1 // SPDX-License-Identifier: GPL-2.0
3 * x86_64 specific EFI support functions
4 * Based on Extensible Firmware Interface Specification version 1.0
6 * Copyright (C) 2005-2008 Intel Co.
7 * Fenghua Yu <fenghua.yu@intel.com>
8 * Bibo Mao <bibo.mao@intel.com>
9 * Chandramouli Narayanan <mouli@linux.intel.com>
10 * Huang Ying <ying.huang@intel.com>
12 * Code to convert EFI to E820 map has been implemented in elilo bootloader
13 * based on a EFI patch by Edgar Hucek. Based on the E820 map, the page table
14 * is setup appropriately for EFI runtime code.
19 #define pr_fmt(fmt) "efi: " fmt
21 #include <linux/kernel.h>
22 #include <linux/init.h>
24 #include <linux/types.h>
25 #include <linux/spinlock.h>
26 #include <linux/bootmem.h>
27 #include <linux/ioport.h>
28 #include <linux/mc146818rtc.h>
29 #include <linux/efi.h>
30 #include <linux/uaccess.h>
32 #include <linux/reboot.h>
33 #include <linux/slab.h>
34 #include <linux/ucs2_string.h>
35 #include <linux/mem_encrypt.h>
37 #include <asm/setup.h>
39 #include <asm/e820/api.h>
40 #include <asm/pgtable.h>
41 #include <asm/tlbflush.h>
42 #include <asm/proto.h>
44 #include <asm/cacheflush.h>
45 #include <asm/fixmap.h>
46 #include <asm/realmode.h>
48 #include <asm/pgalloc.h>
51 * We allocate runtime services regions top-down, starting from -4G, i.e.
52 * 0xffff_ffff_0000_0000 and limit EFI VA mapping space to 64G.
54 static u64 efi_va
= EFI_VA_START
;
56 struct efi_scratch efi_scratch
;
58 static void __init
early_code_mapping_set_exec(int executable
)
60 efi_memory_desc_t
*md
;
62 if (!(__supported_pte_mask
& _PAGE_NX
))
65 /* Make EFI service code area executable */
66 for_each_efi_memory_desc(md
) {
67 if (md
->type
== EFI_RUNTIME_SERVICES_CODE
||
68 md
->type
== EFI_BOOT_SERVICES_CODE
)
69 efi_set_executable(md
, executable
);
73 pgd_t
* __init
efi_call_phys_prolog(void)
75 unsigned long vaddr
, addr_pgd
, addr_p4d
, addr_pud
;
76 pgd_t
*save_pgd
, *pgd_k
, *pgd_efi
;
77 p4d_t
*p4d
, *p4d_k
, *p4d_efi
;
83 if (!efi_enabled(EFI_OLD_MEMMAP
)) {
84 save_pgd
= (pgd_t
*)__read_cr3();
85 write_cr3((unsigned long)efi_scratch
.efi_pgt
);
89 early_code_mapping_set_exec(1);
91 n_pgds
= DIV_ROUND_UP((max_pfn
<< PAGE_SHIFT
), PGDIR_SIZE
);
92 save_pgd
= kmalloc_array(n_pgds
, sizeof(*save_pgd
), GFP_KERNEL
);
95 * Build 1:1 identity mapping for efi=old_map usage. Note that
96 * PAGE_OFFSET is PGDIR_SIZE aligned when KASLR is disabled, while
97 * it is PUD_SIZE ALIGNED with KASLR enabled. So for a given physical
98 * address X, the pud_index(X) != pud_index(__va(X)), we can only copy
99 * PUD entry of __va(X) to fill in pud entry of X to build 1:1 mapping.
100 * This means here we can only reuse the PMD tables of the direct mapping.
102 for (pgd
= 0; pgd
< n_pgds
; pgd
++) {
103 addr_pgd
= (unsigned long)(pgd
* PGDIR_SIZE
);
104 vaddr
= (unsigned long)__va(pgd
* PGDIR_SIZE
);
105 pgd_efi
= pgd_offset_k(addr_pgd
);
106 save_pgd
[pgd
] = *pgd_efi
;
108 p4d
= p4d_alloc(&init_mm
, pgd_efi
, addr_pgd
);
110 pr_err("Failed to allocate p4d table!\n");
114 for (i
= 0; i
< PTRS_PER_P4D
; i
++) {
115 addr_p4d
= addr_pgd
+ i
* P4D_SIZE
;
116 p4d_efi
= p4d
+ p4d_index(addr_p4d
);
118 pud
= pud_alloc(&init_mm
, p4d_efi
, addr_p4d
);
120 pr_err("Failed to allocate pud table!\n");
124 for (j
= 0; j
< PTRS_PER_PUD
; j
++) {
125 addr_pud
= addr_p4d
+ j
* PUD_SIZE
;
127 if (addr_pud
> (max_pfn
<< PAGE_SHIFT
))
130 vaddr
= (unsigned long)__va(addr_pud
);
132 pgd_k
= pgd_offset_k(vaddr
);
133 p4d_k
= p4d_offset(pgd_k
, vaddr
);
134 pud
[j
] = *pud_offset(p4d_k
, vaddr
);
137 pgd_offset_k(pgd
* PGDIR_SIZE
)->pgd
&= ~_PAGE_NX
;
146 void __init
efi_call_phys_epilog(pgd_t
*save_pgd
)
149 * After the lock is released, the original page table is restored.
157 if (!efi_enabled(EFI_OLD_MEMMAP
)) {
158 write_cr3((unsigned long)save_pgd
);
163 nr_pgds
= DIV_ROUND_UP((max_pfn
<< PAGE_SHIFT
) , PGDIR_SIZE
);
165 for (pgd_idx
= 0; pgd_idx
< nr_pgds
; pgd_idx
++) {
166 pgd
= pgd_offset_k(pgd_idx
* PGDIR_SIZE
);
167 set_pgd(pgd_offset_k(pgd_idx
* PGDIR_SIZE
), save_pgd
[pgd_idx
]);
169 if (!(pgd_val(*pgd
) & _PAGE_PRESENT
))
172 for (i
= 0; i
< PTRS_PER_P4D
; i
++) {
173 p4d
= p4d_offset(pgd
,
174 pgd_idx
* PGDIR_SIZE
+ i
* P4D_SIZE
);
176 if (!(p4d_val(*p4d
) & _PAGE_PRESENT
))
179 pud
= (pud_t
*)p4d_page_vaddr(*p4d
);
180 pud_free(&init_mm
, pud
);
183 p4d
= (p4d_t
*)pgd_page_vaddr(*pgd
);
184 p4d_free(&init_mm
, p4d
);
190 early_code_mapping_set_exec(0);
193 static pgd_t
*efi_pgd
;
196 * We need our own copy of the higher levels of the page tables
197 * because we want to avoid inserting EFI region mappings (EFI_VA_END
198 * to EFI_VA_START) into the standard kernel page tables. Everything
199 * else can be shared, see efi_sync_low_kernel_mappings().
201 * We don't want the pgd on the pgd_list and cannot use pgd_alloc() for the
204 int __init
efi_alloc_page_tables(void)
211 if (efi_enabled(EFI_OLD_MEMMAP
))
214 gfp_mask
= GFP_KERNEL
| __GFP_ZERO
;
215 efi_pgd
= (pgd_t
*)__get_free_pages(gfp_mask
, PGD_ALLOCATION_ORDER
);
219 pgd
= efi_pgd
+ pgd_index(EFI_VA_END
);
220 p4d
= p4d_alloc(&init_mm
, pgd
, EFI_VA_END
);
222 free_page((unsigned long)efi_pgd
);
226 pud
= pud_alloc(&init_mm
, p4d
, EFI_VA_END
);
228 if (CONFIG_PGTABLE_LEVELS
> 4)
229 free_page((unsigned long) pgd_page_vaddr(*pgd
));
230 free_page((unsigned long)efi_pgd
);
238 * Add low kernel mappings for passing arguments to EFI functions.
240 void efi_sync_low_kernel_mappings(void)
242 unsigned num_entries
;
243 pgd_t
*pgd_k
, *pgd_efi
;
244 p4d_t
*p4d_k
, *p4d_efi
;
245 pud_t
*pud_k
, *pud_efi
;
247 if (efi_enabled(EFI_OLD_MEMMAP
))
251 * We can share all PGD entries apart from the one entry that
252 * covers the EFI runtime mapping space.
254 * Make sure the EFI runtime region mappings are guaranteed to
255 * only span a single PGD entry and that the entry also maps
256 * other important kernel regions.
258 BUILD_BUG_ON(pgd_index(EFI_VA_END
) != pgd_index(MODULES_END
));
259 BUILD_BUG_ON((EFI_VA_START
& PGDIR_MASK
) !=
260 (EFI_VA_END
& PGDIR_MASK
));
262 pgd_efi
= efi_pgd
+ pgd_index(PAGE_OFFSET
);
263 pgd_k
= pgd_offset_k(PAGE_OFFSET
);
265 num_entries
= pgd_index(EFI_VA_END
) - pgd_index(PAGE_OFFSET
);
266 memcpy(pgd_efi
, pgd_k
, sizeof(pgd_t
) * num_entries
);
269 * As with PGDs, we share all P4D entries apart from the one entry
270 * that covers the EFI runtime mapping space.
272 BUILD_BUG_ON(p4d_index(EFI_VA_END
) != p4d_index(MODULES_END
));
273 BUILD_BUG_ON((EFI_VA_START
& P4D_MASK
) != (EFI_VA_END
& P4D_MASK
));
275 pgd_efi
= efi_pgd
+ pgd_index(EFI_VA_END
);
276 pgd_k
= pgd_offset_k(EFI_VA_END
);
277 p4d_efi
= p4d_offset(pgd_efi
, 0);
278 p4d_k
= p4d_offset(pgd_k
, 0);
280 num_entries
= p4d_index(EFI_VA_END
);
281 memcpy(p4d_efi
, p4d_k
, sizeof(p4d_t
) * num_entries
);
284 * We share all the PUD entries apart from those that map the
285 * EFI regions. Copy around them.
287 BUILD_BUG_ON((EFI_VA_START
& ~PUD_MASK
) != 0);
288 BUILD_BUG_ON((EFI_VA_END
& ~PUD_MASK
) != 0);
290 p4d_efi
= p4d_offset(pgd_efi
, EFI_VA_END
);
291 p4d_k
= p4d_offset(pgd_k
, EFI_VA_END
);
292 pud_efi
= pud_offset(p4d_efi
, 0);
293 pud_k
= pud_offset(p4d_k
, 0);
295 num_entries
= pud_index(EFI_VA_END
);
296 memcpy(pud_efi
, pud_k
, sizeof(pud_t
) * num_entries
);
298 pud_efi
= pud_offset(p4d_efi
, EFI_VA_START
);
299 pud_k
= pud_offset(p4d_k
, EFI_VA_START
);
301 num_entries
= PTRS_PER_PUD
- pud_index(EFI_VA_START
);
302 memcpy(pud_efi
, pud_k
, sizeof(pud_t
) * num_entries
);
306 * Wrapper for slow_virt_to_phys() that handles NULL addresses.
308 static inline phys_addr_t
309 virt_to_phys_or_null_size(void *va
, unsigned long size
)
316 if (virt_addr_valid(va
))
317 return virt_to_phys(va
);
320 * A fully aligned variable on the stack is guaranteed not to
321 * cross a page bounary. Try to catch strings on the stack by
322 * checking that 'size' is a power of two.
324 bad_size
= size
> PAGE_SIZE
|| !is_power_of_2(size
);
326 WARN_ON(!IS_ALIGNED((unsigned long)va
, size
) || bad_size
);
328 return slow_virt_to_phys(va
);
331 #define virt_to_phys_or_null(addr) \
332 virt_to_phys_or_null_size((addr), sizeof(*(addr)))
334 int __init
efi_setup_page_tables(unsigned long pa_memmap
, unsigned num_pages
)
336 unsigned long pfn
, text
, pf
;
341 if (efi_enabled(EFI_OLD_MEMMAP
))
345 * Since the PGD is encrypted, set the encryption mask so that when
346 * this value is loaded into cr3 the PGD will be decrypted during
347 * the pagetable walk.
349 efi_scratch
.efi_pgt
= (pgd_t
*)__sme_pa(efi_pgd
);
353 * It can happen that the physical address of new_memmap lands in memory
354 * which is not mapped in the EFI page table. Therefore we need to go
355 * and ident-map those pages containing the map before calling
356 * phys_efi_set_virtual_address_map().
358 pfn
= pa_memmap
>> PAGE_SHIFT
;
359 pf
= _PAGE_NX
| _PAGE_RW
| _PAGE_ENC
;
360 if (kernel_map_pages_in_pgd(pgd
, pfn
, pa_memmap
, num_pages
, pf
)) {
361 pr_err("Error ident-mapping new memmap (0x%lx)!\n", pa_memmap
);
365 efi_scratch
.use_pgd
= true;
368 * Certain firmware versions are way too sentimential and still believe
369 * they are exclusive and unquestionable owners of the first physical page,
370 * even though they explicitly mark it as EFI_CONVENTIONAL_MEMORY
371 * (but then write-access it later during SetVirtualAddressMap()).
373 * Create a 1:1 mapping for this page, to avoid triple faults during early
374 * boot with such firmware. We are free to hand this page to the BIOS,
375 * as trim_bios_range() will reserve the first page and isolate it away
376 * from memory allocators anyway.
382 if (kernel_map_pages_in_pgd(pgd
, 0x0, 0x0, 1, pf
)) {
383 pr_err("Failed to create 1:1 mapping for the first page!\n");
388 * When making calls to the firmware everything needs to be 1:1
389 * mapped and addressable with 32-bit pointers. Map the kernel
390 * text and allocate a new stack because we can't rely on the
391 * stack pointer being < 4GB.
393 if (!IS_ENABLED(CONFIG_EFI_MIXED
) || efi_is_native())
396 page
= alloc_page(GFP_KERNEL
|__GFP_DMA32
);
398 panic("Unable to allocate EFI runtime stack < 4GB\n");
400 efi_scratch
.phys_stack
= virt_to_phys(page_address(page
));
401 efi_scratch
.phys_stack
+= PAGE_SIZE
; /* stack grows down */
403 npages
= (_etext
- _text
) >> PAGE_SHIFT
;
405 pfn
= text
>> PAGE_SHIFT
;
407 pf
= _PAGE_RW
| _PAGE_ENC
;
408 if (kernel_map_pages_in_pgd(pgd
, pfn
, text
, npages
, pf
)) {
409 pr_err("Failed to map kernel text 1:1\n");
416 static void __init
__map_region(efi_memory_desc_t
*md
, u64 va
)
418 unsigned long flags
= _PAGE_RW
;
420 pgd_t
*pgd
= efi_pgd
;
422 if (!(md
->attribute
& EFI_MEMORY_WB
))
428 pfn
= md
->phys_addr
>> PAGE_SHIFT
;
429 if (kernel_map_pages_in_pgd(pgd
, pfn
, va
, md
->num_pages
, flags
))
430 pr_warn("Error mapping PA 0x%llx -> VA 0x%llx!\n",
434 void __init
efi_map_region(efi_memory_desc_t
*md
)
436 unsigned long size
= md
->num_pages
<< PAGE_SHIFT
;
437 u64 pa
= md
->phys_addr
;
439 if (efi_enabled(EFI_OLD_MEMMAP
))
440 return old_map_region(md
);
443 * Make sure the 1:1 mappings are present as a catch-all for b0rked
444 * firmware which doesn't update all internal pointers after switching
445 * to virtual mode and would otherwise crap on us.
447 __map_region(md
, md
->phys_addr
);
450 * Enforce the 1:1 mapping as the default virtual address when
451 * booting in EFI mixed mode, because even though we may be
452 * running a 64-bit kernel, the firmware may only be 32-bit.
454 if (!efi_is_native () && IS_ENABLED(CONFIG_EFI_MIXED
)) {
455 md
->virt_addr
= md
->phys_addr
;
461 /* Is PA 2M-aligned? */
462 if (!(pa
& (PMD_SIZE
- 1))) {
465 u64 pa_offset
= pa
& (PMD_SIZE
- 1);
466 u64 prev_va
= efi_va
;
468 /* get us the same offset within this 2M page */
469 efi_va
= (efi_va
& PMD_MASK
) + pa_offset
;
471 if (efi_va
> prev_va
)
475 if (efi_va
< EFI_VA_END
) {
476 pr_warn(FW_WARN
"VA address range overflow!\n");
481 __map_region(md
, efi_va
);
482 md
->virt_addr
= efi_va
;
486 * kexec kernel will use efi_map_region_fixed to map efi runtime memory ranges.
487 * md->virt_addr is the original virtual address which had been mapped in kexec
490 void __init
efi_map_region_fixed(efi_memory_desc_t
*md
)
492 __map_region(md
, md
->phys_addr
);
493 __map_region(md
, md
->virt_addr
);
496 void __iomem
*__init
efi_ioremap(unsigned long phys_addr
, unsigned long size
,
497 u32 type
, u64 attribute
)
499 unsigned long last_map_pfn
;
501 if (type
== EFI_MEMORY_MAPPED_IO
)
502 return ioremap(phys_addr
, size
);
504 last_map_pfn
= init_memory_mapping(phys_addr
, phys_addr
+ size
);
505 if ((last_map_pfn
<< PAGE_SHIFT
) < phys_addr
+ size
) {
506 unsigned long top
= last_map_pfn
<< PAGE_SHIFT
;
507 efi_ioremap(top
, size
- (top
- phys_addr
), type
, attribute
);
510 if (!(attribute
& EFI_MEMORY_WB
))
511 efi_memory_uc((u64
)(unsigned long)__va(phys_addr
), size
);
513 return (void __iomem
*)__va(phys_addr
);
516 void __init
parse_efi_setup(u64 phys_addr
, u32 data_len
)
518 efi_setup
= phys_addr
+ sizeof(struct setup_data
);
521 static int __init
efi_update_mappings(efi_memory_desc_t
*md
, unsigned long pf
)
524 pgd_t
*pgd
= efi_pgd
;
527 /* Update the 1:1 mapping */
528 pfn
= md
->phys_addr
>> PAGE_SHIFT
;
529 err1
= kernel_map_pages_in_pgd(pgd
, pfn
, md
->phys_addr
, md
->num_pages
, pf
);
531 pr_err("Error while updating 1:1 mapping PA 0x%llx -> VA 0x%llx!\n",
532 md
->phys_addr
, md
->virt_addr
);
535 err2
= kernel_map_pages_in_pgd(pgd
, pfn
, md
->virt_addr
, md
->num_pages
, pf
);
537 pr_err("Error while updating VA mapping PA 0x%llx -> VA 0x%llx!\n",
538 md
->phys_addr
, md
->virt_addr
);
544 static int __init
efi_update_mem_attr(struct mm_struct
*mm
, efi_memory_desc_t
*md
)
546 unsigned long pf
= 0;
548 if (md
->attribute
& EFI_MEMORY_XP
)
551 if (!(md
->attribute
& EFI_MEMORY_RO
))
557 return efi_update_mappings(md
, pf
);
560 void __init
efi_runtime_update_mappings(void)
562 efi_memory_desc_t
*md
;
564 if (efi_enabled(EFI_OLD_MEMMAP
)) {
565 if (__supported_pte_mask
& _PAGE_NX
)
566 runtime_code_page_mkexec();
571 * Use the EFI Memory Attribute Table for mapping permissions if it
572 * exists, since it is intended to supersede EFI_PROPERTIES_TABLE.
574 if (efi_enabled(EFI_MEM_ATTR
)) {
575 efi_memattr_apply_permissions(NULL
, efi_update_mem_attr
);
580 * EFI_MEMORY_ATTRIBUTES_TABLE is intended to replace
581 * EFI_PROPERTIES_TABLE. So, use EFI_PROPERTIES_TABLE to update
582 * permissions only if EFI_MEMORY_ATTRIBUTES_TABLE is not
583 * published by the firmware. Even if we find a buggy implementation of
584 * EFI_MEMORY_ATTRIBUTES_TABLE, don't fall back to
585 * EFI_PROPERTIES_TABLE, because of the same reason.
588 if (!efi_enabled(EFI_NX_PE_DATA
))
591 for_each_efi_memory_desc(md
) {
592 unsigned long pf
= 0;
594 if (!(md
->attribute
& EFI_MEMORY_RUNTIME
))
597 if (!(md
->attribute
& EFI_MEMORY_WB
))
600 if ((md
->attribute
& EFI_MEMORY_XP
) ||
601 (md
->type
== EFI_RUNTIME_SERVICES_DATA
))
604 if (!(md
->attribute
& EFI_MEMORY_RO
) &&
605 (md
->type
!= EFI_RUNTIME_SERVICES_CODE
))
611 efi_update_mappings(md
, pf
);
615 void __init
efi_dump_pagetable(void)
617 #ifdef CONFIG_EFI_PGT_DUMP
618 if (efi_enabled(EFI_OLD_MEMMAP
))
619 ptdump_walk_pgd_level(NULL
, swapper_pg_dir
);
621 ptdump_walk_pgd_level(NULL
, efi_pgd
);
625 #ifdef CONFIG_EFI_MIXED
626 extern efi_status_t
efi64_thunk(u32
, ...);
628 #define runtime_service32(func) \
630 u32 table = (u32)(unsigned long)efi.systab; \
633 rt = (u32 *)(table + offsetof(efi_system_table_32_t, runtime)); \
634 ___f = (u32 *)(*rt + offsetof(efi_runtime_services_32_t, func)); \
639 * Switch to the EFI page tables early so that we can access the 1:1
640 * runtime services mappings which are not mapped in any other page
641 * tables. This function must be called before runtime_service32().
643 * Also, disable interrupts because the IDT points to 64-bit handlers,
644 * which aren't going to function correctly when we switch to 32-bit.
646 #define efi_thunk(f, ...) \
649 unsigned long __flags; \
652 local_irq_save(__flags); \
653 arch_efi_call_virt_setup(); \
655 __func = runtime_service32(f); \
656 __s = efi64_thunk(__func, __VA_ARGS__); \
658 arch_efi_call_virt_teardown(); \
659 local_irq_restore(__flags); \
664 efi_status_t
efi_thunk_set_virtual_address_map(
665 void *phys_set_virtual_address_map
,
666 unsigned long memory_map_size
,
667 unsigned long descriptor_size
,
668 u32 descriptor_version
,
669 efi_memory_desc_t
*virtual_map
)
675 efi_sync_low_kernel_mappings();
676 local_irq_save(flags
);
678 efi_scratch
.prev_cr3
= __read_cr3();
679 write_cr3((unsigned long)efi_scratch
.efi_pgt
);
682 func
= (u32
)(unsigned long)phys_set_virtual_address_map
;
683 status
= efi64_thunk(func
, memory_map_size
, descriptor_size
,
684 descriptor_version
, virtual_map
);
686 write_cr3(efi_scratch
.prev_cr3
);
688 local_irq_restore(flags
);
693 static efi_status_t
efi_thunk_get_time(efi_time_t
*tm
, efi_time_cap_t
*tc
)
696 u32 phys_tm
, phys_tc
;
698 spin_lock(&rtc_lock
);
700 phys_tm
= virt_to_phys_or_null(tm
);
701 phys_tc
= virt_to_phys_or_null(tc
);
703 status
= efi_thunk(get_time
, phys_tm
, phys_tc
);
705 spin_unlock(&rtc_lock
);
710 static efi_status_t
efi_thunk_set_time(efi_time_t
*tm
)
715 spin_lock(&rtc_lock
);
717 phys_tm
= virt_to_phys_or_null(tm
);
719 status
= efi_thunk(set_time
, phys_tm
);
721 spin_unlock(&rtc_lock
);
727 efi_thunk_get_wakeup_time(efi_bool_t
*enabled
, efi_bool_t
*pending
,
731 u32 phys_enabled
, phys_pending
, phys_tm
;
733 spin_lock(&rtc_lock
);
735 phys_enabled
= virt_to_phys_or_null(enabled
);
736 phys_pending
= virt_to_phys_or_null(pending
);
737 phys_tm
= virt_to_phys_or_null(tm
);
739 status
= efi_thunk(get_wakeup_time
, phys_enabled
,
740 phys_pending
, phys_tm
);
742 spin_unlock(&rtc_lock
);
748 efi_thunk_set_wakeup_time(efi_bool_t enabled
, efi_time_t
*tm
)
753 spin_lock(&rtc_lock
);
755 phys_tm
= virt_to_phys_or_null(tm
);
757 status
= efi_thunk(set_wakeup_time
, enabled
, phys_tm
);
759 spin_unlock(&rtc_lock
);
764 static unsigned long efi_name_size(efi_char16_t
*name
)
766 return ucs2_strsize(name
, EFI_VAR_NAME_LEN
) + 1;
770 efi_thunk_get_variable(efi_char16_t
*name
, efi_guid_t
*vendor
,
771 u32
*attr
, unsigned long *data_size
, void *data
)
774 u32 phys_name
, phys_vendor
, phys_attr
;
775 u32 phys_data_size
, phys_data
;
777 phys_data_size
= virt_to_phys_or_null(data_size
);
778 phys_vendor
= virt_to_phys_or_null(vendor
);
779 phys_name
= virt_to_phys_or_null_size(name
, efi_name_size(name
));
780 phys_attr
= virt_to_phys_or_null(attr
);
781 phys_data
= virt_to_phys_or_null_size(data
, *data_size
);
783 status
= efi_thunk(get_variable
, phys_name
, phys_vendor
,
784 phys_attr
, phys_data_size
, phys_data
);
790 efi_thunk_set_variable(efi_char16_t
*name
, efi_guid_t
*vendor
,
791 u32 attr
, unsigned long data_size
, void *data
)
793 u32 phys_name
, phys_vendor
, phys_data
;
796 phys_name
= virt_to_phys_or_null_size(name
, efi_name_size(name
));
797 phys_vendor
= virt_to_phys_or_null(vendor
);
798 phys_data
= virt_to_phys_or_null_size(data
, data_size
);
800 /* If data_size is > sizeof(u32) we've got problems */
801 status
= efi_thunk(set_variable
, phys_name
, phys_vendor
,
802 attr
, data_size
, phys_data
);
808 efi_thunk_get_next_variable(unsigned long *name_size
,
813 u32 phys_name_size
, phys_name
, phys_vendor
;
815 phys_name_size
= virt_to_phys_or_null(name_size
);
816 phys_vendor
= virt_to_phys_or_null(vendor
);
817 phys_name
= virt_to_phys_or_null_size(name
, *name_size
);
819 status
= efi_thunk(get_next_variable
, phys_name_size
,
820 phys_name
, phys_vendor
);
826 efi_thunk_get_next_high_mono_count(u32
*count
)
831 phys_count
= virt_to_phys_or_null(count
);
832 status
= efi_thunk(get_next_high_mono_count
, phys_count
);
838 efi_thunk_reset_system(int reset_type
, efi_status_t status
,
839 unsigned long data_size
, efi_char16_t
*data
)
843 phys_data
= virt_to_phys_or_null_size(data
, data_size
);
845 efi_thunk(reset_system
, reset_type
, status
, data_size
, phys_data
);
849 efi_thunk_update_capsule(efi_capsule_header_t
**capsules
,
850 unsigned long count
, unsigned long sg_list
)
853 * To properly support this function we would need to repackage
854 * 'capsules' because the firmware doesn't understand 64-bit
857 return EFI_UNSUPPORTED
;
861 efi_thunk_query_variable_info(u32 attr
, u64
*storage_space
,
862 u64
*remaining_space
,
863 u64
*max_variable_size
)
866 u32 phys_storage
, phys_remaining
, phys_max
;
868 if (efi
.runtime_version
< EFI_2_00_SYSTEM_TABLE_REVISION
)
869 return EFI_UNSUPPORTED
;
871 phys_storage
= virt_to_phys_or_null(storage_space
);
872 phys_remaining
= virt_to_phys_or_null(remaining_space
);
873 phys_max
= virt_to_phys_or_null(max_variable_size
);
875 status
= efi_thunk(query_variable_info
, attr
, phys_storage
,
876 phys_remaining
, phys_max
);
882 efi_thunk_query_capsule_caps(efi_capsule_header_t
**capsules
,
883 unsigned long count
, u64
*max_size
,
887 * To properly support this function we would need to repackage
888 * 'capsules' because the firmware doesn't understand 64-bit
891 return EFI_UNSUPPORTED
;
894 void efi_thunk_runtime_setup(void)
896 efi
.get_time
= efi_thunk_get_time
;
897 efi
.set_time
= efi_thunk_set_time
;
898 efi
.get_wakeup_time
= efi_thunk_get_wakeup_time
;
899 efi
.set_wakeup_time
= efi_thunk_set_wakeup_time
;
900 efi
.get_variable
= efi_thunk_get_variable
;
901 efi
.get_next_variable
= efi_thunk_get_next_variable
;
902 efi
.set_variable
= efi_thunk_set_variable
;
903 efi
.get_next_high_mono_count
= efi_thunk_get_next_high_mono_count
;
904 efi
.reset_system
= efi_thunk_reset_system
;
905 efi
.query_variable_info
= efi_thunk_query_variable_info
;
906 efi
.update_capsule
= efi_thunk_update_capsule
;
907 efi
.query_capsule_caps
= efi_thunk_query_capsule_caps
;
909 #endif /* CONFIG_EFI_MIXED */