Merge tag 'for_linus' of git://git.kernel.org/pub/scm/linux/kernel/git/mst/vhost
[cris-mirror.git] / drivers / clk / bcm / clk-bcm2835.c
blob44301a3d996333f37f4e6e1b9696f84f99563e71
1 /*
2 * Copyright (C) 2010,2015 Broadcom
3 * Copyright (C) 2012 Stephen Warren
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License as published by
7 * the Free Software Foundation; either version 2 of the License, or
8 * (at your option) any later version.
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 * GNU General Public License for more details.
17 /**
18 * DOC: BCM2835 CPRMAN (clock manager for the "audio" domain)
20 * The clock tree on the 2835 has several levels. There's a root
21 * oscillator running at 19.2Mhz. After the oscillator there are 5
22 * PLLs, roughly divided as "camera", "ARM", "core", "DSI displays",
23 * and "HDMI displays". Those 5 PLLs each can divide their output to
24 * produce up to 4 channels. Finally, there is the level of clocks to
25 * be consumed by other hardware components (like "H264" or "HDMI
26 * state machine"), which divide off of some subset of the PLL
27 * channels.
29 * All of the clocks in the tree are exposed in the DT, because the DT
30 * may want to make assignments of the final layer of clocks to the
31 * PLL channels, and some components of the hardware will actually
32 * skip layers of the tree (for example, the pixel clock comes
33 * directly from the PLLH PIX channel without using a CM_*CTL clock
34 * generator).
37 #include <linux/clk-provider.h>
38 #include <linux/clkdev.h>
39 #include <linux/clk.h>
40 #include <linux/debugfs.h>
41 #include <linux/delay.h>
42 #include <linux/module.h>
43 #include <linux/of.h>
44 #include <linux/platform_device.h>
45 #include <linux/slab.h>
46 #include <dt-bindings/clock/bcm2835.h>
48 #define CM_PASSWORD 0x5a000000
50 #define CM_GNRICCTL 0x000
51 #define CM_GNRICDIV 0x004
52 # define CM_DIV_FRAC_BITS 12
53 # define CM_DIV_FRAC_MASK GENMASK(CM_DIV_FRAC_BITS - 1, 0)
55 #define CM_VPUCTL 0x008
56 #define CM_VPUDIV 0x00c
57 #define CM_SYSCTL 0x010
58 #define CM_SYSDIV 0x014
59 #define CM_PERIACTL 0x018
60 #define CM_PERIADIV 0x01c
61 #define CM_PERIICTL 0x020
62 #define CM_PERIIDIV 0x024
63 #define CM_H264CTL 0x028
64 #define CM_H264DIV 0x02c
65 #define CM_ISPCTL 0x030
66 #define CM_ISPDIV 0x034
67 #define CM_V3DCTL 0x038
68 #define CM_V3DDIV 0x03c
69 #define CM_CAM0CTL 0x040
70 #define CM_CAM0DIV 0x044
71 #define CM_CAM1CTL 0x048
72 #define CM_CAM1DIV 0x04c
73 #define CM_CCP2CTL 0x050
74 #define CM_CCP2DIV 0x054
75 #define CM_DSI0ECTL 0x058
76 #define CM_DSI0EDIV 0x05c
77 #define CM_DSI0PCTL 0x060
78 #define CM_DSI0PDIV 0x064
79 #define CM_DPICTL 0x068
80 #define CM_DPIDIV 0x06c
81 #define CM_GP0CTL 0x070
82 #define CM_GP0DIV 0x074
83 #define CM_GP1CTL 0x078
84 #define CM_GP1DIV 0x07c
85 #define CM_GP2CTL 0x080
86 #define CM_GP2DIV 0x084
87 #define CM_HSMCTL 0x088
88 #define CM_HSMDIV 0x08c
89 #define CM_OTPCTL 0x090
90 #define CM_OTPDIV 0x094
91 #define CM_PCMCTL 0x098
92 #define CM_PCMDIV 0x09c
93 #define CM_PWMCTL 0x0a0
94 #define CM_PWMDIV 0x0a4
95 #define CM_SLIMCTL 0x0a8
96 #define CM_SLIMDIV 0x0ac
97 #define CM_SMICTL 0x0b0
98 #define CM_SMIDIV 0x0b4
99 /* no definition for 0x0b8 and 0x0bc */
100 #define CM_TCNTCTL 0x0c0
101 # define CM_TCNT_SRC1_SHIFT 12
102 #define CM_TCNTCNT 0x0c4
103 #define CM_TECCTL 0x0c8
104 #define CM_TECDIV 0x0cc
105 #define CM_TD0CTL 0x0d0
106 #define CM_TD0DIV 0x0d4
107 #define CM_TD1CTL 0x0d8
108 #define CM_TD1DIV 0x0dc
109 #define CM_TSENSCTL 0x0e0
110 #define CM_TSENSDIV 0x0e4
111 #define CM_TIMERCTL 0x0e8
112 #define CM_TIMERDIV 0x0ec
113 #define CM_UARTCTL 0x0f0
114 #define CM_UARTDIV 0x0f4
115 #define CM_VECCTL 0x0f8
116 #define CM_VECDIV 0x0fc
117 #define CM_PULSECTL 0x190
118 #define CM_PULSEDIV 0x194
119 #define CM_SDCCTL 0x1a8
120 #define CM_SDCDIV 0x1ac
121 #define CM_ARMCTL 0x1b0
122 #define CM_AVEOCTL 0x1b8
123 #define CM_AVEODIV 0x1bc
124 #define CM_EMMCCTL 0x1c0
125 #define CM_EMMCDIV 0x1c4
127 /* General bits for the CM_*CTL regs */
128 # define CM_ENABLE BIT(4)
129 # define CM_KILL BIT(5)
130 # define CM_GATE_BIT 6
131 # define CM_GATE BIT(CM_GATE_BIT)
132 # define CM_BUSY BIT(7)
133 # define CM_BUSYD BIT(8)
134 # define CM_FRAC BIT(9)
135 # define CM_SRC_SHIFT 0
136 # define CM_SRC_BITS 4
137 # define CM_SRC_MASK 0xf
138 # define CM_SRC_GND 0
139 # define CM_SRC_OSC 1
140 # define CM_SRC_TESTDEBUG0 2
141 # define CM_SRC_TESTDEBUG1 3
142 # define CM_SRC_PLLA_CORE 4
143 # define CM_SRC_PLLA_PER 4
144 # define CM_SRC_PLLC_CORE0 5
145 # define CM_SRC_PLLC_PER 5
146 # define CM_SRC_PLLC_CORE1 8
147 # define CM_SRC_PLLD_CORE 6
148 # define CM_SRC_PLLD_PER 6
149 # define CM_SRC_PLLH_AUX 7
150 # define CM_SRC_PLLC_CORE1 8
151 # define CM_SRC_PLLC_CORE2 9
153 #define CM_OSCCOUNT 0x100
155 #define CM_PLLA 0x104
156 # define CM_PLL_ANARST BIT(8)
157 # define CM_PLLA_HOLDPER BIT(7)
158 # define CM_PLLA_LOADPER BIT(6)
159 # define CM_PLLA_HOLDCORE BIT(5)
160 # define CM_PLLA_LOADCORE BIT(4)
161 # define CM_PLLA_HOLDCCP2 BIT(3)
162 # define CM_PLLA_LOADCCP2 BIT(2)
163 # define CM_PLLA_HOLDDSI0 BIT(1)
164 # define CM_PLLA_LOADDSI0 BIT(0)
166 #define CM_PLLC 0x108
167 # define CM_PLLC_HOLDPER BIT(7)
168 # define CM_PLLC_LOADPER BIT(6)
169 # define CM_PLLC_HOLDCORE2 BIT(5)
170 # define CM_PLLC_LOADCORE2 BIT(4)
171 # define CM_PLLC_HOLDCORE1 BIT(3)
172 # define CM_PLLC_LOADCORE1 BIT(2)
173 # define CM_PLLC_HOLDCORE0 BIT(1)
174 # define CM_PLLC_LOADCORE0 BIT(0)
176 #define CM_PLLD 0x10c
177 # define CM_PLLD_HOLDPER BIT(7)
178 # define CM_PLLD_LOADPER BIT(6)
179 # define CM_PLLD_HOLDCORE BIT(5)
180 # define CM_PLLD_LOADCORE BIT(4)
181 # define CM_PLLD_HOLDDSI1 BIT(3)
182 # define CM_PLLD_LOADDSI1 BIT(2)
183 # define CM_PLLD_HOLDDSI0 BIT(1)
184 # define CM_PLLD_LOADDSI0 BIT(0)
186 #define CM_PLLH 0x110
187 # define CM_PLLH_LOADRCAL BIT(2)
188 # define CM_PLLH_LOADAUX BIT(1)
189 # define CM_PLLH_LOADPIX BIT(0)
191 #define CM_LOCK 0x114
192 # define CM_LOCK_FLOCKH BIT(12)
193 # define CM_LOCK_FLOCKD BIT(11)
194 # define CM_LOCK_FLOCKC BIT(10)
195 # define CM_LOCK_FLOCKB BIT(9)
196 # define CM_LOCK_FLOCKA BIT(8)
198 #define CM_EVENT 0x118
199 #define CM_DSI1ECTL 0x158
200 #define CM_DSI1EDIV 0x15c
201 #define CM_DSI1PCTL 0x160
202 #define CM_DSI1PDIV 0x164
203 #define CM_DFTCTL 0x168
204 #define CM_DFTDIV 0x16c
206 #define CM_PLLB 0x170
207 # define CM_PLLB_HOLDARM BIT(1)
208 # define CM_PLLB_LOADARM BIT(0)
210 #define A2W_PLLA_CTRL 0x1100
211 #define A2W_PLLC_CTRL 0x1120
212 #define A2W_PLLD_CTRL 0x1140
213 #define A2W_PLLH_CTRL 0x1160
214 #define A2W_PLLB_CTRL 0x11e0
215 # define A2W_PLL_CTRL_PRST_DISABLE BIT(17)
216 # define A2W_PLL_CTRL_PWRDN BIT(16)
217 # define A2W_PLL_CTRL_PDIV_MASK 0x000007000
218 # define A2W_PLL_CTRL_PDIV_SHIFT 12
219 # define A2W_PLL_CTRL_NDIV_MASK 0x0000003ff
220 # define A2W_PLL_CTRL_NDIV_SHIFT 0
222 #define A2W_PLLA_ANA0 0x1010
223 #define A2W_PLLC_ANA0 0x1030
224 #define A2W_PLLD_ANA0 0x1050
225 #define A2W_PLLH_ANA0 0x1070
226 #define A2W_PLLB_ANA0 0x10f0
228 #define A2W_PLL_KA_SHIFT 7
229 #define A2W_PLL_KA_MASK GENMASK(9, 7)
230 #define A2W_PLL_KI_SHIFT 19
231 #define A2W_PLL_KI_MASK GENMASK(21, 19)
232 #define A2W_PLL_KP_SHIFT 15
233 #define A2W_PLL_KP_MASK GENMASK(18, 15)
235 #define A2W_PLLH_KA_SHIFT 19
236 #define A2W_PLLH_KA_MASK GENMASK(21, 19)
237 #define A2W_PLLH_KI_LOW_SHIFT 22
238 #define A2W_PLLH_KI_LOW_MASK GENMASK(23, 22)
239 #define A2W_PLLH_KI_HIGH_SHIFT 0
240 #define A2W_PLLH_KI_HIGH_MASK GENMASK(0, 0)
241 #define A2W_PLLH_KP_SHIFT 1
242 #define A2W_PLLH_KP_MASK GENMASK(4, 1)
244 #define A2W_XOSC_CTRL 0x1190
245 # define A2W_XOSC_CTRL_PLLB_ENABLE BIT(7)
246 # define A2W_XOSC_CTRL_PLLA_ENABLE BIT(6)
247 # define A2W_XOSC_CTRL_PLLD_ENABLE BIT(5)
248 # define A2W_XOSC_CTRL_DDR_ENABLE BIT(4)
249 # define A2W_XOSC_CTRL_CPR1_ENABLE BIT(3)
250 # define A2W_XOSC_CTRL_USB_ENABLE BIT(2)
251 # define A2W_XOSC_CTRL_HDMI_ENABLE BIT(1)
252 # define A2W_XOSC_CTRL_PLLC_ENABLE BIT(0)
254 #define A2W_PLLA_FRAC 0x1200
255 #define A2W_PLLC_FRAC 0x1220
256 #define A2W_PLLD_FRAC 0x1240
257 #define A2W_PLLH_FRAC 0x1260
258 #define A2W_PLLB_FRAC 0x12e0
259 # define A2W_PLL_FRAC_MASK ((1 << A2W_PLL_FRAC_BITS) - 1)
260 # define A2W_PLL_FRAC_BITS 20
262 #define A2W_PLL_CHANNEL_DISABLE BIT(8)
263 #define A2W_PLL_DIV_BITS 8
264 #define A2W_PLL_DIV_SHIFT 0
266 #define A2W_PLLA_DSI0 0x1300
267 #define A2W_PLLA_CORE 0x1400
268 #define A2W_PLLA_PER 0x1500
269 #define A2W_PLLA_CCP2 0x1600
271 #define A2W_PLLC_CORE2 0x1320
272 #define A2W_PLLC_CORE1 0x1420
273 #define A2W_PLLC_PER 0x1520
274 #define A2W_PLLC_CORE0 0x1620
276 #define A2W_PLLD_DSI0 0x1340
277 #define A2W_PLLD_CORE 0x1440
278 #define A2W_PLLD_PER 0x1540
279 #define A2W_PLLD_DSI1 0x1640
281 #define A2W_PLLH_AUX 0x1360
282 #define A2W_PLLH_RCAL 0x1460
283 #define A2W_PLLH_PIX 0x1560
284 #define A2W_PLLH_STS 0x1660
286 #define A2W_PLLH_CTRLR 0x1960
287 #define A2W_PLLH_FRACR 0x1a60
288 #define A2W_PLLH_AUXR 0x1b60
289 #define A2W_PLLH_RCALR 0x1c60
290 #define A2W_PLLH_PIXR 0x1d60
291 #define A2W_PLLH_STSR 0x1e60
293 #define A2W_PLLB_ARM 0x13e0
294 #define A2W_PLLB_SP0 0x14e0
295 #define A2W_PLLB_SP1 0x15e0
296 #define A2W_PLLB_SP2 0x16e0
298 #define LOCK_TIMEOUT_NS 100000000
299 #define BCM2835_MAX_FB_RATE 1750000000u
302 * Names of clocks used within the driver that need to be replaced
303 * with an external parent's name. This array is in the order that
304 * the clocks node in the DT references external clocks.
306 static const char *const cprman_parent_names[] = {
307 "xosc",
308 "dsi0_byte",
309 "dsi0_ddr2",
310 "dsi0_ddr",
311 "dsi1_byte",
312 "dsi1_ddr2",
313 "dsi1_ddr",
316 struct bcm2835_cprman {
317 struct device *dev;
318 void __iomem *regs;
319 spinlock_t regs_lock; /* spinlock for all clocks */
322 * Real names of cprman clock parents looked up through
323 * of_clk_get_parent_name(), which will be used in the
324 * parent_names[] arrays for clock registration.
326 const char *real_parent_names[ARRAY_SIZE(cprman_parent_names)];
328 /* Must be last */
329 struct clk_hw_onecell_data onecell;
332 static inline void cprman_write(struct bcm2835_cprman *cprman, u32 reg, u32 val)
334 writel(CM_PASSWORD | val, cprman->regs + reg);
337 static inline u32 cprman_read(struct bcm2835_cprman *cprman, u32 reg)
339 return readl(cprman->regs + reg);
342 /* Does a cycle of measuring a clock through the TCNT clock, which may
343 * source from many other clocks in the system.
345 static unsigned long bcm2835_measure_tcnt_mux(struct bcm2835_cprman *cprman,
346 u32 tcnt_mux)
348 u32 osccount = 19200; /* 1ms */
349 u32 count;
350 ktime_t timeout;
352 spin_lock(&cprman->regs_lock);
354 cprman_write(cprman, CM_TCNTCTL, CM_KILL);
356 cprman_write(cprman, CM_TCNTCTL,
357 (tcnt_mux & CM_SRC_MASK) |
358 (tcnt_mux >> CM_SRC_BITS) << CM_TCNT_SRC1_SHIFT);
360 cprman_write(cprman, CM_OSCCOUNT, osccount);
362 /* do a kind delay at the start */
363 mdelay(1);
365 /* Finish off whatever is left of OSCCOUNT */
366 timeout = ktime_add_ns(ktime_get(), LOCK_TIMEOUT_NS);
367 while (cprman_read(cprman, CM_OSCCOUNT)) {
368 if (ktime_after(ktime_get(), timeout)) {
369 dev_err(cprman->dev, "timeout waiting for OSCCOUNT\n");
370 count = 0;
371 goto out;
373 cpu_relax();
376 /* Wait for BUSY to clear. */
377 timeout = ktime_add_ns(ktime_get(), LOCK_TIMEOUT_NS);
378 while (cprman_read(cprman, CM_TCNTCTL) & CM_BUSY) {
379 if (ktime_after(ktime_get(), timeout)) {
380 dev_err(cprman->dev, "timeout waiting for !BUSY\n");
381 count = 0;
382 goto out;
384 cpu_relax();
387 count = cprman_read(cprman, CM_TCNTCNT);
389 cprman_write(cprman, CM_TCNTCTL, 0);
391 out:
392 spin_unlock(&cprman->regs_lock);
394 return count * 1000;
397 static int bcm2835_debugfs_regset(struct bcm2835_cprman *cprman, u32 base,
398 struct debugfs_reg32 *regs, size_t nregs,
399 struct dentry *dentry)
401 struct dentry *regdump;
402 struct debugfs_regset32 *regset;
404 regset = devm_kzalloc(cprman->dev, sizeof(*regset), GFP_KERNEL);
405 if (!regset)
406 return -ENOMEM;
408 regset->regs = regs;
409 regset->nregs = nregs;
410 regset->base = cprman->regs + base;
412 regdump = debugfs_create_regset32("regdump", S_IRUGO, dentry,
413 regset);
415 return regdump ? 0 : -ENOMEM;
418 struct bcm2835_pll_data {
419 const char *name;
420 u32 cm_ctrl_reg;
421 u32 a2w_ctrl_reg;
422 u32 frac_reg;
423 u32 ana_reg_base;
424 u32 reference_enable_mask;
425 /* Bit in CM_LOCK to indicate when the PLL has locked. */
426 u32 lock_mask;
428 const struct bcm2835_pll_ana_bits *ana;
430 unsigned long min_rate;
431 unsigned long max_rate;
433 * Highest rate for the VCO before we have to use the
434 * pre-divide-by-2.
436 unsigned long max_fb_rate;
439 struct bcm2835_pll_ana_bits {
440 u32 mask0;
441 u32 set0;
442 u32 mask1;
443 u32 set1;
444 u32 mask3;
445 u32 set3;
446 u32 fb_prediv_mask;
449 static const struct bcm2835_pll_ana_bits bcm2835_ana_default = {
450 .mask0 = 0,
451 .set0 = 0,
452 .mask1 = (u32)~(A2W_PLL_KI_MASK | A2W_PLL_KP_MASK),
453 .set1 = (2 << A2W_PLL_KI_SHIFT) | (8 << A2W_PLL_KP_SHIFT),
454 .mask3 = (u32)~A2W_PLL_KA_MASK,
455 .set3 = (2 << A2W_PLL_KA_SHIFT),
456 .fb_prediv_mask = BIT(14),
459 static const struct bcm2835_pll_ana_bits bcm2835_ana_pllh = {
460 .mask0 = (u32)~(A2W_PLLH_KA_MASK | A2W_PLLH_KI_LOW_MASK),
461 .set0 = (2 << A2W_PLLH_KA_SHIFT) | (2 << A2W_PLLH_KI_LOW_SHIFT),
462 .mask1 = (u32)~(A2W_PLLH_KI_HIGH_MASK | A2W_PLLH_KP_MASK),
463 .set1 = (6 << A2W_PLLH_KP_SHIFT),
464 .mask3 = 0,
465 .set3 = 0,
466 .fb_prediv_mask = BIT(11),
469 struct bcm2835_pll_divider_data {
470 const char *name;
471 const char *source_pll;
473 u32 cm_reg;
474 u32 a2w_reg;
476 u32 load_mask;
477 u32 hold_mask;
478 u32 fixed_divider;
479 u32 flags;
482 struct bcm2835_clock_data {
483 const char *name;
485 const char *const *parents;
486 int num_mux_parents;
488 /* Bitmap encoding which parents accept rate change propagation. */
489 unsigned int set_rate_parent;
491 u32 ctl_reg;
492 u32 div_reg;
494 /* Number of integer bits in the divider */
495 u32 int_bits;
496 /* Number of fractional bits in the divider */
497 u32 frac_bits;
499 u32 flags;
501 bool is_vpu_clock;
502 bool is_mash_clock;
503 bool low_jitter;
505 u32 tcnt_mux;
508 struct bcm2835_gate_data {
509 const char *name;
510 const char *parent;
512 u32 ctl_reg;
515 struct bcm2835_pll {
516 struct clk_hw hw;
517 struct bcm2835_cprman *cprman;
518 const struct bcm2835_pll_data *data;
521 static int bcm2835_pll_is_on(struct clk_hw *hw)
523 struct bcm2835_pll *pll = container_of(hw, struct bcm2835_pll, hw);
524 struct bcm2835_cprman *cprman = pll->cprman;
525 const struct bcm2835_pll_data *data = pll->data;
527 return cprman_read(cprman, data->a2w_ctrl_reg) &
528 A2W_PLL_CTRL_PRST_DISABLE;
531 static void bcm2835_pll_choose_ndiv_and_fdiv(unsigned long rate,
532 unsigned long parent_rate,
533 u32 *ndiv, u32 *fdiv)
535 u64 div;
537 div = (u64)rate << A2W_PLL_FRAC_BITS;
538 do_div(div, parent_rate);
540 *ndiv = div >> A2W_PLL_FRAC_BITS;
541 *fdiv = div & ((1 << A2W_PLL_FRAC_BITS) - 1);
544 static long bcm2835_pll_rate_from_divisors(unsigned long parent_rate,
545 u32 ndiv, u32 fdiv, u32 pdiv)
547 u64 rate;
549 if (pdiv == 0)
550 return 0;
552 rate = (u64)parent_rate * ((ndiv << A2W_PLL_FRAC_BITS) + fdiv);
553 do_div(rate, pdiv);
554 return rate >> A2W_PLL_FRAC_BITS;
557 static long bcm2835_pll_round_rate(struct clk_hw *hw, unsigned long rate,
558 unsigned long *parent_rate)
560 struct bcm2835_pll *pll = container_of(hw, struct bcm2835_pll, hw);
561 const struct bcm2835_pll_data *data = pll->data;
562 u32 ndiv, fdiv;
564 rate = clamp(rate, data->min_rate, data->max_rate);
566 bcm2835_pll_choose_ndiv_and_fdiv(rate, *parent_rate, &ndiv, &fdiv);
568 return bcm2835_pll_rate_from_divisors(*parent_rate, ndiv, fdiv, 1);
571 static unsigned long bcm2835_pll_get_rate(struct clk_hw *hw,
572 unsigned long parent_rate)
574 struct bcm2835_pll *pll = container_of(hw, struct bcm2835_pll, hw);
575 struct bcm2835_cprman *cprman = pll->cprman;
576 const struct bcm2835_pll_data *data = pll->data;
577 u32 a2wctrl = cprman_read(cprman, data->a2w_ctrl_reg);
578 u32 ndiv, pdiv, fdiv;
579 bool using_prediv;
581 if (parent_rate == 0)
582 return 0;
584 fdiv = cprman_read(cprman, data->frac_reg) & A2W_PLL_FRAC_MASK;
585 ndiv = (a2wctrl & A2W_PLL_CTRL_NDIV_MASK) >> A2W_PLL_CTRL_NDIV_SHIFT;
586 pdiv = (a2wctrl & A2W_PLL_CTRL_PDIV_MASK) >> A2W_PLL_CTRL_PDIV_SHIFT;
587 using_prediv = cprman_read(cprman, data->ana_reg_base + 4) &
588 data->ana->fb_prediv_mask;
590 if (using_prediv) {
591 ndiv *= 2;
592 fdiv *= 2;
595 return bcm2835_pll_rate_from_divisors(parent_rate, ndiv, fdiv, pdiv);
598 static void bcm2835_pll_off(struct clk_hw *hw)
600 struct bcm2835_pll *pll = container_of(hw, struct bcm2835_pll, hw);
601 struct bcm2835_cprman *cprman = pll->cprman;
602 const struct bcm2835_pll_data *data = pll->data;
604 spin_lock(&cprman->regs_lock);
605 cprman_write(cprman, data->cm_ctrl_reg,
606 cprman_read(cprman, data->cm_ctrl_reg) |
607 CM_PLL_ANARST);
608 cprman_write(cprman, data->a2w_ctrl_reg,
609 cprman_read(cprman, data->a2w_ctrl_reg) |
610 A2W_PLL_CTRL_PWRDN);
611 spin_unlock(&cprman->regs_lock);
614 static int bcm2835_pll_on(struct clk_hw *hw)
616 struct bcm2835_pll *pll = container_of(hw, struct bcm2835_pll, hw);
617 struct bcm2835_cprman *cprman = pll->cprman;
618 const struct bcm2835_pll_data *data = pll->data;
619 ktime_t timeout;
621 cprman_write(cprman, data->a2w_ctrl_reg,
622 cprman_read(cprman, data->a2w_ctrl_reg) &
623 ~A2W_PLL_CTRL_PWRDN);
625 /* Take the PLL out of reset. */
626 cprman_write(cprman, data->cm_ctrl_reg,
627 cprman_read(cprman, data->cm_ctrl_reg) & ~CM_PLL_ANARST);
629 /* Wait for the PLL to lock. */
630 timeout = ktime_add_ns(ktime_get(), LOCK_TIMEOUT_NS);
631 while (!(cprman_read(cprman, CM_LOCK) & data->lock_mask)) {
632 if (ktime_after(ktime_get(), timeout)) {
633 dev_err(cprman->dev, "%s: couldn't lock PLL\n",
634 clk_hw_get_name(hw));
635 return -ETIMEDOUT;
638 cpu_relax();
641 return 0;
644 static void
645 bcm2835_pll_write_ana(struct bcm2835_cprman *cprman, u32 ana_reg_base, u32 *ana)
647 int i;
650 * ANA register setup is done as a series of writes to
651 * ANA3-ANA0, in that order. This lets us write all 4
652 * registers as a single cycle of the serdes interface (taking
653 * 100 xosc clocks), whereas if we were to update ana0, 1, and
654 * 3 individually through their partial-write registers, each
655 * would be their own serdes cycle.
657 for (i = 3; i >= 0; i--)
658 cprman_write(cprman, ana_reg_base + i * 4, ana[i]);
661 static int bcm2835_pll_set_rate(struct clk_hw *hw,
662 unsigned long rate, unsigned long parent_rate)
664 struct bcm2835_pll *pll = container_of(hw, struct bcm2835_pll, hw);
665 struct bcm2835_cprman *cprman = pll->cprman;
666 const struct bcm2835_pll_data *data = pll->data;
667 bool was_using_prediv, use_fb_prediv, do_ana_setup_first;
668 u32 ndiv, fdiv, a2w_ctl;
669 u32 ana[4];
670 int i;
672 if (rate > data->max_fb_rate) {
673 use_fb_prediv = true;
674 rate /= 2;
675 } else {
676 use_fb_prediv = false;
679 bcm2835_pll_choose_ndiv_and_fdiv(rate, parent_rate, &ndiv, &fdiv);
681 for (i = 3; i >= 0; i--)
682 ana[i] = cprman_read(cprman, data->ana_reg_base + i * 4);
684 was_using_prediv = ana[1] & data->ana->fb_prediv_mask;
686 ana[0] &= ~data->ana->mask0;
687 ana[0] |= data->ana->set0;
688 ana[1] &= ~data->ana->mask1;
689 ana[1] |= data->ana->set1;
690 ana[3] &= ~data->ana->mask3;
691 ana[3] |= data->ana->set3;
693 if (was_using_prediv && !use_fb_prediv) {
694 ana[1] &= ~data->ana->fb_prediv_mask;
695 do_ana_setup_first = true;
696 } else if (!was_using_prediv && use_fb_prediv) {
697 ana[1] |= data->ana->fb_prediv_mask;
698 do_ana_setup_first = false;
699 } else {
700 do_ana_setup_first = true;
703 /* Unmask the reference clock from the oscillator. */
704 cprman_write(cprman, A2W_XOSC_CTRL,
705 cprman_read(cprman, A2W_XOSC_CTRL) |
706 data->reference_enable_mask);
708 if (do_ana_setup_first)
709 bcm2835_pll_write_ana(cprman, data->ana_reg_base, ana);
711 /* Set the PLL multiplier from the oscillator. */
712 cprman_write(cprman, data->frac_reg, fdiv);
714 a2w_ctl = cprman_read(cprman, data->a2w_ctrl_reg);
715 a2w_ctl &= ~A2W_PLL_CTRL_NDIV_MASK;
716 a2w_ctl |= ndiv << A2W_PLL_CTRL_NDIV_SHIFT;
717 a2w_ctl &= ~A2W_PLL_CTRL_PDIV_MASK;
718 a2w_ctl |= 1 << A2W_PLL_CTRL_PDIV_SHIFT;
719 cprman_write(cprman, data->a2w_ctrl_reg, a2w_ctl);
721 if (!do_ana_setup_first)
722 bcm2835_pll_write_ana(cprman, data->ana_reg_base, ana);
724 return 0;
727 static int bcm2835_pll_debug_init(struct clk_hw *hw,
728 struct dentry *dentry)
730 struct bcm2835_pll *pll = container_of(hw, struct bcm2835_pll, hw);
731 struct bcm2835_cprman *cprman = pll->cprman;
732 const struct bcm2835_pll_data *data = pll->data;
733 struct debugfs_reg32 *regs;
735 regs = devm_kzalloc(cprman->dev, 7 * sizeof(*regs), GFP_KERNEL);
736 if (!regs)
737 return -ENOMEM;
739 regs[0].name = "cm_ctrl";
740 regs[0].offset = data->cm_ctrl_reg;
741 regs[1].name = "a2w_ctrl";
742 regs[1].offset = data->a2w_ctrl_reg;
743 regs[2].name = "frac";
744 regs[2].offset = data->frac_reg;
745 regs[3].name = "ana0";
746 regs[3].offset = data->ana_reg_base + 0 * 4;
747 regs[4].name = "ana1";
748 regs[4].offset = data->ana_reg_base + 1 * 4;
749 regs[5].name = "ana2";
750 regs[5].offset = data->ana_reg_base + 2 * 4;
751 regs[6].name = "ana3";
752 regs[6].offset = data->ana_reg_base + 3 * 4;
754 return bcm2835_debugfs_regset(cprman, 0, regs, 7, dentry);
757 static const struct clk_ops bcm2835_pll_clk_ops = {
758 .is_prepared = bcm2835_pll_is_on,
759 .prepare = bcm2835_pll_on,
760 .unprepare = bcm2835_pll_off,
761 .recalc_rate = bcm2835_pll_get_rate,
762 .set_rate = bcm2835_pll_set_rate,
763 .round_rate = bcm2835_pll_round_rate,
764 .debug_init = bcm2835_pll_debug_init,
767 struct bcm2835_pll_divider {
768 struct clk_divider div;
769 struct bcm2835_cprman *cprman;
770 const struct bcm2835_pll_divider_data *data;
773 static struct bcm2835_pll_divider *
774 bcm2835_pll_divider_from_hw(struct clk_hw *hw)
776 return container_of(hw, struct bcm2835_pll_divider, div.hw);
779 static int bcm2835_pll_divider_is_on(struct clk_hw *hw)
781 struct bcm2835_pll_divider *divider = bcm2835_pll_divider_from_hw(hw);
782 struct bcm2835_cprman *cprman = divider->cprman;
783 const struct bcm2835_pll_divider_data *data = divider->data;
785 return !(cprman_read(cprman, data->a2w_reg) & A2W_PLL_CHANNEL_DISABLE);
788 static long bcm2835_pll_divider_round_rate(struct clk_hw *hw,
789 unsigned long rate,
790 unsigned long *parent_rate)
792 return clk_divider_ops.round_rate(hw, rate, parent_rate);
795 static unsigned long bcm2835_pll_divider_get_rate(struct clk_hw *hw,
796 unsigned long parent_rate)
798 return clk_divider_ops.recalc_rate(hw, parent_rate);
801 static void bcm2835_pll_divider_off(struct clk_hw *hw)
803 struct bcm2835_pll_divider *divider = bcm2835_pll_divider_from_hw(hw);
804 struct bcm2835_cprman *cprman = divider->cprman;
805 const struct bcm2835_pll_divider_data *data = divider->data;
807 spin_lock(&cprman->regs_lock);
808 cprman_write(cprman, data->cm_reg,
809 (cprman_read(cprman, data->cm_reg) &
810 ~data->load_mask) | data->hold_mask);
811 cprman_write(cprman, data->a2w_reg,
812 cprman_read(cprman, data->a2w_reg) |
813 A2W_PLL_CHANNEL_DISABLE);
814 spin_unlock(&cprman->regs_lock);
817 static int bcm2835_pll_divider_on(struct clk_hw *hw)
819 struct bcm2835_pll_divider *divider = bcm2835_pll_divider_from_hw(hw);
820 struct bcm2835_cprman *cprman = divider->cprman;
821 const struct bcm2835_pll_divider_data *data = divider->data;
823 spin_lock(&cprman->regs_lock);
824 cprman_write(cprman, data->a2w_reg,
825 cprman_read(cprman, data->a2w_reg) &
826 ~A2W_PLL_CHANNEL_DISABLE);
828 cprman_write(cprman, data->cm_reg,
829 cprman_read(cprman, data->cm_reg) & ~data->hold_mask);
830 spin_unlock(&cprman->regs_lock);
832 return 0;
835 static int bcm2835_pll_divider_set_rate(struct clk_hw *hw,
836 unsigned long rate,
837 unsigned long parent_rate)
839 struct bcm2835_pll_divider *divider = bcm2835_pll_divider_from_hw(hw);
840 struct bcm2835_cprman *cprman = divider->cprman;
841 const struct bcm2835_pll_divider_data *data = divider->data;
842 u32 cm, div, max_div = 1 << A2W_PLL_DIV_BITS;
844 div = DIV_ROUND_UP_ULL(parent_rate, rate);
846 div = min(div, max_div);
847 if (div == max_div)
848 div = 0;
850 cprman_write(cprman, data->a2w_reg, div);
851 cm = cprman_read(cprman, data->cm_reg);
852 cprman_write(cprman, data->cm_reg, cm | data->load_mask);
853 cprman_write(cprman, data->cm_reg, cm & ~data->load_mask);
855 return 0;
858 static int bcm2835_pll_divider_debug_init(struct clk_hw *hw,
859 struct dentry *dentry)
861 struct bcm2835_pll_divider *divider = bcm2835_pll_divider_from_hw(hw);
862 struct bcm2835_cprman *cprman = divider->cprman;
863 const struct bcm2835_pll_divider_data *data = divider->data;
864 struct debugfs_reg32 *regs;
866 regs = devm_kzalloc(cprman->dev, 7 * sizeof(*regs), GFP_KERNEL);
867 if (!regs)
868 return -ENOMEM;
870 regs[0].name = "cm";
871 regs[0].offset = data->cm_reg;
872 regs[1].name = "a2w";
873 regs[1].offset = data->a2w_reg;
875 return bcm2835_debugfs_regset(cprman, 0, regs, 2, dentry);
878 static const struct clk_ops bcm2835_pll_divider_clk_ops = {
879 .is_prepared = bcm2835_pll_divider_is_on,
880 .prepare = bcm2835_pll_divider_on,
881 .unprepare = bcm2835_pll_divider_off,
882 .recalc_rate = bcm2835_pll_divider_get_rate,
883 .set_rate = bcm2835_pll_divider_set_rate,
884 .round_rate = bcm2835_pll_divider_round_rate,
885 .debug_init = bcm2835_pll_divider_debug_init,
889 * The CM dividers do fixed-point division, so we can't use the
890 * generic integer divider code like the PLL dividers do (and we can't
891 * fake it by having some fixed shifts preceding it in the clock tree,
892 * because we'd run out of bits in a 32-bit unsigned long).
894 struct bcm2835_clock {
895 struct clk_hw hw;
896 struct bcm2835_cprman *cprman;
897 const struct bcm2835_clock_data *data;
900 static struct bcm2835_clock *bcm2835_clock_from_hw(struct clk_hw *hw)
902 return container_of(hw, struct bcm2835_clock, hw);
905 static int bcm2835_clock_is_on(struct clk_hw *hw)
907 struct bcm2835_clock *clock = bcm2835_clock_from_hw(hw);
908 struct bcm2835_cprman *cprman = clock->cprman;
909 const struct bcm2835_clock_data *data = clock->data;
911 return (cprman_read(cprman, data->ctl_reg) & CM_ENABLE) != 0;
914 static u32 bcm2835_clock_choose_div(struct clk_hw *hw,
915 unsigned long rate,
916 unsigned long parent_rate,
917 bool round_up)
919 struct bcm2835_clock *clock = bcm2835_clock_from_hw(hw);
920 const struct bcm2835_clock_data *data = clock->data;
921 u32 unused_frac_mask =
922 GENMASK(CM_DIV_FRAC_BITS - data->frac_bits, 0) >> 1;
923 u64 temp = (u64)parent_rate << CM_DIV_FRAC_BITS;
924 u64 rem;
925 u32 div, mindiv, maxdiv;
927 rem = do_div(temp, rate);
928 div = temp;
930 /* Round up and mask off the unused bits */
931 if (round_up && ((div & unused_frac_mask) != 0 || rem != 0))
932 div += unused_frac_mask + 1;
933 div &= ~unused_frac_mask;
935 /* different clamping limits apply for a mash clock */
936 if (data->is_mash_clock) {
937 /* clamp to min divider of 2 */
938 mindiv = 2 << CM_DIV_FRAC_BITS;
939 /* clamp to the highest possible integer divider */
940 maxdiv = (BIT(data->int_bits) - 1) << CM_DIV_FRAC_BITS;
941 } else {
942 /* clamp to min divider of 1 */
943 mindiv = 1 << CM_DIV_FRAC_BITS;
944 /* clamp to the highest possible fractional divider */
945 maxdiv = GENMASK(data->int_bits + CM_DIV_FRAC_BITS - 1,
946 CM_DIV_FRAC_BITS - data->frac_bits);
949 /* apply the clamping limits */
950 div = max_t(u32, div, mindiv);
951 div = min_t(u32, div, maxdiv);
953 return div;
956 static long bcm2835_clock_rate_from_divisor(struct bcm2835_clock *clock,
957 unsigned long parent_rate,
958 u32 div)
960 const struct bcm2835_clock_data *data = clock->data;
961 u64 temp;
963 if (data->int_bits == 0 && data->frac_bits == 0)
964 return parent_rate;
967 * The divisor is a 12.12 fixed point field, but only some of
968 * the bits are populated in any given clock.
970 div >>= CM_DIV_FRAC_BITS - data->frac_bits;
971 div &= (1 << (data->int_bits + data->frac_bits)) - 1;
973 if (div == 0)
974 return 0;
976 temp = (u64)parent_rate << data->frac_bits;
978 do_div(temp, div);
980 return temp;
983 static unsigned long bcm2835_clock_get_rate(struct clk_hw *hw,
984 unsigned long parent_rate)
986 struct bcm2835_clock *clock = bcm2835_clock_from_hw(hw);
987 struct bcm2835_cprman *cprman = clock->cprman;
988 const struct bcm2835_clock_data *data = clock->data;
989 u32 div;
991 if (data->int_bits == 0 && data->frac_bits == 0)
992 return parent_rate;
994 div = cprman_read(cprman, data->div_reg);
996 return bcm2835_clock_rate_from_divisor(clock, parent_rate, div);
999 static void bcm2835_clock_wait_busy(struct bcm2835_clock *clock)
1001 struct bcm2835_cprman *cprman = clock->cprman;
1002 const struct bcm2835_clock_data *data = clock->data;
1003 ktime_t timeout = ktime_add_ns(ktime_get(), LOCK_TIMEOUT_NS);
1005 while (cprman_read(cprman, data->ctl_reg) & CM_BUSY) {
1006 if (ktime_after(ktime_get(), timeout)) {
1007 dev_err(cprman->dev, "%s: couldn't lock PLL\n",
1008 clk_hw_get_name(&clock->hw));
1009 return;
1011 cpu_relax();
1015 static void bcm2835_clock_off(struct clk_hw *hw)
1017 struct bcm2835_clock *clock = bcm2835_clock_from_hw(hw);
1018 struct bcm2835_cprman *cprman = clock->cprman;
1019 const struct bcm2835_clock_data *data = clock->data;
1021 spin_lock(&cprman->regs_lock);
1022 cprman_write(cprman, data->ctl_reg,
1023 cprman_read(cprman, data->ctl_reg) & ~CM_ENABLE);
1024 spin_unlock(&cprman->regs_lock);
1026 /* BUSY will remain high until the divider completes its cycle. */
1027 bcm2835_clock_wait_busy(clock);
1030 static int bcm2835_clock_on(struct clk_hw *hw)
1032 struct bcm2835_clock *clock = bcm2835_clock_from_hw(hw);
1033 struct bcm2835_cprman *cprman = clock->cprman;
1034 const struct bcm2835_clock_data *data = clock->data;
1036 spin_lock(&cprman->regs_lock);
1037 cprman_write(cprman, data->ctl_reg,
1038 cprman_read(cprman, data->ctl_reg) |
1039 CM_ENABLE |
1040 CM_GATE);
1041 spin_unlock(&cprman->regs_lock);
1043 /* Debug code to measure the clock once it's turned on to see
1044 * if it's ticking at the rate we expect.
1046 if (data->tcnt_mux && false) {
1047 dev_info(cprman->dev,
1048 "clk %s: rate %ld, measure %ld\n",
1049 data->name,
1050 clk_hw_get_rate(hw),
1051 bcm2835_measure_tcnt_mux(cprman, data->tcnt_mux));
1054 return 0;
1057 static int bcm2835_clock_set_rate(struct clk_hw *hw,
1058 unsigned long rate, unsigned long parent_rate)
1060 struct bcm2835_clock *clock = bcm2835_clock_from_hw(hw);
1061 struct bcm2835_cprman *cprman = clock->cprman;
1062 const struct bcm2835_clock_data *data = clock->data;
1063 u32 div = bcm2835_clock_choose_div(hw, rate, parent_rate, false);
1064 u32 ctl;
1066 spin_lock(&cprman->regs_lock);
1069 * Setting up frac support
1071 * In principle it is recommended to stop/start the clock first,
1072 * but as we set CLK_SET_RATE_GATE during registration of the
1073 * clock this requirement should be take care of by the
1074 * clk-framework.
1076 ctl = cprman_read(cprman, data->ctl_reg) & ~CM_FRAC;
1077 ctl |= (div & CM_DIV_FRAC_MASK) ? CM_FRAC : 0;
1078 cprman_write(cprman, data->ctl_reg, ctl);
1080 cprman_write(cprman, data->div_reg, div);
1082 spin_unlock(&cprman->regs_lock);
1084 return 0;
1087 static bool
1088 bcm2835_clk_is_pllc(struct clk_hw *hw)
1090 if (!hw)
1091 return false;
1093 return strncmp(clk_hw_get_name(hw), "pllc", 4) == 0;
1096 static unsigned long bcm2835_clock_choose_div_and_prate(struct clk_hw *hw,
1097 int parent_idx,
1098 unsigned long rate,
1099 u32 *div,
1100 unsigned long *prate,
1101 unsigned long *avgrate)
1103 struct bcm2835_clock *clock = bcm2835_clock_from_hw(hw);
1104 struct bcm2835_cprman *cprman = clock->cprman;
1105 const struct bcm2835_clock_data *data = clock->data;
1106 unsigned long best_rate = 0;
1107 u32 curdiv, mindiv, maxdiv;
1108 struct clk_hw *parent;
1110 parent = clk_hw_get_parent_by_index(hw, parent_idx);
1112 if (!(BIT(parent_idx) & data->set_rate_parent)) {
1113 *prate = clk_hw_get_rate(parent);
1114 *div = bcm2835_clock_choose_div(hw, rate, *prate, true);
1116 *avgrate = bcm2835_clock_rate_from_divisor(clock, *prate, *div);
1118 if (data->low_jitter && (*div & CM_DIV_FRAC_MASK)) {
1119 unsigned long high, low;
1120 u32 int_div = *div & ~CM_DIV_FRAC_MASK;
1122 high = bcm2835_clock_rate_from_divisor(clock, *prate,
1123 int_div);
1124 int_div += CM_DIV_FRAC_MASK + 1;
1125 low = bcm2835_clock_rate_from_divisor(clock, *prate,
1126 int_div);
1129 * Return a value which is the maximum deviation
1130 * below the ideal rate, for use as a metric.
1132 return *avgrate - max(*avgrate - low, high - *avgrate);
1134 return *avgrate;
1137 if (data->frac_bits)
1138 dev_warn(cprman->dev,
1139 "frac bits are not used when propagating rate change");
1141 /* clamp to min divider of 2 if we're dealing with a mash clock */
1142 mindiv = data->is_mash_clock ? 2 : 1;
1143 maxdiv = BIT(data->int_bits) - 1;
1145 /* TODO: Be smart, and only test a subset of the available divisors. */
1146 for (curdiv = mindiv; curdiv <= maxdiv; curdiv++) {
1147 unsigned long tmp_rate;
1149 tmp_rate = clk_hw_round_rate(parent, rate * curdiv);
1150 tmp_rate /= curdiv;
1151 if (curdiv == mindiv ||
1152 (tmp_rate > best_rate && tmp_rate <= rate))
1153 best_rate = tmp_rate;
1155 if (best_rate == rate)
1156 break;
1159 *div = curdiv << CM_DIV_FRAC_BITS;
1160 *prate = curdiv * best_rate;
1161 *avgrate = best_rate;
1163 return best_rate;
1166 static int bcm2835_clock_determine_rate(struct clk_hw *hw,
1167 struct clk_rate_request *req)
1169 struct clk_hw *parent, *best_parent = NULL;
1170 bool current_parent_is_pllc;
1171 unsigned long rate, best_rate = 0;
1172 unsigned long prate, best_prate = 0;
1173 unsigned long avgrate, best_avgrate = 0;
1174 size_t i;
1175 u32 div;
1177 current_parent_is_pllc = bcm2835_clk_is_pllc(clk_hw_get_parent(hw));
1180 * Select parent clock that results in the closest but lower rate
1182 for (i = 0; i < clk_hw_get_num_parents(hw); ++i) {
1183 parent = clk_hw_get_parent_by_index(hw, i);
1184 if (!parent)
1185 continue;
1188 * Don't choose a PLLC-derived clock as our parent
1189 * unless it had been manually set that way. PLLC's
1190 * frequency gets adjusted by the firmware due to
1191 * over-temp or under-voltage conditions, without
1192 * prior notification to our clock consumer.
1194 if (bcm2835_clk_is_pllc(parent) && !current_parent_is_pllc)
1195 continue;
1197 rate = bcm2835_clock_choose_div_and_prate(hw, i, req->rate,
1198 &div, &prate,
1199 &avgrate);
1200 if (rate > best_rate && rate <= req->rate) {
1201 best_parent = parent;
1202 best_prate = prate;
1203 best_rate = rate;
1204 best_avgrate = avgrate;
1208 if (!best_parent)
1209 return -EINVAL;
1211 req->best_parent_hw = best_parent;
1212 req->best_parent_rate = best_prate;
1214 req->rate = best_avgrate;
1216 return 0;
1219 static int bcm2835_clock_set_parent(struct clk_hw *hw, u8 index)
1221 struct bcm2835_clock *clock = bcm2835_clock_from_hw(hw);
1222 struct bcm2835_cprman *cprman = clock->cprman;
1223 const struct bcm2835_clock_data *data = clock->data;
1224 u8 src = (index << CM_SRC_SHIFT) & CM_SRC_MASK;
1226 cprman_write(cprman, data->ctl_reg, src);
1227 return 0;
1230 static u8 bcm2835_clock_get_parent(struct clk_hw *hw)
1232 struct bcm2835_clock *clock = bcm2835_clock_from_hw(hw);
1233 struct bcm2835_cprman *cprman = clock->cprman;
1234 const struct bcm2835_clock_data *data = clock->data;
1235 u32 src = cprman_read(cprman, data->ctl_reg);
1237 return (src & CM_SRC_MASK) >> CM_SRC_SHIFT;
1240 static struct debugfs_reg32 bcm2835_debugfs_clock_reg32[] = {
1242 .name = "ctl",
1243 .offset = 0,
1246 .name = "div",
1247 .offset = 4,
1251 static int bcm2835_clock_debug_init(struct clk_hw *hw,
1252 struct dentry *dentry)
1254 struct bcm2835_clock *clock = bcm2835_clock_from_hw(hw);
1255 struct bcm2835_cprman *cprman = clock->cprman;
1256 const struct bcm2835_clock_data *data = clock->data;
1258 return bcm2835_debugfs_regset(
1259 cprman, data->ctl_reg,
1260 bcm2835_debugfs_clock_reg32,
1261 ARRAY_SIZE(bcm2835_debugfs_clock_reg32),
1262 dentry);
1265 static const struct clk_ops bcm2835_clock_clk_ops = {
1266 .is_prepared = bcm2835_clock_is_on,
1267 .prepare = bcm2835_clock_on,
1268 .unprepare = bcm2835_clock_off,
1269 .recalc_rate = bcm2835_clock_get_rate,
1270 .set_rate = bcm2835_clock_set_rate,
1271 .determine_rate = bcm2835_clock_determine_rate,
1272 .set_parent = bcm2835_clock_set_parent,
1273 .get_parent = bcm2835_clock_get_parent,
1274 .debug_init = bcm2835_clock_debug_init,
1277 static int bcm2835_vpu_clock_is_on(struct clk_hw *hw)
1279 return true;
1283 * The VPU clock can never be disabled (it doesn't have an ENABLE
1284 * bit), so it gets its own set of clock ops.
1286 static const struct clk_ops bcm2835_vpu_clock_clk_ops = {
1287 .is_prepared = bcm2835_vpu_clock_is_on,
1288 .recalc_rate = bcm2835_clock_get_rate,
1289 .set_rate = bcm2835_clock_set_rate,
1290 .determine_rate = bcm2835_clock_determine_rate,
1291 .set_parent = bcm2835_clock_set_parent,
1292 .get_parent = bcm2835_clock_get_parent,
1293 .debug_init = bcm2835_clock_debug_init,
1296 static struct clk_hw *bcm2835_register_pll(struct bcm2835_cprman *cprman,
1297 const struct bcm2835_pll_data *data)
1299 struct bcm2835_pll *pll;
1300 struct clk_init_data init;
1301 int ret;
1303 memset(&init, 0, sizeof(init));
1305 /* All of the PLLs derive from the external oscillator. */
1306 init.parent_names = &cprman->real_parent_names[0];
1307 init.num_parents = 1;
1308 init.name = data->name;
1309 init.ops = &bcm2835_pll_clk_ops;
1310 init.flags = CLK_IGNORE_UNUSED;
1312 pll = kzalloc(sizeof(*pll), GFP_KERNEL);
1313 if (!pll)
1314 return NULL;
1316 pll->cprman = cprman;
1317 pll->data = data;
1318 pll->hw.init = &init;
1320 ret = devm_clk_hw_register(cprman->dev, &pll->hw);
1321 if (ret)
1322 return NULL;
1323 return &pll->hw;
1326 static struct clk_hw *
1327 bcm2835_register_pll_divider(struct bcm2835_cprman *cprman,
1328 const struct bcm2835_pll_divider_data *data)
1330 struct bcm2835_pll_divider *divider;
1331 struct clk_init_data init;
1332 const char *divider_name;
1333 int ret;
1335 if (data->fixed_divider != 1) {
1336 divider_name = devm_kasprintf(cprman->dev, GFP_KERNEL,
1337 "%s_prediv", data->name);
1338 if (!divider_name)
1339 return NULL;
1340 } else {
1341 divider_name = data->name;
1344 memset(&init, 0, sizeof(init));
1346 init.parent_names = &data->source_pll;
1347 init.num_parents = 1;
1348 init.name = divider_name;
1349 init.ops = &bcm2835_pll_divider_clk_ops;
1350 init.flags = data->flags | CLK_IGNORE_UNUSED;
1352 divider = devm_kzalloc(cprman->dev, sizeof(*divider), GFP_KERNEL);
1353 if (!divider)
1354 return NULL;
1356 divider->div.reg = cprman->regs + data->a2w_reg;
1357 divider->div.shift = A2W_PLL_DIV_SHIFT;
1358 divider->div.width = A2W_PLL_DIV_BITS;
1359 divider->div.flags = CLK_DIVIDER_MAX_AT_ZERO;
1360 divider->div.lock = &cprman->regs_lock;
1361 divider->div.hw.init = &init;
1362 divider->div.table = NULL;
1364 divider->cprman = cprman;
1365 divider->data = data;
1367 ret = devm_clk_hw_register(cprman->dev, &divider->div.hw);
1368 if (ret)
1369 return ERR_PTR(ret);
1372 * PLLH's channels have a fixed divide by 10 afterwards, which
1373 * is what our consumers are actually using.
1375 if (data->fixed_divider != 1) {
1376 return clk_hw_register_fixed_factor(cprman->dev, data->name,
1377 divider_name,
1378 CLK_SET_RATE_PARENT,
1380 data->fixed_divider);
1383 return &divider->div.hw;
1386 static struct clk_hw *bcm2835_register_clock(struct bcm2835_cprman *cprman,
1387 const struct bcm2835_clock_data *data)
1389 struct bcm2835_clock *clock;
1390 struct clk_init_data init;
1391 const char *parents[1 << CM_SRC_BITS];
1392 size_t i, j;
1393 int ret;
1396 * Replace our strings referencing parent clocks with the
1397 * actual clock-output-name of the parent.
1399 for (i = 0; i < data->num_mux_parents; i++) {
1400 parents[i] = data->parents[i];
1402 for (j = 0; j < ARRAY_SIZE(cprman_parent_names); j++) {
1403 if (strcmp(parents[i], cprman_parent_names[j]) == 0) {
1404 parents[i] = cprman->real_parent_names[j];
1405 break;
1410 memset(&init, 0, sizeof(init));
1411 init.parent_names = parents;
1412 init.num_parents = data->num_mux_parents;
1413 init.name = data->name;
1414 init.flags = data->flags | CLK_IGNORE_UNUSED;
1417 * Pass the CLK_SET_RATE_PARENT flag if we are allowed to propagate
1418 * rate changes on at least of the parents.
1420 if (data->set_rate_parent)
1421 init.flags |= CLK_SET_RATE_PARENT;
1423 if (data->is_vpu_clock) {
1424 init.ops = &bcm2835_vpu_clock_clk_ops;
1425 } else {
1426 init.ops = &bcm2835_clock_clk_ops;
1427 init.flags |= CLK_SET_RATE_GATE | CLK_SET_PARENT_GATE;
1429 /* If the clock wasn't actually enabled at boot, it's not
1430 * critical.
1432 if (!(cprman_read(cprman, data->ctl_reg) & CM_ENABLE))
1433 init.flags &= ~CLK_IS_CRITICAL;
1436 clock = devm_kzalloc(cprman->dev, sizeof(*clock), GFP_KERNEL);
1437 if (!clock)
1438 return NULL;
1440 clock->cprman = cprman;
1441 clock->data = data;
1442 clock->hw.init = &init;
1444 ret = devm_clk_hw_register(cprman->dev, &clock->hw);
1445 if (ret)
1446 return ERR_PTR(ret);
1447 return &clock->hw;
1450 static struct clk *bcm2835_register_gate(struct bcm2835_cprman *cprman,
1451 const struct bcm2835_gate_data *data)
1453 return clk_register_gate(cprman->dev, data->name, data->parent,
1454 CLK_IGNORE_UNUSED | CLK_SET_RATE_GATE,
1455 cprman->regs + data->ctl_reg,
1456 CM_GATE_BIT, 0, &cprman->regs_lock);
1459 typedef struct clk_hw *(*bcm2835_clk_register)(struct bcm2835_cprman *cprman,
1460 const void *data);
1461 struct bcm2835_clk_desc {
1462 bcm2835_clk_register clk_register;
1463 const void *data;
1466 /* assignment helper macros for different clock types */
1467 #define _REGISTER(f, ...) { .clk_register = (bcm2835_clk_register)f, \
1468 .data = __VA_ARGS__ }
1469 #define REGISTER_PLL(...) _REGISTER(&bcm2835_register_pll, \
1470 &(struct bcm2835_pll_data) \
1471 {__VA_ARGS__})
1472 #define REGISTER_PLL_DIV(...) _REGISTER(&bcm2835_register_pll_divider, \
1473 &(struct bcm2835_pll_divider_data) \
1474 {__VA_ARGS__})
1475 #define REGISTER_CLK(...) _REGISTER(&bcm2835_register_clock, \
1476 &(struct bcm2835_clock_data) \
1477 {__VA_ARGS__})
1478 #define REGISTER_GATE(...) _REGISTER(&bcm2835_register_gate, \
1479 &(struct bcm2835_gate_data) \
1480 {__VA_ARGS__})
1482 /* parent mux arrays plus helper macros */
1484 /* main oscillator parent mux */
1485 static const char *const bcm2835_clock_osc_parents[] = {
1486 "gnd",
1487 "xosc",
1488 "testdebug0",
1489 "testdebug1"
1492 #define REGISTER_OSC_CLK(...) REGISTER_CLK( \
1493 .num_mux_parents = ARRAY_SIZE(bcm2835_clock_osc_parents), \
1494 .parents = bcm2835_clock_osc_parents, \
1495 __VA_ARGS__)
1497 /* main peripherial parent mux */
1498 static const char *const bcm2835_clock_per_parents[] = {
1499 "gnd",
1500 "xosc",
1501 "testdebug0",
1502 "testdebug1",
1503 "plla_per",
1504 "pllc_per",
1505 "plld_per",
1506 "pllh_aux",
1509 #define REGISTER_PER_CLK(...) REGISTER_CLK( \
1510 .num_mux_parents = ARRAY_SIZE(bcm2835_clock_per_parents), \
1511 .parents = bcm2835_clock_per_parents, \
1512 __VA_ARGS__)
1515 * Restrict clock sources for the PCM peripheral to the oscillator and
1516 * PLLD_PER because other source may have varying rates or be switched
1517 * off.
1519 * Prevent other sources from being selected by replacing their names in
1520 * the list of potential parents with dummy entries (entry index is
1521 * significant).
1523 static const char *const bcm2835_pcm_per_parents[] = {
1524 "-",
1525 "xosc",
1526 "-",
1527 "-",
1528 "-",
1529 "-",
1530 "plld_per",
1531 "-",
1534 #define REGISTER_PCM_CLK(...) REGISTER_CLK( \
1535 .num_mux_parents = ARRAY_SIZE(bcm2835_pcm_per_parents), \
1536 .parents = bcm2835_pcm_per_parents, \
1537 __VA_ARGS__)
1539 /* main vpu parent mux */
1540 static const char *const bcm2835_clock_vpu_parents[] = {
1541 "gnd",
1542 "xosc",
1543 "testdebug0",
1544 "testdebug1",
1545 "plla_core",
1546 "pllc_core0",
1547 "plld_core",
1548 "pllh_aux",
1549 "pllc_core1",
1550 "pllc_core2",
1553 #define REGISTER_VPU_CLK(...) REGISTER_CLK( \
1554 .num_mux_parents = ARRAY_SIZE(bcm2835_clock_vpu_parents), \
1555 .parents = bcm2835_clock_vpu_parents, \
1556 __VA_ARGS__)
1559 * DSI parent clocks. The DSI byte/DDR/DDR2 clocks come from the DSI
1560 * analog PHY. The _inv variants are generated internally to cprman,
1561 * but we don't use them so they aren't hooked up.
1563 static const char *const bcm2835_clock_dsi0_parents[] = {
1564 "gnd",
1565 "xosc",
1566 "testdebug0",
1567 "testdebug1",
1568 "dsi0_ddr",
1569 "dsi0_ddr_inv",
1570 "dsi0_ddr2",
1571 "dsi0_ddr2_inv",
1572 "dsi0_byte",
1573 "dsi0_byte_inv",
1576 static const char *const bcm2835_clock_dsi1_parents[] = {
1577 "gnd",
1578 "xosc",
1579 "testdebug0",
1580 "testdebug1",
1581 "dsi1_ddr",
1582 "dsi1_ddr_inv",
1583 "dsi1_ddr2",
1584 "dsi1_ddr2_inv",
1585 "dsi1_byte",
1586 "dsi1_byte_inv",
1589 #define REGISTER_DSI0_CLK(...) REGISTER_CLK( \
1590 .num_mux_parents = ARRAY_SIZE(bcm2835_clock_dsi0_parents), \
1591 .parents = bcm2835_clock_dsi0_parents, \
1592 __VA_ARGS__)
1594 #define REGISTER_DSI1_CLK(...) REGISTER_CLK( \
1595 .num_mux_parents = ARRAY_SIZE(bcm2835_clock_dsi1_parents), \
1596 .parents = bcm2835_clock_dsi1_parents, \
1597 __VA_ARGS__)
1600 * the real definition of all the pll, pll_dividers and clocks
1601 * these make use of the above REGISTER_* macros
1603 static const struct bcm2835_clk_desc clk_desc_array[] = {
1604 /* the PLL + PLL dividers */
1607 * PLLA is the auxiliary PLL, used to drive the CCP2
1608 * (Compact Camera Port 2) transmitter clock.
1610 * It is in the PX LDO power domain, which is on when the
1611 * AUDIO domain is on.
1613 [BCM2835_PLLA] = REGISTER_PLL(
1614 .name = "plla",
1615 .cm_ctrl_reg = CM_PLLA,
1616 .a2w_ctrl_reg = A2W_PLLA_CTRL,
1617 .frac_reg = A2W_PLLA_FRAC,
1618 .ana_reg_base = A2W_PLLA_ANA0,
1619 .reference_enable_mask = A2W_XOSC_CTRL_PLLA_ENABLE,
1620 .lock_mask = CM_LOCK_FLOCKA,
1622 .ana = &bcm2835_ana_default,
1624 .min_rate = 600000000u,
1625 .max_rate = 2400000000u,
1626 .max_fb_rate = BCM2835_MAX_FB_RATE),
1627 [BCM2835_PLLA_CORE] = REGISTER_PLL_DIV(
1628 .name = "plla_core",
1629 .source_pll = "plla",
1630 .cm_reg = CM_PLLA,
1631 .a2w_reg = A2W_PLLA_CORE,
1632 .load_mask = CM_PLLA_LOADCORE,
1633 .hold_mask = CM_PLLA_HOLDCORE,
1634 .fixed_divider = 1,
1635 .flags = CLK_SET_RATE_PARENT),
1636 [BCM2835_PLLA_PER] = REGISTER_PLL_DIV(
1637 .name = "plla_per",
1638 .source_pll = "plla",
1639 .cm_reg = CM_PLLA,
1640 .a2w_reg = A2W_PLLA_PER,
1641 .load_mask = CM_PLLA_LOADPER,
1642 .hold_mask = CM_PLLA_HOLDPER,
1643 .fixed_divider = 1,
1644 .flags = CLK_SET_RATE_PARENT),
1645 [BCM2835_PLLA_DSI0] = REGISTER_PLL_DIV(
1646 .name = "plla_dsi0",
1647 .source_pll = "plla",
1648 .cm_reg = CM_PLLA,
1649 .a2w_reg = A2W_PLLA_DSI0,
1650 .load_mask = CM_PLLA_LOADDSI0,
1651 .hold_mask = CM_PLLA_HOLDDSI0,
1652 .fixed_divider = 1),
1653 [BCM2835_PLLA_CCP2] = REGISTER_PLL_DIV(
1654 .name = "plla_ccp2",
1655 .source_pll = "plla",
1656 .cm_reg = CM_PLLA,
1657 .a2w_reg = A2W_PLLA_CCP2,
1658 .load_mask = CM_PLLA_LOADCCP2,
1659 .hold_mask = CM_PLLA_HOLDCCP2,
1660 .fixed_divider = 1,
1661 .flags = CLK_SET_RATE_PARENT),
1663 /* PLLB is used for the ARM's clock. */
1664 [BCM2835_PLLB] = REGISTER_PLL(
1665 .name = "pllb",
1666 .cm_ctrl_reg = CM_PLLB,
1667 .a2w_ctrl_reg = A2W_PLLB_CTRL,
1668 .frac_reg = A2W_PLLB_FRAC,
1669 .ana_reg_base = A2W_PLLB_ANA0,
1670 .reference_enable_mask = A2W_XOSC_CTRL_PLLB_ENABLE,
1671 .lock_mask = CM_LOCK_FLOCKB,
1673 .ana = &bcm2835_ana_default,
1675 .min_rate = 600000000u,
1676 .max_rate = 3000000000u,
1677 .max_fb_rate = BCM2835_MAX_FB_RATE),
1678 [BCM2835_PLLB_ARM] = REGISTER_PLL_DIV(
1679 .name = "pllb_arm",
1680 .source_pll = "pllb",
1681 .cm_reg = CM_PLLB,
1682 .a2w_reg = A2W_PLLB_ARM,
1683 .load_mask = CM_PLLB_LOADARM,
1684 .hold_mask = CM_PLLB_HOLDARM,
1685 .fixed_divider = 1,
1686 .flags = CLK_SET_RATE_PARENT),
1689 * PLLC is the core PLL, used to drive the core VPU clock.
1691 * It is in the PX LDO power domain, which is on when the
1692 * AUDIO domain is on.
1694 [BCM2835_PLLC] = REGISTER_PLL(
1695 .name = "pllc",
1696 .cm_ctrl_reg = CM_PLLC,
1697 .a2w_ctrl_reg = A2W_PLLC_CTRL,
1698 .frac_reg = A2W_PLLC_FRAC,
1699 .ana_reg_base = A2W_PLLC_ANA0,
1700 .reference_enable_mask = A2W_XOSC_CTRL_PLLC_ENABLE,
1701 .lock_mask = CM_LOCK_FLOCKC,
1703 .ana = &bcm2835_ana_default,
1705 .min_rate = 600000000u,
1706 .max_rate = 3000000000u,
1707 .max_fb_rate = BCM2835_MAX_FB_RATE),
1708 [BCM2835_PLLC_CORE0] = REGISTER_PLL_DIV(
1709 .name = "pllc_core0",
1710 .source_pll = "pllc",
1711 .cm_reg = CM_PLLC,
1712 .a2w_reg = A2W_PLLC_CORE0,
1713 .load_mask = CM_PLLC_LOADCORE0,
1714 .hold_mask = CM_PLLC_HOLDCORE0,
1715 .fixed_divider = 1,
1716 .flags = CLK_SET_RATE_PARENT),
1717 [BCM2835_PLLC_CORE1] = REGISTER_PLL_DIV(
1718 .name = "pllc_core1",
1719 .source_pll = "pllc",
1720 .cm_reg = CM_PLLC,
1721 .a2w_reg = A2W_PLLC_CORE1,
1722 .load_mask = CM_PLLC_LOADCORE1,
1723 .hold_mask = CM_PLLC_HOLDCORE1,
1724 .fixed_divider = 1,
1725 .flags = CLK_SET_RATE_PARENT),
1726 [BCM2835_PLLC_CORE2] = REGISTER_PLL_DIV(
1727 .name = "pllc_core2",
1728 .source_pll = "pllc",
1729 .cm_reg = CM_PLLC,
1730 .a2w_reg = A2W_PLLC_CORE2,
1731 .load_mask = CM_PLLC_LOADCORE2,
1732 .hold_mask = CM_PLLC_HOLDCORE2,
1733 .fixed_divider = 1,
1734 .flags = CLK_SET_RATE_PARENT),
1735 [BCM2835_PLLC_PER] = REGISTER_PLL_DIV(
1736 .name = "pllc_per",
1737 .source_pll = "pllc",
1738 .cm_reg = CM_PLLC,
1739 .a2w_reg = A2W_PLLC_PER,
1740 .load_mask = CM_PLLC_LOADPER,
1741 .hold_mask = CM_PLLC_HOLDPER,
1742 .fixed_divider = 1,
1743 .flags = CLK_SET_RATE_PARENT),
1746 * PLLD is the display PLL, used to drive DSI display panels.
1748 * It is in the PX LDO power domain, which is on when the
1749 * AUDIO domain is on.
1751 [BCM2835_PLLD] = REGISTER_PLL(
1752 .name = "plld",
1753 .cm_ctrl_reg = CM_PLLD,
1754 .a2w_ctrl_reg = A2W_PLLD_CTRL,
1755 .frac_reg = A2W_PLLD_FRAC,
1756 .ana_reg_base = A2W_PLLD_ANA0,
1757 .reference_enable_mask = A2W_XOSC_CTRL_DDR_ENABLE,
1758 .lock_mask = CM_LOCK_FLOCKD,
1760 .ana = &bcm2835_ana_default,
1762 .min_rate = 600000000u,
1763 .max_rate = 2400000000u,
1764 .max_fb_rate = BCM2835_MAX_FB_RATE),
1765 [BCM2835_PLLD_CORE] = REGISTER_PLL_DIV(
1766 .name = "plld_core",
1767 .source_pll = "plld",
1768 .cm_reg = CM_PLLD,
1769 .a2w_reg = A2W_PLLD_CORE,
1770 .load_mask = CM_PLLD_LOADCORE,
1771 .hold_mask = CM_PLLD_HOLDCORE,
1772 .fixed_divider = 1,
1773 .flags = CLK_SET_RATE_PARENT),
1774 [BCM2835_PLLD_PER] = REGISTER_PLL_DIV(
1775 .name = "plld_per",
1776 .source_pll = "plld",
1777 .cm_reg = CM_PLLD,
1778 .a2w_reg = A2W_PLLD_PER,
1779 .load_mask = CM_PLLD_LOADPER,
1780 .hold_mask = CM_PLLD_HOLDPER,
1781 .fixed_divider = 1,
1782 .flags = CLK_SET_RATE_PARENT),
1783 [BCM2835_PLLD_DSI0] = REGISTER_PLL_DIV(
1784 .name = "plld_dsi0",
1785 .source_pll = "plld",
1786 .cm_reg = CM_PLLD,
1787 .a2w_reg = A2W_PLLD_DSI0,
1788 .load_mask = CM_PLLD_LOADDSI0,
1789 .hold_mask = CM_PLLD_HOLDDSI0,
1790 .fixed_divider = 1),
1791 [BCM2835_PLLD_DSI1] = REGISTER_PLL_DIV(
1792 .name = "plld_dsi1",
1793 .source_pll = "plld",
1794 .cm_reg = CM_PLLD,
1795 .a2w_reg = A2W_PLLD_DSI1,
1796 .load_mask = CM_PLLD_LOADDSI1,
1797 .hold_mask = CM_PLLD_HOLDDSI1,
1798 .fixed_divider = 1),
1801 * PLLH is used to supply the pixel clock or the AUX clock for the
1802 * TV encoder.
1804 * It is in the HDMI power domain.
1806 [BCM2835_PLLH] = REGISTER_PLL(
1807 "pllh",
1808 .cm_ctrl_reg = CM_PLLH,
1809 .a2w_ctrl_reg = A2W_PLLH_CTRL,
1810 .frac_reg = A2W_PLLH_FRAC,
1811 .ana_reg_base = A2W_PLLH_ANA0,
1812 .reference_enable_mask = A2W_XOSC_CTRL_PLLC_ENABLE,
1813 .lock_mask = CM_LOCK_FLOCKH,
1815 .ana = &bcm2835_ana_pllh,
1817 .min_rate = 600000000u,
1818 .max_rate = 3000000000u,
1819 .max_fb_rate = BCM2835_MAX_FB_RATE),
1820 [BCM2835_PLLH_RCAL] = REGISTER_PLL_DIV(
1821 .name = "pllh_rcal",
1822 .source_pll = "pllh",
1823 .cm_reg = CM_PLLH,
1824 .a2w_reg = A2W_PLLH_RCAL,
1825 .load_mask = CM_PLLH_LOADRCAL,
1826 .hold_mask = 0,
1827 .fixed_divider = 10,
1828 .flags = CLK_SET_RATE_PARENT),
1829 [BCM2835_PLLH_AUX] = REGISTER_PLL_DIV(
1830 .name = "pllh_aux",
1831 .source_pll = "pllh",
1832 .cm_reg = CM_PLLH,
1833 .a2w_reg = A2W_PLLH_AUX,
1834 .load_mask = CM_PLLH_LOADAUX,
1835 .hold_mask = 0,
1836 .fixed_divider = 1,
1837 .flags = CLK_SET_RATE_PARENT),
1838 [BCM2835_PLLH_PIX] = REGISTER_PLL_DIV(
1839 .name = "pllh_pix",
1840 .source_pll = "pllh",
1841 .cm_reg = CM_PLLH,
1842 .a2w_reg = A2W_PLLH_PIX,
1843 .load_mask = CM_PLLH_LOADPIX,
1844 .hold_mask = 0,
1845 .fixed_divider = 10,
1846 .flags = CLK_SET_RATE_PARENT),
1848 /* the clocks */
1850 /* clocks with oscillator parent mux */
1852 /* One Time Programmable Memory clock. Maximum 10Mhz. */
1853 [BCM2835_CLOCK_OTP] = REGISTER_OSC_CLK(
1854 .name = "otp",
1855 .ctl_reg = CM_OTPCTL,
1856 .div_reg = CM_OTPDIV,
1857 .int_bits = 4,
1858 .frac_bits = 0,
1859 .tcnt_mux = 6),
1861 * Used for a 1Mhz clock for the system clocksource, and also used
1862 * bythe watchdog timer and the camera pulse generator.
1864 [BCM2835_CLOCK_TIMER] = REGISTER_OSC_CLK(
1865 .name = "timer",
1866 .ctl_reg = CM_TIMERCTL,
1867 .div_reg = CM_TIMERDIV,
1868 .int_bits = 6,
1869 .frac_bits = 12),
1871 * Clock for the temperature sensor.
1872 * Generally run at 2Mhz, max 5Mhz.
1874 [BCM2835_CLOCK_TSENS] = REGISTER_OSC_CLK(
1875 .name = "tsens",
1876 .ctl_reg = CM_TSENSCTL,
1877 .div_reg = CM_TSENSDIV,
1878 .int_bits = 5,
1879 .frac_bits = 0),
1880 [BCM2835_CLOCK_TEC] = REGISTER_OSC_CLK(
1881 .name = "tec",
1882 .ctl_reg = CM_TECCTL,
1883 .div_reg = CM_TECDIV,
1884 .int_bits = 6,
1885 .frac_bits = 0),
1887 /* clocks with vpu parent mux */
1888 [BCM2835_CLOCK_H264] = REGISTER_VPU_CLK(
1889 .name = "h264",
1890 .ctl_reg = CM_H264CTL,
1891 .div_reg = CM_H264DIV,
1892 .int_bits = 4,
1893 .frac_bits = 8,
1894 .tcnt_mux = 1),
1895 [BCM2835_CLOCK_ISP] = REGISTER_VPU_CLK(
1896 .name = "isp",
1897 .ctl_reg = CM_ISPCTL,
1898 .div_reg = CM_ISPDIV,
1899 .int_bits = 4,
1900 .frac_bits = 8,
1901 .tcnt_mux = 2),
1904 * Secondary SDRAM clock. Used for low-voltage modes when the PLL
1905 * in the SDRAM controller can't be used.
1907 [BCM2835_CLOCK_SDRAM] = REGISTER_VPU_CLK(
1908 .name = "sdram",
1909 .ctl_reg = CM_SDCCTL,
1910 .div_reg = CM_SDCDIV,
1911 .int_bits = 6,
1912 .frac_bits = 0,
1913 .tcnt_mux = 3),
1914 [BCM2835_CLOCK_V3D] = REGISTER_VPU_CLK(
1915 .name = "v3d",
1916 .ctl_reg = CM_V3DCTL,
1917 .div_reg = CM_V3DDIV,
1918 .int_bits = 4,
1919 .frac_bits = 8,
1920 .tcnt_mux = 4),
1922 * VPU clock. This doesn't have an enable bit, since it drives
1923 * the bus for everything else, and is special so it doesn't need
1924 * to be gated for rate changes. It is also known as "clk_audio"
1925 * in various hardware documentation.
1927 [BCM2835_CLOCK_VPU] = REGISTER_VPU_CLK(
1928 .name = "vpu",
1929 .ctl_reg = CM_VPUCTL,
1930 .div_reg = CM_VPUDIV,
1931 .int_bits = 12,
1932 .frac_bits = 8,
1933 .flags = CLK_IS_CRITICAL,
1934 .is_vpu_clock = true,
1935 .tcnt_mux = 5),
1937 /* clocks with per parent mux */
1938 [BCM2835_CLOCK_AVEO] = REGISTER_PER_CLK(
1939 .name = "aveo",
1940 .ctl_reg = CM_AVEOCTL,
1941 .div_reg = CM_AVEODIV,
1942 .int_bits = 4,
1943 .frac_bits = 0,
1944 .tcnt_mux = 38),
1945 [BCM2835_CLOCK_CAM0] = REGISTER_PER_CLK(
1946 .name = "cam0",
1947 .ctl_reg = CM_CAM0CTL,
1948 .div_reg = CM_CAM0DIV,
1949 .int_bits = 4,
1950 .frac_bits = 8,
1951 .tcnt_mux = 14),
1952 [BCM2835_CLOCK_CAM1] = REGISTER_PER_CLK(
1953 .name = "cam1",
1954 .ctl_reg = CM_CAM1CTL,
1955 .div_reg = CM_CAM1DIV,
1956 .int_bits = 4,
1957 .frac_bits = 8,
1958 .tcnt_mux = 15),
1959 [BCM2835_CLOCK_DFT] = REGISTER_PER_CLK(
1960 .name = "dft",
1961 .ctl_reg = CM_DFTCTL,
1962 .div_reg = CM_DFTDIV,
1963 .int_bits = 5,
1964 .frac_bits = 0),
1965 [BCM2835_CLOCK_DPI] = REGISTER_PER_CLK(
1966 .name = "dpi",
1967 .ctl_reg = CM_DPICTL,
1968 .div_reg = CM_DPIDIV,
1969 .int_bits = 4,
1970 .frac_bits = 8,
1971 .tcnt_mux = 17),
1973 /* Arasan EMMC clock */
1974 [BCM2835_CLOCK_EMMC] = REGISTER_PER_CLK(
1975 .name = "emmc",
1976 .ctl_reg = CM_EMMCCTL,
1977 .div_reg = CM_EMMCDIV,
1978 .int_bits = 4,
1979 .frac_bits = 8,
1980 .tcnt_mux = 39),
1982 /* General purpose (GPIO) clocks */
1983 [BCM2835_CLOCK_GP0] = REGISTER_PER_CLK(
1984 .name = "gp0",
1985 .ctl_reg = CM_GP0CTL,
1986 .div_reg = CM_GP0DIV,
1987 .int_bits = 12,
1988 .frac_bits = 12,
1989 .is_mash_clock = true,
1990 .tcnt_mux = 20),
1991 [BCM2835_CLOCK_GP1] = REGISTER_PER_CLK(
1992 .name = "gp1",
1993 .ctl_reg = CM_GP1CTL,
1994 .div_reg = CM_GP1DIV,
1995 .int_bits = 12,
1996 .frac_bits = 12,
1997 .flags = CLK_IS_CRITICAL,
1998 .is_mash_clock = true,
1999 .tcnt_mux = 21),
2000 [BCM2835_CLOCK_GP2] = REGISTER_PER_CLK(
2001 .name = "gp2",
2002 .ctl_reg = CM_GP2CTL,
2003 .div_reg = CM_GP2DIV,
2004 .int_bits = 12,
2005 .frac_bits = 12,
2006 .flags = CLK_IS_CRITICAL),
2008 /* HDMI state machine */
2009 [BCM2835_CLOCK_HSM] = REGISTER_PER_CLK(
2010 .name = "hsm",
2011 .ctl_reg = CM_HSMCTL,
2012 .div_reg = CM_HSMDIV,
2013 .int_bits = 4,
2014 .frac_bits = 8,
2015 .tcnt_mux = 22),
2016 [BCM2835_CLOCK_PCM] = REGISTER_PCM_CLK(
2017 .name = "pcm",
2018 .ctl_reg = CM_PCMCTL,
2019 .div_reg = CM_PCMDIV,
2020 .int_bits = 12,
2021 .frac_bits = 12,
2022 .is_mash_clock = true,
2023 .low_jitter = true,
2024 .tcnt_mux = 23),
2025 [BCM2835_CLOCK_PWM] = REGISTER_PER_CLK(
2026 .name = "pwm",
2027 .ctl_reg = CM_PWMCTL,
2028 .div_reg = CM_PWMDIV,
2029 .int_bits = 12,
2030 .frac_bits = 12,
2031 .is_mash_clock = true,
2032 .tcnt_mux = 24),
2033 [BCM2835_CLOCK_SLIM] = REGISTER_PER_CLK(
2034 .name = "slim",
2035 .ctl_reg = CM_SLIMCTL,
2036 .div_reg = CM_SLIMDIV,
2037 .int_bits = 12,
2038 .frac_bits = 12,
2039 .is_mash_clock = true,
2040 .tcnt_mux = 25),
2041 [BCM2835_CLOCK_SMI] = REGISTER_PER_CLK(
2042 .name = "smi",
2043 .ctl_reg = CM_SMICTL,
2044 .div_reg = CM_SMIDIV,
2045 .int_bits = 4,
2046 .frac_bits = 8,
2047 .tcnt_mux = 27),
2048 [BCM2835_CLOCK_UART] = REGISTER_PER_CLK(
2049 .name = "uart",
2050 .ctl_reg = CM_UARTCTL,
2051 .div_reg = CM_UARTDIV,
2052 .int_bits = 10,
2053 .frac_bits = 12,
2054 .tcnt_mux = 28),
2056 /* TV encoder clock. Only operating frequency is 108Mhz. */
2057 [BCM2835_CLOCK_VEC] = REGISTER_PER_CLK(
2058 .name = "vec",
2059 .ctl_reg = CM_VECCTL,
2060 .div_reg = CM_VECDIV,
2061 .int_bits = 4,
2062 .frac_bits = 0,
2064 * Allow rate change propagation only on PLLH_AUX which is
2065 * assigned index 7 in the parent array.
2067 .set_rate_parent = BIT(7),
2068 .tcnt_mux = 29),
2070 /* dsi clocks */
2071 [BCM2835_CLOCK_DSI0E] = REGISTER_PER_CLK(
2072 .name = "dsi0e",
2073 .ctl_reg = CM_DSI0ECTL,
2074 .div_reg = CM_DSI0EDIV,
2075 .int_bits = 4,
2076 .frac_bits = 8,
2077 .tcnt_mux = 18),
2078 [BCM2835_CLOCK_DSI1E] = REGISTER_PER_CLK(
2079 .name = "dsi1e",
2080 .ctl_reg = CM_DSI1ECTL,
2081 .div_reg = CM_DSI1EDIV,
2082 .int_bits = 4,
2083 .frac_bits = 8,
2084 .tcnt_mux = 19),
2085 [BCM2835_CLOCK_DSI0P] = REGISTER_DSI0_CLK(
2086 .name = "dsi0p",
2087 .ctl_reg = CM_DSI0PCTL,
2088 .div_reg = CM_DSI0PDIV,
2089 .int_bits = 0,
2090 .frac_bits = 0,
2091 .tcnt_mux = 12),
2092 [BCM2835_CLOCK_DSI1P] = REGISTER_DSI1_CLK(
2093 .name = "dsi1p",
2094 .ctl_reg = CM_DSI1PCTL,
2095 .div_reg = CM_DSI1PDIV,
2096 .int_bits = 0,
2097 .frac_bits = 0,
2098 .tcnt_mux = 13),
2100 /* the gates */
2103 * CM_PERIICTL (and CM_PERIACTL, CM_SYSCTL and CM_VPUCTL if
2104 * you have the debug bit set in the power manager, which we
2105 * don't bother exposing) are individual gates off of the
2106 * non-stop vpu clock.
2108 [BCM2835_CLOCK_PERI_IMAGE] = REGISTER_GATE(
2109 .name = "peri_image",
2110 .parent = "vpu",
2111 .ctl_reg = CM_PERIICTL),
2115 * Permanently take a reference on the parent of the SDRAM clock.
2117 * While the SDRAM is being driven by its dedicated PLL most of the
2118 * time, there is a little loop running in the firmware that
2119 * periodically switches the SDRAM to using our CM clock to do PVT
2120 * recalibration, with the assumption that the previously configured
2121 * SDRAM parent is still enabled and running.
2123 static int bcm2835_mark_sdc_parent_critical(struct clk *sdc)
2125 struct clk *parent = clk_get_parent(sdc);
2127 if (IS_ERR(parent))
2128 return PTR_ERR(parent);
2130 return clk_prepare_enable(parent);
2133 static int bcm2835_clk_probe(struct platform_device *pdev)
2135 struct device *dev = &pdev->dev;
2136 struct clk_hw **hws;
2137 struct bcm2835_cprman *cprman;
2138 struct resource *res;
2139 const struct bcm2835_clk_desc *desc;
2140 const size_t asize = ARRAY_SIZE(clk_desc_array);
2141 size_t i;
2142 int ret;
2144 cprman = devm_kzalloc(dev, sizeof(*cprman) +
2145 sizeof(*cprman->onecell.hws) * asize,
2146 GFP_KERNEL);
2147 if (!cprman)
2148 return -ENOMEM;
2150 spin_lock_init(&cprman->regs_lock);
2151 cprman->dev = dev;
2152 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2153 cprman->regs = devm_ioremap_resource(dev, res);
2154 if (IS_ERR(cprman->regs))
2155 return PTR_ERR(cprman->regs);
2157 memcpy(cprman->real_parent_names, cprman_parent_names,
2158 sizeof(cprman_parent_names));
2159 of_clk_parent_fill(dev->of_node, cprman->real_parent_names,
2160 ARRAY_SIZE(cprman_parent_names));
2163 * Make sure the external oscillator has been registered.
2165 * The other (DSI) clocks are not present on older device
2166 * trees, which we still need to support for backwards
2167 * compatibility.
2169 if (!cprman->real_parent_names[0])
2170 return -ENODEV;
2172 platform_set_drvdata(pdev, cprman);
2174 cprman->onecell.num = asize;
2175 hws = cprman->onecell.hws;
2177 for (i = 0; i < asize; i++) {
2178 desc = &clk_desc_array[i];
2179 if (desc->clk_register && desc->data)
2180 hws[i] = desc->clk_register(cprman, desc->data);
2183 ret = bcm2835_mark_sdc_parent_critical(hws[BCM2835_CLOCK_SDRAM]->clk);
2184 if (ret)
2185 return ret;
2187 return of_clk_add_hw_provider(dev->of_node, of_clk_hw_onecell_get,
2188 &cprman->onecell);
2191 static const struct of_device_id bcm2835_clk_of_match[] = {
2192 { .compatible = "brcm,bcm2835-cprman", },
2195 MODULE_DEVICE_TABLE(of, bcm2835_clk_of_match);
2197 static struct platform_driver bcm2835_clk_driver = {
2198 .driver = {
2199 .name = "bcm2835-clk",
2200 .of_match_table = bcm2835_clk_of_match,
2202 .probe = bcm2835_clk_probe,
2205 builtin_platform_driver(bcm2835_clk_driver);
2207 MODULE_AUTHOR("Eric Anholt <eric@anholt.net>");
2208 MODULE_DESCRIPTION("BCM2835 clock driver");
2209 MODULE_LICENSE("GPL v2");