Merge tag 'for_linus' of git://git.kernel.org/pub/scm/linux/kernel/git/mst/vhost
[cris-mirror.git] / drivers / dma / sprd-dma.c
blobb106e8a60af642ad213e1a21a08b24d749d4673f
1 /*
2 * Copyright (C) 2017 Spreadtrum Communications Inc.
4 * SPDX-License-Identifier: GPL-2.0
5 */
7 #include <linux/clk.h>
8 #include <linux/dma-mapping.h>
9 #include <linux/errno.h>
10 #include <linux/init.h>
11 #include <linux/interrupt.h>
12 #include <linux/io.h>
13 #include <linux/kernel.h>
14 #include <linux/module.h>
15 #include <linux/of.h>
16 #include <linux/of_dma.h>
17 #include <linux/of_device.h>
18 #include <linux/pm_runtime.h>
19 #include <linux/slab.h>
21 #include "virt-dma.h"
23 #define SPRD_DMA_CHN_REG_OFFSET 0x1000
24 #define SPRD_DMA_CHN_REG_LENGTH 0x40
25 #define SPRD_DMA_MEMCPY_MIN_SIZE 64
27 /* DMA global registers definition */
28 #define SPRD_DMA_GLB_PAUSE 0x0
29 #define SPRD_DMA_GLB_FRAG_WAIT 0x4
30 #define SPRD_DMA_GLB_REQ_PEND0_EN 0x8
31 #define SPRD_DMA_GLB_REQ_PEND1_EN 0xc
32 #define SPRD_DMA_GLB_INT_RAW_STS 0x10
33 #define SPRD_DMA_GLB_INT_MSK_STS 0x14
34 #define SPRD_DMA_GLB_REQ_STS 0x18
35 #define SPRD_DMA_GLB_CHN_EN_STS 0x1c
36 #define SPRD_DMA_GLB_DEBUG_STS 0x20
37 #define SPRD_DMA_GLB_ARB_SEL_STS 0x24
38 #define SPRD_DMA_GLB_REQ_UID(uid) (0x4 * ((uid) - 1))
39 #define SPRD_DMA_GLB_REQ_UID_OFFSET 0x2000
41 /* DMA channel registers definition */
42 #define SPRD_DMA_CHN_PAUSE 0x0
43 #define SPRD_DMA_CHN_REQ 0x4
44 #define SPRD_DMA_CHN_CFG 0x8
45 #define SPRD_DMA_CHN_INTC 0xc
46 #define SPRD_DMA_CHN_SRC_ADDR 0x10
47 #define SPRD_DMA_CHN_DES_ADDR 0x14
48 #define SPRD_DMA_CHN_FRG_LEN 0x18
49 #define SPRD_DMA_CHN_BLK_LEN 0x1c
50 #define SPRD_DMA_CHN_TRSC_LEN 0x20
51 #define SPRD_DMA_CHN_TRSF_STEP 0x24
52 #define SPRD_DMA_CHN_WARP_PTR 0x28
53 #define SPRD_DMA_CHN_WARP_TO 0x2c
54 #define SPRD_DMA_CHN_LLIST_PTR 0x30
55 #define SPRD_DMA_CHN_FRAG_STEP 0x34
56 #define SPRD_DMA_CHN_SRC_BLK_STEP 0x38
57 #define SPRD_DMA_CHN_DES_BLK_STEP 0x3c
59 /* SPRD_DMA_CHN_INTC register definition */
60 #define SPRD_DMA_INT_MASK GENMASK(4, 0)
61 #define SPRD_DMA_INT_CLR_OFFSET 24
62 #define SPRD_DMA_FRAG_INT_EN BIT(0)
63 #define SPRD_DMA_BLK_INT_EN BIT(1)
64 #define SPRD_DMA_TRANS_INT_EN BIT(2)
65 #define SPRD_DMA_LIST_INT_EN BIT(3)
66 #define SPRD_DMA_CFG_ERR_INT_EN BIT(4)
68 /* SPRD_DMA_CHN_CFG register definition */
69 #define SPRD_DMA_CHN_EN BIT(0)
70 #define SPRD_DMA_WAIT_BDONE_OFFSET 24
71 #define SPRD_DMA_DONOT_WAIT_BDONE 1
73 /* SPRD_DMA_CHN_REQ register definition */
74 #define SPRD_DMA_REQ_EN BIT(0)
76 /* SPRD_DMA_CHN_PAUSE register definition */
77 #define SPRD_DMA_PAUSE_EN BIT(0)
78 #define SPRD_DMA_PAUSE_STS BIT(2)
79 #define SPRD_DMA_PAUSE_CNT 0x2000
81 /* DMA_CHN_WARP_* register definition */
82 #define SPRD_DMA_HIGH_ADDR_MASK GENMASK(31, 28)
83 #define SPRD_DMA_LOW_ADDR_MASK GENMASK(31, 0)
84 #define SPRD_DMA_HIGH_ADDR_OFFSET 4
86 /* SPRD_DMA_CHN_INTC register definition */
87 #define SPRD_DMA_FRAG_INT_STS BIT(16)
88 #define SPRD_DMA_BLK_INT_STS BIT(17)
89 #define SPRD_DMA_TRSC_INT_STS BIT(18)
90 #define SPRD_DMA_LIST_INT_STS BIT(19)
91 #define SPRD_DMA_CFGERR_INT_STS BIT(20)
92 #define SPRD_DMA_CHN_INT_STS \
93 (SPRD_DMA_FRAG_INT_STS | SPRD_DMA_BLK_INT_STS | \
94 SPRD_DMA_TRSC_INT_STS | SPRD_DMA_LIST_INT_STS | \
95 SPRD_DMA_CFGERR_INT_STS)
97 /* SPRD_DMA_CHN_FRG_LEN register definition */
98 #define SPRD_DMA_SRC_DATAWIDTH_OFFSET 30
99 #define SPRD_DMA_DES_DATAWIDTH_OFFSET 28
100 #define SPRD_DMA_SWT_MODE_OFFSET 26
101 #define SPRD_DMA_REQ_MODE_OFFSET 24
102 #define SPRD_DMA_REQ_MODE_MASK GENMASK(1, 0)
103 #define SPRD_DMA_FIX_SEL_OFFSET 21
104 #define SPRD_DMA_FIX_EN_OFFSET 20
105 #define SPRD_DMA_LLIST_END_OFFSET 19
106 #define SPRD_DMA_FRG_LEN_MASK GENMASK(16, 0)
108 /* SPRD_DMA_CHN_BLK_LEN register definition */
109 #define SPRD_DMA_BLK_LEN_MASK GENMASK(16, 0)
111 /* SPRD_DMA_CHN_TRSC_LEN register definition */
112 #define SPRD_DMA_TRSC_LEN_MASK GENMASK(27, 0)
114 /* SPRD_DMA_CHN_TRSF_STEP register definition */
115 #define SPRD_DMA_DEST_TRSF_STEP_OFFSET 16
116 #define SPRD_DMA_SRC_TRSF_STEP_OFFSET 0
117 #define SPRD_DMA_TRSF_STEP_MASK GENMASK(15, 0)
119 #define SPRD_DMA_SOFTWARE_UID 0
122 * enum sprd_dma_req_mode: define the DMA request mode
123 * @SPRD_DMA_FRAG_REQ: fragment request mode
124 * @SPRD_DMA_BLK_REQ: block request mode
125 * @SPRD_DMA_TRANS_REQ: transaction request mode
126 * @SPRD_DMA_LIST_REQ: link-list request mode
128 * We have 4 types request mode: fragment mode, block mode, transaction mode
129 * and linklist mode. One transaction can contain several blocks, one block can
130 * contain several fragments. Link-list mode means we can save several DMA
131 * configuration into one reserved memory, then DMA can fetch each DMA
132 * configuration automatically to start transfer.
134 enum sprd_dma_req_mode {
135 SPRD_DMA_FRAG_REQ,
136 SPRD_DMA_BLK_REQ,
137 SPRD_DMA_TRANS_REQ,
138 SPRD_DMA_LIST_REQ,
142 * enum sprd_dma_int_type: define the DMA interrupt type
143 * @SPRD_DMA_NO_INT: do not need generate DMA interrupts.
144 * @SPRD_DMA_FRAG_INT: fragment done interrupt when one fragment request
145 * is done.
146 * @SPRD_DMA_BLK_INT: block done interrupt when one block request is done.
147 * @SPRD_DMA_BLK_FRAG_INT: block and fragment interrupt when one fragment
148 * or one block request is done.
149 * @SPRD_DMA_TRANS_INT: tansaction done interrupt when one transaction
150 * request is done.
151 * @SPRD_DMA_TRANS_FRAG_INT: transaction and fragment interrupt when one
152 * transaction request or fragment request is done.
153 * @SPRD_DMA_TRANS_BLK_INT: transaction and block interrupt when one
154 * transaction request or block request is done.
155 * @SPRD_DMA_LIST_INT: link-list done interrupt when one link-list request
156 * is done.
157 * @SPRD_DMA_CFGERR_INT: configure error interrupt when configuration is
158 * incorrect.
160 enum sprd_dma_int_type {
161 SPRD_DMA_NO_INT,
162 SPRD_DMA_FRAG_INT,
163 SPRD_DMA_BLK_INT,
164 SPRD_DMA_BLK_FRAG_INT,
165 SPRD_DMA_TRANS_INT,
166 SPRD_DMA_TRANS_FRAG_INT,
167 SPRD_DMA_TRANS_BLK_INT,
168 SPRD_DMA_LIST_INT,
169 SPRD_DMA_CFGERR_INT,
172 /* dma channel hardware configuration */
173 struct sprd_dma_chn_hw {
174 u32 pause;
175 u32 req;
176 u32 cfg;
177 u32 intc;
178 u32 src_addr;
179 u32 des_addr;
180 u32 frg_len;
181 u32 blk_len;
182 u32 trsc_len;
183 u32 trsf_step;
184 u32 wrap_ptr;
185 u32 wrap_to;
186 u32 llist_ptr;
187 u32 frg_step;
188 u32 src_blk_step;
189 u32 des_blk_step;
192 /* dma request description */
193 struct sprd_dma_desc {
194 struct virt_dma_desc vd;
195 struct sprd_dma_chn_hw chn_hw;
198 /* dma channel description */
199 struct sprd_dma_chn {
200 struct virt_dma_chan vc;
201 void __iomem *chn_base;
202 u32 chn_num;
203 u32 dev_id;
204 struct sprd_dma_desc *cur_desc;
207 /* SPRD dma device */
208 struct sprd_dma_dev {
209 struct dma_device dma_dev;
210 void __iomem *glb_base;
211 struct clk *clk;
212 struct clk *ashb_clk;
213 int irq;
214 u32 total_chns;
215 struct sprd_dma_chn channels[0];
218 static bool sprd_dma_filter_fn(struct dma_chan *chan, void *param);
219 static struct of_dma_filter_info sprd_dma_info = {
220 .filter_fn = sprd_dma_filter_fn,
223 static inline struct sprd_dma_chn *to_sprd_dma_chan(struct dma_chan *c)
225 return container_of(c, struct sprd_dma_chn, vc.chan);
228 static inline struct sprd_dma_dev *to_sprd_dma_dev(struct dma_chan *c)
230 struct sprd_dma_chn *schan = to_sprd_dma_chan(c);
232 return container_of(schan, struct sprd_dma_dev, channels[c->chan_id]);
235 static inline struct sprd_dma_desc *to_sprd_dma_desc(struct virt_dma_desc *vd)
237 return container_of(vd, struct sprd_dma_desc, vd);
240 static void sprd_dma_chn_update(struct sprd_dma_chn *schan, u32 reg,
241 u32 mask, u32 val)
243 u32 orig = readl(schan->chn_base + reg);
244 u32 tmp;
246 tmp = (orig & ~mask) | val;
247 writel(tmp, schan->chn_base + reg);
250 static int sprd_dma_enable(struct sprd_dma_dev *sdev)
252 int ret;
254 ret = clk_prepare_enable(sdev->clk);
255 if (ret)
256 return ret;
259 * The ashb_clk is optional and only for AGCP DMA controller, so we
260 * need add one condition to check if the ashb_clk need enable.
262 if (!IS_ERR(sdev->ashb_clk))
263 ret = clk_prepare_enable(sdev->ashb_clk);
265 return ret;
268 static void sprd_dma_disable(struct sprd_dma_dev *sdev)
270 clk_disable_unprepare(sdev->clk);
273 * Need to check if we need disable the optional ashb_clk for AGCP DMA.
275 if (!IS_ERR(sdev->ashb_clk))
276 clk_disable_unprepare(sdev->ashb_clk);
279 static void sprd_dma_set_uid(struct sprd_dma_chn *schan)
281 struct sprd_dma_dev *sdev = to_sprd_dma_dev(&schan->vc.chan);
282 u32 dev_id = schan->dev_id;
284 if (dev_id != SPRD_DMA_SOFTWARE_UID) {
285 u32 uid_offset = SPRD_DMA_GLB_REQ_UID_OFFSET +
286 SPRD_DMA_GLB_REQ_UID(dev_id);
288 writel(schan->chn_num + 1, sdev->glb_base + uid_offset);
292 static void sprd_dma_unset_uid(struct sprd_dma_chn *schan)
294 struct sprd_dma_dev *sdev = to_sprd_dma_dev(&schan->vc.chan);
295 u32 dev_id = schan->dev_id;
297 if (dev_id != SPRD_DMA_SOFTWARE_UID) {
298 u32 uid_offset = SPRD_DMA_GLB_REQ_UID_OFFSET +
299 SPRD_DMA_GLB_REQ_UID(dev_id);
301 writel(0, sdev->glb_base + uid_offset);
305 static void sprd_dma_clear_int(struct sprd_dma_chn *schan)
307 sprd_dma_chn_update(schan, SPRD_DMA_CHN_INTC,
308 SPRD_DMA_INT_MASK << SPRD_DMA_INT_CLR_OFFSET,
309 SPRD_DMA_INT_MASK << SPRD_DMA_INT_CLR_OFFSET);
312 static void sprd_dma_enable_chn(struct sprd_dma_chn *schan)
314 sprd_dma_chn_update(schan, SPRD_DMA_CHN_CFG, SPRD_DMA_CHN_EN,
315 SPRD_DMA_CHN_EN);
318 static void sprd_dma_disable_chn(struct sprd_dma_chn *schan)
320 sprd_dma_chn_update(schan, SPRD_DMA_CHN_CFG, SPRD_DMA_CHN_EN, 0);
323 static void sprd_dma_soft_request(struct sprd_dma_chn *schan)
325 sprd_dma_chn_update(schan, SPRD_DMA_CHN_REQ, SPRD_DMA_REQ_EN,
326 SPRD_DMA_REQ_EN);
329 static void sprd_dma_pause_resume(struct sprd_dma_chn *schan, bool enable)
331 struct sprd_dma_dev *sdev = to_sprd_dma_dev(&schan->vc.chan);
332 u32 pause, timeout = SPRD_DMA_PAUSE_CNT;
334 if (enable) {
335 sprd_dma_chn_update(schan, SPRD_DMA_CHN_PAUSE,
336 SPRD_DMA_PAUSE_EN, SPRD_DMA_PAUSE_EN);
338 do {
339 pause = readl(schan->chn_base + SPRD_DMA_CHN_PAUSE);
340 if (pause & SPRD_DMA_PAUSE_STS)
341 break;
343 cpu_relax();
344 } while (--timeout > 0);
346 if (!timeout)
347 dev_warn(sdev->dma_dev.dev,
348 "pause dma controller timeout\n");
349 } else {
350 sprd_dma_chn_update(schan, SPRD_DMA_CHN_PAUSE,
351 SPRD_DMA_PAUSE_EN, 0);
355 static void sprd_dma_stop_and_disable(struct sprd_dma_chn *schan)
357 u32 cfg = readl(schan->chn_base + SPRD_DMA_CHN_CFG);
359 if (!(cfg & SPRD_DMA_CHN_EN))
360 return;
362 sprd_dma_pause_resume(schan, true);
363 sprd_dma_disable_chn(schan);
366 static unsigned long sprd_dma_get_dst_addr(struct sprd_dma_chn *schan)
368 unsigned long addr, addr_high;
370 addr = readl(schan->chn_base + SPRD_DMA_CHN_DES_ADDR);
371 addr_high = readl(schan->chn_base + SPRD_DMA_CHN_WARP_TO) &
372 SPRD_DMA_HIGH_ADDR_MASK;
374 return addr | (addr_high << SPRD_DMA_HIGH_ADDR_OFFSET);
377 static enum sprd_dma_int_type sprd_dma_get_int_type(struct sprd_dma_chn *schan)
379 struct sprd_dma_dev *sdev = to_sprd_dma_dev(&schan->vc.chan);
380 u32 intc_sts = readl(schan->chn_base + SPRD_DMA_CHN_INTC) &
381 SPRD_DMA_CHN_INT_STS;
383 switch (intc_sts) {
384 case SPRD_DMA_CFGERR_INT_STS:
385 return SPRD_DMA_CFGERR_INT;
387 case SPRD_DMA_LIST_INT_STS:
388 return SPRD_DMA_LIST_INT;
390 case SPRD_DMA_TRSC_INT_STS:
391 return SPRD_DMA_TRANS_INT;
393 case SPRD_DMA_BLK_INT_STS:
394 return SPRD_DMA_BLK_INT;
396 case SPRD_DMA_FRAG_INT_STS:
397 return SPRD_DMA_FRAG_INT;
399 default:
400 dev_warn(sdev->dma_dev.dev, "incorrect dma interrupt type\n");
401 return SPRD_DMA_NO_INT;
405 static enum sprd_dma_req_mode sprd_dma_get_req_type(struct sprd_dma_chn *schan)
407 u32 frag_reg = readl(schan->chn_base + SPRD_DMA_CHN_FRG_LEN);
409 return (frag_reg >> SPRD_DMA_REQ_MODE_OFFSET) & SPRD_DMA_REQ_MODE_MASK;
412 static void sprd_dma_set_chn_config(struct sprd_dma_chn *schan,
413 struct sprd_dma_desc *sdesc)
415 struct sprd_dma_chn_hw *cfg = &sdesc->chn_hw;
417 writel(cfg->pause, schan->chn_base + SPRD_DMA_CHN_PAUSE);
418 writel(cfg->cfg, schan->chn_base + SPRD_DMA_CHN_CFG);
419 writel(cfg->intc, schan->chn_base + SPRD_DMA_CHN_INTC);
420 writel(cfg->src_addr, schan->chn_base + SPRD_DMA_CHN_SRC_ADDR);
421 writel(cfg->des_addr, schan->chn_base + SPRD_DMA_CHN_DES_ADDR);
422 writel(cfg->frg_len, schan->chn_base + SPRD_DMA_CHN_FRG_LEN);
423 writel(cfg->blk_len, schan->chn_base + SPRD_DMA_CHN_BLK_LEN);
424 writel(cfg->trsc_len, schan->chn_base + SPRD_DMA_CHN_TRSC_LEN);
425 writel(cfg->trsf_step, schan->chn_base + SPRD_DMA_CHN_TRSF_STEP);
426 writel(cfg->wrap_ptr, schan->chn_base + SPRD_DMA_CHN_WARP_PTR);
427 writel(cfg->wrap_to, schan->chn_base + SPRD_DMA_CHN_WARP_TO);
428 writel(cfg->llist_ptr, schan->chn_base + SPRD_DMA_CHN_LLIST_PTR);
429 writel(cfg->frg_step, schan->chn_base + SPRD_DMA_CHN_FRAG_STEP);
430 writel(cfg->src_blk_step, schan->chn_base + SPRD_DMA_CHN_SRC_BLK_STEP);
431 writel(cfg->des_blk_step, schan->chn_base + SPRD_DMA_CHN_DES_BLK_STEP);
432 writel(cfg->req, schan->chn_base + SPRD_DMA_CHN_REQ);
435 static void sprd_dma_start(struct sprd_dma_chn *schan)
437 struct virt_dma_desc *vd = vchan_next_desc(&schan->vc);
439 if (!vd)
440 return;
442 list_del(&vd->node);
443 schan->cur_desc = to_sprd_dma_desc(vd);
446 * Copy the DMA configuration from DMA descriptor to this hardware
447 * channel.
449 sprd_dma_set_chn_config(schan, schan->cur_desc);
450 sprd_dma_set_uid(schan);
451 sprd_dma_enable_chn(schan);
453 if (schan->dev_id == SPRD_DMA_SOFTWARE_UID)
454 sprd_dma_soft_request(schan);
457 static void sprd_dma_stop(struct sprd_dma_chn *schan)
459 sprd_dma_stop_and_disable(schan);
460 sprd_dma_unset_uid(schan);
461 sprd_dma_clear_int(schan);
464 static bool sprd_dma_check_trans_done(struct sprd_dma_desc *sdesc,
465 enum sprd_dma_int_type int_type,
466 enum sprd_dma_req_mode req_mode)
468 if (int_type == SPRD_DMA_NO_INT)
469 return false;
471 if (int_type >= req_mode + 1)
472 return true;
473 else
474 return false;
477 static irqreturn_t dma_irq_handle(int irq, void *dev_id)
479 struct sprd_dma_dev *sdev = (struct sprd_dma_dev *)dev_id;
480 u32 irq_status = readl(sdev->glb_base + SPRD_DMA_GLB_INT_MSK_STS);
481 struct sprd_dma_chn *schan;
482 struct sprd_dma_desc *sdesc;
483 enum sprd_dma_req_mode req_type;
484 enum sprd_dma_int_type int_type;
485 bool trans_done = false;
486 u32 i;
488 while (irq_status) {
489 i = __ffs(irq_status);
490 irq_status &= (irq_status - 1);
491 schan = &sdev->channels[i];
493 spin_lock(&schan->vc.lock);
494 int_type = sprd_dma_get_int_type(schan);
495 req_type = sprd_dma_get_req_type(schan);
496 sprd_dma_clear_int(schan);
498 sdesc = schan->cur_desc;
500 /* Check if the dma request descriptor is done. */
501 trans_done = sprd_dma_check_trans_done(sdesc, int_type,
502 req_type);
503 if (trans_done == true) {
504 vchan_cookie_complete(&sdesc->vd);
505 schan->cur_desc = NULL;
506 sprd_dma_start(schan);
508 spin_unlock(&schan->vc.lock);
511 return IRQ_HANDLED;
514 static int sprd_dma_alloc_chan_resources(struct dma_chan *chan)
516 struct sprd_dma_chn *schan = to_sprd_dma_chan(chan);
517 int ret;
519 ret = pm_runtime_get_sync(chan->device->dev);
520 if (ret < 0)
521 return ret;
523 schan->dev_id = SPRD_DMA_SOFTWARE_UID;
524 return 0;
527 static void sprd_dma_free_chan_resources(struct dma_chan *chan)
529 struct sprd_dma_chn *schan = to_sprd_dma_chan(chan);
530 unsigned long flags;
532 spin_lock_irqsave(&schan->vc.lock, flags);
533 sprd_dma_stop(schan);
534 spin_unlock_irqrestore(&schan->vc.lock, flags);
536 vchan_free_chan_resources(&schan->vc);
537 pm_runtime_put(chan->device->dev);
540 static enum dma_status sprd_dma_tx_status(struct dma_chan *chan,
541 dma_cookie_t cookie,
542 struct dma_tx_state *txstate)
544 struct sprd_dma_chn *schan = to_sprd_dma_chan(chan);
545 struct virt_dma_desc *vd;
546 unsigned long flags;
547 enum dma_status ret;
548 u32 pos;
550 ret = dma_cookie_status(chan, cookie, txstate);
551 if (ret == DMA_COMPLETE || !txstate)
552 return ret;
554 spin_lock_irqsave(&schan->vc.lock, flags);
555 vd = vchan_find_desc(&schan->vc, cookie);
556 if (vd) {
557 struct sprd_dma_desc *sdesc = to_sprd_dma_desc(vd);
558 struct sprd_dma_chn_hw *hw = &sdesc->chn_hw;
560 if (hw->trsc_len > 0)
561 pos = hw->trsc_len;
562 else if (hw->blk_len > 0)
563 pos = hw->blk_len;
564 else if (hw->frg_len > 0)
565 pos = hw->frg_len;
566 else
567 pos = 0;
568 } else if (schan->cur_desc && schan->cur_desc->vd.tx.cookie == cookie) {
569 pos = sprd_dma_get_dst_addr(schan);
570 } else {
571 pos = 0;
573 spin_unlock_irqrestore(&schan->vc.lock, flags);
575 dma_set_residue(txstate, pos);
576 return ret;
579 static void sprd_dma_issue_pending(struct dma_chan *chan)
581 struct sprd_dma_chn *schan = to_sprd_dma_chan(chan);
582 unsigned long flags;
584 spin_lock_irqsave(&schan->vc.lock, flags);
585 if (vchan_issue_pending(&schan->vc) && !schan->cur_desc)
586 sprd_dma_start(schan);
587 spin_unlock_irqrestore(&schan->vc.lock, flags);
590 static int sprd_dma_config(struct dma_chan *chan, struct sprd_dma_desc *sdesc,
591 dma_addr_t dest, dma_addr_t src, size_t len)
593 struct sprd_dma_dev *sdev = to_sprd_dma_dev(chan);
594 struct sprd_dma_chn_hw *hw = &sdesc->chn_hw;
595 u32 datawidth, src_step, des_step, fragment_len;
596 u32 block_len, req_mode, irq_mode, transcation_len;
597 u32 fix_mode = 0, fix_en = 0;
599 if (IS_ALIGNED(len, 4)) {
600 datawidth = 2;
601 src_step = 4;
602 des_step = 4;
603 } else if (IS_ALIGNED(len, 2)) {
604 datawidth = 1;
605 src_step = 2;
606 des_step = 2;
607 } else {
608 datawidth = 0;
609 src_step = 1;
610 des_step = 1;
613 fragment_len = SPRD_DMA_MEMCPY_MIN_SIZE;
614 if (len <= SPRD_DMA_BLK_LEN_MASK) {
615 block_len = len;
616 transcation_len = 0;
617 req_mode = SPRD_DMA_BLK_REQ;
618 irq_mode = SPRD_DMA_BLK_INT;
619 } else {
620 block_len = SPRD_DMA_MEMCPY_MIN_SIZE;
621 transcation_len = len;
622 req_mode = SPRD_DMA_TRANS_REQ;
623 irq_mode = SPRD_DMA_TRANS_INT;
626 hw->cfg = SPRD_DMA_DONOT_WAIT_BDONE << SPRD_DMA_WAIT_BDONE_OFFSET;
627 hw->wrap_ptr = (u32)((src >> SPRD_DMA_HIGH_ADDR_OFFSET) &
628 SPRD_DMA_HIGH_ADDR_MASK);
629 hw->wrap_to = (u32)((dest >> SPRD_DMA_HIGH_ADDR_OFFSET) &
630 SPRD_DMA_HIGH_ADDR_MASK);
632 hw->src_addr = (u32)(src & SPRD_DMA_LOW_ADDR_MASK);
633 hw->des_addr = (u32)(dest & SPRD_DMA_LOW_ADDR_MASK);
635 if ((src_step != 0 && des_step != 0) || (src_step | des_step) == 0) {
636 fix_en = 0;
637 } else {
638 fix_en = 1;
639 if (src_step)
640 fix_mode = 1;
641 else
642 fix_mode = 0;
645 hw->frg_len = datawidth << SPRD_DMA_SRC_DATAWIDTH_OFFSET |
646 datawidth << SPRD_DMA_DES_DATAWIDTH_OFFSET |
647 req_mode << SPRD_DMA_REQ_MODE_OFFSET |
648 fix_mode << SPRD_DMA_FIX_SEL_OFFSET |
649 fix_en << SPRD_DMA_FIX_EN_OFFSET |
650 (fragment_len & SPRD_DMA_FRG_LEN_MASK);
651 hw->blk_len = block_len & SPRD_DMA_BLK_LEN_MASK;
653 hw->intc = SPRD_DMA_CFG_ERR_INT_EN;
655 switch (irq_mode) {
656 case SPRD_DMA_NO_INT:
657 break;
659 case SPRD_DMA_FRAG_INT:
660 hw->intc |= SPRD_DMA_FRAG_INT_EN;
661 break;
663 case SPRD_DMA_BLK_INT:
664 hw->intc |= SPRD_DMA_BLK_INT_EN;
665 break;
667 case SPRD_DMA_BLK_FRAG_INT:
668 hw->intc |= SPRD_DMA_BLK_INT_EN | SPRD_DMA_FRAG_INT_EN;
669 break;
671 case SPRD_DMA_TRANS_INT:
672 hw->intc |= SPRD_DMA_TRANS_INT_EN;
673 break;
675 case SPRD_DMA_TRANS_FRAG_INT:
676 hw->intc |= SPRD_DMA_TRANS_INT_EN | SPRD_DMA_FRAG_INT_EN;
677 break;
679 case SPRD_DMA_TRANS_BLK_INT:
680 hw->intc |= SPRD_DMA_TRANS_INT_EN | SPRD_DMA_BLK_INT_EN;
681 break;
683 case SPRD_DMA_LIST_INT:
684 hw->intc |= SPRD_DMA_LIST_INT_EN;
685 break;
687 case SPRD_DMA_CFGERR_INT:
688 hw->intc |= SPRD_DMA_CFG_ERR_INT_EN;
689 break;
691 default:
692 dev_err(sdev->dma_dev.dev, "invalid irq mode\n");
693 return -EINVAL;
696 if (transcation_len == 0)
697 hw->trsc_len = block_len & SPRD_DMA_TRSC_LEN_MASK;
698 else
699 hw->trsc_len = transcation_len & SPRD_DMA_TRSC_LEN_MASK;
701 hw->trsf_step = (des_step & SPRD_DMA_TRSF_STEP_MASK) <<
702 SPRD_DMA_DEST_TRSF_STEP_OFFSET |
703 (src_step & SPRD_DMA_TRSF_STEP_MASK) <<
704 SPRD_DMA_SRC_TRSF_STEP_OFFSET;
706 hw->frg_step = 0;
707 hw->src_blk_step = 0;
708 hw->des_blk_step = 0;
709 hw->src_blk_step = 0;
710 return 0;
713 static struct dma_async_tx_descriptor *
714 sprd_dma_prep_dma_memcpy(struct dma_chan *chan, dma_addr_t dest, dma_addr_t src,
715 size_t len, unsigned long flags)
717 struct sprd_dma_chn *schan = to_sprd_dma_chan(chan);
718 struct sprd_dma_desc *sdesc;
719 int ret;
721 sdesc = kzalloc(sizeof(*sdesc), GFP_NOWAIT);
722 if (!sdesc)
723 return NULL;
725 ret = sprd_dma_config(chan, sdesc, dest, src, len);
726 if (ret) {
727 kfree(sdesc);
728 return NULL;
731 return vchan_tx_prep(&schan->vc, &sdesc->vd, flags);
734 static int sprd_dma_pause(struct dma_chan *chan)
736 struct sprd_dma_chn *schan = to_sprd_dma_chan(chan);
737 unsigned long flags;
739 spin_lock_irqsave(&schan->vc.lock, flags);
740 sprd_dma_pause_resume(schan, true);
741 spin_unlock_irqrestore(&schan->vc.lock, flags);
743 return 0;
746 static int sprd_dma_resume(struct dma_chan *chan)
748 struct sprd_dma_chn *schan = to_sprd_dma_chan(chan);
749 unsigned long flags;
751 spin_lock_irqsave(&schan->vc.lock, flags);
752 sprd_dma_pause_resume(schan, false);
753 spin_unlock_irqrestore(&schan->vc.lock, flags);
755 return 0;
758 static int sprd_dma_terminate_all(struct dma_chan *chan)
760 struct sprd_dma_chn *schan = to_sprd_dma_chan(chan);
761 unsigned long flags;
762 LIST_HEAD(head);
764 spin_lock_irqsave(&schan->vc.lock, flags);
765 sprd_dma_stop(schan);
767 vchan_get_all_descriptors(&schan->vc, &head);
768 spin_unlock_irqrestore(&schan->vc.lock, flags);
770 vchan_dma_desc_free_list(&schan->vc, &head);
771 return 0;
774 static void sprd_dma_free_desc(struct virt_dma_desc *vd)
776 struct sprd_dma_desc *sdesc = to_sprd_dma_desc(vd);
778 kfree(sdesc);
781 static bool sprd_dma_filter_fn(struct dma_chan *chan, void *param)
783 struct sprd_dma_chn *schan = to_sprd_dma_chan(chan);
784 struct sprd_dma_dev *sdev = to_sprd_dma_dev(&schan->vc.chan);
785 u32 req = *(u32 *)param;
787 if (req < sdev->total_chns)
788 return req == schan->chn_num + 1;
789 else
790 return false;
793 static int sprd_dma_probe(struct platform_device *pdev)
795 struct device_node *np = pdev->dev.of_node;
796 struct sprd_dma_dev *sdev;
797 struct sprd_dma_chn *dma_chn;
798 struct resource *res;
799 u32 chn_count;
800 int ret, i;
802 ret = device_property_read_u32(&pdev->dev, "#dma-channels", &chn_count);
803 if (ret) {
804 dev_err(&pdev->dev, "get dma channels count failed\n");
805 return ret;
808 sdev = devm_kzalloc(&pdev->dev, sizeof(*sdev) +
809 sizeof(*dma_chn) * chn_count,
810 GFP_KERNEL);
811 if (!sdev)
812 return -ENOMEM;
814 sdev->clk = devm_clk_get(&pdev->dev, "enable");
815 if (IS_ERR(sdev->clk)) {
816 dev_err(&pdev->dev, "get enable clock failed\n");
817 return PTR_ERR(sdev->clk);
820 /* ashb clock is optional for AGCP DMA */
821 sdev->ashb_clk = devm_clk_get(&pdev->dev, "ashb_eb");
822 if (IS_ERR(sdev->ashb_clk))
823 dev_warn(&pdev->dev, "no optional ashb eb clock\n");
826 * We have three DMA controllers: AP DMA, AON DMA and AGCP DMA. For AGCP
827 * DMA controller, it can or do not request the irq, which will save
828 * system power without resuming system by DMA interrupts if AGCP DMA
829 * does not request the irq. Thus the DMA interrupts property should
830 * be optional.
832 sdev->irq = platform_get_irq(pdev, 0);
833 if (sdev->irq > 0) {
834 ret = devm_request_irq(&pdev->dev, sdev->irq, dma_irq_handle,
835 0, "sprd_dma", (void *)sdev);
836 if (ret < 0) {
837 dev_err(&pdev->dev, "request dma irq failed\n");
838 return ret;
840 } else {
841 dev_warn(&pdev->dev, "no interrupts for the dma controller\n");
844 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
845 sdev->glb_base = devm_ioremap_nocache(&pdev->dev, res->start,
846 resource_size(res));
847 if (!sdev->glb_base)
848 return -ENOMEM;
850 dma_cap_set(DMA_MEMCPY, sdev->dma_dev.cap_mask);
851 sdev->total_chns = chn_count;
852 sdev->dma_dev.chancnt = chn_count;
853 INIT_LIST_HEAD(&sdev->dma_dev.channels);
854 INIT_LIST_HEAD(&sdev->dma_dev.global_node);
855 sdev->dma_dev.dev = &pdev->dev;
856 sdev->dma_dev.device_alloc_chan_resources = sprd_dma_alloc_chan_resources;
857 sdev->dma_dev.device_free_chan_resources = sprd_dma_free_chan_resources;
858 sdev->dma_dev.device_tx_status = sprd_dma_tx_status;
859 sdev->dma_dev.device_issue_pending = sprd_dma_issue_pending;
860 sdev->dma_dev.device_prep_dma_memcpy = sprd_dma_prep_dma_memcpy;
861 sdev->dma_dev.device_pause = sprd_dma_pause;
862 sdev->dma_dev.device_resume = sprd_dma_resume;
863 sdev->dma_dev.device_terminate_all = sprd_dma_terminate_all;
865 for (i = 0; i < chn_count; i++) {
866 dma_chn = &sdev->channels[i];
867 dma_chn->chn_num = i;
868 dma_chn->cur_desc = NULL;
869 /* get each channel's registers base address. */
870 dma_chn->chn_base = sdev->glb_base + SPRD_DMA_CHN_REG_OFFSET +
871 SPRD_DMA_CHN_REG_LENGTH * i;
873 dma_chn->vc.desc_free = sprd_dma_free_desc;
874 vchan_init(&dma_chn->vc, &sdev->dma_dev);
877 platform_set_drvdata(pdev, sdev);
878 ret = sprd_dma_enable(sdev);
879 if (ret)
880 return ret;
882 pm_runtime_set_active(&pdev->dev);
883 pm_runtime_enable(&pdev->dev);
885 ret = pm_runtime_get_sync(&pdev->dev);
886 if (ret < 0)
887 goto err_rpm;
889 ret = dma_async_device_register(&sdev->dma_dev);
890 if (ret < 0) {
891 dev_err(&pdev->dev, "register dma device failed:%d\n", ret);
892 goto err_register;
895 sprd_dma_info.dma_cap = sdev->dma_dev.cap_mask;
896 ret = of_dma_controller_register(np, of_dma_simple_xlate,
897 &sprd_dma_info);
898 if (ret)
899 goto err_of_register;
901 pm_runtime_put(&pdev->dev);
902 return 0;
904 err_of_register:
905 dma_async_device_unregister(&sdev->dma_dev);
906 err_register:
907 pm_runtime_put_noidle(&pdev->dev);
908 pm_runtime_disable(&pdev->dev);
909 err_rpm:
910 sprd_dma_disable(sdev);
911 return ret;
914 static int sprd_dma_remove(struct platform_device *pdev)
916 struct sprd_dma_dev *sdev = platform_get_drvdata(pdev);
917 struct sprd_dma_chn *c, *cn;
918 int ret;
920 ret = pm_runtime_get_sync(&pdev->dev);
921 if (ret < 0)
922 return ret;
924 /* explicitly free the irq */
925 if (sdev->irq > 0)
926 devm_free_irq(&pdev->dev, sdev->irq, sdev);
928 list_for_each_entry_safe(c, cn, &sdev->dma_dev.channels,
929 vc.chan.device_node) {
930 list_del(&c->vc.chan.device_node);
931 tasklet_kill(&c->vc.task);
934 of_dma_controller_free(pdev->dev.of_node);
935 dma_async_device_unregister(&sdev->dma_dev);
936 sprd_dma_disable(sdev);
938 pm_runtime_put_noidle(&pdev->dev);
939 pm_runtime_disable(&pdev->dev);
940 return 0;
943 static const struct of_device_id sprd_dma_match[] = {
944 { .compatible = "sprd,sc9860-dma", },
948 static int __maybe_unused sprd_dma_runtime_suspend(struct device *dev)
950 struct sprd_dma_dev *sdev = dev_get_drvdata(dev);
952 sprd_dma_disable(sdev);
953 return 0;
956 static int __maybe_unused sprd_dma_runtime_resume(struct device *dev)
958 struct sprd_dma_dev *sdev = dev_get_drvdata(dev);
959 int ret;
961 ret = sprd_dma_enable(sdev);
962 if (ret)
963 dev_err(sdev->dma_dev.dev, "enable dma failed\n");
965 return ret;
968 static const struct dev_pm_ops sprd_dma_pm_ops = {
969 SET_RUNTIME_PM_OPS(sprd_dma_runtime_suspend,
970 sprd_dma_runtime_resume,
971 NULL)
974 static struct platform_driver sprd_dma_driver = {
975 .probe = sprd_dma_probe,
976 .remove = sprd_dma_remove,
977 .driver = {
978 .name = "sprd-dma",
979 .of_match_table = sprd_dma_match,
980 .pm = &sprd_dma_pm_ops,
983 module_platform_driver(sprd_dma_driver);
985 MODULE_LICENSE("GPL v2");
986 MODULE_DESCRIPTION("DMA driver for Spreadtrum");
987 MODULE_AUTHOR("Baolin Wang <baolin.wang@spreadtrum.com>");
988 MODULE_ALIAS("platform:sprd-dma");