1 /* Validate the trust chain of a PKCS#7 message.
3 * Copyright (C) 2012 Red Hat, Inc. All Rights Reserved.
4 * Written by David Howells (dhowells@redhat.com)
6 * This program is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU General Public Licence
8 * as published by the Free Software Foundation; either version
9 * 2 of the Licence, or (at your option) any later version.
12 #define pr_fmt(fmt) "PKCS7: "fmt
13 #include <linux/kernel.h>
14 #include <linux/export.h>
15 #include <linux/slab.h>
16 #include <linux/err.h>
17 #include <linux/asn1.h>
18 #include <linux/key.h>
19 #include <keys/asymmetric-type.h>
20 #include <crypto/public_key.h>
21 #include "pkcs7_parser.h"
24 * Check the trust on one PKCS#7 SignedInfo block.
26 static int pkcs7_validate_trust_one(struct pkcs7_message
*pkcs7
,
27 struct pkcs7_signed_info
*sinfo
,
28 struct key
*trust_keyring
)
30 struct public_key_signature
*sig
= sinfo
->sig
;
31 struct x509_certificate
*x509
, *last
= NULL
, *p
;
35 kenter(",%u,", sinfo
->index
);
37 if (sinfo
->unsupported_crypto
) {
38 kleave(" = -ENOPKG [cached]");
42 for (x509
= sinfo
->signer
; x509
; x509
= x509
->signer
) {
46 kleave(" = -ENOKEY [cached]");
51 /* Look to see if this certificate is present in the trusted
54 key
= find_asymmetric_key(trust_keyring
,
55 x509
->id
, x509
->skid
, false);
57 /* One of the X.509 certificates in the PKCS#7 message
58 * is apparently the same as one we already trust.
59 * Verify that the trusted variant can also validate
60 * the signature on the descendant.
62 pr_devel("sinfo %u: Cert %u as key %x\n",
63 sinfo
->index
, x509
->index
, key_serial(key
));
66 if (key
== ERR_PTR(-ENOMEM
))
69 /* Self-signed certificates form roots of their own, and if we
70 * don't know them, then we can't accept them.
72 if (x509
->signer
== x509
) {
73 kleave(" = -ENOKEY [unknown self-signed]");
82 /* No match - see if the root certificate has a signer amongst the
85 if (last
&& (last
->sig
->auth_ids
[0] || last
->sig
->auth_ids
[1])) {
86 key
= find_asymmetric_key(trust_keyring
,
87 last
->sig
->auth_ids
[0],
88 last
->sig
->auth_ids
[1],
92 pr_devel("sinfo %u: Root cert %u signer is key %x\n",
93 sinfo
->index
, x509
->index
, key_serial(key
));
96 if (PTR_ERR(key
) != -ENOKEY
)
100 /* As a last resort, see if we have a trusted public key that matches
101 * the signed info directly.
103 key
= find_asymmetric_key(trust_keyring
,
104 sinfo
->sig
->auth_ids
[0], NULL
, false);
106 pr_devel("sinfo %u: Direct signer is key %x\n",
107 sinfo
->index
, key_serial(key
));
112 if (PTR_ERR(key
) != -ENOKEY
)
115 kleave(" = -ENOKEY [no backref]");
119 ret
= verify_signature(key
, sig
);
124 kleave(" = -EKEYREJECTED [verify %d]", ret
);
125 return -EKEYREJECTED
;
130 x509
->verified
= true;
131 for (p
= sinfo
->signer
; p
!= x509
; p
= p
->signer
)
139 * pkcs7_validate_trust - Validate PKCS#7 trust chain
140 * @pkcs7: The PKCS#7 certificate to validate
141 * @trust_keyring: Signing certificates to use as starting points
143 * Validate that the certificate chain inside the PKCS#7 message intersects
144 * keys we already know and trust.
146 * Returns, in order of descending priority:
148 * (*) -EKEYREJECTED if a signature failed to match for which we have a valid
151 * (*) 0 if at least one signature chain intersects with the keys in the trust
154 * (*) -ENOPKG if a suitable crypto module couldn't be found for a check on a
157 * (*) -ENOKEY if we couldn't find a match for any of the signature chains in
160 * May also return -ENOMEM.
162 int pkcs7_validate_trust(struct pkcs7_message
*pkcs7
,
163 struct key
*trust_keyring
)
165 struct pkcs7_signed_info
*sinfo
;
166 struct x509_certificate
*p
;
167 int cached_ret
= -ENOKEY
;
170 for (p
= pkcs7
->certs
; p
; p
= p
->next
)
173 for (sinfo
= pkcs7
->signed_infos
; sinfo
; sinfo
= sinfo
->next
) {
174 ret
= pkcs7_validate_trust_one(pkcs7
, sinfo
, trust_keyring
);
179 if (cached_ret
== -ENOKEY
)
180 cached_ret
= -ENOPKG
;
192 EXPORT_SYMBOL_GPL(pkcs7_validate_trust
);