2 * Copyright 2002 Andi Kleen, SuSE Labs.
3 * Thanks to Ben LaHaise for precious feedback.
5 #include <linux/highmem.h>
6 #include <linux/bootmem.h>
7 #include <linux/sched.h>
9 #include <linux/interrupt.h>
10 #include <linux/seq_file.h>
11 #include <linux/debugfs.h>
12 #include <linux/pfn.h>
13 #include <linux/percpu.h>
14 #include <linux/gfp.h>
15 #include <linux/pci.h>
16 #include <linux/vmalloc.h>
18 #include <asm/e820/api.h>
19 #include <asm/processor.h>
20 #include <asm/tlbflush.h>
21 #include <asm/sections.h>
22 #include <asm/setup.h>
23 #include <linux/uaccess.h>
24 #include <asm/pgalloc.h>
25 #include <asm/proto.h>
27 #include <asm/set_memory.h>
30 * The current flushing context - we pass it instead of 5 arguments:
37 unsigned long numpages
;
40 unsigned force_split
: 1;
46 * Serialize cpa() (for !DEBUG_PAGEALLOC which uses large identity mappings)
47 * using cpa_lock. So that we don't allow any other cpu, with stale large tlb
48 * entries change the page attribute in parallel to some other cpu
49 * splitting a large page entry along with changing the attribute.
51 static DEFINE_SPINLOCK(cpa_lock
);
53 #define CPA_FLUSHTLB 1
55 #define CPA_PAGES_ARRAY 4
58 static unsigned long direct_pages_count
[PG_LEVEL_NUM
];
60 void update_page_count(int level
, unsigned long pages
)
62 /* Protect against CPA */
64 direct_pages_count
[level
] += pages
;
65 spin_unlock(&pgd_lock
);
68 static void split_page_count(int level
)
70 if (direct_pages_count
[level
] == 0)
73 direct_pages_count
[level
]--;
74 direct_pages_count
[level
- 1] += PTRS_PER_PTE
;
77 void arch_report_meminfo(struct seq_file
*m
)
79 seq_printf(m
, "DirectMap4k: %8lu kB\n",
80 direct_pages_count
[PG_LEVEL_4K
] << 2);
81 #if defined(CONFIG_X86_64) || defined(CONFIG_X86_PAE)
82 seq_printf(m
, "DirectMap2M: %8lu kB\n",
83 direct_pages_count
[PG_LEVEL_2M
] << 11);
85 seq_printf(m
, "DirectMap4M: %8lu kB\n",
86 direct_pages_count
[PG_LEVEL_2M
] << 12);
89 seq_printf(m
, "DirectMap1G: %8lu kB\n",
90 direct_pages_count
[PG_LEVEL_1G
] << 20);
93 static inline void split_page_count(int level
) { }
98 static inline unsigned long highmap_start_pfn(void)
100 return __pa_symbol(_text
) >> PAGE_SHIFT
;
103 static inline unsigned long highmap_end_pfn(void)
105 /* Do not reference physical address outside the kernel. */
106 return __pa_symbol(roundup(_brk_end
, PMD_SIZE
) - 1) >> PAGE_SHIFT
;
112 within(unsigned long addr
, unsigned long start
, unsigned long end
)
114 return addr
>= start
&& addr
< end
;
118 within_inclusive(unsigned long addr
, unsigned long start
, unsigned long end
)
120 return addr
>= start
&& addr
<= end
;
128 * clflush_cache_range - flush a cache range with clflush
129 * @vaddr: virtual start address
130 * @size: number of bytes to flush
132 * clflushopt is an unordered instruction which needs fencing with mfence or
133 * sfence to avoid ordering issues.
135 void clflush_cache_range(void *vaddr
, unsigned int size
)
137 const unsigned long clflush_size
= boot_cpu_data
.x86_clflush_size
;
138 void *p
= (void *)((unsigned long)vaddr
& ~(clflush_size
- 1));
139 void *vend
= vaddr
+ size
;
146 for (; p
< vend
; p
+= clflush_size
)
151 EXPORT_SYMBOL_GPL(clflush_cache_range
);
153 void arch_invalidate_pmem(void *addr
, size_t size
)
155 clflush_cache_range(addr
, size
);
157 EXPORT_SYMBOL_GPL(arch_invalidate_pmem
);
159 static void __cpa_flush_all(void *arg
)
161 unsigned long cache
= (unsigned long)arg
;
164 * Flush all to work around Errata in early athlons regarding
165 * large page flushing.
169 if (cache
&& boot_cpu_data
.x86
>= 4)
173 static void cpa_flush_all(unsigned long cache
)
175 BUG_ON(irqs_disabled());
177 on_each_cpu(__cpa_flush_all
, (void *) cache
, 1);
180 static void __cpa_flush_range(void *arg
)
183 * We could optimize that further and do individual per page
184 * tlb invalidates for a low number of pages. Caveat: we must
185 * flush the high aliases on 64bit as well.
190 static void cpa_flush_range(unsigned long start
, int numpages
, int cache
)
192 unsigned int i
, level
;
195 BUG_ON(irqs_disabled() && !early_boot_irqs_disabled
);
196 WARN_ON(PAGE_ALIGN(start
) != start
);
198 on_each_cpu(__cpa_flush_range
, NULL
, 1);
204 * We only need to flush on one CPU,
205 * clflush is a MESI-coherent instruction that
206 * will cause all other CPUs to flush the same
209 for (i
= 0, addr
= start
; i
< numpages
; i
++, addr
+= PAGE_SIZE
) {
210 pte_t
*pte
= lookup_address(addr
, &level
);
213 * Only flush present addresses:
215 if (pte
&& (pte_val(*pte
) & _PAGE_PRESENT
))
216 clflush_cache_range((void *) addr
, PAGE_SIZE
);
220 static void cpa_flush_array(unsigned long *start
, int numpages
, int cache
,
221 int in_flags
, struct page
**pages
)
223 unsigned int i
, level
;
224 #ifdef CONFIG_PREEMPT
226 * Avoid wbinvd() because it causes latencies on all CPUs,
227 * regardless of any CPU isolation that may be in effect.
229 * This should be extended for CAT enabled systems independent of
230 * PREEMPT because wbinvd() does not respect the CAT partitions and
231 * this is exposed to unpriviledged users through the graphics
234 unsigned long do_wbinvd
= 0;
236 unsigned long do_wbinvd
= cache
&& numpages
>= 1024; /* 4M threshold */
239 BUG_ON(irqs_disabled());
241 on_each_cpu(__cpa_flush_all
, (void *) do_wbinvd
, 1);
243 if (!cache
|| do_wbinvd
)
247 * We only need to flush on one CPU,
248 * clflush is a MESI-coherent instruction that
249 * will cause all other CPUs to flush the same
252 for (i
= 0; i
< numpages
; i
++) {
256 if (in_flags
& CPA_PAGES_ARRAY
)
257 addr
= (unsigned long)page_address(pages
[i
]);
261 pte
= lookup_address(addr
, &level
);
264 * Only flush present addresses:
266 if (pte
&& (pte_val(*pte
) & _PAGE_PRESENT
))
267 clflush_cache_range((void *)addr
, PAGE_SIZE
);
272 * Certain areas of memory on x86 require very specific protection flags,
273 * for example the BIOS area or kernel text. Callers don't always get this
274 * right (again, ioremap() on BIOS memory is not uncommon) so this function
275 * checks and fixes these known static required protection bits.
277 static inline pgprot_t
static_protections(pgprot_t prot
, unsigned long address
,
280 pgprot_t forbidden
= __pgprot(0);
283 * The BIOS area between 640k and 1Mb needs to be executable for
284 * PCI BIOS based config access (CONFIG_PCI_GOBIOS) support.
286 #ifdef CONFIG_PCI_BIOS
287 if (pcibios_enabled
&& within(pfn
, BIOS_BEGIN
>> PAGE_SHIFT
, BIOS_END
>> PAGE_SHIFT
))
288 pgprot_val(forbidden
) |= _PAGE_NX
;
292 * The kernel text needs to be executable for obvious reasons
293 * Does not cover __inittext since that is gone later on. On
294 * 64bit we do not enforce !NX on the low mapping
296 if (within(address
, (unsigned long)_text
, (unsigned long)_etext
))
297 pgprot_val(forbidden
) |= _PAGE_NX
;
300 * The .rodata section needs to be read-only. Using the pfn
301 * catches all aliases.
303 if (within(pfn
, __pa_symbol(__start_rodata
) >> PAGE_SHIFT
,
304 __pa_symbol(__end_rodata
) >> PAGE_SHIFT
))
305 pgprot_val(forbidden
) |= _PAGE_RW
;
307 #if defined(CONFIG_X86_64)
309 * Once the kernel maps the text as RO (kernel_set_to_readonly is set),
310 * kernel text mappings for the large page aligned text, rodata sections
311 * will be always read-only. For the kernel identity mappings covering
312 * the holes caused by this alignment can be anything that user asks.
314 * This will preserve the large page mappings for kernel text/data
317 if (kernel_set_to_readonly
&&
318 within(address
, (unsigned long)_text
,
319 (unsigned long)__end_rodata_hpage_align
)) {
323 * Don't enforce the !RW mapping for the kernel text mapping,
324 * if the current mapping is already using small page mapping.
325 * No need to work hard to preserve large page mappings in this
328 * This also fixes the Linux Xen paravirt guest boot failure
329 * (because of unexpected read-only mappings for kernel identity
330 * mappings). In this paravirt guest case, the kernel text
331 * mapping and the kernel identity mapping share the same
332 * page-table pages. Thus we can't really use different
333 * protections for the kernel text and identity mappings. Also,
334 * these shared mappings are made of small page mappings.
335 * Thus this don't enforce !RW mapping for small page kernel
336 * text mapping logic will help Linux Xen parvirt guest boot
339 if (lookup_address(address
, &level
) && (level
!= PG_LEVEL_4K
))
340 pgprot_val(forbidden
) |= _PAGE_RW
;
344 prot
= __pgprot(pgprot_val(prot
) & ~pgprot_val(forbidden
));
350 * Lookup the page table entry for a virtual address in a specific pgd.
351 * Return a pointer to the entry and the level of the mapping.
353 pte_t
*lookup_address_in_pgd(pgd_t
*pgd
, unsigned long address
,
360 *level
= PG_LEVEL_NONE
;
365 p4d
= p4d_offset(pgd
, address
);
369 *level
= PG_LEVEL_512G
;
370 if (p4d_large(*p4d
) || !p4d_present(*p4d
))
373 pud
= pud_offset(p4d
, address
);
377 *level
= PG_LEVEL_1G
;
378 if (pud_large(*pud
) || !pud_present(*pud
))
381 pmd
= pmd_offset(pud
, address
);
385 *level
= PG_LEVEL_2M
;
386 if (pmd_large(*pmd
) || !pmd_present(*pmd
))
389 *level
= PG_LEVEL_4K
;
391 return pte_offset_kernel(pmd
, address
);
395 * Lookup the page table entry for a virtual address. Return a pointer
396 * to the entry and the level of the mapping.
398 * Note: We return pud and pmd either when the entry is marked large
399 * or when the present bit is not set. Otherwise we would return a
400 * pointer to a nonexisting mapping.
402 pte_t
*lookup_address(unsigned long address
, unsigned int *level
)
404 return lookup_address_in_pgd(pgd_offset_k(address
), address
, level
);
406 EXPORT_SYMBOL_GPL(lookup_address
);
408 static pte_t
*_lookup_address_cpa(struct cpa_data
*cpa
, unsigned long address
,
412 return lookup_address_in_pgd(cpa
->pgd
+ pgd_index(address
),
415 return lookup_address(address
, level
);
419 * Lookup the PMD entry for a virtual address. Return a pointer to the entry
420 * or NULL if not present.
422 pmd_t
*lookup_pmd_address(unsigned long address
)
428 pgd
= pgd_offset_k(address
);
432 p4d
= p4d_offset(pgd
, address
);
433 if (p4d_none(*p4d
) || p4d_large(*p4d
) || !p4d_present(*p4d
))
436 pud
= pud_offset(p4d
, address
);
437 if (pud_none(*pud
) || pud_large(*pud
) || !pud_present(*pud
))
440 return pmd_offset(pud
, address
);
444 * This is necessary because __pa() does not work on some
445 * kinds of memory, like vmalloc() or the alloc_remap()
446 * areas on 32-bit NUMA systems. The percpu areas can
447 * end up in this kind of memory, for instance.
449 * This could be optimized, but it is only intended to be
450 * used at inititalization time, and keeping it
451 * unoptimized should increase the testing coverage for
452 * the more obscure platforms.
454 phys_addr_t
slow_virt_to_phys(void *__virt_addr
)
456 unsigned long virt_addr
= (unsigned long)__virt_addr
;
457 phys_addr_t phys_addr
;
458 unsigned long offset
;
462 pte
= lookup_address(virt_addr
, &level
);
466 * pXX_pfn() returns unsigned long, which must be cast to phys_addr_t
467 * before being left-shifted PAGE_SHIFT bits -- this trick is to
468 * make 32-PAE kernel work correctly.
472 phys_addr
= (phys_addr_t
)pud_pfn(*(pud_t
*)pte
) << PAGE_SHIFT
;
473 offset
= virt_addr
& ~PUD_PAGE_MASK
;
476 phys_addr
= (phys_addr_t
)pmd_pfn(*(pmd_t
*)pte
) << PAGE_SHIFT
;
477 offset
= virt_addr
& ~PMD_PAGE_MASK
;
480 phys_addr
= (phys_addr_t
)pte_pfn(*pte
) << PAGE_SHIFT
;
481 offset
= virt_addr
& ~PAGE_MASK
;
484 return (phys_addr_t
)(phys_addr
| offset
);
486 EXPORT_SYMBOL_GPL(slow_virt_to_phys
);
489 * Set the new pmd in all the pgds we know about:
491 static void __set_pmd_pte(pte_t
*kpte
, unsigned long address
, pte_t pte
)
494 set_pte_atomic(kpte
, pte
);
496 if (!SHARED_KERNEL_PMD
) {
499 list_for_each_entry(page
, &pgd_list
, lru
) {
505 pgd
= (pgd_t
*)page_address(page
) + pgd_index(address
);
506 p4d
= p4d_offset(pgd
, address
);
507 pud
= pud_offset(p4d
, address
);
508 pmd
= pmd_offset(pud
, address
);
509 set_pte_atomic((pte_t
*)pmd
, pte
);
516 try_preserve_large_page(pte_t
*kpte
, unsigned long address
,
517 struct cpa_data
*cpa
)
519 unsigned long nextpage_addr
, numpages
, pmask
, psize
, addr
, pfn
, old_pfn
;
520 pte_t new_pte
, old_pte
, *tmp
;
521 pgprot_t old_prot
, new_prot
, req_prot
;
525 if (cpa
->force_split
)
528 spin_lock(&pgd_lock
);
530 * Check for races, another CPU might have split this page
533 tmp
= _lookup_address_cpa(cpa
, address
, &level
);
539 old_prot
= pmd_pgprot(*(pmd_t
*)kpte
);
540 old_pfn
= pmd_pfn(*(pmd_t
*)kpte
);
543 old_prot
= pud_pgprot(*(pud_t
*)kpte
);
544 old_pfn
= pud_pfn(*(pud_t
*)kpte
);
551 psize
= page_level_size(level
);
552 pmask
= page_level_mask(level
);
555 * Calculate the number of pages, which fit into this large
556 * page starting at address:
558 nextpage_addr
= (address
+ psize
) & pmask
;
559 numpages
= (nextpage_addr
- address
) >> PAGE_SHIFT
;
560 if (numpages
< cpa
->numpages
)
561 cpa
->numpages
= numpages
;
564 * We are safe now. Check whether the new pgprot is the same:
565 * Convert protection attributes to 4k-format, as cpa->mask* are set
569 req_prot
= pgprot_large_2_4k(old_prot
);
571 pgprot_val(req_prot
) &= ~pgprot_val(cpa
->mask_clr
);
572 pgprot_val(req_prot
) |= pgprot_val(cpa
->mask_set
);
575 * req_prot is in format of 4k pages. It must be converted to large
576 * page format: the caching mode includes the PAT bit located at
577 * different bit positions in the two formats.
579 req_prot
= pgprot_4k_2_large(req_prot
);
582 * Set the PSE and GLOBAL flags only if the PRESENT flag is
583 * set otherwise pmd_present/pmd_huge will return true even on
584 * a non present pmd. The canon_pgprot will clear _PAGE_GLOBAL
585 * for the ancient hardware that doesn't support it.
587 if (pgprot_val(req_prot
) & _PAGE_PRESENT
)
588 pgprot_val(req_prot
) |= _PAGE_PSE
| _PAGE_GLOBAL
;
590 pgprot_val(req_prot
) &= ~(_PAGE_PSE
| _PAGE_GLOBAL
);
592 req_prot
= canon_pgprot(req_prot
);
595 * old_pfn points to the large page base pfn. So we need
596 * to add the offset of the virtual address:
598 pfn
= old_pfn
+ ((address
& (psize
- 1)) >> PAGE_SHIFT
);
601 new_prot
= static_protections(req_prot
, address
, pfn
);
604 * We need to check the full range, whether
605 * static_protection() requires a different pgprot for one of
606 * the pages in the range we try to preserve:
608 addr
= address
& pmask
;
610 for (i
= 0; i
< (psize
>> PAGE_SHIFT
); i
++, addr
+= PAGE_SIZE
, pfn
++) {
611 pgprot_t chk_prot
= static_protections(req_prot
, addr
, pfn
);
613 if (pgprot_val(chk_prot
) != pgprot_val(new_prot
))
618 * If there are no changes, return. maxpages has been updated
621 if (pgprot_val(new_prot
) == pgprot_val(old_prot
)) {
627 * We need to change the attributes. Check, whether we can
628 * change the large page in one go. We request a split, when
629 * the address is not aligned and the number of pages is
630 * smaller than the number of pages in the large page. Note
631 * that we limited the number of possible pages already to
632 * the number of pages in the large page.
634 if (address
== (address
& pmask
) && cpa
->numpages
== (psize
>> PAGE_SHIFT
)) {
636 * The address is aligned and the number of pages
637 * covers the full page.
639 new_pte
= pfn_pte(old_pfn
, new_prot
);
640 __set_pmd_pte(kpte
, address
, new_pte
);
641 cpa
->flags
|= CPA_FLUSHTLB
;
646 spin_unlock(&pgd_lock
);
652 __split_large_page(struct cpa_data
*cpa
, pte_t
*kpte
, unsigned long address
,
655 pte_t
*pbase
= (pte_t
*)page_address(base
);
656 unsigned long ref_pfn
, pfn
, pfninc
= 1;
657 unsigned int i
, level
;
661 spin_lock(&pgd_lock
);
663 * Check for races, another CPU might have split this page
666 tmp
= _lookup_address_cpa(cpa
, address
, &level
);
668 spin_unlock(&pgd_lock
);
672 paravirt_alloc_pte(&init_mm
, page_to_pfn(base
));
676 ref_prot
= pmd_pgprot(*(pmd_t
*)kpte
);
677 /* clear PSE and promote PAT bit to correct position */
678 ref_prot
= pgprot_large_2_4k(ref_prot
);
679 ref_pfn
= pmd_pfn(*(pmd_t
*)kpte
);
683 ref_prot
= pud_pgprot(*(pud_t
*)kpte
);
684 ref_pfn
= pud_pfn(*(pud_t
*)kpte
);
685 pfninc
= PMD_PAGE_SIZE
>> PAGE_SHIFT
;
688 * Clear the PSE flags if the PRESENT flag is not set
689 * otherwise pmd_present/pmd_huge will return true
690 * even on a non present pmd.
692 if (!(pgprot_val(ref_prot
) & _PAGE_PRESENT
))
693 pgprot_val(ref_prot
) &= ~_PAGE_PSE
;
697 spin_unlock(&pgd_lock
);
702 * Set the GLOBAL flags only if the PRESENT flag is set
703 * otherwise pmd/pte_present will return true even on a non
704 * present pmd/pte. The canon_pgprot will clear _PAGE_GLOBAL
705 * for the ancient hardware that doesn't support it.
707 if (pgprot_val(ref_prot
) & _PAGE_PRESENT
)
708 pgprot_val(ref_prot
) |= _PAGE_GLOBAL
;
710 pgprot_val(ref_prot
) &= ~_PAGE_GLOBAL
;
713 * Get the target pfn from the original entry:
716 for (i
= 0; i
< PTRS_PER_PTE
; i
++, pfn
+= pfninc
)
717 set_pte(&pbase
[i
], pfn_pte(pfn
, canon_pgprot(ref_prot
)));
719 if (virt_addr_valid(address
)) {
720 unsigned long pfn
= PFN_DOWN(__pa(address
));
722 if (pfn_range_is_mapped(pfn
, pfn
+ 1))
723 split_page_count(level
);
727 * Install the new, split up pagetable.
729 * We use the standard kernel pagetable protections for the new
730 * pagetable protections, the actual ptes set above control the
731 * primary protection behavior:
733 __set_pmd_pte(kpte
, address
, mk_pte(base
, __pgprot(_KERNPG_TABLE
)));
736 * Intel Atom errata AAH41 workaround.
738 * The real fix should be in hw or in a microcode update, but
739 * we also probabilistically try to reduce the window of having
740 * a large TLB mixed with 4K TLBs while instruction fetches are
744 spin_unlock(&pgd_lock
);
749 static int split_large_page(struct cpa_data
*cpa
, pte_t
*kpte
,
750 unsigned long address
)
754 if (!debug_pagealloc_enabled())
755 spin_unlock(&cpa_lock
);
756 base
= alloc_pages(GFP_KERNEL
, 0);
757 if (!debug_pagealloc_enabled())
758 spin_lock(&cpa_lock
);
762 if (__split_large_page(cpa
, kpte
, address
, base
))
768 static bool try_to_free_pte_page(pte_t
*pte
)
772 for (i
= 0; i
< PTRS_PER_PTE
; i
++)
773 if (!pte_none(pte
[i
]))
776 free_page((unsigned long)pte
);
780 static bool try_to_free_pmd_page(pmd_t
*pmd
)
784 for (i
= 0; i
< PTRS_PER_PMD
; i
++)
785 if (!pmd_none(pmd
[i
]))
788 free_page((unsigned long)pmd
);
792 static bool unmap_pte_range(pmd_t
*pmd
, unsigned long start
, unsigned long end
)
794 pte_t
*pte
= pte_offset_kernel(pmd
, start
);
796 while (start
< end
) {
797 set_pte(pte
, __pte(0));
803 if (try_to_free_pte_page((pte_t
*)pmd_page_vaddr(*pmd
))) {
810 static void __unmap_pmd_range(pud_t
*pud
, pmd_t
*pmd
,
811 unsigned long start
, unsigned long end
)
813 if (unmap_pte_range(pmd
, start
, end
))
814 if (try_to_free_pmd_page((pmd_t
*)pud_page_vaddr(*pud
)))
818 static void unmap_pmd_range(pud_t
*pud
, unsigned long start
, unsigned long end
)
820 pmd_t
*pmd
= pmd_offset(pud
, start
);
823 * Not on a 2MB page boundary?
825 if (start
& (PMD_SIZE
- 1)) {
826 unsigned long next_page
= (start
+ PMD_SIZE
) & PMD_MASK
;
827 unsigned long pre_end
= min_t(unsigned long, end
, next_page
);
829 __unmap_pmd_range(pud
, pmd
, start
, pre_end
);
836 * Try to unmap in 2M chunks.
838 while (end
- start
>= PMD_SIZE
) {
842 __unmap_pmd_range(pud
, pmd
, start
, start
+ PMD_SIZE
);
852 return __unmap_pmd_range(pud
, pmd
, start
, end
);
855 * Try again to free the PMD page if haven't succeeded above.
858 if (try_to_free_pmd_page((pmd_t
*)pud_page_vaddr(*pud
)))
862 static void unmap_pud_range(p4d_t
*p4d
, unsigned long start
, unsigned long end
)
864 pud_t
*pud
= pud_offset(p4d
, start
);
867 * Not on a GB page boundary?
869 if (start
& (PUD_SIZE
- 1)) {
870 unsigned long next_page
= (start
+ PUD_SIZE
) & PUD_MASK
;
871 unsigned long pre_end
= min_t(unsigned long, end
, next_page
);
873 unmap_pmd_range(pud
, start
, pre_end
);
880 * Try to unmap in 1G chunks?
882 while (end
- start
>= PUD_SIZE
) {
887 unmap_pmd_range(pud
, start
, start
+ PUD_SIZE
);
897 unmap_pmd_range(pud
, start
, end
);
900 * No need to try to free the PUD page because we'll free it in
901 * populate_pgd's error path
905 static int alloc_pte_page(pmd_t
*pmd
)
907 pte_t
*pte
= (pte_t
*)get_zeroed_page(GFP_KERNEL
);
911 set_pmd(pmd
, __pmd(__pa(pte
) | _KERNPG_TABLE
));
915 static int alloc_pmd_page(pud_t
*pud
)
917 pmd_t
*pmd
= (pmd_t
*)get_zeroed_page(GFP_KERNEL
);
921 set_pud(pud
, __pud(__pa(pmd
) | _KERNPG_TABLE
));
925 static void populate_pte(struct cpa_data
*cpa
,
926 unsigned long start
, unsigned long end
,
927 unsigned num_pages
, pmd_t
*pmd
, pgprot_t pgprot
)
931 pte
= pte_offset_kernel(pmd
, start
);
934 * Set the GLOBAL flags only if the PRESENT flag is
935 * set otherwise pte_present will return true even on
936 * a non present pte. The canon_pgprot will clear
937 * _PAGE_GLOBAL for the ancient hardware that doesn't
940 if (pgprot_val(pgprot
) & _PAGE_PRESENT
)
941 pgprot_val(pgprot
) |= _PAGE_GLOBAL
;
943 pgprot_val(pgprot
) &= ~_PAGE_GLOBAL
;
945 pgprot
= canon_pgprot(pgprot
);
947 while (num_pages
-- && start
< end
) {
948 set_pte(pte
, pfn_pte(cpa
->pfn
, pgprot
));
956 static long populate_pmd(struct cpa_data
*cpa
,
957 unsigned long start
, unsigned long end
,
958 unsigned num_pages
, pud_t
*pud
, pgprot_t pgprot
)
965 * Not on a 2M boundary?
967 if (start
& (PMD_SIZE
- 1)) {
968 unsigned long pre_end
= start
+ (num_pages
<< PAGE_SHIFT
);
969 unsigned long next_page
= (start
+ PMD_SIZE
) & PMD_MASK
;
971 pre_end
= min_t(unsigned long, pre_end
, next_page
);
972 cur_pages
= (pre_end
- start
) >> PAGE_SHIFT
;
973 cur_pages
= min_t(unsigned int, num_pages
, cur_pages
);
978 pmd
= pmd_offset(pud
, start
);
980 if (alloc_pte_page(pmd
))
983 populate_pte(cpa
, start
, pre_end
, cur_pages
, pmd
, pgprot
);
989 * We mapped them all?
991 if (num_pages
== cur_pages
)
994 pmd_pgprot
= pgprot_4k_2_large(pgprot
);
996 while (end
- start
>= PMD_SIZE
) {
999 * We cannot use a 1G page so allocate a PMD page if needed.
1002 if (alloc_pmd_page(pud
))
1005 pmd
= pmd_offset(pud
, start
);
1007 set_pmd(pmd
, __pmd(cpa
->pfn
<< PAGE_SHIFT
| _PAGE_PSE
|
1008 massage_pgprot(pmd_pgprot
)));
1011 cpa
->pfn
+= PMD_SIZE
>> PAGE_SHIFT
;
1012 cur_pages
+= PMD_SIZE
>> PAGE_SHIFT
;
1016 * Map trailing 4K pages.
1019 pmd
= pmd_offset(pud
, start
);
1021 if (alloc_pte_page(pmd
))
1024 populate_pte(cpa
, start
, end
, num_pages
- cur_pages
,
1030 static int populate_pud(struct cpa_data
*cpa
, unsigned long start
, p4d_t
*p4d
,
1036 pgprot_t pud_pgprot
;
1038 end
= start
+ (cpa
->numpages
<< PAGE_SHIFT
);
1041 * Not on a Gb page boundary? => map everything up to it with
1044 if (start
& (PUD_SIZE
- 1)) {
1045 unsigned long pre_end
;
1046 unsigned long next_page
= (start
+ PUD_SIZE
) & PUD_MASK
;
1048 pre_end
= min_t(unsigned long, end
, next_page
);
1049 cur_pages
= (pre_end
- start
) >> PAGE_SHIFT
;
1050 cur_pages
= min_t(int, (int)cpa
->numpages
, cur_pages
);
1052 pud
= pud_offset(p4d
, start
);
1058 if (alloc_pmd_page(pud
))
1061 cur_pages
= populate_pmd(cpa
, start
, pre_end
, cur_pages
,
1069 /* We mapped them all? */
1070 if (cpa
->numpages
== cur_pages
)
1073 pud
= pud_offset(p4d
, start
);
1074 pud_pgprot
= pgprot_4k_2_large(pgprot
);
1077 * Map everything starting from the Gb boundary, possibly with 1G pages
1079 while (boot_cpu_has(X86_FEATURE_GBPAGES
) && end
- start
>= PUD_SIZE
) {
1080 set_pud(pud
, __pud(cpa
->pfn
<< PAGE_SHIFT
| _PAGE_PSE
|
1081 massage_pgprot(pud_pgprot
)));
1084 cpa
->pfn
+= PUD_SIZE
>> PAGE_SHIFT
;
1085 cur_pages
+= PUD_SIZE
>> PAGE_SHIFT
;
1089 /* Map trailing leftover */
1093 pud
= pud_offset(p4d
, start
);
1095 if (alloc_pmd_page(pud
))
1098 tmp
= populate_pmd(cpa
, start
, end
, cpa
->numpages
- cur_pages
,
1109 * Restrictions for kernel page table do not necessarily apply when mapping in
1112 static int populate_pgd(struct cpa_data
*cpa
, unsigned long addr
)
1114 pgprot_t pgprot
= __pgprot(_KERNPG_TABLE
);
1115 pud_t
*pud
= NULL
; /* shut up gcc */
1120 pgd_entry
= cpa
->pgd
+ pgd_index(addr
);
1122 if (pgd_none(*pgd_entry
)) {
1123 p4d
= (p4d_t
*)get_zeroed_page(GFP_KERNEL
);
1127 set_pgd(pgd_entry
, __pgd(__pa(p4d
) | _KERNPG_TABLE
));
1131 * Allocate a PUD page and hand it down for mapping.
1133 p4d
= p4d_offset(pgd_entry
, addr
);
1134 if (p4d_none(*p4d
)) {
1135 pud
= (pud_t
*)get_zeroed_page(GFP_KERNEL
);
1139 set_p4d(p4d
, __p4d(__pa(pud
) | _KERNPG_TABLE
));
1142 pgprot_val(pgprot
) &= ~pgprot_val(cpa
->mask_clr
);
1143 pgprot_val(pgprot
) |= pgprot_val(cpa
->mask_set
);
1145 ret
= populate_pud(cpa
, addr
, p4d
, pgprot
);
1148 * Leave the PUD page in place in case some other CPU or thread
1149 * already found it, but remove any useless entries we just
1152 unmap_pud_range(p4d
, addr
,
1153 addr
+ (cpa
->numpages
<< PAGE_SHIFT
));
1157 cpa
->numpages
= ret
;
1161 static int __cpa_process_fault(struct cpa_data
*cpa
, unsigned long vaddr
,
1166 * Right now, we only execute this code path when mapping
1167 * the EFI virtual memory map regions, no other users
1168 * provide a ->pgd value. This may change in the future.
1170 return populate_pgd(cpa
, vaddr
);
1174 * Ignore all non primary paths.
1182 * Ignore the NULL PTE for kernel identity mapping, as it is expected
1184 * Also set numpages to '1' indicating that we processed cpa req for
1185 * one virtual address page and its pfn. TBD: numpages can be set based
1186 * on the initial value and the level returned by lookup_address().
1188 if (within(vaddr
, PAGE_OFFSET
,
1189 PAGE_OFFSET
+ (max_pfn_mapped
<< PAGE_SHIFT
))) {
1191 cpa
->pfn
= __pa(vaddr
) >> PAGE_SHIFT
;
1194 WARN(1, KERN_WARNING
"CPA: called for zero pte. "
1195 "vaddr = %lx cpa->vaddr = %lx\n", vaddr
,
1202 static int __change_page_attr(struct cpa_data
*cpa
, int primary
)
1204 unsigned long address
;
1207 pte_t
*kpte
, old_pte
;
1209 if (cpa
->flags
& CPA_PAGES_ARRAY
) {
1210 struct page
*page
= cpa
->pages
[cpa
->curpage
];
1211 if (unlikely(PageHighMem(page
)))
1213 address
= (unsigned long)page_address(page
);
1214 } else if (cpa
->flags
& CPA_ARRAY
)
1215 address
= cpa
->vaddr
[cpa
->curpage
];
1217 address
= *cpa
->vaddr
;
1219 kpte
= _lookup_address_cpa(cpa
, address
, &level
);
1221 return __cpa_process_fault(cpa
, address
, primary
);
1224 if (pte_none(old_pte
))
1225 return __cpa_process_fault(cpa
, address
, primary
);
1227 if (level
== PG_LEVEL_4K
) {
1229 pgprot_t new_prot
= pte_pgprot(old_pte
);
1230 unsigned long pfn
= pte_pfn(old_pte
);
1232 pgprot_val(new_prot
) &= ~pgprot_val(cpa
->mask_clr
);
1233 pgprot_val(new_prot
) |= pgprot_val(cpa
->mask_set
);
1235 new_prot
= static_protections(new_prot
, address
, pfn
);
1238 * Set the GLOBAL flags only if the PRESENT flag is
1239 * set otherwise pte_present will return true even on
1240 * a non present pte. The canon_pgprot will clear
1241 * _PAGE_GLOBAL for the ancient hardware that doesn't
1244 if (pgprot_val(new_prot
) & _PAGE_PRESENT
)
1245 pgprot_val(new_prot
) |= _PAGE_GLOBAL
;
1247 pgprot_val(new_prot
) &= ~_PAGE_GLOBAL
;
1250 * We need to keep the pfn from the existing PTE,
1251 * after all we're only going to change it's attributes
1252 * not the memory it points to
1254 new_pte
= pfn_pte(pfn
, canon_pgprot(new_prot
));
1257 * Do we really change anything ?
1259 if (pte_val(old_pte
) != pte_val(new_pte
)) {
1260 set_pte_atomic(kpte
, new_pte
);
1261 cpa
->flags
|= CPA_FLUSHTLB
;
1268 * Check, whether we can keep the large page intact
1269 * and just change the pte:
1271 do_split
= try_preserve_large_page(kpte
, address
, cpa
);
1273 * When the range fits into the existing large page,
1274 * return. cp->numpages and cpa->tlbflush have been updated in
1281 * We have to split the large page:
1283 err
= split_large_page(cpa
, kpte
, address
);
1286 * Do a global flush tlb after splitting the large page
1287 * and before we do the actual change page attribute in the PTE.
1289 * With out this, we violate the TLB application note, that says
1290 * "The TLBs may contain both ordinary and large-page
1291 * translations for a 4-KByte range of linear addresses. This
1292 * may occur if software modifies the paging structures so that
1293 * the page size used for the address range changes. If the two
1294 * translations differ with respect to page frame or attributes
1295 * (e.g., permissions), processor behavior is undefined and may
1296 * be implementation-specific."
1298 * We do this global tlb flush inside the cpa_lock, so that we
1299 * don't allow any other cpu, with stale tlb entries change the
1300 * page attribute in parallel, that also falls into the
1301 * just split large page entry.
1310 static int __change_page_attr_set_clr(struct cpa_data
*cpa
, int checkalias
);
1312 static int cpa_process_alias(struct cpa_data
*cpa
)
1314 struct cpa_data alias_cpa
;
1315 unsigned long laddr
= (unsigned long)__va(cpa
->pfn
<< PAGE_SHIFT
);
1316 unsigned long vaddr
;
1319 if (!pfn_range_is_mapped(cpa
->pfn
, cpa
->pfn
+ 1))
1323 * No need to redo, when the primary call touched the direct
1326 if (cpa
->flags
& CPA_PAGES_ARRAY
) {
1327 struct page
*page
= cpa
->pages
[cpa
->curpage
];
1328 if (unlikely(PageHighMem(page
)))
1330 vaddr
= (unsigned long)page_address(page
);
1331 } else if (cpa
->flags
& CPA_ARRAY
)
1332 vaddr
= cpa
->vaddr
[cpa
->curpage
];
1334 vaddr
= *cpa
->vaddr
;
1336 if (!(within(vaddr
, PAGE_OFFSET
,
1337 PAGE_OFFSET
+ (max_pfn_mapped
<< PAGE_SHIFT
)))) {
1340 alias_cpa
.vaddr
= &laddr
;
1341 alias_cpa
.flags
&= ~(CPA_PAGES_ARRAY
| CPA_ARRAY
);
1343 ret
= __change_page_attr_set_clr(&alias_cpa
, 0);
1348 #ifdef CONFIG_X86_64
1350 * If the primary call didn't touch the high mapping already
1351 * and the physical address is inside the kernel map, we need
1352 * to touch the high mapped kernel as well:
1354 if (!within(vaddr
, (unsigned long)_text
, _brk_end
) &&
1355 within_inclusive(cpa
->pfn
, highmap_start_pfn(),
1356 highmap_end_pfn())) {
1357 unsigned long temp_cpa_vaddr
= (cpa
->pfn
<< PAGE_SHIFT
) +
1358 __START_KERNEL_map
- phys_base
;
1360 alias_cpa
.vaddr
= &temp_cpa_vaddr
;
1361 alias_cpa
.flags
&= ~(CPA_PAGES_ARRAY
| CPA_ARRAY
);
1364 * The high mapping range is imprecise, so ignore the
1367 __change_page_attr_set_clr(&alias_cpa
, 0);
1374 static int __change_page_attr_set_clr(struct cpa_data
*cpa
, int checkalias
)
1376 unsigned long numpages
= cpa
->numpages
;
1381 * Store the remaining nr of pages for the large page
1382 * preservation check.
1384 cpa
->numpages
= numpages
;
1385 /* for array changes, we can't use large page */
1386 if (cpa
->flags
& (CPA_ARRAY
| CPA_PAGES_ARRAY
))
1389 if (!debug_pagealloc_enabled())
1390 spin_lock(&cpa_lock
);
1391 ret
= __change_page_attr(cpa
, checkalias
);
1392 if (!debug_pagealloc_enabled())
1393 spin_unlock(&cpa_lock
);
1398 ret
= cpa_process_alias(cpa
);
1404 * Adjust the number of pages with the result of the
1405 * CPA operation. Either a large page has been
1406 * preserved or a single page update happened.
1408 BUG_ON(cpa
->numpages
> numpages
|| !cpa
->numpages
);
1409 numpages
-= cpa
->numpages
;
1410 if (cpa
->flags
& (CPA_PAGES_ARRAY
| CPA_ARRAY
))
1413 *cpa
->vaddr
+= cpa
->numpages
* PAGE_SIZE
;
1419 static int change_page_attr_set_clr(unsigned long *addr
, int numpages
,
1420 pgprot_t mask_set
, pgprot_t mask_clr
,
1421 int force_split
, int in_flag
,
1422 struct page
**pages
)
1424 struct cpa_data cpa
;
1425 int ret
, cache
, checkalias
;
1426 unsigned long baddr
= 0;
1428 memset(&cpa
, 0, sizeof(cpa
));
1431 * Check, if we are requested to change a not supported
1434 mask_set
= canon_pgprot(mask_set
);
1435 mask_clr
= canon_pgprot(mask_clr
);
1436 if (!pgprot_val(mask_set
) && !pgprot_val(mask_clr
) && !force_split
)
1439 /* Ensure we are PAGE_SIZE aligned */
1440 if (in_flag
& CPA_ARRAY
) {
1442 for (i
= 0; i
< numpages
; i
++) {
1443 if (addr
[i
] & ~PAGE_MASK
) {
1444 addr
[i
] &= PAGE_MASK
;
1448 } else if (!(in_flag
& CPA_PAGES_ARRAY
)) {
1450 * in_flag of CPA_PAGES_ARRAY implies it is aligned.
1451 * No need to cehck in that case
1453 if (*addr
& ~PAGE_MASK
) {
1456 * People should not be passing in unaligned addresses:
1461 * Save address for cache flush. *addr is modified in the call
1462 * to __change_page_attr_set_clr() below.
1467 /* Must avoid aliasing mappings in the highmem code */
1468 kmap_flush_unused();
1474 cpa
.numpages
= numpages
;
1475 cpa
.mask_set
= mask_set
;
1476 cpa
.mask_clr
= mask_clr
;
1479 cpa
.force_split
= force_split
;
1481 if (in_flag
& (CPA_ARRAY
| CPA_PAGES_ARRAY
))
1482 cpa
.flags
|= in_flag
;
1484 /* No alias checking for _NX bit modifications */
1485 checkalias
= (pgprot_val(mask_set
) | pgprot_val(mask_clr
)) != _PAGE_NX
;
1487 ret
= __change_page_attr_set_clr(&cpa
, checkalias
);
1490 * Check whether we really changed something:
1492 if (!(cpa
.flags
& CPA_FLUSHTLB
))
1496 * No need to flush, when we did not set any of the caching
1499 cache
= !!pgprot2cachemode(mask_set
);
1502 * On success we use CLFLUSH, when the CPU supports it to
1503 * avoid the WBINVD. If the CPU does not support it and in the
1504 * error case we fall back to cpa_flush_all (which uses
1507 if (!ret
&& boot_cpu_has(X86_FEATURE_CLFLUSH
)) {
1508 if (cpa
.flags
& (CPA_PAGES_ARRAY
| CPA_ARRAY
)) {
1509 cpa_flush_array(addr
, numpages
, cache
,
1512 cpa_flush_range(baddr
, numpages
, cache
);
1514 cpa_flush_all(cache
);
1520 static inline int change_page_attr_set(unsigned long *addr
, int numpages
,
1521 pgprot_t mask
, int array
)
1523 return change_page_attr_set_clr(addr
, numpages
, mask
, __pgprot(0), 0,
1524 (array
? CPA_ARRAY
: 0), NULL
);
1527 static inline int change_page_attr_clear(unsigned long *addr
, int numpages
,
1528 pgprot_t mask
, int array
)
1530 return change_page_attr_set_clr(addr
, numpages
, __pgprot(0), mask
, 0,
1531 (array
? CPA_ARRAY
: 0), NULL
);
1534 static inline int cpa_set_pages_array(struct page
**pages
, int numpages
,
1537 return change_page_attr_set_clr(NULL
, numpages
, mask
, __pgprot(0), 0,
1538 CPA_PAGES_ARRAY
, pages
);
1541 static inline int cpa_clear_pages_array(struct page
**pages
, int numpages
,
1544 return change_page_attr_set_clr(NULL
, numpages
, __pgprot(0), mask
, 0,
1545 CPA_PAGES_ARRAY
, pages
);
1548 int _set_memory_uc(unsigned long addr
, int numpages
)
1551 * for now UC MINUS. see comments in ioremap_nocache()
1552 * If you really need strong UC use ioremap_uc(), but note
1553 * that you cannot override IO areas with set_memory_*() as
1554 * these helpers cannot work with IO memory.
1556 return change_page_attr_set(&addr
, numpages
,
1557 cachemode2pgprot(_PAGE_CACHE_MODE_UC_MINUS
),
1561 int set_memory_uc(unsigned long addr
, int numpages
)
1566 * for now UC MINUS. see comments in ioremap_nocache()
1568 ret
= reserve_memtype(__pa(addr
), __pa(addr
) + numpages
* PAGE_SIZE
,
1569 _PAGE_CACHE_MODE_UC_MINUS
, NULL
);
1573 ret
= _set_memory_uc(addr
, numpages
);
1580 free_memtype(__pa(addr
), __pa(addr
) + numpages
* PAGE_SIZE
);
1584 EXPORT_SYMBOL(set_memory_uc
);
1586 static int _set_memory_array(unsigned long *addr
, int addrinarray
,
1587 enum page_cache_mode new_type
)
1589 enum page_cache_mode set_type
;
1593 for (i
= 0; i
< addrinarray
; i
++) {
1594 ret
= reserve_memtype(__pa(addr
[i
]), __pa(addr
[i
]) + PAGE_SIZE
,
1600 /* If WC, set to UC- first and then WC */
1601 set_type
= (new_type
== _PAGE_CACHE_MODE_WC
) ?
1602 _PAGE_CACHE_MODE_UC_MINUS
: new_type
;
1604 ret
= change_page_attr_set(addr
, addrinarray
,
1605 cachemode2pgprot(set_type
), 1);
1607 if (!ret
&& new_type
== _PAGE_CACHE_MODE_WC
)
1608 ret
= change_page_attr_set_clr(addr
, addrinarray
,
1610 _PAGE_CACHE_MODE_WC
),
1611 __pgprot(_PAGE_CACHE_MASK
),
1612 0, CPA_ARRAY
, NULL
);
1619 for (j
= 0; j
< i
; j
++)
1620 free_memtype(__pa(addr
[j
]), __pa(addr
[j
]) + PAGE_SIZE
);
1625 int set_memory_array_uc(unsigned long *addr
, int addrinarray
)
1627 return _set_memory_array(addr
, addrinarray
, _PAGE_CACHE_MODE_UC_MINUS
);
1629 EXPORT_SYMBOL(set_memory_array_uc
);
1631 int set_memory_array_wc(unsigned long *addr
, int addrinarray
)
1633 return _set_memory_array(addr
, addrinarray
, _PAGE_CACHE_MODE_WC
);
1635 EXPORT_SYMBOL(set_memory_array_wc
);
1637 int set_memory_array_wt(unsigned long *addr
, int addrinarray
)
1639 return _set_memory_array(addr
, addrinarray
, _PAGE_CACHE_MODE_WT
);
1641 EXPORT_SYMBOL_GPL(set_memory_array_wt
);
1643 int _set_memory_wc(unsigned long addr
, int numpages
)
1646 unsigned long addr_copy
= addr
;
1648 ret
= change_page_attr_set(&addr
, numpages
,
1649 cachemode2pgprot(_PAGE_CACHE_MODE_UC_MINUS
),
1652 ret
= change_page_attr_set_clr(&addr_copy
, numpages
,
1654 _PAGE_CACHE_MODE_WC
),
1655 __pgprot(_PAGE_CACHE_MASK
),
1661 int set_memory_wc(unsigned long addr
, int numpages
)
1665 ret
= reserve_memtype(__pa(addr
), __pa(addr
) + numpages
* PAGE_SIZE
,
1666 _PAGE_CACHE_MODE_WC
, NULL
);
1670 ret
= _set_memory_wc(addr
, numpages
);
1672 free_memtype(__pa(addr
), __pa(addr
) + numpages
* PAGE_SIZE
);
1676 EXPORT_SYMBOL(set_memory_wc
);
1678 int _set_memory_wt(unsigned long addr
, int numpages
)
1680 return change_page_attr_set(&addr
, numpages
,
1681 cachemode2pgprot(_PAGE_CACHE_MODE_WT
), 0);
1684 int set_memory_wt(unsigned long addr
, int numpages
)
1688 ret
= reserve_memtype(__pa(addr
), __pa(addr
) + numpages
* PAGE_SIZE
,
1689 _PAGE_CACHE_MODE_WT
, NULL
);
1693 ret
= _set_memory_wt(addr
, numpages
);
1695 free_memtype(__pa(addr
), __pa(addr
) + numpages
* PAGE_SIZE
);
1699 EXPORT_SYMBOL_GPL(set_memory_wt
);
1701 int _set_memory_wb(unsigned long addr
, int numpages
)
1703 /* WB cache mode is hard wired to all cache attribute bits being 0 */
1704 return change_page_attr_clear(&addr
, numpages
,
1705 __pgprot(_PAGE_CACHE_MASK
), 0);
1708 int set_memory_wb(unsigned long addr
, int numpages
)
1712 ret
= _set_memory_wb(addr
, numpages
);
1716 free_memtype(__pa(addr
), __pa(addr
) + numpages
* PAGE_SIZE
);
1719 EXPORT_SYMBOL(set_memory_wb
);
1721 int set_memory_array_wb(unsigned long *addr
, int addrinarray
)
1726 /* WB cache mode is hard wired to all cache attribute bits being 0 */
1727 ret
= change_page_attr_clear(addr
, addrinarray
,
1728 __pgprot(_PAGE_CACHE_MASK
), 1);
1732 for (i
= 0; i
< addrinarray
; i
++)
1733 free_memtype(__pa(addr
[i
]), __pa(addr
[i
]) + PAGE_SIZE
);
1737 EXPORT_SYMBOL(set_memory_array_wb
);
1739 int set_memory_x(unsigned long addr
, int numpages
)
1741 if (!(__supported_pte_mask
& _PAGE_NX
))
1744 return change_page_attr_clear(&addr
, numpages
, __pgprot(_PAGE_NX
), 0);
1746 EXPORT_SYMBOL(set_memory_x
);
1748 int set_memory_nx(unsigned long addr
, int numpages
)
1750 if (!(__supported_pte_mask
& _PAGE_NX
))
1753 return change_page_attr_set(&addr
, numpages
, __pgprot(_PAGE_NX
), 0);
1755 EXPORT_SYMBOL(set_memory_nx
);
1757 int set_memory_ro(unsigned long addr
, int numpages
)
1759 return change_page_attr_clear(&addr
, numpages
, __pgprot(_PAGE_RW
), 0);
1762 int set_memory_rw(unsigned long addr
, int numpages
)
1764 return change_page_attr_set(&addr
, numpages
, __pgprot(_PAGE_RW
), 0);
1767 int set_memory_np(unsigned long addr
, int numpages
)
1769 return change_page_attr_clear(&addr
, numpages
, __pgprot(_PAGE_PRESENT
), 0);
1772 int set_memory_4k(unsigned long addr
, int numpages
)
1774 return change_page_attr_set_clr(&addr
, numpages
, __pgprot(0),
1775 __pgprot(0), 1, 0, NULL
);
1778 static int __set_memory_enc_dec(unsigned long addr
, int numpages
, bool enc
)
1780 struct cpa_data cpa
;
1781 unsigned long start
;
1784 /* Nothing to do if memory encryption is not active */
1785 if (!mem_encrypt_active())
1788 /* Should not be working on unaligned addresses */
1789 if (WARN_ONCE(addr
& ~PAGE_MASK
, "misaligned address: %#lx\n", addr
))
1794 memset(&cpa
, 0, sizeof(cpa
));
1796 cpa
.numpages
= numpages
;
1797 cpa
.mask_set
= enc
? __pgprot(_PAGE_ENC
) : __pgprot(0);
1798 cpa
.mask_clr
= enc
? __pgprot(0) : __pgprot(_PAGE_ENC
);
1799 cpa
.pgd
= init_mm
.pgd
;
1801 /* Must avoid aliasing mappings in the highmem code */
1802 kmap_flush_unused();
1806 * Before changing the encryption attribute, we need to flush caches.
1808 if (static_cpu_has(X86_FEATURE_CLFLUSH
))
1809 cpa_flush_range(start
, numpages
, 1);
1813 ret
= __change_page_attr_set_clr(&cpa
, 1);
1816 * After changing the encryption attribute, we need to flush TLBs
1817 * again in case any speculative TLB caching occurred (but no need
1818 * to flush caches again). We could just use cpa_flush_all(), but
1819 * in case TLB flushing gets optimized in the cpa_flush_range()
1820 * path use the same logic as above.
1822 if (static_cpu_has(X86_FEATURE_CLFLUSH
))
1823 cpa_flush_range(start
, numpages
, 0);
1830 int set_memory_encrypted(unsigned long addr
, int numpages
)
1832 return __set_memory_enc_dec(addr
, numpages
, true);
1834 EXPORT_SYMBOL_GPL(set_memory_encrypted
);
1836 int set_memory_decrypted(unsigned long addr
, int numpages
)
1838 return __set_memory_enc_dec(addr
, numpages
, false);
1840 EXPORT_SYMBOL_GPL(set_memory_decrypted
);
1842 int set_pages_uc(struct page
*page
, int numpages
)
1844 unsigned long addr
= (unsigned long)page_address(page
);
1846 return set_memory_uc(addr
, numpages
);
1848 EXPORT_SYMBOL(set_pages_uc
);
1850 static int _set_pages_array(struct page
**pages
, int addrinarray
,
1851 enum page_cache_mode new_type
)
1853 unsigned long start
;
1855 enum page_cache_mode set_type
;
1860 for (i
= 0; i
< addrinarray
; i
++) {
1861 if (PageHighMem(pages
[i
]))
1863 start
= page_to_pfn(pages
[i
]) << PAGE_SHIFT
;
1864 end
= start
+ PAGE_SIZE
;
1865 if (reserve_memtype(start
, end
, new_type
, NULL
))
1869 /* If WC, set to UC- first and then WC */
1870 set_type
= (new_type
== _PAGE_CACHE_MODE_WC
) ?
1871 _PAGE_CACHE_MODE_UC_MINUS
: new_type
;
1873 ret
= cpa_set_pages_array(pages
, addrinarray
,
1874 cachemode2pgprot(set_type
));
1875 if (!ret
&& new_type
== _PAGE_CACHE_MODE_WC
)
1876 ret
= change_page_attr_set_clr(NULL
, addrinarray
,
1878 _PAGE_CACHE_MODE_WC
),
1879 __pgprot(_PAGE_CACHE_MASK
),
1880 0, CPA_PAGES_ARRAY
, pages
);
1883 return 0; /* Success */
1886 for (i
= 0; i
< free_idx
; i
++) {
1887 if (PageHighMem(pages
[i
]))
1889 start
= page_to_pfn(pages
[i
]) << PAGE_SHIFT
;
1890 end
= start
+ PAGE_SIZE
;
1891 free_memtype(start
, end
);
1896 int set_pages_array_uc(struct page
**pages
, int addrinarray
)
1898 return _set_pages_array(pages
, addrinarray
, _PAGE_CACHE_MODE_UC_MINUS
);
1900 EXPORT_SYMBOL(set_pages_array_uc
);
1902 int set_pages_array_wc(struct page
**pages
, int addrinarray
)
1904 return _set_pages_array(pages
, addrinarray
, _PAGE_CACHE_MODE_WC
);
1906 EXPORT_SYMBOL(set_pages_array_wc
);
1908 int set_pages_array_wt(struct page
**pages
, int addrinarray
)
1910 return _set_pages_array(pages
, addrinarray
, _PAGE_CACHE_MODE_WT
);
1912 EXPORT_SYMBOL_GPL(set_pages_array_wt
);
1914 int set_pages_wb(struct page
*page
, int numpages
)
1916 unsigned long addr
= (unsigned long)page_address(page
);
1918 return set_memory_wb(addr
, numpages
);
1920 EXPORT_SYMBOL(set_pages_wb
);
1922 int set_pages_array_wb(struct page
**pages
, int addrinarray
)
1925 unsigned long start
;
1929 /* WB cache mode is hard wired to all cache attribute bits being 0 */
1930 retval
= cpa_clear_pages_array(pages
, addrinarray
,
1931 __pgprot(_PAGE_CACHE_MASK
));
1935 for (i
= 0; i
< addrinarray
; i
++) {
1936 if (PageHighMem(pages
[i
]))
1938 start
= page_to_pfn(pages
[i
]) << PAGE_SHIFT
;
1939 end
= start
+ PAGE_SIZE
;
1940 free_memtype(start
, end
);
1945 EXPORT_SYMBOL(set_pages_array_wb
);
1947 int set_pages_x(struct page
*page
, int numpages
)
1949 unsigned long addr
= (unsigned long)page_address(page
);
1951 return set_memory_x(addr
, numpages
);
1953 EXPORT_SYMBOL(set_pages_x
);
1955 int set_pages_nx(struct page
*page
, int numpages
)
1957 unsigned long addr
= (unsigned long)page_address(page
);
1959 return set_memory_nx(addr
, numpages
);
1961 EXPORT_SYMBOL(set_pages_nx
);
1963 int set_pages_ro(struct page
*page
, int numpages
)
1965 unsigned long addr
= (unsigned long)page_address(page
);
1967 return set_memory_ro(addr
, numpages
);
1970 int set_pages_rw(struct page
*page
, int numpages
)
1972 unsigned long addr
= (unsigned long)page_address(page
);
1974 return set_memory_rw(addr
, numpages
);
1977 #ifdef CONFIG_DEBUG_PAGEALLOC
1979 static int __set_pages_p(struct page
*page
, int numpages
)
1981 unsigned long tempaddr
= (unsigned long) page_address(page
);
1982 struct cpa_data cpa
= { .vaddr
= &tempaddr
,
1984 .numpages
= numpages
,
1985 .mask_set
= __pgprot(_PAGE_PRESENT
| _PAGE_RW
),
1986 .mask_clr
= __pgprot(0),
1990 * No alias checking needed for setting present flag. otherwise,
1991 * we may need to break large pages for 64-bit kernel text
1992 * mappings (this adds to complexity if we want to do this from
1993 * atomic context especially). Let's keep it simple!
1995 return __change_page_attr_set_clr(&cpa
, 0);
1998 static int __set_pages_np(struct page
*page
, int numpages
)
2000 unsigned long tempaddr
= (unsigned long) page_address(page
);
2001 struct cpa_data cpa
= { .vaddr
= &tempaddr
,
2003 .numpages
= numpages
,
2004 .mask_set
= __pgprot(0),
2005 .mask_clr
= __pgprot(_PAGE_PRESENT
| _PAGE_RW
),
2009 * No alias checking needed for setting not present flag. otherwise,
2010 * we may need to break large pages for 64-bit kernel text
2011 * mappings (this adds to complexity if we want to do this from
2012 * atomic context especially). Let's keep it simple!
2014 return __change_page_attr_set_clr(&cpa
, 0);
2017 void __kernel_map_pages(struct page
*page
, int numpages
, int enable
)
2019 if (PageHighMem(page
))
2022 debug_check_no_locks_freed(page_address(page
),
2023 numpages
* PAGE_SIZE
);
2027 * The return value is ignored as the calls cannot fail.
2028 * Large pages for identity mappings are not used at boot time
2029 * and hence no memory allocations during large page split.
2032 __set_pages_p(page
, numpages
);
2034 __set_pages_np(page
, numpages
);
2037 * We should perform an IPI and flush all tlbs,
2038 * but that can deadlock->flush only current cpu:
2042 arch_flush_lazy_mmu_mode();
2045 #ifdef CONFIG_HIBERNATION
2047 bool kernel_page_present(struct page
*page
)
2052 if (PageHighMem(page
))
2055 pte
= lookup_address((unsigned long)page_address(page
), &level
);
2056 return (pte_val(*pte
) & _PAGE_PRESENT
);
2059 #endif /* CONFIG_HIBERNATION */
2061 #endif /* CONFIG_DEBUG_PAGEALLOC */
2063 int kernel_map_pages_in_pgd(pgd_t
*pgd
, u64 pfn
, unsigned long address
,
2064 unsigned numpages
, unsigned long page_flags
)
2066 int retval
= -EINVAL
;
2068 struct cpa_data cpa
= {
2072 .numpages
= numpages
,
2073 .mask_set
= __pgprot(0),
2074 .mask_clr
= __pgprot(0),
2078 if (!(__supported_pte_mask
& _PAGE_NX
))
2081 if (!(page_flags
& _PAGE_NX
))
2082 cpa
.mask_clr
= __pgprot(_PAGE_NX
);
2084 if (!(page_flags
& _PAGE_RW
))
2085 cpa
.mask_clr
= __pgprot(_PAGE_RW
);
2087 if (!(page_flags
& _PAGE_ENC
))
2088 cpa
.mask_clr
= pgprot_encrypted(cpa
.mask_clr
);
2090 cpa
.mask_set
= __pgprot(_PAGE_PRESENT
| page_flags
);
2092 retval
= __change_page_attr_set_clr(&cpa
, 0);
2100 * The testcases use internal knowledge of the implementation that shouldn't
2101 * be exposed to the rest of the kernel. Include these directly here.
2103 #ifdef CONFIG_CPA_DEBUG
2104 #include "pageattr-test.c"