2 * random.c -- A strong random number generator
4 * Copyright (C) 2017 Jason A. Donenfeld <Jason@zx2c4.com>. All
7 * Copyright Matt Mackall <mpm@selenic.com>, 2003, 2004, 2005
9 * Copyright Theodore Ts'o, 1994, 1995, 1996, 1997, 1998, 1999. All
12 * Redistribution and use in source and binary forms, with or without
13 * modification, are permitted provided that the following conditions
15 * 1. Redistributions of source code must retain the above copyright
16 * notice, and the entire permission notice in its entirety,
17 * including the disclaimer of warranties.
18 * 2. Redistributions in binary form must reproduce the above copyright
19 * notice, this list of conditions and the following disclaimer in the
20 * documentation and/or other materials provided with the distribution.
21 * 3. The name of the author may not be used to endorse or promote
22 * products derived from this software without specific prior
25 * ALTERNATIVELY, this product may be distributed under the terms of
26 * the GNU General Public License, in which case the provisions of the GPL are
27 * required INSTEAD OF the above restrictions. (This clause is
28 * necessary due to a potential bad interaction between the GPL and
29 * the restrictions contained in a BSD-style copyright.)
31 * THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED
32 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
33 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE, ALL OF
34 * WHICH ARE HEREBY DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE
35 * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
36 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT
37 * OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
38 * BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
39 * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
40 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
41 * USE OF THIS SOFTWARE, EVEN IF NOT ADVISED OF THE POSSIBILITY OF SUCH
46 * (now, with legal B.S. out of the way.....)
48 * This routine gathers environmental noise from device drivers, etc.,
49 * and returns good random numbers, suitable for cryptographic use.
50 * Besides the obvious cryptographic uses, these numbers are also good
51 * for seeding TCP sequence numbers, and other places where it is
52 * desirable to have numbers which are not only random, but hard to
53 * predict by an attacker.
58 * Computers are very predictable devices. Hence it is extremely hard
59 * to produce truly random numbers on a computer --- as opposed to
60 * pseudo-random numbers, which can easily generated by using a
61 * algorithm. Unfortunately, it is very easy for attackers to guess
62 * the sequence of pseudo-random number generators, and for some
63 * applications this is not acceptable. So instead, we must try to
64 * gather "environmental noise" from the computer's environment, which
65 * must be hard for outside attackers to observe, and use that to
66 * generate random numbers. In a Unix environment, this is best done
67 * from inside the kernel.
69 * Sources of randomness from the environment include inter-keyboard
70 * timings, inter-interrupt timings from some interrupts, and other
71 * events which are both (a) non-deterministic and (b) hard for an
72 * outside observer to measure. Randomness from these sources are
73 * added to an "entropy pool", which is mixed using a CRC-like function.
74 * This is not cryptographically strong, but it is adequate assuming
75 * the randomness is not chosen maliciously, and it is fast enough that
76 * the overhead of doing it on every interrupt is very reasonable.
77 * As random bytes are mixed into the entropy pool, the routines keep
78 * an *estimate* of how many bits of randomness have been stored into
79 * the random number generator's internal state.
81 * When random bytes are desired, they are obtained by taking the SHA
82 * hash of the contents of the "entropy pool". The SHA hash avoids
83 * exposing the internal state of the entropy pool. It is believed to
84 * be computationally infeasible to derive any useful information
85 * about the input of SHA from its output. Even if it is possible to
86 * analyze SHA in some clever way, as long as the amount of data
87 * returned from the generator is less than the inherent entropy in
88 * the pool, the output data is totally unpredictable. For this
89 * reason, the routine decreases its internal estimate of how many
90 * bits of "true randomness" are contained in the entropy pool as it
91 * outputs random numbers.
93 * If this estimate goes to zero, the routine can still generate
94 * random numbers; however, an attacker may (at least in theory) be
95 * able to infer the future output of the generator from prior
96 * outputs. This requires successful cryptanalysis of SHA, which is
97 * not believed to be feasible, but there is a remote possibility.
98 * Nonetheless, these numbers should be useful for the vast majority
101 * Exported interfaces ---- output
102 * ===============================
104 * There are three exported interfaces; the first is one designed to
105 * be used from within the kernel:
107 * void get_random_bytes(void *buf, int nbytes);
109 * This interface will return the requested number of random bytes,
110 * and place it in the requested buffer.
112 * The two other interfaces are two character devices /dev/random and
113 * /dev/urandom. /dev/random is suitable for use when very high
114 * quality randomness is desired (for example, for key generation or
115 * one-time pads), as it will only return a maximum of the number of
116 * bits of randomness (as estimated by the random number generator)
117 * contained in the entropy pool.
119 * The /dev/urandom device does not have this limit, and will return
120 * as many bytes as are requested. As more and more random bytes are
121 * requested without giving time for the entropy pool to recharge,
122 * this will result in random numbers that are merely cryptographically
123 * strong. For many applications, however, this is acceptable.
125 * Exported interfaces ---- input
126 * ==============================
128 * The current exported interfaces for gathering environmental noise
129 * from the devices are:
131 * void add_device_randomness(const void *buf, unsigned int size);
132 * void add_input_randomness(unsigned int type, unsigned int code,
133 * unsigned int value);
134 * void add_interrupt_randomness(int irq, int irq_flags);
135 * void add_disk_randomness(struct gendisk *disk);
137 * add_device_randomness() is for adding data to the random pool that
138 * is likely to differ between two devices (or possibly even per boot).
139 * This would be things like MAC addresses or serial numbers, or the
140 * read-out of the RTC. This does *not* add any actual entropy to the
141 * pool, but it initializes the pool to different values for devices
142 * that might otherwise be identical and have very little entropy
143 * available to them (particularly common in the embedded world).
145 * add_input_randomness() uses the input layer interrupt timing, as well as
146 * the event type information from the hardware.
148 * add_interrupt_randomness() uses the interrupt timing as random
149 * inputs to the entropy pool. Using the cycle counters and the irq source
150 * as inputs, it feeds the randomness roughly once a second.
152 * add_disk_randomness() uses what amounts to the seek time of block
153 * layer request events, on a per-disk_devt basis, as input to the
154 * entropy pool. Note that high-speed solid state drives with very low
155 * seek times do not make for good sources of entropy, as their seek
156 * times are usually fairly consistent.
158 * All of these routines try to estimate how many bits of randomness a
159 * particular randomness source. They do this by keeping track of the
160 * first and second order deltas of the event timings.
162 * Ensuring unpredictability at system startup
163 * ============================================
165 * When any operating system starts up, it will go through a sequence
166 * of actions that are fairly predictable by an adversary, especially
167 * if the start-up does not involve interaction with a human operator.
168 * This reduces the actual number of bits of unpredictability in the
169 * entropy pool below the value in entropy_count. In order to
170 * counteract this effect, it helps to carry information in the
171 * entropy pool across shut-downs and start-ups. To do this, put the
172 * following lines an appropriate script which is run during the boot
175 * echo "Initializing random number generator..."
176 * random_seed=/var/run/random-seed
177 * # Carry a random seed from start-up to start-up
178 * # Load and then save the whole entropy pool
179 * if [ -f $random_seed ]; then
180 * cat $random_seed >/dev/urandom
184 * chmod 600 $random_seed
185 * dd if=/dev/urandom of=$random_seed count=1 bs=512
187 * and the following lines in an appropriate script which is run as
188 * the system is shutdown:
190 * # Carry a random seed from shut-down to start-up
191 * # Save the whole entropy pool
192 * echo "Saving random seed..."
193 * random_seed=/var/run/random-seed
195 * chmod 600 $random_seed
196 * dd if=/dev/urandom of=$random_seed count=1 bs=512
198 * For example, on most modern systems using the System V init
199 * scripts, such code fragments would be found in
200 * /etc/rc.d/init.d/random. On older Linux systems, the correct script
201 * location might be in /etc/rcb.d/rc.local or /etc/rc.d/rc.0.
203 * Effectively, these commands cause the contents of the entropy pool
204 * to be saved at shut-down time and reloaded into the entropy pool at
205 * start-up. (The 'dd' in the addition to the bootup script is to
206 * make sure that /etc/random-seed is different for every start-up,
207 * even if the system crashes without executing rc.0.) Even with
208 * complete knowledge of the start-up activities, predicting the state
209 * of the entropy pool requires knowledge of the previous history of
212 * Configuring the /dev/random driver under Linux
213 * ==============================================
215 * The /dev/random driver under Linux uses minor numbers 8 and 9 of
216 * the /dev/mem major number (#1). So if your system does not have
217 * /dev/random and /dev/urandom created already, they can be created
218 * by using the commands:
220 * mknod /dev/random c 1 8
221 * mknod /dev/urandom c 1 9
226 * Ideas for constructing this random number generator were derived
227 * from Pretty Good Privacy's random number generator, and from private
228 * discussions with Phil Karn. Colin Plumb provided a faster random
229 * number generator, which speed up the mixing function of the entropy
230 * pool, taken from PGPfone. Dale Worley has also contributed many
231 * useful ideas and suggestions to improve this driver.
233 * Any flaws in the design are solely my responsibility, and should
234 * not be attributed to the Phil, Colin, or any of authors of PGP.
236 * Further background information on this topic may be obtained from
237 * RFC 1750, "Randomness Recommendations for Security", by Donald
238 * Eastlake, Steve Crocker, and Jeff Schiller.
241 #include <linux/utsname.h>
242 #include <linux/module.h>
243 #include <linux/kernel.h>
244 #include <linux/major.h>
245 #include <linux/string.h>
246 #include <linux/fcntl.h>
247 #include <linux/slab.h>
248 #include <linux/random.h>
249 #include <linux/poll.h>
250 #include <linux/init.h>
251 #include <linux/fs.h>
252 #include <linux/genhd.h>
253 #include <linux/interrupt.h>
254 #include <linux/mm.h>
255 #include <linux/nodemask.h>
256 #include <linux/spinlock.h>
257 #include <linux/kthread.h>
258 #include <linux/percpu.h>
259 #include <linux/cryptohash.h>
260 #include <linux/fips.h>
261 #include <linux/ptrace.h>
262 #include <linux/workqueue.h>
263 #include <linux/irq.h>
264 #include <linux/syscalls.h>
265 #include <linux/completion.h>
266 #include <linux/uuid.h>
267 #include <crypto/chacha20.h>
269 #include <asm/processor.h>
270 #include <linux/uaccess.h>
272 #include <asm/irq_regs.h>
275 #define CREATE_TRACE_POINTS
276 #include <trace/events/random.h>
278 /* #define ADD_INTERRUPT_BENCH */
281 * Configuration information
283 #define INPUT_POOL_SHIFT 12
284 #define INPUT_POOL_WORDS (1 << (INPUT_POOL_SHIFT-5))
285 #define OUTPUT_POOL_SHIFT 10
286 #define OUTPUT_POOL_WORDS (1 << (OUTPUT_POOL_SHIFT-5))
287 #define SEC_XFER_SIZE 512
288 #define EXTRACT_SIZE 10
291 #define LONGS(x) (((x) + sizeof(unsigned long) - 1)/sizeof(unsigned long))
294 * To allow fractional bits to be tracked, the entropy_count field is
295 * denominated in units of 1/8th bits.
297 * 2*(ENTROPY_SHIFT + log2(poolbits)) must <= 31, or the multiply in
298 * credit_entropy_bits() needs to be 64 bits wide.
300 #define ENTROPY_SHIFT 3
301 #define ENTROPY_BITS(r) ((r)->entropy_count >> ENTROPY_SHIFT)
304 * The minimum number of bits of entropy before we wake up a read on
305 * /dev/random. Should be enough to do a significant reseed.
307 static int random_read_wakeup_bits
= 64;
310 * If the entropy count falls under this number of bits, then we
311 * should wake up processes which are selecting or polling on write
312 * access to /dev/random.
314 static int random_write_wakeup_bits
= 28 * OUTPUT_POOL_WORDS
;
317 * Originally, we used a primitive polynomial of degree .poolwords
318 * over GF(2). The taps for various sizes are defined below. They
319 * were chosen to be evenly spaced except for the last tap, which is 1
320 * to get the twisting happening as fast as possible.
322 * For the purposes of better mixing, we use the CRC-32 polynomial as
323 * well to make a (modified) twisted Generalized Feedback Shift
324 * Register. (See M. Matsumoto & Y. Kurita, 1992. Twisted GFSR
325 * generators. ACM Transactions on Modeling and Computer Simulation
326 * 2(3):179-194. Also see M. Matsumoto & Y. Kurita, 1994. Twisted
327 * GFSR generators II. ACM Transactions on Modeling and Computer
328 * Simulation 4:254-266)
330 * Thanks to Colin Plumb for suggesting this.
332 * The mixing operation is much less sensitive than the output hash,
333 * where we use SHA-1. All that we want of mixing operation is that
334 * it be a good non-cryptographic hash; i.e. it not produce collisions
335 * when fed "random" data of the sort we expect to see. As long as
336 * the pool state differs for different inputs, we have preserved the
337 * input entropy and done a good job. The fact that an intelligent
338 * attacker can construct inputs that will produce controlled
339 * alterations to the pool's state is not important because we don't
340 * consider such inputs to contribute any randomness. The only
341 * property we need with respect to them is that the attacker can't
342 * increase his/her knowledge of the pool's state. Since all
343 * additions are reversible (knowing the final state and the input,
344 * you can reconstruct the initial state), if an attacker has any
345 * uncertainty about the initial state, he/she can only shuffle that
346 * uncertainty about, but never cause any collisions (which would
347 * decrease the uncertainty).
349 * Our mixing functions were analyzed by Lacharme, Roeck, Strubel, and
350 * Videau in their paper, "The Linux Pseudorandom Number Generator
351 * Revisited" (see: http://eprint.iacr.org/2012/251.pdf). In their
352 * paper, they point out that we are not using a true Twisted GFSR,
353 * since Matsumoto & Kurita used a trinomial feedback polynomial (that
354 * is, with only three taps, instead of the six that we are using).
355 * As a result, the resulting polynomial is neither primitive nor
356 * irreducible, and hence does not have a maximal period over
357 * GF(2**32). They suggest a slight change to the generator
358 * polynomial which improves the resulting TGFSR polynomial to be
359 * irreducible, which we have made here.
361 static struct poolinfo
{
362 int poolbitshift
, poolwords
, poolbytes
, poolbits
, poolfracbits
;
363 #define S(x) ilog2(x)+5, (x), (x)*4, (x)*32, (x) << (ENTROPY_SHIFT+5)
364 int tap1
, tap2
, tap3
, tap4
, tap5
;
365 } poolinfo_table
[] = {
366 /* was: x^128 + x^103 + x^76 + x^51 +x^25 + x + 1 */
367 /* x^128 + x^104 + x^76 + x^51 +x^25 + x + 1 */
368 { S(128), 104, 76, 51, 25, 1 },
369 /* was: x^32 + x^26 + x^20 + x^14 + x^7 + x + 1 */
370 /* x^32 + x^26 + x^19 + x^14 + x^7 + x + 1 */
371 { S(32), 26, 19, 14, 7, 1 },
373 /* x^2048 + x^1638 + x^1231 + x^819 + x^411 + x + 1 -- 115 */
374 { S(2048), 1638, 1231, 819, 411, 1 },
376 /* x^1024 + x^817 + x^615 + x^412 + x^204 + x + 1 -- 290 */
377 { S(1024), 817, 615, 412, 204, 1 },
379 /* x^1024 + x^819 + x^616 + x^410 + x^207 + x^2 + 1 -- 115 */
380 { S(1024), 819, 616, 410, 207, 2 },
382 /* x^512 + x^411 + x^308 + x^208 + x^104 + x + 1 -- 225 */
383 { S(512), 411, 308, 208, 104, 1 },
385 /* x^512 + x^409 + x^307 + x^206 + x^102 + x^2 + 1 -- 95 */
386 { S(512), 409, 307, 206, 102, 2 },
387 /* x^512 + x^409 + x^309 + x^205 + x^103 + x^2 + 1 -- 95 */
388 { S(512), 409, 309, 205, 103, 2 },
390 /* x^256 + x^205 + x^155 + x^101 + x^52 + x + 1 -- 125 */
391 { S(256), 205, 155, 101, 52, 1 },
393 /* x^128 + x^103 + x^78 + x^51 + x^27 + x^2 + 1 -- 70 */
394 { S(128), 103, 78, 51, 27, 2 },
396 /* x^64 + x^52 + x^39 + x^26 + x^14 + x + 1 -- 15 */
397 { S(64), 52, 39, 26, 14, 1 },
402 * Static global variables
404 static DECLARE_WAIT_QUEUE_HEAD(random_read_wait
);
405 static DECLARE_WAIT_QUEUE_HEAD(random_write_wait
);
406 static struct fasync_struct
*fasync
;
408 static DEFINE_SPINLOCK(random_ready_list_lock
);
409 static LIST_HEAD(random_ready_list
);
413 unsigned long init_time
;
417 struct crng_state primary_crng
= {
418 .lock
= __SPIN_LOCK_UNLOCKED(primary_crng
.lock
),
422 * crng_init = 0 --> Uninitialized
424 * 2 --> Initialized from input_pool
426 * crng_init is protected by primary_crng->lock, and only increases
427 * its value (from 0->1->2).
429 static int crng_init
= 0;
430 #define crng_ready() (likely(crng_init > 0))
431 static int crng_init_cnt
= 0;
432 #define CRNG_INIT_CNT_THRESH (2*CHACHA20_KEY_SIZE)
433 static void _extract_crng(struct crng_state
*crng
,
434 __u32 out
[CHACHA20_BLOCK_WORDS
]);
435 static void _crng_backtrack_protect(struct crng_state
*crng
,
436 __u32 tmp
[CHACHA20_BLOCK_WORDS
], int used
);
437 static void process_random_ready_list(void);
438 static void _get_random_bytes(void *buf
, int nbytes
);
440 /**********************************************************************
442 * OS independent entropy store. Here are the functions which handle
443 * storing entropy in an entropy pool.
445 **********************************************************************/
447 struct entropy_store
;
448 struct entropy_store
{
449 /* read-only data: */
450 const struct poolinfo
*poolinfo
;
453 struct entropy_store
*pull
;
454 struct work_struct push_work
;
456 /* read-write data: */
457 unsigned long last_pulled
;
459 unsigned short add_ptr
;
460 unsigned short input_rotate
;
463 unsigned int initialized
:1;
464 unsigned int last_data_init
:1;
465 __u8 last_data
[EXTRACT_SIZE
];
468 static ssize_t
extract_entropy(struct entropy_store
*r
, void *buf
,
469 size_t nbytes
, int min
, int rsvd
);
470 static ssize_t
_extract_entropy(struct entropy_store
*r
, void *buf
,
471 size_t nbytes
, int fips
);
473 static void crng_reseed(struct crng_state
*crng
, struct entropy_store
*r
);
474 static void push_to_pool(struct work_struct
*work
);
475 static __u32 input_pool_data
[INPUT_POOL_WORDS
] __latent_entropy
;
476 static __u32 blocking_pool_data
[OUTPUT_POOL_WORDS
] __latent_entropy
;
478 static struct entropy_store input_pool
= {
479 .poolinfo
= &poolinfo_table
[0],
481 .lock
= __SPIN_LOCK_UNLOCKED(input_pool
.lock
),
482 .pool
= input_pool_data
485 static struct entropy_store blocking_pool
= {
486 .poolinfo
= &poolinfo_table
[1],
489 .lock
= __SPIN_LOCK_UNLOCKED(blocking_pool
.lock
),
490 .pool
= blocking_pool_data
,
491 .push_work
= __WORK_INITIALIZER(blocking_pool
.push_work
,
495 static __u32
const twist_table
[8] = {
496 0x00000000, 0x3b6e20c8, 0x76dc4190, 0x4db26158,
497 0xedb88320, 0xd6d6a3e8, 0x9b64c2b0, 0xa00ae278 };
500 * This function adds bytes into the entropy "pool". It does not
501 * update the entropy estimate. The caller should call
502 * credit_entropy_bits if this is appropriate.
504 * The pool is stirred with a primitive polynomial of the appropriate
505 * degree, and then twisted. We twist by three bits at a time because
506 * it's cheap to do so and helps slightly in the expected case where
507 * the entropy is concentrated in the low-order bits.
509 static void _mix_pool_bytes(struct entropy_store
*r
, const void *in
,
512 unsigned long i
, tap1
, tap2
, tap3
, tap4
, tap5
;
514 int wordmask
= r
->poolinfo
->poolwords
- 1;
515 const char *bytes
= in
;
518 tap1
= r
->poolinfo
->tap1
;
519 tap2
= r
->poolinfo
->tap2
;
520 tap3
= r
->poolinfo
->tap3
;
521 tap4
= r
->poolinfo
->tap4
;
522 tap5
= r
->poolinfo
->tap5
;
524 input_rotate
= r
->input_rotate
;
527 /* mix one byte at a time to simplify size handling and churn faster */
529 w
= rol32(*bytes
++, input_rotate
);
530 i
= (i
- 1) & wordmask
;
532 /* XOR in the various taps */
534 w
^= r
->pool
[(i
+ tap1
) & wordmask
];
535 w
^= r
->pool
[(i
+ tap2
) & wordmask
];
536 w
^= r
->pool
[(i
+ tap3
) & wordmask
];
537 w
^= r
->pool
[(i
+ tap4
) & wordmask
];
538 w
^= r
->pool
[(i
+ tap5
) & wordmask
];
540 /* Mix the result back in with a twist */
541 r
->pool
[i
] = (w
>> 3) ^ twist_table
[w
& 7];
544 * Normally, we add 7 bits of rotation to the pool.
545 * At the beginning of the pool, add an extra 7 bits
546 * rotation, so that successive passes spread the
547 * input bits across the pool evenly.
549 input_rotate
= (input_rotate
+ (i
? 7 : 14)) & 31;
552 r
->input_rotate
= input_rotate
;
556 static void __mix_pool_bytes(struct entropy_store
*r
, const void *in
,
559 trace_mix_pool_bytes_nolock(r
->name
, nbytes
, _RET_IP_
);
560 _mix_pool_bytes(r
, in
, nbytes
);
563 static void mix_pool_bytes(struct entropy_store
*r
, const void *in
,
568 trace_mix_pool_bytes(r
->name
, nbytes
, _RET_IP_
);
569 spin_lock_irqsave(&r
->lock
, flags
);
570 _mix_pool_bytes(r
, in
, nbytes
);
571 spin_unlock_irqrestore(&r
->lock
, flags
);
577 unsigned short reg_idx
;
582 * This is a fast mixing routine used by the interrupt randomness
583 * collector. It's hardcoded for an 128 bit pool and assumes that any
584 * locks that might be needed are taken by the caller.
586 static void fast_mix(struct fast_pool
*f
)
588 __u32 a
= f
->pool
[0], b
= f
->pool
[1];
589 __u32 c
= f
->pool
[2], d
= f
->pool
[3];
592 b
= rol32(b
, 6); d
= rol32(d
, 27);
596 b
= rol32(b
, 16); d
= rol32(d
, 14);
600 b
= rol32(b
, 6); d
= rol32(d
, 27);
604 b
= rol32(b
, 16); d
= rol32(d
, 14);
607 f
->pool
[0] = a
; f
->pool
[1] = b
;
608 f
->pool
[2] = c
; f
->pool
[3] = d
;
612 static void process_random_ready_list(void)
615 struct random_ready_callback
*rdy
, *tmp
;
617 spin_lock_irqsave(&random_ready_list_lock
, flags
);
618 list_for_each_entry_safe(rdy
, tmp
, &random_ready_list
, list
) {
619 struct module
*owner
= rdy
->owner
;
621 list_del_init(&rdy
->list
);
625 spin_unlock_irqrestore(&random_ready_list_lock
, flags
);
629 * Credit (or debit) the entropy store with n bits of entropy.
630 * Use credit_entropy_bits_safe() if the value comes from userspace
631 * or otherwise should be checked for extreme values.
633 static void credit_entropy_bits(struct entropy_store
*r
, int nbits
)
635 int entropy_count
, orig
;
636 const int pool_size
= r
->poolinfo
->poolfracbits
;
637 int nfrac
= nbits
<< ENTROPY_SHIFT
;
643 entropy_count
= orig
= READ_ONCE(r
->entropy_count
);
646 entropy_count
+= nfrac
;
649 * Credit: we have to account for the possibility of
650 * overwriting already present entropy. Even in the
651 * ideal case of pure Shannon entropy, new contributions
652 * approach the full value asymptotically:
654 * entropy <- entropy + (pool_size - entropy) *
655 * (1 - exp(-add_entropy/pool_size))
657 * For add_entropy <= pool_size/2 then
658 * (1 - exp(-add_entropy/pool_size)) >=
659 * (add_entropy/pool_size)*0.7869...
660 * so we can approximate the exponential with
661 * 3/4*add_entropy/pool_size and still be on the
662 * safe side by adding at most pool_size/2 at a time.
664 * The use of pool_size-2 in the while statement is to
665 * prevent rounding artifacts from making the loop
666 * arbitrarily long; this limits the loop to log2(pool_size)*2
667 * turns no matter how large nbits is.
670 const int s
= r
->poolinfo
->poolbitshift
+ ENTROPY_SHIFT
+ 2;
671 /* The +2 corresponds to the /4 in the denominator */
674 unsigned int anfrac
= min(pnfrac
, pool_size
/2);
676 ((pool_size
- entropy_count
)*anfrac
*3) >> s
;
678 entropy_count
+= add
;
680 } while (unlikely(entropy_count
< pool_size
-2 && pnfrac
));
683 if (unlikely(entropy_count
< 0)) {
684 pr_warn("random: negative entropy/overflow: pool %s count %d\n",
685 r
->name
, entropy_count
);
688 } else if (entropy_count
> pool_size
)
689 entropy_count
= pool_size
;
690 if (cmpxchg(&r
->entropy_count
, orig
, entropy_count
) != orig
)
693 r
->entropy_total
+= nbits
;
694 if (!r
->initialized
&& r
->entropy_total
> 128) {
696 r
->entropy_total
= 0;
699 trace_credit_entropy_bits(r
->name
, nbits
,
700 entropy_count
>> ENTROPY_SHIFT
,
701 r
->entropy_total
, _RET_IP_
);
703 if (r
== &input_pool
) {
704 int entropy_bits
= entropy_count
>> ENTROPY_SHIFT
;
706 if (crng_init
< 2 && entropy_bits
>= 128) {
707 crng_reseed(&primary_crng
, r
);
708 entropy_bits
= r
->entropy_count
>> ENTROPY_SHIFT
;
711 /* should we wake readers? */
712 if (entropy_bits
>= random_read_wakeup_bits
) {
713 wake_up_interruptible(&random_read_wait
);
714 kill_fasync(&fasync
, SIGIO
, POLL_IN
);
716 /* If the input pool is getting full, send some
717 * entropy to the blocking pool until it is 75% full.
719 if (entropy_bits
> random_write_wakeup_bits
&&
721 r
->entropy_total
>= 2*random_read_wakeup_bits
) {
722 struct entropy_store
*other
= &blocking_pool
;
724 if (other
->entropy_count
<=
725 3 * other
->poolinfo
->poolfracbits
/ 4) {
726 schedule_work(&other
->push_work
);
727 r
->entropy_total
= 0;
733 static int credit_entropy_bits_safe(struct entropy_store
*r
, int nbits
)
735 const int nbits_max
= (int)(~0U >> (ENTROPY_SHIFT
+ 1));
740 /* Cap the value to avoid overflows */
741 nbits
= min(nbits
, nbits_max
);
743 credit_entropy_bits(r
, nbits
);
747 /*********************************************************************
749 * CRNG using CHACHA20
751 *********************************************************************/
753 #define CRNG_RESEED_INTERVAL (300*HZ)
755 static DECLARE_WAIT_QUEUE_HEAD(crng_init_wait
);
759 * Hack to deal with crazy userspace progams when they are all trying
760 * to access /dev/urandom in parallel. The programs are almost
761 * certainly doing something terribly wrong, but we'll work around
762 * their brain damage.
764 static struct crng_state
**crng_node_pool __read_mostly
;
767 static void invalidate_batched_entropy(void);
769 static void crng_initialize(struct crng_state
*crng
)
774 memcpy(&crng
->state
[0], "expand 32-byte k", 16);
775 if (crng
== &primary_crng
)
776 _extract_entropy(&input_pool
, &crng
->state
[4],
777 sizeof(__u32
) * 12, 0);
779 _get_random_bytes(&crng
->state
[4], sizeof(__u32
) * 12);
780 for (i
= 4; i
< 16; i
++) {
781 if (!arch_get_random_seed_long(&rv
) &&
782 !arch_get_random_long(&rv
))
783 rv
= random_get_entropy();
784 crng
->state
[i
] ^= rv
;
786 crng
->init_time
= jiffies
- CRNG_RESEED_INTERVAL
- 1;
789 static int crng_fast_load(const char *cp
, size_t len
)
794 if (!spin_trylock_irqsave(&primary_crng
.lock
, flags
))
797 spin_unlock_irqrestore(&primary_crng
.lock
, flags
);
800 p
= (unsigned char *) &primary_crng
.state
[4];
801 while (len
> 0 && crng_init_cnt
< CRNG_INIT_CNT_THRESH
) {
802 p
[crng_init_cnt
% CHACHA20_KEY_SIZE
] ^= *cp
;
803 cp
++; crng_init_cnt
++; len
--;
805 spin_unlock_irqrestore(&primary_crng
.lock
, flags
);
806 if (crng_init_cnt
>= CRNG_INIT_CNT_THRESH
) {
807 invalidate_batched_entropy();
809 wake_up_interruptible(&crng_init_wait
);
810 pr_notice("random: fast init done\n");
815 static void crng_reseed(struct crng_state
*crng
, struct entropy_store
*r
)
820 __u32 block
[CHACHA20_BLOCK_WORDS
];
825 num
= extract_entropy(r
, &buf
, 32, 16, 0);
829 _extract_crng(&primary_crng
, buf
.block
);
830 _crng_backtrack_protect(&primary_crng
, buf
.block
,
833 spin_lock_irqsave(&primary_crng
.lock
, flags
);
834 for (i
= 0; i
< 8; i
++) {
836 if (!arch_get_random_seed_long(&rv
) &&
837 !arch_get_random_long(&rv
))
838 rv
= random_get_entropy();
839 crng
->state
[i
+4] ^= buf
.key
[i
] ^ rv
;
841 memzero_explicit(&buf
, sizeof(buf
));
842 crng
->init_time
= jiffies
;
843 spin_unlock_irqrestore(&primary_crng
.lock
, flags
);
844 if (crng
== &primary_crng
&& crng_init
< 2) {
845 invalidate_batched_entropy();
847 process_random_ready_list();
848 wake_up_interruptible(&crng_init_wait
);
849 pr_notice("random: crng init done\n");
853 static void _extract_crng(struct crng_state
*crng
,
854 __u32 out
[CHACHA20_BLOCK_WORDS
])
856 unsigned long v
, flags
;
859 time_after(jiffies
, crng
->init_time
+ CRNG_RESEED_INTERVAL
))
860 crng_reseed(crng
, crng
== &primary_crng
? &input_pool
: NULL
);
861 spin_lock_irqsave(&crng
->lock
, flags
);
862 if (arch_get_random_long(&v
))
863 crng
->state
[14] ^= v
;
864 chacha20_block(&crng
->state
[0], out
);
865 if (crng
->state
[12] == 0)
867 spin_unlock_irqrestore(&crng
->lock
, flags
);
870 static void extract_crng(__u32 out
[CHACHA20_BLOCK_WORDS
])
872 struct crng_state
*crng
= NULL
;
876 crng
= crng_node_pool
[numa_node_id()];
879 crng
= &primary_crng
;
880 _extract_crng(crng
, out
);
884 * Use the leftover bytes from the CRNG block output (if there is
885 * enough) to mutate the CRNG key to provide backtracking protection.
887 static void _crng_backtrack_protect(struct crng_state
*crng
,
888 __u32 tmp
[CHACHA20_BLOCK_WORDS
], int used
)
894 used
= round_up(used
, sizeof(__u32
));
895 if (used
+ CHACHA20_KEY_SIZE
> CHACHA20_BLOCK_SIZE
) {
899 spin_lock_irqsave(&crng
->lock
, flags
);
900 s
= &tmp
[used
/ sizeof(__u32
)];
902 for (i
=0; i
< 8; i
++)
904 spin_unlock_irqrestore(&crng
->lock
, flags
);
907 static void crng_backtrack_protect(__u32 tmp
[CHACHA20_BLOCK_WORDS
], int used
)
909 struct crng_state
*crng
= NULL
;
913 crng
= crng_node_pool
[numa_node_id()];
916 crng
= &primary_crng
;
917 _crng_backtrack_protect(crng
, tmp
, used
);
920 static ssize_t
extract_crng_user(void __user
*buf
, size_t nbytes
)
922 ssize_t ret
= 0, i
= CHACHA20_BLOCK_SIZE
;
923 __u32 tmp
[CHACHA20_BLOCK_WORDS
];
924 int large_request
= (nbytes
> 256);
927 if (large_request
&& need_resched()) {
928 if (signal_pending(current
)) {
937 i
= min_t(int, nbytes
, CHACHA20_BLOCK_SIZE
);
938 if (copy_to_user(buf
, tmp
, i
)) {
947 crng_backtrack_protect(tmp
, i
);
949 /* Wipe data just written to memory */
950 memzero_explicit(tmp
, sizeof(tmp
));
956 /*********************************************************************
958 * Entropy input management
960 *********************************************************************/
962 /* There is one of these per entropy source */
963 struct timer_rand_state
{
965 long last_delta
, last_delta2
;
966 unsigned dont_count_entropy
:1;
969 #define INIT_TIMER_RAND_STATE { INITIAL_JIFFIES, };
972 * Add device- or boot-specific data to the input pool to help
975 * None of this adds any entropy; it is meant to avoid the problem of
976 * the entropy pool having similar initial state across largely
979 void add_device_randomness(const void *buf
, unsigned int size
)
981 unsigned long time
= random_get_entropy() ^ jiffies
;
985 crng_fast_load(buf
, size
);
989 trace_add_device_randomness(size
, _RET_IP_
);
990 spin_lock_irqsave(&input_pool
.lock
, flags
);
991 _mix_pool_bytes(&input_pool
, buf
, size
);
992 _mix_pool_bytes(&input_pool
, &time
, sizeof(time
));
993 spin_unlock_irqrestore(&input_pool
.lock
, flags
);
995 EXPORT_SYMBOL(add_device_randomness
);
997 static struct timer_rand_state input_timer_state
= INIT_TIMER_RAND_STATE
;
1000 * This function adds entropy to the entropy "pool" by using timing
1001 * delays. It uses the timer_rand_state structure to make an estimate
1002 * of how many bits of entropy this call has added to the pool.
1004 * The number "num" is also added to the pool - it should somehow describe
1005 * the type of event which just happened. This is currently 0-255 for
1006 * keyboard scan codes, and 256 upwards for interrupts.
1009 static void add_timer_randomness(struct timer_rand_state
*state
, unsigned num
)
1011 struct entropy_store
*r
;
1017 long delta
, delta2
, delta3
;
1021 sample
.jiffies
= jiffies
;
1022 sample
.cycles
= random_get_entropy();
1025 mix_pool_bytes(r
, &sample
, sizeof(sample
));
1028 * Calculate number of bits of randomness we probably added.
1029 * We take into account the first, second and third-order deltas
1030 * in order to make our estimate.
1033 if (!state
->dont_count_entropy
) {
1034 delta
= sample
.jiffies
- state
->last_time
;
1035 state
->last_time
= sample
.jiffies
;
1037 delta2
= delta
- state
->last_delta
;
1038 state
->last_delta
= delta
;
1040 delta3
= delta2
- state
->last_delta2
;
1041 state
->last_delta2
= delta2
;
1055 * delta is now minimum absolute delta.
1056 * Round down by 1 bit on general principles,
1057 * and limit entropy entimate to 12 bits.
1059 credit_entropy_bits(r
, min_t(int, fls(delta
>>1), 11));
1064 void add_input_randomness(unsigned int type
, unsigned int code
,
1067 static unsigned char last_value
;
1069 /* ignore autorepeat and the like */
1070 if (value
== last_value
)
1074 add_timer_randomness(&input_timer_state
,
1075 (type
<< 4) ^ code
^ (code
>> 4) ^ value
);
1076 trace_add_input_randomness(ENTROPY_BITS(&input_pool
));
1078 EXPORT_SYMBOL_GPL(add_input_randomness
);
1080 static DEFINE_PER_CPU(struct fast_pool
, irq_randomness
);
1082 #ifdef ADD_INTERRUPT_BENCH
1083 static unsigned long avg_cycles
, avg_deviation
;
1085 #define AVG_SHIFT 8 /* Exponential average factor k=1/256 */
1086 #define FIXED_1_2 (1 << (AVG_SHIFT-1))
1088 static void add_interrupt_bench(cycles_t start
)
1090 long delta
= random_get_entropy() - start
;
1092 /* Use a weighted moving average */
1093 delta
= delta
- ((avg_cycles
+ FIXED_1_2
) >> AVG_SHIFT
);
1094 avg_cycles
+= delta
;
1095 /* And average deviation */
1096 delta
= abs(delta
) - ((avg_deviation
+ FIXED_1_2
) >> AVG_SHIFT
);
1097 avg_deviation
+= delta
;
1100 #define add_interrupt_bench(x)
1103 static __u32
get_reg(struct fast_pool
*f
, struct pt_regs
*regs
)
1105 __u32
*ptr
= (__u32
*) regs
;
1110 idx
= READ_ONCE(f
->reg_idx
);
1111 if (idx
>= sizeof(struct pt_regs
) / sizeof(__u32
))
1114 WRITE_ONCE(f
->reg_idx
, idx
);
1118 void add_interrupt_randomness(int irq
, int irq_flags
)
1120 struct entropy_store
*r
;
1121 struct fast_pool
*fast_pool
= this_cpu_ptr(&irq_randomness
);
1122 struct pt_regs
*regs
= get_irq_regs();
1123 unsigned long now
= jiffies
;
1124 cycles_t cycles
= random_get_entropy();
1125 __u32 c_high
, j_high
;
1131 cycles
= get_reg(fast_pool
, regs
);
1132 c_high
= (sizeof(cycles
) > 4) ? cycles
>> 32 : 0;
1133 j_high
= (sizeof(now
) > 4) ? now
>> 32 : 0;
1134 fast_pool
->pool
[0] ^= cycles
^ j_high
^ irq
;
1135 fast_pool
->pool
[1] ^= now
^ c_high
;
1136 ip
= regs
? instruction_pointer(regs
) : _RET_IP_
;
1137 fast_pool
->pool
[2] ^= ip
;
1138 fast_pool
->pool
[3] ^= (sizeof(ip
) > 4) ? ip
>> 32 :
1139 get_reg(fast_pool
, regs
);
1141 fast_mix(fast_pool
);
1142 add_interrupt_bench(cycles
);
1144 if (!crng_ready()) {
1145 if ((fast_pool
->count
>= 64) &&
1146 crng_fast_load((char *) fast_pool
->pool
,
1147 sizeof(fast_pool
->pool
))) {
1148 fast_pool
->count
= 0;
1149 fast_pool
->last
= now
;
1154 if ((fast_pool
->count
< 64) &&
1155 !time_after(now
, fast_pool
->last
+ HZ
))
1159 if (!spin_trylock(&r
->lock
))
1162 fast_pool
->last
= now
;
1163 __mix_pool_bytes(r
, &fast_pool
->pool
, sizeof(fast_pool
->pool
));
1166 * If we have architectural seed generator, produce a seed and
1167 * add it to the pool. For the sake of paranoia don't let the
1168 * architectural seed generator dominate the input from the
1171 if (arch_get_random_seed_long(&seed
)) {
1172 __mix_pool_bytes(r
, &seed
, sizeof(seed
));
1175 spin_unlock(&r
->lock
);
1177 fast_pool
->count
= 0;
1179 /* award one bit for the contents of the fast pool */
1180 credit_entropy_bits(r
, credit
+ 1);
1182 EXPORT_SYMBOL_GPL(add_interrupt_randomness
);
1185 void add_disk_randomness(struct gendisk
*disk
)
1187 if (!disk
|| !disk
->random
)
1189 /* first major is 1, so we get >= 0x200 here */
1190 add_timer_randomness(disk
->random
, 0x100 + disk_devt(disk
));
1191 trace_add_disk_randomness(disk_devt(disk
), ENTROPY_BITS(&input_pool
));
1193 EXPORT_SYMBOL_GPL(add_disk_randomness
);
1196 /*********************************************************************
1198 * Entropy extraction routines
1200 *********************************************************************/
1203 * This utility inline function is responsible for transferring entropy
1204 * from the primary pool to the secondary extraction pool. We make
1205 * sure we pull enough for a 'catastrophic reseed'.
1207 static void _xfer_secondary_pool(struct entropy_store
*r
, size_t nbytes
);
1208 static void xfer_secondary_pool(struct entropy_store
*r
, size_t nbytes
)
1211 r
->entropy_count
>= (nbytes
<< (ENTROPY_SHIFT
+ 3)) ||
1212 r
->entropy_count
> r
->poolinfo
->poolfracbits
)
1215 _xfer_secondary_pool(r
, nbytes
);
1218 static void _xfer_secondary_pool(struct entropy_store
*r
, size_t nbytes
)
1220 __u32 tmp
[OUTPUT_POOL_WORDS
];
1224 /* pull at least as much as a wakeup */
1225 bytes
= max_t(int, bytes
, random_read_wakeup_bits
/ 8);
1226 /* but never more than the buffer size */
1227 bytes
= min_t(int, bytes
, sizeof(tmp
));
1229 trace_xfer_secondary_pool(r
->name
, bytes
* 8, nbytes
* 8,
1230 ENTROPY_BITS(r
), ENTROPY_BITS(r
->pull
));
1231 bytes
= extract_entropy(r
->pull
, tmp
, bytes
,
1232 random_read_wakeup_bits
/ 8, 0);
1233 mix_pool_bytes(r
, tmp
, bytes
);
1234 credit_entropy_bits(r
, bytes
*8);
1238 * Used as a workqueue function so that when the input pool is getting
1239 * full, we can "spill over" some entropy to the output pools. That
1240 * way the output pools can store some of the excess entropy instead
1241 * of letting it go to waste.
1243 static void push_to_pool(struct work_struct
*work
)
1245 struct entropy_store
*r
= container_of(work
, struct entropy_store
,
1248 _xfer_secondary_pool(r
, random_read_wakeup_bits
/8);
1249 trace_push_to_pool(r
->name
, r
->entropy_count
>> ENTROPY_SHIFT
,
1250 r
->pull
->entropy_count
>> ENTROPY_SHIFT
);
1254 * This function decides how many bytes to actually take from the
1255 * given pool, and also debits the entropy count accordingly.
1257 static size_t account(struct entropy_store
*r
, size_t nbytes
, int min
,
1260 int entropy_count
, orig
, have_bytes
;
1261 size_t ibytes
, nfrac
;
1263 BUG_ON(r
->entropy_count
> r
->poolinfo
->poolfracbits
);
1265 /* Can we pull enough? */
1267 entropy_count
= orig
= READ_ONCE(r
->entropy_count
);
1269 /* never pull more than available */
1270 have_bytes
= entropy_count
>> (ENTROPY_SHIFT
+ 3);
1272 if ((have_bytes
-= reserved
) < 0)
1274 ibytes
= min_t(size_t, ibytes
, have_bytes
);
1278 if (unlikely(entropy_count
< 0)) {
1279 pr_warn("random: negative entropy count: pool %s count %d\n",
1280 r
->name
, entropy_count
);
1284 nfrac
= ibytes
<< (ENTROPY_SHIFT
+ 3);
1285 if ((size_t) entropy_count
> nfrac
)
1286 entropy_count
-= nfrac
;
1290 if (cmpxchg(&r
->entropy_count
, orig
, entropy_count
) != orig
)
1293 trace_debit_entropy(r
->name
, 8 * ibytes
);
1295 (r
->entropy_count
>> ENTROPY_SHIFT
) < random_write_wakeup_bits
) {
1296 wake_up_interruptible(&random_write_wait
);
1297 kill_fasync(&fasync
, SIGIO
, POLL_OUT
);
1304 * This function does the actual extraction for extract_entropy and
1305 * extract_entropy_user.
1307 * Note: we assume that .poolwords is a multiple of 16 words.
1309 static void extract_buf(struct entropy_store
*r
, __u8
*out
)
1314 unsigned long l
[LONGS(20)];
1316 __u32 workspace
[SHA_WORKSPACE_WORDS
];
1317 unsigned long flags
;
1320 * If we have an architectural hardware random number
1321 * generator, use it for SHA's initial vector
1324 for (i
= 0; i
< LONGS(20); i
++) {
1326 if (!arch_get_random_long(&v
))
1331 /* Generate a hash across the pool, 16 words (512 bits) at a time */
1332 spin_lock_irqsave(&r
->lock
, flags
);
1333 for (i
= 0; i
< r
->poolinfo
->poolwords
; i
+= 16)
1334 sha_transform(hash
.w
, (__u8
*)(r
->pool
+ i
), workspace
);
1337 * We mix the hash back into the pool to prevent backtracking
1338 * attacks (where the attacker knows the state of the pool
1339 * plus the current outputs, and attempts to find previous
1340 * ouputs), unless the hash function can be inverted. By
1341 * mixing at least a SHA1 worth of hash data back, we make
1342 * brute-forcing the feedback as hard as brute-forcing the
1345 __mix_pool_bytes(r
, hash
.w
, sizeof(hash
.w
));
1346 spin_unlock_irqrestore(&r
->lock
, flags
);
1348 memzero_explicit(workspace
, sizeof(workspace
));
1351 * In case the hash function has some recognizable output
1352 * pattern, we fold it in half. Thus, we always feed back
1353 * twice as much data as we output.
1355 hash
.w
[0] ^= hash
.w
[3];
1356 hash
.w
[1] ^= hash
.w
[4];
1357 hash
.w
[2] ^= rol32(hash
.w
[2], 16);
1359 memcpy(out
, &hash
, EXTRACT_SIZE
);
1360 memzero_explicit(&hash
, sizeof(hash
));
1363 static ssize_t
_extract_entropy(struct entropy_store
*r
, void *buf
,
1364 size_t nbytes
, int fips
)
1367 __u8 tmp
[EXTRACT_SIZE
];
1368 unsigned long flags
;
1371 extract_buf(r
, tmp
);
1374 spin_lock_irqsave(&r
->lock
, flags
);
1375 if (!memcmp(tmp
, r
->last_data
, EXTRACT_SIZE
))
1376 panic("Hardware RNG duplicated output!\n");
1377 memcpy(r
->last_data
, tmp
, EXTRACT_SIZE
);
1378 spin_unlock_irqrestore(&r
->lock
, flags
);
1380 i
= min_t(int, nbytes
, EXTRACT_SIZE
);
1381 memcpy(buf
, tmp
, i
);
1387 /* Wipe data just returned from memory */
1388 memzero_explicit(tmp
, sizeof(tmp
));
1394 * This function extracts randomness from the "entropy pool", and
1395 * returns it in a buffer.
1397 * The min parameter specifies the minimum amount we can pull before
1398 * failing to avoid races that defeat catastrophic reseeding while the
1399 * reserved parameter indicates how much entropy we must leave in the
1400 * pool after each pull to avoid starving other readers.
1402 static ssize_t
extract_entropy(struct entropy_store
*r
, void *buf
,
1403 size_t nbytes
, int min
, int reserved
)
1405 __u8 tmp
[EXTRACT_SIZE
];
1406 unsigned long flags
;
1408 /* if last_data isn't primed, we need EXTRACT_SIZE extra bytes */
1410 spin_lock_irqsave(&r
->lock
, flags
);
1411 if (!r
->last_data_init
) {
1412 r
->last_data_init
= 1;
1413 spin_unlock_irqrestore(&r
->lock
, flags
);
1414 trace_extract_entropy(r
->name
, EXTRACT_SIZE
,
1415 ENTROPY_BITS(r
), _RET_IP_
);
1416 xfer_secondary_pool(r
, EXTRACT_SIZE
);
1417 extract_buf(r
, tmp
);
1418 spin_lock_irqsave(&r
->lock
, flags
);
1419 memcpy(r
->last_data
, tmp
, EXTRACT_SIZE
);
1421 spin_unlock_irqrestore(&r
->lock
, flags
);
1424 trace_extract_entropy(r
->name
, nbytes
, ENTROPY_BITS(r
), _RET_IP_
);
1425 xfer_secondary_pool(r
, nbytes
);
1426 nbytes
= account(r
, nbytes
, min
, reserved
);
1428 return _extract_entropy(r
, buf
, nbytes
, fips_enabled
);
1432 * This function extracts randomness from the "entropy pool", and
1433 * returns it in a userspace buffer.
1435 static ssize_t
extract_entropy_user(struct entropy_store
*r
, void __user
*buf
,
1439 __u8 tmp
[EXTRACT_SIZE
];
1440 int large_request
= (nbytes
> 256);
1442 trace_extract_entropy_user(r
->name
, nbytes
, ENTROPY_BITS(r
), _RET_IP_
);
1443 xfer_secondary_pool(r
, nbytes
);
1444 nbytes
= account(r
, nbytes
, 0, 0);
1447 if (large_request
&& need_resched()) {
1448 if (signal_pending(current
)) {
1456 extract_buf(r
, tmp
);
1457 i
= min_t(int, nbytes
, EXTRACT_SIZE
);
1458 if (copy_to_user(buf
, tmp
, i
)) {
1468 /* Wipe data just returned from memory */
1469 memzero_explicit(tmp
, sizeof(tmp
));
1474 #define warn_unseeded_randomness(previous) \
1475 _warn_unseeded_randomness(__func__, (void *) _RET_IP_, (previous))
1477 static void _warn_unseeded_randomness(const char *func_name
, void *caller
,
1480 #ifdef CONFIG_WARN_ALL_UNSEEDED_RANDOM
1481 const bool print_once
= false;
1483 static bool print_once __read_mostly
;
1488 (previous
&& (caller
== READ_ONCE(*previous
))))
1490 WRITE_ONCE(*previous
, caller
);
1491 #ifndef CONFIG_WARN_ALL_UNSEEDED_RANDOM
1494 pr_notice("random: %s called from %pS with crng_init=%d\n",
1495 func_name
, caller
, crng_init
);
1499 * This function is the exported kernel interface. It returns some
1500 * number of good random numbers, suitable for key generation, seeding
1501 * TCP sequence numbers, etc. It does not rely on the hardware random
1502 * number generator. For random bytes direct from the hardware RNG
1503 * (when available), use get_random_bytes_arch(). In order to ensure
1504 * that the randomness provided by this function is okay, the function
1505 * wait_for_random_bytes() should be called and return 0 at least once
1506 * at any point prior.
1508 static void _get_random_bytes(void *buf
, int nbytes
)
1510 __u32 tmp
[CHACHA20_BLOCK_WORDS
];
1512 trace_get_random_bytes(nbytes
, _RET_IP_
);
1514 while (nbytes
>= CHACHA20_BLOCK_SIZE
) {
1516 buf
+= CHACHA20_BLOCK_SIZE
;
1517 nbytes
-= CHACHA20_BLOCK_SIZE
;
1522 memcpy(buf
, tmp
, nbytes
);
1523 crng_backtrack_protect(tmp
, nbytes
);
1525 crng_backtrack_protect(tmp
, CHACHA20_BLOCK_SIZE
);
1526 memzero_explicit(tmp
, sizeof(tmp
));
1529 void get_random_bytes(void *buf
, int nbytes
)
1531 static void *previous
;
1533 warn_unseeded_randomness(&previous
);
1534 _get_random_bytes(buf
, nbytes
);
1536 EXPORT_SYMBOL(get_random_bytes
);
1539 * Wait for the urandom pool to be seeded and thus guaranteed to supply
1540 * cryptographically secure random numbers. This applies to: the /dev/urandom
1541 * device, the get_random_bytes function, and the get_random_{u32,u64,int,long}
1542 * family of functions. Using any of these functions without first calling
1543 * this function forfeits the guarantee of security.
1545 * Returns: 0 if the urandom pool has been seeded.
1546 * -ERESTARTSYS if the function was interrupted by a signal.
1548 int wait_for_random_bytes(void)
1550 if (likely(crng_ready()))
1552 return wait_event_interruptible(crng_init_wait
, crng_ready());
1554 EXPORT_SYMBOL(wait_for_random_bytes
);
1557 * Add a callback function that will be invoked when the nonblocking
1558 * pool is initialised.
1560 * returns: 0 if callback is successfully added
1561 * -EALREADY if pool is already initialised (callback not called)
1562 * -ENOENT if module for callback is not alive
1564 int add_random_ready_callback(struct random_ready_callback
*rdy
)
1566 struct module
*owner
;
1567 unsigned long flags
;
1568 int err
= -EALREADY
;
1574 if (!try_module_get(owner
))
1577 spin_lock_irqsave(&random_ready_list_lock
, flags
);
1583 list_add(&rdy
->list
, &random_ready_list
);
1587 spin_unlock_irqrestore(&random_ready_list_lock
, flags
);
1593 EXPORT_SYMBOL(add_random_ready_callback
);
1596 * Delete a previously registered readiness callback function.
1598 void del_random_ready_callback(struct random_ready_callback
*rdy
)
1600 unsigned long flags
;
1601 struct module
*owner
= NULL
;
1603 spin_lock_irqsave(&random_ready_list_lock
, flags
);
1604 if (!list_empty(&rdy
->list
)) {
1605 list_del_init(&rdy
->list
);
1608 spin_unlock_irqrestore(&random_ready_list_lock
, flags
);
1612 EXPORT_SYMBOL(del_random_ready_callback
);
1615 * This function will use the architecture-specific hardware random
1616 * number generator if it is available. The arch-specific hw RNG will
1617 * almost certainly be faster than what we can do in software, but it
1618 * is impossible to verify that it is implemented securely (as
1619 * opposed, to, say, the AES encryption of a sequence number using a
1620 * key known by the NSA). So it's useful if we need the speed, but
1621 * only if we're willing to trust the hardware manufacturer not to
1622 * have put in a back door.
1624 void get_random_bytes_arch(void *buf
, int nbytes
)
1628 trace_get_random_bytes_arch(nbytes
, _RET_IP_
);
1631 int chunk
= min(nbytes
, (int)sizeof(unsigned long));
1633 if (!arch_get_random_long(&v
))
1636 memcpy(p
, &v
, chunk
);
1642 get_random_bytes(p
, nbytes
);
1644 EXPORT_SYMBOL(get_random_bytes_arch
);
1648 * init_std_data - initialize pool with system data
1650 * @r: pool to initialize
1652 * This function clears the pool's entropy count and mixes some system
1653 * data into the pool to prepare it for use. The pool is not cleared
1654 * as that can only decrease the entropy in the pool.
1656 static void init_std_data(struct entropy_store
*r
)
1659 ktime_t now
= ktime_get_real();
1662 r
->last_pulled
= jiffies
;
1663 mix_pool_bytes(r
, &now
, sizeof(now
));
1664 for (i
= r
->poolinfo
->poolbytes
; i
> 0; i
-= sizeof(rv
)) {
1665 if (!arch_get_random_seed_long(&rv
) &&
1666 !arch_get_random_long(&rv
))
1667 rv
= random_get_entropy();
1668 mix_pool_bytes(r
, &rv
, sizeof(rv
));
1670 mix_pool_bytes(r
, utsname(), sizeof(*(utsname())));
1674 * Note that setup_arch() may call add_device_randomness()
1675 * long before we get here. This allows seeding of the pools
1676 * with some platform dependent data very early in the boot
1677 * process. But it limits our options here. We must use
1678 * statically allocated structures that already have all
1679 * initializations complete at compile time. We should also
1680 * take care not to overwrite the precious per platform data
1683 static int rand_initialize(void)
1687 struct crng_state
*crng
;
1688 struct crng_state
**pool
;
1691 init_std_data(&input_pool
);
1692 init_std_data(&blocking_pool
);
1693 crng_initialize(&primary_crng
);
1696 pool
= kcalloc(nr_node_ids
, sizeof(*pool
), GFP_KERNEL
|__GFP_NOFAIL
);
1697 for_each_online_node(i
) {
1698 crng
= kmalloc_node(sizeof(struct crng_state
),
1699 GFP_KERNEL
| __GFP_NOFAIL
, i
);
1700 spin_lock_init(&crng
->lock
);
1701 crng_initialize(crng
);
1705 crng_node_pool
= pool
;
1709 early_initcall(rand_initialize
);
1712 void rand_initialize_disk(struct gendisk
*disk
)
1714 struct timer_rand_state
*state
;
1717 * If kzalloc returns null, we just won't use that entropy
1720 state
= kzalloc(sizeof(struct timer_rand_state
), GFP_KERNEL
);
1722 state
->last_time
= INITIAL_JIFFIES
;
1723 disk
->random
= state
;
1729 _random_read(int nonblock
, char __user
*buf
, size_t nbytes
)
1736 nbytes
= min_t(size_t, nbytes
, SEC_XFER_SIZE
);
1738 n
= extract_entropy_user(&blocking_pool
, buf
, nbytes
);
1741 trace_random_read(n
*8, (nbytes
-n
)*8,
1742 ENTROPY_BITS(&blocking_pool
),
1743 ENTROPY_BITS(&input_pool
));
1747 /* Pool is (near) empty. Maybe wait and retry. */
1751 wait_event_interruptible(random_read_wait
,
1752 ENTROPY_BITS(&input_pool
) >=
1753 random_read_wakeup_bits
);
1754 if (signal_pending(current
))
1755 return -ERESTARTSYS
;
1760 random_read(struct file
*file
, char __user
*buf
, size_t nbytes
, loff_t
*ppos
)
1762 return _random_read(file
->f_flags
& O_NONBLOCK
, buf
, nbytes
);
1766 urandom_read(struct file
*file
, char __user
*buf
, size_t nbytes
, loff_t
*ppos
)
1768 unsigned long flags
;
1769 static int maxwarn
= 10;
1772 if (!crng_ready() && maxwarn
> 0) {
1774 printk(KERN_NOTICE
"random: %s: uninitialized urandom read "
1775 "(%zd bytes read)\n",
1776 current
->comm
, nbytes
);
1777 spin_lock_irqsave(&primary_crng
.lock
, flags
);
1779 spin_unlock_irqrestore(&primary_crng
.lock
, flags
);
1781 nbytes
= min_t(size_t, nbytes
, INT_MAX
>> (ENTROPY_SHIFT
+ 3));
1782 ret
= extract_crng_user(buf
, nbytes
);
1783 trace_urandom_read(8 * nbytes
, 0, ENTROPY_BITS(&input_pool
));
1788 random_poll(struct file
*file
, poll_table
* wait
)
1792 poll_wait(file
, &random_read_wait
, wait
);
1793 poll_wait(file
, &random_write_wait
, wait
);
1795 if (ENTROPY_BITS(&input_pool
) >= random_read_wakeup_bits
)
1796 mask
|= EPOLLIN
| EPOLLRDNORM
;
1797 if (ENTROPY_BITS(&input_pool
) < random_write_wakeup_bits
)
1798 mask
|= EPOLLOUT
| EPOLLWRNORM
;
1803 write_pool(struct entropy_store
*r
, const char __user
*buffer
, size_t count
)
1807 const char __user
*p
= buffer
;
1810 bytes
= min(count
, sizeof(buf
));
1811 if (copy_from_user(&buf
, p
, bytes
))
1817 mix_pool_bytes(r
, buf
, bytes
);
1824 static ssize_t
random_write(struct file
*file
, const char __user
*buffer
,
1825 size_t count
, loff_t
*ppos
)
1829 ret
= write_pool(&input_pool
, buffer
, count
);
1833 return (ssize_t
)count
;
1836 static long random_ioctl(struct file
*f
, unsigned int cmd
, unsigned long arg
)
1838 int size
, ent_count
;
1839 int __user
*p
= (int __user
*)arg
;
1844 /* inherently racy, no point locking */
1845 ent_count
= ENTROPY_BITS(&input_pool
);
1846 if (put_user(ent_count
, p
))
1849 case RNDADDTOENTCNT
:
1850 if (!capable(CAP_SYS_ADMIN
))
1852 if (get_user(ent_count
, p
))
1854 return credit_entropy_bits_safe(&input_pool
, ent_count
);
1856 if (!capable(CAP_SYS_ADMIN
))
1858 if (get_user(ent_count
, p
++))
1862 if (get_user(size
, p
++))
1864 retval
= write_pool(&input_pool
, (const char __user
*)p
,
1868 return credit_entropy_bits_safe(&input_pool
, ent_count
);
1872 * Clear the entropy pool counters. We no longer clear
1873 * the entropy pool, as that's silly.
1875 if (!capable(CAP_SYS_ADMIN
))
1877 input_pool
.entropy_count
= 0;
1878 blocking_pool
.entropy_count
= 0;
1885 static int random_fasync(int fd
, struct file
*filp
, int on
)
1887 return fasync_helper(fd
, filp
, on
, &fasync
);
1890 const struct file_operations random_fops
= {
1891 .read
= random_read
,
1892 .write
= random_write
,
1893 .poll
= random_poll
,
1894 .unlocked_ioctl
= random_ioctl
,
1895 .fasync
= random_fasync
,
1896 .llseek
= noop_llseek
,
1899 const struct file_operations urandom_fops
= {
1900 .read
= urandom_read
,
1901 .write
= random_write
,
1902 .unlocked_ioctl
= random_ioctl
,
1903 .fasync
= random_fasync
,
1904 .llseek
= noop_llseek
,
1907 SYSCALL_DEFINE3(getrandom
, char __user
*, buf
, size_t, count
,
1908 unsigned int, flags
)
1912 if (flags
& ~(GRND_NONBLOCK
|GRND_RANDOM
))
1915 if (count
> INT_MAX
)
1918 if (flags
& GRND_RANDOM
)
1919 return _random_read(flags
& GRND_NONBLOCK
, buf
, count
);
1921 if (!crng_ready()) {
1922 if (flags
& GRND_NONBLOCK
)
1924 ret
= wait_for_random_bytes();
1928 return urandom_read(NULL
, buf
, count
, NULL
);
1931 /********************************************************************
1935 ********************************************************************/
1937 #ifdef CONFIG_SYSCTL
1939 #include <linux/sysctl.h>
1941 static int min_read_thresh
= 8, min_write_thresh
;
1942 static int max_read_thresh
= OUTPUT_POOL_WORDS
* 32;
1943 static int max_write_thresh
= INPUT_POOL_WORDS
* 32;
1944 static int random_min_urandom_seed
= 60;
1945 static char sysctl_bootid
[16];
1948 * This function is used to return both the bootid UUID, and random
1949 * UUID. The difference is in whether table->data is NULL; if it is,
1950 * then a new UUID is generated and returned to the user.
1952 * If the user accesses this via the proc interface, the UUID will be
1953 * returned as an ASCII string in the standard UUID format; if via the
1954 * sysctl system call, as 16 bytes of binary data.
1956 static int proc_do_uuid(struct ctl_table
*table
, int write
,
1957 void __user
*buffer
, size_t *lenp
, loff_t
*ppos
)
1959 struct ctl_table fake_table
;
1960 unsigned char buf
[64], tmp_uuid
[16], *uuid
;
1965 generate_random_uuid(uuid
);
1967 static DEFINE_SPINLOCK(bootid_spinlock
);
1969 spin_lock(&bootid_spinlock
);
1971 generate_random_uuid(uuid
);
1972 spin_unlock(&bootid_spinlock
);
1975 sprintf(buf
, "%pU", uuid
);
1977 fake_table
.data
= buf
;
1978 fake_table
.maxlen
= sizeof(buf
);
1980 return proc_dostring(&fake_table
, write
, buffer
, lenp
, ppos
);
1984 * Return entropy available scaled to integral bits
1986 static int proc_do_entropy(struct ctl_table
*table
, int write
,
1987 void __user
*buffer
, size_t *lenp
, loff_t
*ppos
)
1989 struct ctl_table fake_table
;
1992 entropy_count
= *(int *)table
->data
>> ENTROPY_SHIFT
;
1994 fake_table
.data
= &entropy_count
;
1995 fake_table
.maxlen
= sizeof(entropy_count
);
1997 return proc_dointvec(&fake_table
, write
, buffer
, lenp
, ppos
);
2000 static int sysctl_poolsize
= INPUT_POOL_WORDS
* 32;
2001 extern struct ctl_table random_table
[];
2002 struct ctl_table random_table
[] = {
2004 .procname
= "poolsize",
2005 .data
= &sysctl_poolsize
,
2006 .maxlen
= sizeof(int),
2008 .proc_handler
= proc_dointvec
,
2011 .procname
= "entropy_avail",
2012 .maxlen
= sizeof(int),
2014 .proc_handler
= proc_do_entropy
,
2015 .data
= &input_pool
.entropy_count
,
2018 .procname
= "read_wakeup_threshold",
2019 .data
= &random_read_wakeup_bits
,
2020 .maxlen
= sizeof(int),
2022 .proc_handler
= proc_dointvec_minmax
,
2023 .extra1
= &min_read_thresh
,
2024 .extra2
= &max_read_thresh
,
2027 .procname
= "write_wakeup_threshold",
2028 .data
= &random_write_wakeup_bits
,
2029 .maxlen
= sizeof(int),
2031 .proc_handler
= proc_dointvec_minmax
,
2032 .extra1
= &min_write_thresh
,
2033 .extra2
= &max_write_thresh
,
2036 .procname
= "urandom_min_reseed_secs",
2037 .data
= &random_min_urandom_seed
,
2038 .maxlen
= sizeof(int),
2040 .proc_handler
= proc_dointvec
,
2043 .procname
= "boot_id",
2044 .data
= &sysctl_bootid
,
2047 .proc_handler
= proc_do_uuid
,
2053 .proc_handler
= proc_do_uuid
,
2055 #ifdef ADD_INTERRUPT_BENCH
2057 .procname
= "add_interrupt_avg_cycles",
2058 .data
= &avg_cycles
,
2059 .maxlen
= sizeof(avg_cycles
),
2061 .proc_handler
= proc_doulongvec_minmax
,
2064 .procname
= "add_interrupt_avg_deviation",
2065 .data
= &avg_deviation
,
2066 .maxlen
= sizeof(avg_deviation
),
2068 .proc_handler
= proc_doulongvec_minmax
,
2073 #endif /* CONFIG_SYSCTL */
2075 struct batched_entropy
{
2077 u64 entropy_u64
[CHACHA20_BLOCK_SIZE
/ sizeof(u64
)];
2078 u32 entropy_u32
[CHACHA20_BLOCK_SIZE
/ sizeof(u32
)];
2080 unsigned int position
;
2082 static rwlock_t batched_entropy_reset_lock
= __RW_LOCK_UNLOCKED(batched_entropy_reset_lock
);
2085 * Get a random word for internal kernel use only. The quality of the random
2086 * number is either as good as RDRAND or as good as /dev/urandom, with the
2087 * goal of being quite fast and not depleting entropy. In order to ensure
2088 * that the randomness provided by this function is okay, the function
2089 * wait_for_random_bytes() should be called and return 0 at least once
2090 * at any point prior.
2092 static DEFINE_PER_CPU(struct batched_entropy
, batched_entropy_u64
);
2093 u64
get_random_u64(void)
2097 unsigned long flags
= 0;
2098 struct batched_entropy
*batch
;
2099 static void *previous
;
2101 #if BITS_PER_LONG == 64
2102 if (arch_get_random_long((unsigned long *)&ret
))
2105 if (arch_get_random_long((unsigned long *)&ret
) &&
2106 arch_get_random_long((unsigned long *)&ret
+ 1))
2110 warn_unseeded_randomness(&previous
);
2112 use_lock
= READ_ONCE(crng_init
) < 2;
2113 batch
= &get_cpu_var(batched_entropy_u64
);
2115 read_lock_irqsave(&batched_entropy_reset_lock
, flags
);
2116 if (batch
->position
% ARRAY_SIZE(batch
->entropy_u64
) == 0) {
2117 extract_crng((__u32
*)batch
->entropy_u64
);
2118 batch
->position
= 0;
2120 ret
= batch
->entropy_u64
[batch
->position
++];
2122 read_unlock_irqrestore(&batched_entropy_reset_lock
, flags
);
2123 put_cpu_var(batched_entropy_u64
);
2126 EXPORT_SYMBOL(get_random_u64
);
2128 static DEFINE_PER_CPU(struct batched_entropy
, batched_entropy_u32
);
2129 u32
get_random_u32(void)
2133 unsigned long flags
= 0;
2134 struct batched_entropy
*batch
;
2135 static void *previous
;
2137 if (arch_get_random_int(&ret
))
2140 warn_unseeded_randomness(&previous
);
2142 use_lock
= READ_ONCE(crng_init
) < 2;
2143 batch
= &get_cpu_var(batched_entropy_u32
);
2145 read_lock_irqsave(&batched_entropy_reset_lock
, flags
);
2146 if (batch
->position
% ARRAY_SIZE(batch
->entropy_u32
) == 0) {
2147 extract_crng(batch
->entropy_u32
);
2148 batch
->position
= 0;
2150 ret
= batch
->entropy_u32
[batch
->position
++];
2152 read_unlock_irqrestore(&batched_entropy_reset_lock
, flags
);
2153 put_cpu_var(batched_entropy_u32
);
2156 EXPORT_SYMBOL(get_random_u32
);
2158 /* It's important to invalidate all potential batched entropy that might
2159 * be stored before the crng is initialized, which we can do lazily by
2160 * simply resetting the counter to zero so that it's re-extracted on the
2162 static void invalidate_batched_entropy(void)
2165 unsigned long flags
;
2167 write_lock_irqsave(&batched_entropy_reset_lock
, flags
);
2168 for_each_possible_cpu (cpu
) {
2169 per_cpu_ptr(&batched_entropy_u32
, cpu
)->position
= 0;
2170 per_cpu_ptr(&batched_entropy_u64
, cpu
)->position
= 0;
2172 write_unlock_irqrestore(&batched_entropy_reset_lock
, flags
);
2176 * randomize_page - Generate a random, page aligned address
2177 * @start: The smallest acceptable address the caller will take.
2178 * @range: The size of the area, starting at @start, within which the
2179 * random address must fall.
2181 * If @start + @range would overflow, @range is capped.
2183 * NOTE: Historical use of randomize_range, which this replaces, presumed that
2184 * @start was already page aligned. We now align it regardless.
2186 * Return: A page aligned address within [start, start + range). On error,
2187 * @start is returned.
2190 randomize_page(unsigned long start
, unsigned long range
)
2192 if (!PAGE_ALIGNED(start
)) {
2193 range
-= PAGE_ALIGN(start
) - start
;
2194 start
= PAGE_ALIGN(start
);
2197 if (start
> ULONG_MAX
- range
)
2198 range
= ULONG_MAX
- start
;
2200 range
>>= PAGE_SHIFT
;
2205 return start
+ (get_random_long() % range
<< PAGE_SHIFT
);
2208 /* Interface for in-kernel drivers of true hardware RNGs.
2209 * Those devices may produce endless random bits and will be throttled
2210 * when our pool is full.
2212 void add_hwgenerator_randomness(const char *buffer
, size_t count
,
2215 struct entropy_store
*poolp
= &input_pool
;
2217 if (!crng_ready()) {
2218 crng_fast_load(buffer
, count
);
2222 /* Suspend writing if we're above the trickle threshold.
2223 * We'll be woken up again once below random_write_wakeup_thresh,
2224 * or when the calling thread is about to terminate.
2226 wait_event_interruptible(random_write_wait
, kthread_should_stop() ||
2227 ENTROPY_BITS(&input_pool
) <= random_write_wakeup_bits
);
2228 mix_pool_bytes(poolp
, buffer
, count
);
2229 credit_entropy_bits(poolp
, entropy
);
2231 EXPORT_SYMBOL_GPL(add_hwgenerator_randomness
);