_vmx_secondary_ctls_high
)) ||
10995 !vmx_control_verify(vmcs12
->pin_based_vm_exec_control
,
10996 vmx
->nested
.nested_vmx_pinbased_ctls_low
,
10997 vmx
->nested
.nested_vmx_pinbased_ctls_high
) ||
10998 !vmx_control_verify(vmcs12
->vm_exit_controls
,
10999 vmx
->nested
.nested_vmx_exit_ctls_low
,
11000 vmx
->nested
.nested_vmx_exit_ctls_high
) ||
11001 !vmx_control_verify(vmcs12
->vm_entry_controls
,
11002 vmx
->nested
.nested_vmx_entry_ctls_low
,
11003 vmx
->nested
.nested_vmx_entry_ctls_high
))
11004 return VMXERR_ENTRY_INVALID_CONTROL_FIELD
;
11006 if (nested_cpu_has_vmfunc(vmcs12
)) {
11007 if (vmcs12
->vm_function_control
&
11008 ~vmx
->nested
.nested_vmx_vmfunc_controls
)
11009 return VMXERR_ENTRY_INVALID_CONTROL_FIELD
;
11011 if (nested_cpu_has_eptp_switching(vmcs12
)) {
11012 if (!nested_cpu_has_ept(vmcs12
) ||
11013 !page_address_valid(vcpu
, vmcs12
->eptp_list_address
))
11014 return VMXERR_ENTRY_INVALID_CONTROL_FIELD
;
11018 if (vmcs12
->cr3_target_count
> nested_cpu_vmx_misc_cr3_count(vcpu
))
11019 return VMXERR_ENTRY_INVALID_CONTROL_FIELD
;
11021 if (!nested_host_cr0_valid(vcpu
, vmcs12
->host_cr0
) ||
11022 !nested_host_cr4_valid(vcpu
, vmcs12
->host_cr4
) ||
11023 !nested_cr3_valid(vcpu
, vmcs12
->host_cr3
))
11024 return VMXERR_ENTRY_INVALID_HOST_STATE_FIELD
;
11029 static int check_vmentry_postreqs(struct kvm_vcpu
*vcpu
, struct vmcs12
*vmcs12
,
11034 *exit_qual
= ENTRY_FAIL_DEFAULT
;
11036 if (!nested_guest_cr0_valid(vcpu
, vmcs12
->guest_cr0
) ||
11037 !nested_guest_cr4_valid(vcpu
, vmcs12
->guest_cr4
))
11040 if (!nested_cpu_has2(vmcs12
, SECONDARY_EXEC_SHADOW_VMCS
) &&
11041 vmcs12
->vmcs_link_pointer
!= -1ull) {
11042 *exit_qual
= ENTRY_FAIL_VMCS_LINK_PTR
;
11047 * If the load IA32_EFER VM-entry control is 1, the following checks
11048 * are performed on the field for the IA32_EFER MSR:
11049 * - Bits reserved in the IA32_EFER MSR must be 0.
11050 * - Bit 10 (corresponding to IA32_EFER.LMA) must equal the value of
11051 * the IA-32e mode guest VM-exit control. It must also be identical
11052 * to bit 8 (LME) if bit 31 in the CR0 field (corresponding to
11055 if (to_vmx(vcpu
)->nested
.nested_run_pending
&&
11056 (vmcs12
->vm_entry_controls
& VM_ENTRY_LOAD_IA32_EFER
)) {
11057 ia32e
= (vmcs12
->vm_entry_controls
& VM_ENTRY_IA32E_MODE
) != 0;
11058 if (!kvm_valid_efer(vcpu
, vmcs12
->guest_ia32_efer
) ||
11059 ia32e
!= !!(vmcs12
->guest_ia32_efer
& EFER_LMA
) ||
11060 ((vmcs12
->guest_cr0
& X86_CR0_PG
) &&
11061 ia32e
!= !!(vmcs12
->guest_ia32_efer
& EFER_LME
)))
11066 * If the load IA32_EFER VM-exit control is 1, bits reserved in the
11067 * IA32_EFER MSR must be 0 in the field for that register. In addition,
11068 * the values of the LMA and LME bits in the field must each be that of
11069 * the host address-space size VM-exit control.
11071 if (vmcs12
->vm_exit_controls
& VM_EXIT_LOAD_IA32_EFER
) {
11072 ia32e
= (vmcs12
->vm_exit_controls
&
11073 VM_EXIT_HOST_ADDR_SPACE_SIZE
) != 0;
11074 if (!kvm_valid_efer(vcpu
, vmcs12
->host_ia32_efer
) ||
11075 ia32e
!= !!(vmcs12
->host_ia32_efer
& EFER_LMA
) ||
11076 ia32e
!= !!(vmcs12
->host_ia32_efer
& EFER_LME
))
11080 if ((vmcs12
->vm_entry_controls
& VM_ENTRY_LOAD_BNDCFGS
) &&
11081 (is_noncanonical_address(vmcs12
->guest_bndcfgs
& PAGE_MASK
, vcpu
) ||
11082 (vmcs12
->guest_bndcfgs
& MSR_IA32_BNDCFGS_RSVD
)))
11088 static int enter_vmx_non_root_mode(struct kvm_vcpu
*vcpu
, bool from_vmentry
)
11090 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
11091 struct vmcs12
*vmcs12
= get_vmcs12(vcpu
);
11095 enter_guest_mode(vcpu
);
11097 if (!(vmcs12
->vm_entry_controls
& VM_ENTRY_LOAD_DEBUG_CONTROLS
))
11098 vmx
->nested
.vmcs01_debugctl
= vmcs_read64(GUEST_IA32_DEBUGCTL
);
11100 vmx_switch_vmcs(vcpu
, &vmx
->nested
.vmcs02
);
11101 vmx_segment_cache_clear(vmx
);
11103 if (prepare_vmcs02(vcpu
, vmcs12
, from_vmentry
, &exit_qual
)) {
11104 leave_guest_mode(vcpu
);
11105 vmx_switch_vmcs(vcpu
, &vmx
->vmcs01
);
11106 nested_vmx_entry_failure(vcpu
, vmcs12
,
11107 EXIT_REASON_INVALID_STATE
, exit_qual
);
11111 nested_get_vmcs12_pages(vcpu
, vmcs12
);
11113 msr_entry_idx
= nested_vmx_load_msr(vcpu
,
11114 vmcs12
->vm_entry_msr_load_addr
,
11115 vmcs12
->vm_entry_msr_load_count
);
11116 if (msr_entry_idx
) {
11117 leave_guest_mode(vcpu
);
11118 vmx_switch_vmcs(vcpu
, &vmx
->vmcs01
);
11119 nested_vmx_entry_failure(vcpu
, vmcs12
,
11120 EXIT_REASON_MSR_LOAD_FAIL
, msr_entry_idx
);
11125 * Note no nested_vmx_succeed or nested_vmx_fail here. At this point
11126 * we are no longer running L1, and VMLAUNCH/VMRESUME has not yet
11127 * returned as far as L1 is concerned. It will only return (and set
11128 * the success flag) when L2 exits (see nested_vmx_vmexit()).
11134 * nested_vmx_run() handles a nested entry, i.e., a VMLAUNCH or VMRESUME on L1
11135 * for running an L2 nested guest.
11137 static int nested_vmx_run(struct kvm_vcpu
*vcpu
, bool launch
)
11139 struct vmcs12
*vmcs12
;
11140 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
11141 u32 interrupt_shadow
= vmx_get_interrupt_shadow(vcpu
);
11145 if (!nested_vmx_check_permission(vcpu
))
11148 if (!nested_vmx_check_vmcs12(vcpu
))
11151 vmcs12
= get_vmcs12(vcpu
);
11153 if (enable_shadow_vmcs
)
11154 copy_shadow_to_vmcs12(vmx
);
11157 * The nested entry process starts with enforcing various prerequisites
11158 * on vmcs12 as required by the Intel SDM, and act appropriately when
11159 * they fail: As the SDM explains, some conditions should cause the
11160 * instruction to fail, while others will cause the instruction to seem
11161 * to succeed, but return an EXIT_REASON_INVALID_STATE.
11162 * To speed up the normal (success) code path, we should avoid checking
11163 * for misconfigurations which will anyway be caught by the processor
11164 * when using the merged vmcs02.
11166 if (interrupt_shadow
& KVM_X86_SHADOW_INT_MOV_SS
) {
11167 nested_vmx_failValid(vcpu
,
11168 VMXERR_ENTRY_EVENTS_BLOCKED_BY_MOV_SS
);
11172 if (vmcs12
->launch_state
== launch
) {
11173 nested_vmx_failValid(vcpu
,
11174 launch
? VMXERR_VMLAUNCH_NONCLEAR_VMCS
11175 : VMXERR_VMRESUME_NONLAUNCHED_VMCS
);
11179 ret
= check_vmentry_prereqs(vcpu
, vmcs12
);
11181 nested_vmx_failValid(vcpu
, ret
);
11186 * After this point, the trap flag no longer triggers a singlestep trap
11187 * on the vm entry instructions; don't call kvm_skip_emulated_instruction.
11188 * This is not 100% correct; for performance reasons, we delegate most
11189 * of the checks on host state to the processor. If those fail,
11190 * the singlestep trap is missed.
11192 skip_emulated_instruction(vcpu
);
11194 ret
= check_vmentry_postreqs(vcpu
, vmcs12
, &exit_qual
);
11196 nested_vmx_entry_failure(vcpu
, vmcs12
,
11197 EXIT_REASON_INVALID_STATE
, exit_qual
);
11202 * We're finally done with prerequisite checking, and can start with
11203 * the nested entry.
11206 ret
= enter_vmx_non_root_mode(vcpu
, true);
11211 * If we're entering a halted L2 vcpu and the L2 vcpu won't be woken
11212 * by event injection, halt vcpu.
11214 if ((vmcs12
->guest_activity_state
== GUEST_ACTIVITY_HLT
) &&
11215 !(vmcs12
->vm_entry_intr_info_field
& INTR_INFO_VALID_MASK
))
11216 return kvm_vcpu_halt(vcpu
);
11218 vmx
->nested
.nested_run_pending
= 1;
11223 return kvm_skip_emulated_instruction(vcpu
);
11227 * On a nested exit from L2 to L1, vmcs12.guest_cr0 might not be up-to-date
11228 * because L2 may have changed some cr0 bits directly (CRO_GUEST_HOST_MASK).
11229 * This function returns the new value we should put in vmcs12.guest_cr0.
11230 * It's not enough to just return the vmcs02 GUEST_CR0. Rather,
11231 * 1. Bits that neither L0 nor L1 trapped, were set directly by L2 and are now
11232 * available in vmcs02 GUEST_CR0. (Note: It's enough to check that L0
11233 * didn't trap the bit, because if L1 did, so would L0).
11234 * 2. Bits that L1 asked to trap (and therefore L0 also did) could not have
11235 * been modified by L2, and L1 knows it. So just leave the old value of
11236 * the bit from vmcs12.guest_cr0. Note that the bit from vmcs02 GUEST_CR0
11237 * isn't relevant, because if L0 traps this bit it can set it to anything.
11238 * 3. Bits that L1 didn't trap, but L0 did. L1 believes the guest could have
11239 * changed these bits, and therefore they need to be updated, but L0
11240 * didn't necessarily allow them to be changed in GUEST_CR0 - and rather
11241 * put them in vmcs02 CR0_READ_SHADOW. So take these bits from there.
11243 static inline unsigned long
11244 vmcs12_guest_cr0(struct kvm_vcpu
*vcpu
, struct vmcs12
*vmcs12
)
11247 /*1*/ (vmcs_readl(GUEST_CR0
) & vcpu
->arch
.cr0_guest_owned_bits
) |
11248 /*2*/ (vmcs12
->guest_cr0
& vmcs12
->cr0_guest_host_mask
) |
11249 /*3*/ (vmcs_readl(CR0_READ_SHADOW
) & ~(vmcs12
->cr0_guest_host_mask
|
11250 vcpu
->arch
.cr0_guest_owned_bits
));
11253 static inline unsigned long
11254 vmcs12_guest_cr4(struct kvm_vcpu
*vcpu
, struct vmcs12
*vmcs12
)
11257 /*1*/ (vmcs_readl(GUEST_CR4
) & vcpu
->arch
.cr4_guest_owned_bits
) |
11258 /*2*/ (vmcs12
->guest_cr4
& vmcs12
->cr4_guest_host_mask
) |
11259 /*3*/ (vmcs_readl(CR4_READ_SHADOW
) & ~(vmcs12
->cr4_guest_host_mask
|
11260 vcpu
->arch
.cr4_guest_owned_bits
));
11263 static void vmcs12_save_pending_event(struct kvm_vcpu
*vcpu
,
11264 struct vmcs12
*vmcs12
)
11269 if (vcpu
->arch
.exception
.injected
) {
11270 nr
= vcpu
->arch
.exception
.nr
;
11271 idt_vectoring
= nr
| VECTORING_INFO_VALID_MASK
;
11273 if (kvm_exception_is_soft(nr
)) {
11274 vmcs12
->vm_exit_instruction_len
=
11275 vcpu
->arch
.event_exit_inst_len
;
11276 idt_vectoring
|= INTR_TYPE_SOFT_EXCEPTION
;
11278 idt_vectoring
|= INTR_TYPE_HARD_EXCEPTION
;
11280 if (vcpu
->arch
.exception
.has_error_code
) {
11281 idt_vectoring
|= VECTORING_INFO_DELIVER_CODE_MASK
;
11282 vmcs12
->idt_vectoring_error_code
=
11283 vcpu
->arch
.exception
.error_code
;
11286 vmcs12
->idt_vectoring_info_field
= idt_vectoring
;
11287 } else if (vcpu
->arch
.nmi_injected
) {
11288 vmcs12
->idt_vectoring_info_field
=
11289 INTR_TYPE_NMI_INTR
| INTR_INFO_VALID_MASK
| NMI_VECTOR
;
11290 } else if (vcpu
->arch
.interrupt
.pending
) {
11291 nr
= vcpu
->arch
.interrupt
.nr
;
11292 idt_vectoring
= nr
| VECTORING_INFO_VALID_MASK
;
11294 if (vcpu
->arch
.interrupt
.soft
) {
11295 idt_vectoring
|= INTR_TYPE_SOFT_INTR
;
11296 vmcs12
->vm_entry_instruction_len
=
11297 vcpu
->arch
.event_exit_inst_len
;
11299 idt_vectoring
|= INTR_TYPE_EXT_INTR
;
11301 vmcs12
->idt_vectoring_info_field
= idt_vectoring
;
11305 static int vmx_check_nested_events(struct kvm_vcpu
*vcpu
, bool external_intr
)
11307 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
11308 unsigned long exit_qual
;
11309 bool block_nested_events
=
11310 vmx
->nested
.nested_run_pending
|| kvm_event_needs_reinjection(vcpu
);
11312 if (vcpu
->arch
.exception
.pending
&&
11313 nested_vmx_check_exception(vcpu
, &exit_qual
)) {
11314 if (block_nested_events
)
11316 nested_vmx_inject_exception_vmexit(vcpu
, exit_qual
);
11320 if (nested_cpu_has_preemption_timer(get_vmcs12(vcpu
)) &&
11321 vmx
->nested
.preemption_timer_expired
) {
11322 if (block_nested_events
)
11324 nested_vmx_vmexit(vcpu
, EXIT_REASON_PREEMPTION_TIMER
, 0, 0);
11328 if (vcpu
->arch
.nmi_pending
&& nested_exit_on_nmi(vcpu
)) {
11329 if (block_nested_events
)
11331 nested_vmx_vmexit(vcpu
, EXIT_REASON_EXCEPTION_NMI
,
11332 NMI_VECTOR
| INTR_TYPE_NMI_INTR
|
11333 INTR_INFO_VALID_MASK
, 0);
11335 * The NMI-triggered VM exit counts as injection:
11336 * clear this one and block further NMIs.
11338 vcpu
->arch
.nmi_pending
= 0;
11339 vmx_set_nmi_mask(vcpu
, true);
11343 if ((kvm_cpu_has_interrupt(vcpu
) || external_intr
) &&
11344 nested_exit_on_intr(vcpu
)) {
11345 if (block_nested_events
)
11347 nested_vmx_vmexit(vcpu
, EXIT_REASON_EXTERNAL_INTERRUPT
, 0, 0);
11351 vmx_complete_nested_posted_interrupt(vcpu
);
11355 static u32
vmx_get_preemption_timer_value(struct kvm_vcpu
*vcpu
)
11357 ktime_t remaining
=
11358 hrtimer_get_remaining(&to_vmx(vcpu
)->nested
.preemption_timer
);
11361 if (ktime_to_ns(remaining
) <= 0)
11364 value
= ktime_to_ns(remaining
) * vcpu
->arch
.virtual_tsc_khz
;
11365 do_div(value
, 1000000);
11366 return value
>> VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE
;
11370 * Update the guest state fields of vmcs12 to reflect changes that
11371 * occurred while L2 was running. (The "IA-32e mode guest" bit of the
11372 * VM-entry controls is also updated, since this is really a guest
11375 static void sync_vmcs12(struct kvm_vcpu
*vcpu
, struct vmcs12
*vmcs12
)
11377 vmcs12
->guest_cr0
= vmcs12_guest_cr0(vcpu
, vmcs12
);
11378 vmcs12
->guest_cr4
= vmcs12_guest_cr4(vcpu
, vmcs12
);
11380 vmcs12
->guest_rsp
= kvm_register_read(vcpu
, VCPU_REGS_RSP
);
11381 vmcs12
->guest_rip
= kvm_register_read(vcpu
, VCPU_REGS_RIP
);
11382 vmcs12
->guest_rflags
= vmcs_readl(GUEST_RFLAGS
);
11384 vmcs12
->guest_es_selector
= vmcs_read16(GUEST_ES_SELECTOR
);
11385 vmcs12
->guest_cs_selector
= vmcs_read16(GUEST_CS_SELECTOR
);
11386 vmcs12
->guest_ss_selector
= vmcs_read16(GUEST_SS_SELECTOR
);
11387 vmcs12
->guest_ds_selector
= vmcs_read16(GUEST_DS_SELECTOR
);
11388 vmcs12
->guest_fs_selector
= vmcs_read16(GUEST_FS_SELECTOR
);
11389 vmcs12
->guest_gs_selector
= vmcs_read16(GUEST_GS_SELECTOR
);
11390 vmcs12
->guest_ldtr_selector
= vmcs_read16(GUEST_LDTR_SELECTOR
);
11391 vmcs12
->guest_tr_selector
= vmcs_read16(GUEST_TR_SELECTOR
);
11392 vmcs12
->guest_es_limit
= vmcs_read32(GUEST_ES_LIMIT
);
11393 vmcs12
->guest_cs_limit
= vmcs_read32(GUEST_CS_LIMIT
);
11394 vmcs12
->guest_ss_limit
= vmcs_read32(GUEST_SS_LIMIT
);
11395 vmcs12
->guest_ds_limit
= vmcs_read32(GUEST_DS_LIMIT
);
11396 vmcs12
->guest_fs_limit
= vmcs_read32(GUEST_FS_LIMIT
);
11397 vmcs12
->guest_gs_limit
= vmcs_read32(GUEST_GS_LIMIT
);
11398 vmcs12
->guest_ldtr_limit
= vmcs_read32(GUEST_LDTR_LIMIT
);
11399 vmcs12
->guest_tr_limit
= vmcs_read32(GUEST_TR_LIMIT
);
11400 vmcs12
->guest_gdtr_limit
= vmcs_read32(GUEST_GDTR_LIMIT
);
11401 vmcs12
->guest_idtr_limit
= vmcs_read32(GUEST_IDTR_LIMIT
);
11402 vmcs12
->guest_es_ar_bytes
= vmcs_read32(GUEST_ES_AR_BYTES
);
11403 vmcs12
->guest_cs_ar_bytes
= vmcs_read32(GUEST_CS_AR_BYTES
);
11404 vmcs12
->guest_ss_ar_bytes
= vmcs_read32(GUEST_SS_AR_BYTES
);
11405 vmcs12
->guest_ds_ar_bytes
= vmcs_read32(GUEST_DS_AR_BYTES
);
11406 vmcs12
->guest_fs_ar_bytes
= vmcs_read32(GUEST_FS_AR_BYTES
);
11407 vmcs12
->guest_gs_ar_bytes
= vmcs_read32(GUEST_GS_AR_BYTES
);
11408 vmcs12
->guest_ldtr_ar_bytes
= vmcs_read32(GUEST_LDTR_AR_BYTES
);
11409 vmcs12
->guest_tr_ar_bytes
= vmcs_read32(GUEST_TR_AR_BYTES
);
11410 vmcs12
->guest_es_base
= vmcs_readl(GUEST_ES_BASE
);
11411 vmcs12
->guest_cs_base
= vmcs_readl(GUEST_CS_BASE
);
11412 vmcs12
->guest_ss_base
= vmcs_readl(GUEST_SS_BASE
);
11413 vmcs12
->guest_ds_base
= vmcs_readl(GUEST_DS_BASE
);
11414 vmcs12
->guest_fs_base
= vmcs_readl(GUEST_FS_BASE
);
11415 vmcs12
->guest_gs_base
= vmcs_readl(GUEST_GS_BASE
);
11416 vmcs12
->guest_ldtr_base
= vmcs_readl(GUEST_LDTR_BASE
);
11417 vmcs12
->guest_tr_base
= vmcs_readl(GUEST_TR_BASE
);
11418 vmcs12
->guest_gdtr_base
= vmcs_readl(GUEST_GDTR_BASE
);
11419 vmcs12
->guest_idtr_base
= vmcs_readl(GUEST_IDTR_BASE
);
11421 vmcs12
->guest_interruptibility_info
=
11422 vmcs_read32(GUEST_INTERRUPTIBILITY_INFO
);
11423 vmcs12
->guest_pending_dbg_exceptions
=
11424 vmcs_readl(GUEST_PENDING_DBG_EXCEPTIONS
);
11425 if (vcpu
->arch
.mp_state
== KVM_MP_STATE_HALTED
)
11426 vmcs12
->guest_activity_state
= GUEST_ACTIVITY_HLT
;
11428 vmcs12
->guest_activity_state
= GUEST_ACTIVITY_ACTIVE
;
11430 if (nested_cpu_has_preemption_timer(vmcs12
)) {
11431 if (vmcs12
->vm_exit_controls
&
11432 VM_EXIT_SAVE_VMX_PREEMPTION_TIMER
)
11433 vmcs12
->vmx_preemption_timer_value
=
11434 vmx_get_preemption_timer_value(vcpu
);
11435 hrtimer_cancel(&to_vmx(vcpu
)->nested
.preemption_timer
);
11439 * In some cases (usually, nested EPT), L2 is allowed to change its
11440 * own CR3 without exiting. If it has changed it, we must keep it.
11441 * Of course, if L0 is using shadow page tables, GUEST_CR3 was defined
11442 * by L0, not L1 or L2, so we mustn't unconditionally copy it to vmcs12.
11444 * Additionally, restore L2's PDPTR to vmcs12.
11447 vmcs12
->guest_cr3
= vmcs_readl(GUEST_CR3
);
11448 vmcs12
->guest_pdptr0
= vmcs_read64(GUEST_PDPTR0
);
11449 vmcs12
->guest_pdptr1
= vmcs_read64(GUEST_PDPTR1
);
11450 vmcs12
->guest_pdptr2
= vmcs_read64(GUEST_PDPTR2
);
11451 vmcs12
->guest_pdptr3
= vmcs_read64(GUEST_PDPTR3
);
11454 vmcs12
->guest_linear_address
= vmcs_readl(GUEST_LINEAR_ADDRESS
);
11456 if (nested_cpu_has_vid(vmcs12
))
11457 vmcs12
->guest_intr_status
= vmcs_read16(GUEST_INTR_STATUS
);
11459 vmcs12
->vm_entry_controls
=
11460 (vmcs12
->vm_entry_controls
& ~VM_ENTRY_IA32E_MODE
) |
11461 (vm_entry_controls_get(to_vmx(vcpu
)) & VM_ENTRY_IA32E_MODE
);
11463 if (vmcs12
->vm_exit_controls
& VM_EXIT_SAVE_DEBUG_CONTROLS
) {
11464 kvm_get_dr(vcpu
, 7, (unsigned long *)&vmcs12
->guest_dr7
);
11465 vmcs12
->guest_ia32_debugctl
= vmcs_read64(GUEST_IA32_DEBUGCTL
);
11468 /* TODO: These cannot have changed unless we have MSR bitmaps and
11469 * the relevant bit asks not to trap the change */
11470 if (vmcs12
->vm_exit_controls
& VM_EXIT_SAVE_IA32_PAT
)
11471 vmcs12
->guest_ia32_pat
= vmcs_read64(GUEST_IA32_PAT
);
11472 if (vmcs12
->vm_exit_controls
& VM_EXIT_SAVE_IA32_EFER
)
11473 vmcs12
->guest_ia32_efer
= vcpu
->arch
.efer
;
11474 vmcs12
->guest_sysenter_cs
= vmcs_read32(GUEST_SYSENTER_CS
);
11475 vmcs12
->guest_sysenter_esp
= vmcs_readl(GUEST_SYSENTER_ESP
);
11476 vmcs12
->guest_sysenter_eip
= vmcs_readl(GUEST_SYSENTER_EIP
);
11477 if (kvm_mpx_supported())
11478 vmcs12
->guest_bndcfgs
= vmcs_read64(GUEST_BNDCFGS
);
11482 * prepare_vmcs12 is part of what we need to do when the nested L2 guest exits
11483 * and we want to prepare to run its L1 parent. L1 keeps a vmcs for L2 (vmcs12),
11484 * and this function updates it to reflect the changes to the guest state while
11485 * L2 was running (and perhaps made some exits which were handled directly by L0
11486 * without going back to L1), and to reflect the exit reason.
11487 * Note that we do not have to copy here all VMCS fields, just those that
11488 * could have changed by the L2 guest or the exit - i.e., the guest-state and
11489 * exit-information fields only. Other fields are modified by L1 with VMWRITE,
11490 * which already writes to vmcs12 directly.
11492 static void prepare_vmcs12(struct kvm_vcpu
*vcpu
, struct vmcs12
*vmcs12
,
11493 u32 exit_reason
, u32 exit_intr_info
,
11494 unsigned long exit_qualification
)
11496 /* update guest state fields: */
11497 sync_vmcs12(vcpu
, vmcs12
);
11499 /* update exit information fields: */
11501 vmcs12
->vm_exit_reason
= exit_reason
;
11502 vmcs12
->exit_qualification
= exit_qualification
;
11503 vmcs12
->vm_exit_intr_info
= exit_intr_info
;
11505 vmcs12
->idt_vectoring_info_field
= 0;
11506 vmcs12
->vm_exit_instruction_len
= vmcs_read32(VM_EXIT_INSTRUCTION_LEN
);
11507 vmcs12
->vmx_instruction_info
= vmcs_read32(VMX_INSTRUCTION_INFO
);
11509 if (!(vmcs12
->vm_exit_reason
& VMX_EXIT_REASONS_FAILED_VMENTRY
)) {
11510 vmcs12
->launch_state
= 1;
11512 /* vm_entry_intr_info_field is cleared on exit. Emulate this
11513 * instead of reading the real value. */
11514 vmcs12
->vm_entry_intr_info_field
&= ~INTR_INFO_VALID_MASK
;
11517 * Transfer the event that L0 or L1 may wanted to inject into
11518 * L2 to IDT_VECTORING_INFO_FIELD.
11520 vmcs12_save_pending_event(vcpu
, vmcs12
);
11524 * Drop what we picked up for L2 via vmx_complete_interrupts. It is
11525 * preserved above and would only end up incorrectly in L1.
11527 vcpu
->arch
.nmi_injected
= false;
11528 kvm_clear_exception_queue(vcpu
);
11529 kvm_clear_interrupt_queue(vcpu
);
11532 static void load_vmcs12_mmu_host_state(struct kvm_vcpu
*vcpu
,
11533 struct vmcs12
*vmcs12
)
11535 u32 entry_failure_code
;
11537 nested_ept_uninit_mmu_context(vcpu
);
11540 * Only PDPTE load can fail as the value of cr3 was checked on entry and
11541 * couldn't have changed.
11543 if (nested_vmx_load_cr3(vcpu
, vmcs12
->host_cr3
, false, &entry_failure_code
))
11544 nested_vmx_abort(vcpu
, VMX_ABORT_LOAD_HOST_PDPTE_FAIL
);
11547 vcpu
->arch
.walk_mmu
->inject_page_fault
= kvm_inject_page_fault
;
11551 * A part of what we need to when the nested L2 guest exits and we want to
11552 * run its L1 parent, is to reset L1's guest state to the host state specified
11554 * This function is to be called not only on normal nested exit, but also on
11555 * a nested entry failure, as explained in Intel's spec, 3B.23.7 ("VM-Entry
11556 * Failures During or After Loading Guest State").
11557 * This function should be called when the active VMCS is L1's (vmcs01).
11559 static void load_vmcs12_host_state(struct kvm_vcpu
*vcpu
,
11560 struct vmcs12
*vmcs12
)
11562 struct kvm_segment seg
;
11564 if (vmcs12
->vm_exit_controls
& VM_EXIT_LOAD_IA32_EFER
)
11565 vcpu
->arch
.efer
= vmcs12
->host_ia32_efer
;
11566 else if (vmcs12
->vm_exit_controls
& VM_EXIT_HOST_ADDR_SPACE_SIZE
)
11567 vcpu
->arch
.efer
|= (EFER_LMA
| EFER_LME
);
11569 vcpu
->arch
.efer
&= ~(EFER_LMA
| EFER_LME
);
11570 vmx_set_efer(vcpu
, vcpu
->arch
.efer
);
11572 kvm_register_write(vcpu
, VCPU_REGS_RSP
, vmcs12
->host_rsp
);
11573 kvm_register_write(vcpu
, VCPU_REGS_RIP
, vmcs12
->host_rip
);
11574 vmx_set_rflags(vcpu
, X86_EFLAGS_FIXED
);
11576 * Note that calling vmx_set_cr0 is important, even if cr0 hasn't
11577 * actually changed, because vmx_set_cr0 refers to efer set above.
11579 * CR0_GUEST_HOST_MASK is already set in the original vmcs01
11580 * (KVM doesn't change it);
11582 vcpu
->arch
.cr0_guest_owned_bits
= X86_CR0_TS
;
11583 vmx_set_cr0(vcpu
, vmcs12
->host_cr0
);
11585 /* Same as above - no reason to call set_cr4_guest_host_mask(). */
11586 vcpu
->arch
.cr4_guest_owned_bits
= ~vmcs_readl(CR4_GUEST_HOST_MASK
);
11587 vmx_set_cr4(vcpu
, vmcs12
->host_cr4
);
11589 load_vmcs12_mmu_host_state(vcpu
, vmcs12
);
11593 * Trivially support vpid by letting L2s share their parent
11594 * L1's vpid. TODO: move to a more elaborate solution, giving
11595 * each L2 its own vpid and exposing the vpid feature to L1.
11597 vmx_flush_tlb(vcpu
, true);
11600 vmcs_write32(GUEST_SYSENTER_CS
, vmcs12
->host_ia32_sysenter_cs
);
11601 vmcs_writel(GUEST_SYSENTER_ESP
, vmcs12
->host_ia32_sysenter_esp
);
11602 vmcs_writel(GUEST_SYSENTER_EIP
, vmcs12
->host_ia32_sysenter_eip
);
11603 vmcs_writel(GUEST_IDTR_BASE
, vmcs12
->host_idtr_base
);
11604 vmcs_writel(GUEST_GDTR_BASE
, vmcs12
->host_gdtr_base
);
11605 vmcs_write32(GUEST_IDTR_LIMIT
, 0xFFFF);
11606 vmcs_write32(GUEST_GDTR_LIMIT
, 0xFFFF);
11608 /* If not VM_EXIT_CLEAR_BNDCFGS, the L2 value propagates to L1. */
11609 if (vmcs12
->vm_exit_controls
& VM_EXIT_CLEAR_BNDCFGS
)
11610 vmcs_write64(GUEST_BNDCFGS
, 0);
11612 if (vmcs12
->vm_exit_controls
& VM_EXIT_LOAD_IA32_PAT
) {
11613 vmcs_write64(GUEST_IA32_PAT
, vmcs12
->host_ia32_pat
);
11614 vcpu
->arch
.pat
= vmcs12
->host_ia32_pat
;
11616 if (vmcs12
->vm_exit_controls
& VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL
)
11617 vmcs_write64(GUEST_IA32_PERF_GLOBAL_CTRL
,
11618 vmcs12
->host_ia32_perf_global_ctrl
);
11620 /* Set L1 segment info according to Intel SDM
11621 27.5.2 Loading Host Segment and Descriptor-Table Registers */
11622 seg
= (struct kvm_segment
) {
11624 .limit
= 0xFFFFFFFF,
11625 .selector
= vmcs12
->host_cs_selector
,
11631 if (vmcs12
->vm_exit_controls
& VM_EXIT_HOST_ADDR_SPACE_SIZE
)
11635 vmx_set_segment(vcpu
, &seg
, VCPU_SREG_CS
);
11636 seg
= (struct kvm_segment
) {
11638 .limit
= 0xFFFFFFFF,
11645 seg
.selector
= vmcs12
->host_ds_selector
;
11646 vmx_set_segment(vcpu
, &seg
, VCPU_SREG_DS
);
11647 seg
.selector
= vmcs12
->host_es_selector
;
11648 vmx_set_segment(vcpu
, &seg
, VCPU_SREG_ES
);
11649 seg
.selector
= vmcs12
->host_ss_selector
;
11650 vmx_set_segment(vcpu
, &seg
, VCPU_SREG_SS
);
11651 seg
.selector
= vmcs12
->host_fs_selector
;
11652 seg
.base
= vmcs12
->host_fs_base
;
11653 vmx_set_segment(vcpu
, &seg
, VCPU_SREG_FS
);
11654 seg
.selector
= vmcs12
->host_gs_selector
;
11655 seg
.base
= vmcs12
->host_gs_base
;
11656 vmx_set_segment(vcpu
, &seg
, VCPU_SREG_GS
);
11657 seg
= (struct kvm_segment
) {
11658 .base
= vmcs12
->host_tr_base
,
11660 .selector
= vmcs12
->host_tr_selector
,
11664 vmx_set_segment(vcpu
, &seg
, VCPU_SREG_TR
);
11666 kvm_set_dr(vcpu
, 7, 0x400);
11667 vmcs_write64(GUEST_IA32_DEBUGCTL
, 0);
11669 if (cpu_has_vmx_msr_bitmap())
11670 vmx_update_msr_bitmap(vcpu
);
11672 if (nested_vmx_load_msr(vcpu
, vmcs12
->vm_exit_msr_load_addr
,
11673 vmcs12
->vm_exit_msr_load_count
))
11674 nested_vmx_abort(vcpu
, VMX_ABORT_LOAD_HOST_MSR_FAIL
);
11678 * Emulate an exit from nested guest (L2) to L1, i.e., prepare to run L1
11679 * and modify vmcs12 to make it see what it would expect to see there if
11680 * L2 was its real guest. Must only be called when in L2 (is_guest_mode())
11682 static void nested_vmx_vmexit(struct kvm_vcpu
*vcpu
, u32 exit_reason
,
11683 u32 exit_intr_info
,
11684 unsigned long exit_qualification
)
11686 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
11687 struct vmcs12
*vmcs12
= get_vmcs12(vcpu
);
11689 /* trying to cancel vmlaunch/vmresume is a bug */
11690 WARN_ON_ONCE(vmx
->nested
.nested_run_pending
);
11693 * The only expected VM-instruction error is "VM entry with
11694 * invalid control field(s)." Anything else indicates a
11697 WARN_ON_ONCE(vmx
->fail
&& (vmcs_read32(VM_INSTRUCTION_ERROR
) !=
11698 VMXERR_ENTRY_INVALID_CONTROL_FIELD
));
11700 leave_guest_mode(vcpu
);
11702 if (likely(!vmx
->fail
)) {
11703 if (exit_reason
== -1)
11704 sync_vmcs12(vcpu
, vmcs12
);
11706 prepare_vmcs12(vcpu
, vmcs12
, exit_reason
, exit_intr_info
,
11707 exit_qualification
);
11709 if (nested_vmx_store_msr(vcpu
, vmcs12
->vm_exit_msr_store_addr
,
11710 vmcs12
->vm_exit_msr_store_count
))
11711 nested_vmx_abort(vcpu
, VMX_ABORT_SAVE_GUEST_MSR_FAIL
);
11714 vmx_switch_vmcs(vcpu
, &vmx
->vmcs01
);
11715 vm_entry_controls_reset_shadow(vmx
);
11716 vm_exit_controls_reset_shadow(vmx
);
11717 vmx_segment_cache_clear(vmx
);
11719 /* Update any VMCS fields that might have changed while L2 ran */
11720 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT
, vmx
->msr_autoload
.nr
);
11721 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT
, vmx
->msr_autoload
.nr
);
11722 vmcs_write64(TSC_OFFSET
, vcpu
->arch
.tsc_offset
);
11723 if (vmx
->hv_deadline_tsc
== -1)
11724 vmcs_clear_bits(PIN_BASED_VM_EXEC_CONTROL
,
11725 PIN_BASED_VMX_PREEMPTION_TIMER
);
11727 vmcs_set_bits(PIN_BASED_VM_EXEC_CONTROL
,
11728 PIN_BASED_VMX_PREEMPTION_TIMER
);
11729 if (kvm_has_tsc_control
)
11730 decache_tsc_multiplier(vmx
);
11732 if (vmx
->nested
.change_vmcs01_virtual_x2apic_mode
) {
11733 vmx
->nested
.change_vmcs01_virtual_x2apic_mode
= false;
11734 vmx_set_virtual_x2apic_mode(vcpu
,
11735 vcpu
->arch
.apic_base
& X2APIC_ENABLE
);
11736 } else if (!nested_cpu_has_ept(vmcs12
) &&
11737 nested_cpu_has2(vmcs12
,
11738 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES
)) {
11739 vmx_flush_tlb_ept_only(vcpu
);
11742 /* This is needed for same reason as it was needed in prepare_vmcs02 */
11745 /* Unpin physical memory we referred to in vmcs02 */
11746 if (vmx
->nested
.apic_access_page
) {
11747 kvm_release_page_dirty(vmx
->nested
.apic_access_page
);
11748 vmx
->nested
.apic_access_page
= NULL
;
11750 if (vmx
->nested
.virtual_apic_page
) {
11751 kvm_release_page_dirty(vmx
->nested
.virtual_apic_page
);
11752 vmx
->nested
.virtual_apic_page
= NULL
;
11754 if (vmx
->nested
.pi_desc_page
) {
11755 kunmap(vmx
->nested
.pi_desc_page
);
11756 kvm_release_page_dirty(vmx
->nested
.pi_desc_page
);
11757 vmx
->nested
.pi_desc_page
= NULL
;
11758 vmx
->nested
.pi_desc
= NULL
;
11762 * We are now running in L2, mmu_notifier will force to reload the
11763 * page's hpa for L2 vmcs. Need to reload it for L1 before entering L1.
11765 kvm_make_request(KVM_REQ_APIC_PAGE_RELOAD
, vcpu
);
11767 if (enable_shadow_vmcs
&& exit_reason
!= -1)
11768 vmx
->nested
.sync_shadow_vmcs
= true;
11770 /* in case we halted in L2 */
11771 vcpu
->arch
.mp_state
= KVM_MP_STATE_RUNNABLE
;
11773 if (likely(!vmx
->fail
)) {
11775 * TODO: SDM says that with acknowledge interrupt on
11776 * exit, bit 31 of the VM-exit interrupt information
11777 * (valid interrupt) is always set to 1 on
11778 * EXIT_REASON_EXTERNAL_INTERRUPT, so we shouldn't
11779 * need kvm_cpu_has_interrupt(). See the commit
11780 * message for details.
11782 if (nested_exit_intr_ack_set(vcpu
) &&
11783 exit_reason
== EXIT_REASON_EXTERNAL_INTERRUPT
&&
11784 kvm_cpu_has_interrupt(vcpu
)) {
11785 int irq
= kvm_cpu_get_interrupt(vcpu
);
11787 vmcs12
->vm_exit_intr_info
= irq
|
11788 INTR_INFO_VALID_MASK
| INTR_TYPE_EXT_INTR
;
11791 if (exit_reason
!= -1)
11792 trace_kvm_nested_vmexit_inject(vmcs12
->vm_exit_reason
,
11793 vmcs12
->exit_qualification
,
11794 vmcs12
->idt_vectoring_info_field
,
11795 vmcs12
->vm_exit_intr_info
,
11796 vmcs12
->vm_exit_intr_error_code
,
11799 load_vmcs12_host_state(vcpu
, vmcs12
);
11805 * After an early L2 VM-entry failure, we're now back
11806 * in L1 which thinks it just finished a VMLAUNCH or
11807 * VMRESUME instruction, so we need to set the failure
11808 * flag and the VM-instruction error field of the VMCS
11811 nested_vmx_failValid(vcpu
, VMXERR_ENTRY_INVALID_CONTROL_FIELD
);
11813 load_vmcs12_mmu_host_state(vcpu
, vmcs12
);
11816 * The emulated instruction was already skipped in
11817 * nested_vmx_run, but the updated RIP was never
11818 * written back to the vmcs01.
11820 skip_emulated_instruction(vcpu
);
11825 * Forcibly leave nested mode in order to be able to reset the VCPU later on.
11827 static void vmx_leave_nested(struct kvm_vcpu
*vcpu
)
11829 if (is_guest_mode(vcpu
)) {
11830 to_vmx(vcpu
)->nested
.nested_run_pending
= 0;
11831 nested_vmx_vmexit(vcpu
, -1, 0, 0);
11833 free_nested(to_vmx(vcpu
));
11837 * L1's failure to enter L2 is a subset of a normal exit, as explained in
11838 * 23.7 "VM-entry failures during or after loading guest state" (this also
11839 * lists the acceptable exit-reason and exit-qualification parameters).
11840 * It should only be called before L2 actually succeeded to run, and when
11841 * vmcs01 is current (it doesn't leave_guest_mode() or switch vmcss).
11843 static void nested_vmx_entry_failure(struct kvm_vcpu
*vcpu
,
11844 struct vmcs12
*vmcs12
,
11845 u32 reason
, unsigned long qualification
)
11847 load_vmcs12_host_state(vcpu
, vmcs12
);
11848 vmcs12
->vm_exit_reason
= reason
| VMX_EXIT_REASONS_FAILED_VMENTRY
;
11849 vmcs12
->exit_qualification
= qualification
;
11850 nested_vmx_succeed(vcpu
);
11851 if (enable_shadow_vmcs
)
11852 to_vmx(vcpu
)->nested
.sync_shadow_vmcs
= true;
11855 static int vmx_check_intercept(struct kvm_vcpu
*vcpu
,
11856 struct x86_instruction_info
*info
,
11857 enum x86_intercept_stage stage
)
11859 struct vmcs12
*vmcs12
= get_vmcs12(vcpu
);
11860 struct x86_emulate_ctxt
*ctxt
= &vcpu
->arch
.emulate_ctxt
;
11863 * RDPID causes #UD if disabled through secondary execution controls.
11864 * Because it is marked as EmulateOnUD, we need to intercept it here.
11866 if (info
->intercept
== x86_intercept_rdtscp
&&
11867 !nested_cpu_has2(vmcs12
, SECONDARY_EXEC_RDTSCP
)) {
11868 ctxt
->exception
.vector
= UD_VECTOR
;
11869 ctxt
->exception
.error_code_valid
= false;
11870 return X86EMUL_PROPAGATE_FAULT
;
11873 /* TODO: check more intercepts... */
11874 return X86EMUL_CONTINUE
;
11877 #ifdef CONFIG_X86_64
11878 /* (a << shift) / divisor, return 1 if overflow otherwise 0 */
11879 static inline int u64_shl_div_u64(u64 a
, unsigned int shift
,
11880 u64 divisor
, u64
*result
)
11882 u64 low
= a
<< shift
, high
= a
>> (64 - shift
);
11884 /* To avoid the overflow on divq */
11885 if (high
>= divisor
)
11888 /* Low hold the result, high hold rem which is discarded */
11889 asm("divq %2\n\t" : "=a" (low
), "=d" (high
) :
11890 "rm" (divisor
), "0" (low
), "1" (high
));
11896 static int vmx_set_hv_timer(struct kvm_vcpu
*vcpu
, u64 guest_deadline_tsc
)
11898 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
11899 u64 tscl
= rdtsc();
11900 u64 guest_tscl
= kvm_read_l1_tsc(vcpu
, tscl
);
11901 u64 delta_tsc
= max(guest_deadline_tsc
, guest_tscl
) - guest_tscl
;
11903 /* Convert to host delta tsc if tsc scaling is enabled */
11904 if (vcpu
->arch
.tsc_scaling_ratio
!= kvm_default_tsc_scaling_ratio
&&
11905 u64_shl_div_u64(delta_tsc
,
11906 kvm_tsc_scaling_ratio_frac_bits
,
11907 vcpu
->arch
.tsc_scaling_ratio
,
11912 * If the delta tsc can't fit in the 32 bit after the multi shift,
11913 * we can't use the preemption timer.
11914 * It's possible that it fits on later vmentries, but checking
11915 * on every vmentry is costly so we just use an hrtimer.
11917 if (delta_tsc
>> (cpu_preemption_timer_multi
+ 32))
11920 vmx
->hv_deadline_tsc
= tscl
+ delta_tsc
;
11921 vmcs_set_bits(PIN_BASED_VM_EXEC_CONTROL
,
11922 PIN_BASED_VMX_PREEMPTION_TIMER
);
11924 return delta_tsc
== 0;
11927 static void vmx_cancel_hv_timer(struct kvm_vcpu
*vcpu
)
11929 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
11930 vmx
->hv_deadline_tsc
= -1;
11931 vmcs_clear_bits(PIN_BASED_VM_EXEC_CONTROL
,
11932 PIN_BASED_VMX_PREEMPTION_TIMER
);
11936 static void vmx_sched_in(struct kvm_vcpu
*vcpu
, int cpu
)
11939 shrink_ple_window(vcpu
);
11942 static void vmx_slot_enable_log_dirty(struct kvm
*kvm
,
11943 struct kvm_memory_slot
*slot
)
11945 kvm_mmu_slot_leaf_clear_dirty(kvm
, slot
);
11946 kvm_mmu_slot_largepage_remove_write_access(kvm
, slot
);
11949 static void vmx_slot_disable_log_dirty(struct kvm
*kvm
,
11950 struct kvm_memory_slot
*slot
)
11952 kvm_mmu_slot_set_dirty(kvm
, slot
);
11955 static void vmx_flush_log_dirty(struct kvm
*kvm
)
11957 kvm_flush_pml_buffers(kvm
);
11960 static int vmx_write_pml_buffer(struct kvm_vcpu
*vcpu
)
11962 struct vmcs12
*vmcs12
;
11963 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
11965 struct page
*page
= NULL
;
11968 if (is_guest_mode(vcpu
)) {
11969 WARN_ON_ONCE(vmx
->nested
.pml_full
);
11972 * Check if PML is enabled for the nested guest.
11973 * Whether eptp bit 6 is set is already checked
11974 * as part of A/D emulation.
11976 vmcs12
= get_vmcs12(vcpu
);
11977 if (!nested_cpu_has_pml(vmcs12
))
11980 if (vmcs12
->guest_pml_index
>= PML_ENTITY_NUM
) {
11981 vmx
->nested
.pml_full
= true;
11985 gpa
= vmcs_read64(GUEST_PHYSICAL_ADDRESS
) & ~0xFFFull
;
11987 page
= kvm_vcpu_gpa_to_page(vcpu
, vmcs12
->pml_address
);
11988 if (is_error_page(page
))
11991 pml_address
= kmap(page
);
11992 pml_address
[vmcs12
->guest_pml_index
--] = gpa
;
11994 kvm_release_page_clean(page
);
12000 static void vmx_enable_log_dirty_pt_masked(struct kvm
*kvm
,
12001 struct kvm_memory_slot
*memslot
,
12002 gfn_t offset
, unsigned long mask
)
12004 kvm_mmu_clear_dirty_pt_masked(kvm
, memslot
, offset
, mask
);
12007 static void __pi_post_block(struct kvm_vcpu
*vcpu
)
12009 struct pi_desc
*pi_desc
= vcpu_to_pi_desc(vcpu
);
12010 struct pi_desc old
, new;
12014 old
.control
= new.control
= pi_desc
->control
;
12015 WARN(old
.nv
!= POSTED_INTR_WAKEUP_VECTOR
,
12016 "Wakeup handler not enabled while the VCPU is blocked\n");
12018 dest
= cpu_physical_id(vcpu
->cpu
);
12020 if (x2apic_enabled())
12023 new.ndst
= (dest
<< 8) & 0xFF00;
12025 /* set 'NV' to 'notification vector' */
12026 new.nv
= POSTED_INTR_VECTOR
;
12027 } while (cmpxchg64(&pi_desc
->control
, old
.control
,
12028 new.control
) != old
.control
);
12030 if (!WARN_ON_ONCE(vcpu
->pre_pcpu
== -1)) {
12031 spin_lock(&per_cpu(blocked_vcpu_on_cpu_lock
, vcpu
->pre_pcpu
));
12032 list_del(&vcpu
->blocked_vcpu_list
);
12033 spin_unlock(&per_cpu(blocked_vcpu_on_cpu_lock
, vcpu
->pre_pcpu
));
12034 vcpu
->pre_pcpu
= -1;
12039 * This routine does the following things for vCPU which is going
12040 * to be blocked if VT-d PI is enabled.
12041 * - Store the vCPU to the wakeup list, so when interrupts happen
12042 * we can find the right vCPU to wake up.
12043 * - Change the Posted-interrupt descriptor as below:
12044 * 'NDST' <-- vcpu->pre_pcpu
12045 * 'NV' <-- POSTED_INTR_WAKEUP_VECTOR
12046 * - If 'ON' is set during this process, which means at least one
12047 * interrupt is posted for this vCPU, we cannot block it, in
12048 * this case, return 1, otherwise, return 0.
12051 static int pi_pre_block(struct kvm_vcpu
*vcpu
)
12054 struct pi_desc old
, new;
12055 struct pi_desc
*pi_desc
= vcpu_to_pi_desc(vcpu
);
12057 if (!kvm_arch_has_assigned_device(vcpu
->kvm
) ||
12058 !irq_remapping_cap(IRQ_POSTING_CAP
) ||
12059 !kvm_vcpu_apicv_active(vcpu
))
12062 WARN_ON(irqs_disabled());
12063 local_irq_disable();
12064 if (!WARN_ON_ONCE(vcpu
->pre_pcpu
!= -1)) {
12065 vcpu
->pre_pcpu
= vcpu
->cpu
;
12066 spin_lock(&per_cpu(blocked_vcpu_on_cpu_lock
, vcpu
->pre_pcpu
));
12067 list_add_tail(&vcpu
->blocked_vcpu_list
,
12068 &per_cpu(blocked_vcpu_on_cpu
,
12070 spin_unlock(&per_cpu(blocked_vcpu_on_cpu_lock
, vcpu
->pre_pcpu
));
12074 old
.control
= new.control
= pi_desc
->control
;
12076 WARN((pi_desc
->sn
== 1),
12077 "Warning: SN field of posted-interrupts "
12078 "is set before blocking\n");
12081 * Since vCPU can be preempted during this process,
12082 * vcpu->cpu could be different with pre_pcpu, we
12083 * need to set pre_pcpu as the destination of wakeup
12084 * notification event, then we can find the right vCPU
12085 * to wakeup in wakeup handler if interrupts happen
12086 * when the vCPU is in blocked state.
12088 dest
= cpu_physical_id(vcpu
->pre_pcpu
);
12090 if (x2apic_enabled())
12093 new.ndst
= (dest
<< 8) & 0xFF00;
12095 /* set 'NV' to 'wakeup vector' */
12096 new.nv
= POSTED_INTR_WAKEUP_VECTOR
;
12097 } while (cmpxchg64(&pi_desc
->control
, old
.control
,
12098 new.control
) != old
.control
);
12100 /* We should not block the vCPU if an interrupt is posted for it. */
12101 if (pi_test_on(pi_desc
) == 1)
12102 __pi_post_block(vcpu
);
12104 local_irq_enable();
12105 return (vcpu
->pre_pcpu
== -1);
12108 static int vmx_pre_block(struct kvm_vcpu
*vcpu
)
12110 if (pi_pre_block(vcpu
))
12113 if (kvm_lapic_hv_timer_in_use(vcpu
))
12114 kvm_lapic_switch_to_sw_timer(vcpu
);
12119 static void pi_post_block(struct kvm_vcpu
*vcpu
)
12121 if (vcpu
->pre_pcpu
== -1)
12124 WARN_ON(irqs_disabled());
12125 local_irq_disable();
12126 __pi_post_block(vcpu
);
12127 local_irq_enable();
12130 static void vmx_post_block(struct kvm_vcpu
*vcpu
)
12132 if (kvm_x86_ops
->set_hv_timer
)
12133 kvm_lapic_switch_to_hv_timer(vcpu
);
12135 pi_post_block(vcpu
);
12139 * vmx_update_pi_irte - set IRTE for Posted-Interrupts
12142 * @host_irq: host irq of the interrupt
12143 * @guest_irq: gsi of the interrupt
12144 * @set: set or unset PI
12145 * returns 0 on success, < 0 on failure
12147 static int vmx_update_pi_irte(struct kvm
*kvm
, unsigned int host_irq
,
12148 uint32_t guest_irq
, bool set
)
12150 struct kvm_kernel_irq_routing_entry
*e
;
12151 struct kvm_irq_routing_table
*irq_rt
;
12152 struct kvm_lapic_irq irq
;
12153 struct kvm_vcpu
*vcpu
;
12154 struct vcpu_data vcpu_info
;
12157 if (!kvm_arch_has_assigned_device(kvm
) ||
12158 !irq_remapping_cap(IRQ_POSTING_CAP
) ||
12159 !kvm_vcpu_apicv_active(kvm
->vcpus
[0]))
12162 idx
= srcu_read_lock(&kvm
->irq_srcu
);
12163 irq_rt
= srcu_dereference(kvm
->irq_routing
, &kvm
->irq_srcu
);
12164 if (guest_irq
>= irq_rt
->nr_rt_entries
||
12165 hlist_empty(&irq_rt
->map
[guest_irq
])) {
12166 pr_warn_once("no route for guest_irq %u/%u (broken user space?)\n",
12167 guest_irq
, irq_rt
->nr_rt_entries
);
12171 hlist_for_each_entry(e
, &irq_rt
->map
[guest_irq
], link
) {
12172 if (e
->type
!= KVM_IRQ_ROUTING_MSI
)
12175 * VT-d PI cannot support posting multicast/broadcast
12176 * interrupts to a vCPU, we still use interrupt remapping
12177 * for these kind of interrupts.
12179 * For lowest-priority interrupts, we only support
12180 * those with single CPU as the destination, e.g. user
12181 * configures the interrupts via /proc/irq or uses
12182 * irqbalance to make the interrupts single-CPU.
12184 * We will support full lowest-priority interrupt later.
12187 kvm_set_msi_irq(kvm
, e
, &irq
);
12188 if (!kvm_intr_is_single_vcpu(kvm
, &irq
, &vcpu
)) {
12190 * Make sure the IRTE is in remapped mode if
12191 * we don't handle it in posted mode.
12193 ret
= irq_set_vcpu_affinity(host_irq
, NULL
);
12196 "failed to back to remapped mode, irq: %u\n",
12204 vcpu_info
.pi_desc_addr
= __pa(vcpu_to_pi_desc(vcpu
));
12205 vcpu_info
.vector
= irq
.vector
;
12207 trace_kvm_pi_irte_update(vcpu
->vcpu_id
, host_irq
, e
->gsi
,
12208 vcpu_info
.vector
, vcpu_info
.pi_desc_addr
, set
);
12211 ret
= irq_set_vcpu_affinity(host_irq
, &vcpu_info
);
12213 ret
= irq_set_vcpu_affinity(host_irq
, NULL
);
12216 printk(KERN_INFO
"%s: failed to update PI IRTE\n",
12224 srcu_read_unlock(&kvm
->irq_srcu
, idx
);
12228 static void vmx_setup_mce(struct kvm_vcpu
*vcpu
)
12230 if (vcpu
->arch
.mcg_cap
& MCG_LMCE_P
)
12231 to_vmx(vcpu
)->msr_ia32_feature_control_valid_bits
|=
12232 FEATURE_CONTROL_LMCE
;
12234 to_vmx(vcpu
)->msr_ia32_feature_control_valid_bits
&=
12235 ~FEATURE_CONTROL_LMCE
;
12238 static int vmx_smi_allowed(struct kvm_vcpu
*vcpu
)
12240 /* we need a nested vmexit to enter SMM, postpone if run is pending */
12241 if (to_vmx(vcpu
)->nested
.nested_run_pending
)
12246 static int vmx_pre_enter_smm(struct kvm_vcpu
*vcpu
, char *smstate
)
12248 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
12250 vmx
->nested
.smm
.guest_mode
= is_guest_mode(vcpu
);
12251 if (vmx
->nested
.smm
.guest_mode
)
12252 nested_vmx_vmexit(vcpu
, -1, 0, 0);
12254 vmx
->nested
.smm
.vmxon
= vmx
->nested
.vmxon
;
12255 vmx
->nested
.vmxon
= false;
12259 static int vmx_pre_leave_smm(struct kvm_vcpu
*vcpu
, u64 smbase
)
12261 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
12264 if (vmx
->nested
.smm
.vmxon
) {
12265 vmx
->nested
.vmxon
= true;
12266 vmx
->nested
.smm
.vmxon
= false;
12269 if (vmx
->nested
.smm
.guest_mode
) {
12270 vcpu
->arch
.hflags
&= ~HF_SMM_MASK
;
12271 ret
= enter_vmx_non_root_mode(vcpu
, false);
12272 vcpu
->arch
.hflags
|= HF_SMM_MASK
;
12276 vmx
->nested
.smm
.guest_mode
= false;
12281 static int enable_smi_window(struct kvm_vcpu
*vcpu
)
12286 static struct kvm_x86_ops vmx_x86_ops __ro_after_init
= {
12287 .cpu_has_kvm_support
= cpu_has_kvm_support
,
12288 .disabled_by_bios
= vmx_disabled_by_bios
,
12289 .hardware_setup
= hardware_setup
,
12290 .hardware_unsetup
= hardware_unsetup
,
12291 .check_processor_compatibility
= vmx_check_processor_compat
,
12292 .hardware_enable
= hardware_enable
,
12293 .hardware_disable
= hardware_disable
,
12294 .cpu_has_accelerated_tpr
= report_flexpriority
,
12295 .cpu_has_high_real_mode_segbase
= vmx_has_high_real_mode_segbase
,
12297 .vcpu_create
= vmx_create_vcpu
,
12298 .vcpu_free
= vmx_free_vcpu
,
12299 .vcpu_reset
= vmx_vcpu_reset
,
12301 .prepare_guest_switch
= vmx_save_host_state
,
12302 .vcpu_load
= vmx_vcpu_load
,
12303 .vcpu_put
= vmx_vcpu_put
,
12305 .update_bp_intercept
= update_exception_bitmap
,
12306 .get_msr_feature
= vmx_get_msr_feature
,
12307 .get_msr
= vmx_get_msr
,
12308 .set_msr
= vmx_set_msr
,
12309 .get_segment_base
= vmx_get_segment_base
,
12310 .get_segment
= vmx_get_segment
,
12311 .set_segment
= vmx_set_segment
,
12312 .get_cpl
= vmx_get_cpl
,
12313 .get_cs_db_l_bits
= vmx_get_cs_db_l_bits
,
12314 .decache_cr0_guest_bits
= vmx_decache_cr0_guest_bits
,
12315 .decache_cr3
= vmx_decache_cr3
,
12316 .decache_cr4_guest_bits
= vmx_decache_cr4_guest_bits
,
12317 .set_cr0
= vmx_set_cr0
,
12318 .set_cr3
= vmx_set_cr3
,
12319 .set_cr4
= vmx_set_cr4
,
12320 .set_efer
= vmx_set_efer
,
12321 .get_idt
= vmx_get_idt
,
12322 .set_idt
= vmx_set_idt
,
12323 .get_gdt
= vmx_get_gdt
,
12324 .set_gdt
= vmx_set_gdt
,
12325 .get_dr6
= vmx_get_dr6
,
12326 .set_dr6
= vmx_set_dr6
,
12327 .set_dr7
= vmx_set_dr7
,
12328 .sync_dirty_debug_regs
= vmx_sync_dirty_debug_regs
,
12329 .cache_reg
= vmx_cache_reg
,
12330 .get_rflags
= vmx_get_rflags
,
12331 .set_rflags
= vmx_set_rflags
,
12333 .tlb_flush
= vmx_flush_tlb
,
12335 .run
= vmx_vcpu_run
,
12336 .handle_exit
= vmx_handle_exit
,
12337 .skip_emulated_instruction
= skip_emulated_instruction
,
12338 .set_interrupt_shadow
= vmx_set_interrupt_shadow
,
12339 .get_interrupt_shadow
= vmx_get_interrupt_shadow
,
12340 .patch_hypercall
= vmx_patch_hypercall
,
12341 .set_irq
= vmx_inject_irq
,
12342 .set_nmi
= vmx_inject_nmi
,
12343 .queue_exception
= vmx_queue_exception
,
12344 .cancel_injection
= vmx_cancel_injection
,
12345 .interrupt_allowed
= vmx_interrupt_allowed
,
12346 .nmi_allowed
= vmx_nmi_allowed
,
12347 .get_nmi_mask
= vmx_get_nmi_mask
,
12348 .set_nmi_mask
= vmx_set_nmi_mask
,
12349 .enable_nmi_window
= enable_nmi_window
,
12350 .enable_irq_window
= enable_irq_window
,
12351 .update_cr8_intercept
= update_cr8_intercept
,
12352 .set_virtual_x2apic_mode
= vmx_set_virtual_x2apic_mode
,
12353 .set_apic_access_page_addr
= vmx_set_apic_access_page_addr
,
12354 .get_enable_apicv
= vmx_get_enable_apicv
,
12355 .refresh_apicv_exec_ctrl
= vmx_refresh_apicv_exec_ctrl
,
12356 .load_eoi_exitmap
= vmx_load_eoi_exitmap
,
12357 .apicv_post_state_restore
= vmx_apicv_post_state_restore
,
12358 .hwapic_irr_update
= vmx_hwapic_irr_update
,
12359 .hwapic_isr_update
= vmx_hwapic_isr_update
,
12360 .sync_pir_to_irr
= vmx_sync_pir_to_irr
,
12361 .deliver_posted_interrupt
= vmx_deliver_posted_interrupt
,
12363 .set_tss_addr
= vmx_set_tss_addr
,
12364 .get_tdp_level
= get_ept_level
,
12365 .get_mt_mask
= vmx_get_mt_mask
,
12367 .get_exit_info
= vmx_get_exit_info
,
12369 .get_lpage_level
= vmx_get_lpage_level
,
12371 .cpuid_update
= vmx_cpuid_update
,
12373 .rdtscp_supported
= vmx_rdtscp_supported
,
12374 .invpcid_supported
= vmx_invpcid_supported
,
12376 .set_supported_cpuid
= vmx_set_supported_cpuid
,
12378 .has_wbinvd_exit
= cpu_has_vmx_wbinvd_exit
,
12380 .write_tsc_offset
= vmx_write_tsc_offset
,
12382 .set_tdp_cr3
= vmx_set_cr3
,
12384 .check_intercept
= vmx_check_intercept
,
12385 .handle_external_intr
= vmx_handle_external_intr
,
12386 .mpx_supported
= vmx_mpx_supported
,
12387 .xsaves_supported
= vmx_xsaves_supported
,
12388 .umip_emulated
= vmx_umip_emulated
,
12390 .check_nested_events
= vmx_check_nested_events
,
12392 .sched_in
= vmx_sched_in
,
12394 .slot_enable_log_dirty
= vmx_slot_enable_log_dirty
,
12395 .slot_disable_log_dirty
= vmx_slot_disable_log_dirty
,
12396 .flush_log_dirty
= vmx_flush_log_dirty
,
12397 .enable_log_dirty_pt_masked
= vmx_enable_log_dirty_pt_masked
,
12398 .write_log_dirty
= vmx_write_pml_buffer
,
12400 .pre_block
= vmx_pre_block
,
12401 .post_block
= vmx_post_block
,
12403 .pmu_ops
= &intel_pmu_ops
,
12405 .update_pi_irte
= vmx_update_pi_irte
,
12407 #ifdef CONFIG_X86_64
12408 .set_hv_timer
= vmx_set_hv_timer
,
12409 .cancel_hv_timer
= vmx_cancel_hv_timer
,
12412 .setup_mce
= vmx_setup_mce
,
12414 .smi_allowed
= vmx_smi_allowed
,
12415 .pre_enter_smm
= vmx_pre_enter_smm
,
12416 .pre_leave_smm
= vmx_pre_leave_smm
,
12417 .enable_smi_window
= enable_smi_window
,
12420 static int __init
vmx_init(void)
12422 int r
= kvm_init(&vmx_x86_ops
, sizeof(struct vcpu_vmx
),
12423 __alignof__(struct vcpu_vmx
), THIS_MODULE
);
12427 #ifdef CONFIG_KEXEC_CORE
12428 rcu_assign_pointer(crash_vmclear_loaded_vmcss
,
12429 crash_vmclear_local_loaded_vmcss
);
12435 static void __exit
vmx_exit(void)
12437 #ifdef CONFIG_KEXEC_CORE
12438 RCU_INIT_POINTER(crash_vmclear_loaded_vmcss
, NULL
);
12445 module_init(vmx_init
)
12446 module_exit(vmx_exit
)