Merge tag 'for_linus' of git://git.kernel.org/pub/scm/linux/kernel/git/mst/vhost
[cris-mirror.git] / drivers / crypto / amcc / crypto4xx_core.c
blob76f459ad28214c15842192938c1c50ac72db9368
1 /**
2 * AMCC SoC PPC4xx Crypto Driver
4 * Copyright (c) 2008 Applied Micro Circuits Corporation.
5 * All rights reserved. James Hsiao <jhsiao@amcc.com>
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation; either version 2 of the License, or
10 * (at your option) any later version.
12 * This program is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 * GNU General Public License for more details.
17 * This file implements AMCC crypto offload Linux device driver for use with
18 * Linux CryptoAPI.
21 #include <linux/kernel.h>
22 #include <linux/interrupt.h>
23 #include <linux/spinlock_types.h>
24 #include <linux/random.h>
25 #include <linux/scatterlist.h>
26 #include <linux/crypto.h>
27 #include <linux/dma-mapping.h>
28 #include <linux/platform_device.h>
29 #include <linux/init.h>
30 #include <linux/module.h>
31 #include <linux/of_address.h>
32 #include <linux/of_irq.h>
33 #include <linux/of_platform.h>
34 #include <linux/slab.h>
35 #include <asm/dcr.h>
36 #include <asm/dcr-regs.h>
37 #include <asm/cacheflush.h>
38 #include <crypto/aead.h>
39 #include <crypto/aes.h>
40 #include <crypto/ctr.h>
41 #include <crypto/gcm.h>
42 #include <crypto/sha.h>
43 #include <crypto/scatterwalk.h>
44 #include <crypto/internal/aead.h>
45 #include <crypto/internal/skcipher.h>
46 #include "crypto4xx_reg_def.h"
47 #include "crypto4xx_core.h"
48 #include "crypto4xx_sa.h"
49 #include "crypto4xx_trng.h"
51 #define PPC4XX_SEC_VERSION_STR "0.5"
53 /**
54 * PPC4xx Crypto Engine Initialization Routine
56 static void crypto4xx_hw_init(struct crypto4xx_device *dev)
58 union ce_ring_size ring_size;
59 union ce_ring_control ring_ctrl;
60 union ce_part_ring_size part_ring_size;
61 union ce_io_threshold io_threshold;
62 u32 rand_num;
63 union ce_pe_dma_cfg pe_dma_cfg;
64 u32 device_ctrl;
66 writel(PPC4XX_BYTE_ORDER, dev->ce_base + CRYPTO4XX_BYTE_ORDER_CFG);
67 /* setup pe dma, include reset sg, pdr and pe, then release reset */
68 pe_dma_cfg.w = 0;
69 pe_dma_cfg.bf.bo_sgpd_en = 1;
70 pe_dma_cfg.bf.bo_data_en = 0;
71 pe_dma_cfg.bf.bo_sa_en = 1;
72 pe_dma_cfg.bf.bo_pd_en = 1;
73 pe_dma_cfg.bf.dynamic_sa_en = 1;
74 pe_dma_cfg.bf.reset_sg = 1;
75 pe_dma_cfg.bf.reset_pdr = 1;
76 pe_dma_cfg.bf.reset_pe = 1;
77 writel(pe_dma_cfg.w, dev->ce_base + CRYPTO4XX_PE_DMA_CFG);
78 /* un reset pe,sg and pdr */
79 pe_dma_cfg.bf.pe_mode = 0;
80 pe_dma_cfg.bf.reset_sg = 0;
81 pe_dma_cfg.bf.reset_pdr = 0;
82 pe_dma_cfg.bf.reset_pe = 0;
83 pe_dma_cfg.bf.bo_td_en = 0;
84 writel(pe_dma_cfg.w, dev->ce_base + CRYPTO4XX_PE_DMA_CFG);
85 writel(dev->pdr_pa, dev->ce_base + CRYPTO4XX_PDR_BASE);
86 writel(dev->pdr_pa, dev->ce_base + CRYPTO4XX_RDR_BASE);
87 writel(PPC4XX_PRNG_CTRL_AUTO_EN, dev->ce_base + CRYPTO4XX_PRNG_CTRL);
88 get_random_bytes(&rand_num, sizeof(rand_num));
89 writel(rand_num, dev->ce_base + CRYPTO4XX_PRNG_SEED_L);
90 get_random_bytes(&rand_num, sizeof(rand_num));
91 writel(rand_num, dev->ce_base + CRYPTO4XX_PRNG_SEED_H);
92 ring_size.w = 0;
93 ring_size.bf.ring_offset = PPC4XX_PD_SIZE;
94 ring_size.bf.ring_size = PPC4XX_NUM_PD;
95 writel(ring_size.w, dev->ce_base + CRYPTO4XX_RING_SIZE);
96 ring_ctrl.w = 0;
97 writel(ring_ctrl.w, dev->ce_base + CRYPTO4XX_RING_CTRL);
98 device_ctrl = readl(dev->ce_base + CRYPTO4XX_DEVICE_CTRL);
99 device_ctrl |= PPC4XX_DC_3DES_EN;
100 writel(device_ctrl, dev->ce_base + CRYPTO4XX_DEVICE_CTRL);
101 writel(dev->gdr_pa, dev->ce_base + CRYPTO4XX_GATH_RING_BASE);
102 writel(dev->sdr_pa, dev->ce_base + CRYPTO4XX_SCAT_RING_BASE);
103 part_ring_size.w = 0;
104 part_ring_size.bf.sdr_size = PPC4XX_SDR_SIZE;
105 part_ring_size.bf.gdr_size = PPC4XX_GDR_SIZE;
106 writel(part_ring_size.w, dev->ce_base + CRYPTO4XX_PART_RING_SIZE);
107 writel(PPC4XX_SD_BUFFER_SIZE, dev->ce_base + CRYPTO4XX_PART_RING_CFG);
108 io_threshold.w = 0;
109 io_threshold.bf.output_threshold = PPC4XX_OUTPUT_THRESHOLD;
110 io_threshold.bf.input_threshold = PPC4XX_INPUT_THRESHOLD;
111 writel(io_threshold.w, dev->ce_base + CRYPTO4XX_IO_THRESHOLD);
112 writel(0, dev->ce_base + CRYPTO4XX_PDR_BASE_UADDR);
113 writel(0, dev->ce_base + CRYPTO4XX_RDR_BASE_UADDR);
114 writel(0, dev->ce_base + CRYPTO4XX_PKT_SRC_UADDR);
115 writel(0, dev->ce_base + CRYPTO4XX_PKT_DEST_UADDR);
116 writel(0, dev->ce_base + CRYPTO4XX_SA_UADDR);
117 writel(0, dev->ce_base + CRYPTO4XX_GATH_RING_BASE_UADDR);
118 writel(0, dev->ce_base + CRYPTO4XX_SCAT_RING_BASE_UADDR);
119 /* un reset pe,sg and pdr */
120 pe_dma_cfg.bf.pe_mode = 1;
121 pe_dma_cfg.bf.reset_sg = 0;
122 pe_dma_cfg.bf.reset_pdr = 0;
123 pe_dma_cfg.bf.reset_pe = 0;
124 pe_dma_cfg.bf.bo_td_en = 0;
125 writel(pe_dma_cfg.w, dev->ce_base + CRYPTO4XX_PE_DMA_CFG);
126 /*clear all pending interrupt*/
127 writel(PPC4XX_INTERRUPT_CLR, dev->ce_base + CRYPTO4XX_INT_CLR);
128 writel(PPC4XX_INT_DESCR_CNT, dev->ce_base + CRYPTO4XX_INT_DESCR_CNT);
129 writel(PPC4XX_INT_DESCR_CNT, dev->ce_base + CRYPTO4XX_INT_DESCR_CNT);
130 writel(PPC4XX_INT_CFG, dev->ce_base + CRYPTO4XX_INT_CFG);
131 if (dev->is_revb) {
132 writel(PPC4XX_INT_TIMEOUT_CNT_REVB << 10,
133 dev->ce_base + CRYPTO4XX_INT_TIMEOUT_CNT);
134 writel(PPC4XX_PD_DONE_INT | PPC4XX_TMO_ERR_INT,
135 dev->ce_base + CRYPTO4XX_INT_EN);
136 } else {
137 writel(PPC4XX_PD_DONE_INT, dev->ce_base + CRYPTO4XX_INT_EN);
141 int crypto4xx_alloc_sa(struct crypto4xx_ctx *ctx, u32 size)
143 ctx->sa_in = kzalloc(size * 4, GFP_ATOMIC);
144 if (ctx->sa_in == NULL)
145 return -ENOMEM;
147 ctx->sa_out = kzalloc(size * 4, GFP_ATOMIC);
148 if (ctx->sa_out == NULL) {
149 kfree(ctx->sa_in);
150 ctx->sa_in = NULL;
151 return -ENOMEM;
154 ctx->sa_len = size;
156 return 0;
159 void crypto4xx_free_sa(struct crypto4xx_ctx *ctx)
161 kfree(ctx->sa_in);
162 ctx->sa_in = NULL;
163 kfree(ctx->sa_out);
164 ctx->sa_out = NULL;
165 ctx->sa_len = 0;
169 * alloc memory for the gather ring
170 * no need to alloc buf for the ring
171 * gdr_tail, gdr_head and gdr_count are initialized by this function
173 static u32 crypto4xx_build_pdr(struct crypto4xx_device *dev)
175 int i;
176 dev->pdr = dma_alloc_coherent(dev->core_dev->device,
177 sizeof(struct ce_pd) * PPC4XX_NUM_PD,
178 &dev->pdr_pa, GFP_ATOMIC);
179 if (!dev->pdr)
180 return -ENOMEM;
182 dev->pdr_uinfo = kzalloc(sizeof(struct pd_uinfo) * PPC4XX_NUM_PD,
183 GFP_KERNEL);
184 if (!dev->pdr_uinfo) {
185 dma_free_coherent(dev->core_dev->device,
186 sizeof(struct ce_pd) * PPC4XX_NUM_PD,
187 dev->pdr,
188 dev->pdr_pa);
189 return -ENOMEM;
191 memset(dev->pdr, 0, sizeof(struct ce_pd) * PPC4XX_NUM_PD);
192 dev->shadow_sa_pool = dma_alloc_coherent(dev->core_dev->device,
193 sizeof(union shadow_sa_buf) * PPC4XX_NUM_PD,
194 &dev->shadow_sa_pool_pa,
195 GFP_ATOMIC);
196 if (!dev->shadow_sa_pool)
197 return -ENOMEM;
199 dev->shadow_sr_pool = dma_alloc_coherent(dev->core_dev->device,
200 sizeof(struct sa_state_record) * PPC4XX_NUM_PD,
201 &dev->shadow_sr_pool_pa, GFP_ATOMIC);
202 if (!dev->shadow_sr_pool)
203 return -ENOMEM;
204 for (i = 0; i < PPC4XX_NUM_PD; i++) {
205 struct ce_pd *pd = &dev->pdr[i];
206 struct pd_uinfo *pd_uinfo = &dev->pdr_uinfo[i];
208 pd->sa = dev->shadow_sa_pool_pa +
209 sizeof(union shadow_sa_buf) * i;
211 /* alloc 256 bytes which is enough for any kind of dynamic sa */
212 pd_uinfo->sa_va = &dev->shadow_sa_pool[i].sa;
214 /* alloc state record */
215 pd_uinfo->sr_va = &dev->shadow_sr_pool[i];
216 pd_uinfo->sr_pa = dev->shadow_sr_pool_pa +
217 sizeof(struct sa_state_record) * i;
220 return 0;
223 static void crypto4xx_destroy_pdr(struct crypto4xx_device *dev)
225 if (dev->pdr)
226 dma_free_coherent(dev->core_dev->device,
227 sizeof(struct ce_pd) * PPC4XX_NUM_PD,
228 dev->pdr, dev->pdr_pa);
230 if (dev->shadow_sa_pool)
231 dma_free_coherent(dev->core_dev->device,
232 sizeof(union shadow_sa_buf) * PPC4XX_NUM_PD,
233 dev->shadow_sa_pool, dev->shadow_sa_pool_pa);
235 if (dev->shadow_sr_pool)
236 dma_free_coherent(dev->core_dev->device,
237 sizeof(struct sa_state_record) * PPC4XX_NUM_PD,
238 dev->shadow_sr_pool, dev->shadow_sr_pool_pa);
240 kfree(dev->pdr_uinfo);
243 static u32 crypto4xx_get_pd_from_pdr_nolock(struct crypto4xx_device *dev)
245 u32 retval;
246 u32 tmp;
248 retval = dev->pdr_head;
249 tmp = (dev->pdr_head + 1) % PPC4XX_NUM_PD;
251 if (tmp == dev->pdr_tail)
252 return ERING_WAS_FULL;
254 dev->pdr_head = tmp;
256 return retval;
259 static u32 crypto4xx_put_pd_to_pdr(struct crypto4xx_device *dev, u32 idx)
261 struct pd_uinfo *pd_uinfo = &dev->pdr_uinfo[idx];
262 u32 tail;
263 unsigned long flags;
265 spin_lock_irqsave(&dev->core_dev->lock, flags);
266 pd_uinfo->state = PD_ENTRY_FREE;
268 if (dev->pdr_tail != PPC4XX_LAST_PD)
269 dev->pdr_tail++;
270 else
271 dev->pdr_tail = 0;
272 tail = dev->pdr_tail;
273 spin_unlock_irqrestore(&dev->core_dev->lock, flags);
275 return tail;
279 * alloc memory for the gather ring
280 * no need to alloc buf for the ring
281 * gdr_tail, gdr_head and gdr_count are initialized by this function
283 static u32 crypto4xx_build_gdr(struct crypto4xx_device *dev)
285 dev->gdr = dma_zalloc_coherent(dev->core_dev->device,
286 sizeof(struct ce_gd) * PPC4XX_NUM_GD,
287 &dev->gdr_pa, GFP_ATOMIC);
288 if (!dev->gdr)
289 return -ENOMEM;
291 return 0;
294 static inline void crypto4xx_destroy_gdr(struct crypto4xx_device *dev)
296 dma_free_coherent(dev->core_dev->device,
297 sizeof(struct ce_gd) * PPC4XX_NUM_GD,
298 dev->gdr, dev->gdr_pa);
302 * when this function is called.
303 * preemption or interrupt must be disabled
305 static u32 crypto4xx_get_n_gd(struct crypto4xx_device *dev, int n)
307 u32 retval;
308 u32 tmp;
310 if (n >= PPC4XX_NUM_GD)
311 return ERING_WAS_FULL;
313 retval = dev->gdr_head;
314 tmp = (dev->gdr_head + n) % PPC4XX_NUM_GD;
315 if (dev->gdr_head > dev->gdr_tail) {
316 if (tmp < dev->gdr_head && tmp >= dev->gdr_tail)
317 return ERING_WAS_FULL;
318 } else if (dev->gdr_head < dev->gdr_tail) {
319 if (tmp < dev->gdr_head || tmp >= dev->gdr_tail)
320 return ERING_WAS_FULL;
322 dev->gdr_head = tmp;
324 return retval;
327 static u32 crypto4xx_put_gd_to_gdr(struct crypto4xx_device *dev)
329 unsigned long flags;
331 spin_lock_irqsave(&dev->core_dev->lock, flags);
332 if (dev->gdr_tail == dev->gdr_head) {
333 spin_unlock_irqrestore(&dev->core_dev->lock, flags);
334 return 0;
337 if (dev->gdr_tail != PPC4XX_LAST_GD)
338 dev->gdr_tail++;
339 else
340 dev->gdr_tail = 0;
342 spin_unlock_irqrestore(&dev->core_dev->lock, flags);
344 return 0;
347 static inline struct ce_gd *crypto4xx_get_gdp(struct crypto4xx_device *dev,
348 dma_addr_t *gd_dma, u32 idx)
350 *gd_dma = dev->gdr_pa + sizeof(struct ce_gd) * idx;
352 return &dev->gdr[idx];
356 * alloc memory for the scatter ring
357 * need to alloc buf for the ring
358 * sdr_tail, sdr_head and sdr_count are initialized by this function
360 static u32 crypto4xx_build_sdr(struct crypto4xx_device *dev)
362 int i;
364 /* alloc memory for scatter descriptor ring */
365 dev->sdr = dma_alloc_coherent(dev->core_dev->device,
366 sizeof(struct ce_sd) * PPC4XX_NUM_SD,
367 &dev->sdr_pa, GFP_ATOMIC);
368 if (!dev->sdr)
369 return -ENOMEM;
371 dev->scatter_buffer_va =
372 dma_alloc_coherent(dev->core_dev->device,
373 PPC4XX_SD_BUFFER_SIZE * PPC4XX_NUM_SD,
374 &dev->scatter_buffer_pa, GFP_ATOMIC);
375 if (!dev->scatter_buffer_va) {
376 dma_free_coherent(dev->core_dev->device,
377 sizeof(struct ce_sd) * PPC4XX_NUM_SD,
378 dev->sdr, dev->sdr_pa);
379 return -ENOMEM;
382 for (i = 0; i < PPC4XX_NUM_SD; i++) {
383 dev->sdr[i].ptr = dev->scatter_buffer_pa +
384 PPC4XX_SD_BUFFER_SIZE * i;
387 return 0;
390 static void crypto4xx_destroy_sdr(struct crypto4xx_device *dev)
392 if (dev->sdr)
393 dma_free_coherent(dev->core_dev->device,
394 sizeof(struct ce_sd) * PPC4XX_NUM_SD,
395 dev->sdr, dev->sdr_pa);
397 if (dev->scatter_buffer_va)
398 dma_free_coherent(dev->core_dev->device,
399 PPC4XX_SD_BUFFER_SIZE * PPC4XX_NUM_SD,
400 dev->scatter_buffer_va,
401 dev->scatter_buffer_pa);
405 * when this function is called.
406 * preemption or interrupt must be disabled
408 static u32 crypto4xx_get_n_sd(struct crypto4xx_device *dev, int n)
410 u32 retval;
411 u32 tmp;
413 if (n >= PPC4XX_NUM_SD)
414 return ERING_WAS_FULL;
416 retval = dev->sdr_head;
417 tmp = (dev->sdr_head + n) % PPC4XX_NUM_SD;
418 if (dev->sdr_head > dev->gdr_tail) {
419 if (tmp < dev->sdr_head && tmp >= dev->sdr_tail)
420 return ERING_WAS_FULL;
421 } else if (dev->sdr_head < dev->sdr_tail) {
422 if (tmp < dev->sdr_head || tmp >= dev->sdr_tail)
423 return ERING_WAS_FULL;
424 } /* the head = tail, or empty case is already take cared */
425 dev->sdr_head = tmp;
427 return retval;
430 static u32 crypto4xx_put_sd_to_sdr(struct crypto4xx_device *dev)
432 unsigned long flags;
434 spin_lock_irqsave(&dev->core_dev->lock, flags);
435 if (dev->sdr_tail == dev->sdr_head) {
436 spin_unlock_irqrestore(&dev->core_dev->lock, flags);
437 return 0;
439 if (dev->sdr_tail != PPC4XX_LAST_SD)
440 dev->sdr_tail++;
441 else
442 dev->sdr_tail = 0;
443 spin_unlock_irqrestore(&dev->core_dev->lock, flags);
445 return 0;
448 static inline struct ce_sd *crypto4xx_get_sdp(struct crypto4xx_device *dev,
449 dma_addr_t *sd_dma, u32 idx)
451 *sd_dma = dev->sdr_pa + sizeof(struct ce_sd) * idx;
453 return &dev->sdr[idx];
456 static void crypto4xx_copy_pkt_to_dst(struct crypto4xx_device *dev,
457 struct ce_pd *pd,
458 struct pd_uinfo *pd_uinfo,
459 u32 nbytes,
460 struct scatterlist *dst)
462 unsigned int first_sd = pd_uinfo->first_sd;
463 unsigned int last_sd;
464 unsigned int overflow = 0;
465 unsigned int to_copy;
466 unsigned int dst_start = 0;
469 * Because the scatter buffers are all neatly organized in one
470 * big continuous ringbuffer; scatterwalk_map_and_copy() can
471 * be instructed to copy a range of buffers in one go.
474 last_sd = (first_sd + pd_uinfo->num_sd);
475 if (last_sd > PPC4XX_LAST_SD) {
476 last_sd = PPC4XX_LAST_SD;
477 overflow = last_sd % PPC4XX_NUM_SD;
480 while (nbytes) {
481 void *buf = dev->scatter_buffer_va +
482 first_sd * PPC4XX_SD_BUFFER_SIZE;
484 to_copy = min(nbytes, PPC4XX_SD_BUFFER_SIZE *
485 (1 + last_sd - first_sd));
486 scatterwalk_map_and_copy(buf, dst, dst_start, to_copy, 1);
487 nbytes -= to_copy;
489 if (overflow) {
490 first_sd = 0;
491 last_sd = overflow;
492 dst_start += to_copy;
493 overflow = 0;
498 static void crypto4xx_copy_digest_to_dst(void *dst,
499 struct pd_uinfo *pd_uinfo,
500 struct crypto4xx_ctx *ctx)
502 struct dynamic_sa_ctl *sa = (struct dynamic_sa_ctl *) ctx->sa_in;
504 if (sa->sa_command_0.bf.hash_alg == SA_HASH_ALG_SHA1) {
505 memcpy(dst, pd_uinfo->sr_va->save_digest,
506 SA_HASH_ALG_SHA1_DIGEST_SIZE);
510 static void crypto4xx_ret_sg_desc(struct crypto4xx_device *dev,
511 struct pd_uinfo *pd_uinfo)
513 int i;
514 if (pd_uinfo->num_gd) {
515 for (i = 0; i < pd_uinfo->num_gd; i++)
516 crypto4xx_put_gd_to_gdr(dev);
517 pd_uinfo->first_gd = 0xffffffff;
518 pd_uinfo->num_gd = 0;
520 if (pd_uinfo->num_sd) {
521 for (i = 0; i < pd_uinfo->num_sd; i++)
522 crypto4xx_put_sd_to_sdr(dev);
524 pd_uinfo->first_sd = 0xffffffff;
525 pd_uinfo->num_sd = 0;
529 static void crypto4xx_ablkcipher_done(struct crypto4xx_device *dev,
530 struct pd_uinfo *pd_uinfo,
531 struct ce_pd *pd)
533 struct crypto4xx_ctx *ctx;
534 struct ablkcipher_request *ablk_req;
535 struct scatterlist *dst;
536 dma_addr_t addr;
538 ablk_req = ablkcipher_request_cast(pd_uinfo->async_req);
539 ctx = crypto_tfm_ctx(ablk_req->base.tfm);
541 if (pd_uinfo->using_sd) {
542 crypto4xx_copy_pkt_to_dst(dev, pd, pd_uinfo, ablk_req->nbytes,
543 ablk_req->dst);
544 } else {
545 dst = pd_uinfo->dest_va;
546 addr = dma_map_page(dev->core_dev->device, sg_page(dst),
547 dst->offset, dst->length, DMA_FROM_DEVICE);
549 crypto4xx_ret_sg_desc(dev, pd_uinfo);
551 if (pd_uinfo->state & PD_ENTRY_BUSY)
552 ablkcipher_request_complete(ablk_req, -EINPROGRESS);
553 ablkcipher_request_complete(ablk_req, 0);
556 static void crypto4xx_ahash_done(struct crypto4xx_device *dev,
557 struct pd_uinfo *pd_uinfo)
559 struct crypto4xx_ctx *ctx;
560 struct ahash_request *ahash_req;
562 ahash_req = ahash_request_cast(pd_uinfo->async_req);
563 ctx = crypto_tfm_ctx(ahash_req->base.tfm);
565 crypto4xx_copy_digest_to_dst(ahash_req->result, pd_uinfo,
566 crypto_tfm_ctx(ahash_req->base.tfm));
567 crypto4xx_ret_sg_desc(dev, pd_uinfo);
569 if (pd_uinfo->state & PD_ENTRY_BUSY)
570 ahash_request_complete(ahash_req, -EINPROGRESS);
571 ahash_request_complete(ahash_req, 0);
574 static void crypto4xx_aead_done(struct crypto4xx_device *dev,
575 struct pd_uinfo *pd_uinfo,
576 struct ce_pd *pd)
578 struct aead_request *aead_req = container_of(pd_uinfo->async_req,
579 struct aead_request, base);
580 struct scatterlist *dst = pd_uinfo->dest_va;
581 size_t cp_len = crypto_aead_authsize(
582 crypto_aead_reqtfm(aead_req));
583 u32 icv[cp_len];
584 int err = 0;
586 if (pd_uinfo->using_sd) {
587 crypto4xx_copy_pkt_to_dst(dev, pd, pd_uinfo,
588 pd->pd_ctl_len.bf.pkt_len,
589 dst);
590 } else {
591 __dma_sync_page(sg_page(dst), dst->offset, dst->length,
592 DMA_FROM_DEVICE);
595 if (pd_uinfo->sa_va->sa_command_0.bf.dir == DIR_OUTBOUND) {
596 /* append icv at the end */
597 crypto4xx_memcpy_from_le32(icv, pd_uinfo->sr_va->save_digest,
598 cp_len);
600 scatterwalk_map_and_copy(icv, dst, aead_req->cryptlen,
601 cp_len, 1);
602 } else {
603 /* check icv at the end */
604 scatterwalk_map_and_copy(icv, aead_req->src,
605 aead_req->assoclen + aead_req->cryptlen -
606 cp_len, cp_len, 0);
608 crypto4xx_memcpy_from_le32(icv, icv, cp_len);
610 if (crypto_memneq(icv, pd_uinfo->sr_va->save_digest, cp_len))
611 err = -EBADMSG;
614 crypto4xx_ret_sg_desc(dev, pd_uinfo);
616 if (pd->pd_ctl.bf.status & 0xff) {
617 if (!__ratelimit(&dev->aead_ratelimit)) {
618 if (pd->pd_ctl.bf.status & 2)
619 pr_err("pad fail error\n");
620 if (pd->pd_ctl.bf.status & 4)
621 pr_err("seqnum fail\n");
622 if (pd->pd_ctl.bf.status & 8)
623 pr_err("error _notify\n");
624 pr_err("aead return err status = 0x%02x\n",
625 pd->pd_ctl.bf.status & 0xff);
626 pr_err("pd pad_ctl = 0x%08x\n",
627 pd->pd_ctl.bf.pd_pad_ctl);
629 err = -EINVAL;
632 if (pd_uinfo->state & PD_ENTRY_BUSY)
633 aead_request_complete(aead_req, -EINPROGRESS);
635 aead_request_complete(aead_req, err);
638 static void crypto4xx_pd_done(struct crypto4xx_device *dev, u32 idx)
640 struct ce_pd *pd = &dev->pdr[idx];
641 struct pd_uinfo *pd_uinfo = &dev->pdr_uinfo[idx];
643 switch (crypto_tfm_alg_type(pd_uinfo->async_req->tfm)) {
644 case CRYPTO_ALG_TYPE_ABLKCIPHER:
645 crypto4xx_ablkcipher_done(dev, pd_uinfo, pd);
646 break;
647 case CRYPTO_ALG_TYPE_AEAD:
648 crypto4xx_aead_done(dev, pd_uinfo, pd);
649 break;
650 case CRYPTO_ALG_TYPE_AHASH:
651 crypto4xx_ahash_done(dev, pd_uinfo);
652 break;
656 static void crypto4xx_stop_all(struct crypto4xx_core_device *core_dev)
658 crypto4xx_destroy_pdr(core_dev->dev);
659 crypto4xx_destroy_gdr(core_dev->dev);
660 crypto4xx_destroy_sdr(core_dev->dev);
661 iounmap(core_dev->dev->ce_base);
662 kfree(core_dev->dev);
663 kfree(core_dev);
666 static u32 get_next_gd(u32 current)
668 if (current != PPC4XX_LAST_GD)
669 return current + 1;
670 else
671 return 0;
674 static u32 get_next_sd(u32 current)
676 if (current != PPC4XX_LAST_SD)
677 return current + 1;
678 else
679 return 0;
682 int crypto4xx_build_pd(struct crypto_async_request *req,
683 struct crypto4xx_ctx *ctx,
684 struct scatterlist *src,
685 struct scatterlist *dst,
686 const unsigned int datalen,
687 const __le32 *iv, const u32 iv_len,
688 const struct dynamic_sa_ctl *req_sa,
689 const unsigned int sa_len,
690 const unsigned int assoclen)
692 struct scatterlist _dst[2];
693 struct crypto4xx_device *dev = ctx->dev;
694 struct dynamic_sa_ctl *sa;
695 struct ce_gd *gd;
696 struct ce_pd *pd;
697 u32 num_gd, num_sd;
698 u32 fst_gd = 0xffffffff;
699 u32 fst_sd = 0xffffffff;
700 u32 pd_entry;
701 unsigned long flags;
702 struct pd_uinfo *pd_uinfo;
703 unsigned int nbytes = datalen;
704 size_t offset_to_sr_ptr;
705 u32 gd_idx = 0;
706 int tmp;
707 bool is_busy;
709 /* figure how many gd are needed */
710 tmp = sg_nents_for_len(src, assoclen + datalen);
711 if (tmp < 0) {
712 dev_err(dev->core_dev->device, "Invalid number of src SG.\n");
713 return tmp;
715 if (tmp == 1)
716 tmp = 0;
717 num_gd = tmp;
719 if (assoclen) {
720 nbytes += assoclen;
721 dst = scatterwalk_ffwd(_dst, dst, assoclen);
724 /* figure how many sd are needed */
725 if (sg_is_last(dst)) {
726 num_sd = 0;
727 } else {
728 if (datalen > PPC4XX_SD_BUFFER_SIZE) {
729 num_sd = datalen / PPC4XX_SD_BUFFER_SIZE;
730 if (datalen % PPC4XX_SD_BUFFER_SIZE)
731 num_sd++;
732 } else {
733 num_sd = 1;
738 * The follow section of code needs to be protected
739 * The gather ring and scatter ring needs to be consecutive
740 * In case of run out of any kind of descriptor, the descriptor
741 * already got must be return the original place.
743 spin_lock_irqsave(&dev->core_dev->lock, flags);
745 * Let the caller know to slow down, once more than 13/16ths = 81%
746 * of the available data contexts are being used simultaneously.
748 * With PPC4XX_NUM_PD = 256, this will leave a "backlog queue" for
749 * 31 more contexts. Before new requests have to be rejected.
751 if (req->flags & CRYPTO_TFM_REQ_MAY_BACKLOG) {
752 is_busy = ((dev->pdr_head - dev->pdr_tail) % PPC4XX_NUM_PD) >=
753 ((PPC4XX_NUM_PD * 13) / 16);
754 } else {
756 * To fix contention issues between ipsec (no blacklog) and
757 * dm-crypto (backlog) reserve 32 entries for "no backlog"
758 * data contexts.
760 is_busy = ((dev->pdr_head - dev->pdr_tail) % PPC4XX_NUM_PD) >=
761 ((PPC4XX_NUM_PD * 15) / 16);
763 if (is_busy) {
764 spin_unlock_irqrestore(&dev->core_dev->lock, flags);
765 return -EBUSY;
769 if (num_gd) {
770 fst_gd = crypto4xx_get_n_gd(dev, num_gd);
771 if (fst_gd == ERING_WAS_FULL) {
772 spin_unlock_irqrestore(&dev->core_dev->lock, flags);
773 return -EAGAIN;
776 if (num_sd) {
777 fst_sd = crypto4xx_get_n_sd(dev, num_sd);
778 if (fst_sd == ERING_WAS_FULL) {
779 if (num_gd)
780 dev->gdr_head = fst_gd;
781 spin_unlock_irqrestore(&dev->core_dev->lock, flags);
782 return -EAGAIN;
785 pd_entry = crypto4xx_get_pd_from_pdr_nolock(dev);
786 if (pd_entry == ERING_WAS_FULL) {
787 if (num_gd)
788 dev->gdr_head = fst_gd;
789 if (num_sd)
790 dev->sdr_head = fst_sd;
791 spin_unlock_irqrestore(&dev->core_dev->lock, flags);
792 return -EAGAIN;
794 spin_unlock_irqrestore(&dev->core_dev->lock, flags);
796 pd = &dev->pdr[pd_entry];
797 pd->sa_len = sa_len;
799 pd_uinfo = &dev->pdr_uinfo[pd_entry];
800 pd_uinfo->async_req = req;
801 pd_uinfo->num_gd = num_gd;
802 pd_uinfo->num_sd = num_sd;
804 if (iv_len)
805 memcpy(pd_uinfo->sr_va->save_iv, iv, iv_len);
807 sa = pd_uinfo->sa_va;
808 memcpy(sa, req_sa, sa_len * 4);
810 sa->sa_command_1.bf.hash_crypto_offset = (assoclen >> 2);
811 offset_to_sr_ptr = get_dynamic_sa_offset_state_ptr_field(sa);
812 *(u32 *)((unsigned long)sa + offset_to_sr_ptr) = pd_uinfo->sr_pa;
814 if (num_gd) {
815 dma_addr_t gd_dma;
816 struct scatterlist *sg;
818 /* get first gd we are going to use */
819 gd_idx = fst_gd;
820 pd_uinfo->first_gd = fst_gd;
821 pd_uinfo->num_gd = num_gd;
822 gd = crypto4xx_get_gdp(dev, &gd_dma, gd_idx);
823 pd->src = gd_dma;
824 /* enable gather */
825 sa->sa_command_0.bf.gather = 1;
826 /* walk the sg, and setup gather array */
828 sg = src;
829 while (nbytes) {
830 size_t len;
832 len = min(sg->length, nbytes);
833 gd->ptr = dma_map_page(dev->core_dev->device,
834 sg_page(sg), sg->offset, len, DMA_TO_DEVICE);
835 gd->ctl_len.len = len;
836 gd->ctl_len.done = 0;
837 gd->ctl_len.ready = 1;
838 if (len >= nbytes)
839 break;
841 nbytes -= sg->length;
842 gd_idx = get_next_gd(gd_idx);
843 gd = crypto4xx_get_gdp(dev, &gd_dma, gd_idx);
844 sg = sg_next(sg);
846 } else {
847 pd->src = (u32)dma_map_page(dev->core_dev->device, sg_page(src),
848 src->offset, min(nbytes, src->length),
849 DMA_TO_DEVICE);
851 * Disable gather in sa command
853 sa->sa_command_0.bf.gather = 0;
855 * Indicate gather array is not used
857 pd_uinfo->first_gd = 0xffffffff;
858 pd_uinfo->num_gd = 0;
860 if (sg_is_last(dst)) {
862 * we know application give us dst a whole piece of memory
863 * no need to use scatter ring.
865 pd_uinfo->using_sd = 0;
866 pd_uinfo->first_sd = 0xffffffff;
867 pd_uinfo->num_sd = 0;
868 pd_uinfo->dest_va = dst;
869 sa->sa_command_0.bf.scatter = 0;
870 pd->dest = (u32)dma_map_page(dev->core_dev->device,
871 sg_page(dst), dst->offset,
872 min(datalen, dst->length),
873 DMA_TO_DEVICE);
874 } else {
875 dma_addr_t sd_dma;
876 struct ce_sd *sd = NULL;
878 u32 sd_idx = fst_sd;
879 nbytes = datalen;
880 sa->sa_command_0.bf.scatter = 1;
881 pd_uinfo->using_sd = 1;
882 pd_uinfo->dest_va = dst;
883 pd_uinfo->first_sd = fst_sd;
884 pd_uinfo->num_sd = num_sd;
885 sd = crypto4xx_get_sdp(dev, &sd_dma, sd_idx);
886 pd->dest = sd_dma;
887 /* setup scatter descriptor */
888 sd->ctl.done = 0;
889 sd->ctl.rdy = 1;
890 /* sd->ptr should be setup by sd_init routine*/
891 if (nbytes >= PPC4XX_SD_BUFFER_SIZE)
892 nbytes -= PPC4XX_SD_BUFFER_SIZE;
893 else
894 nbytes = 0;
895 while (nbytes) {
896 sd_idx = get_next_sd(sd_idx);
897 sd = crypto4xx_get_sdp(dev, &sd_dma, sd_idx);
898 /* setup scatter descriptor */
899 sd->ctl.done = 0;
900 sd->ctl.rdy = 1;
901 if (nbytes >= PPC4XX_SD_BUFFER_SIZE) {
902 nbytes -= PPC4XX_SD_BUFFER_SIZE;
903 } else {
905 * SD entry can hold PPC4XX_SD_BUFFER_SIZE,
906 * which is more than nbytes, so done.
908 nbytes = 0;
913 pd->pd_ctl.w = PD_CTL_HOST_READY |
914 ((crypto_tfm_alg_type(req->tfm) == CRYPTO_ALG_TYPE_AHASH) |
915 (crypto_tfm_alg_type(req->tfm) == CRYPTO_ALG_TYPE_AEAD) ?
916 PD_CTL_HASH_FINAL : 0);
917 pd->pd_ctl_len.w = 0x00400000 | (assoclen + datalen);
918 pd_uinfo->state = PD_ENTRY_INUSE | (is_busy ? PD_ENTRY_BUSY : 0);
920 wmb();
921 /* write any value to push engine to read a pd */
922 writel(0, dev->ce_base + CRYPTO4XX_INT_DESCR_RD);
923 writel(1, dev->ce_base + CRYPTO4XX_INT_DESCR_RD);
924 return is_busy ? -EBUSY : -EINPROGRESS;
928 * Algorithm Registration Functions
930 static void crypto4xx_ctx_init(struct crypto4xx_alg *amcc_alg,
931 struct crypto4xx_ctx *ctx)
933 ctx->dev = amcc_alg->dev;
934 ctx->sa_in = NULL;
935 ctx->sa_out = NULL;
936 ctx->sa_len = 0;
939 static int crypto4xx_ablk_init(struct crypto_tfm *tfm)
941 struct crypto_alg *alg = tfm->__crt_alg;
942 struct crypto4xx_alg *amcc_alg;
943 struct crypto4xx_ctx *ctx = crypto_tfm_ctx(tfm);
945 amcc_alg = container_of(alg, struct crypto4xx_alg, alg.u.cipher);
946 crypto4xx_ctx_init(amcc_alg, ctx);
947 tfm->crt_ablkcipher.reqsize = sizeof(struct crypto4xx_ctx);
948 return 0;
951 static void crypto4xx_common_exit(struct crypto4xx_ctx *ctx)
953 crypto4xx_free_sa(ctx);
956 static void crypto4xx_ablk_exit(struct crypto_tfm *tfm)
958 crypto4xx_common_exit(crypto_tfm_ctx(tfm));
961 static int crypto4xx_aead_init(struct crypto_aead *tfm)
963 struct aead_alg *alg = crypto_aead_alg(tfm);
964 struct crypto4xx_ctx *ctx = crypto_aead_ctx(tfm);
965 struct crypto4xx_alg *amcc_alg;
967 ctx->sw_cipher.aead = crypto_alloc_aead(alg->base.cra_name, 0,
968 CRYPTO_ALG_NEED_FALLBACK |
969 CRYPTO_ALG_ASYNC);
970 if (IS_ERR(ctx->sw_cipher.aead))
971 return PTR_ERR(ctx->sw_cipher.aead);
973 amcc_alg = container_of(alg, struct crypto4xx_alg, alg.u.aead);
974 crypto4xx_ctx_init(amcc_alg, ctx);
975 crypto_aead_set_reqsize(tfm, sizeof(struct aead_request) +
976 max(sizeof(struct crypto4xx_ctx), 32 +
977 crypto_aead_reqsize(ctx->sw_cipher.aead)));
978 return 0;
981 static void crypto4xx_aead_exit(struct crypto_aead *tfm)
983 struct crypto4xx_ctx *ctx = crypto_aead_ctx(tfm);
985 crypto4xx_common_exit(ctx);
986 crypto_free_aead(ctx->sw_cipher.aead);
989 static int crypto4xx_register_alg(struct crypto4xx_device *sec_dev,
990 struct crypto4xx_alg_common *crypto_alg,
991 int array_size)
993 struct crypto4xx_alg *alg;
994 int i;
995 int rc = 0;
997 for (i = 0; i < array_size; i++) {
998 alg = kzalloc(sizeof(struct crypto4xx_alg), GFP_KERNEL);
999 if (!alg)
1000 return -ENOMEM;
1002 alg->alg = crypto_alg[i];
1003 alg->dev = sec_dev;
1005 switch (alg->alg.type) {
1006 case CRYPTO_ALG_TYPE_AEAD:
1007 rc = crypto_register_aead(&alg->alg.u.aead);
1008 break;
1010 case CRYPTO_ALG_TYPE_AHASH:
1011 rc = crypto_register_ahash(&alg->alg.u.hash);
1012 break;
1014 default:
1015 rc = crypto_register_alg(&alg->alg.u.cipher);
1016 break;
1019 if (rc)
1020 kfree(alg);
1021 else
1022 list_add_tail(&alg->entry, &sec_dev->alg_list);
1025 return 0;
1028 static void crypto4xx_unregister_alg(struct crypto4xx_device *sec_dev)
1030 struct crypto4xx_alg *alg, *tmp;
1032 list_for_each_entry_safe(alg, tmp, &sec_dev->alg_list, entry) {
1033 list_del(&alg->entry);
1034 switch (alg->alg.type) {
1035 case CRYPTO_ALG_TYPE_AHASH:
1036 crypto_unregister_ahash(&alg->alg.u.hash);
1037 break;
1039 case CRYPTO_ALG_TYPE_AEAD:
1040 crypto_unregister_aead(&alg->alg.u.aead);
1041 break;
1043 default:
1044 crypto_unregister_alg(&alg->alg.u.cipher);
1046 kfree(alg);
1050 static void crypto4xx_bh_tasklet_cb(unsigned long data)
1052 struct device *dev = (struct device *)data;
1053 struct crypto4xx_core_device *core_dev = dev_get_drvdata(dev);
1054 struct pd_uinfo *pd_uinfo;
1055 struct ce_pd *pd;
1056 u32 tail = core_dev->dev->pdr_tail;
1057 u32 head = core_dev->dev->pdr_head;
1059 do {
1060 pd_uinfo = &core_dev->dev->pdr_uinfo[tail];
1061 pd = &core_dev->dev->pdr[tail];
1062 if ((pd_uinfo->state & PD_ENTRY_INUSE) &&
1063 ((READ_ONCE(pd->pd_ctl.w) &
1064 (PD_CTL_PE_DONE | PD_CTL_HOST_READY)) ==
1065 PD_CTL_PE_DONE)) {
1066 crypto4xx_pd_done(core_dev->dev, tail);
1067 tail = crypto4xx_put_pd_to_pdr(core_dev->dev, tail);
1068 } else {
1069 /* if tail not done, break */
1070 break;
1072 } while (head != tail);
1076 * Top Half of isr.
1078 static inline irqreturn_t crypto4xx_interrupt_handler(int irq, void *data,
1079 u32 clr_val)
1081 struct device *dev = (struct device *)data;
1082 struct crypto4xx_core_device *core_dev = dev_get_drvdata(dev);
1084 writel(clr_val, core_dev->dev->ce_base + CRYPTO4XX_INT_CLR);
1085 tasklet_schedule(&core_dev->tasklet);
1087 return IRQ_HANDLED;
1090 static irqreturn_t crypto4xx_ce_interrupt_handler(int irq, void *data)
1092 return crypto4xx_interrupt_handler(irq, data, PPC4XX_INTERRUPT_CLR);
1095 static irqreturn_t crypto4xx_ce_interrupt_handler_revb(int irq, void *data)
1097 return crypto4xx_interrupt_handler(irq, data, PPC4XX_INTERRUPT_CLR |
1098 PPC4XX_TMO_ERR_INT);
1102 * Supported Crypto Algorithms
1104 static struct crypto4xx_alg_common crypto4xx_alg[] = {
1105 /* Crypto AES modes */
1106 { .type = CRYPTO_ALG_TYPE_ABLKCIPHER, .u.cipher = {
1107 .cra_name = "cbc(aes)",
1108 .cra_driver_name = "cbc-aes-ppc4xx",
1109 .cra_priority = CRYPTO4XX_CRYPTO_PRIORITY,
1110 .cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER |
1111 CRYPTO_ALG_ASYNC |
1112 CRYPTO_ALG_KERN_DRIVER_ONLY,
1113 .cra_blocksize = AES_BLOCK_SIZE,
1114 .cra_ctxsize = sizeof(struct crypto4xx_ctx),
1115 .cra_type = &crypto_ablkcipher_type,
1116 .cra_init = crypto4xx_ablk_init,
1117 .cra_exit = crypto4xx_ablk_exit,
1118 .cra_module = THIS_MODULE,
1119 .cra_u = {
1120 .ablkcipher = {
1121 .min_keysize = AES_MIN_KEY_SIZE,
1122 .max_keysize = AES_MAX_KEY_SIZE,
1123 .ivsize = AES_IV_SIZE,
1124 .setkey = crypto4xx_setkey_aes_cbc,
1125 .encrypt = crypto4xx_encrypt,
1126 .decrypt = crypto4xx_decrypt,
1130 { .type = CRYPTO_ALG_TYPE_ABLKCIPHER, .u.cipher = {
1131 .cra_name = "cfb(aes)",
1132 .cra_driver_name = "cfb-aes-ppc4xx",
1133 .cra_priority = CRYPTO4XX_CRYPTO_PRIORITY,
1134 .cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER |
1135 CRYPTO_ALG_ASYNC |
1136 CRYPTO_ALG_KERN_DRIVER_ONLY,
1137 .cra_blocksize = AES_BLOCK_SIZE,
1138 .cra_ctxsize = sizeof(struct crypto4xx_ctx),
1139 .cra_type = &crypto_ablkcipher_type,
1140 .cra_init = crypto4xx_ablk_init,
1141 .cra_exit = crypto4xx_ablk_exit,
1142 .cra_module = THIS_MODULE,
1143 .cra_u = {
1144 .ablkcipher = {
1145 .min_keysize = AES_MIN_KEY_SIZE,
1146 .max_keysize = AES_MAX_KEY_SIZE,
1147 .ivsize = AES_IV_SIZE,
1148 .setkey = crypto4xx_setkey_aes_cfb,
1149 .encrypt = crypto4xx_encrypt,
1150 .decrypt = crypto4xx_decrypt,
1153 } },
1154 { .type = CRYPTO_ALG_TYPE_ABLKCIPHER, .u.cipher = {
1155 .cra_name = "rfc3686(ctr(aes))",
1156 .cra_driver_name = "rfc3686-ctr-aes-ppc4xx",
1157 .cra_priority = CRYPTO4XX_CRYPTO_PRIORITY,
1158 .cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER |
1159 CRYPTO_ALG_ASYNC |
1160 CRYPTO_ALG_KERN_DRIVER_ONLY,
1161 .cra_blocksize = AES_BLOCK_SIZE,
1162 .cra_ctxsize = sizeof(struct crypto4xx_ctx),
1163 .cra_type = &crypto_ablkcipher_type,
1164 .cra_init = crypto4xx_ablk_init,
1165 .cra_exit = crypto4xx_ablk_exit,
1166 .cra_module = THIS_MODULE,
1167 .cra_u = {
1168 .ablkcipher = {
1169 .min_keysize = AES_MIN_KEY_SIZE +
1170 CTR_RFC3686_NONCE_SIZE,
1171 .max_keysize = AES_MAX_KEY_SIZE +
1172 CTR_RFC3686_NONCE_SIZE,
1173 .ivsize = CTR_RFC3686_IV_SIZE,
1174 .setkey = crypto4xx_setkey_rfc3686,
1175 .encrypt = crypto4xx_rfc3686_encrypt,
1176 .decrypt = crypto4xx_rfc3686_decrypt,
1179 } },
1180 { .type = CRYPTO_ALG_TYPE_ABLKCIPHER, .u.cipher = {
1181 .cra_name = "ecb(aes)",
1182 .cra_driver_name = "ecb-aes-ppc4xx",
1183 .cra_priority = CRYPTO4XX_CRYPTO_PRIORITY,
1184 .cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER |
1185 CRYPTO_ALG_ASYNC |
1186 CRYPTO_ALG_KERN_DRIVER_ONLY,
1187 .cra_blocksize = AES_BLOCK_SIZE,
1188 .cra_ctxsize = sizeof(struct crypto4xx_ctx),
1189 .cra_type = &crypto_ablkcipher_type,
1190 .cra_init = crypto4xx_ablk_init,
1191 .cra_exit = crypto4xx_ablk_exit,
1192 .cra_module = THIS_MODULE,
1193 .cra_u = {
1194 .ablkcipher = {
1195 .min_keysize = AES_MIN_KEY_SIZE,
1196 .max_keysize = AES_MAX_KEY_SIZE,
1197 .setkey = crypto4xx_setkey_aes_ecb,
1198 .encrypt = crypto4xx_encrypt,
1199 .decrypt = crypto4xx_decrypt,
1202 } },
1203 { .type = CRYPTO_ALG_TYPE_ABLKCIPHER, .u.cipher = {
1204 .cra_name = "ofb(aes)",
1205 .cra_driver_name = "ofb-aes-ppc4xx",
1206 .cra_priority = CRYPTO4XX_CRYPTO_PRIORITY,
1207 .cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER |
1208 CRYPTO_ALG_ASYNC |
1209 CRYPTO_ALG_KERN_DRIVER_ONLY,
1210 .cra_blocksize = AES_BLOCK_SIZE,
1211 .cra_ctxsize = sizeof(struct crypto4xx_ctx),
1212 .cra_type = &crypto_ablkcipher_type,
1213 .cra_init = crypto4xx_ablk_init,
1214 .cra_exit = crypto4xx_ablk_exit,
1215 .cra_module = THIS_MODULE,
1216 .cra_u = {
1217 .ablkcipher = {
1218 .min_keysize = AES_MIN_KEY_SIZE,
1219 .max_keysize = AES_MAX_KEY_SIZE,
1220 .ivsize = AES_IV_SIZE,
1221 .setkey = crypto4xx_setkey_aes_ofb,
1222 .encrypt = crypto4xx_encrypt,
1223 .decrypt = crypto4xx_decrypt,
1226 } },
1228 /* AEAD */
1229 { .type = CRYPTO_ALG_TYPE_AEAD, .u.aead = {
1230 .setkey = crypto4xx_setkey_aes_ccm,
1231 .setauthsize = crypto4xx_setauthsize_aead,
1232 .encrypt = crypto4xx_encrypt_aes_ccm,
1233 .decrypt = crypto4xx_decrypt_aes_ccm,
1234 .init = crypto4xx_aead_init,
1235 .exit = crypto4xx_aead_exit,
1236 .ivsize = AES_BLOCK_SIZE,
1237 .maxauthsize = 16,
1238 .base = {
1239 .cra_name = "ccm(aes)",
1240 .cra_driver_name = "ccm-aes-ppc4xx",
1241 .cra_priority = CRYPTO4XX_CRYPTO_PRIORITY,
1242 .cra_flags = CRYPTO_ALG_ASYNC |
1243 CRYPTO_ALG_NEED_FALLBACK |
1244 CRYPTO_ALG_KERN_DRIVER_ONLY,
1245 .cra_blocksize = 1,
1246 .cra_ctxsize = sizeof(struct crypto4xx_ctx),
1247 .cra_module = THIS_MODULE,
1249 } },
1250 { .type = CRYPTO_ALG_TYPE_AEAD, .u.aead = {
1251 .setkey = crypto4xx_setkey_aes_gcm,
1252 .setauthsize = crypto4xx_setauthsize_aead,
1253 .encrypt = crypto4xx_encrypt_aes_gcm,
1254 .decrypt = crypto4xx_decrypt_aes_gcm,
1255 .init = crypto4xx_aead_init,
1256 .exit = crypto4xx_aead_exit,
1257 .ivsize = GCM_AES_IV_SIZE,
1258 .maxauthsize = 16,
1259 .base = {
1260 .cra_name = "gcm(aes)",
1261 .cra_driver_name = "gcm-aes-ppc4xx",
1262 .cra_priority = CRYPTO4XX_CRYPTO_PRIORITY,
1263 .cra_flags = CRYPTO_ALG_ASYNC |
1264 CRYPTO_ALG_NEED_FALLBACK |
1265 CRYPTO_ALG_KERN_DRIVER_ONLY,
1266 .cra_blocksize = 1,
1267 .cra_ctxsize = sizeof(struct crypto4xx_ctx),
1268 .cra_module = THIS_MODULE,
1270 } },
1274 * Module Initialization Routine
1276 static int crypto4xx_probe(struct platform_device *ofdev)
1278 int rc;
1279 struct resource res;
1280 struct device *dev = &ofdev->dev;
1281 struct crypto4xx_core_device *core_dev;
1282 u32 pvr;
1283 bool is_revb = true;
1285 rc = of_address_to_resource(ofdev->dev.of_node, 0, &res);
1286 if (rc)
1287 return -ENODEV;
1289 if (of_find_compatible_node(NULL, NULL, "amcc,ppc460ex-crypto")) {
1290 mtdcri(SDR0, PPC460EX_SDR0_SRST,
1291 mfdcri(SDR0, PPC460EX_SDR0_SRST) | PPC460EX_CE_RESET);
1292 mtdcri(SDR0, PPC460EX_SDR0_SRST,
1293 mfdcri(SDR0, PPC460EX_SDR0_SRST) & ~PPC460EX_CE_RESET);
1294 } else if (of_find_compatible_node(NULL, NULL,
1295 "amcc,ppc405ex-crypto")) {
1296 mtdcri(SDR0, PPC405EX_SDR0_SRST,
1297 mfdcri(SDR0, PPC405EX_SDR0_SRST) | PPC405EX_CE_RESET);
1298 mtdcri(SDR0, PPC405EX_SDR0_SRST,
1299 mfdcri(SDR0, PPC405EX_SDR0_SRST) & ~PPC405EX_CE_RESET);
1300 is_revb = false;
1301 } else if (of_find_compatible_node(NULL, NULL,
1302 "amcc,ppc460sx-crypto")) {
1303 mtdcri(SDR0, PPC460SX_SDR0_SRST,
1304 mfdcri(SDR0, PPC460SX_SDR0_SRST) | PPC460SX_CE_RESET);
1305 mtdcri(SDR0, PPC460SX_SDR0_SRST,
1306 mfdcri(SDR0, PPC460SX_SDR0_SRST) & ~PPC460SX_CE_RESET);
1307 } else {
1308 printk(KERN_ERR "Crypto Function Not supported!\n");
1309 return -EINVAL;
1312 core_dev = kzalloc(sizeof(struct crypto4xx_core_device), GFP_KERNEL);
1313 if (!core_dev)
1314 return -ENOMEM;
1316 dev_set_drvdata(dev, core_dev);
1317 core_dev->ofdev = ofdev;
1318 core_dev->dev = kzalloc(sizeof(struct crypto4xx_device), GFP_KERNEL);
1319 rc = -ENOMEM;
1320 if (!core_dev->dev)
1321 goto err_alloc_dev;
1324 * Older version of 460EX/GT have a hardware bug.
1325 * Hence they do not support H/W based security intr coalescing
1327 pvr = mfspr(SPRN_PVR);
1328 if (is_revb && ((pvr >> 4) == 0x130218A)) {
1329 u32 min = PVR_MIN(pvr);
1331 if (min < 4) {
1332 dev_info(dev, "RevA detected - disable interrupt coalescing\n");
1333 is_revb = false;
1337 core_dev->dev->core_dev = core_dev;
1338 core_dev->dev->is_revb = is_revb;
1339 core_dev->device = dev;
1340 spin_lock_init(&core_dev->lock);
1341 INIT_LIST_HEAD(&core_dev->dev->alg_list);
1342 ratelimit_default_init(&core_dev->dev->aead_ratelimit);
1343 rc = crypto4xx_build_pdr(core_dev->dev);
1344 if (rc)
1345 goto err_build_pdr;
1347 rc = crypto4xx_build_gdr(core_dev->dev);
1348 if (rc)
1349 goto err_build_pdr;
1351 rc = crypto4xx_build_sdr(core_dev->dev);
1352 if (rc)
1353 goto err_build_sdr;
1355 /* Init tasklet for bottom half processing */
1356 tasklet_init(&core_dev->tasklet, crypto4xx_bh_tasklet_cb,
1357 (unsigned long) dev);
1359 core_dev->dev->ce_base = of_iomap(ofdev->dev.of_node, 0);
1360 if (!core_dev->dev->ce_base) {
1361 dev_err(dev, "failed to of_iomap\n");
1362 rc = -ENOMEM;
1363 goto err_iomap;
1366 /* Register for Crypto isr, Crypto Engine IRQ */
1367 core_dev->irq = irq_of_parse_and_map(ofdev->dev.of_node, 0);
1368 rc = request_irq(core_dev->irq, is_revb ?
1369 crypto4xx_ce_interrupt_handler_revb :
1370 crypto4xx_ce_interrupt_handler, 0,
1371 KBUILD_MODNAME, dev);
1372 if (rc)
1373 goto err_request_irq;
1375 /* need to setup pdr, rdr, gdr and sdr before this */
1376 crypto4xx_hw_init(core_dev->dev);
1378 /* Register security algorithms with Linux CryptoAPI */
1379 rc = crypto4xx_register_alg(core_dev->dev, crypto4xx_alg,
1380 ARRAY_SIZE(crypto4xx_alg));
1381 if (rc)
1382 goto err_start_dev;
1384 ppc4xx_trng_probe(core_dev);
1385 return 0;
1387 err_start_dev:
1388 free_irq(core_dev->irq, dev);
1389 err_request_irq:
1390 irq_dispose_mapping(core_dev->irq);
1391 iounmap(core_dev->dev->ce_base);
1392 err_iomap:
1393 tasklet_kill(&core_dev->tasklet);
1394 err_build_sdr:
1395 crypto4xx_destroy_sdr(core_dev->dev);
1396 crypto4xx_destroy_gdr(core_dev->dev);
1397 err_build_pdr:
1398 crypto4xx_destroy_pdr(core_dev->dev);
1399 kfree(core_dev->dev);
1400 err_alloc_dev:
1401 kfree(core_dev);
1403 return rc;
1406 static int crypto4xx_remove(struct platform_device *ofdev)
1408 struct device *dev = &ofdev->dev;
1409 struct crypto4xx_core_device *core_dev = dev_get_drvdata(dev);
1411 ppc4xx_trng_remove(core_dev);
1413 free_irq(core_dev->irq, dev);
1414 irq_dispose_mapping(core_dev->irq);
1416 tasklet_kill(&core_dev->tasklet);
1417 /* Un-register with Linux CryptoAPI */
1418 crypto4xx_unregister_alg(core_dev->dev);
1419 /* Free all allocated memory */
1420 crypto4xx_stop_all(core_dev);
1422 return 0;
1425 static const struct of_device_id crypto4xx_match[] = {
1426 { .compatible = "amcc,ppc4xx-crypto",},
1427 { },
1429 MODULE_DEVICE_TABLE(of, crypto4xx_match);
1431 static struct platform_driver crypto4xx_driver = {
1432 .driver = {
1433 .name = KBUILD_MODNAME,
1434 .of_match_table = crypto4xx_match,
1436 .probe = crypto4xx_probe,
1437 .remove = crypto4xx_remove,
1440 module_platform_driver(crypto4xx_driver);
1442 MODULE_LICENSE("GPL");
1443 MODULE_AUTHOR("James Hsiao <jhsiao@amcc.com>");
1444 MODULE_DESCRIPTION("Driver for AMCC PPC4xx crypto accelerator");