Merge tag 'for_linus' of git://git.kernel.org/pub/scm/linux/kernel/git/mst/vhost
[cris-mirror.git] / arch / x86 / mm / pageattr.c
blob85cf12219dea4a679158c7e6a8ea72be8e93ff2a
1 /*
2 * Copyright 2002 Andi Kleen, SuSE Labs.
3 * Thanks to Ben LaHaise for precious feedback.
4 */
5 #include <linux/highmem.h>
6 #include <linux/bootmem.h>
7 #include <linux/sched.h>
8 #include <linux/mm.h>
9 #include <linux/interrupt.h>
10 #include <linux/seq_file.h>
11 #include <linux/debugfs.h>
12 #include <linux/pfn.h>
13 #include <linux/percpu.h>
14 #include <linux/gfp.h>
15 #include <linux/pci.h>
16 #include <linux/vmalloc.h>
18 #include <asm/e820/api.h>
19 #include <asm/processor.h>
20 #include <asm/tlbflush.h>
21 #include <asm/sections.h>
22 #include <asm/setup.h>
23 #include <linux/uaccess.h>
24 #include <asm/pgalloc.h>
25 #include <asm/proto.h>
26 #include <asm/pat.h>
27 #include <asm/set_memory.h>
30 * The current flushing context - we pass it instead of 5 arguments:
32 struct cpa_data {
33 unsigned long *vaddr;
34 pgd_t *pgd;
35 pgprot_t mask_set;
36 pgprot_t mask_clr;
37 unsigned long numpages;
38 int flags;
39 unsigned long pfn;
40 unsigned force_split : 1;
41 int curpage;
42 struct page **pages;
46 * Serialize cpa() (for !DEBUG_PAGEALLOC which uses large identity mappings)
47 * using cpa_lock. So that we don't allow any other cpu, with stale large tlb
48 * entries change the page attribute in parallel to some other cpu
49 * splitting a large page entry along with changing the attribute.
51 static DEFINE_SPINLOCK(cpa_lock);
53 #define CPA_FLUSHTLB 1
54 #define CPA_ARRAY 2
55 #define CPA_PAGES_ARRAY 4
57 #ifdef CONFIG_PROC_FS
58 static unsigned long direct_pages_count[PG_LEVEL_NUM];
60 void update_page_count(int level, unsigned long pages)
62 /* Protect against CPA */
63 spin_lock(&pgd_lock);
64 direct_pages_count[level] += pages;
65 spin_unlock(&pgd_lock);
68 static void split_page_count(int level)
70 if (direct_pages_count[level] == 0)
71 return;
73 direct_pages_count[level]--;
74 direct_pages_count[level - 1] += PTRS_PER_PTE;
77 void arch_report_meminfo(struct seq_file *m)
79 seq_printf(m, "DirectMap4k: %8lu kB\n",
80 direct_pages_count[PG_LEVEL_4K] << 2);
81 #if defined(CONFIG_X86_64) || defined(CONFIG_X86_PAE)
82 seq_printf(m, "DirectMap2M: %8lu kB\n",
83 direct_pages_count[PG_LEVEL_2M] << 11);
84 #else
85 seq_printf(m, "DirectMap4M: %8lu kB\n",
86 direct_pages_count[PG_LEVEL_2M] << 12);
87 #endif
88 if (direct_gbpages)
89 seq_printf(m, "DirectMap1G: %8lu kB\n",
90 direct_pages_count[PG_LEVEL_1G] << 20);
92 #else
93 static inline void split_page_count(int level) { }
94 #endif
96 #ifdef CONFIG_X86_64
98 static inline unsigned long highmap_start_pfn(void)
100 return __pa_symbol(_text) >> PAGE_SHIFT;
103 static inline unsigned long highmap_end_pfn(void)
105 /* Do not reference physical address outside the kernel. */
106 return __pa_symbol(roundup(_brk_end, PMD_SIZE) - 1) >> PAGE_SHIFT;
109 #endif
111 static inline int
112 within(unsigned long addr, unsigned long start, unsigned long end)
114 return addr >= start && addr < end;
117 static inline int
118 within_inclusive(unsigned long addr, unsigned long start, unsigned long end)
120 return addr >= start && addr <= end;
124 * Flushing functions
128 * clflush_cache_range - flush a cache range with clflush
129 * @vaddr: virtual start address
130 * @size: number of bytes to flush
132 * clflushopt is an unordered instruction which needs fencing with mfence or
133 * sfence to avoid ordering issues.
135 void clflush_cache_range(void *vaddr, unsigned int size)
137 const unsigned long clflush_size = boot_cpu_data.x86_clflush_size;
138 void *p = (void *)((unsigned long)vaddr & ~(clflush_size - 1));
139 void *vend = vaddr + size;
141 if (p >= vend)
142 return;
144 mb();
146 for (; p < vend; p += clflush_size)
147 clflushopt(p);
149 mb();
151 EXPORT_SYMBOL_GPL(clflush_cache_range);
153 void arch_invalidate_pmem(void *addr, size_t size)
155 clflush_cache_range(addr, size);
157 EXPORT_SYMBOL_GPL(arch_invalidate_pmem);
159 static void __cpa_flush_all(void *arg)
161 unsigned long cache = (unsigned long)arg;
164 * Flush all to work around Errata in early athlons regarding
165 * large page flushing.
167 __flush_tlb_all();
169 if (cache && boot_cpu_data.x86 >= 4)
170 wbinvd();
173 static void cpa_flush_all(unsigned long cache)
175 BUG_ON(irqs_disabled());
177 on_each_cpu(__cpa_flush_all, (void *) cache, 1);
180 static void __cpa_flush_range(void *arg)
183 * We could optimize that further and do individual per page
184 * tlb invalidates for a low number of pages. Caveat: we must
185 * flush the high aliases on 64bit as well.
187 __flush_tlb_all();
190 static void cpa_flush_range(unsigned long start, int numpages, int cache)
192 unsigned int i, level;
193 unsigned long addr;
195 BUG_ON(irqs_disabled() && !early_boot_irqs_disabled);
196 WARN_ON(PAGE_ALIGN(start) != start);
198 on_each_cpu(__cpa_flush_range, NULL, 1);
200 if (!cache)
201 return;
204 * We only need to flush on one CPU,
205 * clflush is a MESI-coherent instruction that
206 * will cause all other CPUs to flush the same
207 * cachelines:
209 for (i = 0, addr = start; i < numpages; i++, addr += PAGE_SIZE) {
210 pte_t *pte = lookup_address(addr, &level);
213 * Only flush present addresses:
215 if (pte && (pte_val(*pte) & _PAGE_PRESENT))
216 clflush_cache_range((void *) addr, PAGE_SIZE);
220 static void cpa_flush_array(unsigned long *start, int numpages, int cache,
221 int in_flags, struct page **pages)
223 unsigned int i, level;
224 #ifdef CONFIG_PREEMPT
226 * Avoid wbinvd() because it causes latencies on all CPUs,
227 * regardless of any CPU isolation that may be in effect.
229 * This should be extended for CAT enabled systems independent of
230 * PREEMPT because wbinvd() does not respect the CAT partitions and
231 * this is exposed to unpriviledged users through the graphics
232 * subsystem.
234 unsigned long do_wbinvd = 0;
235 #else
236 unsigned long do_wbinvd = cache && numpages >= 1024; /* 4M threshold */
237 #endif
239 BUG_ON(irqs_disabled());
241 on_each_cpu(__cpa_flush_all, (void *) do_wbinvd, 1);
243 if (!cache || do_wbinvd)
244 return;
247 * We only need to flush on one CPU,
248 * clflush is a MESI-coherent instruction that
249 * will cause all other CPUs to flush the same
250 * cachelines:
252 for (i = 0; i < numpages; i++) {
253 unsigned long addr;
254 pte_t *pte;
256 if (in_flags & CPA_PAGES_ARRAY)
257 addr = (unsigned long)page_address(pages[i]);
258 else
259 addr = start[i];
261 pte = lookup_address(addr, &level);
264 * Only flush present addresses:
266 if (pte && (pte_val(*pte) & _PAGE_PRESENT))
267 clflush_cache_range((void *)addr, PAGE_SIZE);
272 * Certain areas of memory on x86 require very specific protection flags,
273 * for example the BIOS area or kernel text. Callers don't always get this
274 * right (again, ioremap() on BIOS memory is not uncommon) so this function
275 * checks and fixes these known static required protection bits.
277 static inline pgprot_t static_protections(pgprot_t prot, unsigned long address,
278 unsigned long pfn)
280 pgprot_t forbidden = __pgprot(0);
283 * The BIOS area between 640k and 1Mb needs to be executable for
284 * PCI BIOS based config access (CONFIG_PCI_GOBIOS) support.
286 #ifdef CONFIG_PCI_BIOS
287 if (pcibios_enabled && within(pfn, BIOS_BEGIN >> PAGE_SHIFT, BIOS_END >> PAGE_SHIFT))
288 pgprot_val(forbidden) |= _PAGE_NX;
289 #endif
292 * The kernel text needs to be executable for obvious reasons
293 * Does not cover __inittext since that is gone later on. On
294 * 64bit we do not enforce !NX on the low mapping
296 if (within(address, (unsigned long)_text, (unsigned long)_etext))
297 pgprot_val(forbidden) |= _PAGE_NX;
300 * The .rodata section needs to be read-only. Using the pfn
301 * catches all aliases.
303 if (within(pfn, __pa_symbol(__start_rodata) >> PAGE_SHIFT,
304 __pa_symbol(__end_rodata) >> PAGE_SHIFT))
305 pgprot_val(forbidden) |= _PAGE_RW;
307 #if defined(CONFIG_X86_64)
309 * Once the kernel maps the text as RO (kernel_set_to_readonly is set),
310 * kernel text mappings for the large page aligned text, rodata sections
311 * will be always read-only. For the kernel identity mappings covering
312 * the holes caused by this alignment can be anything that user asks.
314 * This will preserve the large page mappings for kernel text/data
315 * at no extra cost.
317 if (kernel_set_to_readonly &&
318 within(address, (unsigned long)_text,
319 (unsigned long)__end_rodata_hpage_align)) {
320 unsigned int level;
323 * Don't enforce the !RW mapping for the kernel text mapping,
324 * if the current mapping is already using small page mapping.
325 * No need to work hard to preserve large page mappings in this
326 * case.
328 * This also fixes the Linux Xen paravirt guest boot failure
329 * (because of unexpected read-only mappings for kernel identity
330 * mappings). In this paravirt guest case, the kernel text
331 * mapping and the kernel identity mapping share the same
332 * page-table pages. Thus we can't really use different
333 * protections for the kernel text and identity mappings. Also,
334 * these shared mappings are made of small page mappings.
335 * Thus this don't enforce !RW mapping for small page kernel
336 * text mapping logic will help Linux Xen parvirt guest boot
337 * as well.
339 if (lookup_address(address, &level) && (level != PG_LEVEL_4K))
340 pgprot_val(forbidden) |= _PAGE_RW;
342 #endif
344 prot = __pgprot(pgprot_val(prot) & ~pgprot_val(forbidden));
346 return prot;
350 * Lookup the page table entry for a virtual address in a specific pgd.
351 * Return a pointer to the entry and the level of the mapping.
353 pte_t *lookup_address_in_pgd(pgd_t *pgd, unsigned long address,
354 unsigned int *level)
356 p4d_t *p4d;
357 pud_t *pud;
358 pmd_t *pmd;
360 *level = PG_LEVEL_NONE;
362 if (pgd_none(*pgd))
363 return NULL;
365 p4d = p4d_offset(pgd, address);
366 if (p4d_none(*p4d))
367 return NULL;
369 *level = PG_LEVEL_512G;
370 if (p4d_large(*p4d) || !p4d_present(*p4d))
371 return (pte_t *)p4d;
373 pud = pud_offset(p4d, address);
374 if (pud_none(*pud))
375 return NULL;
377 *level = PG_LEVEL_1G;
378 if (pud_large(*pud) || !pud_present(*pud))
379 return (pte_t *)pud;
381 pmd = pmd_offset(pud, address);
382 if (pmd_none(*pmd))
383 return NULL;
385 *level = PG_LEVEL_2M;
386 if (pmd_large(*pmd) || !pmd_present(*pmd))
387 return (pte_t *)pmd;
389 *level = PG_LEVEL_4K;
391 return pte_offset_kernel(pmd, address);
395 * Lookup the page table entry for a virtual address. Return a pointer
396 * to the entry and the level of the mapping.
398 * Note: We return pud and pmd either when the entry is marked large
399 * or when the present bit is not set. Otherwise we would return a
400 * pointer to a nonexisting mapping.
402 pte_t *lookup_address(unsigned long address, unsigned int *level)
404 return lookup_address_in_pgd(pgd_offset_k(address), address, level);
406 EXPORT_SYMBOL_GPL(lookup_address);
408 static pte_t *_lookup_address_cpa(struct cpa_data *cpa, unsigned long address,
409 unsigned int *level)
411 if (cpa->pgd)
412 return lookup_address_in_pgd(cpa->pgd + pgd_index(address),
413 address, level);
415 return lookup_address(address, level);
419 * Lookup the PMD entry for a virtual address. Return a pointer to the entry
420 * or NULL if not present.
422 pmd_t *lookup_pmd_address(unsigned long address)
424 pgd_t *pgd;
425 p4d_t *p4d;
426 pud_t *pud;
428 pgd = pgd_offset_k(address);
429 if (pgd_none(*pgd))
430 return NULL;
432 p4d = p4d_offset(pgd, address);
433 if (p4d_none(*p4d) || p4d_large(*p4d) || !p4d_present(*p4d))
434 return NULL;
436 pud = pud_offset(p4d, address);
437 if (pud_none(*pud) || pud_large(*pud) || !pud_present(*pud))
438 return NULL;
440 return pmd_offset(pud, address);
444 * This is necessary because __pa() does not work on some
445 * kinds of memory, like vmalloc() or the alloc_remap()
446 * areas on 32-bit NUMA systems. The percpu areas can
447 * end up in this kind of memory, for instance.
449 * This could be optimized, but it is only intended to be
450 * used at inititalization time, and keeping it
451 * unoptimized should increase the testing coverage for
452 * the more obscure platforms.
454 phys_addr_t slow_virt_to_phys(void *__virt_addr)
456 unsigned long virt_addr = (unsigned long)__virt_addr;
457 phys_addr_t phys_addr;
458 unsigned long offset;
459 enum pg_level level;
460 pte_t *pte;
462 pte = lookup_address(virt_addr, &level);
463 BUG_ON(!pte);
466 * pXX_pfn() returns unsigned long, which must be cast to phys_addr_t
467 * before being left-shifted PAGE_SHIFT bits -- this trick is to
468 * make 32-PAE kernel work correctly.
470 switch (level) {
471 case PG_LEVEL_1G:
472 phys_addr = (phys_addr_t)pud_pfn(*(pud_t *)pte) << PAGE_SHIFT;
473 offset = virt_addr & ~PUD_PAGE_MASK;
474 break;
475 case PG_LEVEL_2M:
476 phys_addr = (phys_addr_t)pmd_pfn(*(pmd_t *)pte) << PAGE_SHIFT;
477 offset = virt_addr & ~PMD_PAGE_MASK;
478 break;
479 default:
480 phys_addr = (phys_addr_t)pte_pfn(*pte) << PAGE_SHIFT;
481 offset = virt_addr & ~PAGE_MASK;
484 return (phys_addr_t)(phys_addr | offset);
486 EXPORT_SYMBOL_GPL(slow_virt_to_phys);
489 * Set the new pmd in all the pgds we know about:
491 static void __set_pmd_pte(pte_t *kpte, unsigned long address, pte_t pte)
493 /* change init_mm */
494 set_pte_atomic(kpte, pte);
495 #ifdef CONFIG_X86_32
496 if (!SHARED_KERNEL_PMD) {
497 struct page *page;
499 list_for_each_entry(page, &pgd_list, lru) {
500 pgd_t *pgd;
501 p4d_t *p4d;
502 pud_t *pud;
503 pmd_t *pmd;
505 pgd = (pgd_t *)page_address(page) + pgd_index(address);
506 p4d = p4d_offset(pgd, address);
507 pud = pud_offset(p4d, address);
508 pmd = pmd_offset(pud, address);
509 set_pte_atomic((pte_t *)pmd, pte);
512 #endif
515 static int
516 try_preserve_large_page(pte_t *kpte, unsigned long address,
517 struct cpa_data *cpa)
519 unsigned long nextpage_addr, numpages, pmask, psize, addr, pfn, old_pfn;
520 pte_t new_pte, old_pte, *tmp;
521 pgprot_t old_prot, new_prot, req_prot;
522 int i, do_split = 1;
523 enum pg_level level;
525 if (cpa->force_split)
526 return 1;
528 spin_lock(&pgd_lock);
530 * Check for races, another CPU might have split this page
531 * up already:
533 tmp = _lookup_address_cpa(cpa, address, &level);
534 if (tmp != kpte)
535 goto out_unlock;
537 switch (level) {
538 case PG_LEVEL_2M:
539 old_prot = pmd_pgprot(*(pmd_t *)kpte);
540 old_pfn = pmd_pfn(*(pmd_t *)kpte);
541 break;
542 case PG_LEVEL_1G:
543 old_prot = pud_pgprot(*(pud_t *)kpte);
544 old_pfn = pud_pfn(*(pud_t *)kpte);
545 break;
546 default:
547 do_split = -EINVAL;
548 goto out_unlock;
551 psize = page_level_size(level);
552 pmask = page_level_mask(level);
555 * Calculate the number of pages, which fit into this large
556 * page starting at address:
558 nextpage_addr = (address + psize) & pmask;
559 numpages = (nextpage_addr - address) >> PAGE_SHIFT;
560 if (numpages < cpa->numpages)
561 cpa->numpages = numpages;
564 * We are safe now. Check whether the new pgprot is the same:
565 * Convert protection attributes to 4k-format, as cpa->mask* are set
566 * up accordingly.
568 old_pte = *kpte;
569 req_prot = pgprot_large_2_4k(old_prot);
571 pgprot_val(req_prot) &= ~pgprot_val(cpa->mask_clr);
572 pgprot_val(req_prot) |= pgprot_val(cpa->mask_set);
575 * req_prot is in format of 4k pages. It must be converted to large
576 * page format: the caching mode includes the PAT bit located at
577 * different bit positions in the two formats.
579 req_prot = pgprot_4k_2_large(req_prot);
582 * Set the PSE and GLOBAL flags only if the PRESENT flag is
583 * set otherwise pmd_present/pmd_huge will return true even on
584 * a non present pmd. The canon_pgprot will clear _PAGE_GLOBAL
585 * for the ancient hardware that doesn't support it.
587 if (pgprot_val(req_prot) & _PAGE_PRESENT)
588 pgprot_val(req_prot) |= _PAGE_PSE | _PAGE_GLOBAL;
589 else
590 pgprot_val(req_prot) &= ~(_PAGE_PSE | _PAGE_GLOBAL);
592 req_prot = canon_pgprot(req_prot);
595 * old_pfn points to the large page base pfn. So we need
596 * to add the offset of the virtual address:
598 pfn = old_pfn + ((address & (psize - 1)) >> PAGE_SHIFT);
599 cpa->pfn = pfn;
601 new_prot = static_protections(req_prot, address, pfn);
604 * We need to check the full range, whether
605 * static_protection() requires a different pgprot for one of
606 * the pages in the range we try to preserve:
608 addr = address & pmask;
609 pfn = old_pfn;
610 for (i = 0; i < (psize >> PAGE_SHIFT); i++, addr += PAGE_SIZE, pfn++) {
611 pgprot_t chk_prot = static_protections(req_prot, addr, pfn);
613 if (pgprot_val(chk_prot) != pgprot_val(new_prot))
614 goto out_unlock;
618 * If there are no changes, return. maxpages has been updated
619 * above:
621 if (pgprot_val(new_prot) == pgprot_val(old_prot)) {
622 do_split = 0;
623 goto out_unlock;
627 * We need to change the attributes. Check, whether we can
628 * change the large page in one go. We request a split, when
629 * the address is not aligned and the number of pages is
630 * smaller than the number of pages in the large page. Note
631 * that we limited the number of possible pages already to
632 * the number of pages in the large page.
634 if (address == (address & pmask) && cpa->numpages == (psize >> PAGE_SHIFT)) {
636 * The address is aligned and the number of pages
637 * covers the full page.
639 new_pte = pfn_pte(old_pfn, new_prot);
640 __set_pmd_pte(kpte, address, new_pte);
641 cpa->flags |= CPA_FLUSHTLB;
642 do_split = 0;
645 out_unlock:
646 spin_unlock(&pgd_lock);
648 return do_split;
651 static int
652 __split_large_page(struct cpa_data *cpa, pte_t *kpte, unsigned long address,
653 struct page *base)
655 pte_t *pbase = (pte_t *)page_address(base);
656 unsigned long ref_pfn, pfn, pfninc = 1;
657 unsigned int i, level;
658 pte_t *tmp;
659 pgprot_t ref_prot;
661 spin_lock(&pgd_lock);
663 * Check for races, another CPU might have split this page
664 * up for us already:
666 tmp = _lookup_address_cpa(cpa, address, &level);
667 if (tmp != kpte) {
668 spin_unlock(&pgd_lock);
669 return 1;
672 paravirt_alloc_pte(&init_mm, page_to_pfn(base));
674 switch (level) {
675 case PG_LEVEL_2M:
676 ref_prot = pmd_pgprot(*(pmd_t *)kpte);
677 /* clear PSE and promote PAT bit to correct position */
678 ref_prot = pgprot_large_2_4k(ref_prot);
679 ref_pfn = pmd_pfn(*(pmd_t *)kpte);
680 break;
682 case PG_LEVEL_1G:
683 ref_prot = pud_pgprot(*(pud_t *)kpte);
684 ref_pfn = pud_pfn(*(pud_t *)kpte);
685 pfninc = PMD_PAGE_SIZE >> PAGE_SHIFT;
688 * Clear the PSE flags if the PRESENT flag is not set
689 * otherwise pmd_present/pmd_huge will return true
690 * even on a non present pmd.
692 if (!(pgprot_val(ref_prot) & _PAGE_PRESENT))
693 pgprot_val(ref_prot) &= ~_PAGE_PSE;
694 break;
696 default:
697 spin_unlock(&pgd_lock);
698 return 1;
702 * Set the GLOBAL flags only if the PRESENT flag is set
703 * otherwise pmd/pte_present will return true even on a non
704 * present pmd/pte. The canon_pgprot will clear _PAGE_GLOBAL
705 * for the ancient hardware that doesn't support it.
707 if (pgprot_val(ref_prot) & _PAGE_PRESENT)
708 pgprot_val(ref_prot) |= _PAGE_GLOBAL;
709 else
710 pgprot_val(ref_prot) &= ~_PAGE_GLOBAL;
713 * Get the target pfn from the original entry:
715 pfn = ref_pfn;
716 for (i = 0; i < PTRS_PER_PTE; i++, pfn += pfninc)
717 set_pte(&pbase[i], pfn_pte(pfn, canon_pgprot(ref_prot)));
719 if (virt_addr_valid(address)) {
720 unsigned long pfn = PFN_DOWN(__pa(address));
722 if (pfn_range_is_mapped(pfn, pfn + 1))
723 split_page_count(level);
727 * Install the new, split up pagetable.
729 * We use the standard kernel pagetable protections for the new
730 * pagetable protections, the actual ptes set above control the
731 * primary protection behavior:
733 __set_pmd_pte(kpte, address, mk_pte(base, __pgprot(_KERNPG_TABLE)));
736 * Intel Atom errata AAH41 workaround.
738 * The real fix should be in hw or in a microcode update, but
739 * we also probabilistically try to reduce the window of having
740 * a large TLB mixed with 4K TLBs while instruction fetches are
741 * going on.
743 __flush_tlb_all();
744 spin_unlock(&pgd_lock);
746 return 0;
749 static int split_large_page(struct cpa_data *cpa, pte_t *kpte,
750 unsigned long address)
752 struct page *base;
754 if (!debug_pagealloc_enabled())
755 spin_unlock(&cpa_lock);
756 base = alloc_pages(GFP_KERNEL, 0);
757 if (!debug_pagealloc_enabled())
758 spin_lock(&cpa_lock);
759 if (!base)
760 return -ENOMEM;
762 if (__split_large_page(cpa, kpte, address, base))
763 __free_page(base);
765 return 0;
768 static bool try_to_free_pte_page(pte_t *pte)
770 int i;
772 for (i = 0; i < PTRS_PER_PTE; i++)
773 if (!pte_none(pte[i]))
774 return false;
776 free_page((unsigned long)pte);
777 return true;
780 static bool try_to_free_pmd_page(pmd_t *pmd)
782 int i;
784 for (i = 0; i < PTRS_PER_PMD; i++)
785 if (!pmd_none(pmd[i]))
786 return false;
788 free_page((unsigned long)pmd);
789 return true;
792 static bool unmap_pte_range(pmd_t *pmd, unsigned long start, unsigned long end)
794 pte_t *pte = pte_offset_kernel(pmd, start);
796 while (start < end) {
797 set_pte(pte, __pte(0));
799 start += PAGE_SIZE;
800 pte++;
803 if (try_to_free_pte_page((pte_t *)pmd_page_vaddr(*pmd))) {
804 pmd_clear(pmd);
805 return true;
807 return false;
810 static void __unmap_pmd_range(pud_t *pud, pmd_t *pmd,
811 unsigned long start, unsigned long end)
813 if (unmap_pte_range(pmd, start, end))
814 if (try_to_free_pmd_page((pmd_t *)pud_page_vaddr(*pud)))
815 pud_clear(pud);
818 static void unmap_pmd_range(pud_t *pud, unsigned long start, unsigned long end)
820 pmd_t *pmd = pmd_offset(pud, start);
823 * Not on a 2MB page boundary?
825 if (start & (PMD_SIZE - 1)) {
826 unsigned long next_page = (start + PMD_SIZE) & PMD_MASK;
827 unsigned long pre_end = min_t(unsigned long, end, next_page);
829 __unmap_pmd_range(pud, pmd, start, pre_end);
831 start = pre_end;
832 pmd++;
836 * Try to unmap in 2M chunks.
838 while (end - start >= PMD_SIZE) {
839 if (pmd_large(*pmd))
840 pmd_clear(pmd);
841 else
842 __unmap_pmd_range(pud, pmd, start, start + PMD_SIZE);
844 start += PMD_SIZE;
845 pmd++;
849 * 4K leftovers?
851 if (start < end)
852 return __unmap_pmd_range(pud, pmd, start, end);
855 * Try again to free the PMD page if haven't succeeded above.
857 if (!pud_none(*pud))
858 if (try_to_free_pmd_page((pmd_t *)pud_page_vaddr(*pud)))
859 pud_clear(pud);
862 static void unmap_pud_range(p4d_t *p4d, unsigned long start, unsigned long end)
864 pud_t *pud = pud_offset(p4d, start);
867 * Not on a GB page boundary?
869 if (start & (PUD_SIZE - 1)) {
870 unsigned long next_page = (start + PUD_SIZE) & PUD_MASK;
871 unsigned long pre_end = min_t(unsigned long, end, next_page);
873 unmap_pmd_range(pud, start, pre_end);
875 start = pre_end;
876 pud++;
880 * Try to unmap in 1G chunks?
882 while (end - start >= PUD_SIZE) {
884 if (pud_large(*pud))
885 pud_clear(pud);
886 else
887 unmap_pmd_range(pud, start, start + PUD_SIZE);
889 start += PUD_SIZE;
890 pud++;
894 * 2M leftovers?
896 if (start < end)
897 unmap_pmd_range(pud, start, end);
900 * No need to try to free the PUD page because we'll free it in
901 * populate_pgd's error path
905 static int alloc_pte_page(pmd_t *pmd)
907 pte_t *pte = (pte_t *)get_zeroed_page(GFP_KERNEL);
908 if (!pte)
909 return -1;
911 set_pmd(pmd, __pmd(__pa(pte) | _KERNPG_TABLE));
912 return 0;
915 static int alloc_pmd_page(pud_t *pud)
917 pmd_t *pmd = (pmd_t *)get_zeroed_page(GFP_KERNEL);
918 if (!pmd)
919 return -1;
921 set_pud(pud, __pud(__pa(pmd) | _KERNPG_TABLE));
922 return 0;
925 static void populate_pte(struct cpa_data *cpa,
926 unsigned long start, unsigned long end,
927 unsigned num_pages, pmd_t *pmd, pgprot_t pgprot)
929 pte_t *pte;
931 pte = pte_offset_kernel(pmd, start);
934 * Set the GLOBAL flags only if the PRESENT flag is
935 * set otherwise pte_present will return true even on
936 * a non present pte. The canon_pgprot will clear
937 * _PAGE_GLOBAL for the ancient hardware that doesn't
938 * support it.
940 if (pgprot_val(pgprot) & _PAGE_PRESENT)
941 pgprot_val(pgprot) |= _PAGE_GLOBAL;
942 else
943 pgprot_val(pgprot) &= ~_PAGE_GLOBAL;
945 pgprot = canon_pgprot(pgprot);
947 while (num_pages-- && start < end) {
948 set_pte(pte, pfn_pte(cpa->pfn, pgprot));
950 start += PAGE_SIZE;
951 cpa->pfn++;
952 pte++;
956 static long populate_pmd(struct cpa_data *cpa,
957 unsigned long start, unsigned long end,
958 unsigned num_pages, pud_t *pud, pgprot_t pgprot)
960 long cur_pages = 0;
961 pmd_t *pmd;
962 pgprot_t pmd_pgprot;
965 * Not on a 2M boundary?
967 if (start & (PMD_SIZE - 1)) {
968 unsigned long pre_end = start + (num_pages << PAGE_SHIFT);
969 unsigned long next_page = (start + PMD_SIZE) & PMD_MASK;
971 pre_end = min_t(unsigned long, pre_end, next_page);
972 cur_pages = (pre_end - start) >> PAGE_SHIFT;
973 cur_pages = min_t(unsigned int, num_pages, cur_pages);
976 * Need a PTE page?
978 pmd = pmd_offset(pud, start);
979 if (pmd_none(*pmd))
980 if (alloc_pte_page(pmd))
981 return -1;
983 populate_pte(cpa, start, pre_end, cur_pages, pmd, pgprot);
985 start = pre_end;
989 * We mapped them all?
991 if (num_pages == cur_pages)
992 return cur_pages;
994 pmd_pgprot = pgprot_4k_2_large(pgprot);
996 while (end - start >= PMD_SIZE) {
999 * We cannot use a 1G page so allocate a PMD page if needed.
1001 if (pud_none(*pud))
1002 if (alloc_pmd_page(pud))
1003 return -1;
1005 pmd = pmd_offset(pud, start);
1007 set_pmd(pmd, __pmd(cpa->pfn << PAGE_SHIFT | _PAGE_PSE |
1008 massage_pgprot(pmd_pgprot)));
1010 start += PMD_SIZE;
1011 cpa->pfn += PMD_SIZE >> PAGE_SHIFT;
1012 cur_pages += PMD_SIZE >> PAGE_SHIFT;
1016 * Map trailing 4K pages.
1018 if (start < end) {
1019 pmd = pmd_offset(pud, start);
1020 if (pmd_none(*pmd))
1021 if (alloc_pte_page(pmd))
1022 return -1;
1024 populate_pte(cpa, start, end, num_pages - cur_pages,
1025 pmd, pgprot);
1027 return num_pages;
1030 static int populate_pud(struct cpa_data *cpa, unsigned long start, p4d_t *p4d,
1031 pgprot_t pgprot)
1033 pud_t *pud;
1034 unsigned long end;
1035 long cur_pages = 0;
1036 pgprot_t pud_pgprot;
1038 end = start + (cpa->numpages << PAGE_SHIFT);
1041 * Not on a Gb page boundary? => map everything up to it with
1042 * smaller pages.
1044 if (start & (PUD_SIZE - 1)) {
1045 unsigned long pre_end;
1046 unsigned long next_page = (start + PUD_SIZE) & PUD_MASK;
1048 pre_end = min_t(unsigned long, end, next_page);
1049 cur_pages = (pre_end - start) >> PAGE_SHIFT;
1050 cur_pages = min_t(int, (int)cpa->numpages, cur_pages);
1052 pud = pud_offset(p4d, start);
1055 * Need a PMD page?
1057 if (pud_none(*pud))
1058 if (alloc_pmd_page(pud))
1059 return -1;
1061 cur_pages = populate_pmd(cpa, start, pre_end, cur_pages,
1062 pud, pgprot);
1063 if (cur_pages < 0)
1064 return cur_pages;
1066 start = pre_end;
1069 /* We mapped them all? */
1070 if (cpa->numpages == cur_pages)
1071 return cur_pages;
1073 pud = pud_offset(p4d, start);
1074 pud_pgprot = pgprot_4k_2_large(pgprot);
1077 * Map everything starting from the Gb boundary, possibly with 1G pages
1079 while (boot_cpu_has(X86_FEATURE_GBPAGES) && end - start >= PUD_SIZE) {
1080 set_pud(pud, __pud(cpa->pfn << PAGE_SHIFT | _PAGE_PSE |
1081 massage_pgprot(pud_pgprot)));
1083 start += PUD_SIZE;
1084 cpa->pfn += PUD_SIZE >> PAGE_SHIFT;
1085 cur_pages += PUD_SIZE >> PAGE_SHIFT;
1086 pud++;
1089 /* Map trailing leftover */
1090 if (start < end) {
1091 long tmp;
1093 pud = pud_offset(p4d, start);
1094 if (pud_none(*pud))
1095 if (alloc_pmd_page(pud))
1096 return -1;
1098 tmp = populate_pmd(cpa, start, end, cpa->numpages - cur_pages,
1099 pud, pgprot);
1100 if (tmp < 0)
1101 return cur_pages;
1103 cur_pages += tmp;
1105 return cur_pages;
1109 * Restrictions for kernel page table do not necessarily apply when mapping in
1110 * an alternate PGD.
1112 static int populate_pgd(struct cpa_data *cpa, unsigned long addr)
1114 pgprot_t pgprot = __pgprot(_KERNPG_TABLE);
1115 pud_t *pud = NULL; /* shut up gcc */
1116 p4d_t *p4d;
1117 pgd_t *pgd_entry;
1118 long ret;
1120 pgd_entry = cpa->pgd + pgd_index(addr);
1122 if (pgd_none(*pgd_entry)) {
1123 p4d = (p4d_t *)get_zeroed_page(GFP_KERNEL);
1124 if (!p4d)
1125 return -1;
1127 set_pgd(pgd_entry, __pgd(__pa(p4d) | _KERNPG_TABLE));
1131 * Allocate a PUD page and hand it down for mapping.
1133 p4d = p4d_offset(pgd_entry, addr);
1134 if (p4d_none(*p4d)) {
1135 pud = (pud_t *)get_zeroed_page(GFP_KERNEL);
1136 if (!pud)
1137 return -1;
1139 set_p4d(p4d, __p4d(__pa(pud) | _KERNPG_TABLE));
1142 pgprot_val(pgprot) &= ~pgprot_val(cpa->mask_clr);
1143 pgprot_val(pgprot) |= pgprot_val(cpa->mask_set);
1145 ret = populate_pud(cpa, addr, p4d, pgprot);
1146 if (ret < 0) {
1148 * Leave the PUD page in place in case some other CPU or thread
1149 * already found it, but remove any useless entries we just
1150 * added to it.
1152 unmap_pud_range(p4d, addr,
1153 addr + (cpa->numpages << PAGE_SHIFT));
1154 return ret;
1157 cpa->numpages = ret;
1158 return 0;
1161 static int __cpa_process_fault(struct cpa_data *cpa, unsigned long vaddr,
1162 int primary)
1164 if (cpa->pgd) {
1166 * Right now, we only execute this code path when mapping
1167 * the EFI virtual memory map regions, no other users
1168 * provide a ->pgd value. This may change in the future.
1170 return populate_pgd(cpa, vaddr);
1174 * Ignore all non primary paths.
1176 if (!primary) {
1177 cpa->numpages = 1;
1178 return 0;
1182 * Ignore the NULL PTE for kernel identity mapping, as it is expected
1183 * to have holes.
1184 * Also set numpages to '1' indicating that we processed cpa req for
1185 * one virtual address page and its pfn. TBD: numpages can be set based
1186 * on the initial value and the level returned by lookup_address().
1188 if (within(vaddr, PAGE_OFFSET,
1189 PAGE_OFFSET + (max_pfn_mapped << PAGE_SHIFT))) {
1190 cpa->numpages = 1;
1191 cpa->pfn = __pa(vaddr) >> PAGE_SHIFT;
1192 return 0;
1193 } else {
1194 WARN(1, KERN_WARNING "CPA: called for zero pte. "
1195 "vaddr = %lx cpa->vaddr = %lx\n", vaddr,
1196 *cpa->vaddr);
1198 return -EFAULT;
1202 static int __change_page_attr(struct cpa_data *cpa, int primary)
1204 unsigned long address;
1205 int do_split, err;
1206 unsigned int level;
1207 pte_t *kpte, old_pte;
1209 if (cpa->flags & CPA_PAGES_ARRAY) {
1210 struct page *page = cpa->pages[cpa->curpage];
1211 if (unlikely(PageHighMem(page)))
1212 return 0;
1213 address = (unsigned long)page_address(page);
1214 } else if (cpa->flags & CPA_ARRAY)
1215 address = cpa->vaddr[cpa->curpage];
1216 else
1217 address = *cpa->vaddr;
1218 repeat:
1219 kpte = _lookup_address_cpa(cpa, address, &level);
1220 if (!kpte)
1221 return __cpa_process_fault(cpa, address, primary);
1223 old_pte = *kpte;
1224 if (pte_none(old_pte))
1225 return __cpa_process_fault(cpa, address, primary);
1227 if (level == PG_LEVEL_4K) {
1228 pte_t new_pte;
1229 pgprot_t new_prot = pte_pgprot(old_pte);
1230 unsigned long pfn = pte_pfn(old_pte);
1232 pgprot_val(new_prot) &= ~pgprot_val(cpa->mask_clr);
1233 pgprot_val(new_prot) |= pgprot_val(cpa->mask_set);
1235 new_prot = static_protections(new_prot, address, pfn);
1238 * Set the GLOBAL flags only if the PRESENT flag is
1239 * set otherwise pte_present will return true even on
1240 * a non present pte. The canon_pgprot will clear
1241 * _PAGE_GLOBAL for the ancient hardware that doesn't
1242 * support it.
1244 if (pgprot_val(new_prot) & _PAGE_PRESENT)
1245 pgprot_val(new_prot) |= _PAGE_GLOBAL;
1246 else
1247 pgprot_val(new_prot) &= ~_PAGE_GLOBAL;
1250 * We need to keep the pfn from the existing PTE,
1251 * after all we're only going to change it's attributes
1252 * not the memory it points to
1254 new_pte = pfn_pte(pfn, canon_pgprot(new_prot));
1255 cpa->pfn = pfn;
1257 * Do we really change anything ?
1259 if (pte_val(old_pte) != pte_val(new_pte)) {
1260 set_pte_atomic(kpte, new_pte);
1261 cpa->flags |= CPA_FLUSHTLB;
1263 cpa->numpages = 1;
1264 return 0;
1268 * Check, whether we can keep the large page intact
1269 * and just change the pte:
1271 do_split = try_preserve_large_page(kpte, address, cpa);
1273 * When the range fits into the existing large page,
1274 * return. cp->numpages and cpa->tlbflush have been updated in
1275 * try_large_page:
1277 if (do_split <= 0)
1278 return do_split;
1281 * We have to split the large page:
1283 err = split_large_page(cpa, kpte, address);
1284 if (!err) {
1286 * Do a global flush tlb after splitting the large page
1287 * and before we do the actual change page attribute in the PTE.
1289 * With out this, we violate the TLB application note, that says
1290 * "The TLBs may contain both ordinary and large-page
1291 * translations for a 4-KByte range of linear addresses. This
1292 * may occur if software modifies the paging structures so that
1293 * the page size used for the address range changes. If the two
1294 * translations differ with respect to page frame or attributes
1295 * (e.g., permissions), processor behavior is undefined and may
1296 * be implementation-specific."
1298 * We do this global tlb flush inside the cpa_lock, so that we
1299 * don't allow any other cpu, with stale tlb entries change the
1300 * page attribute in parallel, that also falls into the
1301 * just split large page entry.
1303 flush_tlb_all();
1304 goto repeat;
1307 return err;
1310 static int __change_page_attr_set_clr(struct cpa_data *cpa, int checkalias);
1312 static int cpa_process_alias(struct cpa_data *cpa)
1314 struct cpa_data alias_cpa;
1315 unsigned long laddr = (unsigned long)__va(cpa->pfn << PAGE_SHIFT);
1316 unsigned long vaddr;
1317 int ret;
1319 if (!pfn_range_is_mapped(cpa->pfn, cpa->pfn + 1))
1320 return 0;
1323 * No need to redo, when the primary call touched the direct
1324 * mapping already:
1326 if (cpa->flags & CPA_PAGES_ARRAY) {
1327 struct page *page = cpa->pages[cpa->curpage];
1328 if (unlikely(PageHighMem(page)))
1329 return 0;
1330 vaddr = (unsigned long)page_address(page);
1331 } else if (cpa->flags & CPA_ARRAY)
1332 vaddr = cpa->vaddr[cpa->curpage];
1333 else
1334 vaddr = *cpa->vaddr;
1336 if (!(within(vaddr, PAGE_OFFSET,
1337 PAGE_OFFSET + (max_pfn_mapped << PAGE_SHIFT)))) {
1339 alias_cpa = *cpa;
1340 alias_cpa.vaddr = &laddr;
1341 alias_cpa.flags &= ~(CPA_PAGES_ARRAY | CPA_ARRAY);
1343 ret = __change_page_attr_set_clr(&alias_cpa, 0);
1344 if (ret)
1345 return ret;
1348 #ifdef CONFIG_X86_64
1350 * If the primary call didn't touch the high mapping already
1351 * and the physical address is inside the kernel map, we need
1352 * to touch the high mapped kernel as well:
1354 if (!within(vaddr, (unsigned long)_text, _brk_end) &&
1355 within_inclusive(cpa->pfn, highmap_start_pfn(),
1356 highmap_end_pfn())) {
1357 unsigned long temp_cpa_vaddr = (cpa->pfn << PAGE_SHIFT) +
1358 __START_KERNEL_map - phys_base;
1359 alias_cpa = *cpa;
1360 alias_cpa.vaddr = &temp_cpa_vaddr;
1361 alias_cpa.flags &= ~(CPA_PAGES_ARRAY | CPA_ARRAY);
1364 * The high mapping range is imprecise, so ignore the
1365 * return value.
1367 __change_page_attr_set_clr(&alias_cpa, 0);
1369 #endif
1371 return 0;
1374 static int __change_page_attr_set_clr(struct cpa_data *cpa, int checkalias)
1376 unsigned long numpages = cpa->numpages;
1377 int ret;
1379 while (numpages) {
1381 * Store the remaining nr of pages for the large page
1382 * preservation check.
1384 cpa->numpages = numpages;
1385 /* for array changes, we can't use large page */
1386 if (cpa->flags & (CPA_ARRAY | CPA_PAGES_ARRAY))
1387 cpa->numpages = 1;
1389 if (!debug_pagealloc_enabled())
1390 spin_lock(&cpa_lock);
1391 ret = __change_page_attr(cpa, checkalias);
1392 if (!debug_pagealloc_enabled())
1393 spin_unlock(&cpa_lock);
1394 if (ret)
1395 return ret;
1397 if (checkalias) {
1398 ret = cpa_process_alias(cpa);
1399 if (ret)
1400 return ret;
1404 * Adjust the number of pages with the result of the
1405 * CPA operation. Either a large page has been
1406 * preserved or a single page update happened.
1408 BUG_ON(cpa->numpages > numpages || !cpa->numpages);
1409 numpages -= cpa->numpages;
1410 if (cpa->flags & (CPA_PAGES_ARRAY | CPA_ARRAY))
1411 cpa->curpage++;
1412 else
1413 *cpa->vaddr += cpa->numpages * PAGE_SIZE;
1416 return 0;
1419 static int change_page_attr_set_clr(unsigned long *addr, int numpages,
1420 pgprot_t mask_set, pgprot_t mask_clr,
1421 int force_split, int in_flag,
1422 struct page **pages)
1424 struct cpa_data cpa;
1425 int ret, cache, checkalias;
1426 unsigned long baddr = 0;
1428 memset(&cpa, 0, sizeof(cpa));
1431 * Check, if we are requested to change a not supported
1432 * feature:
1434 mask_set = canon_pgprot(mask_set);
1435 mask_clr = canon_pgprot(mask_clr);
1436 if (!pgprot_val(mask_set) && !pgprot_val(mask_clr) && !force_split)
1437 return 0;
1439 /* Ensure we are PAGE_SIZE aligned */
1440 if (in_flag & CPA_ARRAY) {
1441 int i;
1442 for (i = 0; i < numpages; i++) {
1443 if (addr[i] & ~PAGE_MASK) {
1444 addr[i] &= PAGE_MASK;
1445 WARN_ON_ONCE(1);
1448 } else if (!(in_flag & CPA_PAGES_ARRAY)) {
1450 * in_flag of CPA_PAGES_ARRAY implies it is aligned.
1451 * No need to cehck in that case
1453 if (*addr & ~PAGE_MASK) {
1454 *addr &= PAGE_MASK;
1456 * People should not be passing in unaligned addresses:
1458 WARN_ON_ONCE(1);
1461 * Save address for cache flush. *addr is modified in the call
1462 * to __change_page_attr_set_clr() below.
1464 baddr = *addr;
1467 /* Must avoid aliasing mappings in the highmem code */
1468 kmap_flush_unused();
1470 vm_unmap_aliases();
1472 cpa.vaddr = addr;
1473 cpa.pages = pages;
1474 cpa.numpages = numpages;
1475 cpa.mask_set = mask_set;
1476 cpa.mask_clr = mask_clr;
1477 cpa.flags = 0;
1478 cpa.curpage = 0;
1479 cpa.force_split = force_split;
1481 if (in_flag & (CPA_ARRAY | CPA_PAGES_ARRAY))
1482 cpa.flags |= in_flag;
1484 /* No alias checking for _NX bit modifications */
1485 checkalias = (pgprot_val(mask_set) | pgprot_val(mask_clr)) != _PAGE_NX;
1487 ret = __change_page_attr_set_clr(&cpa, checkalias);
1490 * Check whether we really changed something:
1492 if (!(cpa.flags & CPA_FLUSHTLB))
1493 goto out;
1496 * No need to flush, when we did not set any of the caching
1497 * attributes:
1499 cache = !!pgprot2cachemode(mask_set);
1502 * On success we use CLFLUSH, when the CPU supports it to
1503 * avoid the WBINVD. If the CPU does not support it and in the
1504 * error case we fall back to cpa_flush_all (which uses
1505 * WBINVD):
1507 if (!ret && boot_cpu_has(X86_FEATURE_CLFLUSH)) {
1508 if (cpa.flags & (CPA_PAGES_ARRAY | CPA_ARRAY)) {
1509 cpa_flush_array(addr, numpages, cache,
1510 cpa.flags, pages);
1511 } else
1512 cpa_flush_range(baddr, numpages, cache);
1513 } else
1514 cpa_flush_all(cache);
1516 out:
1517 return ret;
1520 static inline int change_page_attr_set(unsigned long *addr, int numpages,
1521 pgprot_t mask, int array)
1523 return change_page_attr_set_clr(addr, numpages, mask, __pgprot(0), 0,
1524 (array ? CPA_ARRAY : 0), NULL);
1527 static inline int change_page_attr_clear(unsigned long *addr, int numpages,
1528 pgprot_t mask, int array)
1530 return change_page_attr_set_clr(addr, numpages, __pgprot(0), mask, 0,
1531 (array ? CPA_ARRAY : 0), NULL);
1534 static inline int cpa_set_pages_array(struct page **pages, int numpages,
1535 pgprot_t mask)
1537 return change_page_attr_set_clr(NULL, numpages, mask, __pgprot(0), 0,
1538 CPA_PAGES_ARRAY, pages);
1541 static inline int cpa_clear_pages_array(struct page **pages, int numpages,
1542 pgprot_t mask)
1544 return change_page_attr_set_clr(NULL, numpages, __pgprot(0), mask, 0,
1545 CPA_PAGES_ARRAY, pages);
1548 int _set_memory_uc(unsigned long addr, int numpages)
1551 * for now UC MINUS. see comments in ioremap_nocache()
1552 * If you really need strong UC use ioremap_uc(), but note
1553 * that you cannot override IO areas with set_memory_*() as
1554 * these helpers cannot work with IO memory.
1556 return change_page_attr_set(&addr, numpages,
1557 cachemode2pgprot(_PAGE_CACHE_MODE_UC_MINUS),
1561 int set_memory_uc(unsigned long addr, int numpages)
1563 int ret;
1566 * for now UC MINUS. see comments in ioremap_nocache()
1568 ret = reserve_memtype(__pa(addr), __pa(addr) + numpages * PAGE_SIZE,
1569 _PAGE_CACHE_MODE_UC_MINUS, NULL);
1570 if (ret)
1571 goto out_err;
1573 ret = _set_memory_uc(addr, numpages);
1574 if (ret)
1575 goto out_free;
1577 return 0;
1579 out_free:
1580 free_memtype(__pa(addr), __pa(addr) + numpages * PAGE_SIZE);
1581 out_err:
1582 return ret;
1584 EXPORT_SYMBOL(set_memory_uc);
1586 static int _set_memory_array(unsigned long *addr, int addrinarray,
1587 enum page_cache_mode new_type)
1589 enum page_cache_mode set_type;
1590 int i, j;
1591 int ret;
1593 for (i = 0; i < addrinarray; i++) {
1594 ret = reserve_memtype(__pa(addr[i]), __pa(addr[i]) + PAGE_SIZE,
1595 new_type, NULL);
1596 if (ret)
1597 goto out_free;
1600 /* If WC, set to UC- first and then WC */
1601 set_type = (new_type == _PAGE_CACHE_MODE_WC) ?
1602 _PAGE_CACHE_MODE_UC_MINUS : new_type;
1604 ret = change_page_attr_set(addr, addrinarray,
1605 cachemode2pgprot(set_type), 1);
1607 if (!ret && new_type == _PAGE_CACHE_MODE_WC)
1608 ret = change_page_attr_set_clr(addr, addrinarray,
1609 cachemode2pgprot(
1610 _PAGE_CACHE_MODE_WC),
1611 __pgprot(_PAGE_CACHE_MASK),
1612 0, CPA_ARRAY, NULL);
1613 if (ret)
1614 goto out_free;
1616 return 0;
1618 out_free:
1619 for (j = 0; j < i; j++)
1620 free_memtype(__pa(addr[j]), __pa(addr[j]) + PAGE_SIZE);
1622 return ret;
1625 int set_memory_array_uc(unsigned long *addr, int addrinarray)
1627 return _set_memory_array(addr, addrinarray, _PAGE_CACHE_MODE_UC_MINUS);
1629 EXPORT_SYMBOL(set_memory_array_uc);
1631 int set_memory_array_wc(unsigned long *addr, int addrinarray)
1633 return _set_memory_array(addr, addrinarray, _PAGE_CACHE_MODE_WC);
1635 EXPORT_SYMBOL(set_memory_array_wc);
1637 int set_memory_array_wt(unsigned long *addr, int addrinarray)
1639 return _set_memory_array(addr, addrinarray, _PAGE_CACHE_MODE_WT);
1641 EXPORT_SYMBOL_GPL(set_memory_array_wt);
1643 int _set_memory_wc(unsigned long addr, int numpages)
1645 int ret;
1646 unsigned long addr_copy = addr;
1648 ret = change_page_attr_set(&addr, numpages,
1649 cachemode2pgprot(_PAGE_CACHE_MODE_UC_MINUS),
1651 if (!ret) {
1652 ret = change_page_attr_set_clr(&addr_copy, numpages,
1653 cachemode2pgprot(
1654 _PAGE_CACHE_MODE_WC),
1655 __pgprot(_PAGE_CACHE_MASK),
1656 0, 0, NULL);
1658 return ret;
1661 int set_memory_wc(unsigned long addr, int numpages)
1663 int ret;
1665 ret = reserve_memtype(__pa(addr), __pa(addr) + numpages * PAGE_SIZE,
1666 _PAGE_CACHE_MODE_WC, NULL);
1667 if (ret)
1668 return ret;
1670 ret = _set_memory_wc(addr, numpages);
1671 if (ret)
1672 free_memtype(__pa(addr), __pa(addr) + numpages * PAGE_SIZE);
1674 return ret;
1676 EXPORT_SYMBOL(set_memory_wc);
1678 int _set_memory_wt(unsigned long addr, int numpages)
1680 return change_page_attr_set(&addr, numpages,
1681 cachemode2pgprot(_PAGE_CACHE_MODE_WT), 0);
1684 int set_memory_wt(unsigned long addr, int numpages)
1686 int ret;
1688 ret = reserve_memtype(__pa(addr), __pa(addr) + numpages * PAGE_SIZE,
1689 _PAGE_CACHE_MODE_WT, NULL);
1690 if (ret)
1691 return ret;
1693 ret = _set_memory_wt(addr, numpages);
1694 if (ret)
1695 free_memtype(__pa(addr), __pa(addr) + numpages * PAGE_SIZE);
1697 return ret;
1699 EXPORT_SYMBOL_GPL(set_memory_wt);
1701 int _set_memory_wb(unsigned long addr, int numpages)
1703 /* WB cache mode is hard wired to all cache attribute bits being 0 */
1704 return change_page_attr_clear(&addr, numpages,
1705 __pgprot(_PAGE_CACHE_MASK), 0);
1708 int set_memory_wb(unsigned long addr, int numpages)
1710 int ret;
1712 ret = _set_memory_wb(addr, numpages);
1713 if (ret)
1714 return ret;
1716 free_memtype(__pa(addr), __pa(addr) + numpages * PAGE_SIZE);
1717 return 0;
1719 EXPORT_SYMBOL(set_memory_wb);
1721 int set_memory_array_wb(unsigned long *addr, int addrinarray)
1723 int i;
1724 int ret;
1726 /* WB cache mode is hard wired to all cache attribute bits being 0 */
1727 ret = change_page_attr_clear(addr, addrinarray,
1728 __pgprot(_PAGE_CACHE_MASK), 1);
1729 if (ret)
1730 return ret;
1732 for (i = 0; i < addrinarray; i++)
1733 free_memtype(__pa(addr[i]), __pa(addr[i]) + PAGE_SIZE);
1735 return 0;
1737 EXPORT_SYMBOL(set_memory_array_wb);
1739 int set_memory_x(unsigned long addr, int numpages)
1741 if (!(__supported_pte_mask & _PAGE_NX))
1742 return 0;
1744 return change_page_attr_clear(&addr, numpages, __pgprot(_PAGE_NX), 0);
1746 EXPORT_SYMBOL(set_memory_x);
1748 int set_memory_nx(unsigned long addr, int numpages)
1750 if (!(__supported_pte_mask & _PAGE_NX))
1751 return 0;
1753 return change_page_attr_set(&addr, numpages, __pgprot(_PAGE_NX), 0);
1755 EXPORT_SYMBOL(set_memory_nx);
1757 int set_memory_ro(unsigned long addr, int numpages)
1759 return change_page_attr_clear(&addr, numpages, __pgprot(_PAGE_RW), 0);
1762 int set_memory_rw(unsigned long addr, int numpages)
1764 return change_page_attr_set(&addr, numpages, __pgprot(_PAGE_RW), 0);
1767 int set_memory_np(unsigned long addr, int numpages)
1769 return change_page_attr_clear(&addr, numpages, __pgprot(_PAGE_PRESENT), 0);
1772 int set_memory_4k(unsigned long addr, int numpages)
1774 return change_page_attr_set_clr(&addr, numpages, __pgprot(0),
1775 __pgprot(0), 1, 0, NULL);
1778 static int __set_memory_enc_dec(unsigned long addr, int numpages, bool enc)
1780 struct cpa_data cpa;
1781 unsigned long start;
1782 int ret;
1784 /* Nothing to do if memory encryption is not active */
1785 if (!mem_encrypt_active())
1786 return 0;
1788 /* Should not be working on unaligned addresses */
1789 if (WARN_ONCE(addr & ~PAGE_MASK, "misaligned address: %#lx\n", addr))
1790 addr &= PAGE_MASK;
1792 start = addr;
1794 memset(&cpa, 0, sizeof(cpa));
1795 cpa.vaddr = &addr;
1796 cpa.numpages = numpages;
1797 cpa.mask_set = enc ? __pgprot(_PAGE_ENC) : __pgprot(0);
1798 cpa.mask_clr = enc ? __pgprot(0) : __pgprot(_PAGE_ENC);
1799 cpa.pgd = init_mm.pgd;
1801 /* Must avoid aliasing mappings in the highmem code */
1802 kmap_flush_unused();
1803 vm_unmap_aliases();
1806 * Before changing the encryption attribute, we need to flush caches.
1808 if (static_cpu_has(X86_FEATURE_CLFLUSH))
1809 cpa_flush_range(start, numpages, 1);
1810 else
1811 cpa_flush_all(1);
1813 ret = __change_page_attr_set_clr(&cpa, 1);
1816 * After changing the encryption attribute, we need to flush TLBs
1817 * again in case any speculative TLB caching occurred (but no need
1818 * to flush caches again). We could just use cpa_flush_all(), but
1819 * in case TLB flushing gets optimized in the cpa_flush_range()
1820 * path use the same logic as above.
1822 if (static_cpu_has(X86_FEATURE_CLFLUSH))
1823 cpa_flush_range(start, numpages, 0);
1824 else
1825 cpa_flush_all(0);
1827 return ret;
1830 int set_memory_encrypted(unsigned long addr, int numpages)
1832 return __set_memory_enc_dec(addr, numpages, true);
1834 EXPORT_SYMBOL_GPL(set_memory_encrypted);
1836 int set_memory_decrypted(unsigned long addr, int numpages)
1838 return __set_memory_enc_dec(addr, numpages, false);
1840 EXPORT_SYMBOL_GPL(set_memory_decrypted);
1842 int set_pages_uc(struct page *page, int numpages)
1844 unsigned long addr = (unsigned long)page_address(page);
1846 return set_memory_uc(addr, numpages);
1848 EXPORT_SYMBOL(set_pages_uc);
1850 static int _set_pages_array(struct page **pages, int addrinarray,
1851 enum page_cache_mode new_type)
1853 unsigned long start;
1854 unsigned long end;
1855 enum page_cache_mode set_type;
1856 int i;
1857 int free_idx;
1858 int ret;
1860 for (i = 0; i < addrinarray; i++) {
1861 if (PageHighMem(pages[i]))
1862 continue;
1863 start = page_to_pfn(pages[i]) << PAGE_SHIFT;
1864 end = start + PAGE_SIZE;
1865 if (reserve_memtype(start, end, new_type, NULL))
1866 goto err_out;
1869 /* If WC, set to UC- first and then WC */
1870 set_type = (new_type == _PAGE_CACHE_MODE_WC) ?
1871 _PAGE_CACHE_MODE_UC_MINUS : new_type;
1873 ret = cpa_set_pages_array(pages, addrinarray,
1874 cachemode2pgprot(set_type));
1875 if (!ret && new_type == _PAGE_CACHE_MODE_WC)
1876 ret = change_page_attr_set_clr(NULL, addrinarray,
1877 cachemode2pgprot(
1878 _PAGE_CACHE_MODE_WC),
1879 __pgprot(_PAGE_CACHE_MASK),
1880 0, CPA_PAGES_ARRAY, pages);
1881 if (ret)
1882 goto err_out;
1883 return 0; /* Success */
1884 err_out:
1885 free_idx = i;
1886 for (i = 0; i < free_idx; i++) {
1887 if (PageHighMem(pages[i]))
1888 continue;
1889 start = page_to_pfn(pages[i]) << PAGE_SHIFT;
1890 end = start + PAGE_SIZE;
1891 free_memtype(start, end);
1893 return -EINVAL;
1896 int set_pages_array_uc(struct page **pages, int addrinarray)
1898 return _set_pages_array(pages, addrinarray, _PAGE_CACHE_MODE_UC_MINUS);
1900 EXPORT_SYMBOL(set_pages_array_uc);
1902 int set_pages_array_wc(struct page **pages, int addrinarray)
1904 return _set_pages_array(pages, addrinarray, _PAGE_CACHE_MODE_WC);
1906 EXPORT_SYMBOL(set_pages_array_wc);
1908 int set_pages_array_wt(struct page **pages, int addrinarray)
1910 return _set_pages_array(pages, addrinarray, _PAGE_CACHE_MODE_WT);
1912 EXPORT_SYMBOL_GPL(set_pages_array_wt);
1914 int set_pages_wb(struct page *page, int numpages)
1916 unsigned long addr = (unsigned long)page_address(page);
1918 return set_memory_wb(addr, numpages);
1920 EXPORT_SYMBOL(set_pages_wb);
1922 int set_pages_array_wb(struct page **pages, int addrinarray)
1924 int retval;
1925 unsigned long start;
1926 unsigned long end;
1927 int i;
1929 /* WB cache mode is hard wired to all cache attribute bits being 0 */
1930 retval = cpa_clear_pages_array(pages, addrinarray,
1931 __pgprot(_PAGE_CACHE_MASK));
1932 if (retval)
1933 return retval;
1935 for (i = 0; i < addrinarray; i++) {
1936 if (PageHighMem(pages[i]))
1937 continue;
1938 start = page_to_pfn(pages[i]) << PAGE_SHIFT;
1939 end = start + PAGE_SIZE;
1940 free_memtype(start, end);
1943 return 0;
1945 EXPORT_SYMBOL(set_pages_array_wb);
1947 int set_pages_x(struct page *page, int numpages)
1949 unsigned long addr = (unsigned long)page_address(page);
1951 return set_memory_x(addr, numpages);
1953 EXPORT_SYMBOL(set_pages_x);
1955 int set_pages_nx(struct page *page, int numpages)
1957 unsigned long addr = (unsigned long)page_address(page);
1959 return set_memory_nx(addr, numpages);
1961 EXPORT_SYMBOL(set_pages_nx);
1963 int set_pages_ro(struct page *page, int numpages)
1965 unsigned long addr = (unsigned long)page_address(page);
1967 return set_memory_ro(addr, numpages);
1970 int set_pages_rw(struct page *page, int numpages)
1972 unsigned long addr = (unsigned long)page_address(page);
1974 return set_memory_rw(addr, numpages);
1977 #ifdef CONFIG_DEBUG_PAGEALLOC
1979 static int __set_pages_p(struct page *page, int numpages)
1981 unsigned long tempaddr = (unsigned long) page_address(page);
1982 struct cpa_data cpa = { .vaddr = &tempaddr,
1983 .pgd = NULL,
1984 .numpages = numpages,
1985 .mask_set = __pgprot(_PAGE_PRESENT | _PAGE_RW),
1986 .mask_clr = __pgprot(0),
1987 .flags = 0};
1990 * No alias checking needed for setting present flag. otherwise,
1991 * we may need to break large pages for 64-bit kernel text
1992 * mappings (this adds to complexity if we want to do this from
1993 * atomic context especially). Let's keep it simple!
1995 return __change_page_attr_set_clr(&cpa, 0);
1998 static int __set_pages_np(struct page *page, int numpages)
2000 unsigned long tempaddr = (unsigned long) page_address(page);
2001 struct cpa_data cpa = { .vaddr = &tempaddr,
2002 .pgd = NULL,
2003 .numpages = numpages,
2004 .mask_set = __pgprot(0),
2005 .mask_clr = __pgprot(_PAGE_PRESENT | _PAGE_RW),
2006 .flags = 0};
2009 * No alias checking needed for setting not present flag. otherwise,
2010 * we may need to break large pages for 64-bit kernel text
2011 * mappings (this adds to complexity if we want to do this from
2012 * atomic context especially). Let's keep it simple!
2014 return __change_page_attr_set_clr(&cpa, 0);
2017 void __kernel_map_pages(struct page *page, int numpages, int enable)
2019 if (PageHighMem(page))
2020 return;
2021 if (!enable) {
2022 debug_check_no_locks_freed(page_address(page),
2023 numpages * PAGE_SIZE);
2027 * The return value is ignored as the calls cannot fail.
2028 * Large pages for identity mappings are not used at boot time
2029 * and hence no memory allocations during large page split.
2031 if (enable)
2032 __set_pages_p(page, numpages);
2033 else
2034 __set_pages_np(page, numpages);
2037 * We should perform an IPI and flush all tlbs,
2038 * but that can deadlock->flush only current cpu:
2040 __flush_tlb_all();
2042 arch_flush_lazy_mmu_mode();
2045 #ifdef CONFIG_HIBERNATION
2047 bool kernel_page_present(struct page *page)
2049 unsigned int level;
2050 pte_t *pte;
2052 if (PageHighMem(page))
2053 return false;
2055 pte = lookup_address((unsigned long)page_address(page), &level);
2056 return (pte_val(*pte) & _PAGE_PRESENT);
2059 #endif /* CONFIG_HIBERNATION */
2061 #endif /* CONFIG_DEBUG_PAGEALLOC */
2063 int kernel_map_pages_in_pgd(pgd_t *pgd, u64 pfn, unsigned long address,
2064 unsigned numpages, unsigned long page_flags)
2066 int retval = -EINVAL;
2068 struct cpa_data cpa = {
2069 .vaddr = &address,
2070 .pfn = pfn,
2071 .pgd = pgd,
2072 .numpages = numpages,
2073 .mask_set = __pgprot(0),
2074 .mask_clr = __pgprot(0),
2075 .flags = 0,
2078 if (!(__supported_pte_mask & _PAGE_NX))
2079 goto out;
2081 if (!(page_flags & _PAGE_NX))
2082 cpa.mask_clr = __pgprot(_PAGE_NX);
2084 if (!(page_flags & _PAGE_RW))
2085 cpa.mask_clr = __pgprot(_PAGE_RW);
2087 if (!(page_flags & _PAGE_ENC))
2088 cpa.mask_clr = pgprot_encrypted(cpa.mask_clr);
2090 cpa.mask_set = __pgprot(_PAGE_PRESENT | page_flags);
2092 retval = __change_page_attr_set_clr(&cpa, 0);
2093 __flush_tlb_all();
2095 out:
2096 return retval;
2100 * The testcases use internal knowledge of the implementation that shouldn't
2101 * be exposed to the rest of the kernel. Include these directly here.
2103 #ifdef CONFIG_CPA_DEBUG
2104 #include "pageattr-test.c"
2105 #endif