Merge tag 'for_linus' of git://git.kernel.org/pub/scm/linux/kernel/git/mst/vhost
[cris-mirror.git] / drivers / block / loop.c
blob87855b5123a6307cb014f78af2ae07b43ef77cf4
1 /*
2 * linux/drivers/block/loop.c
4 * Written by Theodore Ts'o, 3/29/93
6 * Copyright 1993 by Theodore Ts'o. Redistribution of this file is
7 * permitted under the GNU General Public License.
9 * DES encryption plus some minor changes by Werner Almesberger, 30-MAY-1993
10 * more DES encryption plus IDEA encryption by Nicholas J. Leon, June 20, 1996
12 * Modularized and updated for 1.1.16 kernel - Mitch Dsouza 28th May 1994
13 * Adapted for 1.3.59 kernel - Andries Brouwer, 1 Feb 1996
15 * Fixed do_loop_request() re-entrancy - Vincent.Renardias@waw.com Mar 20, 1997
17 * Added devfs support - Richard Gooch <rgooch@atnf.csiro.au> 16-Jan-1998
19 * Handle sparse backing files correctly - Kenn Humborg, Jun 28, 1998
21 * Loadable modules and other fixes by AK, 1998
23 * Make real block number available to downstream transfer functions, enables
24 * CBC (and relatives) mode encryption requiring unique IVs per data block.
25 * Reed H. Petty, rhp@draper.net
27 * Maximum number of loop devices now dynamic via max_loop module parameter.
28 * Russell Kroll <rkroll@exploits.org> 19990701
30 * Maximum number of loop devices when compiled-in now selectable by passing
31 * max_loop=<1-255> to the kernel on boot.
32 * Erik I. Bolsø, <eriki@himolde.no>, Oct 31, 1999
34 * Completely rewrite request handling to be make_request_fn style and
35 * non blocking, pushing work to a helper thread. Lots of fixes from
36 * Al Viro too.
37 * Jens Axboe <axboe@suse.de>, Nov 2000
39 * Support up to 256 loop devices
40 * Heinz Mauelshagen <mge@sistina.com>, Feb 2002
42 * Support for falling back on the write file operation when the address space
43 * operations write_begin is not available on the backing filesystem.
44 * Anton Altaparmakov, 16 Feb 2005
46 * Still To Fix:
47 * - Advisory locking is ignored here.
48 * - Should use an own CAP_* category instead of CAP_SYS_ADMIN
52 #include <linux/module.h>
53 #include <linux/moduleparam.h>
54 #include <linux/sched.h>
55 #include <linux/fs.h>
56 #include <linux/file.h>
57 #include <linux/stat.h>
58 #include <linux/errno.h>
59 #include <linux/major.h>
60 #include <linux/wait.h>
61 #include <linux/blkdev.h>
62 #include <linux/blkpg.h>
63 #include <linux/init.h>
64 #include <linux/swap.h>
65 #include <linux/slab.h>
66 #include <linux/compat.h>
67 #include <linux/suspend.h>
68 #include <linux/freezer.h>
69 #include <linux/mutex.h>
70 #include <linux/writeback.h>
71 #include <linux/completion.h>
72 #include <linux/highmem.h>
73 #include <linux/kthread.h>
74 #include <linux/splice.h>
75 #include <linux/sysfs.h>
76 #include <linux/miscdevice.h>
77 #include <linux/falloc.h>
78 #include <linux/uio.h>
79 #include "loop.h"
81 #include <linux/uaccess.h>
83 static DEFINE_IDR(loop_index_idr);
84 static DEFINE_MUTEX(loop_index_mutex);
86 static int max_part;
87 static int part_shift;
89 static int transfer_xor(struct loop_device *lo, int cmd,
90 struct page *raw_page, unsigned raw_off,
91 struct page *loop_page, unsigned loop_off,
92 int size, sector_t real_block)
94 char *raw_buf = kmap_atomic(raw_page) + raw_off;
95 char *loop_buf = kmap_atomic(loop_page) + loop_off;
96 char *in, *out, *key;
97 int i, keysize;
99 if (cmd == READ) {
100 in = raw_buf;
101 out = loop_buf;
102 } else {
103 in = loop_buf;
104 out = raw_buf;
107 key = lo->lo_encrypt_key;
108 keysize = lo->lo_encrypt_key_size;
109 for (i = 0; i < size; i++)
110 *out++ = *in++ ^ key[(i & 511) % keysize];
112 kunmap_atomic(loop_buf);
113 kunmap_atomic(raw_buf);
114 cond_resched();
115 return 0;
118 static int xor_init(struct loop_device *lo, const struct loop_info64 *info)
120 if (unlikely(info->lo_encrypt_key_size <= 0))
121 return -EINVAL;
122 return 0;
125 static struct loop_func_table none_funcs = {
126 .number = LO_CRYPT_NONE,
129 static struct loop_func_table xor_funcs = {
130 .number = LO_CRYPT_XOR,
131 .transfer = transfer_xor,
132 .init = xor_init
135 /* xfer_funcs[0] is special - its release function is never called */
136 static struct loop_func_table *xfer_funcs[MAX_LO_CRYPT] = {
137 &none_funcs,
138 &xor_funcs
141 static loff_t get_size(loff_t offset, loff_t sizelimit, struct file *file)
143 loff_t loopsize;
145 /* Compute loopsize in bytes */
146 loopsize = i_size_read(file->f_mapping->host);
147 if (offset > 0)
148 loopsize -= offset;
149 /* offset is beyond i_size, weird but possible */
150 if (loopsize < 0)
151 return 0;
153 if (sizelimit > 0 && sizelimit < loopsize)
154 loopsize = sizelimit;
156 * Unfortunately, if we want to do I/O on the device,
157 * the number of 512-byte sectors has to fit into a sector_t.
159 return loopsize >> 9;
162 static loff_t get_loop_size(struct loop_device *lo, struct file *file)
164 return get_size(lo->lo_offset, lo->lo_sizelimit, file);
167 static void __loop_update_dio(struct loop_device *lo, bool dio)
169 struct file *file = lo->lo_backing_file;
170 struct address_space *mapping = file->f_mapping;
171 struct inode *inode = mapping->host;
172 unsigned short sb_bsize = 0;
173 unsigned dio_align = 0;
174 bool use_dio;
176 if (inode->i_sb->s_bdev) {
177 sb_bsize = bdev_logical_block_size(inode->i_sb->s_bdev);
178 dio_align = sb_bsize - 1;
182 * We support direct I/O only if lo_offset is aligned with the
183 * logical I/O size of backing device, and the logical block
184 * size of loop is bigger than the backing device's and the loop
185 * needn't transform transfer.
187 * TODO: the above condition may be loosed in the future, and
188 * direct I/O may be switched runtime at that time because most
189 * of requests in sane applications should be PAGE_SIZE aligned
191 if (dio) {
192 if (queue_logical_block_size(lo->lo_queue) >= sb_bsize &&
193 !(lo->lo_offset & dio_align) &&
194 mapping->a_ops->direct_IO &&
195 !lo->transfer)
196 use_dio = true;
197 else
198 use_dio = false;
199 } else {
200 use_dio = false;
203 if (lo->use_dio == use_dio)
204 return;
206 /* flush dirty pages before changing direct IO */
207 vfs_fsync(file, 0);
210 * The flag of LO_FLAGS_DIRECT_IO is handled similarly with
211 * LO_FLAGS_READ_ONLY, both are set from kernel, and losetup
212 * will get updated by ioctl(LOOP_GET_STATUS)
214 blk_mq_freeze_queue(lo->lo_queue);
215 lo->use_dio = use_dio;
216 if (use_dio) {
217 queue_flag_clear_unlocked(QUEUE_FLAG_NOMERGES, lo->lo_queue);
218 lo->lo_flags |= LO_FLAGS_DIRECT_IO;
219 } else {
220 queue_flag_set_unlocked(QUEUE_FLAG_NOMERGES, lo->lo_queue);
221 lo->lo_flags &= ~LO_FLAGS_DIRECT_IO;
223 blk_mq_unfreeze_queue(lo->lo_queue);
226 static int
227 figure_loop_size(struct loop_device *lo, loff_t offset, loff_t sizelimit)
229 loff_t size = get_size(offset, sizelimit, lo->lo_backing_file);
230 sector_t x = (sector_t)size;
231 struct block_device *bdev = lo->lo_device;
233 if (unlikely((loff_t)x != size))
234 return -EFBIG;
235 if (lo->lo_offset != offset)
236 lo->lo_offset = offset;
237 if (lo->lo_sizelimit != sizelimit)
238 lo->lo_sizelimit = sizelimit;
239 set_capacity(lo->lo_disk, x);
240 bd_set_size(bdev, (loff_t)get_capacity(bdev->bd_disk) << 9);
241 /* let user-space know about the new size */
242 kobject_uevent(&disk_to_dev(bdev->bd_disk)->kobj, KOBJ_CHANGE);
243 return 0;
246 static inline int
247 lo_do_transfer(struct loop_device *lo, int cmd,
248 struct page *rpage, unsigned roffs,
249 struct page *lpage, unsigned loffs,
250 int size, sector_t rblock)
252 int ret;
254 ret = lo->transfer(lo, cmd, rpage, roffs, lpage, loffs, size, rblock);
255 if (likely(!ret))
256 return 0;
258 printk_ratelimited(KERN_ERR
259 "loop: Transfer error at byte offset %llu, length %i.\n",
260 (unsigned long long)rblock << 9, size);
261 return ret;
264 static int lo_write_bvec(struct file *file, struct bio_vec *bvec, loff_t *ppos)
266 struct iov_iter i;
267 ssize_t bw;
269 iov_iter_bvec(&i, ITER_BVEC, bvec, 1, bvec->bv_len);
271 file_start_write(file);
272 bw = vfs_iter_write(file, &i, ppos, 0);
273 file_end_write(file);
275 if (likely(bw == bvec->bv_len))
276 return 0;
278 printk_ratelimited(KERN_ERR
279 "loop: Write error at byte offset %llu, length %i.\n",
280 (unsigned long long)*ppos, bvec->bv_len);
281 if (bw >= 0)
282 bw = -EIO;
283 return bw;
286 static int lo_write_simple(struct loop_device *lo, struct request *rq,
287 loff_t pos)
289 struct bio_vec bvec;
290 struct req_iterator iter;
291 int ret = 0;
293 rq_for_each_segment(bvec, rq, iter) {
294 ret = lo_write_bvec(lo->lo_backing_file, &bvec, &pos);
295 if (ret < 0)
296 break;
297 cond_resched();
300 return ret;
304 * This is the slow, transforming version that needs to double buffer the
305 * data as it cannot do the transformations in place without having direct
306 * access to the destination pages of the backing file.
308 static int lo_write_transfer(struct loop_device *lo, struct request *rq,
309 loff_t pos)
311 struct bio_vec bvec, b;
312 struct req_iterator iter;
313 struct page *page;
314 int ret = 0;
316 page = alloc_page(GFP_NOIO);
317 if (unlikely(!page))
318 return -ENOMEM;
320 rq_for_each_segment(bvec, rq, iter) {
321 ret = lo_do_transfer(lo, WRITE, page, 0, bvec.bv_page,
322 bvec.bv_offset, bvec.bv_len, pos >> 9);
323 if (unlikely(ret))
324 break;
326 b.bv_page = page;
327 b.bv_offset = 0;
328 b.bv_len = bvec.bv_len;
329 ret = lo_write_bvec(lo->lo_backing_file, &b, &pos);
330 if (ret < 0)
331 break;
334 __free_page(page);
335 return ret;
338 static int lo_read_simple(struct loop_device *lo, struct request *rq,
339 loff_t pos)
341 struct bio_vec bvec;
342 struct req_iterator iter;
343 struct iov_iter i;
344 ssize_t len;
346 rq_for_each_segment(bvec, rq, iter) {
347 iov_iter_bvec(&i, ITER_BVEC, &bvec, 1, bvec.bv_len);
348 len = vfs_iter_read(lo->lo_backing_file, &i, &pos, 0);
349 if (len < 0)
350 return len;
352 flush_dcache_page(bvec.bv_page);
354 if (len != bvec.bv_len) {
355 struct bio *bio;
357 __rq_for_each_bio(bio, rq)
358 zero_fill_bio(bio);
359 break;
361 cond_resched();
364 return 0;
367 static int lo_read_transfer(struct loop_device *lo, struct request *rq,
368 loff_t pos)
370 struct bio_vec bvec, b;
371 struct req_iterator iter;
372 struct iov_iter i;
373 struct page *page;
374 ssize_t len;
375 int ret = 0;
377 page = alloc_page(GFP_NOIO);
378 if (unlikely(!page))
379 return -ENOMEM;
381 rq_for_each_segment(bvec, rq, iter) {
382 loff_t offset = pos;
384 b.bv_page = page;
385 b.bv_offset = 0;
386 b.bv_len = bvec.bv_len;
388 iov_iter_bvec(&i, ITER_BVEC, &b, 1, b.bv_len);
389 len = vfs_iter_read(lo->lo_backing_file, &i, &pos, 0);
390 if (len < 0) {
391 ret = len;
392 goto out_free_page;
395 ret = lo_do_transfer(lo, READ, page, 0, bvec.bv_page,
396 bvec.bv_offset, len, offset >> 9);
397 if (ret)
398 goto out_free_page;
400 flush_dcache_page(bvec.bv_page);
402 if (len != bvec.bv_len) {
403 struct bio *bio;
405 __rq_for_each_bio(bio, rq)
406 zero_fill_bio(bio);
407 break;
411 ret = 0;
412 out_free_page:
413 __free_page(page);
414 return ret;
417 static int lo_discard(struct loop_device *lo, struct request *rq, loff_t pos)
420 * We use punch hole to reclaim the free space used by the
421 * image a.k.a. discard. However we do not support discard if
422 * encryption is enabled, because it may give an attacker
423 * useful information.
425 struct file *file = lo->lo_backing_file;
426 int mode = FALLOC_FL_PUNCH_HOLE | FALLOC_FL_KEEP_SIZE;
427 int ret;
429 if ((!file->f_op->fallocate) || lo->lo_encrypt_key_size) {
430 ret = -EOPNOTSUPP;
431 goto out;
434 ret = file->f_op->fallocate(file, mode, pos, blk_rq_bytes(rq));
435 if (unlikely(ret && ret != -EINVAL && ret != -EOPNOTSUPP))
436 ret = -EIO;
437 out:
438 return ret;
441 static int lo_req_flush(struct loop_device *lo, struct request *rq)
443 struct file *file = lo->lo_backing_file;
444 int ret = vfs_fsync(file, 0);
445 if (unlikely(ret && ret != -EINVAL))
446 ret = -EIO;
448 return ret;
451 static void lo_complete_rq(struct request *rq)
453 struct loop_cmd *cmd = blk_mq_rq_to_pdu(rq);
455 if (unlikely(req_op(cmd->rq) == REQ_OP_READ && cmd->use_aio &&
456 cmd->ret >= 0 && cmd->ret < blk_rq_bytes(cmd->rq))) {
457 struct bio *bio = cmd->rq->bio;
459 bio_advance(bio, cmd->ret);
460 zero_fill_bio(bio);
463 blk_mq_end_request(rq, cmd->ret < 0 ? BLK_STS_IOERR : BLK_STS_OK);
466 static void lo_rw_aio_do_completion(struct loop_cmd *cmd)
468 if (!atomic_dec_and_test(&cmd->ref))
469 return;
470 kfree(cmd->bvec);
471 cmd->bvec = NULL;
472 blk_mq_complete_request(cmd->rq);
475 static void lo_rw_aio_complete(struct kiocb *iocb, long ret, long ret2)
477 struct loop_cmd *cmd = container_of(iocb, struct loop_cmd, iocb);
479 if (cmd->css)
480 css_put(cmd->css);
481 cmd->ret = ret;
482 lo_rw_aio_do_completion(cmd);
485 static int lo_rw_aio(struct loop_device *lo, struct loop_cmd *cmd,
486 loff_t pos, bool rw)
488 struct iov_iter iter;
489 struct bio_vec *bvec;
490 struct request *rq = cmd->rq;
491 struct bio *bio = rq->bio;
492 struct file *file = lo->lo_backing_file;
493 unsigned int offset;
494 int segments = 0;
495 int ret;
497 if (rq->bio != rq->biotail) {
498 struct req_iterator iter;
499 struct bio_vec tmp;
501 __rq_for_each_bio(bio, rq)
502 segments += bio_segments(bio);
503 bvec = kmalloc(sizeof(struct bio_vec) * segments, GFP_NOIO);
504 if (!bvec)
505 return -EIO;
506 cmd->bvec = bvec;
509 * The bios of the request may be started from the middle of
510 * the 'bvec' because of bio splitting, so we can't directly
511 * copy bio->bi_iov_vec to new bvec. The rq_for_each_segment
512 * API will take care of all details for us.
514 rq_for_each_segment(tmp, rq, iter) {
515 *bvec = tmp;
516 bvec++;
518 bvec = cmd->bvec;
519 offset = 0;
520 } else {
522 * Same here, this bio may be started from the middle of the
523 * 'bvec' because of bio splitting, so offset from the bvec
524 * must be passed to iov iterator
526 offset = bio->bi_iter.bi_bvec_done;
527 bvec = __bvec_iter_bvec(bio->bi_io_vec, bio->bi_iter);
528 segments = bio_segments(bio);
530 atomic_set(&cmd->ref, 2);
532 iov_iter_bvec(&iter, ITER_BVEC | rw, bvec,
533 segments, blk_rq_bytes(rq));
534 iter.iov_offset = offset;
536 cmd->iocb.ki_pos = pos;
537 cmd->iocb.ki_filp = file;
538 cmd->iocb.ki_complete = lo_rw_aio_complete;
539 cmd->iocb.ki_flags = IOCB_DIRECT;
540 if (cmd->css)
541 kthread_associate_blkcg(cmd->css);
543 if (rw == WRITE)
544 ret = call_write_iter(file, &cmd->iocb, &iter);
545 else
546 ret = call_read_iter(file, &cmd->iocb, &iter);
548 lo_rw_aio_do_completion(cmd);
549 kthread_associate_blkcg(NULL);
551 if (ret != -EIOCBQUEUED)
552 cmd->iocb.ki_complete(&cmd->iocb, ret, 0);
553 return 0;
556 static int do_req_filebacked(struct loop_device *lo, struct request *rq)
558 struct loop_cmd *cmd = blk_mq_rq_to_pdu(rq);
559 loff_t pos = ((loff_t) blk_rq_pos(rq) << 9) + lo->lo_offset;
562 * lo_write_simple and lo_read_simple should have been covered
563 * by io submit style function like lo_rw_aio(), one blocker
564 * is that lo_read_simple() need to call flush_dcache_page after
565 * the page is written from kernel, and it isn't easy to handle
566 * this in io submit style function which submits all segments
567 * of the req at one time. And direct read IO doesn't need to
568 * run flush_dcache_page().
570 switch (req_op(rq)) {
571 case REQ_OP_FLUSH:
572 return lo_req_flush(lo, rq);
573 case REQ_OP_DISCARD:
574 case REQ_OP_WRITE_ZEROES:
575 return lo_discard(lo, rq, pos);
576 case REQ_OP_WRITE:
577 if (lo->transfer)
578 return lo_write_transfer(lo, rq, pos);
579 else if (cmd->use_aio)
580 return lo_rw_aio(lo, cmd, pos, WRITE);
581 else
582 return lo_write_simple(lo, rq, pos);
583 case REQ_OP_READ:
584 if (lo->transfer)
585 return lo_read_transfer(lo, rq, pos);
586 else if (cmd->use_aio)
587 return lo_rw_aio(lo, cmd, pos, READ);
588 else
589 return lo_read_simple(lo, rq, pos);
590 default:
591 WARN_ON_ONCE(1);
592 return -EIO;
593 break;
597 static inline void loop_update_dio(struct loop_device *lo)
599 __loop_update_dio(lo, io_is_direct(lo->lo_backing_file) |
600 lo->use_dio);
603 static void loop_reread_partitions(struct loop_device *lo,
604 struct block_device *bdev)
606 int rc;
609 * bd_mutex has been held already in release path, so don't
610 * acquire it if this function is called in such case.
612 * If the reread partition isn't from release path, lo_refcnt
613 * must be at least one and it can only become zero when the
614 * current holder is released.
616 if (!atomic_read(&lo->lo_refcnt))
617 rc = __blkdev_reread_part(bdev);
618 else
619 rc = blkdev_reread_part(bdev);
620 if (rc)
621 pr_warn("%s: partition scan of loop%d (%s) failed (rc=%d)\n",
622 __func__, lo->lo_number, lo->lo_file_name, rc);
626 * loop_change_fd switched the backing store of a loopback device to
627 * a new file. This is useful for operating system installers to free up
628 * the original file and in High Availability environments to switch to
629 * an alternative location for the content in case of server meltdown.
630 * This can only work if the loop device is used read-only, and if the
631 * new backing store is the same size and type as the old backing store.
633 static int loop_change_fd(struct loop_device *lo, struct block_device *bdev,
634 unsigned int arg)
636 struct file *file, *old_file;
637 struct inode *inode;
638 int error;
640 error = -ENXIO;
641 if (lo->lo_state != Lo_bound)
642 goto out;
644 /* the loop device has to be read-only */
645 error = -EINVAL;
646 if (!(lo->lo_flags & LO_FLAGS_READ_ONLY))
647 goto out;
649 error = -EBADF;
650 file = fget(arg);
651 if (!file)
652 goto out;
654 inode = file->f_mapping->host;
655 old_file = lo->lo_backing_file;
657 error = -EINVAL;
659 if (!S_ISREG(inode->i_mode) && !S_ISBLK(inode->i_mode))
660 goto out_putf;
662 /* size of the new backing store needs to be the same */
663 if (get_loop_size(lo, file) != get_loop_size(lo, old_file))
664 goto out_putf;
666 /* and ... switch */
667 blk_mq_freeze_queue(lo->lo_queue);
668 mapping_set_gfp_mask(old_file->f_mapping, lo->old_gfp_mask);
669 lo->lo_backing_file = file;
670 lo->old_gfp_mask = mapping_gfp_mask(file->f_mapping);
671 mapping_set_gfp_mask(file->f_mapping,
672 lo->old_gfp_mask & ~(__GFP_IO|__GFP_FS));
673 loop_update_dio(lo);
674 blk_mq_unfreeze_queue(lo->lo_queue);
676 fput(old_file);
677 if (lo->lo_flags & LO_FLAGS_PARTSCAN)
678 loop_reread_partitions(lo, bdev);
679 return 0;
681 out_putf:
682 fput(file);
683 out:
684 return error;
687 static inline int is_loop_device(struct file *file)
689 struct inode *i = file->f_mapping->host;
691 return i && S_ISBLK(i->i_mode) && MAJOR(i->i_rdev) == LOOP_MAJOR;
694 /* loop sysfs attributes */
696 static ssize_t loop_attr_show(struct device *dev, char *page,
697 ssize_t (*callback)(struct loop_device *, char *))
699 struct gendisk *disk = dev_to_disk(dev);
700 struct loop_device *lo = disk->private_data;
702 return callback(lo, page);
705 #define LOOP_ATTR_RO(_name) \
706 static ssize_t loop_attr_##_name##_show(struct loop_device *, char *); \
707 static ssize_t loop_attr_do_show_##_name(struct device *d, \
708 struct device_attribute *attr, char *b) \
710 return loop_attr_show(d, b, loop_attr_##_name##_show); \
712 static struct device_attribute loop_attr_##_name = \
713 __ATTR(_name, S_IRUGO, loop_attr_do_show_##_name, NULL);
715 static ssize_t loop_attr_backing_file_show(struct loop_device *lo, char *buf)
717 ssize_t ret;
718 char *p = NULL;
720 spin_lock_irq(&lo->lo_lock);
721 if (lo->lo_backing_file)
722 p = file_path(lo->lo_backing_file, buf, PAGE_SIZE - 1);
723 spin_unlock_irq(&lo->lo_lock);
725 if (IS_ERR_OR_NULL(p))
726 ret = PTR_ERR(p);
727 else {
728 ret = strlen(p);
729 memmove(buf, p, ret);
730 buf[ret++] = '\n';
731 buf[ret] = 0;
734 return ret;
737 static ssize_t loop_attr_offset_show(struct loop_device *lo, char *buf)
739 return sprintf(buf, "%llu\n", (unsigned long long)lo->lo_offset);
742 static ssize_t loop_attr_sizelimit_show(struct loop_device *lo, char *buf)
744 return sprintf(buf, "%llu\n", (unsigned long long)lo->lo_sizelimit);
747 static ssize_t loop_attr_autoclear_show(struct loop_device *lo, char *buf)
749 int autoclear = (lo->lo_flags & LO_FLAGS_AUTOCLEAR);
751 return sprintf(buf, "%s\n", autoclear ? "1" : "0");
754 static ssize_t loop_attr_partscan_show(struct loop_device *lo, char *buf)
756 int partscan = (lo->lo_flags & LO_FLAGS_PARTSCAN);
758 return sprintf(buf, "%s\n", partscan ? "1" : "0");
761 static ssize_t loop_attr_dio_show(struct loop_device *lo, char *buf)
763 int dio = (lo->lo_flags & LO_FLAGS_DIRECT_IO);
765 return sprintf(buf, "%s\n", dio ? "1" : "0");
768 LOOP_ATTR_RO(backing_file);
769 LOOP_ATTR_RO(offset);
770 LOOP_ATTR_RO(sizelimit);
771 LOOP_ATTR_RO(autoclear);
772 LOOP_ATTR_RO(partscan);
773 LOOP_ATTR_RO(dio);
775 static struct attribute *loop_attrs[] = {
776 &loop_attr_backing_file.attr,
777 &loop_attr_offset.attr,
778 &loop_attr_sizelimit.attr,
779 &loop_attr_autoclear.attr,
780 &loop_attr_partscan.attr,
781 &loop_attr_dio.attr,
782 NULL,
785 static struct attribute_group loop_attribute_group = {
786 .name = "loop",
787 .attrs= loop_attrs,
790 static int loop_sysfs_init(struct loop_device *lo)
792 return sysfs_create_group(&disk_to_dev(lo->lo_disk)->kobj,
793 &loop_attribute_group);
796 static void loop_sysfs_exit(struct loop_device *lo)
798 sysfs_remove_group(&disk_to_dev(lo->lo_disk)->kobj,
799 &loop_attribute_group);
802 static void loop_config_discard(struct loop_device *lo)
804 struct file *file = lo->lo_backing_file;
805 struct inode *inode = file->f_mapping->host;
806 struct request_queue *q = lo->lo_queue;
809 * We use punch hole to reclaim the free space used by the
810 * image a.k.a. discard. However we do not support discard if
811 * encryption is enabled, because it may give an attacker
812 * useful information.
814 if ((!file->f_op->fallocate) ||
815 lo->lo_encrypt_key_size) {
816 q->limits.discard_granularity = 0;
817 q->limits.discard_alignment = 0;
818 blk_queue_max_discard_sectors(q, 0);
819 blk_queue_max_write_zeroes_sectors(q, 0);
820 queue_flag_clear_unlocked(QUEUE_FLAG_DISCARD, q);
821 return;
824 q->limits.discard_granularity = inode->i_sb->s_blocksize;
825 q->limits.discard_alignment = 0;
827 blk_queue_max_discard_sectors(q, UINT_MAX >> 9);
828 blk_queue_max_write_zeroes_sectors(q, UINT_MAX >> 9);
829 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, q);
832 static void loop_unprepare_queue(struct loop_device *lo)
834 kthread_flush_worker(&lo->worker);
835 kthread_stop(lo->worker_task);
838 static int loop_kthread_worker_fn(void *worker_ptr)
840 current->flags |= PF_LESS_THROTTLE;
841 return kthread_worker_fn(worker_ptr);
844 static int loop_prepare_queue(struct loop_device *lo)
846 kthread_init_worker(&lo->worker);
847 lo->worker_task = kthread_run(loop_kthread_worker_fn,
848 &lo->worker, "loop%d", lo->lo_number);
849 if (IS_ERR(lo->worker_task))
850 return -ENOMEM;
851 set_user_nice(lo->worker_task, MIN_NICE);
852 return 0;
855 static int loop_set_fd(struct loop_device *lo, fmode_t mode,
856 struct block_device *bdev, unsigned int arg)
858 struct file *file, *f;
859 struct inode *inode;
860 struct address_space *mapping;
861 int lo_flags = 0;
862 int error;
863 loff_t size;
865 /* This is safe, since we have a reference from open(). */
866 __module_get(THIS_MODULE);
868 error = -EBADF;
869 file = fget(arg);
870 if (!file)
871 goto out;
873 error = -EBUSY;
874 if (lo->lo_state != Lo_unbound)
875 goto out_putf;
877 /* Avoid recursion */
878 f = file;
879 while (is_loop_device(f)) {
880 struct loop_device *l;
882 if (f->f_mapping->host->i_bdev == bdev)
883 goto out_putf;
885 l = f->f_mapping->host->i_bdev->bd_disk->private_data;
886 if (l->lo_state == Lo_unbound) {
887 error = -EINVAL;
888 goto out_putf;
890 f = l->lo_backing_file;
893 mapping = file->f_mapping;
894 inode = mapping->host;
896 error = -EINVAL;
897 if (!S_ISREG(inode->i_mode) && !S_ISBLK(inode->i_mode))
898 goto out_putf;
900 if (!(file->f_mode & FMODE_WRITE) || !(mode & FMODE_WRITE) ||
901 !file->f_op->write_iter)
902 lo_flags |= LO_FLAGS_READ_ONLY;
904 error = -EFBIG;
905 size = get_loop_size(lo, file);
906 if ((loff_t)(sector_t)size != size)
907 goto out_putf;
908 error = loop_prepare_queue(lo);
909 if (error)
910 goto out_putf;
912 error = 0;
914 set_device_ro(bdev, (lo_flags & LO_FLAGS_READ_ONLY) != 0);
916 lo->use_dio = false;
917 lo->lo_device = bdev;
918 lo->lo_flags = lo_flags;
919 lo->lo_backing_file = file;
920 lo->transfer = NULL;
921 lo->ioctl = NULL;
922 lo->lo_sizelimit = 0;
923 lo->old_gfp_mask = mapping_gfp_mask(mapping);
924 mapping_set_gfp_mask(mapping, lo->old_gfp_mask & ~(__GFP_IO|__GFP_FS));
926 if (!(lo_flags & LO_FLAGS_READ_ONLY) && file->f_op->fsync)
927 blk_queue_write_cache(lo->lo_queue, true, false);
929 loop_update_dio(lo);
930 set_capacity(lo->lo_disk, size);
931 bd_set_size(bdev, size << 9);
932 loop_sysfs_init(lo);
933 /* let user-space know about the new size */
934 kobject_uevent(&disk_to_dev(bdev->bd_disk)->kobj, KOBJ_CHANGE);
936 set_blocksize(bdev, S_ISBLK(inode->i_mode) ?
937 block_size(inode->i_bdev) : PAGE_SIZE);
939 lo->lo_state = Lo_bound;
940 if (part_shift)
941 lo->lo_flags |= LO_FLAGS_PARTSCAN;
942 if (lo->lo_flags & LO_FLAGS_PARTSCAN)
943 loop_reread_partitions(lo, bdev);
945 /* Grab the block_device to prevent its destruction after we
946 * put /dev/loopXX inode. Later in loop_clr_fd() we bdput(bdev).
948 bdgrab(bdev);
949 return 0;
951 out_putf:
952 fput(file);
953 out:
954 /* This is safe: open() is still holding a reference. */
955 module_put(THIS_MODULE);
956 return error;
959 static int
960 loop_release_xfer(struct loop_device *lo)
962 int err = 0;
963 struct loop_func_table *xfer = lo->lo_encryption;
965 if (xfer) {
966 if (xfer->release)
967 err = xfer->release(lo);
968 lo->transfer = NULL;
969 lo->lo_encryption = NULL;
970 module_put(xfer->owner);
972 return err;
975 static int
976 loop_init_xfer(struct loop_device *lo, struct loop_func_table *xfer,
977 const struct loop_info64 *i)
979 int err = 0;
981 if (xfer) {
982 struct module *owner = xfer->owner;
984 if (!try_module_get(owner))
985 return -EINVAL;
986 if (xfer->init)
987 err = xfer->init(lo, i);
988 if (err)
989 module_put(owner);
990 else
991 lo->lo_encryption = xfer;
993 return err;
996 static int loop_clr_fd(struct loop_device *lo)
998 struct file *filp = lo->lo_backing_file;
999 gfp_t gfp = lo->old_gfp_mask;
1000 struct block_device *bdev = lo->lo_device;
1002 if (lo->lo_state != Lo_bound)
1003 return -ENXIO;
1006 * If we've explicitly asked to tear down the loop device,
1007 * and it has an elevated reference count, set it for auto-teardown when
1008 * the last reference goes away. This stops $!~#$@ udev from
1009 * preventing teardown because it decided that it needs to run blkid on
1010 * the loopback device whenever they appear. xfstests is notorious for
1011 * failing tests because blkid via udev races with a losetup
1012 * <dev>/do something like mkfs/losetup -d <dev> causing the losetup -d
1013 * command to fail with EBUSY.
1015 if (atomic_read(&lo->lo_refcnt) > 1) {
1016 lo->lo_flags |= LO_FLAGS_AUTOCLEAR;
1017 mutex_unlock(&lo->lo_ctl_mutex);
1018 return 0;
1021 if (filp == NULL)
1022 return -EINVAL;
1024 /* freeze request queue during the transition */
1025 blk_mq_freeze_queue(lo->lo_queue);
1027 spin_lock_irq(&lo->lo_lock);
1028 lo->lo_state = Lo_rundown;
1029 lo->lo_backing_file = NULL;
1030 spin_unlock_irq(&lo->lo_lock);
1032 loop_release_xfer(lo);
1033 lo->transfer = NULL;
1034 lo->ioctl = NULL;
1035 lo->lo_device = NULL;
1036 lo->lo_encryption = NULL;
1037 lo->lo_offset = 0;
1038 lo->lo_sizelimit = 0;
1039 lo->lo_encrypt_key_size = 0;
1040 memset(lo->lo_encrypt_key, 0, LO_KEY_SIZE);
1041 memset(lo->lo_crypt_name, 0, LO_NAME_SIZE);
1042 memset(lo->lo_file_name, 0, LO_NAME_SIZE);
1043 blk_queue_logical_block_size(lo->lo_queue, 512);
1044 blk_queue_physical_block_size(lo->lo_queue, 512);
1045 blk_queue_io_min(lo->lo_queue, 512);
1046 if (bdev) {
1047 bdput(bdev);
1048 invalidate_bdev(bdev);
1050 set_capacity(lo->lo_disk, 0);
1051 loop_sysfs_exit(lo);
1052 if (bdev) {
1053 bd_set_size(bdev, 0);
1054 /* let user-space know about this change */
1055 kobject_uevent(&disk_to_dev(bdev->bd_disk)->kobj, KOBJ_CHANGE);
1057 mapping_set_gfp_mask(filp->f_mapping, gfp);
1058 lo->lo_state = Lo_unbound;
1059 /* This is safe: open() is still holding a reference. */
1060 module_put(THIS_MODULE);
1061 blk_mq_unfreeze_queue(lo->lo_queue);
1063 if (lo->lo_flags & LO_FLAGS_PARTSCAN && bdev)
1064 loop_reread_partitions(lo, bdev);
1065 lo->lo_flags = 0;
1066 if (!part_shift)
1067 lo->lo_disk->flags |= GENHD_FL_NO_PART_SCAN;
1068 loop_unprepare_queue(lo);
1069 mutex_unlock(&lo->lo_ctl_mutex);
1071 * Need not hold lo_ctl_mutex to fput backing file.
1072 * Calling fput holding lo_ctl_mutex triggers a circular
1073 * lock dependency possibility warning as fput can take
1074 * bd_mutex which is usually taken before lo_ctl_mutex.
1076 fput(filp);
1077 return 0;
1080 static int
1081 loop_set_status(struct loop_device *lo, const struct loop_info64 *info)
1083 int err;
1084 struct loop_func_table *xfer;
1085 kuid_t uid = current_uid();
1087 if (lo->lo_encrypt_key_size &&
1088 !uid_eq(lo->lo_key_owner, uid) &&
1089 !capable(CAP_SYS_ADMIN))
1090 return -EPERM;
1091 if (lo->lo_state != Lo_bound)
1092 return -ENXIO;
1093 if ((unsigned int) info->lo_encrypt_key_size > LO_KEY_SIZE)
1094 return -EINVAL;
1096 /* I/O need to be drained during transfer transition */
1097 blk_mq_freeze_queue(lo->lo_queue);
1099 err = loop_release_xfer(lo);
1100 if (err)
1101 goto exit;
1103 if (info->lo_encrypt_type) {
1104 unsigned int type = info->lo_encrypt_type;
1106 if (type >= MAX_LO_CRYPT)
1107 return -EINVAL;
1108 xfer = xfer_funcs[type];
1109 if (xfer == NULL)
1110 return -EINVAL;
1111 } else
1112 xfer = NULL;
1114 err = loop_init_xfer(lo, xfer, info);
1115 if (err)
1116 goto exit;
1118 if (lo->lo_offset != info->lo_offset ||
1119 lo->lo_sizelimit != info->lo_sizelimit) {
1120 if (figure_loop_size(lo, info->lo_offset, info->lo_sizelimit)) {
1121 err = -EFBIG;
1122 goto exit;
1126 loop_config_discard(lo);
1128 memcpy(lo->lo_file_name, info->lo_file_name, LO_NAME_SIZE);
1129 memcpy(lo->lo_crypt_name, info->lo_crypt_name, LO_NAME_SIZE);
1130 lo->lo_file_name[LO_NAME_SIZE-1] = 0;
1131 lo->lo_crypt_name[LO_NAME_SIZE-1] = 0;
1133 if (!xfer)
1134 xfer = &none_funcs;
1135 lo->transfer = xfer->transfer;
1136 lo->ioctl = xfer->ioctl;
1138 if ((lo->lo_flags & LO_FLAGS_AUTOCLEAR) !=
1139 (info->lo_flags & LO_FLAGS_AUTOCLEAR))
1140 lo->lo_flags ^= LO_FLAGS_AUTOCLEAR;
1142 lo->lo_encrypt_key_size = info->lo_encrypt_key_size;
1143 lo->lo_init[0] = info->lo_init[0];
1144 lo->lo_init[1] = info->lo_init[1];
1145 if (info->lo_encrypt_key_size) {
1146 memcpy(lo->lo_encrypt_key, info->lo_encrypt_key,
1147 info->lo_encrypt_key_size);
1148 lo->lo_key_owner = uid;
1151 /* update dio if lo_offset or transfer is changed */
1152 __loop_update_dio(lo, lo->use_dio);
1154 exit:
1155 blk_mq_unfreeze_queue(lo->lo_queue);
1157 if (!err && (info->lo_flags & LO_FLAGS_PARTSCAN) &&
1158 !(lo->lo_flags & LO_FLAGS_PARTSCAN)) {
1159 lo->lo_flags |= LO_FLAGS_PARTSCAN;
1160 lo->lo_disk->flags &= ~GENHD_FL_NO_PART_SCAN;
1161 loop_reread_partitions(lo, lo->lo_device);
1164 return err;
1167 static int
1168 loop_get_status(struct loop_device *lo, struct loop_info64 *info)
1170 struct file *file = lo->lo_backing_file;
1171 struct kstat stat;
1172 int error;
1174 if (lo->lo_state != Lo_bound)
1175 return -ENXIO;
1176 error = vfs_getattr(&file->f_path, &stat,
1177 STATX_INO, AT_STATX_SYNC_AS_STAT);
1178 if (error)
1179 return error;
1180 memset(info, 0, sizeof(*info));
1181 info->lo_number = lo->lo_number;
1182 info->lo_device = huge_encode_dev(stat.dev);
1183 info->lo_inode = stat.ino;
1184 info->lo_rdevice = huge_encode_dev(lo->lo_device ? stat.rdev : stat.dev);
1185 info->lo_offset = lo->lo_offset;
1186 info->lo_sizelimit = lo->lo_sizelimit;
1187 info->lo_flags = lo->lo_flags;
1188 memcpy(info->lo_file_name, lo->lo_file_name, LO_NAME_SIZE);
1189 memcpy(info->lo_crypt_name, lo->lo_crypt_name, LO_NAME_SIZE);
1190 info->lo_encrypt_type =
1191 lo->lo_encryption ? lo->lo_encryption->number : 0;
1192 if (lo->lo_encrypt_key_size && capable(CAP_SYS_ADMIN)) {
1193 info->lo_encrypt_key_size = lo->lo_encrypt_key_size;
1194 memcpy(info->lo_encrypt_key, lo->lo_encrypt_key,
1195 lo->lo_encrypt_key_size);
1197 return 0;
1200 static void
1201 loop_info64_from_old(const struct loop_info *info, struct loop_info64 *info64)
1203 memset(info64, 0, sizeof(*info64));
1204 info64->lo_number = info->lo_number;
1205 info64->lo_device = info->lo_device;
1206 info64->lo_inode = info->lo_inode;
1207 info64->lo_rdevice = info->lo_rdevice;
1208 info64->lo_offset = info->lo_offset;
1209 info64->lo_sizelimit = 0;
1210 info64->lo_encrypt_type = info->lo_encrypt_type;
1211 info64->lo_encrypt_key_size = info->lo_encrypt_key_size;
1212 info64->lo_flags = info->lo_flags;
1213 info64->lo_init[0] = info->lo_init[0];
1214 info64->lo_init[1] = info->lo_init[1];
1215 if (info->lo_encrypt_type == LO_CRYPT_CRYPTOAPI)
1216 memcpy(info64->lo_crypt_name, info->lo_name, LO_NAME_SIZE);
1217 else
1218 memcpy(info64->lo_file_name, info->lo_name, LO_NAME_SIZE);
1219 memcpy(info64->lo_encrypt_key, info->lo_encrypt_key, LO_KEY_SIZE);
1222 static int
1223 loop_info64_to_old(const struct loop_info64 *info64, struct loop_info *info)
1225 memset(info, 0, sizeof(*info));
1226 info->lo_number = info64->lo_number;
1227 info->lo_device = info64->lo_device;
1228 info->lo_inode = info64->lo_inode;
1229 info->lo_rdevice = info64->lo_rdevice;
1230 info->lo_offset = info64->lo_offset;
1231 info->lo_encrypt_type = info64->lo_encrypt_type;
1232 info->lo_encrypt_key_size = info64->lo_encrypt_key_size;
1233 info->lo_flags = info64->lo_flags;
1234 info->lo_init[0] = info64->lo_init[0];
1235 info->lo_init[1] = info64->lo_init[1];
1236 if (info->lo_encrypt_type == LO_CRYPT_CRYPTOAPI)
1237 memcpy(info->lo_name, info64->lo_crypt_name, LO_NAME_SIZE);
1238 else
1239 memcpy(info->lo_name, info64->lo_file_name, LO_NAME_SIZE);
1240 memcpy(info->lo_encrypt_key, info64->lo_encrypt_key, LO_KEY_SIZE);
1242 /* error in case values were truncated */
1243 if (info->lo_device != info64->lo_device ||
1244 info->lo_rdevice != info64->lo_rdevice ||
1245 info->lo_inode != info64->lo_inode ||
1246 info->lo_offset != info64->lo_offset)
1247 return -EOVERFLOW;
1249 return 0;
1252 static int
1253 loop_set_status_old(struct loop_device *lo, const struct loop_info __user *arg)
1255 struct loop_info info;
1256 struct loop_info64 info64;
1258 if (copy_from_user(&info, arg, sizeof (struct loop_info)))
1259 return -EFAULT;
1260 loop_info64_from_old(&info, &info64);
1261 return loop_set_status(lo, &info64);
1264 static int
1265 loop_set_status64(struct loop_device *lo, const struct loop_info64 __user *arg)
1267 struct loop_info64 info64;
1269 if (copy_from_user(&info64, arg, sizeof (struct loop_info64)))
1270 return -EFAULT;
1271 return loop_set_status(lo, &info64);
1274 static int
1275 loop_get_status_old(struct loop_device *lo, struct loop_info __user *arg) {
1276 struct loop_info info;
1277 struct loop_info64 info64;
1278 int err = 0;
1280 if (!arg)
1281 err = -EINVAL;
1282 if (!err)
1283 err = loop_get_status(lo, &info64);
1284 if (!err)
1285 err = loop_info64_to_old(&info64, &info);
1286 if (!err && copy_to_user(arg, &info, sizeof(info)))
1287 err = -EFAULT;
1289 return err;
1292 static int
1293 loop_get_status64(struct loop_device *lo, struct loop_info64 __user *arg) {
1294 struct loop_info64 info64;
1295 int err = 0;
1297 if (!arg)
1298 err = -EINVAL;
1299 if (!err)
1300 err = loop_get_status(lo, &info64);
1301 if (!err && copy_to_user(arg, &info64, sizeof(info64)))
1302 err = -EFAULT;
1304 return err;
1307 static int loop_set_capacity(struct loop_device *lo)
1309 if (unlikely(lo->lo_state != Lo_bound))
1310 return -ENXIO;
1312 return figure_loop_size(lo, lo->lo_offset, lo->lo_sizelimit);
1315 static int loop_set_dio(struct loop_device *lo, unsigned long arg)
1317 int error = -ENXIO;
1318 if (lo->lo_state != Lo_bound)
1319 goto out;
1321 __loop_update_dio(lo, !!arg);
1322 if (lo->use_dio == !!arg)
1323 return 0;
1324 error = -EINVAL;
1325 out:
1326 return error;
1329 static int loop_set_block_size(struct loop_device *lo, unsigned long arg)
1331 if (lo->lo_state != Lo_bound)
1332 return -ENXIO;
1334 if (arg < 512 || arg > PAGE_SIZE || !is_power_of_2(arg))
1335 return -EINVAL;
1337 blk_mq_freeze_queue(lo->lo_queue);
1339 blk_queue_logical_block_size(lo->lo_queue, arg);
1340 blk_queue_physical_block_size(lo->lo_queue, arg);
1341 blk_queue_io_min(lo->lo_queue, arg);
1342 loop_update_dio(lo);
1344 blk_mq_unfreeze_queue(lo->lo_queue);
1346 return 0;
1349 static int lo_ioctl(struct block_device *bdev, fmode_t mode,
1350 unsigned int cmd, unsigned long arg)
1352 struct loop_device *lo = bdev->bd_disk->private_data;
1353 int err;
1355 mutex_lock_nested(&lo->lo_ctl_mutex, 1);
1356 switch (cmd) {
1357 case LOOP_SET_FD:
1358 err = loop_set_fd(lo, mode, bdev, arg);
1359 break;
1360 case LOOP_CHANGE_FD:
1361 err = loop_change_fd(lo, bdev, arg);
1362 break;
1363 case LOOP_CLR_FD:
1364 /* loop_clr_fd would have unlocked lo_ctl_mutex on success */
1365 err = loop_clr_fd(lo);
1366 if (!err)
1367 goto out_unlocked;
1368 break;
1369 case LOOP_SET_STATUS:
1370 err = -EPERM;
1371 if ((mode & FMODE_WRITE) || capable(CAP_SYS_ADMIN))
1372 err = loop_set_status_old(lo,
1373 (struct loop_info __user *)arg);
1374 break;
1375 case LOOP_GET_STATUS:
1376 err = loop_get_status_old(lo, (struct loop_info __user *) arg);
1377 break;
1378 case LOOP_SET_STATUS64:
1379 err = -EPERM;
1380 if ((mode & FMODE_WRITE) || capable(CAP_SYS_ADMIN))
1381 err = loop_set_status64(lo,
1382 (struct loop_info64 __user *) arg);
1383 break;
1384 case LOOP_GET_STATUS64:
1385 err = loop_get_status64(lo, (struct loop_info64 __user *) arg);
1386 break;
1387 case LOOP_SET_CAPACITY:
1388 err = -EPERM;
1389 if ((mode & FMODE_WRITE) || capable(CAP_SYS_ADMIN))
1390 err = loop_set_capacity(lo);
1391 break;
1392 case LOOP_SET_DIRECT_IO:
1393 err = -EPERM;
1394 if ((mode & FMODE_WRITE) || capable(CAP_SYS_ADMIN))
1395 err = loop_set_dio(lo, arg);
1396 break;
1397 case LOOP_SET_BLOCK_SIZE:
1398 err = -EPERM;
1399 if ((mode & FMODE_WRITE) || capable(CAP_SYS_ADMIN))
1400 err = loop_set_block_size(lo, arg);
1401 break;
1402 default:
1403 err = lo->ioctl ? lo->ioctl(lo, cmd, arg) : -EINVAL;
1405 mutex_unlock(&lo->lo_ctl_mutex);
1407 out_unlocked:
1408 return err;
1411 #ifdef CONFIG_COMPAT
1412 struct compat_loop_info {
1413 compat_int_t lo_number; /* ioctl r/o */
1414 compat_dev_t lo_device; /* ioctl r/o */
1415 compat_ulong_t lo_inode; /* ioctl r/o */
1416 compat_dev_t lo_rdevice; /* ioctl r/o */
1417 compat_int_t lo_offset;
1418 compat_int_t lo_encrypt_type;
1419 compat_int_t lo_encrypt_key_size; /* ioctl w/o */
1420 compat_int_t lo_flags; /* ioctl r/o */
1421 char lo_name[LO_NAME_SIZE];
1422 unsigned char lo_encrypt_key[LO_KEY_SIZE]; /* ioctl w/o */
1423 compat_ulong_t lo_init[2];
1424 char reserved[4];
1428 * Transfer 32-bit compatibility structure in userspace to 64-bit loop info
1429 * - noinlined to reduce stack space usage in main part of driver
1431 static noinline int
1432 loop_info64_from_compat(const struct compat_loop_info __user *arg,
1433 struct loop_info64 *info64)
1435 struct compat_loop_info info;
1437 if (copy_from_user(&info, arg, sizeof(info)))
1438 return -EFAULT;
1440 memset(info64, 0, sizeof(*info64));
1441 info64->lo_number = info.lo_number;
1442 info64->lo_device = info.lo_device;
1443 info64->lo_inode = info.lo_inode;
1444 info64->lo_rdevice = info.lo_rdevice;
1445 info64->lo_offset = info.lo_offset;
1446 info64->lo_sizelimit = 0;
1447 info64->lo_encrypt_type = info.lo_encrypt_type;
1448 info64->lo_encrypt_key_size = info.lo_encrypt_key_size;
1449 info64->lo_flags = info.lo_flags;
1450 info64->lo_init[0] = info.lo_init[0];
1451 info64->lo_init[1] = info.lo_init[1];
1452 if (info.lo_encrypt_type == LO_CRYPT_CRYPTOAPI)
1453 memcpy(info64->lo_crypt_name, info.lo_name, LO_NAME_SIZE);
1454 else
1455 memcpy(info64->lo_file_name, info.lo_name, LO_NAME_SIZE);
1456 memcpy(info64->lo_encrypt_key, info.lo_encrypt_key, LO_KEY_SIZE);
1457 return 0;
1461 * Transfer 64-bit loop info to 32-bit compatibility structure in userspace
1462 * - noinlined to reduce stack space usage in main part of driver
1464 static noinline int
1465 loop_info64_to_compat(const struct loop_info64 *info64,
1466 struct compat_loop_info __user *arg)
1468 struct compat_loop_info info;
1470 memset(&info, 0, sizeof(info));
1471 info.lo_number = info64->lo_number;
1472 info.lo_device = info64->lo_device;
1473 info.lo_inode = info64->lo_inode;
1474 info.lo_rdevice = info64->lo_rdevice;
1475 info.lo_offset = info64->lo_offset;
1476 info.lo_encrypt_type = info64->lo_encrypt_type;
1477 info.lo_encrypt_key_size = info64->lo_encrypt_key_size;
1478 info.lo_flags = info64->lo_flags;
1479 info.lo_init[0] = info64->lo_init[0];
1480 info.lo_init[1] = info64->lo_init[1];
1481 if (info.lo_encrypt_type == LO_CRYPT_CRYPTOAPI)
1482 memcpy(info.lo_name, info64->lo_crypt_name, LO_NAME_SIZE);
1483 else
1484 memcpy(info.lo_name, info64->lo_file_name, LO_NAME_SIZE);
1485 memcpy(info.lo_encrypt_key, info64->lo_encrypt_key, LO_KEY_SIZE);
1487 /* error in case values were truncated */
1488 if (info.lo_device != info64->lo_device ||
1489 info.lo_rdevice != info64->lo_rdevice ||
1490 info.lo_inode != info64->lo_inode ||
1491 info.lo_offset != info64->lo_offset ||
1492 info.lo_init[0] != info64->lo_init[0] ||
1493 info.lo_init[1] != info64->lo_init[1])
1494 return -EOVERFLOW;
1496 if (copy_to_user(arg, &info, sizeof(info)))
1497 return -EFAULT;
1498 return 0;
1501 static int
1502 loop_set_status_compat(struct loop_device *lo,
1503 const struct compat_loop_info __user *arg)
1505 struct loop_info64 info64;
1506 int ret;
1508 ret = loop_info64_from_compat(arg, &info64);
1509 if (ret < 0)
1510 return ret;
1511 return loop_set_status(lo, &info64);
1514 static int
1515 loop_get_status_compat(struct loop_device *lo,
1516 struct compat_loop_info __user *arg)
1518 struct loop_info64 info64;
1519 int err = 0;
1521 if (!arg)
1522 err = -EINVAL;
1523 if (!err)
1524 err = loop_get_status(lo, &info64);
1525 if (!err)
1526 err = loop_info64_to_compat(&info64, arg);
1527 return err;
1530 static int lo_compat_ioctl(struct block_device *bdev, fmode_t mode,
1531 unsigned int cmd, unsigned long arg)
1533 struct loop_device *lo = bdev->bd_disk->private_data;
1534 int err;
1536 switch(cmd) {
1537 case LOOP_SET_STATUS:
1538 mutex_lock(&lo->lo_ctl_mutex);
1539 err = loop_set_status_compat(
1540 lo, (const struct compat_loop_info __user *) arg);
1541 mutex_unlock(&lo->lo_ctl_mutex);
1542 break;
1543 case LOOP_GET_STATUS:
1544 mutex_lock(&lo->lo_ctl_mutex);
1545 err = loop_get_status_compat(
1546 lo, (struct compat_loop_info __user *) arg);
1547 mutex_unlock(&lo->lo_ctl_mutex);
1548 break;
1549 case LOOP_SET_CAPACITY:
1550 case LOOP_CLR_FD:
1551 case LOOP_GET_STATUS64:
1552 case LOOP_SET_STATUS64:
1553 arg = (unsigned long) compat_ptr(arg);
1554 case LOOP_SET_FD:
1555 case LOOP_CHANGE_FD:
1556 err = lo_ioctl(bdev, mode, cmd, arg);
1557 break;
1558 default:
1559 err = -ENOIOCTLCMD;
1560 break;
1562 return err;
1564 #endif
1566 static int lo_open(struct block_device *bdev, fmode_t mode)
1568 struct loop_device *lo;
1569 int err = 0;
1571 mutex_lock(&loop_index_mutex);
1572 lo = bdev->bd_disk->private_data;
1573 if (!lo) {
1574 err = -ENXIO;
1575 goto out;
1578 atomic_inc(&lo->lo_refcnt);
1579 out:
1580 mutex_unlock(&loop_index_mutex);
1581 return err;
1584 static void __lo_release(struct loop_device *lo)
1586 int err;
1588 if (atomic_dec_return(&lo->lo_refcnt))
1589 return;
1591 mutex_lock(&lo->lo_ctl_mutex);
1592 if (lo->lo_flags & LO_FLAGS_AUTOCLEAR) {
1594 * In autoclear mode, stop the loop thread
1595 * and remove configuration after last close.
1597 err = loop_clr_fd(lo);
1598 if (!err)
1599 return;
1600 } else if (lo->lo_state == Lo_bound) {
1602 * Otherwise keep thread (if running) and config,
1603 * but flush possible ongoing bios in thread.
1605 blk_mq_freeze_queue(lo->lo_queue);
1606 blk_mq_unfreeze_queue(lo->lo_queue);
1609 mutex_unlock(&lo->lo_ctl_mutex);
1612 static void lo_release(struct gendisk *disk, fmode_t mode)
1614 mutex_lock(&loop_index_mutex);
1615 __lo_release(disk->private_data);
1616 mutex_unlock(&loop_index_mutex);
1619 static const struct block_device_operations lo_fops = {
1620 .owner = THIS_MODULE,
1621 .open = lo_open,
1622 .release = lo_release,
1623 .ioctl = lo_ioctl,
1624 #ifdef CONFIG_COMPAT
1625 .compat_ioctl = lo_compat_ioctl,
1626 #endif
1630 * And now the modules code and kernel interface.
1632 static int max_loop;
1633 module_param(max_loop, int, S_IRUGO);
1634 MODULE_PARM_DESC(max_loop, "Maximum number of loop devices");
1635 module_param(max_part, int, S_IRUGO);
1636 MODULE_PARM_DESC(max_part, "Maximum number of partitions per loop device");
1637 MODULE_LICENSE("GPL");
1638 MODULE_ALIAS_BLOCKDEV_MAJOR(LOOP_MAJOR);
1640 int loop_register_transfer(struct loop_func_table *funcs)
1642 unsigned int n = funcs->number;
1644 if (n >= MAX_LO_CRYPT || xfer_funcs[n])
1645 return -EINVAL;
1646 xfer_funcs[n] = funcs;
1647 return 0;
1650 static int unregister_transfer_cb(int id, void *ptr, void *data)
1652 struct loop_device *lo = ptr;
1653 struct loop_func_table *xfer = data;
1655 mutex_lock(&lo->lo_ctl_mutex);
1656 if (lo->lo_encryption == xfer)
1657 loop_release_xfer(lo);
1658 mutex_unlock(&lo->lo_ctl_mutex);
1659 return 0;
1662 int loop_unregister_transfer(int number)
1664 unsigned int n = number;
1665 struct loop_func_table *xfer;
1667 if (n == 0 || n >= MAX_LO_CRYPT || (xfer = xfer_funcs[n]) == NULL)
1668 return -EINVAL;
1670 xfer_funcs[n] = NULL;
1671 idr_for_each(&loop_index_idr, &unregister_transfer_cb, xfer);
1672 return 0;
1675 EXPORT_SYMBOL(loop_register_transfer);
1676 EXPORT_SYMBOL(loop_unregister_transfer);
1678 static blk_status_t loop_queue_rq(struct blk_mq_hw_ctx *hctx,
1679 const struct blk_mq_queue_data *bd)
1681 struct loop_cmd *cmd = blk_mq_rq_to_pdu(bd->rq);
1682 struct loop_device *lo = cmd->rq->q->queuedata;
1684 blk_mq_start_request(bd->rq);
1686 if (lo->lo_state != Lo_bound)
1687 return BLK_STS_IOERR;
1689 switch (req_op(cmd->rq)) {
1690 case REQ_OP_FLUSH:
1691 case REQ_OP_DISCARD:
1692 case REQ_OP_WRITE_ZEROES:
1693 cmd->use_aio = false;
1694 break;
1695 default:
1696 cmd->use_aio = lo->use_dio;
1697 break;
1700 /* always use the first bio's css */
1701 #ifdef CONFIG_BLK_CGROUP
1702 if (cmd->use_aio && cmd->rq->bio && cmd->rq->bio->bi_css) {
1703 cmd->css = cmd->rq->bio->bi_css;
1704 css_get(cmd->css);
1705 } else
1706 #endif
1707 cmd->css = NULL;
1708 kthread_queue_work(&lo->worker, &cmd->work);
1710 return BLK_STS_OK;
1713 static void loop_handle_cmd(struct loop_cmd *cmd)
1715 const bool write = op_is_write(req_op(cmd->rq));
1716 struct loop_device *lo = cmd->rq->q->queuedata;
1717 int ret = 0;
1719 if (write && (lo->lo_flags & LO_FLAGS_READ_ONLY)) {
1720 ret = -EIO;
1721 goto failed;
1724 ret = do_req_filebacked(lo, cmd->rq);
1725 failed:
1726 /* complete non-aio request */
1727 if (!cmd->use_aio || ret) {
1728 cmd->ret = ret ? -EIO : 0;
1729 blk_mq_complete_request(cmd->rq);
1733 static void loop_queue_work(struct kthread_work *work)
1735 struct loop_cmd *cmd =
1736 container_of(work, struct loop_cmd, work);
1738 loop_handle_cmd(cmd);
1741 static int loop_init_request(struct blk_mq_tag_set *set, struct request *rq,
1742 unsigned int hctx_idx, unsigned int numa_node)
1744 struct loop_cmd *cmd = blk_mq_rq_to_pdu(rq);
1746 cmd->rq = rq;
1747 kthread_init_work(&cmd->work, loop_queue_work);
1749 return 0;
1752 static const struct blk_mq_ops loop_mq_ops = {
1753 .queue_rq = loop_queue_rq,
1754 .init_request = loop_init_request,
1755 .complete = lo_complete_rq,
1758 static int loop_add(struct loop_device **l, int i)
1760 struct loop_device *lo;
1761 struct gendisk *disk;
1762 int err;
1764 err = -ENOMEM;
1765 lo = kzalloc(sizeof(*lo), GFP_KERNEL);
1766 if (!lo)
1767 goto out;
1769 lo->lo_state = Lo_unbound;
1771 /* allocate id, if @id >= 0, we're requesting that specific id */
1772 if (i >= 0) {
1773 err = idr_alloc(&loop_index_idr, lo, i, i + 1, GFP_KERNEL);
1774 if (err == -ENOSPC)
1775 err = -EEXIST;
1776 } else {
1777 err = idr_alloc(&loop_index_idr, lo, 0, 0, GFP_KERNEL);
1779 if (err < 0)
1780 goto out_free_dev;
1781 i = err;
1783 err = -ENOMEM;
1784 lo->tag_set.ops = &loop_mq_ops;
1785 lo->tag_set.nr_hw_queues = 1;
1786 lo->tag_set.queue_depth = 128;
1787 lo->tag_set.numa_node = NUMA_NO_NODE;
1788 lo->tag_set.cmd_size = sizeof(struct loop_cmd);
1789 lo->tag_set.flags = BLK_MQ_F_SHOULD_MERGE | BLK_MQ_F_SG_MERGE;
1790 lo->tag_set.driver_data = lo;
1792 err = blk_mq_alloc_tag_set(&lo->tag_set);
1793 if (err)
1794 goto out_free_idr;
1796 lo->lo_queue = blk_mq_init_queue(&lo->tag_set);
1797 if (IS_ERR_OR_NULL(lo->lo_queue)) {
1798 err = PTR_ERR(lo->lo_queue);
1799 goto out_cleanup_tags;
1801 lo->lo_queue->queuedata = lo;
1803 blk_queue_max_hw_sectors(lo->lo_queue, BLK_DEF_MAX_SECTORS);
1806 * By default, we do buffer IO, so it doesn't make sense to enable
1807 * merge because the I/O submitted to backing file is handled page by
1808 * page. For directio mode, merge does help to dispatch bigger request
1809 * to underlayer disk. We will enable merge once directio is enabled.
1811 queue_flag_set_unlocked(QUEUE_FLAG_NOMERGES, lo->lo_queue);
1813 err = -ENOMEM;
1814 disk = lo->lo_disk = alloc_disk(1 << part_shift);
1815 if (!disk)
1816 goto out_free_queue;
1819 * Disable partition scanning by default. The in-kernel partition
1820 * scanning can be requested individually per-device during its
1821 * setup. Userspace can always add and remove partitions from all
1822 * devices. The needed partition minors are allocated from the
1823 * extended minor space, the main loop device numbers will continue
1824 * to match the loop minors, regardless of the number of partitions
1825 * used.
1827 * If max_part is given, partition scanning is globally enabled for
1828 * all loop devices. The minors for the main loop devices will be
1829 * multiples of max_part.
1831 * Note: Global-for-all-devices, set-only-at-init, read-only module
1832 * parameteters like 'max_loop' and 'max_part' make things needlessly
1833 * complicated, are too static, inflexible and may surprise
1834 * userspace tools. Parameters like this in general should be avoided.
1836 if (!part_shift)
1837 disk->flags |= GENHD_FL_NO_PART_SCAN;
1838 disk->flags |= GENHD_FL_EXT_DEVT;
1839 mutex_init(&lo->lo_ctl_mutex);
1840 atomic_set(&lo->lo_refcnt, 0);
1841 lo->lo_number = i;
1842 spin_lock_init(&lo->lo_lock);
1843 disk->major = LOOP_MAJOR;
1844 disk->first_minor = i << part_shift;
1845 disk->fops = &lo_fops;
1846 disk->private_data = lo;
1847 disk->queue = lo->lo_queue;
1848 sprintf(disk->disk_name, "loop%d", i);
1849 add_disk(disk);
1850 *l = lo;
1851 return lo->lo_number;
1853 out_free_queue:
1854 blk_cleanup_queue(lo->lo_queue);
1855 out_cleanup_tags:
1856 blk_mq_free_tag_set(&lo->tag_set);
1857 out_free_idr:
1858 idr_remove(&loop_index_idr, i);
1859 out_free_dev:
1860 kfree(lo);
1861 out:
1862 return err;
1865 static void loop_remove(struct loop_device *lo)
1867 blk_cleanup_queue(lo->lo_queue);
1868 del_gendisk(lo->lo_disk);
1869 blk_mq_free_tag_set(&lo->tag_set);
1870 put_disk(lo->lo_disk);
1871 kfree(lo);
1874 static int find_free_cb(int id, void *ptr, void *data)
1876 struct loop_device *lo = ptr;
1877 struct loop_device **l = data;
1879 if (lo->lo_state == Lo_unbound) {
1880 *l = lo;
1881 return 1;
1883 return 0;
1886 static int loop_lookup(struct loop_device **l, int i)
1888 struct loop_device *lo;
1889 int ret = -ENODEV;
1891 if (i < 0) {
1892 int err;
1894 err = idr_for_each(&loop_index_idr, &find_free_cb, &lo);
1895 if (err == 1) {
1896 *l = lo;
1897 ret = lo->lo_number;
1899 goto out;
1902 /* lookup and return a specific i */
1903 lo = idr_find(&loop_index_idr, i);
1904 if (lo) {
1905 *l = lo;
1906 ret = lo->lo_number;
1908 out:
1909 return ret;
1912 static struct kobject *loop_probe(dev_t dev, int *part, void *data)
1914 struct loop_device *lo;
1915 struct kobject *kobj;
1916 int err;
1918 mutex_lock(&loop_index_mutex);
1919 err = loop_lookup(&lo, MINOR(dev) >> part_shift);
1920 if (err < 0)
1921 err = loop_add(&lo, MINOR(dev) >> part_shift);
1922 if (err < 0)
1923 kobj = NULL;
1924 else
1925 kobj = get_disk_and_module(lo->lo_disk);
1926 mutex_unlock(&loop_index_mutex);
1928 *part = 0;
1929 return kobj;
1932 static long loop_control_ioctl(struct file *file, unsigned int cmd,
1933 unsigned long parm)
1935 struct loop_device *lo;
1936 int ret = -ENOSYS;
1938 mutex_lock(&loop_index_mutex);
1939 switch (cmd) {
1940 case LOOP_CTL_ADD:
1941 ret = loop_lookup(&lo, parm);
1942 if (ret >= 0) {
1943 ret = -EEXIST;
1944 break;
1946 ret = loop_add(&lo, parm);
1947 break;
1948 case LOOP_CTL_REMOVE:
1949 ret = loop_lookup(&lo, parm);
1950 if (ret < 0)
1951 break;
1952 mutex_lock(&lo->lo_ctl_mutex);
1953 if (lo->lo_state != Lo_unbound) {
1954 ret = -EBUSY;
1955 mutex_unlock(&lo->lo_ctl_mutex);
1956 break;
1958 if (atomic_read(&lo->lo_refcnt) > 0) {
1959 ret = -EBUSY;
1960 mutex_unlock(&lo->lo_ctl_mutex);
1961 break;
1963 lo->lo_disk->private_data = NULL;
1964 mutex_unlock(&lo->lo_ctl_mutex);
1965 idr_remove(&loop_index_idr, lo->lo_number);
1966 loop_remove(lo);
1967 break;
1968 case LOOP_CTL_GET_FREE:
1969 ret = loop_lookup(&lo, -1);
1970 if (ret >= 0)
1971 break;
1972 ret = loop_add(&lo, -1);
1974 mutex_unlock(&loop_index_mutex);
1976 return ret;
1979 static const struct file_operations loop_ctl_fops = {
1980 .open = nonseekable_open,
1981 .unlocked_ioctl = loop_control_ioctl,
1982 .compat_ioctl = loop_control_ioctl,
1983 .owner = THIS_MODULE,
1984 .llseek = noop_llseek,
1987 static struct miscdevice loop_misc = {
1988 .minor = LOOP_CTRL_MINOR,
1989 .name = "loop-control",
1990 .fops = &loop_ctl_fops,
1993 MODULE_ALIAS_MISCDEV(LOOP_CTRL_MINOR);
1994 MODULE_ALIAS("devname:loop-control");
1996 static int __init loop_init(void)
1998 int i, nr;
1999 unsigned long range;
2000 struct loop_device *lo;
2001 int err;
2003 part_shift = 0;
2004 if (max_part > 0) {
2005 part_shift = fls(max_part);
2008 * Adjust max_part according to part_shift as it is exported
2009 * to user space so that user can decide correct minor number
2010 * if [s]he want to create more devices.
2012 * Note that -1 is required because partition 0 is reserved
2013 * for the whole disk.
2015 max_part = (1UL << part_shift) - 1;
2018 if ((1UL << part_shift) > DISK_MAX_PARTS) {
2019 err = -EINVAL;
2020 goto err_out;
2023 if (max_loop > 1UL << (MINORBITS - part_shift)) {
2024 err = -EINVAL;
2025 goto err_out;
2029 * If max_loop is specified, create that many devices upfront.
2030 * This also becomes a hard limit. If max_loop is not specified,
2031 * create CONFIG_BLK_DEV_LOOP_MIN_COUNT loop devices at module
2032 * init time. Loop devices can be requested on-demand with the
2033 * /dev/loop-control interface, or be instantiated by accessing
2034 * a 'dead' device node.
2036 if (max_loop) {
2037 nr = max_loop;
2038 range = max_loop << part_shift;
2039 } else {
2040 nr = CONFIG_BLK_DEV_LOOP_MIN_COUNT;
2041 range = 1UL << MINORBITS;
2044 err = misc_register(&loop_misc);
2045 if (err < 0)
2046 goto err_out;
2049 if (register_blkdev(LOOP_MAJOR, "loop")) {
2050 err = -EIO;
2051 goto misc_out;
2054 blk_register_region(MKDEV(LOOP_MAJOR, 0), range,
2055 THIS_MODULE, loop_probe, NULL, NULL);
2057 /* pre-create number of devices given by config or max_loop */
2058 mutex_lock(&loop_index_mutex);
2059 for (i = 0; i < nr; i++)
2060 loop_add(&lo, i);
2061 mutex_unlock(&loop_index_mutex);
2063 printk(KERN_INFO "loop: module loaded\n");
2064 return 0;
2066 misc_out:
2067 misc_deregister(&loop_misc);
2068 err_out:
2069 return err;
2072 static int loop_exit_cb(int id, void *ptr, void *data)
2074 struct loop_device *lo = ptr;
2076 loop_remove(lo);
2077 return 0;
2080 static void __exit loop_exit(void)
2082 unsigned long range;
2084 range = max_loop ? max_loop << part_shift : 1UL << MINORBITS;
2086 idr_for_each(&loop_index_idr, &loop_exit_cb, NULL);
2087 idr_destroy(&loop_index_idr);
2089 blk_unregister_region(MKDEV(LOOP_MAJOR, 0), range);
2090 unregister_blkdev(LOOP_MAJOR, "loop");
2092 misc_deregister(&loop_misc);
2095 module_init(loop_init);
2096 module_exit(loop_exit);
2098 #ifndef MODULE
2099 static int __init max_loop_setup(char *str)
2101 max_loop = simple_strtol(str, NULL, 0);
2102 return 1;
2105 __setup("max_loop=", max_loop_setup);
2106 #endif