2 * linux/drivers/block/loop.c
4 * Written by Theodore Ts'o, 3/29/93
6 * Copyright 1993 by Theodore Ts'o. Redistribution of this file is
7 * permitted under the GNU General Public License.
9 * DES encryption plus some minor changes by Werner Almesberger, 30-MAY-1993
10 * more DES encryption plus IDEA encryption by Nicholas J. Leon, June 20, 1996
12 * Modularized and updated for 1.1.16 kernel - Mitch Dsouza 28th May 1994
13 * Adapted for 1.3.59 kernel - Andries Brouwer, 1 Feb 1996
15 * Fixed do_loop_request() re-entrancy - Vincent.Renardias@waw.com Mar 20, 1997
17 * Added devfs support - Richard Gooch <rgooch@atnf.csiro.au> 16-Jan-1998
19 * Handle sparse backing files correctly - Kenn Humborg, Jun 28, 1998
21 * Loadable modules and other fixes by AK, 1998
23 * Make real block number available to downstream transfer functions, enables
24 * CBC (and relatives) mode encryption requiring unique IVs per data block.
25 * Reed H. Petty, rhp@draper.net
27 * Maximum number of loop devices now dynamic via max_loop module parameter.
28 * Russell Kroll <rkroll@exploits.org> 19990701
30 * Maximum number of loop devices when compiled-in now selectable by passing
31 * max_loop=<1-255> to the kernel on boot.
32 * Erik I. Bolsø, <eriki@himolde.no>, Oct 31, 1999
34 * Completely rewrite request handling to be make_request_fn style and
35 * non blocking, pushing work to a helper thread. Lots of fixes from
37 * Jens Axboe <axboe@suse.de>, Nov 2000
39 * Support up to 256 loop devices
40 * Heinz Mauelshagen <mge@sistina.com>, Feb 2002
42 * Support for falling back on the write file operation when the address space
43 * operations write_begin is not available on the backing filesystem.
44 * Anton Altaparmakov, 16 Feb 2005
47 * - Advisory locking is ignored here.
48 * - Should use an own CAP_* category instead of CAP_SYS_ADMIN
52 #include <linux/module.h>
53 #include <linux/moduleparam.h>
54 #include <linux/sched.h>
56 #include <linux/file.h>
57 #include <linux/stat.h>
58 #include <linux/errno.h>
59 #include <linux/major.h>
60 #include <linux/wait.h>
61 #include <linux/blkdev.h>
62 #include <linux/blkpg.h>
63 #include <linux/init.h>
64 #include <linux/swap.h>
65 #include <linux/slab.h>
66 #include <linux/compat.h>
67 #include <linux/suspend.h>
68 #include <linux/freezer.h>
69 #include <linux/mutex.h>
70 #include <linux/writeback.h>
71 #include <linux/completion.h>
72 #include <linux/highmem.h>
73 #include <linux/kthread.h>
74 #include <linux/splice.h>
75 #include <linux/sysfs.h>
76 #include <linux/miscdevice.h>
77 #include <linux/falloc.h>
78 #include <linux/uio.h>
81 #include <linux/uaccess.h>
83 static DEFINE_IDR(loop_index_idr
);
84 static DEFINE_MUTEX(loop_index_mutex
);
87 static int part_shift
;
89 static int transfer_xor(struct loop_device
*lo
, int cmd
,
90 struct page
*raw_page
, unsigned raw_off
,
91 struct page
*loop_page
, unsigned loop_off
,
92 int size
, sector_t real_block
)
94 char *raw_buf
= kmap_atomic(raw_page
) + raw_off
;
95 char *loop_buf
= kmap_atomic(loop_page
) + loop_off
;
107 key
= lo
->lo_encrypt_key
;
108 keysize
= lo
->lo_encrypt_key_size
;
109 for (i
= 0; i
< size
; i
++)
110 *out
++ = *in
++ ^ key
[(i
& 511) % keysize
];
112 kunmap_atomic(loop_buf
);
113 kunmap_atomic(raw_buf
);
118 static int xor_init(struct loop_device
*lo
, const struct loop_info64
*info
)
120 if (unlikely(info
->lo_encrypt_key_size
<= 0))
125 static struct loop_func_table none_funcs
= {
126 .number
= LO_CRYPT_NONE
,
129 static struct loop_func_table xor_funcs
= {
130 .number
= LO_CRYPT_XOR
,
131 .transfer
= transfer_xor
,
135 /* xfer_funcs[0] is special - its release function is never called */
136 static struct loop_func_table
*xfer_funcs
[MAX_LO_CRYPT
] = {
141 static loff_t
get_size(loff_t offset
, loff_t sizelimit
, struct file
*file
)
145 /* Compute loopsize in bytes */
146 loopsize
= i_size_read(file
->f_mapping
->host
);
149 /* offset is beyond i_size, weird but possible */
153 if (sizelimit
> 0 && sizelimit
< loopsize
)
154 loopsize
= sizelimit
;
156 * Unfortunately, if we want to do I/O on the device,
157 * the number of 512-byte sectors has to fit into a sector_t.
159 return loopsize
>> 9;
162 static loff_t
get_loop_size(struct loop_device
*lo
, struct file
*file
)
164 return get_size(lo
->lo_offset
, lo
->lo_sizelimit
, file
);
167 static void __loop_update_dio(struct loop_device
*lo
, bool dio
)
169 struct file
*file
= lo
->lo_backing_file
;
170 struct address_space
*mapping
= file
->f_mapping
;
171 struct inode
*inode
= mapping
->host
;
172 unsigned short sb_bsize
= 0;
173 unsigned dio_align
= 0;
176 if (inode
->i_sb
->s_bdev
) {
177 sb_bsize
= bdev_logical_block_size(inode
->i_sb
->s_bdev
);
178 dio_align
= sb_bsize
- 1;
182 * We support direct I/O only if lo_offset is aligned with the
183 * logical I/O size of backing device, and the logical block
184 * size of loop is bigger than the backing device's and the loop
185 * needn't transform transfer.
187 * TODO: the above condition may be loosed in the future, and
188 * direct I/O may be switched runtime at that time because most
189 * of requests in sane applications should be PAGE_SIZE aligned
192 if (queue_logical_block_size(lo
->lo_queue
) >= sb_bsize
&&
193 !(lo
->lo_offset
& dio_align
) &&
194 mapping
->a_ops
->direct_IO
&&
203 if (lo
->use_dio
== use_dio
)
206 /* flush dirty pages before changing direct IO */
210 * The flag of LO_FLAGS_DIRECT_IO is handled similarly with
211 * LO_FLAGS_READ_ONLY, both are set from kernel, and losetup
212 * will get updated by ioctl(LOOP_GET_STATUS)
214 blk_mq_freeze_queue(lo
->lo_queue
);
215 lo
->use_dio
= use_dio
;
217 queue_flag_clear_unlocked(QUEUE_FLAG_NOMERGES
, lo
->lo_queue
);
218 lo
->lo_flags
|= LO_FLAGS_DIRECT_IO
;
220 queue_flag_set_unlocked(QUEUE_FLAG_NOMERGES
, lo
->lo_queue
);
221 lo
->lo_flags
&= ~LO_FLAGS_DIRECT_IO
;
223 blk_mq_unfreeze_queue(lo
->lo_queue
);
227 figure_loop_size(struct loop_device
*lo
, loff_t offset
, loff_t sizelimit
)
229 loff_t size
= get_size(offset
, sizelimit
, lo
->lo_backing_file
);
230 sector_t x
= (sector_t
)size
;
231 struct block_device
*bdev
= lo
->lo_device
;
233 if (unlikely((loff_t
)x
!= size
))
235 if (lo
->lo_offset
!= offset
)
236 lo
->lo_offset
= offset
;
237 if (lo
->lo_sizelimit
!= sizelimit
)
238 lo
->lo_sizelimit
= sizelimit
;
239 set_capacity(lo
->lo_disk
, x
);
240 bd_set_size(bdev
, (loff_t
)get_capacity(bdev
->bd_disk
) << 9);
241 /* let user-space know about the new size */
242 kobject_uevent(&disk_to_dev(bdev
->bd_disk
)->kobj
, KOBJ_CHANGE
);
247 lo_do_transfer(struct loop_device
*lo
, int cmd
,
248 struct page
*rpage
, unsigned roffs
,
249 struct page
*lpage
, unsigned loffs
,
250 int size
, sector_t rblock
)
254 ret
= lo
->transfer(lo
, cmd
, rpage
, roffs
, lpage
, loffs
, size
, rblock
);
258 printk_ratelimited(KERN_ERR
259 "loop: Transfer error at byte offset %llu, length %i.\n",
260 (unsigned long long)rblock
<< 9, size
);
264 static int lo_write_bvec(struct file
*file
, struct bio_vec
*bvec
, loff_t
*ppos
)
269 iov_iter_bvec(&i
, ITER_BVEC
, bvec
, 1, bvec
->bv_len
);
271 file_start_write(file
);
272 bw
= vfs_iter_write(file
, &i
, ppos
, 0);
273 file_end_write(file
);
275 if (likely(bw
== bvec
->bv_len
))
278 printk_ratelimited(KERN_ERR
279 "loop: Write error at byte offset %llu, length %i.\n",
280 (unsigned long long)*ppos
, bvec
->bv_len
);
286 static int lo_write_simple(struct loop_device
*lo
, struct request
*rq
,
290 struct req_iterator iter
;
293 rq_for_each_segment(bvec
, rq
, iter
) {
294 ret
= lo_write_bvec(lo
->lo_backing_file
, &bvec
, &pos
);
304 * This is the slow, transforming version that needs to double buffer the
305 * data as it cannot do the transformations in place without having direct
306 * access to the destination pages of the backing file.
308 static int lo_write_transfer(struct loop_device
*lo
, struct request
*rq
,
311 struct bio_vec bvec
, b
;
312 struct req_iterator iter
;
316 page
= alloc_page(GFP_NOIO
);
320 rq_for_each_segment(bvec
, rq
, iter
) {
321 ret
= lo_do_transfer(lo
, WRITE
, page
, 0, bvec
.bv_page
,
322 bvec
.bv_offset
, bvec
.bv_len
, pos
>> 9);
328 b
.bv_len
= bvec
.bv_len
;
329 ret
= lo_write_bvec(lo
->lo_backing_file
, &b
, &pos
);
338 static int lo_read_simple(struct loop_device
*lo
, struct request
*rq
,
342 struct req_iterator iter
;
346 rq_for_each_segment(bvec
, rq
, iter
) {
347 iov_iter_bvec(&i
, ITER_BVEC
, &bvec
, 1, bvec
.bv_len
);
348 len
= vfs_iter_read(lo
->lo_backing_file
, &i
, &pos
, 0);
352 flush_dcache_page(bvec
.bv_page
);
354 if (len
!= bvec
.bv_len
) {
357 __rq_for_each_bio(bio
, rq
)
367 static int lo_read_transfer(struct loop_device
*lo
, struct request
*rq
,
370 struct bio_vec bvec
, b
;
371 struct req_iterator iter
;
377 page
= alloc_page(GFP_NOIO
);
381 rq_for_each_segment(bvec
, rq
, iter
) {
386 b
.bv_len
= bvec
.bv_len
;
388 iov_iter_bvec(&i
, ITER_BVEC
, &b
, 1, b
.bv_len
);
389 len
= vfs_iter_read(lo
->lo_backing_file
, &i
, &pos
, 0);
395 ret
= lo_do_transfer(lo
, READ
, page
, 0, bvec
.bv_page
,
396 bvec
.bv_offset
, len
, offset
>> 9);
400 flush_dcache_page(bvec
.bv_page
);
402 if (len
!= bvec
.bv_len
) {
405 __rq_for_each_bio(bio
, rq
)
417 static int lo_discard(struct loop_device
*lo
, struct request
*rq
, loff_t pos
)
420 * We use punch hole to reclaim the free space used by the
421 * image a.k.a. discard. However we do not support discard if
422 * encryption is enabled, because it may give an attacker
423 * useful information.
425 struct file
*file
= lo
->lo_backing_file
;
426 int mode
= FALLOC_FL_PUNCH_HOLE
| FALLOC_FL_KEEP_SIZE
;
429 if ((!file
->f_op
->fallocate
) || lo
->lo_encrypt_key_size
) {
434 ret
= file
->f_op
->fallocate(file
, mode
, pos
, blk_rq_bytes(rq
));
435 if (unlikely(ret
&& ret
!= -EINVAL
&& ret
!= -EOPNOTSUPP
))
441 static int lo_req_flush(struct loop_device
*lo
, struct request
*rq
)
443 struct file
*file
= lo
->lo_backing_file
;
444 int ret
= vfs_fsync(file
, 0);
445 if (unlikely(ret
&& ret
!= -EINVAL
))
451 static void lo_complete_rq(struct request
*rq
)
453 struct loop_cmd
*cmd
= blk_mq_rq_to_pdu(rq
);
455 if (unlikely(req_op(cmd
->rq
) == REQ_OP_READ
&& cmd
->use_aio
&&
456 cmd
->ret
>= 0 && cmd
->ret
< blk_rq_bytes(cmd
->rq
))) {
457 struct bio
*bio
= cmd
->rq
->bio
;
459 bio_advance(bio
, cmd
->ret
);
463 blk_mq_end_request(rq
, cmd
->ret
< 0 ? BLK_STS_IOERR
: BLK_STS_OK
);
466 static void lo_rw_aio_do_completion(struct loop_cmd
*cmd
)
468 if (!atomic_dec_and_test(&cmd
->ref
))
472 blk_mq_complete_request(cmd
->rq
);
475 static void lo_rw_aio_complete(struct kiocb
*iocb
, long ret
, long ret2
)
477 struct loop_cmd
*cmd
= container_of(iocb
, struct loop_cmd
, iocb
);
482 lo_rw_aio_do_completion(cmd
);
485 static int lo_rw_aio(struct loop_device
*lo
, struct loop_cmd
*cmd
,
488 struct iov_iter iter
;
489 struct bio_vec
*bvec
;
490 struct request
*rq
= cmd
->rq
;
491 struct bio
*bio
= rq
->bio
;
492 struct file
*file
= lo
->lo_backing_file
;
497 if (rq
->bio
!= rq
->biotail
) {
498 struct req_iterator iter
;
501 __rq_for_each_bio(bio
, rq
)
502 segments
+= bio_segments(bio
);
503 bvec
= kmalloc(sizeof(struct bio_vec
) * segments
, GFP_NOIO
);
509 * The bios of the request may be started from the middle of
510 * the 'bvec' because of bio splitting, so we can't directly
511 * copy bio->bi_iov_vec to new bvec. The rq_for_each_segment
512 * API will take care of all details for us.
514 rq_for_each_segment(tmp
, rq
, iter
) {
522 * Same here, this bio may be started from the middle of the
523 * 'bvec' because of bio splitting, so offset from the bvec
524 * must be passed to iov iterator
526 offset
= bio
->bi_iter
.bi_bvec_done
;
527 bvec
= __bvec_iter_bvec(bio
->bi_io_vec
, bio
->bi_iter
);
528 segments
= bio_segments(bio
);
530 atomic_set(&cmd
->ref
, 2);
532 iov_iter_bvec(&iter
, ITER_BVEC
| rw
, bvec
,
533 segments
, blk_rq_bytes(rq
));
534 iter
.iov_offset
= offset
;
536 cmd
->iocb
.ki_pos
= pos
;
537 cmd
->iocb
.ki_filp
= file
;
538 cmd
->iocb
.ki_complete
= lo_rw_aio_complete
;
539 cmd
->iocb
.ki_flags
= IOCB_DIRECT
;
541 kthread_associate_blkcg(cmd
->css
);
544 ret
= call_write_iter(file
, &cmd
->iocb
, &iter
);
546 ret
= call_read_iter(file
, &cmd
->iocb
, &iter
);
548 lo_rw_aio_do_completion(cmd
);
549 kthread_associate_blkcg(NULL
);
551 if (ret
!= -EIOCBQUEUED
)
552 cmd
->iocb
.ki_complete(&cmd
->iocb
, ret
, 0);
556 static int do_req_filebacked(struct loop_device
*lo
, struct request
*rq
)
558 struct loop_cmd
*cmd
= blk_mq_rq_to_pdu(rq
);
559 loff_t pos
= ((loff_t
) blk_rq_pos(rq
) << 9) + lo
->lo_offset
;
562 * lo_write_simple and lo_read_simple should have been covered
563 * by io submit style function like lo_rw_aio(), one blocker
564 * is that lo_read_simple() need to call flush_dcache_page after
565 * the page is written from kernel, and it isn't easy to handle
566 * this in io submit style function which submits all segments
567 * of the req at one time. And direct read IO doesn't need to
568 * run flush_dcache_page().
570 switch (req_op(rq
)) {
572 return lo_req_flush(lo
, rq
);
574 case REQ_OP_WRITE_ZEROES
:
575 return lo_discard(lo
, rq
, pos
);
578 return lo_write_transfer(lo
, rq
, pos
);
579 else if (cmd
->use_aio
)
580 return lo_rw_aio(lo
, cmd
, pos
, WRITE
);
582 return lo_write_simple(lo
, rq
, pos
);
585 return lo_read_transfer(lo
, rq
, pos
);
586 else if (cmd
->use_aio
)
587 return lo_rw_aio(lo
, cmd
, pos
, READ
);
589 return lo_read_simple(lo
, rq
, pos
);
597 static inline void loop_update_dio(struct loop_device
*lo
)
599 __loop_update_dio(lo
, io_is_direct(lo
->lo_backing_file
) |
603 static void loop_reread_partitions(struct loop_device
*lo
,
604 struct block_device
*bdev
)
609 * bd_mutex has been held already in release path, so don't
610 * acquire it if this function is called in such case.
612 * If the reread partition isn't from release path, lo_refcnt
613 * must be at least one and it can only become zero when the
614 * current holder is released.
616 if (!atomic_read(&lo
->lo_refcnt
))
617 rc
= __blkdev_reread_part(bdev
);
619 rc
= blkdev_reread_part(bdev
);
621 pr_warn("%s: partition scan of loop%d (%s) failed (rc=%d)\n",
622 __func__
, lo
->lo_number
, lo
->lo_file_name
, rc
);
626 * loop_change_fd switched the backing store of a loopback device to
627 * a new file. This is useful for operating system installers to free up
628 * the original file and in High Availability environments to switch to
629 * an alternative location for the content in case of server meltdown.
630 * This can only work if the loop device is used read-only, and if the
631 * new backing store is the same size and type as the old backing store.
633 static int loop_change_fd(struct loop_device
*lo
, struct block_device
*bdev
,
636 struct file
*file
, *old_file
;
641 if (lo
->lo_state
!= Lo_bound
)
644 /* the loop device has to be read-only */
646 if (!(lo
->lo_flags
& LO_FLAGS_READ_ONLY
))
654 inode
= file
->f_mapping
->host
;
655 old_file
= lo
->lo_backing_file
;
659 if (!S_ISREG(inode
->i_mode
) && !S_ISBLK(inode
->i_mode
))
662 /* size of the new backing store needs to be the same */
663 if (get_loop_size(lo
, file
) != get_loop_size(lo
, old_file
))
667 blk_mq_freeze_queue(lo
->lo_queue
);
668 mapping_set_gfp_mask(old_file
->f_mapping
, lo
->old_gfp_mask
);
669 lo
->lo_backing_file
= file
;
670 lo
->old_gfp_mask
= mapping_gfp_mask(file
->f_mapping
);
671 mapping_set_gfp_mask(file
->f_mapping
,
672 lo
->old_gfp_mask
& ~(__GFP_IO
|__GFP_FS
));
674 blk_mq_unfreeze_queue(lo
->lo_queue
);
677 if (lo
->lo_flags
& LO_FLAGS_PARTSCAN
)
678 loop_reread_partitions(lo
, bdev
);
687 static inline int is_loop_device(struct file
*file
)
689 struct inode
*i
= file
->f_mapping
->host
;
691 return i
&& S_ISBLK(i
->i_mode
) && MAJOR(i
->i_rdev
) == LOOP_MAJOR
;
694 /* loop sysfs attributes */
696 static ssize_t
loop_attr_show(struct device
*dev
, char *page
,
697 ssize_t (*callback
)(struct loop_device
*, char *))
699 struct gendisk
*disk
= dev_to_disk(dev
);
700 struct loop_device
*lo
= disk
->private_data
;
702 return callback(lo
, page
);
705 #define LOOP_ATTR_RO(_name) \
706 static ssize_t loop_attr_##_name##_show(struct loop_device *, char *); \
707 static ssize_t loop_attr_do_show_##_name(struct device *d, \
708 struct device_attribute *attr, char *b) \
710 return loop_attr_show(d, b, loop_attr_##_name##_show); \
712 static struct device_attribute loop_attr_##_name = \
713 __ATTR(_name, S_IRUGO, loop_attr_do_show_##_name, NULL);
715 static ssize_t
loop_attr_backing_file_show(struct loop_device
*lo
, char *buf
)
720 spin_lock_irq(&lo
->lo_lock
);
721 if (lo
->lo_backing_file
)
722 p
= file_path(lo
->lo_backing_file
, buf
, PAGE_SIZE
- 1);
723 spin_unlock_irq(&lo
->lo_lock
);
725 if (IS_ERR_OR_NULL(p
))
729 memmove(buf
, p
, ret
);
737 static ssize_t
loop_attr_offset_show(struct loop_device
*lo
, char *buf
)
739 return sprintf(buf
, "%llu\n", (unsigned long long)lo
->lo_offset
);
742 static ssize_t
loop_attr_sizelimit_show(struct loop_device
*lo
, char *buf
)
744 return sprintf(buf
, "%llu\n", (unsigned long long)lo
->lo_sizelimit
);
747 static ssize_t
loop_attr_autoclear_show(struct loop_device
*lo
, char *buf
)
749 int autoclear
= (lo
->lo_flags
& LO_FLAGS_AUTOCLEAR
);
751 return sprintf(buf
, "%s\n", autoclear
? "1" : "0");
754 static ssize_t
loop_attr_partscan_show(struct loop_device
*lo
, char *buf
)
756 int partscan
= (lo
->lo_flags
& LO_FLAGS_PARTSCAN
);
758 return sprintf(buf
, "%s\n", partscan
? "1" : "0");
761 static ssize_t
loop_attr_dio_show(struct loop_device
*lo
, char *buf
)
763 int dio
= (lo
->lo_flags
& LO_FLAGS_DIRECT_IO
);
765 return sprintf(buf
, "%s\n", dio
? "1" : "0");
768 LOOP_ATTR_RO(backing_file
);
769 LOOP_ATTR_RO(offset
);
770 LOOP_ATTR_RO(sizelimit
);
771 LOOP_ATTR_RO(autoclear
);
772 LOOP_ATTR_RO(partscan
);
775 static struct attribute
*loop_attrs
[] = {
776 &loop_attr_backing_file
.attr
,
777 &loop_attr_offset
.attr
,
778 &loop_attr_sizelimit
.attr
,
779 &loop_attr_autoclear
.attr
,
780 &loop_attr_partscan
.attr
,
785 static struct attribute_group loop_attribute_group
= {
790 static int loop_sysfs_init(struct loop_device
*lo
)
792 return sysfs_create_group(&disk_to_dev(lo
->lo_disk
)->kobj
,
793 &loop_attribute_group
);
796 static void loop_sysfs_exit(struct loop_device
*lo
)
798 sysfs_remove_group(&disk_to_dev(lo
->lo_disk
)->kobj
,
799 &loop_attribute_group
);
802 static void loop_config_discard(struct loop_device
*lo
)
804 struct file
*file
= lo
->lo_backing_file
;
805 struct inode
*inode
= file
->f_mapping
->host
;
806 struct request_queue
*q
= lo
->lo_queue
;
809 * We use punch hole to reclaim the free space used by the
810 * image a.k.a. discard. However we do not support discard if
811 * encryption is enabled, because it may give an attacker
812 * useful information.
814 if ((!file
->f_op
->fallocate
) ||
815 lo
->lo_encrypt_key_size
) {
816 q
->limits
.discard_granularity
= 0;
817 q
->limits
.discard_alignment
= 0;
818 blk_queue_max_discard_sectors(q
, 0);
819 blk_queue_max_write_zeroes_sectors(q
, 0);
820 queue_flag_clear_unlocked(QUEUE_FLAG_DISCARD
, q
);
824 q
->limits
.discard_granularity
= inode
->i_sb
->s_blocksize
;
825 q
->limits
.discard_alignment
= 0;
827 blk_queue_max_discard_sectors(q
, UINT_MAX
>> 9);
828 blk_queue_max_write_zeroes_sectors(q
, UINT_MAX
>> 9);
829 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD
, q
);
832 static void loop_unprepare_queue(struct loop_device
*lo
)
834 kthread_flush_worker(&lo
->worker
);
835 kthread_stop(lo
->worker_task
);
838 static int loop_kthread_worker_fn(void *worker_ptr
)
840 current
->flags
|= PF_LESS_THROTTLE
;
841 return kthread_worker_fn(worker_ptr
);
844 static int loop_prepare_queue(struct loop_device
*lo
)
846 kthread_init_worker(&lo
->worker
);
847 lo
->worker_task
= kthread_run(loop_kthread_worker_fn
,
848 &lo
->worker
, "loop%d", lo
->lo_number
);
849 if (IS_ERR(lo
->worker_task
))
851 set_user_nice(lo
->worker_task
, MIN_NICE
);
855 static int loop_set_fd(struct loop_device
*lo
, fmode_t mode
,
856 struct block_device
*bdev
, unsigned int arg
)
858 struct file
*file
, *f
;
860 struct address_space
*mapping
;
865 /* This is safe, since we have a reference from open(). */
866 __module_get(THIS_MODULE
);
874 if (lo
->lo_state
!= Lo_unbound
)
877 /* Avoid recursion */
879 while (is_loop_device(f
)) {
880 struct loop_device
*l
;
882 if (f
->f_mapping
->host
->i_bdev
== bdev
)
885 l
= f
->f_mapping
->host
->i_bdev
->bd_disk
->private_data
;
886 if (l
->lo_state
== Lo_unbound
) {
890 f
= l
->lo_backing_file
;
893 mapping
= file
->f_mapping
;
894 inode
= mapping
->host
;
897 if (!S_ISREG(inode
->i_mode
) && !S_ISBLK(inode
->i_mode
))
900 if (!(file
->f_mode
& FMODE_WRITE
) || !(mode
& FMODE_WRITE
) ||
901 !file
->f_op
->write_iter
)
902 lo_flags
|= LO_FLAGS_READ_ONLY
;
905 size
= get_loop_size(lo
, file
);
906 if ((loff_t
)(sector_t
)size
!= size
)
908 error
= loop_prepare_queue(lo
);
914 set_device_ro(bdev
, (lo_flags
& LO_FLAGS_READ_ONLY
) != 0);
917 lo
->lo_device
= bdev
;
918 lo
->lo_flags
= lo_flags
;
919 lo
->lo_backing_file
= file
;
922 lo
->lo_sizelimit
= 0;
923 lo
->old_gfp_mask
= mapping_gfp_mask(mapping
);
924 mapping_set_gfp_mask(mapping
, lo
->old_gfp_mask
& ~(__GFP_IO
|__GFP_FS
));
926 if (!(lo_flags
& LO_FLAGS_READ_ONLY
) && file
->f_op
->fsync
)
927 blk_queue_write_cache(lo
->lo_queue
, true, false);
930 set_capacity(lo
->lo_disk
, size
);
931 bd_set_size(bdev
, size
<< 9);
933 /* let user-space know about the new size */
934 kobject_uevent(&disk_to_dev(bdev
->bd_disk
)->kobj
, KOBJ_CHANGE
);
936 set_blocksize(bdev
, S_ISBLK(inode
->i_mode
) ?
937 block_size(inode
->i_bdev
) : PAGE_SIZE
);
939 lo
->lo_state
= Lo_bound
;
941 lo
->lo_flags
|= LO_FLAGS_PARTSCAN
;
942 if (lo
->lo_flags
& LO_FLAGS_PARTSCAN
)
943 loop_reread_partitions(lo
, bdev
);
945 /* Grab the block_device to prevent its destruction after we
946 * put /dev/loopXX inode. Later in loop_clr_fd() we bdput(bdev).
954 /* This is safe: open() is still holding a reference. */
955 module_put(THIS_MODULE
);
960 loop_release_xfer(struct loop_device
*lo
)
963 struct loop_func_table
*xfer
= lo
->lo_encryption
;
967 err
= xfer
->release(lo
);
969 lo
->lo_encryption
= NULL
;
970 module_put(xfer
->owner
);
976 loop_init_xfer(struct loop_device
*lo
, struct loop_func_table
*xfer
,
977 const struct loop_info64
*i
)
982 struct module
*owner
= xfer
->owner
;
984 if (!try_module_get(owner
))
987 err
= xfer
->init(lo
, i
);
991 lo
->lo_encryption
= xfer
;
996 static int loop_clr_fd(struct loop_device
*lo
)
998 struct file
*filp
= lo
->lo_backing_file
;
999 gfp_t gfp
= lo
->old_gfp_mask
;
1000 struct block_device
*bdev
= lo
->lo_device
;
1002 if (lo
->lo_state
!= Lo_bound
)
1006 * If we've explicitly asked to tear down the loop device,
1007 * and it has an elevated reference count, set it for auto-teardown when
1008 * the last reference goes away. This stops $!~#$@ udev from
1009 * preventing teardown because it decided that it needs to run blkid on
1010 * the loopback device whenever they appear. xfstests is notorious for
1011 * failing tests because blkid via udev races with a losetup
1012 * <dev>/do something like mkfs/losetup -d <dev> causing the losetup -d
1013 * command to fail with EBUSY.
1015 if (atomic_read(&lo
->lo_refcnt
) > 1) {
1016 lo
->lo_flags
|= LO_FLAGS_AUTOCLEAR
;
1017 mutex_unlock(&lo
->lo_ctl_mutex
);
1024 /* freeze request queue during the transition */
1025 blk_mq_freeze_queue(lo
->lo_queue
);
1027 spin_lock_irq(&lo
->lo_lock
);
1028 lo
->lo_state
= Lo_rundown
;
1029 lo
->lo_backing_file
= NULL
;
1030 spin_unlock_irq(&lo
->lo_lock
);
1032 loop_release_xfer(lo
);
1033 lo
->transfer
= NULL
;
1035 lo
->lo_device
= NULL
;
1036 lo
->lo_encryption
= NULL
;
1038 lo
->lo_sizelimit
= 0;
1039 lo
->lo_encrypt_key_size
= 0;
1040 memset(lo
->lo_encrypt_key
, 0, LO_KEY_SIZE
);
1041 memset(lo
->lo_crypt_name
, 0, LO_NAME_SIZE
);
1042 memset(lo
->lo_file_name
, 0, LO_NAME_SIZE
);
1043 blk_queue_logical_block_size(lo
->lo_queue
, 512);
1044 blk_queue_physical_block_size(lo
->lo_queue
, 512);
1045 blk_queue_io_min(lo
->lo_queue
, 512);
1048 invalidate_bdev(bdev
);
1050 set_capacity(lo
->lo_disk
, 0);
1051 loop_sysfs_exit(lo
);
1053 bd_set_size(bdev
, 0);
1054 /* let user-space know about this change */
1055 kobject_uevent(&disk_to_dev(bdev
->bd_disk
)->kobj
, KOBJ_CHANGE
);
1057 mapping_set_gfp_mask(filp
->f_mapping
, gfp
);
1058 lo
->lo_state
= Lo_unbound
;
1059 /* This is safe: open() is still holding a reference. */
1060 module_put(THIS_MODULE
);
1061 blk_mq_unfreeze_queue(lo
->lo_queue
);
1063 if (lo
->lo_flags
& LO_FLAGS_PARTSCAN
&& bdev
)
1064 loop_reread_partitions(lo
, bdev
);
1067 lo
->lo_disk
->flags
|= GENHD_FL_NO_PART_SCAN
;
1068 loop_unprepare_queue(lo
);
1069 mutex_unlock(&lo
->lo_ctl_mutex
);
1071 * Need not hold lo_ctl_mutex to fput backing file.
1072 * Calling fput holding lo_ctl_mutex triggers a circular
1073 * lock dependency possibility warning as fput can take
1074 * bd_mutex which is usually taken before lo_ctl_mutex.
1081 loop_set_status(struct loop_device
*lo
, const struct loop_info64
*info
)
1084 struct loop_func_table
*xfer
;
1085 kuid_t uid
= current_uid();
1087 if (lo
->lo_encrypt_key_size
&&
1088 !uid_eq(lo
->lo_key_owner
, uid
) &&
1089 !capable(CAP_SYS_ADMIN
))
1091 if (lo
->lo_state
!= Lo_bound
)
1093 if ((unsigned int) info
->lo_encrypt_key_size
> LO_KEY_SIZE
)
1096 /* I/O need to be drained during transfer transition */
1097 blk_mq_freeze_queue(lo
->lo_queue
);
1099 err
= loop_release_xfer(lo
);
1103 if (info
->lo_encrypt_type
) {
1104 unsigned int type
= info
->lo_encrypt_type
;
1106 if (type
>= MAX_LO_CRYPT
)
1108 xfer
= xfer_funcs
[type
];
1114 err
= loop_init_xfer(lo
, xfer
, info
);
1118 if (lo
->lo_offset
!= info
->lo_offset
||
1119 lo
->lo_sizelimit
!= info
->lo_sizelimit
) {
1120 if (figure_loop_size(lo
, info
->lo_offset
, info
->lo_sizelimit
)) {
1126 loop_config_discard(lo
);
1128 memcpy(lo
->lo_file_name
, info
->lo_file_name
, LO_NAME_SIZE
);
1129 memcpy(lo
->lo_crypt_name
, info
->lo_crypt_name
, LO_NAME_SIZE
);
1130 lo
->lo_file_name
[LO_NAME_SIZE
-1] = 0;
1131 lo
->lo_crypt_name
[LO_NAME_SIZE
-1] = 0;
1135 lo
->transfer
= xfer
->transfer
;
1136 lo
->ioctl
= xfer
->ioctl
;
1138 if ((lo
->lo_flags
& LO_FLAGS_AUTOCLEAR
) !=
1139 (info
->lo_flags
& LO_FLAGS_AUTOCLEAR
))
1140 lo
->lo_flags
^= LO_FLAGS_AUTOCLEAR
;
1142 lo
->lo_encrypt_key_size
= info
->lo_encrypt_key_size
;
1143 lo
->lo_init
[0] = info
->lo_init
[0];
1144 lo
->lo_init
[1] = info
->lo_init
[1];
1145 if (info
->lo_encrypt_key_size
) {
1146 memcpy(lo
->lo_encrypt_key
, info
->lo_encrypt_key
,
1147 info
->lo_encrypt_key_size
);
1148 lo
->lo_key_owner
= uid
;
1151 /* update dio if lo_offset or transfer is changed */
1152 __loop_update_dio(lo
, lo
->use_dio
);
1155 blk_mq_unfreeze_queue(lo
->lo_queue
);
1157 if (!err
&& (info
->lo_flags
& LO_FLAGS_PARTSCAN
) &&
1158 !(lo
->lo_flags
& LO_FLAGS_PARTSCAN
)) {
1159 lo
->lo_flags
|= LO_FLAGS_PARTSCAN
;
1160 lo
->lo_disk
->flags
&= ~GENHD_FL_NO_PART_SCAN
;
1161 loop_reread_partitions(lo
, lo
->lo_device
);
1168 loop_get_status(struct loop_device
*lo
, struct loop_info64
*info
)
1170 struct file
*file
= lo
->lo_backing_file
;
1174 if (lo
->lo_state
!= Lo_bound
)
1176 error
= vfs_getattr(&file
->f_path
, &stat
,
1177 STATX_INO
, AT_STATX_SYNC_AS_STAT
);
1180 memset(info
, 0, sizeof(*info
));
1181 info
->lo_number
= lo
->lo_number
;
1182 info
->lo_device
= huge_encode_dev(stat
.dev
);
1183 info
->lo_inode
= stat
.ino
;
1184 info
->lo_rdevice
= huge_encode_dev(lo
->lo_device
? stat
.rdev
: stat
.dev
);
1185 info
->lo_offset
= lo
->lo_offset
;
1186 info
->lo_sizelimit
= lo
->lo_sizelimit
;
1187 info
->lo_flags
= lo
->lo_flags
;
1188 memcpy(info
->lo_file_name
, lo
->lo_file_name
, LO_NAME_SIZE
);
1189 memcpy(info
->lo_crypt_name
, lo
->lo_crypt_name
, LO_NAME_SIZE
);
1190 info
->lo_encrypt_type
=
1191 lo
->lo_encryption
? lo
->lo_encryption
->number
: 0;
1192 if (lo
->lo_encrypt_key_size
&& capable(CAP_SYS_ADMIN
)) {
1193 info
->lo_encrypt_key_size
= lo
->lo_encrypt_key_size
;
1194 memcpy(info
->lo_encrypt_key
, lo
->lo_encrypt_key
,
1195 lo
->lo_encrypt_key_size
);
1201 loop_info64_from_old(const struct loop_info
*info
, struct loop_info64
*info64
)
1203 memset(info64
, 0, sizeof(*info64
));
1204 info64
->lo_number
= info
->lo_number
;
1205 info64
->lo_device
= info
->lo_device
;
1206 info64
->lo_inode
= info
->lo_inode
;
1207 info64
->lo_rdevice
= info
->lo_rdevice
;
1208 info64
->lo_offset
= info
->lo_offset
;
1209 info64
->lo_sizelimit
= 0;
1210 info64
->lo_encrypt_type
= info
->lo_encrypt_type
;
1211 info64
->lo_encrypt_key_size
= info
->lo_encrypt_key_size
;
1212 info64
->lo_flags
= info
->lo_flags
;
1213 info64
->lo_init
[0] = info
->lo_init
[0];
1214 info64
->lo_init
[1] = info
->lo_init
[1];
1215 if (info
->lo_encrypt_type
== LO_CRYPT_CRYPTOAPI
)
1216 memcpy(info64
->lo_crypt_name
, info
->lo_name
, LO_NAME_SIZE
);
1218 memcpy(info64
->lo_file_name
, info
->lo_name
, LO_NAME_SIZE
);
1219 memcpy(info64
->lo_encrypt_key
, info
->lo_encrypt_key
, LO_KEY_SIZE
);
1223 loop_info64_to_old(const struct loop_info64
*info64
, struct loop_info
*info
)
1225 memset(info
, 0, sizeof(*info
));
1226 info
->lo_number
= info64
->lo_number
;
1227 info
->lo_device
= info64
->lo_device
;
1228 info
->lo_inode
= info64
->lo_inode
;
1229 info
->lo_rdevice
= info64
->lo_rdevice
;
1230 info
->lo_offset
= info64
->lo_offset
;
1231 info
->lo_encrypt_type
= info64
->lo_encrypt_type
;
1232 info
->lo_encrypt_key_size
= info64
->lo_encrypt_key_size
;
1233 info
->lo_flags
= info64
->lo_flags
;
1234 info
->lo_init
[0] = info64
->lo_init
[0];
1235 info
->lo_init
[1] = info64
->lo_init
[1];
1236 if (info
->lo_encrypt_type
== LO_CRYPT_CRYPTOAPI
)
1237 memcpy(info
->lo_name
, info64
->lo_crypt_name
, LO_NAME_SIZE
);
1239 memcpy(info
->lo_name
, info64
->lo_file_name
, LO_NAME_SIZE
);
1240 memcpy(info
->lo_encrypt_key
, info64
->lo_encrypt_key
, LO_KEY_SIZE
);
1242 /* error in case values were truncated */
1243 if (info
->lo_device
!= info64
->lo_device
||
1244 info
->lo_rdevice
!= info64
->lo_rdevice
||
1245 info
->lo_inode
!= info64
->lo_inode
||
1246 info
->lo_offset
!= info64
->lo_offset
)
1253 loop_set_status_old(struct loop_device
*lo
, const struct loop_info __user
*arg
)
1255 struct loop_info info
;
1256 struct loop_info64 info64
;
1258 if (copy_from_user(&info
, arg
, sizeof (struct loop_info
)))
1260 loop_info64_from_old(&info
, &info64
);
1261 return loop_set_status(lo
, &info64
);
1265 loop_set_status64(struct loop_device
*lo
, const struct loop_info64 __user
*arg
)
1267 struct loop_info64 info64
;
1269 if (copy_from_user(&info64
, arg
, sizeof (struct loop_info64
)))
1271 return loop_set_status(lo
, &info64
);
1275 loop_get_status_old(struct loop_device
*lo
, struct loop_info __user
*arg
) {
1276 struct loop_info info
;
1277 struct loop_info64 info64
;
1283 err
= loop_get_status(lo
, &info64
);
1285 err
= loop_info64_to_old(&info64
, &info
);
1286 if (!err
&& copy_to_user(arg
, &info
, sizeof(info
)))
1293 loop_get_status64(struct loop_device
*lo
, struct loop_info64 __user
*arg
) {
1294 struct loop_info64 info64
;
1300 err
= loop_get_status(lo
, &info64
);
1301 if (!err
&& copy_to_user(arg
, &info64
, sizeof(info64
)))
1307 static int loop_set_capacity(struct loop_device
*lo
)
1309 if (unlikely(lo
->lo_state
!= Lo_bound
))
1312 return figure_loop_size(lo
, lo
->lo_offset
, lo
->lo_sizelimit
);
1315 static int loop_set_dio(struct loop_device
*lo
, unsigned long arg
)
1318 if (lo
->lo_state
!= Lo_bound
)
1321 __loop_update_dio(lo
, !!arg
);
1322 if (lo
->use_dio
== !!arg
)
1329 static int loop_set_block_size(struct loop_device
*lo
, unsigned long arg
)
1331 if (lo
->lo_state
!= Lo_bound
)
1334 if (arg
< 512 || arg
> PAGE_SIZE
|| !is_power_of_2(arg
))
1337 blk_mq_freeze_queue(lo
->lo_queue
);
1339 blk_queue_logical_block_size(lo
->lo_queue
, arg
);
1340 blk_queue_physical_block_size(lo
->lo_queue
, arg
);
1341 blk_queue_io_min(lo
->lo_queue
, arg
);
1342 loop_update_dio(lo
);
1344 blk_mq_unfreeze_queue(lo
->lo_queue
);
1349 static int lo_ioctl(struct block_device
*bdev
, fmode_t mode
,
1350 unsigned int cmd
, unsigned long arg
)
1352 struct loop_device
*lo
= bdev
->bd_disk
->private_data
;
1355 mutex_lock_nested(&lo
->lo_ctl_mutex
, 1);
1358 err
= loop_set_fd(lo
, mode
, bdev
, arg
);
1360 case LOOP_CHANGE_FD
:
1361 err
= loop_change_fd(lo
, bdev
, arg
);
1364 /* loop_clr_fd would have unlocked lo_ctl_mutex on success */
1365 err
= loop_clr_fd(lo
);
1369 case LOOP_SET_STATUS
:
1371 if ((mode
& FMODE_WRITE
) || capable(CAP_SYS_ADMIN
))
1372 err
= loop_set_status_old(lo
,
1373 (struct loop_info __user
*)arg
);
1375 case LOOP_GET_STATUS
:
1376 err
= loop_get_status_old(lo
, (struct loop_info __user
*) arg
);
1378 case LOOP_SET_STATUS64
:
1380 if ((mode
& FMODE_WRITE
) || capable(CAP_SYS_ADMIN
))
1381 err
= loop_set_status64(lo
,
1382 (struct loop_info64 __user
*) arg
);
1384 case LOOP_GET_STATUS64
:
1385 err
= loop_get_status64(lo
, (struct loop_info64 __user
*) arg
);
1387 case LOOP_SET_CAPACITY
:
1389 if ((mode
& FMODE_WRITE
) || capable(CAP_SYS_ADMIN
))
1390 err
= loop_set_capacity(lo
);
1392 case LOOP_SET_DIRECT_IO
:
1394 if ((mode
& FMODE_WRITE
) || capable(CAP_SYS_ADMIN
))
1395 err
= loop_set_dio(lo
, arg
);
1397 case LOOP_SET_BLOCK_SIZE
:
1399 if ((mode
& FMODE_WRITE
) || capable(CAP_SYS_ADMIN
))
1400 err
= loop_set_block_size(lo
, arg
);
1403 err
= lo
->ioctl
? lo
->ioctl(lo
, cmd
, arg
) : -EINVAL
;
1405 mutex_unlock(&lo
->lo_ctl_mutex
);
1411 #ifdef CONFIG_COMPAT
1412 struct compat_loop_info
{
1413 compat_int_t lo_number
; /* ioctl r/o */
1414 compat_dev_t lo_device
; /* ioctl r/o */
1415 compat_ulong_t lo_inode
; /* ioctl r/o */
1416 compat_dev_t lo_rdevice
; /* ioctl r/o */
1417 compat_int_t lo_offset
;
1418 compat_int_t lo_encrypt_type
;
1419 compat_int_t lo_encrypt_key_size
; /* ioctl w/o */
1420 compat_int_t lo_flags
; /* ioctl r/o */
1421 char lo_name
[LO_NAME_SIZE
];
1422 unsigned char lo_encrypt_key
[LO_KEY_SIZE
]; /* ioctl w/o */
1423 compat_ulong_t lo_init
[2];
1428 * Transfer 32-bit compatibility structure in userspace to 64-bit loop info
1429 * - noinlined to reduce stack space usage in main part of driver
1432 loop_info64_from_compat(const struct compat_loop_info __user
*arg
,
1433 struct loop_info64
*info64
)
1435 struct compat_loop_info info
;
1437 if (copy_from_user(&info
, arg
, sizeof(info
)))
1440 memset(info64
, 0, sizeof(*info64
));
1441 info64
->lo_number
= info
.lo_number
;
1442 info64
->lo_device
= info
.lo_device
;
1443 info64
->lo_inode
= info
.lo_inode
;
1444 info64
->lo_rdevice
= info
.lo_rdevice
;
1445 info64
->lo_offset
= info
.lo_offset
;
1446 info64
->lo_sizelimit
= 0;
1447 info64
->lo_encrypt_type
= info
.lo_encrypt_type
;
1448 info64
->lo_encrypt_key_size
= info
.lo_encrypt_key_size
;
1449 info64
->lo_flags
= info
.lo_flags
;
1450 info64
->lo_init
[0] = info
.lo_init
[0];
1451 info64
->lo_init
[1] = info
.lo_init
[1];
1452 if (info
.lo_encrypt_type
== LO_CRYPT_CRYPTOAPI
)
1453 memcpy(info64
->lo_crypt_name
, info
.lo_name
, LO_NAME_SIZE
);
1455 memcpy(info64
->lo_file_name
, info
.lo_name
, LO_NAME_SIZE
);
1456 memcpy(info64
->lo_encrypt_key
, info
.lo_encrypt_key
, LO_KEY_SIZE
);
1461 * Transfer 64-bit loop info to 32-bit compatibility structure in userspace
1462 * - noinlined to reduce stack space usage in main part of driver
1465 loop_info64_to_compat(const struct loop_info64
*info64
,
1466 struct compat_loop_info __user
*arg
)
1468 struct compat_loop_info info
;
1470 memset(&info
, 0, sizeof(info
));
1471 info
.lo_number
= info64
->lo_number
;
1472 info
.lo_device
= info64
->lo_device
;
1473 info
.lo_inode
= info64
->lo_inode
;
1474 info
.lo_rdevice
= info64
->lo_rdevice
;
1475 info
.lo_offset
= info64
->lo_offset
;
1476 info
.lo_encrypt_type
= info64
->lo_encrypt_type
;
1477 info
.lo_encrypt_key_size
= info64
->lo_encrypt_key_size
;
1478 info
.lo_flags
= info64
->lo_flags
;
1479 info
.lo_init
[0] = info64
->lo_init
[0];
1480 info
.lo_init
[1] = info64
->lo_init
[1];
1481 if (info
.lo_encrypt_type
== LO_CRYPT_CRYPTOAPI
)
1482 memcpy(info
.lo_name
, info64
->lo_crypt_name
, LO_NAME_SIZE
);
1484 memcpy(info
.lo_name
, info64
->lo_file_name
, LO_NAME_SIZE
);
1485 memcpy(info
.lo_encrypt_key
, info64
->lo_encrypt_key
, LO_KEY_SIZE
);
1487 /* error in case values were truncated */
1488 if (info
.lo_device
!= info64
->lo_device
||
1489 info
.lo_rdevice
!= info64
->lo_rdevice
||
1490 info
.lo_inode
!= info64
->lo_inode
||
1491 info
.lo_offset
!= info64
->lo_offset
||
1492 info
.lo_init
[0] != info64
->lo_init
[0] ||
1493 info
.lo_init
[1] != info64
->lo_init
[1])
1496 if (copy_to_user(arg
, &info
, sizeof(info
)))
1502 loop_set_status_compat(struct loop_device
*lo
,
1503 const struct compat_loop_info __user
*arg
)
1505 struct loop_info64 info64
;
1508 ret
= loop_info64_from_compat(arg
, &info64
);
1511 return loop_set_status(lo
, &info64
);
1515 loop_get_status_compat(struct loop_device
*lo
,
1516 struct compat_loop_info __user
*arg
)
1518 struct loop_info64 info64
;
1524 err
= loop_get_status(lo
, &info64
);
1526 err
= loop_info64_to_compat(&info64
, arg
);
1530 static int lo_compat_ioctl(struct block_device
*bdev
, fmode_t mode
,
1531 unsigned int cmd
, unsigned long arg
)
1533 struct loop_device
*lo
= bdev
->bd_disk
->private_data
;
1537 case LOOP_SET_STATUS
:
1538 mutex_lock(&lo
->lo_ctl_mutex
);
1539 err
= loop_set_status_compat(
1540 lo
, (const struct compat_loop_info __user
*) arg
);
1541 mutex_unlock(&lo
->lo_ctl_mutex
);
1543 case LOOP_GET_STATUS
:
1544 mutex_lock(&lo
->lo_ctl_mutex
);
1545 err
= loop_get_status_compat(
1546 lo
, (struct compat_loop_info __user
*) arg
);
1547 mutex_unlock(&lo
->lo_ctl_mutex
);
1549 case LOOP_SET_CAPACITY
:
1551 case LOOP_GET_STATUS64
:
1552 case LOOP_SET_STATUS64
:
1553 arg
= (unsigned long) compat_ptr(arg
);
1555 case LOOP_CHANGE_FD
:
1556 err
= lo_ioctl(bdev
, mode
, cmd
, arg
);
1566 static int lo_open(struct block_device
*bdev
, fmode_t mode
)
1568 struct loop_device
*lo
;
1571 mutex_lock(&loop_index_mutex
);
1572 lo
= bdev
->bd_disk
->private_data
;
1578 atomic_inc(&lo
->lo_refcnt
);
1580 mutex_unlock(&loop_index_mutex
);
1584 static void __lo_release(struct loop_device
*lo
)
1588 if (atomic_dec_return(&lo
->lo_refcnt
))
1591 mutex_lock(&lo
->lo_ctl_mutex
);
1592 if (lo
->lo_flags
& LO_FLAGS_AUTOCLEAR
) {
1594 * In autoclear mode, stop the loop thread
1595 * and remove configuration after last close.
1597 err
= loop_clr_fd(lo
);
1600 } else if (lo
->lo_state
== Lo_bound
) {
1602 * Otherwise keep thread (if running) and config,
1603 * but flush possible ongoing bios in thread.
1605 blk_mq_freeze_queue(lo
->lo_queue
);
1606 blk_mq_unfreeze_queue(lo
->lo_queue
);
1609 mutex_unlock(&lo
->lo_ctl_mutex
);
1612 static void lo_release(struct gendisk
*disk
, fmode_t mode
)
1614 mutex_lock(&loop_index_mutex
);
1615 __lo_release(disk
->private_data
);
1616 mutex_unlock(&loop_index_mutex
);
1619 static const struct block_device_operations lo_fops
= {
1620 .owner
= THIS_MODULE
,
1622 .release
= lo_release
,
1624 #ifdef CONFIG_COMPAT
1625 .compat_ioctl
= lo_compat_ioctl
,
1630 * And now the modules code and kernel interface.
1632 static int max_loop
;
1633 module_param(max_loop
, int, S_IRUGO
);
1634 MODULE_PARM_DESC(max_loop
, "Maximum number of loop devices");
1635 module_param(max_part
, int, S_IRUGO
);
1636 MODULE_PARM_DESC(max_part
, "Maximum number of partitions per loop device");
1637 MODULE_LICENSE("GPL");
1638 MODULE_ALIAS_BLOCKDEV_MAJOR(LOOP_MAJOR
);
1640 int loop_register_transfer(struct loop_func_table
*funcs
)
1642 unsigned int n
= funcs
->number
;
1644 if (n
>= MAX_LO_CRYPT
|| xfer_funcs
[n
])
1646 xfer_funcs
[n
] = funcs
;
1650 static int unregister_transfer_cb(int id
, void *ptr
, void *data
)
1652 struct loop_device
*lo
= ptr
;
1653 struct loop_func_table
*xfer
= data
;
1655 mutex_lock(&lo
->lo_ctl_mutex
);
1656 if (lo
->lo_encryption
== xfer
)
1657 loop_release_xfer(lo
);
1658 mutex_unlock(&lo
->lo_ctl_mutex
);
1662 int loop_unregister_transfer(int number
)
1664 unsigned int n
= number
;
1665 struct loop_func_table
*xfer
;
1667 if (n
== 0 || n
>= MAX_LO_CRYPT
|| (xfer
= xfer_funcs
[n
]) == NULL
)
1670 xfer_funcs
[n
] = NULL
;
1671 idr_for_each(&loop_index_idr
, &unregister_transfer_cb
, xfer
);
1675 EXPORT_SYMBOL(loop_register_transfer
);
1676 EXPORT_SYMBOL(loop_unregister_transfer
);
1678 static blk_status_t
loop_queue_rq(struct blk_mq_hw_ctx
*hctx
,
1679 const struct blk_mq_queue_data
*bd
)
1681 struct loop_cmd
*cmd
= blk_mq_rq_to_pdu(bd
->rq
);
1682 struct loop_device
*lo
= cmd
->rq
->q
->queuedata
;
1684 blk_mq_start_request(bd
->rq
);
1686 if (lo
->lo_state
!= Lo_bound
)
1687 return BLK_STS_IOERR
;
1689 switch (req_op(cmd
->rq
)) {
1691 case REQ_OP_DISCARD
:
1692 case REQ_OP_WRITE_ZEROES
:
1693 cmd
->use_aio
= false;
1696 cmd
->use_aio
= lo
->use_dio
;
1700 /* always use the first bio's css */
1701 #ifdef CONFIG_BLK_CGROUP
1702 if (cmd
->use_aio
&& cmd
->rq
->bio
&& cmd
->rq
->bio
->bi_css
) {
1703 cmd
->css
= cmd
->rq
->bio
->bi_css
;
1708 kthread_queue_work(&lo
->worker
, &cmd
->work
);
1713 static void loop_handle_cmd(struct loop_cmd
*cmd
)
1715 const bool write
= op_is_write(req_op(cmd
->rq
));
1716 struct loop_device
*lo
= cmd
->rq
->q
->queuedata
;
1719 if (write
&& (lo
->lo_flags
& LO_FLAGS_READ_ONLY
)) {
1724 ret
= do_req_filebacked(lo
, cmd
->rq
);
1726 /* complete non-aio request */
1727 if (!cmd
->use_aio
|| ret
) {
1728 cmd
->ret
= ret
? -EIO
: 0;
1729 blk_mq_complete_request(cmd
->rq
);
1733 static void loop_queue_work(struct kthread_work
*work
)
1735 struct loop_cmd
*cmd
=
1736 container_of(work
, struct loop_cmd
, work
);
1738 loop_handle_cmd(cmd
);
1741 static int loop_init_request(struct blk_mq_tag_set
*set
, struct request
*rq
,
1742 unsigned int hctx_idx
, unsigned int numa_node
)
1744 struct loop_cmd
*cmd
= blk_mq_rq_to_pdu(rq
);
1747 kthread_init_work(&cmd
->work
, loop_queue_work
);
1752 static const struct blk_mq_ops loop_mq_ops
= {
1753 .queue_rq
= loop_queue_rq
,
1754 .init_request
= loop_init_request
,
1755 .complete
= lo_complete_rq
,
1758 static int loop_add(struct loop_device
**l
, int i
)
1760 struct loop_device
*lo
;
1761 struct gendisk
*disk
;
1765 lo
= kzalloc(sizeof(*lo
), GFP_KERNEL
);
1769 lo
->lo_state
= Lo_unbound
;
1771 /* allocate id, if @id >= 0, we're requesting that specific id */
1773 err
= idr_alloc(&loop_index_idr
, lo
, i
, i
+ 1, GFP_KERNEL
);
1777 err
= idr_alloc(&loop_index_idr
, lo
, 0, 0, GFP_KERNEL
);
1784 lo
->tag_set
.ops
= &loop_mq_ops
;
1785 lo
->tag_set
.nr_hw_queues
= 1;
1786 lo
->tag_set
.queue_depth
= 128;
1787 lo
->tag_set
.numa_node
= NUMA_NO_NODE
;
1788 lo
->tag_set
.cmd_size
= sizeof(struct loop_cmd
);
1789 lo
->tag_set
.flags
= BLK_MQ_F_SHOULD_MERGE
| BLK_MQ_F_SG_MERGE
;
1790 lo
->tag_set
.driver_data
= lo
;
1792 err
= blk_mq_alloc_tag_set(&lo
->tag_set
);
1796 lo
->lo_queue
= blk_mq_init_queue(&lo
->tag_set
);
1797 if (IS_ERR_OR_NULL(lo
->lo_queue
)) {
1798 err
= PTR_ERR(lo
->lo_queue
);
1799 goto out_cleanup_tags
;
1801 lo
->lo_queue
->queuedata
= lo
;
1803 blk_queue_max_hw_sectors(lo
->lo_queue
, BLK_DEF_MAX_SECTORS
);
1806 * By default, we do buffer IO, so it doesn't make sense to enable
1807 * merge because the I/O submitted to backing file is handled page by
1808 * page. For directio mode, merge does help to dispatch bigger request
1809 * to underlayer disk. We will enable merge once directio is enabled.
1811 queue_flag_set_unlocked(QUEUE_FLAG_NOMERGES
, lo
->lo_queue
);
1814 disk
= lo
->lo_disk
= alloc_disk(1 << part_shift
);
1816 goto out_free_queue
;
1819 * Disable partition scanning by default. The in-kernel partition
1820 * scanning can be requested individually per-device during its
1821 * setup. Userspace can always add and remove partitions from all
1822 * devices. The needed partition minors are allocated from the
1823 * extended minor space, the main loop device numbers will continue
1824 * to match the loop minors, regardless of the number of partitions
1827 * If max_part is given, partition scanning is globally enabled for
1828 * all loop devices. The minors for the main loop devices will be
1829 * multiples of max_part.
1831 * Note: Global-for-all-devices, set-only-at-init, read-only module
1832 * parameteters like 'max_loop' and 'max_part' make things needlessly
1833 * complicated, are too static, inflexible and may surprise
1834 * userspace tools. Parameters like this in general should be avoided.
1837 disk
->flags
|= GENHD_FL_NO_PART_SCAN
;
1838 disk
->flags
|= GENHD_FL_EXT_DEVT
;
1839 mutex_init(&lo
->lo_ctl_mutex
);
1840 atomic_set(&lo
->lo_refcnt
, 0);
1842 spin_lock_init(&lo
->lo_lock
);
1843 disk
->major
= LOOP_MAJOR
;
1844 disk
->first_minor
= i
<< part_shift
;
1845 disk
->fops
= &lo_fops
;
1846 disk
->private_data
= lo
;
1847 disk
->queue
= lo
->lo_queue
;
1848 sprintf(disk
->disk_name
, "loop%d", i
);
1851 return lo
->lo_number
;
1854 blk_cleanup_queue(lo
->lo_queue
);
1856 blk_mq_free_tag_set(&lo
->tag_set
);
1858 idr_remove(&loop_index_idr
, i
);
1865 static void loop_remove(struct loop_device
*lo
)
1867 blk_cleanup_queue(lo
->lo_queue
);
1868 del_gendisk(lo
->lo_disk
);
1869 blk_mq_free_tag_set(&lo
->tag_set
);
1870 put_disk(lo
->lo_disk
);
1874 static int find_free_cb(int id
, void *ptr
, void *data
)
1876 struct loop_device
*lo
= ptr
;
1877 struct loop_device
**l
= data
;
1879 if (lo
->lo_state
== Lo_unbound
) {
1886 static int loop_lookup(struct loop_device
**l
, int i
)
1888 struct loop_device
*lo
;
1894 err
= idr_for_each(&loop_index_idr
, &find_free_cb
, &lo
);
1897 ret
= lo
->lo_number
;
1902 /* lookup and return a specific i */
1903 lo
= idr_find(&loop_index_idr
, i
);
1906 ret
= lo
->lo_number
;
1912 static struct kobject
*loop_probe(dev_t dev
, int *part
, void *data
)
1914 struct loop_device
*lo
;
1915 struct kobject
*kobj
;
1918 mutex_lock(&loop_index_mutex
);
1919 err
= loop_lookup(&lo
, MINOR(dev
) >> part_shift
);
1921 err
= loop_add(&lo
, MINOR(dev
) >> part_shift
);
1925 kobj
= get_disk_and_module(lo
->lo_disk
);
1926 mutex_unlock(&loop_index_mutex
);
1932 static long loop_control_ioctl(struct file
*file
, unsigned int cmd
,
1935 struct loop_device
*lo
;
1938 mutex_lock(&loop_index_mutex
);
1941 ret
= loop_lookup(&lo
, parm
);
1946 ret
= loop_add(&lo
, parm
);
1948 case LOOP_CTL_REMOVE
:
1949 ret
= loop_lookup(&lo
, parm
);
1952 mutex_lock(&lo
->lo_ctl_mutex
);
1953 if (lo
->lo_state
!= Lo_unbound
) {
1955 mutex_unlock(&lo
->lo_ctl_mutex
);
1958 if (atomic_read(&lo
->lo_refcnt
) > 0) {
1960 mutex_unlock(&lo
->lo_ctl_mutex
);
1963 lo
->lo_disk
->private_data
= NULL
;
1964 mutex_unlock(&lo
->lo_ctl_mutex
);
1965 idr_remove(&loop_index_idr
, lo
->lo_number
);
1968 case LOOP_CTL_GET_FREE
:
1969 ret
= loop_lookup(&lo
, -1);
1972 ret
= loop_add(&lo
, -1);
1974 mutex_unlock(&loop_index_mutex
);
1979 static const struct file_operations loop_ctl_fops
= {
1980 .open
= nonseekable_open
,
1981 .unlocked_ioctl
= loop_control_ioctl
,
1982 .compat_ioctl
= loop_control_ioctl
,
1983 .owner
= THIS_MODULE
,
1984 .llseek
= noop_llseek
,
1987 static struct miscdevice loop_misc
= {
1988 .minor
= LOOP_CTRL_MINOR
,
1989 .name
= "loop-control",
1990 .fops
= &loop_ctl_fops
,
1993 MODULE_ALIAS_MISCDEV(LOOP_CTRL_MINOR
);
1994 MODULE_ALIAS("devname:loop-control");
1996 static int __init
loop_init(void)
1999 unsigned long range
;
2000 struct loop_device
*lo
;
2005 part_shift
= fls(max_part
);
2008 * Adjust max_part according to part_shift as it is exported
2009 * to user space so that user can decide correct minor number
2010 * if [s]he want to create more devices.
2012 * Note that -1 is required because partition 0 is reserved
2013 * for the whole disk.
2015 max_part
= (1UL << part_shift
) - 1;
2018 if ((1UL << part_shift
) > DISK_MAX_PARTS
) {
2023 if (max_loop
> 1UL << (MINORBITS
- part_shift
)) {
2029 * If max_loop is specified, create that many devices upfront.
2030 * This also becomes a hard limit. If max_loop is not specified,
2031 * create CONFIG_BLK_DEV_LOOP_MIN_COUNT loop devices at module
2032 * init time. Loop devices can be requested on-demand with the
2033 * /dev/loop-control interface, or be instantiated by accessing
2034 * a 'dead' device node.
2038 range
= max_loop
<< part_shift
;
2040 nr
= CONFIG_BLK_DEV_LOOP_MIN_COUNT
;
2041 range
= 1UL << MINORBITS
;
2044 err
= misc_register(&loop_misc
);
2049 if (register_blkdev(LOOP_MAJOR
, "loop")) {
2054 blk_register_region(MKDEV(LOOP_MAJOR
, 0), range
,
2055 THIS_MODULE
, loop_probe
, NULL
, NULL
);
2057 /* pre-create number of devices given by config or max_loop */
2058 mutex_lock(&loop_index_mutex
);
2059 for (i
= 0; i
< nr
; i
++)
2061 mutex_unlock(&loop_index_mutex
);
2063 printk(KERN_INFO
"loop: module loaded\n");
2067 misc_deregister(&loop_misc
);
2072 static int loop_exit_cb(int id
, void *ptr
, void *data
)
2074 struct loop_device
*lo
= ptr
;
2080 static void __exit
loop_exit(void)
2082 unsigned long range
;
2084 range
= max_loop
? max_loop
<< part_shift
: 1UL << MINORBITS
;
2086 idr_for_each(&loop_index_idr
, &loop_exit_cb
, NULL
);
2087 idr_destroy(&loop_index_idr
);
2089 blk_unregister_region(MKDEV(LOOP_MAJOR
, 0), range
);
2090 unregister_blkdev(LOOP_MAJOR
, "loop");
2092 misc_deregister(&loop_misc
);
2095 module_init(loop_init
);
2096 module_exit(loop_exit
);
2099 static int __init
max_loop_setup(char *str
)
2101 max_loop
= simple_strtol(str
, NULL
, 0);
2105 __setup("max_loop=", max_loop_setup
);