2 #include <linux/initrd.h>
3 #include <linux/ioport.h>
4 #include <linux/swap.h>
5 #include <linux/memblock.h>
6 #include <linux/bootmem.h> /* for max_low_pfn */
8 #include <asm/set_memory.h>
9 #include <asm/e820/api.h>
12 #include <asm/page_types.h>
13 #include <asm/sections.h>
14 #include <asm/setup.h>
15 #include <asm/tlbflush.h>
17 #include <asm/proto.h>
18 #include <asm/dma.h> /* for MAX_DMA_PFN */
19 #include <asm/microcode.h>
20 #include <asm/kaslr.h>
21 #include <asm/hypervisor.h>
22 #include <asm/cpufeature.h>
26 * We need to define the tracepoints somewhere, and tlb.c
27 * is only compied when SMP=y.
29 #define CREATE_TRACE_POINTS
30 #include <trace/events/tlb.h>
32 #include "mm_internal.h"
35 * Tables translating between page_cache_type_t and pte encoding.
37 * The default values are defined statically as minimal supported mode;
38 * WC and WT fall back to UC-. pat_init() updates these values to support
39 * more cache modes, WC and WT, when it is safe to do so. See pat_init()
40 * for the details. Note, __early_ioremap() used during early boot-time
41 * takes pgprot_t (pte encoding) and does not use these tables.
43 * Index into __cachemode2pte_tbl[] is the cachemode.
45 * Index into __pte2cachemode_tbl[] are the caching attribute bits of the pte
46 * (_PAGE_PWT, _PAGE_PCD, _PAGE_PAT) at index bit positions 0, 1, 2.
48 uint16_t __cachemode2pte_tbl
[_PAGE_CACHE_MODE_NUM
] = {
49 [_PAGE_CACHE_MODE_WB
] = 0 | 0 ,
50 [_PAGE_CACHE_MODE_WC
] = 0 | _PAGE_PCD
,
51 [_PAGE_CACHE_MODE_UC_MINUS
] = 0 | _PAGE_PCD
,
52 [_PAGE_CACHE_MODE_UC
] = _PAGE_PWT
| _PAGE_PCD
,
53 [_PAGE_CACHE_MODE_WT
] = 0 | _PAGE_PCD
,
54 [_PAGE_CACHE_MODE_WP
] = 0 | _PAGE_PCD
,
56 EXPORT_SYMBOL(__cachemode2pte_tbl
);
58 uint8_t __pte2cachemode_tbl
[8] = {
59 [__pte2cm_idx( 0 | 0 | 0 )] = _PAGE_CACHE_MODE_WB
,
60 [__pte2cm_idx(_PAGE_PWT
| 0 | 0 )] = _PAGE_CACHE_MODE_UC_MINUS
,
61 [__pte2cm_idx( 0 | _PAGE_PCD
| 0 )] = _PAGE_CACHE_MODE_UC_MINUS
,
62 [__pte2cm_idx(_PAGE_PWT
| _PAGE_PCD
| 0 )] = _PAGE_CACHE_MODE_UC
,
63 [__pte2cm_idx( 0 | 0 | _PAGE_PAT
)] = _PAGE_CACHE_MODE_WB
,
64 [__pte2cm_idx(_PAGE_PWT
| 0 | _PAGE_PAT
)] = _PAGE_CACHE_MODE_UC_MINUS
,
65 [__pte2cm_idx(0 | _PAGE_PCD
| _PAGE_PAT
)] = _PAGE_CACHE_MODE_UC_MINUS
,
66 [__pte2cm_idx(_PAGE_PWT
| _PAGE_PCD
| _PAGE_PAT
)] = _PAGE_CACHE_MODE_UC
,
68 EXPORT_SYMBOL(__pte2cachemode_tbl
);
70 static unsigned long __initdata pgt_buf_start
;
71 static unsigned long __initdata pgt_buf_end
;
72 static unsigned long __initdata pgt_buf_top
;
74 static unsigned long min_pfn_mapped
;
76 static bool __initdata can_use_brk_pgt
= true;
79 * Pages returned are already directly mapped.
81 * Changing that is likely to break Xen, see commit:
83 * 279b706 x86,xen: introduce x86_init.mapping.pagetable_reserve
85 * for detailed information.
87 __ref
void *alloc_low_pages(unsigned int num
)
95 order
= get_order((unsigned long)num
<< PAGE_SHIFT
);
96 return (void *)__get_free_pages(GFP_ATOMIC
| __GFP_ZERO
, order
);
99 if ((pgt_buf_end
+ num
) > pgt_buf_top
|| !can_use_brk_pgt
) {
101 if (min_pfn_mapped
>= max_pfn_mapped
)
102 panic("alloc_low_pages: ran out of memory");
103 ret
= memblock_find_in_range(min_pfn_mapped
<< PAGE_SHIFT
,
104 max_pfn_mapped
<< PAGE_SHIFT
,
105 PAGE_SIZE
* num
, PAGE_SIZE
);
107 panic("alloc_low_pages: can not alloc memory");
108 memblock_reserve(ret
, PAGE_SIZE
* num
);
109 pfn
= ret
>> PAGE_SHIFT
;
113 printk(KERN_DEBUG
"BRK [%#010lx, %#010lx] PGTABLE\n",
114 pfn
<< PAGE_SHIFT
, (pgt_buf_end
<< PAGE_SHIFT
) - 1);
117 for (i
= 0; i
< num
; i
++) {
120 adr
= __va((pfn
+ i
) << PAGE_SHIFT
);
124 return __va(pfn
<< PAGE_SHIFT
);
128 * By default need 3 4k for initial PMD_SIZE, 3 4k for 0-ISA_END_ADDRESS.
129 * With KASLR memory randomization, depending on the machine e820 memory
130 * and the PUD alignment. We may need twice more pages when KASLR memory
131 * randomization is enabled.
133 #ifndef CONFIG_RANDOMIZE_MEMORY
134 #define INIT_PGD_PAGE_COUNT 6
136 #define INIT_PGD_PAGE_COUNT 12
138 #define INIT_PGT_BUF_SIZE (INIT_PGD_PAGE_COUNT * PAGE_SIZE)
139 RESERVE_BRK(early_pgt_alloc
, INIT_PGT_BUF_SIZE
);
140 void __init
early_alloc_pgt_buf(void)
142 unsigned long tables
= INIT_PGT_BUF_SIZE
;
145 base
= __pa(extend_brk(tables
, PAGE_SIZE
));
147 pgt_buf_start
= base
>> PAGE_SHIFT
;
148 pgt_buf_end
= pgt_buf_start
;
149 pgt_buf_top
= pgt_buf_start
+ (tables
>> PAGE_SHIFT
);
154 early_param_on_off("gbpages", "nogbpages", direct_gbpages
, CONFIG_X86_DIRECT_GBPAGES
);
159 unsigned page_size_mask
;
162 static int page_size_mask
;
164 static void enable_global_pages(void)
166 if (!static_cpu_has(X86_FEATURE_PTI
))
167 __supported_pte_mask
|= _PAGE_GLOBAL
;
170 static void __init
probe_page_size_mask(void)
173 * For pagealloc debugging, identity mapping will use small pages.
174 * This will simplify cpa(), which otherwise needs to support splitting
175 * large pages into small in interrupt context, etc.
177 if (boot_cpu_has(X86_FEATURE_PSE
) && !debug_pagealloc_enabled())
178 page_size_mask
|= 1 << PG_LEVEL_2M
;
182 /* Enable PSE if available */
183 if (boot_cpu_has(X86_FEATURE_PSE
))
184 cr4_set_bits_and_update_boot(X86_CR4_PSE
);
186 /* Enable PGE if available */
187 __supported_pte_mask
&= ~_PAGE_GLOBAL
;
188 if (boot_cpu_has(X86_FEATURE_PGE
)) {
189 cr4_set_bits_and_update_boot(X86_CR4_PGE
);
190 enable_global_pages();
193 /* Enable 1 GB linear kernel mappings if available: */
194 if (direct_gbpages
&& boot_cpu_has(X86_FEATURE_GBPAGES
)) {
195 printk(KERN_INFO
"Using GB pages for direct mapping\n");
196 page_size_mask
|= 1 << PG_LEVEL_1G
;
202 static void setup_pcid(void)
204 if (!IS_ENABLED(CONFIG_X86_64
))
207 if (!boot_cpu_has(X86_FEATURE_PCID
))
210 if (boot_cpu_has(X86_FEATURE_PGE
)) {
212 * This can't be cr4_set_bits_and_update_boot() -- the
213 * trampoline code can't handle CR4.PCIDE and it wouldn't
214 * do any good anyway. Despite the name,
215 * cr4_set_bits_and_update_boot() doesn't actually cause
216 * the bits in question to remain set all the way through
217 * the secondary boot asm.
219 * Instead, we brute-force it and set CR4.PCIDE manually in
222 cr4_set_bits(X86_CR4_PCIDE
);
225 * INVPCID's single-context modes (2/3) only work if we set
226 * X86_CR4_PCIDE, *and* we INVPCID support. It's unusable
227 * on systems that have X86_CR4_PCIDE clear, or that have
228 * no INVPCID support at all.
230 if (boot_cpu_has(X86_FEATURE_INVPCID
))
231 setup_force_cpu_cap(X86_FEATURE_INVPCID_SINGLE
);
234 * flush_tlb_all(), as currently implemented, won't work if
235 * PCID is on but PGE is not. Since that combination
236 * doesn't exist on real hardware, there's no reason to try
237 * to fully support it, but it's polite to avoid corrupting
238 * data if we're on an improperly configured VM.
240 setup_clear_cpu_cap(X86_FEATURE_PCID
);
245 #define NR_RANGE_MR 3
246 #else /* CONFIG_X86_64 */
247 #define NR_RANGE_MR 5
250 static int __meminit
save_mr(struct map_range
*mr
, int nr_range
,
251 unsigned long start_pfn
, unsigned long end_pfn
,
252 unsigned long page_size_mask
)
254 if (start_pfn
< end_pfn
) {
255 if (nr_range
>= NR_RANGE_MR
)
256 panic("run out of range for init_memory_mapping\n");
257 mr
[nr_range
].start
= start_pfn
<<PAGE_SHIFT
;
258 mr
[nr_range
].end
= end_pfn
<<PAGE_SHIFT
;
259 mr
[nr_range
].page_size_mask
= page_size_mask
;
267 * adjust the page_size_mask for small range to go with
268 * big page size instead small one if nearby are ram too.
270 static void __ref
adjust_range_page_size_mask(struct map_range
*mr
,
275 for (i
= 0; i
< nr_range
; i
++) {
276 if ((page_size_mask
& (1<<PG_LEVEL_2M
)) &&
277 !(mr
[i
].page_size_mask
& (1<<PG_LEVEL_2M
))) {
278 unsigned long start
= round_down(mr
[i
].start
, PMD_SIZE
);
279 unsigned long end
= round_up(mr
[i
].end
, PMD_SIZE
);
282 if ((end
>> PAGE_SHIFT
) > max_low_pfn
)
286 if (memblock_is_region_memory(start
, end
- start
))
287 mr
[i
].page_size_mask
|= 1<<PG_LEVEL_2M
;
289 if ((page_size_mask
& (1<<PG_LEVEL_1G
)) &&
290 !(mr
[i
].page_size_mask
& (1<<PG_LEVEL_1G
))) {
291 unsigned long start
= round_down(mr
[i
].start
, PUD_SIZE
);
292 unsigned long end
= round_up(mr
[i
].end
, PUD_SIZE
);
294 if (memblock_is_region_memory(start
, end
- start
))
295 mr
[i
].page_size_mask
|= 1<<PG_LEVEL_1G
;
300 static const char *page_size_string(struct map_range
*mr
)
302 static const char str_1g
[] = "1G";
303 static const char str_2m
[] = "2M";
304 static const char str_4m
[] = "4M";
305 static const char str_4k
[] = "4k";
307 if (mr
->page_size_mask
& (1<<PG_LEVEL_1G
))
310 * 32-bit without PAE has a 4M large page size.
311 * PG_LEVEL_2M is misnamed, but we can at least
312 * print out the right size in the string.
314 if (IS_ENABLED(CONFIG_X86_32
) &&
315 !IS_ENABLED(CONFIG_X86_PAE
) &&
316 mr
->page_size_mask
& (1<<PG_LEVEL_2M
))
319 if (mr
->page_size_mask
& (1<<PG_LEVEL_2M
))
325 static int __meminit
split_mem_range(struct map_range
*mr
, int nr_range
,
329 unsigned long start_pfn
, end_pfn
, limit_pfn
;
333 limit_pfn
= PFN_DOWN(end
);
335 /* head if not big page alignment ? */
336 pfn
= start_pfn
= PFN_DOWN(start
);
339 * Don't use a large page for the first 2/4MB of memory
340 * because there are often fixed size MTRRs in there
341 * and overlapping MTRRs into large pages can cause
345 end_pfn
= PFN_DOWN(PMD_SIZE
);
347 end_pfn
= round_up(pfn
, PFN_DOWN(PMD_SIZE
));
348 #else /* CONFIG_X86_64 */
349 end_pfn
= round_up(pfn
, PFN_DOWN(PMD_SIZE
));
351 if (end_pfn
> limit_pfn
)
353 if (start_pfn
< end_pfn
) {
354 nr_range
= save_mr(mr
, nr_range
, start_pfn
, end_pfn
, 0);
358 /* big page (2M) range */
359 start_pfn
= round_up(pfn
, PFN_DOWN(PMD_SIZE
));
361 end_pfn
= round_down(limit_pfn
, PFN_DOWN(PMD_SIZE
));
362 #else /* CONFIG_X86_64 */
363 end_pfn
= round_up(pfn
, PFN_DOWN(PUD_SIZE
));
364 if (end_pfn
> round_down(limit_pfn
, PFN_DOWN(PMD_SIZE
)))
365 end_pfn
= round_down(limit_pfn
, PFN_DOWN(PMD_SIZE
));
368 if (start_pfn
< end_pfn
) {
369 nr_range
= save_mr(mr
, nr_range
, start_pfn
, end_pfn
,
370 page_size_mask
& (1<<PG_LEVEL_2M
));
375 /* big page (1G) range */
376 start_pfn
= round_up(pfn
, PFN_DOWN(PUD_SIZE
));
377 end_pfn
= round_down(limit_pfn
, PFN_DOWN(PUD_SIZE
));
378 if (start_pfn
< end_pfn
) {
379 nr_range
= save_mr(mr
, nr_range
, start_pfn
, end_pfn
,
381 ((1<<PG_LEVEL_2M
)|(1<<PG_LEVEL_1G
)));
385 /* tail is not big page (1G) alignment */
386 start_pfn
= round_up(pfn
, PFN_DOWN(PMD_SIZE
));
387 end_pfn
= round_down(limit_pfn
, PFN_DOWN(PMD_SIZE
));
388 if (start_pfn
< end_pfn
) {
389 nr_range
= save_mr(mr
, nr_range
, start_pfn
, end_pfn
,
390 page_size_mask
& (1<<PG_LEVEL_2M
));
395 /* tail is not big page (2M) alignment */
398 nr_range
= save_mr(mr
, nr_range
, start_pfn
, end_pfn
, 0);
401 adjust_range_page_size_mask(mr
, nr_range
);
403 /* try to merge same page size and continuous */
404 for (i
= 0; nr_range
> 1 && i
< nr_range
- 1; i
++) {
405 unsigned long old_start
;
406 if (mr
[i
].end
!= mr
[i
+1].start
||
407 mr
[i
].page_size_mask
!= mr
[i
+1].page_size_mask
)
410 old_start
= mr
[i
].start
;
411 memmove(&mr
[i
], &mr
[i
+1],
412 (nr_range
- 1 - i
) * sizeof(struct map_range
));
413 mr
[i
--].start
= old_start
;
417 for (i
= 0; i
< nr_range
; i
++)
418 pr_debug(" [mem %#010lx-%#010lx] page %s\n",
419 mr
[i
].start
, mr
[i
].end
- 1,
420 page_size_string(&mr
[i
]));
425 struct range pfn_mapped
[E820_MAX_ENTRIES
];
428 static void add_pfn_range_mapped(unsigned long start_pfn
, unsigned long end_pfn
)
430 nr_pfn_mapped
= add_range_with_merge(pfn_mapped
, E820_MAX_ENTRIES
,
431 nr_pfn_mapped
, start_pfn
, end_pfn
);
432 nr_pfn_mapped
= clean_sort_range(pfn_mapped
, E820_MAX_ENTRIES
);
434 max_pfn_mapped
= max(max_pfn_mapped
, end_pfn
);
436 if (start_pfn
< (1UL<<(32-PAGE_SHIFT
)))
437 max_low_pfn_mapped
= max(max_low_pfn_mapped
,
438 min(end_pfn
, 1UL<<(32-PAGE_SHIFT
)));
441 bool pfn_range_is_mapped(unsigned long start_pfn
, unsigned long end_pfn
)
445 for (i
= 0; i
< nr_pfn_mapped
; i
++)
446 if ((start_pfn
>= pfn_mapped
[i
].start
) &&
447 (end_pfn
<= pfn_mapped
[i
].end
))
454 * Setup the direct mapping of the physical memory at PAGE_OFFSET.
455 * This runs before bootmem is initialized and gets pages directly from
456 * the physical memory. To access them they are temporarily mapped.
458 unsigned long __ref
init_memory_mapping(unsigned long start
,
461 struct map_range mr
[NR_RANGE_MR
];
462 unsigned long ret
= 0;
465 pr_debug("init_memory_mapping: [mem %#010lx-%#010lx]\n",
468 memset(mr
, 0, sizeof(mr
));
469 nr_range
= split_mem_range(mr
, 0, start
, end
);
471 for (i
= 0; i
< nr_range
; i
++)
472 ret
= kernel_physical_mapping_init(mr
[i
].start
, mr
[i
].end
,
473 mr
[i
].page_size_mask
);
475 add_pfn_range_mapped(start
>> PAGE_SHIFT
, ret
>> PAGE_SHIFT
);
477 return ret
>> PAGE_SHIFT
;
481 * We need to iterate through the E820 memory map and create direct mappings
482 * for only E820_TYPE_RAM and E820_KERN_RESERVED regions. We cannot simply
483 * create direct mappings for all pfns from [0 to max_low_pfn) and
484 * [4GB to max_pfn) because of possible memory holes in high addresses
485 * that cannot be marked as UC by fixed/variable range MTRRs.
486 * Depending on the alignment of E820 ranges, this may possibly result
487 * in using smaller size (i.e. 4K instead of 2M or 1G) page tables.
489 * init_mem_mapping() calls init_range_memory_mapping() with big range.
490 * That range would have hole in the middle or ends, and only ram parts
491 * will be mapped in init_range_memory_mapping().
493 static unsigned long __init
init_range_memory_mapping(
494 unsigned long r_start
,
497 unsigned long start_pfn
, end_pfn
;
498 unsigned long mapped_ram_size
= 0;
501 for_each_mem_pfn_range(i
, MAX_NUMNODES
, &start_pfn
, &end_pfn
, NULL
) {
502 u64 start
= clamp_val(PFN_PHYS(start_pfn
), r_start
, r_end
);
503 u64 end
= clamp_val(PFN_PHYS(end_pfn
), r_start
, r_end
);
508 * if it is overlapping with brk pgt, we need to
509 * alloc pgt buf from memblock instead.
511 can_use_brk_pgt
= max(start
, (u64
)pgt_buf_end
<<PAGE_SHIFT
) >=
512 min(end
, (u64
)pgt_buf_top
<<PAGE_SHIFT
);
513 init_memory_mapping(start
, end
);
514 mapped_ram_size
+= end
- start
;
515 can_use_brk_pgt
= true;
518 return mapped_ram_size
;
521 static unsigned long __init
get_new_step_size(unsigned long step_size
)
524 * Initial mapped size is PMD_SIZE (2M).
525 * We can not set step_size to be PUD_SIZE (1G) yet.
526 * In worse case, when we cross the 1G boundary, and
527 * PG_LEVEL_2M is not set, we will need 1+1+512 pages (2M + 8k)
528 * to map 1G range with PTE. Hence we use one less than the
529 * difference of page table level shifts.
531 * Don't need to worry about overflow in the top-down case, on 32bit,
532 * when step_size is 0, round_down() returns 0 for start, and that
533 * turns it into 0x100000000ULL.
534 * In the bottom-up case, round_up(x, 0) returns 0 though too, which
535 * needs to be taken into consideration by the code below.
537 return step_size
<< (PMD_SHIFT
- PAGE_SHIFT
- 1);
541 * memory_map_top_down - Map [map_start, map_end) top down
542 * @map_start: start address of the target memory range
543 * @map_end: end address of the target memory range
545 * This function will setup direct mapping for memory range
546 * [map_start, map_end) in top-down. That said, the page tables
547 * will be allocated at the end of the memory, and we map the
548 * memory in top-down.
550 static void __init
memory_map_top_down(unsigned long map_start
,
551 unsigned long map_end
)
553 unsigned long real_end
, start
, last_start
;
554 unsigned long step_size
;
556 unsigned long mapped_ram_size
= 0;
558 /* xen has big range in reserved near end of ram, skip it at first.*/
559 addr
= memblock_find_in_range(map_start
, map_end
, PMD_SIZE
, PMD_SIZE
);
560 real_end
= addr
+ PMD_SIZE
;
562 /* step_size need to be small so pgt_buf from BRK could cover it */
563 step_size
= PMD_SIZE
;
564 max_pfn_mapped
= 0; /* will get exact value next */
565 min_pfn_mapped
= real_end
>> PAGE_SHIFT
;
566 last_start
= start
= real_end
;
569 * We start from the top (end of memory) and go to the bottom.
570 * The memblock_find_in_range() gets us a block of RAM from the
571 * end of RAM in [min_pfn_mapped, max_pfn_mapped) used as new pages
574 while (last_start
> map_start
) {
575 if (last_start
> step_size
) {
576 start
= round_down(last_start
- 1, step_size
);
577 if (start
< map_start
)
581 mapped_ram_size
+= init_range_memory_mapping(start
,
584 min_pfn_mapped
= last_start
>> PAGE_SHIFT
;
585 if (mapped_ram_size
>= step_size
)
586 step_size
= get_new_step_size(step_size
);
589 if (real_end
< map_end
)
590 init_range_memory_mapping(real_end
, map_end
);
594 * memory_map_bottom_up - Map [map_start, map_end) bottom up
595 * @map_start: start address of the target memory range
596 * @map_end: end address of the target memory range
598 * This function will setup direct mapping for memory range
599 * [map_start, map_end) in bottom-up. Since we have limited the
600 * bottom-up allocation above the kernel, the page tables will
601 * be allocated just above the kernel and we map the memory
602 * in [map_start, map_end) in bottom-up.
604 static void __init
memory_map_bottom_up(unsigned long map_start
,
605 unsigned long map_end
)
607 unsigned long next
, start
;
608 unsigned long mapped_ram_size
= 0;
609 /* step_size need to be small so pgt_buf from BRK could cover it */
610 unsigned long step_size
= PMD_SIZE
;
613 min_pfn_mapped
= start
>> PAGE_SHIFT
;
616 * We start from the bottom (@map_start) and go to the top (@map_end).
617 * The memblock_find_in_range() gets us a block of RAM from the
618 * end of RAM in [min_pfn_mapped, max_pfn_mapped) used as new pages
621 while (start
< map_end
) {
622 if (step_size
&& map_end
- start
> step_size
) {
623 next
= round_up(start
+ 1, step_size
);
630 mapped_ram_size
+= init_range_memory_mapping(start
, next
);
633 if (mapped_ram_size
>= step_size
)
634 step_size
= get_new_step_size(step_size
);
638 void __init
init_mem_mapping(void)
642 pti_check_boottime_disable();
643 probe_page_size_mask();
647 end
= max_pfn
<< PAGE_SHIFT
;
649 end
= max_low_pfn
<< PAGE_SHIFT
;
652 /* the ISA range is always mapped regardless of memory holes */
653 init_memory_mapping(0, ISA_END_ADDRESS
);
655 /* Init the trampoline, possibly with KASLR memory offset */
659 * If the allocation is in bottom-up direction, we setup direct mapping
660 * in bottom-up, otherwise we setup direct mapping in top-down.
662 if (memblock_bottom_up()) {
663 unsigned long kernel_end
= __pa_symbol(_end
);
666 * we need two separate calls here. This is because we want to
667 * allocate page tables above the kernel. So we first map
668 * [kernel_end, end) to make memory above the kernel be mapped
669 * as soon as possible. And then use page tables allocated above
670 * the kernel to map [ISA_END_ADDRESS, kernel_end).
672 memory_map_bottom_up(kernel_end
, end
);
673 memory_map_bottom_up(ISA_END_ADDRESS
, kernel_end
);
675 memory_map_top_down(ISA_END_ADDRESS
, end
);
679 if (max_pfn
> max_low_pfn
) {
680 /* can we preseve max_low_pfn ?*/
681 max_low_pfn
= max_pfn
;
684 early_ioremap_page_table_range_init();
687 load_cr3(swapper_pg_dir
);
690 x86_init
.hyper
.init_mem_mapping();
692 early_memtest(0, max_pfn_mapped
<< PAGE_SHIFT
);
696 * devmem_is_allowed() checks to see if /dev/mem access to a certain address
697 * is valid. The argument is a physical page number.
699 * On x86, access has to be given to the first megabyte of RAM because that
700 * area traditionally contains BIOS code and data regions used by X, dosemu,
701 * and similar apps. Since they map the entire memory range, the whole range
702 * must be allowed (for mapping), but any areas that would otherwise be
703 * disallowed are flagged as being "zero filled" instead of rejected.
704 * Access has to be given to non-kernel-ram areas as well, these contain the
705 * PCI mmio resources as well as potential bios/acpi data regions.
707 int devmem_is_allowed(unsigned long pagenr
)
709 if (page_is_ram(pagenr
)) {
711 * For disallowed memory regions in the low 1MB range,
712 * request that the page be shown as all zeros.
721 * This must follow RAM test, since System RAM is considered a
722 * restricted resource under CONFIG_STRICT_IOMEM.
724 if (iomem_is_exclusive(pagenr
<< PAGE_SHIFT
)) {
725 /* Low 1MB bypasses iomem restrictions. */
735 void free_init_pages(char *what
, unsigned long begin
, unsigned long end
)
737 unsigned long begin_aligned
, end_aligned
;
739 /* Make sure boundaries are page aligned */
740 begin_aligned
= PAGE_ALIGN(begin
);
741 end_aligned
= end
& PAGE_MASK
;
743 if (WARN_ON(begin_aligned
!= begin
|| end_aligned
!= end
)) {
744 begin
= begin_aligned
;
752 * If debugging page accesses then do not free this memory but
753 * mark them not present - any buggy init-section access will
754 * create a kernel page fault:
756 if (debug_pagealloc_enabled()) {
757 pr_info("debug: unmapping init [mem %#010lx-%#010lx]\n",
759 set_memory_np(begin
, (end
- begin
) >> PAGE_SHIFT
);
762 * We just marked the kernel text read only above, now that
763 * we are going to free part of that, we need to make that
764 * writeable and non-executable first.
766 set_memory_nx(begin
, (end
- begin
) >> PAGE_SHIFT
);
767 set_memory_rw(begin
, (end
- begin
) >> PAGE_SHIFT
);
769 free_reserved_area((void *)begin
, (void *)end
,
770 POISON_FREE_INITMEM
, what
);
774 void __ref
free_initmem(void)
776 e820__reallocate_tables();
778 free_init_pages("unused kernel",
779 (unsigned long)(&__init_begin
),
780 (unsigned long)(&__init_end
));
783 #ifdef CONFIG_BLK_DEV_INITRD
784 void __init
free_initrd_mem(unsigned long start
, unsigned long end
)
787 * end could be not aligned, and We can not align that,
788 * decompresser could be confused by aligned initrd_end
789 * We already reserve the end partial page before in
790 * - i386_start_kernel()
791 * - x86_64_start_kernel()
792 * - relocate_initrd()
793 * So here We can do PAGE_ALIGN() safely to get partial page to be freed
795 free_init_pages("initrd", start
, PAGE_ALIGN(end
));
800 * Calculate the precise size of the DMA zone (first 16 MB of RAM),
801 * and pass it to the MM layer - to help it set zone watermarks more
804 * Done on 64-bit systems only for the time being, although 32-bit systems
805 * might benefit from this as well.
807 void __init
memblock_find_dma_reserve(void)
810 u64 nr_pages
= 0, nr_free_pages
= 0;
811 unsigned long start_pfn
, end_pfn
;
812 phys_addr_t start_addr
, end_addr
;
817 * Iterate over all memory ranges (free and reserved ones alike),
818 * to calculate the total number of pages in the first 16 MB of RAM:
821 for_each_mem_pfn_range(i
, MAX_NUMNODES
, &start_pfn
, &end_pfn
, NULL
) {
822 start_pfn
= min(start_pfn
, MAX_DMA_PFN
);
823 end_pfn
= min(end_pfn
, MAX_DMA_PFN
);
825 nr_pages
+= end_pfn
- start_pfn
;
829 * Iterate over free memory ranges to calculate the number of free
830 * pages in the DMA zone, while not counting potential partial
831 * pages at the beginning or the end of the range:
834 for_each_free_mem_range(u
, NUMA_NO_NODE
, MEMBLOCK_NONE
, &start_addr
, &end_addr
, NULL
) {
835 start_pfn
= min_t(unsigned long, PFN_UP(start_addr
), MAX_DMA_PFN
);
836 end_pfn
= min_t(unsigned long, PFN_DOWN(end_addr
), MAX_DMA_PFN
);
838 if (start_pfn
< end_pfn
)
839 nr_free_pages
+= end_pfn
- start_pfn
;
842 set_dma_reserve(nr_pages
- nr_free_pages
);
846 void __init
zone_sizes_init(void)
848 unsigned long max_zone_pfns
[MAX_NR_ZONES
];
850 memset(max_zone_pfns
, 0, sizeof(max_zone_pfns
));
852 #ifdef CONFIG_ZONE_DMA
853 max_zone_pfns
[ZONE_DMA
] = min(MAX_DMA_PFN
, max_low_pfn
);
855 #ifdef CONFIG_ZONE_DMA32
856 max_zone_pfns
[ZONE_DMA32
] = min(MAX_DMA32_PFN
, max_low_pfn
);
858 max_zone_pfns
[ZONE_NORMAL
] = max_low_pfn
;
859 #ifdef CONFIG_HIGHMEM
860 max_zone_pfns
[ZONE_HIGHMEM
] = max_pfn
;
863 free_area_init_nodes(max_zone_pfns
);
866 __visible
DEFINE_PER_CPU_SHARED_ALIGNED(struct tlb_state
, cpu_tlbstate
) = {
867 .loaded_mm
= &init_mm
,
869 .cr4
= ~0UL, /* fail hard if we screw up cr4 shadow initialization */
871 EXPORT_PER_CPU_SYMBOL(cpu_tlbstate
);
873 void update_cache_mode_entry(unsigned entry
, enum page_cache_mode cache
)
875 /* entry 0 MUST be WB (hardwired to speed up translations) */
876 BUG_ON(!entry
&& cache
!= _PAGE_CACHE_MODE_WB
);
878 __cachemode2pte_tbl
[cache
] = __cm_idx2pte(entry
);
879 __pte2cachemode_tbl
[entry
] = cache
;