2 * Copyright (C) 2010,2015 Broadcom
3 * Copyright (C) 2012 Stephen Warren
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License as published by
7 * the Free Software Foundation; either version 2 of the License, or
8 * (at your option) any later version.
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 * GNU General Public License for more details.
18 * DOC: BCM2835 CPRMAN (clock manager for the "audio" domain)
20 * The clock tree on the 2835 has several levels. There's a root
21 * oscillator running at 19.2Mhz. After the oscillator there are 5
22 * PLLs, roughly divided as "camera", "ARM", "core", "DSI displays",
23 * and "HDMI displays". Those 5 PLLs each can divide their output to
24 * produce up to 4 channels. Finally, there is the level of clocks to
25 * be consumed by other hardware components (like "H264" or "HDMI
26 * state machine"), which divide off of some subset of the PLL
29 * All of the clocks in the tree are exposed in the DT, because the DT
30 * may want to make assignments of the final layer of clocks to the
31 * PLL channels, and some components of the hardware will actually
32 * skip layers of the tree (for example, the pixel clock comes
33 * directly from the PLLH PIX channel without using a CM_*CTL clock
37 #include <linux/clk-provider.h>
38 #include <linux/clkdev.h>
39 #include <linux/clk.h>
40 #include <linux/debugfs.h>
41 #include <linux/delay.h>
42 #include <linux/module.h>
44 #include <linux/platform_device.h>
45 #include <linux/slab.h>
46 #include <dt-bindings/clock/bcm2835.h>
48 #define CM_PASSWORD 0x5a000000
50 #define CM_GNRICCTL 0x000
51 #define CM_GNRICDIV 0x004
52 # define CM_DIV_FRAC_BITS 12
53 # define CM_DIV_FRAC_MASK GENMASK(CM_DIV_FRAC_BITS - 1, 0)
55 #define CM_VPUCTL 0x008
56 #define CM_VPUDIV 0x00c
57 #define CM_SYSCTL 0x010
58 #define CM_SYSDIV 0x014
59 #define CM_PERIACTL 0x018
60 #define CM_PERIADIV 0x01c
61 #define CM_PERIICTL 0x020
62 #define CM_PERIIDIV 0x024
63 #define CM_H264CTL 0x028
64 #define CM_H264DIV 0x02c
65 #define CM_ISPCTL 0x030
66 #define CM_ISPDIV 0x034
67 #define CM_V3DCTL 0x038
68 #define CM_V3DDIV 0x03c
69 #define CM_CAM0CTL 0x040
70 #define CM_CAM0DIV 0x044
71 #define CM_CAM1CTL 0x048
72 #define CM_CAM1DIV 0x04c
73 #define CM_CCP2CTL 0x050
74 #define CM_CCP2DIV 0x054
75 #define CM_DSI0ECTL 0x058
76 #define CM_DSI0EDIV 0x05c
77 #define CM_DSI0PCTL 0x060
78 #define CM_DSI0PDIV 0x064
79 #define CM_DPICTL 0x068
80 #define CM_DPIDIV 0x06c
81 #define CM_GP0CTL 0x070
82 #define CM_GP0DIV 0x074
83 #define CM_GP1CTL 0x078
84 #define CM_GP1DIV 0x07c
85 #define CM_GP2CTL 0x080
86 #define CM_GP2DIV 0x084
87 #define CM_HSMCTL 0x088
88 #define CM_HSMDIV 0x08c
89 #define CM_OTPCTL 0x090
90 #define CM_OTPDIV 0x094
91 #define CM_PCMCTL 0x098
92 #define CM_PCMDIV 0x09c
93 #define CM_PWMCTL 0x0a0
94 #define CM_PWMDIV 0x0a4
95 #define CM_SLIMCTL 0x0a8
96 #define CM_SLIMDIV 0x0ac
97 #define CM_SMICTL 0x0b0
98 #define CM_SMIDIV 0x0b4
99 /* no definition for 0x0b8 and 0x0bc */
100 #define CM_TCNTCTL 0x0c0
101 # define CM_TCNT_SRC1_SHIFT 12
102 #define CM_TCNTCNT 0x0c4
103 #define CM_TECCTL 0x0c8
104 #define CM_TECDIV 0x0cc
105 #define CM_TD0CTL 0x0d0
106 #define CM_TD0DIV 0x0d4
107 #define CM_TD1CTL 0x0d8
108 #define CM_TD1DIV 0x0dc
109 #define CM_TSENSCTL 0x0e0
110 #define CM_TSENSDIV 0x0e4
111 #define CM_TIMERCTL 0x0e8
112 #define CM_TIMERDIV 0x0ec
113 #define CM_UARTCTL 0x0f0
114 #define CM_UARTDIV 0x0f4
115 #define CM_VECCTL 0x0f8
116 #define CM_VECDIV 0x0fc
117 #define CM_PULSECTL 0x190
118 #define CM_PULSEDIV 0x194
119 #define CM_SDCCTL 0x1a8
120 #define CM_SDCDIV 0x1ac
121 #define CM_ARMCTL 0x1b0
122 #define CM_AVEOCTL 0x1b8
123 #define CM_AVEODIV 0x1bc
124 #define CM_EMMCCTL 0x1c0
125 #define CM_EMMCDIV 0x1c4
127 /* General bits for the CM_*CTL regs */
128 # define CM_ENABLE BIT(4)
129 # define CM_KILL BIT(5)
130 # define CM_GATE_BIT 6
131 # define CM_GATE BIT(CM_GATE_BIT)
132 # define CM_BUSY BIT(7)
133 # define CM_BUSYD BIT(8)
134 # define CM_FRAC BIT(9)
135 # define CM_SRC_SHIFT 0
136 # define CM_SRC_BITS 4
137 # define CM_SRC_MASK 0xf
138 # define CM_SRC_GND 0
139 # define CM_SRC_OSC 1
140 # define CM_SRC_TESTDEBUG0 2
141 # define CM_SRC_TESTDEBUG1 3
142 # define CM_SRC_PLLA_CORE 4
143 # define CM_SRC_PLLA_PER 4
144 # define CM_SRC_PLLC_CORE0 5
145 # define CM_SRC_PLLC_PER 5
146 # define CM_SRC_PLLC_CORE1 8
147 # define CM_SRC_PLLD_CORE 6
148 # define CM_SRC_PLLD_PER 6
149 # define CM_SRC_PLLH_AUX 7
150 # define CM_SRC_PLLC_CORE1 8
151 # define CM_SRC_PLLC_CORE2 9
153 #define CM_OSCCOUNT 0x100
155 #define CM_PLLA 0x104
156 # define CM_PLL_ANARST BIT(8)
157 # define CM_PLLA_HOLDPER BIT(7)
158 # define CM_PLLA_LOADPER BIT(6)
159 # define CM_PLLA_HOLDCORE BIT(5)
160 # define CM_PLLA_LOADCORE BIT(4)
161 # define CM_PLLA_HOLDCCP2 BIT(3)
162 # define CM_PLLA_LOADCCP2 BIT(2)
163 # define CM_PLLA_HOLDDSI0 BIT(1)
164 # define CM_PLLA_LOADDSI0 BIT(0)
166 #define CM_PLLC 0x108
167 # define CM_PLLC_HOLDPER BIT(7)
168 # define CM_PLLC_LOADPER BIT(6)
169 # define CM_PLLC_HOLDCORE2 BIT(5)
170 # define CM_PLLC_LOADCORE2 BIT(4)
171 # define CM_PLLC_HOLDCORE1 BIT(3)
172 # define CM_PLLC_LOADCORE1 BIT(2)
173 # define CM_PLLC_HOLDCORE0 BIT(1)
174 # define CM_PLLC_LOADCORE0 BIT(0)
176 #define CM_PLLD 0x10c
177 # define CM_PLLD_HOLDPER BIT(7)
178 # define CM_PLLD_LOADPER BIT(6)
179 # define CM_PLLD_HOLDCORE BIT(5)
180 # define CM_PLLD_LOADCORE BIT(4)
181 # define CM_PLLD_HOLDDSI1 BIT(3)
182 # define CM_PLLD_LOADDSI1 BIT(2)
183 # define CM_PLLD_HOLDDSI0 BIT(1)
184 # define CM_PLLD_LOADDSI0 BIT(0)
186 #define CM_PLLH 0x110
187 # define CM_PLLH_LOADRCAL BIT(2)
188 # define CM_PLLH_LOADAUX BIT(1)
189 # define CM_PLLH_LOADPIX BIT(0)
191 #define CM_LOCK 0x114
192 # define CM_LOCK_FLOCKH BIT(12)
193 # define CM_LOCK_FLOCKD BIT(11)
194 # define CM_LOCK_FLOCKC BIT(10)
195 # define CM_LOCK_FLOCKB BIT(9)
196 # define CM_LOCK_FLOCKA BIT(8)
198 #define CM_EVENT 0x118
199 #define CM_DSI1ECTL 0x158
200 #define CM_DSI1EDIV 0x15c
201 #define CM_DSI1PCTL 0x160
202 #define CM_DSI1PDIV 0x164
203 #define CM_DFTCTL 0x168
204 #define CM_DFTDIV 0x16c
206 #define CM_PLLB 0x170
207 # define CM_PLLB_HOLDARM BIT(1)
208 # define CM_PLLB_LOADARM BIT(0)
210 #define A2W_PLLA_CTRL 0x1100
211 #define A2W_PLLC_CTRL 0x1120
212 #define A2W_PLLD_CTRL 0x1140
213 #define A2W_PLLH_CTRL 0x1160
214 #define A2W_PLLB_CTRL 0x11e0
215 # define A2W_PLL_CTRL_PRST_DISABLE BIT(17)
216 # define A2W_PLL_CTRL_PWRDN BIT(16)
217 # define A2W_PLL_CTRL_PDIV_MASK 0x000007000
218 # define A2W_PLL_CTRL_PDIV_SHIFT 12
219 # define A2W_PLL_CTRL_NDIV_MASK 0x0000003ff
220 # define A2W_PLL_CTRL_NDIV_SHIFT 0
222 #define A2W_PLLA_ANA0 0x1010
223 #define A2W_PLLC_ANA0 0x1030
224 #define A2W_PLLD_ANA0 0x1050
225 #define A2W_PLLH_ANA0 0x1070
226 #define A2W_PLLB_ANA0 0x10f0
228 #define A2W_PLL_KA_SHIFT 7
229 #define A2W_PLL_KA_MASK GENMASK(9, 7)
230 #define A2W_PLL_KI_SHIFT 19
231 #define A2W_PLL_KI_MASK GENMASK(21, 19)
232 #define A2W_PLL_KP_SHIFT 15
233 #define A2W_PLL_KP_MASK GENMASK(18, 15)
235 #define A2W_PLLH_KA_SHIFT 19
236 #define A2W_PLLH_KA_MASK GENMASK(21, 19)
237 #define A2W_PLLH_KI_LOW_SHIFT 22
238 #define A2W_PLLH_KI_LOW_MASK GENMASK(23, 22)
239 #define A2W_PLLH_KI_HIGH_SHIFT 0
240 #define A2W_PLLH_KI_HIGH_MASK GENMASK(0, 0)
241 #define A2W_PLLH_KP_SHIFT 1
242 #define A2W_PLLH_KP_MASK GENMASK(4, 1)
244 #define A2W_XOSC_CTRL 0x1190
245 # define A2W_XOSC_CTRL_PLLB_ENABLE BIT(7)
246 # define A2W_XOSC_CTRL_PLLA_ENABLE BIT(6)
247 # define A2W_XOSC_CTRL_PLLD_ENABLE BIT(5)
248 # define A2W_XOSC_CTRL_DDR_ENABLE BIT(4)
249 # define A2W_XOSC_CTRL_CPR1_ENABLE BIT(3)
250 # define A2W_XOSC_CTRL_USB_ENABLE BIT(2)
251 # define A2W_XOSC_CTRL_HDMI_ENABLE BIT(1)
252 # define A2W_XOSC_CTRL_PLLC_ENABLE BIT(0)
254 #define A2W_PLLA_FRAC 0x1200
255 #define A2W_PLLC_FRAC 0x1220
256 #define A2W_PLLD_FRAC 0x1240
257 #define A2W_PLLH_FRAC 0x1260
258 #define A2W_PLLB_FRAC 0x12e0
259 # define A2W_PLL_FRAC_MASK ((1 << A2W_PLL_FRAC_BITS) - 1)
260 # define A2W_PLL_FRAC_BITS 20
262 #define A2W_PLL_CHANNEL_DISABLE BIT(8)
263 #define A2W_PLL_DIV_BITS 8
264 #define A2W_PLL_DIV_SHIFT 0
266 #define A2W_PLLA_DSI0 0x1300
267 #define A2W_PLLA_CORE 0x1400
268 #define A2W_PLLA_PER 0x1500
269 #define A2W_PLLA_CCP2 0x1600
271 #define A2W_PLLC_CORE2 0x1320
272 #define A2W_PLLC_CORE1 0x1420
273 #define A2W_PLLC_PER 0x1520
274 #define A2W_PLLC_CORE0 0x1620
276 #define A2W_PLLD_DSI0 0x1340
277 #define A2W_PLLD_CORE 0x1440
278 #define A2W_PLLD_PER 0x1540
279 #define A2W_PLLD_DSI1 0x1640
281 #define A2W_PLLH_AUX 0x1360
282 #define A2W_PLLH_RCAL 0x1460
283 #define A2W_PLLH_PIX 0x1560
284 #define A2W_PLLH_STS 0x1660
286 #define A2W_PLLH_CTRLR 0x1960
287 #define A2W_PLLH_FRACR 0x1a60
288 #define A2W_PLLH_AUXR 0x1b60
289 #define A2W_PLLH_RCALR 0x1c60
290 #define A2W_PLLH_PIXR 0x1d60
291 #define A2W_PLLH_STSR 0x1e60
293 #define A2W_PLLB_ARM 0x13e0
294 #define A2W_PLLB_SP0 0x14e0
295 #define A2W_PLLB_SP1 0x15e0
296 #define A2W_PLLB_SP2 0x16e0
298 #define LOCK_TIMEOUT_NS 100000000
299 #define BCM2835_MAX_FB_RATE 1750000000u
302 * Names of clocks used within the driver that need to be replaced
303 * with an external parent's name. This array is in the order that
304 * the clocks node in the DT references external clocks.
306 static const char *const cprman_parent_names
[] = {
316 struct bcm2835_cprman
{
319 spinlock_t regs_lock
; /* spinlock for all clocks */
322 * Real names of cprman clock parents looked up through
323 * of_clk_get_parent_name(), which will be used in the
324 * parent_names[] arrays for clock registration.
326 const char *real_parent_names
[ARRAY_SIZE(cprman_parent_names
)];
329 struct clk_hw_onecell_data onecell
;
332 static inline void cprman_write(struct bcm2835_cprman
*cprman
, u32 reg
, u32 val
)
334 writel(CM_PASSWORD
| val
, cprman
->regs
+ reg
);
337 static inline u32
cprman_read(struct bcm2835_cprman
*cprman
, u32 reg
)
339 return readl(cprman
->regs
+ reg
);
342 /* Does a cycle of measuring a clock through the TCNT clock, which may
343 * source from many other clocks in the system.
345 static unsigned long bcm2835_measure_tcnt_mux(struct bcm2835_cprman
*cprman
,
348 u32 osccount
= 19200; /* 1ms */
352 spin_lock(&cprman
->regs_lock
);
354 cprman_write(cprman
, CM_TCNTCTL
, CM_KILL
);
356 cprman_write(cprman
, CM_TCNTCTL
,
357 (tcnt_mux
& CM_SRC_MASK
) |
358 (tcnt_mux
>> CM_SRC_BITS
) << CM_TCNT_SRC1_SHIFT
);
360 cprman_write(cprman
, CM_OSCCOUNT
, osccount
);
362 /* do a kind delay at the start */
365 /* Finish off whatever is left of OSCCOUNT */
366 timeout
= ktime_add_ns(ktime_get(), LOCK_TIMEOUT_NS
);
367 while (cprman_read(cprman
, CM_OSCCOUNT
)) {
368 if (ktime_after(ktime_get(), timeout
)) {
369 dev_err(cprman
->dev
, "timeout waiting for OSCCOUNT\n");
376 /* Wait for BUSY to clear. */
377 timeout
= ktime_add_ns(ktime_get(), LOCK_TIMEOUT_NS
);
378 while (cprman_read(cprman
, CM_TCNTCTL
) & CM_BUSY
) {
379 if (ktime_after(ktime_get(), timeout
)) {
380 dev_err(cprman
->dev
, "timeout waiting for !BUSY\n");
387 count
= cprman_read(cprman
, CM_TCNTCNT
);
389 cprman_write(cprman
, CM_TCNTCTL
, 0);
392 spin_unlock(&cprman
->regs_lock
);
397 static int bcm2835_debugfs_regset(struct bcm2835_cprman
*cprman
, u32 base
,
398 struct debugfs_reg32
*regs
, size_t nregs
,
399 struct dentry
*dentry
)
401 struct dentry
*regdump
;
402 struct debugfs_regset32
*regset
;
404 regset
= devm_kzalloc(cprman
->dev
, sizeof(*regset
), GFP_KERNEL
);
409 regset
->nregs
= nregs
;
410 regset
->base
= cprman
->regs
+ base
;
412 regdump
= debugfs_create_regset32("regdump", S_IRUGO
, dentry
,
415 return regdump
? 0 : -ENOMEM
;
418 struct bcm2835_pll_data
{
424 u32 reference_enable_mask
;
425 /* Bit in CM_LOCK to indicate when the PLL has locked. */
428 const struct bcm2835_pll_ana_bits
*ana
;
430 unsigned long min_rate
;
431 unsigned long max_rate
;
433 * Highest rate for the VCO before we have to use the
436 unsigned long max_fb_rate
;
439 struct bcm2835_pll_ana_bits
{
449 static const struct bcm2835_pll_ana_bits bcm2835_ana_default
= {
452 .mask1
= (u32
)~(A2W_PLL_KI_MASK
| A2W_PLL_KP_MASK
),
453 .set1
= (2 << A2W_PLL_KI_SHIFT
) | (8 << A2W_PLL_KP_SHIFT
),
454 .mask3
= (u32
)~A2W_PLL_KA_MASK
,
455 .set3
= (2 << A2W_PLL_KA_SHIFT
),
456 .fb_prediv_mask
= BIT(14),
459 static const struct bcm2835_pll_ana_bits bcm2835_ana_pllh
= {
460 .mask0
= (u32
)~(A2W_PLLH_KA_MASK
| A2W_PLLH_KI_LOW_MASK
),
461 .set0
= (2 << A2W_PLLH_KA_SHIFT
) | (2 << A2W_PLLH_KI_LOW_SHIFT
),
462 .mask1
= (u32
)~(A2W_PLLH_KI_HIGH_MASK
| A2W_PLLH_KP_MASK
),
463 .set1
= (6 << A2W_PLLH_KP_SHIFT
),
466 .fb_prediv_mask
= BIT(11),
469 struct bcm2835_pll_divider_data
{
471 const char *source_pll
;
482 struct bcm2835_clock_data
{
485 const char *const *parents
;
488 /* Bitmap encoding which parents accept rate change propagation. */
489 unsigned int set_rate_parent
;
494 /* Number of integer bits in the divider */
496 /* Number of fractional bits in the divider */
508 struct bcm2835_gate_data
{
517 struct bcm2835_cprman
*cprman
;
518 const struct bcm2835_pll_data
*data
;
521 static int bcm2835_pll_is_on(struct clk_hw
*hw
)
523 struct bcm2835_pll
*pll
= container_of(hw
, struct bcm2835_pll
, hw
);
524 struct bcm2835_cprman
*cprman
= pll
->cprman
;
525 const struct bcm2835_pll_data
*data
= pll
->data
;
527 return cprman_read(cprman
, data
->a2w_ctrl_reg
) &
528 A2W_PLL_CTRL_PRST_DISABLE
;
531 static void bcm2835_pll_choose_ndiv_and_fdiv(unsigned long rate
,
532 unsigned long parent_rate
,
533 u32
*ndiv
, u32
*fdiv
)
537 div
= (u64
)rate
<< A2W_PLL_FRAC_BITS
;
538 do_div(div
, parent_rate
);
540 *ndiv
= div
>> A2W_PLL_FRAC_BITS
;
541 *fdiv
= div
& ((1 << A2W_PLL_FRAC_BITS
) - 1);
544 static long bcm2835_pll_rate_from_divisors(unsigned long parent_rate
,
545 u32 ndiv
, u32 fdiv
, u32 pdiv
)
552 rate
= (u64
)parent_rate
* ((ndiv
<< A2W_PLL_FRAC_BITS
) + fdiv
);
554 return rate
>> A2W_PLL_FRAC_BITS
;
557 static long bcm2835_pll_round_rate(struct clk_hw
*hw
, unsigned long rate
,
558 unsigned long *parent_rate
)
560 struct bcm2835_pll
*pll
= container_of(hw
, struct bcm2835_pll
, hw
);
561 const struct bcm2835_pll_data
*data
= pll
->data
;
564 rate
= clamp(rate
, data
->min_rate
, data
->max_rate
);
566 bcm2835_pll_choose_ndiv_and_fdiv(rate
, *parent_rate
, &ndiv
, &fdiv
);
568 return bcm2835_pll_rate_from_divisors(*parent_rate
, ndiv
, fdiv
, 1);
571 static unsigned long bcm2835_pll_get_rate(struct clk_hw
*hw
,
572 unsigned long parent_rate
)
574 struct bcm2835_pll
*pll
= container_of(hw
, struct bcm2835_pll
, hw
);
575 struct bcm2835_cprman
*cprman
= pll
->cprman
;
576 const struct bcm2835_pll_data
*data
= pll
->data
;
577 u32 a2wctrl
= cprman_read(cprman
, data
->a2w_ctrl_reg
);
578 u32 ndiv
, pdiv
, fdiv
;
581 if (parent_rate
== 0)
584 fdiv
= cprman_read(cprman
, data
->frac_reg
) & A2W_PLL_FRAC_MASK
;
585 ndiv
= (a2wctrl
& A2W_PLL_CTRL_NDIV_MASK
) >> A2W_PLL_CTRL_NDIV_SHIFT
;
586 pdiv
= (a2wctrl
& A2W_PLL_CTRL_PDIV_MASK
) >> A2W_PLL_CTRL_PDIV_SHIFT
;
587 using_prediv
= cprman_read(cprman
, data
->ana_reg_base
+ 4) &
588 data
->ana
->fb_prediv_mask
;
595 return bcm2835_pll_rate_from_divisors(parent_rate
, ndiv
, fdiv
, pdiv
);
598 static void bcm2835_pll_off(struct clk_hw
*hw
)
600 struct bcm2835_pll
*pll
= container_of(hw
, struct bcm2835_pll
, hw
);
601 struct bcm2835_cprman
*cprman
= pll
->cprman
;
602 const struct bcm2835_pll_data
*data
= pll
->data
;
604 spin_lock(&cprman
->regs_lock
);
605 cprman_write(cprman
, data
->cm_ctrl_reg
,
606 cprman_read(cprman
, data
->cm_ctrl_reg
) |
608 cprman_write(cprman
, data
->a2w_ctrl_reg
,
609 cprman_read(cprman
, data
->a2w_ctrl_reg
) |
611 spin_unlock(&cprman
->regs_lock
);
614 static int bcm2835_pll_on(struct clk_hw
*hw
)
616 struct bcm2835_pll
*pll
= container_of(hw
, struct bcm2835_pll
, hw
);
617 struct bcm2835_cprman
*cprman
= pll
->cprman
;
618 const struct bcm2835_pll_data
*data
= pll
->data
;
621 cprman_write(cprman
, data
->a2w_ctrl_reg
,
622 cprman_read(cprman
, data
->a2w_ctrl_reg
) &
623 ~A2W_PLL_CTRL_PWRDN
);
625 /* Take the PLL out of reset. */
626 cprman_write(cprman
, data
->cm_ctrl_reg
,
627 cprman_read(cprman
, data
->cm_ctrl_reg
) & ~CM_PLL_ANARST
);
629 /* Wait for the PLL to lock. */
630 timeout
= ktime_add_ns(ktime_get(), LOCK_TIMEOUT_NS
);
631 while (!(cprman_read(cprman
, CM_LOCK
) & data
->lock_mask
)) {
632 if (ktime_after(ktime_get(), timeout
)) {
633 dev_err(cprman
->dev
, "%s: couldn't lock PLL\n",
634 clk_hw_get_name(hw
));
645 bcm2835_pll_write_ana(struct bcm2835_cprman
*cprman
, u32 ana_reg_base
, u32
*ana
)
650 * ANA register setup is done as a series of writes to
651 * ANA3-ANA0, in that order. This lets us write all 4
652 * registers as a single cycle of the serdes interface (taking
653 * 100 xosc clocks), whereas if we were to update ana0, 1, and
654 * 3 individually through their partial-write registers, each
655 * would be their own serdes cycle.
657 for (i
= 3; i
>= 0; i
--)
658 cprman_write(cprman
, ana_reg_base
+ i
* 4, ana
[i
]);
661 static int bcm2835_pll_set_rate(struct clk_hw
*hw
,
662 unsigned long rate
, unsigned long parent_rate
)
664 struct bcm2835_pll
*pll
= container_of(hw
, struct bcm2835_pll
, hw
);
665 struct bcm2835_cprman
*cprman
= pll
->cprman
;
666 const struct bcm2835_pll_data
*data
= pll
->data
;
667 bool was_using_prediv
, use_fb_prediv
, do_ana_setup_first
;
668 u32 ndiv
, fdiv
, a2w_ctl
;
672 if (rate
> data
->max_fb_rate
) {
673 use_fb_prediv
= true;
676 use_fb_prediv
= false;
679 bcm2835_pll_choose_ndiv_and_fdiv(rate
, parent_rate
, &ndiv
, &fdiv
);
681 for (i
= 3; i
>= 0; i
--)
682 ana
[i
] = cprman_read(cprman
, data
->ana_reg_base
+ i
* 4);
684 was_using_prediv
= ana
[1] & data
->ana
->fb_prediv_mask
;
686 ana
[0] &= ~data
->ana
->mask0
;
687 ana
[0] |= data
->ana
->set0
;
688 ana
[1] &= ~data
->ana
->mask1
;
689 ana
[1] |= data
->ana
->set1
;
690 ana
[3] &= ~data
->ana
->mask3
;
691 ana
[3] |= data
->ana
->set3
;
693 if (was_using_prediv
&& !use_fb_prediv
) {
694 ana
[1] &= ~data
->ana
->fb_prediv_mask
;
695 do_ana_setup_first
= true;
696 } else if (!was_using_prediv
&& use_fb_prediv
) {
697 ana
[1] |= data
->ana
->fb_prediv_mask
;
698 do_ana_setup_first
= false;
700 do_ana_setup_first
= true;
703 /* Unmask the reference clock from the oscillator. */
704 cprman_write(cprman
, A2W_XOSC_CTRL
,
705 cprman_read(cprman
, A2W_XOSC_CTRL
) |
706 data
->reference_enable_mask
);
708 if (do_ana_setup_first
)
709 bcm2835_pll_write_ana(cprman
, data
->ana_reg_base
, ana
);
711 /* Set the PLL multiplier from the oscillator. */
712 cprman_write(cprman
, data
->frac_reg
, fdiv
);
714 a2w_ctl
= cprman_read(cprman
, data
->a2w_ctrl_reg
);
715 a2w_ctl
&= ~A2W_PLL_CTRL_NDIV_MASK
;
716 a2w_ctl
|= ndiv
<< A2W_PLL_CTRL_NDIV_SHIFT
;
717 a2w_ctl
&= ~A2W_PLL_CTRL_PDIV_MASK
;
718 a2w_ctl
|= 1 << A2W_PLL_CTRL_PDIV_SHIFT
;
719 cprman_write(cprman
, data
->a2w_ctrl_reg
, a2w_ctl
);
721 if (!do_ana_setup_first
)
722 bcm2835_pll_write_ana(cprman
, data
->ana_reg_base
, ana
);
727 static int bcm2835_pll_debug_init(struct clk_hw
*hw
,
728 struct dentry
*dentry
)
730 struct bcm2835_pll
*pll
= container_of(hw
, struct bcm2835_pll
, hw
);
731 struct bcm2835_cprman
*cprman
= pll
->cprman
;
732 const struct bcm2835_pll_data
*data
= pll
->data
;
733 struct debugfs_reg32
*regs
;
735 regs
= devm_kzalloc(cprman
->dev
, 7 * sizeof(*regs
), GFP_KERNEL
);
739 regs
[0].name
= "cm_ctrl";
740 regs
[0].offset
= data
->cm_ctrl_reg
;
741 regs
[1].name
= "a2w_ctrl";
742 regs
[1].offset
= data
->a2w_ctrl_reg
;
743 regs
[2].name
= "frac";
744 regs
[2].offset
= data
->frac_reg
;
745 regs
[3].name
= "ana0";
746 regs
[3].offset
= data
->ana_reg_base
+ 0 * 4;
747 regs
[4].name
= "ana1";
748 regs
[4].offset
= data
->ana_reg_base
+ 1 * 4;
749 regs
[5].name
= "ana2";
750 regs
[5].offset
= data
->ana_reg_base
+ 2 * 4;
751 regs
[6].name
= "ana3";
752 regs
[6].offset
= data
->ana_reg_base
+ 3 * 4;
754 return bcm2835_debugfs_regset(cprman
, 0, regs
, 7, dentry
);
757 static const struct clk_ops bcm2835_pll_clk_ops
= {
758 .is_prepared
= bcm2835_pll_is_on
,
759 .prepare
= bcm2835_pll_on
,
760 .unprepare
= bcm2835_pll_off
,
761 .recalc_rate
= bcm2835_pll_get_rate
,
762 .set_rate
= bcm2835_pll_set_rate
,
763 .round_rate
= bcm2835_pll_round_rate
,
764 .debug_init
= bcm2835_pll_debug_init
,
767 struct bcm2835_pll_divider
{
768 struct clk_divider div
;
769 struct bcm2835_cprman
*cprman
;
770 const struct bcm2835_pll_divider_data
*data
;
773 static struct bcm2835_pll_divider
*
774 bcm2835_pll_divider_from_hw(struct clk_hw
*hw
)
776 return container_of(hw
, struct bcm2835_pll_divider
, div
.hw
);
779 static int bcm2835_pll_divider_is_on(struct clk_hw
*hw
)
781 struct bcm2835_pll_divider
*divider
= bcm2835_pll_divider_from_hw(hw
);
782 struct bcm2835_cprman
*cprman
= divider
->cprman
;
783 const struct bcm2835_pll_divider_data
*data
= divider
->data
;
785 return !(cprman_read(cprman
, data
->a2w_reg
) & A2W_PLL_CHANNEL_DISABLE
);
788 static long bcm2835_pll_divider_round_rate(struct clk_hw
*hw
,
790 unsigned long *parent_rate
)
792 return clk_divider_ops
.round_rate(hw
, rate
, parent_rate
);
795 static unsigned long bcm2835_pll_divider_get_rate(struct clk_hw
*hw
,
796 unsigned long parent_rate
)
798 return clk_divider_ops
.recalc_rate(hw
, parent_rate
);
801 static void bcm2835_pll_divider_off(struct clk_hw
*hw
)
803 struct bcm2835_pll_divider
*divider
= bcm2835_pll_divider_from_hw(hw
);
804 struct bcm2835_cprman
*cprman
= divider
->cprman
;
805 const struct bcm2835_pll_divider_data
*data
= divider
->data
;
807 spin_lock(&cprman
->regs_lock
);
808 cprman_write(cprman
, data
->cm_reg
,
809 (cprman_read(cprman
, data
->cm_reg
) &
810 ~data
->load_mask
) | data
->hold_mask
);
811 cprman_write(cprman
, data
->a2w_reg
,
812 cprman_read(cprman
, data
->a2w_reg
) |
813 A2W_PLL_CHANNEL_DISABLE
);
814 spin_unlock(&cprman
->regs_lock
);
817 static int bcm2835_pll_divider_on(struct clk_hw
*hw
)
819 struct bcm2835_pll_divider
*divider
= bcm2835_pll_divider_from_hw(hw
);
820 struct bcm2835_cprman
*cprman
= divider
->cprman
;
821 const struct bcm2835_pll_divider_data
*data
= divider
->data
;
823 spin_lock(&cprman
->regs_lock
);
824 cprman_write(cprman
, data
->a2w_reg
,
825 cprman_read(cprman
, data
->a2w_reg
) &
826 ~A2W_PLL_CHANNEL_DISABLE
);
828 cprman_write(cprman
, data
->cm_reg
,
829 cprman_read(cprman
, data
->cm_reg
) & ~data
->hold_mask
);
830 spin_unlock(&cprman
->regs_lock
);
835 static int bcm2835_pll_divider_set_rate(struct clk_hw
*hw
,
837 unsigned long parent_rate
)
839 struct bcm2835_pll_divider
*divider
= bcm2835_pll_divider_from_hw(hw
);
840 struct bcm2835_cprman
*cprman
= divider
->cprman
;
841 const struct bcm2835_pll_divider_data
*data
= divider
->data
;
842 u32 cm
, div
, max_div
= 1 << A2W_PLL_DIV_BITS
;
844 div
= DIV_ROUND_UP_ULL(parent_rate
, rate
);
846 div
= min(div
, max_div
);
850 cprman_write(cprman
, data
->a2w_reg
, div
);
851 cm
= cprman_read(cprman
, data
->cm_reg
);
852 cprman_write(cprman
, data
->cm_reg
, cm
| data
->load_mask
);
853 cprman_write(cprman
, data
->cm_reg
, cm
& ~data
->load_mask
);
858 static int bcm2835_pll_divider_debug_init(struct clk_hw
*hw
,
859 struct dentry
*dentry
)
861 struct bcm2835_pll_divider
*divider
= bcm2835_pll_divider_from_hw(hw
);
862 struct bcm2835_cprman
*cprman
= divider
->cprman
;
863 const struct bcm2835_pll_divider_data
*data
= divider
->data
;
864 struct debugfs_reg32
*regs
;
866 regs
= devm_kzalloc(cprman
->dev
, 7 * sizeof(*regs
), GFP_KERNEL
);
871 regs
[0].offset
= data
->cm_reg
;
872 regs
[1].name
= "a2w";
873 regs
[1].offset
= data
->a2w_reg
;
875 return bcm2835_debugfs_regset(cprman
, 0, regs
, 2, dentry
);
878 static const struct clk_ops bcm2835_pll_divider_clk_ops
= {
879 .is_prepared
= bcm2835_pll_divider_is_on
,
880 .prepare
= bcm2835_pll_divider_on
,
881 .unprepare
= bcm2835_pll_divider_off
,
882 .recalc_rate
= bcm2835_pll_divider_get_rate
,
883 .set_rate
= bcm2835_pll_divider_set_rate
,
884 .round_rate
= bcm2835_pll_divider_round_rate
,
885 .debug_init
= bcm2835_pll_divider_debug_init
,
889 * The CM dividers do fixed-point division, so we can't use the
890 * generic integer divider code like the PLL dividers do (and we can't
891 * fake it by having some fixed shifts preceding it in the clock tree,
892 * because we'd run out of bits in a 32-bit unsigned long).
894 struct bcm2835_clock
{
896 struct bcm2835_cprman
*cprman
;
897 const struct bcm2835_clock_data
*data
;
900 static struct bcm2835_clock
*bcm2835_clock_from_hw(struct clk_hw
*hw
)
902 return container_of(hw
, struct bcm2835_clock
, hw
);
905 static int bcm2835_clock_is_on(struct clk_hw
*hw
)
907 struct bcm2835_clock
*clock
= bcm2835_clock_from_hw(hw
);
908 struct bcm2835_cprman
*cprman
= clock
->cprman
;
909 const struct bcm2835_clock_data
*data
= clock
->data
;
911 return (cprman_read(cprman
, data
->ctl_reg
) & CM_ENABLE
) != 0;
914 static u32
bcm2835_clock_choose_div(struct clk_hw
*hw
,
916 unsigned long parent_rate
,
919 struct bcm2835_clock
*clock
= bcm2835_clock_from_hw(hw
);
920 const struct bcm2835_clock_data
*data
= clock
->data
;
921 u32 unused_frac_mask
=
922 GENMASK(CM_DIV_FRAC_BITS
- data
->frac_bits
, 0) >> 1;
923 u64 temp
= (u64
)parent_rate
<< CM_DIV_FRAC_BITS
;
925 u32 div
, mindiv
, maxdiv
;
927 rem
= do_div(temp
, rate
);
930 /* Round up and mask off the unused bits */
931 if (round_up
&& ((div
& unused_frac_mask
) != 0 || rem
!= 0))
932 div
+= unused_frac_mask
+ 1;
933 div
&= ~unused_frac_mask
;
935 /* different clamping limits apply for a mash clock */
936 if (data
->is_mash_clock
) {
937 /* clamp to min divider of 2 */
938 mindiv
= 2 << CM_DIV_FRAC_BITS
;
939 /* clamp to the highest possible integer divider */
940 maxdiv
= (BIT(data
->int_bits
) - 1) << CM_DIV_FRAC_BITS
;
942 /* clamp to min divider of 1 */
943 mindiv
= 1 << CM_DIV_FRAC_BITS
;
944 /* clamp to the highest possible fractional divider */
945 maxdiv
= GENMASK(data
->int_bits
+ CM_DIV_FRAC_BITS
- 1,
946 CM_DIV_FRAC_BITS
- data
->frac_bits
);
949 /* apply the clamping limits */
950 div
= max_t(u32
, div
, mindiv
);
951 div
= min_t(u32
, div
, maxdiv
);
956 static long bcm2835_clock_rate_from_divisor(struct bcm2835_clock
*clock
,
957 unsigned long parent_rate
,
960 const struct bcm2835_clock_data
*data
= clock
->data
;
963 if (data
->int_bits
== 0 && data
->frac_bits
== 0)
967 * The divisor is a 12.12 fixed point field, but only some of
968 * the bits are populated in any given clock.
970 div
>>= CM_DIV_FRAC_BITS
- data
->frac_bits
;
971 div
&= (1 << (data
->int_bits
+ data
->frac_bits
)) - 1;
976 temp
= (u64
)parent_rate
<< data
->frac_bits
;
983 static unsigned long bcm2835_clock_get_rate(struct clk_hw
*hw
,
984 unsigned long parent_rate
)
986 struct bcm2835_clock
*clock
= bcm2835_clock_from_hw(hw
);
987 struct bcm2835_cprman
*cprman
= clock
->cprman
;
988 const struct bcm2835_clock_data
*data
= clock
->data
;
991 if (data
->int_bits
== 0 && data
->frac_bits
== 0)
994 div
= cprman_read(cprman
, data
->div_reg
);
996 return bcm2835_clock_rate_from_divisor(clock
, parent_rate
, div
);
999 static void bcm2835_clock_wait_busy(struct bcm2835_clock
*clock
)
1001 struct bcm2835_cprman
*cprman
= clock
->cprman
;
1002 const struct bcm2835_clock_data
*data
= clock
->data
;
1003 ktime_t timeout
= ktime_add_ns(ktime_get(), LOCK_TIMEOUT_NS
);
1005 while (cprman_read(cprman
, data
->ctl_reg
) & CM_BUSY
) {
1006 if (ktime_after(ktime_get(), timeout
)) {
1007 dev_err(cprman
->dev
, "%s: couldn't lock PLL\n",
1008 clk_hw_get_name(&clock
->hw
));
1015 static void bcm2835_clock_off(struct clk_hw
*hw
)
1017 struct bcm2835_clock
*clock
= bcm2835_clock_from_hw(hw
);
1018 struct bcm2835_cprman
*cprman
= clock
->cprman
;
1019 const struct bcm2835_clock_data
*data
= clock
->data
;
1021 spin_lock(&cprman
->regs_lock
);
1022 cprman_write(cprman
, data
->ctl_reg
,
1023 cprman_read(cprman
, data
->ctl_reg
) & ~CM_ENABLE
);
1024 spin_unlock(&cprman
->regs_lock
);
1026 /* BUSY will remain high until the divider completes its cycle. */
1027 bcm2835_clock_wait_busy(clock
);
1030 static int bcm2835_clock_on(struct clk_hw
*hw
)
1032 struct bcm2835_clock
*clock
= bcm2835_clock_from_hw(hw
);
1033 struct bcm2835_cprman
*cprman
= clock
->cprman
;
1034 const struct bcm2835_clock_data
*data
= clock
->data
;
1036 spin_lock(&cprman
->regs_lock
);
1037 cprman_write(cprman
, data
->ctl_reg
,
1038 cprman_read(cprman
, data
->ctl_reg
) |
1041 spin_unlock(&cprman
->regs_lock
);
1043 /* Debug code to measure the clock once it's turned on to see
1044 * if it's ticking at the rate we expect.
1046 if (data
->tcnt_mux
&& false) {
1047 dev_info(cprman
->dev
,
1048 "clk %s: rate %ld, measure %ld\n",
1050 clk_hw_get_rate(hw
),
1051 bcm2835_measure_tcnt_mux(cprman
, data
->tcnt_mux
));
1057 static int bcm2835_clock_set_rate(struct clk_hw
*hw
,
1058 unsigned long rate
, unsigned long parent_rate
)
1060 struct bcm2835_clock
*clock
= bcm2835_clock_from_hw(hw
);
1061 struct bcm2835_cprman
*cprman
= clock
->cprman
;
1062 const struct bcm2835_clock_data
*data
= clock
->data
;
1063 u32 div
= bcm2835_clock_choose_div(hw
, rate
, parent_rate
, false);
1066 spin_lock(&cprman
->regs_lock
);
1069 * Setting up frac support
1071 * In principle it is recommended to stop/start the clock first,
1072 * but as we set CLK_SET_RATE_GATE during registration of the
1073 * clock this requirement should be take care of by the
1076 ctl
= cprman_read(cprman
, data
->ctl_reg
) & ~CM_FRAC
;
1077 ctl
|= (div
& CM_DIV_FRAC_MASK
) ? CM_FRAC
: 0;
1078 cprman_write(cprman
, data
->ctl_reg
, ctl
);
1080 cprman_write(cprman
, data
->div_reg
, div
);
1082 spin_unlock(&cprman
->regs_lock
);
1088 bcm2835_clk_is_pllc(struct clk_hw
*hw
)
1093 return strncmp(clk_hw_get_name(hw
), "pllc", 4) == 0;
1096 static unsigned long bcm2835_clock_choose_div_and_prate(struct clk_hw
*hw
,
1100 unsigned long *prate
,
1101 unsigned long *avgrate
)
1103 struct bcm2835_clock
*clock
= bcm2835_clock_from_hw(hw
);
1104 struct bcm2835_cprman
*cprman
= clock
->cprman
;
1105 const struct bcm2835_clock_data
*data
= clock
->data
;
1106 unsigned long best_rate
= 0;
1107 u32 curdiv
, mindiv
, maxdiv
;
1108 struct clk_hw
*parent
;
1110 parent
= clk_hw_get_parent_by_index(hw
, parent_idx
);
1112 if (!(BIT(parent_idx
) & data
->set_rate_parent
)) {
1113 *prate
= clk_hw_get_rate(parent
);
1114 *div
= bcm2835_clock_choose_div(hw
, rate
, *prate
, true);
1116 *avgrate
= bcm2835_clock_rate_from_divisor(clock
, *prate
, *div
);
1118 if (data
->low_jitter
&& (*div
& CM_DIV_FRAC_MASK
)) {
1119 unsigned long high
, low
;
1120 u32 int_div
= *div
& ~CM_DIV_FRAC_MASK
;
1122 high
= bcm2835_clock_rate_from_divisor(clock
, *prate
,
1124 int_div
+= CM_DIV_FRAC_MASK
+ 1;
1125 low
= bcm2835_clock_rate_from_divisor(clock
, *prate
,
1129 * Return a value which is the maximum deviation
1130 * below the ideal rate, for use as a metric.
1132 return *avgrate
- max(*avgrate
- low
, high
- *avgrate
);
1137 if (data
->frac_bits
)
1138 dev_warn(cprman
->dev
,
1139 "frac bits are not used when propagating rate change");
1141 /* clamp to min divider of 2 if we're dealing with a mash clock */
1142 mindiv
= data
->is_mash_clock
? 2 : 1;
1143 maxdiv
= BIT(data
->int_bits
) - 1;
1145 /* TODO: Be smart, and only test a subset of the available divisors. */
1146 for (curdiv
= mindiv
; curdiv
<= maxdiv
; curdiv
++) {
1147 unsigned long tmp_rate
;
1149 tmp_rate
= clk_hw_round_rate(parent
, rate
* curdiv
);
1151 if (curdiv
== mindiv
||
1152 (tmp_rate
> best_rate
&& tmp_rate
<= rate
))
1153 best_rate
= tmp_rate
;
1155 if (best_rate
== rate
)
1159 *div
= curdiv
<< CM_DIV_FRAC_BITS
;
1160 *prate
= curdiv
* best_rate
;
1161 *avgrate
= best_rate
;
1166 static int bcm2835_clock_determine_rate(struct clk_hw
*hw
,
1167 struct clk_rate_request
*req
)
1169 struct clk_hw
*parent
, *best_parent
= NULL
;
1170 bool current_parent_is_pllc
;
1171 unsigned long rate
, best_rate
= 0;
1172 unsigned long prate
, best_prate
= 0;
1173 unsigned long avgrate
, best_avgrate
= 0;
1177 current_parent_is_pllc
= bcm2835_clk_is_pllc(clk_hw_get_parent(hw
));
1180 * Select parent clock that results in the closest but lower rate
1182 for (i
= 0; i
< clk_hw_get_num_parents(hw
); ++i
) {
1183 parent
= clk_hw_get_parent_by_index(hw
, i
);
1188 * Don't choose a PLLC-derived clock as our parent
1189 * unless it had been manually set that way. PLLC's
1190 * frequency gets adjusted by the firmware due to
1191 * over-temp or under-voltage conditions, without
1192 * prior notification to our clock consumer.
1194 if (bcm2835_clk_is_pllc(parent
) && !current_parent_is_pllc
)
1197 rate
= bcm2835_clock_choose_div_and_prate(hw
, i
, req
->rate
,
1200 if (rate
> best_rate
&& rate
<= req
->rate
) {
1201 best_parent
= parent
;
1204 best_avgrate
= avgrate
;
1211 req
->best_parent_hw
= best_parent
;
1212 req
->best_parent_rate
= best_prate
;
1214 req
->rate
= best_avgrate
;
1219 static int bcm2835_clock_set_parent(struct clk_hw
*hw
, u8 index
)
1221 struct bcm2835_clock
*clock
= bcm2835_clock_from_hw(hw
);
1222 struct bcm2835_cprman
*cprman
= clock
->cprman
;
1223 const struct bcm2835_clock_data
*data
= clock
->data
;
1224 u8 src
= (index
<< CM_SRC_SHIFT
) & CM_SRC_MASK
;
1226 cprman_write(cprman
, data
->ctl_reg
, src
);
1230 static u8
bcm2835_clock_get_parent(struct clk_hw
*hw
)
1232 struct bcm2835_clock
*clock
= bcm2835_clock_from_hw(hw
);
1233 struct bcm2835_cprman
*cprman
= clock
->cprman
;
1234 const struct bcm2835_clock_data
*data
= clock
->data
;
1235 u32 src
= cprman_read(cprman
, data
->ctl_reg
);
1237 return (src
& CM_SRC_MASK
) >> CM_SRC_SHIFT
;
1240 static struct debugfs_reg32 bcm2835_debugfs_clock_reg32
[] = {
1251 static int bcm2835_clock_debug_init(struct clk_hw
*hw
,
1252 struct dentry
*dentry
)
1254 struct bcm2835_clock
*clock
= bcm2835_clock_from_hw(hw
);
1255 struct bcm2835_cprman
*cprman
= clock
->cprman
;
1256 const struct bcm2835_clock_data
*data
= clock
->data
;
1258 return bcm2835_debugfs_regset(
1259 cprman
, data
->ctl_reg
,
1260 bcm2835_debugfs_clock_reg32
,
1261 ARRAY_SIZE(bcm2835_debugfs_clock_reg32
),
1265 static const struct clk_ops bcm2835_clock_clk_ops
= {
1266 .is_prepared
= bcm2835_clock_is_on
,
1267 .prepare
= bcm2835_clock_on
,
1268 .unprepare
= bcm2835_clock_off
,
1269 .recalc_rate
= bcm2835_clock_get_rate
,
1270 .set_rate
= bcm2835_clock_set_rate
,
1271 .determine_rate
= bcm2835_clock_determine_rate
,
1272 .set_parent
= bcm2835_clock_set_parent
,
1273 .get_parent
= bcm2835_clock_get_parent
,
1274 .debug_init
= bcm2835_clock_debug_init
,
1277 static int bcm2835_vpu_clock_is_on(struct clk_hw
*hw
)
1283 * The VPU clock can never be disabled (it doesn't have an ENABLE
1284 * bit), so it gets its own set of clock ops.
1286 static const struct clk_ops bcm2835_vpu_clock_clk_ops
= {
1287 .is_prepared
= bcm2835_vpu_clock_is_on
,
1288 .recalc_rate
= bcm2835_clock_get_rate
,
1289 .set_rate
= bcm2835_clock_set_rate
,
1290 .determine_rate
= bcm2835_clock_determine_rate
,
1291 .set_parent
= bcm2835_clock_set_parent
,
1292 .get_parent
= bcm2835_clock_get_parent
,
1293 .debug_init
= bcm2835_clock_debug_init
,
1296 static struct clk_hw
*bcm2835_register_pll(struct bcm2835_cprman
*cprman
,
1297 const struct bcm2835_pll_data
*data
)
1299 struct bcm2835_pll
*pll
;
1300 struct clk_init_data init
;
1303 memset(&init
, 0, sizeof(init
));
1305 /* All of the PLLs derive from the external oscillator. */
1306 init
.parent_names
= &cprman
->real_parent_names
[0];
1307 init
.num_parents
= 1;
1308 init
.name
= data
->name
;
1309 init
.ops
= &bcm2835_pll_clk_ops
;
1310 init
.flags
= CLK_IGNORE_UNUSED
;
1312 pll
= kzalloc(sizeof(*pll
), GFP_KERNEL
);
1316 pll
->cprman
= cprman
;
1318 pll
->hw
.init
= &init
;
1320 ret
= devm_clk_hw_register(cprman
->dev
, &pll
->hw
);
1326 static struct clk_hw
*
1327 bcm2835_register_pll_divider(struct bcm2835_cprman
*cprman
,
1328 const struct bcm2835_pll_divider_data
*data
)
1330 struct bcm2835_pll_divider
*divider
;
1331 struct clk_init_data init
;
1332 const char *divider_name
;
1335 if (data
->fixed_divider
!= 1) {
1336 divider_name
= devm_kasprintf(cprman
->dev
, GFP_KERNEL
,
1337 "%s_prediv", data
->name
);
1341 divider_name
= data
->name
;
1344 memset(&init
, 0, sizeof(init
));
1346 init
.parent_names
= &data
->source_pll
;
1347 init
.num_parents
= 1;
1348 init
.name
= divider_name
;
1349 init
.ops
= &bcm2835_pll_divider_clk_ops
;
1350 init
.flags
= data
->flags
| CLK_IGNORE_UNUSED
;
1352 divider
= devm_kzalloc(cprman
->dev
, sizeof(*divider
), GFP_KERNEL
);
1356 divider
->div
.reg
= cprman
->regs
+ data
->a2w_reg
;
1357 divider
->div
.shift
= A2W_PLL_DIV_SHIFT
;
1358 divider
->div
.width
= A2W_PLL_DIV_BITS
;
1359 divider
->div
.flags
= CLK_DIVIDER_MAX_AT_ZERO
;
1360 divider
->div
.lock
= &cprman
->regs_lock
;
1361 divider
->div
.hw
.init
= &init
;
1362 divider
->div
.table
= NULL
;
1364 divider
->cprman
= cprman
;
1365 divider
->data
= data
;
1367 ret
= devm_clk_hw_register(cprman
->dev
, ÷r
->div
.hw
);
1369 return ERR_PTR(ret
);
1372 * PLLH's channels have a fixed divide by 10 afterwards, which
1373 * is what our consumers are actually using.
1375 if (data
->fixed_divider
!= 1) {
1376 return clk_hw_register_fixed_factor(cprman
->dev
, data
->name
,
1378 CLK_SET_RATE_PARENT
,
1380 data
->fixed_divider
);
1383 return ÷r
->div
.hw
;
1386 static struct clk_hw
*bcm2835_register_clock(struct bcm2835_cprman
*cprman
,
1387 const struct bcm2835_clock_data
*data
)
1389 struct bcm2835_clock
*clock
;
1390 struct clk_init_data init
;
1391 const char *parents
[1 << CM_SRC_BITS
];
1396 * Replace our strings referencing parent clocks with the
1397 * actual clock-output-name of the parent.
1399 for (i
= 0; i
< data
->num_mux_parents
; i
++) {
1400 parents
[i
] = data
->parents
[i
];
1402 for (j
= 0; j
< ARRAY_SIZE(cprman_parent_names
); j
++) {
1403 if (strcmp(parents
[i
], cprman_parent_names
[j
]) == 0) {
1404 parents
[i
] = cprman
->real_parent_names
[j
];
1410 memset(&init
, 0, sizeof(init
));
1411 init
.parent_names
= parents
;
1412 init
.num_parents
= data
->num_mux_parents
;
1413 init
.name
= data
->name
;
1414 init
.flags
= data
->flags
| CLK_IGNORE_UNUSED
;
1417 * Pass the CLK_SET_RATE_PARENT flag if we are allowed to propagate
1418 * rate changes on at least of the parents.
1420 if (data
->set_rate_parent
)
1421 init
.flags
|= CLK_SET_RATE_PARENT
;
1423 if (data
->is_vpu_clock
) {
1424 init
.ops
= &bcm2835_vpu_clock_clk_ops
;
1426 init
.ops
= &bcm2835_clock_clk_ops
;
1427 init
.flags
|= CLK_SET_RATE_GATE
| CLK_SET_PARENT_GATE
;
1429 /* If the clock wasn't actually enabled at boot, it's not
1432 if (!(cprman_read(cprman
, data
->ctl_reg
) & CM_ENABLE
))
1433 init
.flags
&= ~CLK_IS_CRITICAL
;
1436 clock
= devm_kzalloc(cprman
->dev
, sizeof(*clock
), GFP_KERNEL
);
1440 clock
->cprman
= cprman
;
1442 clock
->hw
.init
= &init
;
1444 ret
= devm_clk_hw_register(cprman
->dev
, &clock
->hw
);
1446 return ERR_PTR(ret
);
1450 static struct clk
*bcm2835_register_gate(struct bcm2835_cprman
*cprman
,
1451 const struct bcm2835_gate_data
*data
)
1453 return clk_register_gate(cprman
->dev
, data
->name
, data
->parent
,
1454 CLK_IGNORE_UNUSED
| CLK_SET_RATE_GATE
,
1455 cprman
->regs
+ data
->ctl_reg
,
1456 CM_GATE_BIT
, 0, &cprman
->regs_lock
);
1459 typedef struct clk_hw
*(*bcm2835_clk_register
)(struct bcm2835_cprman
*cprman
,
1461 struct bcm2835_clk_desc
{
1462 bcm2835_clk_register clk_register
;
1466 /* assignment helper macros for different clock types */
1467 #define _REGISTER(f, ...) { .clk_register = (bcm2835_clk_register)f, \
1468 .data = __VA_ARGS__ }
1469 #define REGISTER_PLL(...) _REGISTER(&bcm2835_register_pll, \
1470 &(struct bcm2835_pll_data) \
1472 #define REGISTER_PLL_DIV(...) _REGISTER(&bcm2835_register_pll_divider, \
1473 &(struct bcm2835_pll_divider_data) \
1475 #define REGISTER_CLK(...) _REGISTER(&bcm2835_register_clock, \
1476 &(struct bcm2835_clock_data) \
1478 #define REGISTER_GATE(...) _REGISTER(&bcm2835_register_gate, \
1479 &(struct bcm2835_gate_data) \
1482 /* parent mux arrays plus helper macros */
1484 /* main oscillator parent mux */
1485 static const char *const bcm2835_clock_osc_parents
[] = {
1492 #define REGISTER_OSC_CLK(...) REGISTER_CLK( \
1493 .num_mux_parents = ARRAY_SIZE(bcm2835_clock_osc_parents), \
1494 .parents = bcm2835_clock_osc_parents, \
1497 /* main peripherial parent mux */
1498 static const char *const bcm2835_clock_per_parents
[] = {
1509 #define REGISTER_PER_CLK(...) REGISTER_CLK( \
1510 .num_mux_parents = ARRAY_SIZE(bcm2835_clock_per_parents), \
1511 .parents = bcm2835_clock_per_parents, \
1515 * Restrict clock sources for the PCM peripheral to the oscillator and
1516 * PLLD_PER because other source may have varying rates or be switched
1519 * Prevent other sources from being selected by replacing their names in
1520 * the list of potential parents with dummy entries (entry index is
1523 static const char *const bcm2835_pcm_per_parents
[] = {
1534 #define REGISTER_PCM_CLK(...) REGISTER_CLK( \
1535 .num_mux_parents = ARRAY_SIZE(bcm2835_pcm_per_parents), \
1536 .parents = bcm2835_pcm_per_parents, \
1539 /* main vpu parent mux */
1540 static const char *const bcm2835_clock_vpu_parents
[] = {
1553 #define REGISTER_VPU_CLK(...) REGISTER_CLK( \
1554 .num_mux_parents = ARRAY_SIZE(bcm2835_clock_vpu_parents), \
1555 .parents = bcm2835_clock_vpu_parents, \
1559 * DSI parent clocks. The DSI byte/DDR/DDR2 clocks come from the DSI
1560 * analog PHY. The _inv variants are generated internally to cprman,
1561 * but we don't use them so they aren't hooked up.
1563 static const char *const bcm2835_clock_dsi0_parents
[] = {
1576 static const char *const bcm2835_clock_dsi1_parents
[] = {
1589 #define REGISTER_DSI0_CLK(...) REGISTER_CLK( \
1590 .num_mux_parents = ARRAY_SIZE(bcm2835_clock_dsi0_parents), \
1591 .parents = bcm2835_clock_dsi0_parents, \
1594 #define REGISTER_DSI1_CLK(...) REGISTER_CLK( \
1595 .num_mux_parents = ARRAY_SIZE(bcm2835_clock_dsi1_parents), \
1596 .parents = bcm2835_clock_dsi1_parents, \
1600 * the real definition of all the pll, pll_dividers and clocks
1601 * these make use of the above REGISTER_* macros
1603 static const struct bcm2835_clk_desc clk_desc_array
[] = {
1604 /* the PLL + PLL dividers */
1607 * PLLA is the auxiliary PLL, used to drive the CCP2
1608 * (Compact Camera Port 2) transmitter clock.
1610 * It is in the PX LDO power domain, which is on when the
1611 * AUDIO domain is on.
1613 [BCM2835_PLLA
] = REGISTER_PLL(
1615 .cm_ctrl_reg
= CM_PLLA
,
1616 .a2w_ctrl_reg
= A2W_PLLA_CTRL
,
1617 .frac_reg
= A2W_PLLA_FRAC
,
1618 .ana_reg_base
= A2W_PLLA_ANA0
,
1619 .reference_enable_mask
= A2W_XOSC_CTRL_PLLA_ENABLE
,
1620 .lock_mask
= CM_LOCK_FLOCKA
,
1622 .ana
= &bcm2835_ana_default
,
1624 .min_rate
= 600000000u,
1625 .max_rate
= 2400000000u,
1626 .max_fb_rate
= BCM2835_MAX_FB_RATE
),
1627 [BCM2835_PLLA_CORE
] = REGISTER_PLL_DIV(
1628 .name
= "plla_core",
1629 .source_pll
= "plla",
1631 .a2w_reg
= A2W_PLLA_CORE
,
1632 .load_mask
= CM_PLLA_LOADCORE
,
1633 .hold_mask
= CM_PLLA_HOLDCORE
,
1635 .flags
= CLK_SET_RATE_PARENT
),
1636 [BCM2835_PLLA_PER
] = REGISTER_PLL_DIV(
1638 .source_pll
= "plla",
1640 .a2w_reg
= A2W_PLLA_PER
,
1641 .load_mask
= CM_PLLA_LOADPER
,
1642 .hold_mask
= CM_PLLA_HOLDPER
,
1644 .flags
= CLK_SET_RATE_PARENT
),
1645 [BCM2835_PLLA_DSI0
] = REGISTER_PLL_DIV(
1646 .name
= "plla_dsi0",
1647 .source_pll
= "plla",
1649 .a2w_reg
= A2W_PLLA_DSI0
,
1650 .load_mask
= CM_PLLA_LOADDSI0
,
1651 .hold_mask
= CM_PLLA_HOLDDSI0
,
1652 .fixed_divider
= 1),
1653 [BCM2835_PLLA_CCP2
] = REGISTER_PLL_DIV(
1654 .name
= "plla_ccp2",
1655 .source_pll
= "plla",
1657 .a2w_reg
= A2W_PLLA_CCP2
,
1658 .load_mask
= CM_PLLA_LOADCCP2
,
1659 .hold_mask
= CM_PLLA_HOLDCCP2
,
1661 .flags
= CLK_SET_RATE_PARENT
),
1663 /* PLLB is used for the ARM's clock. */
1664 [BCM2835_PLLB
] = REGISTER_PLL(
1666 .cm_ctrl_reg
= CM_PLLB
,
1667 .a2w_ctrl_reg
= A2W_PLLB_CTRL
,
1668 .frac_reg
= A2W_PLLB_FRAC
,
1669 .ana_reg_base
= A2W_PLLB_ANA0
,
1670 .reference_enable_mask
= A2W_XOSC_CTRL_PLLB_ENABLE
,
1671 .lock_mask
= CM_LOCK_FLOCKB
,
1673 .ana
= &bcm2835_ana_default
,
1675 .min_rate
= 600000000u,
1676 .max_rate
= 3000000000u,
1677 .max_fb_rate
= BCM2835_MAX_FB_RATE
),
1678 [BCM2835_PLLB_ARM
] = REGISTER_PLL_DIV(
1680 .source_pll
= "pllb",
1682 .a2w_reg
= A2W_PLLB_ARM
,
1683 .load_mask
= CM_PLLB_LOADARM
,
1684 .hold_mask
= CM_PLLB_HOLDARM
,
1686 .flags
= CLK_SET_RATE_PARENT
),
1689 * PLLC is the core PLL, used to drive the core VPU clock.
1691 * It is in the PX LDO power domain, which is on when the
1692 * AUDIO domain is on.
1694 [BCM2835_PLLC
] = REGISTER_PLL(
1696 .cm_ctrl_reg
= CM_PLLC
,
1697 .a2w_ctrl_reg
= A2W_PLLC_CTRL
,
1698 .frac_reg
= A2W_PLLC_FRAC
,
1699 .ana_reg_base
= A2W_PLLC_ANA0
,
1700 .reference_enable_mask
= A2W_XOSC_CTRL_PLLC_ENABLE
,
1701 .lock_mask
= CM_LOCK_FLOCKC
,
1703 .ana
= &bcm2835_ana_default
,
1705 .min_rate
= 600000000u,
1706 .max_rate
= 3000000000u,
1707 .max_fb_rate
= BCM2835_MAX_FB_RATE
),
1708 [BCM2835_PLLC_CORE0
] = REGISTER_PLL_DIV(
1709 .name
= "pllc_core0",
1710 .source_pll
= "pllc",
1712 .a2w_reg
= A2W_PLLC_CORE0
,
1713 .load_mask
= CM_PLLC_LOADCORE0
,
1714 .hold_mask
= CM_PLLC_HOLDCORE0
,
1716 .flags
= CLK_SET_RATE_PARENT
),
1717 [BCM2835_PLLC_CORE1
] = REGISTER_PLL_DIV(
1718 .name
= "pllc_core1",
1719 .source_pll
= "pllc",
1721 .a2w_reg
= A2W_PLLC_CORE1
,
1722 .load_mask
= CM_PLLC_LOADCORE1
,
1723 .hold_mask
= CM_PLLC_HOLDCORE1
,
1725 .flags
= CLK_SET_RATE_PARENT
),
1726 [BCM2835_PLLC_CORE2
] = REGISTER_PLL_DIV(
1727 .name
= "pllc_core2",
1728 .source_pll
= "pllc",
1730 .a2w_reg
= A2W_PLLC_CORE2
,
1731 .load_mask
= CM_PLLC_LOADCORE2
,
1732 .hold_mask
= CM_PLLC_HOLDCORE2
,
1734 .flags
= CLK_SET_RATE_PARENT
),
1735 [BCM2835_PLLC_PER
] = REGISTER_PLL_DIV(
1737 .source_pll
= "pllc",
1739 .a2w_reg
= A2W_PLLC_PER
,
1740 .load_mask
= CM_PLLC_LOADPER
,
1741 .hold_mask
= CM_PLLC_HOLDPER
,
1743 .flags
= CLK_SET_RATE_PARENT
),
1746 * PLLD is the display PLL, used to drive DSI display panels.
1748 * It is in the PX LDO power domain, which is on when the
1749 * AUDIO domain is on.
1751 [BCM2835_PLLD
] = REGISTER_PLL(
1753 .cm_ctrl_reg
= CM_PLLD
,
1754 .a2w_ctrl_reg
= A2W_PLLD_CTRL
,
1755 .frac_reg
= A2W_PLLD_FRAC
,
1756 .ana_reg_base
= A2W_PLLD_ANA0
,
1757 .reference_enable_mask
= A2W_XOSC_CTRL_DDR_ENABLE
,
1758 .lock_mask
= CM_LOCK_FLOCKD
,
1760 .ana
= &bcm2835_ana_default
,
1762 .min_rate
= 600000000u,
1763 .max_rate
= 2400000000u,
1764 .max_fb_rate
= BCM2835_MAX_FB_RATE
),
1765 [BCM2835_PLLD_CORE
] = REGISTER_PLL_DIV(
1766 .name
= "plld_core",
1767 .source_pll
= "plld",
1769 .a2w_reg
= A2W_PLLD_CORE
,
1770 .load_mask
= CM_PLLD_LOADCORE
,
1771 .hold_mask
= CM_PLLD_HOLDCORE
,
1773 .flags
= CLK_SET_RATE_PARENT
),
1774 [BCM2835_PLLD_PER
] = REGISTER_PLL_DIV(
1776 .source_pll
= "plld",
1778 .a2w_reg
= A2W_PLLD_PER
,
1779 .load_mask
= CM_PLLD_LOADPER
,
1780 .hold_mask
= CM_PLLD_HOLDPER
,
1782 .flags
= CLK_SET_RATE_PARENT
),
1783 [BCM2835_PLLD_DSI0
] = REGISTER_PLL_DIV(
1784 .name
= "plld_dsi0",
1785 .source_pll
= "plld",
1787 .a2w_reg
= A2W_PLLD_DSI0
,
1788 .load_mask
= CM_PLLD_LOADDSI0
,
1789 .hold_mask
= CM_PLLD_HOLDDSI0
,
1790 .fixed_divider
= 1),
1791 [BCM2835_PLLD_DSI1
] = REGISTER_PLL_DIV(
1792 .name
= "plld_dsi1",
1793 .source_pll
= "plld",
1795 .a2w_reg
= A2W_PLLD_DSI1
,
1796 .load_mask
= CM_PLLD_LOADDSI1
,
1797 .hold_mask
= CM_PLLD_HOLDDSI1
,
1798 .fixed_divider
= 1),
1801 * PLLH is used to supply the pixel clock or the AUX clock for the
1804 * It is in the HDMI power domain.
1806 [BCM2835_PLLH
] = REGISTER_PLL(
1808 .cm_ctrl_reg
= CM_PLLH
,
1809 .a2w_ctrl_reg
= A2W_PLLH_CTRL
,
1810 .frac_reg
= A2W_PLLH_FRAC
,
1811 .ana_reg_base
= A2W_PLLH_ANA0
,
1812 .reference_enable_mask
= A2W_XOSC_CTRL_PLLC_ENABLE
,
1813 .lock_mask
= CM_LOCK_FLOCKH
,
1815 .ana
= &bcm2835_ana_pllh
,
1817 .min_rate
= 600000000u,
1818 .max_rate
= 3000000000u,
1819 .max_fb_rate
= BCM2835_MAX_FB_RATE
),
1820 [BCM2835_PLLH_RCAL
] = REGISTER_PLL_DIV(
1821 .name
= "pllh_rcal",
1822 .source_pll
= "pllh",
1824 .a2w_reg
= A2W_PLLH_RCAL
,
1825 .load_mask
= CM_PLLH_LOADRCAL
,
1827 .fixed_divider
= 10,
1828 .flags
= CLK_SET_RATE_PARENT
),
1829 [BCM2835_PLLH_AUX
] = REGISTER_PLL_DIV(
1831 .source_pll
= "pllh",
1833 .a2w_reg
= A2W_PLLH_AUX
,
1834 .load_mask
= CM_PLLH_LOADAUX
,
1837 .flags
= CLK_SET_RATE_PARENT
),
1838 [BCM2835_PLLH_PIX
] = REGISTER_PLL_DIV(
1840 .source_pll
= "pllh",
1842 .a2w_reg
= A2W_PLLH_PIX
,
1843 .load_mask
= CM_PLLH_LOADPIX
,
1845 .fixed_divider
= 10,
1846 .flags
= CLK_SET_RATE_PARENT
),
1850 /* clocks with oscillator parent mux */
1852 /* One Time Programmable Memory clock. Maximum 10Mhz. */
1853 [BCM2835_CLOCK_OTP
] = REGISTER_OSC_CLK(
1855 .ctl_reg
= CM_OTPCTL
,
1856 .div_reg
= CM_OTPDIV
,
1861 * Used for a 1Mhz clock for the system clocksource, and also used
1862 * bythe watchdog timer and the camera pulse generator.
1864 [BCM2835_CLOCK_TIMER
] = REGISTER_OSC_CLK(
1866 .ctl_reg
= CM_TIMERCTL
,
1867 .div_reg
= CM_TIMERDIV
,
1871 * Clock for the temperature sensor.
1872 * Generally run at 2Mhz, max 5Mhz.
1874 [BCM2835_CLOCK_TSENS
] = REGISTER_OSC_CLK(
1876 .ctl_reg
= CM_TSENSCTL
,
1877 .div_reg
= CM_TSENSDIV
,
1880 [BCM2835_CLOCK_TEC
] = REGISTER_OSC_CLK(
1882 .ctl_reg
= CM_TECCTL
,
1883 .div_reg
= CM_TECDIV
,
1887 /* clocks with vpu parent mux */
1888 [BCM2835_CLOCK_H264
] = REGISTER_VPU_CLK(
1890 .ctl_reg
= CM_H264CTL
,
1891 .div_reg
= CM_H264DIV
,
1895 [BCM2835_CLOCK_ISP
] = REGISTER_VPU_CLK(
1897 .ctl_reg
= CM_ISPCTL
,
1898 .div_reg
= CM_ISPDIV
,
1904 * Secondary SDRAM clock. Used for low-voltage modes when the PLL
1905 * in the SDRAM controller can't be used.
1907 [BCM2835_CLOCK_SDRAM
] = REGISTER_VPU_CLK(
1909 .ctl_reg
= CM_SDCCTL
,
1910 .div_reg
= CM_SDCDIV
,
1914 [BCM2835_CLOCK_V3D
] = REGISTER_VPU_CLK(
1916 .ctl_reg
= CM_V3DCTL
,
1917 .div_reg
= CM_V3DDIV
,
1922 * VPU clock. This doesn't have an enable bit, since it drives
1923 * the bus for everything else, and is special so it doesn't need
1924 * to be gated for rate changes. It is also known as "clk_audio"
1925 * in various hardware documentation.
1927 [BCM2835_CLOCK_VPU
] = REGISTER_VPU_CLK(
1929 .ctl_reg
= CM_VPUCTL
,
1930 .div_reg
= CM_VPUDIV
,
1933 .flags
= CLK_IS_CRITICAL
,
1934 .is_vpu_clock
= true,
1937 /* clocks with per parent mux */
1938 [BCM2835_CLOCK_AVEO
] = REGISTER_PER_CLK(
1940 .ctl_reg
= CM_AVEOCTL
,
1941 .div_reg
= CM_AVEODIV
,
1945 [BCM2835_CLOCK_CAM0
] = REGISTER_PER_CLK(
1947 .ctl_reg
= CM_CAM0CTL
,
1948 .div_reg
= CM_CAM0DIV
,
1952 [BCM2835_CLOCK_CAM1
] = REGISTER_PER_CLK(
1954 .ctl_reg
= CM_CAM1CTL
,
1955 .div_reg
= CM_CAM1DIV
,
1959 [BCM2835_CLOCK_DFT
] = REGISTER_PER_CLK(
1961 .ctl_reg
= CM_DFTCTL
,
1962 .div_reg
= CM_DFTDIV
,
1965 [BCM2835_CLOCK_DPI
] = REGISTER_PER_CLK(
1967 .ctl_reg
= CM_DPICTL
,
1968 .div_reg
= CM_DPIDIV
,
1973 /* Arasan EMMC clock */
1974 [BCM2835_CLOCK_EMMC
] = REGISTER_PER_CLK(
1976 .ctl_reg
= CM_EMMCCTL
,
1977 .div_reg
= CM_EMMCDIV
,
1982 /* General purpose (GPIO) clocks */
1983 [BCM2835_CLOCK_GP0
] = REGISTER_PER_CLK(
1985 .ctl_reg
= CM_GP0CTL
,
1986 .div_reg
= CM_GP0DIV
,
1989 .is_mash_clock
= true,
1991 [BCM2835_CLOCK_GP1
] = REGISTER_PER_CLK(
1993 .ctl_reg
= CM_GP1CTL
,
1994 .div_reg
= CM_GP1DIV
,
1997 .flags
= CLK_IS_CRITICAL
,
1998 .is_mash_clock
= true,
2000 [BCM2835_CLOCK_GP2
] = REGISTER_PER_CLK(
2002 .ctl_reg
= CM_GP2CTL
,
2003 .div_reg
= CM_GP2DIV
,
2006 .flags
= CLK_IS_CRITICAL
),
2008 /* HDMI state machine */
2009 [BCM2835_CLOCK_HSM
] = REGISTER_PER_CLK(
2011 .ctl_reg
= CM_HSMCTL
,
2012 .div_reg
= CM_HSMDIV
,
2016 [BCM2835_CLOCK_PCM
] = REGISTER_PCM_CLK(
2018 .ctl_reg
= CM_PCMCTL
,
2019 .div_reg
= CM_PCMDIV
,
2022 .is_mash_clock
= true,
2025 [BCM2835_CLOCK_PWM
] = REGISTER_PER_CLK(
2027 .ctl_reg
= CM_PWMCTL
,
2028 .div_reg
= CM_PWMDIV
,
2031 .is_mash_clock
= true,
2033 [BCM2835_CLOCK_SLIM
] = REGISTER_PER_CLK(
2035 .ctl_reg
= CM_SLIMCTL
,
2036 .div_reg
= CM_SLIMDIV
,
2039 .is_mash_clock
= true,
2041 [BCM2835_CLOCK_SMI
] = REGISTER_PER_CLK(
2043 .ctl_reg
= CM_SMICTL
,
2044 .div_reg
= CM_SMIDIV
,
2048 [BCM2835_CLOCK_UART
] = REGISTER_PER_CLK(
2050 .ctl_reg
= CM_UARTCTL
,
2051 .div_reg
= CM_UARTDIV
,
2056 /* TV encoder clock. Only operating frequency is 108Mhz. */
2057 [BCM2835_CLOCK_VEC
] = REGISTER_PER_CLK(
2059 .ctl_reg
= CM_VECCTL
,
2060 .div_reg
= CM_VECDIV
,
2064 * Allow rate change propagation only on PLLH_AUX which is
2065 * assigned index 7 in the parent array.
2067 .set_rate_parent
= BIT(7),
2071 [BCM2835_CLOCK_DSI0E
] = REGISTER_PER_CLK(
2073 .ctl_reg
= CM_DSI0ECTL
,
2074 .div_reg
= CM_DSI0EDIV
,
2078 [BCM2835_CLOCK_DSI1E
] = REGISTER_PER_CLK(
2080 .ctl_reg
= CM_DSI1ECTL
,
2081 .div_reg
= CM_DSI1EDIV
,
2085 [BCM2835_CLOCK_DSI0P
] = REGISTER_DSI0_CLK(
2087 .ctl_reg
= CM_DSI0PCTL
,
2088 .div_reg
= CM_DSI0PDIV
,
2092 [BCM2835_CLOCK_DSI1P
] = REGISTER_DSI1_CLK(
2094 .ctl_reg
= CM_DSI1PCTL
,
2095 .div_reg
= CM_DSI1PDIV
,
2103 * CM_PERIICTL (and CM_PERIACTL, CM_SYSCTL and CM_VPUCTL if
2104 * you have the debug bit set in the power manager, which we
2105 * don't bother exposing) are individual gates off of the
2106 * non-stop vpu clock.
2108 [BCM2835_CLOCK_PERI_IMAGE
] = REGISTER_GATE(
2109 .name
= "peri_image",
2111 .ctl_reg
= CM_PERIICTL
),
2115 * Permanently take a reference on the parent of the SDRAM clock.
2117 * While the SDRAM is being driven by its dedicated PLL most of the
2118 * time, there is a little loop running in the firmware that
2119 * periodically switches the SDRAM to using our CM clock to do PVT
2120 * recalibration, with the assumption that the previously configured
2121 * SDRAM parent is still enabled and running.
2123 static int bcm2835_mark_sdc_parent_critical(struct clk
*sdc
)
2125 struct clk
*parent
= clk_get_parent(sdc
);
2128 return PTR_ERR(parent
);
2130 return clk_prepare_enable(parent
);
2133 static int bcm2835_clk_probe(struct platform_device
*pdev
)
2135 struct device
*dev
= &pdev
->dev
;
2136 struct clk_hw
**hws
;
2137 struct bcm2835_cprman
*cprman
;
2138 struct resource
*res
;
2139 const struct bcm2835_clk_desc
*desc
;
2140 const size_t asize
= ARRAY_SIZE(clk_desc_array
);
2144 cprman
= devm_kzalloc(dev
, sizeof(*cprman
) +
2145 sizeof(*cprman
->onecell
.hws
) * asize
,
2150 spin_lock_init(&cprman
->regs_lock
);
2152 res
= platform_get_resource(pdev
, IORESOURCE_MEM
, 0);
2153 cprman
->regs
= devm_ioremap_resource(dev
, res
);
2154 if (IS_ERR(cprman
->regs
))
2155 return PTR_ERR(cprman
->regs
);
2157 memcpy(cprman
->real_parent_names
, cprman_parent_names
,
2158 sizeof(cprman_parent_names
));
2159 of_clk_parent_fill(dev
->of_node
, cprman
->real_parent_names
,
2160 ARRAY_SIZE(cprman_parent_names
));
2163 * Make sure the external oscillator has been registered.
2165 * The other (DSI) clocks are not present on older device
2166 * trees, which we still need to support for backwards
2169 if (!cprman
->real_parent_names
[0])
2172 platform_set_drvdata(pdev
, cprman
);
2174 cprman
->onecell
.num
= asize
;
2175 hws
= cprman
->onecell
.hws
;
2177 for (i
= 0; i
< asize
; i
++) {
2178 desc
= &clk_desc_array
[i
];
2179 if (desc
->clk_register
&& desc
->data
)
2180 hws
[i
] = desc
->clk_register(cprman
, desc
->data
);
2183 ret
= bcm2835_mark_sdc_parent_critical(hws
[BCM2835_CLOCK_SDRAM
]->clk
);
2187 return of_clk_add_hw_provider(dev
->of_node
, of_clk_hw_onecell_get
,
2191 static const struct of_device_id bcm2835_clk_of_match
[] = {
2192 { .compatible
= "brcm,bcm2835-cprman", },
2195 MODULE_DEVICE_TABLE(of
, bcm2835_clk_of_match
);
2197 static struct platform_driver bcm2835_clk_driver
= {
2199 .name
= "bcm2835-clk",
2200 .of_match_table
= bcm2835_clk_of_match
,
2202 .probe
= bcm2835_clk_probe
,
2205 builtin_platform_driver(bcm2835_clk_driver
);
2207 MODULE_AUTHOR("Eric Anholt <eric@anholt.net>");
2208 MODULE_DESCRIPTION("BCM2835 clock driver");
2209 MODULE_LICENSE("GPL v2");