2 * Ram backed block device driver.
4 * Copyright (C) 2007 Nick Piggin
5 * Copyright (C) 2007 Novell Inc.
7 * Parts derived from drivers/block/rd.c, and drivers/block/loop.c, copyright
8 * of their respective owners.
11 #include <linux/init.h>
12 #include <linux/initrd.h>
13 #include <linux/module.h>
14 #include <linux/moduleparam.h>
15 #include <linux/major.h>
16 #include <linux/blkdev.h>
17 #include <linux/bio.h>
18 #include <linux/highmem.h>
19 #include <linux/mutex.h>
20 #include <linux/radix-tree.h>
22 #include <linux/slab.h>
23 #include <linux/backing-dev.h>
25 #include <linux/uaccess.h>
27 #define SECTOR_SHIFT 9
28 #define PAGE_SECTORS_SHIFT (PAGE_SHIFT - SECTOR_SHIFT)
29 #define PAGE_SECTORS (1 << PAGE_SECTORS_SHIFT)
32 * Each block ramdisk device has a radix_tree brd_pages of pages that stores
33 * the pages containing the block device's contents. A brd page's ->index is
34 * its offset in PAGE_SIZE units. This is similar to, but in no way connected
35 * with, the kernel's pagecache or buffer cache (which sit above our block
41 struct request_queue
*brd_queue
;
42 struct gendisk
*brd_disk
;
43 struct list_head brd_list
;
46 * Backing store of pages and lock to protect it. This is the contents
47 * of the block device.
50 struct radix_tree_root brd_pages
;
54 * Look up and return a brd's page for a given sector.
56 static struct page
*brd_lookup_page(struct brd_device
*brd
, sector_t sector
)
62 * The page lifetime is protected by the fact that we have opened the
63 * device node -- brd pages will never be deleted under us, so we
64 * don't need any further locking or refcounting.
66 * This is strictly true for the radix-tree nodes as well (ie. we
67 * don't actually need the rcu_read_lock()), however that is not a
68 * documented feature of the radix-tree API so it is better to be
69 * safe here (we don't have total exclusion from radix tree updates
70 * here, only deletes).
73 idx
= sector
>> PAGE_SECTORS_SHIFT
; /* sector to page index */
74 page
= radix_tree_lookup(&brd
->brd_pages
, idx
);
77 BUG_ON(page
&& page
->index
!= idx
);
83 * Look up and return a brd's page for a given sector.
84 * If one does not exist, allocate an empty page, and insert that. Then
87 static struct page
*brd_insert_page(struct brd_device
*brd
, sector_t sector
)
93 page
= brd_lookup_page(brd
, sector
);
98 * Must use NOIO because we don't want to recurse back into the
99 * block or filesystem layers from page reclaim.
101 * Cannot support DAX and highmem, because our ->direct_access
102 * routine for DAX must return memory that is always addressable.
103 * If DAX was reworked to use pfns and kmap throughout, this
104 * restriction might be able to be lifted.
106 gfp_flags
= GFP_NOIO
| __GFP_ZERO
;
107 page
= alloc_page(gfp_flags
);
111 if (radix_tree_preload(GFP_NOIO
)) {
116 spin_lock(&brd
->brd_lock
);
117 idx
= sector
>> PAGE_SECTORS_SHIFT
;
119 if (radix_tree_insert(&brd
->brd_pages
, idx
, page
)) {
121 page
= radix_tree_lookup(&brd
->brd_pages
, idx
);
123 BUG_ON(page
->index
!= idx
);
125 spin_unlock(&brd
->brd_lock
);
127 radix_tree_preload_end();
133 * Free all backing store pages and radix tree. This must only be called when
134 * there are no other users of the device.
136 #define FREE_BATCH 16
137 static void brd_free_pages(struct brd_device
*brd
)
139 unsigned long pos
= 0;
140 struct page
*pages
[FREE_BATCH
];
146 nr_pages
= radix_tree_gang_lookup(&brd
->brd_pages
,
147 (void **)pages
, pos
, FREE_BATCH
);
149 for (i
= 0; i
< nr_pages
; i
++) {
152 BUG_ON(pages
[i
]->index
< pos
);
153 pos
= pages
[i
]->index
;
154 ret
= radix_tree_delete(&brd
->brd_pages
, pos
);
155 BUG_ON(!ret
|| ret
!= pages
[i
]);
156 __free_page(pages
[i
]);
162 * This assumes radix_tree_gang_lookup always returns as
163 * many pages as possible. If the radix-tree code changes,
164 * so will this have to.
166 } while (nr_pages
== FREE_BATCH
);
170 * copy_to_brd_setup must be called before copy_to_brd. It may sleep.
172 static int copy_to_brd_setup(struct brd_device
*brd
, sector_t sector
, size_t n
)
174 unsigned int offset
= (sector
& (PAGE_SECTORS
-1)) << SECTOR_SHIFT
;
177 copy
= min_t(size_t, n
, PAGE_SIZE
- offset
);
178 if (!brd_insert_page(brd
, sector
))
181 sector
+= copy
>> SECTOR_SHIFT
;
182 if (!brd_insert_page(brd
, sector
))
189 * Copy n bytes from src to the brd starting at sector. Does not sleep.
191 static void copy_to_brd(struct brd_device
*brd
, const void *src
,
192 sector_t sector
, size_t n
)
196 unsigned int offset
= (sector
& (PAGE_SECTORS
-1)) << SECTOR_SHIFT
;
199 copy
= min_t(size_t, n
, PAGE_SIZE
- offset
);
200 page
= brd_lookup_page(brd
, sector
);
203 dst
= kmap_atomic(page
);
204 memcpy(dst
+ offset
, src
, copy
);
209 sector
+= copy
>> SECTOR_SHIFT
;
211 page
= brd_lookup_page(brd
, sector
);
214 dst
= kmap_atomic(page
);
215 memcpy(dst
, src
, copy
);
221 * Copy n bytes to dst from the brd starting at sector. Does not sleep.
223 static void copy_from_brd(void *dst
, struct brd_device
*brd
,
224 sector_t sector
, size_t n
)
228 unsigned int offset
= (sector
& (PAGE_SECTORS
-1)) << SECTOR_SHIFT
;
231 copy
= min_t(size_t, n
, PAGE_SIZE
- offset
);
232 page
= brd_lookup_page(brd
, sector
);
234 src
= kmap_atomic(page
);
235 memcpy(dst
, src
+ offset
, copy
);
238 memset(dst
, 0, copy
);
242 sector
+= copy
>> SECTOR_SHIFT
;
244 page
= brd_lookup_page(brd
, sector
);
246 src
= kmap_atomic(page
);
247 memcpy(dst
, src
, copy
);
250 memset(dst
, 0, copy
);
255 * Process a single bvec of a bio.
257 static int brd_do_bvec(struct brd_device
*brd
, struct page
*page
,
258 unsigned int len
, unsigned int off
, bool is_write
,
265 err
= copy_to_brd_setup(brd
, sector
, len
);
270 mem
= kmap_atomic(page
);
272 copy_from_brd(mem
+ off
, brd
, sector
, len
);
273 flush_dcache_page(page
);
275 flush_dcache_page(page
);
276 copy_to_brd(brd
, mem
+ off
, sector
, len
);
284 static blk_qc_t
brd_make_request(struct request_queue
*q
, struct bio
*bio
)
286 struct brd_device
*brd
= bio
->bi_disk
->private_data
;
289 struct bvec_iter iter
;
291 sector
= bio
->bi_iter
.bi_sector
;
292 if (bio_end_sector(bio
) > get_capacity(bio
->bi_disk
))
295 bio_for_each_segment(bvec
, bio
, iter
) {
296 unsigned int len
= bvec
.bv_len
;
299 err
= brd_do_bvec(brd
, bvec
.bv_page
, len
, bvec
.bv_offset
,
300 op_is_write(bio_op(bio
)), sector
);
303 sector
+= len
>> SECTOR_SHIFT
;
307 return BLK_QC_T_NONE
;
310 return BLK_QC_T_NONE
;
313 static int brd_rw_page(struct block_device
*bdev
, sector_t sector
,
314 struct page
*page
, bool is_write
)
316 struct brd_device
*brd
= bdev
->bd_disk
->private_data
;
319 if (PageTransHuge(page
))
321 err
= brd_do_bvec(brd
, page
, PAGE_SIZE
, 0, is_write
, sector
);
322 page_endio(page
, is_write
, err
);
326 static const struct block_device_operations brd_fops
= {
327 .owner
= THIS_MODULE
,
328 .rw_page
= brd_rw_page
,
332 * And now the modules code and kernel interface.
334 static int rd_nr
= CONFIG_BLK_DEV_RAM_COUNT
;
335 module_param(rd_nr
, int, S_IRUGO
);
336 MODULE_PARM_DESC(rd_nr
, "Maximum number of brd devices");
338 unsigned long rd_size
= CONFIG_BLK_DEV_RAM_SIZE
;
339 module_param(rd_size
, ulong
, S_IRUGO
);
340 MODULE_PARM_DESC(rd_size
, "Size of each RAM disk in kbytes.");
342 static int max_part
= 1;
343 module_param(max_part
, int, S_IRUGO
);
344 MODULE_PARM_DESC(max_part
, "Num Minors to reserve between devices");
346 MODULE_LICENSE("GPL");
347 MODULE_ALIAS_BLOCKDEV_MAJOR(RAMDISK_MAJOR
);
351 /* Legacy boot options - nonmodular */
352 static int __init
ramdisk_size(char *str
)
354 rd_size
= simple_strtol(str
, NULL
, 0);
357 __setup("ramdisk_size=", ramdisk_size
);
361 * The device scheme is derived from loop.c. Keep them in synch where possible
362 * (should share code eventually).
364 static LIST_HEAD(brd_devices
);
365 static DEFINE_MUTEX(brd_devices_mutex
);
367 static struct brd_device
*brd_alloc(int i
)
369 struct brd_device
*brd
;
370 struct gendisk
*disk
;
372 brd
= kzalloc(sizeof(*brd
), GFP_KERNEL
);
376 spin_lock_init(&brd
->brd_lock
);
377 INIT_RADIX_TREE(&brd
->brd_pages
, GFP_ATOMIC
);
379 brd
->brd_queue
= blk_alloc_queue(GFP_KERNEL
);
383 blk_queue_make_request(brd
->brd_queue
, brd_make_request
);
384 blk_queue_max_hw_sectors(brd
->brd_queue
, 1024);
386 /* This is so fdisk will align partitions on 4k, because of
387 * direct_access API needing 4k alignment, returning a PFN
388 * (This is only a problem on very small devices <= 4M,
389 * otherwise fdisk will align on 1M. Regardless this call
392 blk_queue_physical_block_size(brd
->brd_queue
, PAGE_SIZE
);
393 disk
= brd
->brd_disk
= alloc_disk(max_part
);
396 disk
->major
= RAMDISK_MAJOR
;
397 disk
->first_minor
= i
* max_part
;
398 disk
->fops
= &brd_fops
;
399 disk
->private_data
= brd
;
400 disk
->queue
= brd
->brd_queue
;
401 disk
->flags
= GENHD_FL_EXT_DEVT
;
402 sprintf(disk
->disk_name
, "ram%d", i
);
403 set_capacity(disk
, rd_size
* 2);
404 disk
->queue
->backing_dev_info
->capabilities
|= BDI_CAP_SYNCHRONOUS_IO
;
409 blk_cleanup_queue(brd
->brd_queue
);
416 static void brd_free(struct brd_device
*brd
)
418 put_disk(brd
->brd_disk
);
419 blk_cleanup_queue(brd
->brd_queue
);
424 static struct brd_device
*brd_init_one(int i
, bool *new)
426 struct brd_device
*brd
;
429 list_for_each_entry(brd
, &brd_devices
, brd_list
) {
430 if (brd
->brd_number
== i
)
436 add_disk(brd
->brd_disk
);
437 list_add_tail(&brd
->brd_list
, &brd_devices
);
444 static void brd_del_one(struct brd_device
*brd
)
446 list_del(&brd
->brd_list
);
447 del_gendisk(brd
->brd_disk
);
451 static struct kobject
*brd_probe(dev_t dev
, int *part
, void *data
)
453 struct brd_device
*brd
;
454 struct kobject
*kobj
;
457 mutex_lock(&brd_devices_mutex
);
458 brd
= brd_init_one(MINOR(dev
) / max_part
, &new);
459 kobj
= brd
? get_disk_and_module(brd
->brd_disk
) : NULL
;
460 mutex_unlock(&brd_devices_mutex
);
468 static int __init
brd_init(void)
470 struct brd_device
*brd
, *next
;
474 * brd module now has a feature to instantiate underlying device
475 * structure on-demand, provided that there is an access dev node.
477 * (1) if rd_nr is specified, create that many upfront. else
478 * it defaults to CONFIG_BLK_DEV_RAM_COUNT
479 * (2) User can further extend brd devices by create dev node themselves
480 * and have kernel automatically instantiate actual device
481 * on-demand. Example:
482 * mknod /path/devnod_name b 1 X # 1 is the rd major
483 * fdisk -l /path/devnod_name
484 * If (X / max_part) was not already created it will be created
488 if (register_blkdev(RAMDISK_MAJOR
, "ramdisk"))
491 if (unlikely(!max_part
))
494 for (i
= 0; i
< rd_nr
; i
++) {
498 list_add_tail(&brd
->brd_list
, &brd_devices
);
501 /* point of no return */
503 list_for_each_entry(brd
, &brd_devices
, brd_list
)
504 add_disk(brd
->brd_disk
);
506 blk_register_region(MKDEV(RAMDISK_MAJOR
, 0), 1UL << MINORBITS
,
507 THIS_MODULE
, brd_probe
, NULL
, NULL
);
509 pr_info("brd: module loaded\n");
513 list_for_each_entry_safe(brd
, next
, &brd_devices
, brd_list
) {
514 list_del(&brd
->brd_list
);
517 unregister_blkdev(RAMDISK_MAJOR
, "ramdisk");
519 pr_info("brd: module NOT loaded !!!\n");
523 static void __exit
brd_exit(void)
525 struct brd_device
*brd
, *next
;
527 list_for_each_entry_safe(brd
, next
, &brd_devices
, brd_list
)
530 blk_unregister_region(MKDEV(RAMDISK_MAJOR
, 0), 1UL << MINORBITS
);
531 unregister_blkdev(RAMDISK_MAJOR
, "ramdisk");
533 pr_info("brd: module unloaded\n");
536 module_init(brd_init
);
537 module_exit(brd_exit
);