2 * edac_mc kernel module
3 * (C) 2005, 2006 Linux Networx (http://lnxi.com)
4 * This file may be distributed under the terms of the
5 * GNU General Public License.
7 * Written by Thayne Harbaugh
8 * Based on work by Dan Hollis <goemon at anime dot net> and others.
9 * http://www.anime.net/~goemon/linux-ecc/
11 * Modified by Dave Peterson and Doug Thompson
15 #include <linux/module.h>
16 #include <linux/proc_fs.h>
17 #include <linux/kernel.h>
18 #include <linux/types.h>
19 #include <linux/smp.h>
20 #include <linux/init.h>
21 #include <linux/sysctl.h>
22 #include <linux/highmem.h>
23 #include <linux/timer.h>
24 #include <linux/slab.h>
25 #include <linux/jiffies.h>
26 #include <linux/spinlock.h>
27 #include <linux/list.h>
28 #include <linux/ctype.h>
29 #include <linux/edac.h>
30 #include <linux/bitops.h>
31 #include <linux/uaccess.h>
34 #include "edac_module.h"
35 #include <ras/ras_event.h>
37 #ifdef CONFIG_EDAC_ATOMIC_SCRUB
40 #define edac_atomic_scrub(va, size) do { } while (0)
43 int edac_op_state
= EDAC_OPSTATE_INVAL
;
44 EXPORT_SYMBOL_GPL(edac_op_state
);
46 static int edac_report
= EDAC_REPORTING_ENABLED
;
48 /* lock to memory controller's control array */
49 static DEFINE_MUTEX(mem_ctls_mutex
);
50 static LIST_HEAD(mc_devices
);
53 * Used to lock EDAC MC to just one module, avoiding two drivers e. g.
54 * apei/ghes and i7core_edac to be used at the same time.
56 static const char *edac_mc_owner
;
58 static struct bus_type mc_bus
[EDAC_MAX_MCS
];
60 int edac_get_report_status(void)
64 EXPORT_SYMBOL_GPL(edac_get_report_status
);
66 void edac_set_report_status(int new)
68 if (new == EDAC_REPORTING_ENABLED
||
69 new == EDAC_REPORTING_DISABLED
||
70 new == EDAC_REPORTING_FORCE
)
73 EXPORT_SYMBOL_GPL(edac_set_report_status
);
75 static int edac_report_set(const char *str
, const struct kernel_param
*kp
)
80 if (!strncmp(str
, "on", 2))
81 edac_report
= EDAC_REPORTING_ENABLED
;
82 else if (!strncmp(str
, "off", 3))
83 edac_report
= EDAC_REPORTING_DISABLED
;
84 else if (!strncmp(str
, "force", 5))
85 edac_report
= EDAC_REPORTING_FORCE
;
90 static int edac_report_get(char *buffer
, const struct kernel_param
*kp
)
94 switch (edac_report
) {
95 case EDAC_REPORTING_ENABLED
:
96 ret
= sprintf(buffer
, "on");
98 case EDAC_REPORTING_DISABLED
:
99 ret
= sprintf(buffer
, "off");
101 case EDAC_REPORTING_FORCE
:
102 ret
= sprintf(buffer
, "force");
112 static const struct kernel_param_ops edac_report_ops
= {
113 .set
= edac_report_set
,
114 .get
= edac_report_get
,
117 module_param_cb(edac_report
, &edac_report_ops
, &edac_report
, 0644);
119 unsigned edac_dimm_info_location(struct dimm_info
*dimm
, char *buf
,
122 struct mem_ctl_info
*mci
= dimm
->mci
;
126 for (i
= 0; i
< mci
->n_layers
; i
++) {
127 n
= snprintf(p
, len
, "%s %d ",
128 edac_layer_name
[mci
->layers
[i
].type
],
140 #ifdef CONFIG_EDAC_DEBUG
142 static void edac_mc_dump_channel(struct rank_info
*chan
)
144 edac_dbg(4, " channel->chan_idx = %d\n", chan
->chan_idx
);
145 edac_dbg(4, " channel = %p\n", chan
);
146 edac_dbg(4, " channel->csrow = %p\n", chan
->csrow
);
147 edac_dbg(4, " channel->dimm = %p\n", chan
->dimm
);
150 static void edac_mc_dump_dimm(struct dimm_info
*dimm
, int number
)
154 edac_dimm_info_location(dimm
, location
, sizeof(location
));
156 edac_dbg(4, "%s%i: %smapped as virtual row %d, chan %d\n",
157 dimm
->mci
->csbased
? "rank" : "dimm",
158 number
, location
, dimm
->csrow
, dimm
->cschannel
);
159 edac_dbg(4, " dimm = %p\n", dimm
);
160 edac_dbg(4, " dimm->label = '%s'\n", dimm
->label
);
161 edac_dbg(4, " dimm->nr_pages = 0x%x\n", dimm
->nr_pages
);
162 edac_dbg(4, " dimm->grain = %d\n", dimm
->grain
);
163 edac_dbg(4, " dimm->nr_pages = 0x%x\n", dimm
->nr_pages
);
166 static void edac_mc_dump_csrow(struct csrow_info
*csrow
)
168 edac_dbg(4, "csrow->csrow_idx = %d\n", csrow
->csrow_idx
);
169 edac_dbg(4, " csrow = %p\n", csrow
);
170 edac_dbg(4, " csrow->first_page = 0x%lx\n", csrow
->first_page
);
171 edac_dbg(4, " csrow->last_page = 0x%lx\n", csrow
->last_page
);
172 edac_dbg(4, " csrow->page_mask = 0x%lx\n", csrow
->page_mask
);
173 edac_dbg(4, " csrow->nr_channels = %d\n", csrow
->nr_channels
);
174 edac_dbg(4, " csrow->channels = %p\n", csrow
->channels
);
175 edac_dbg(4, " csrow->mci = %p\n", csrow
->mci
);
178 static void edac_mc_dump_mci(struct mem_ctl_info
*mci
)
180 edac_dbg(3, "\tmci = %p\n", mci
);
181 edac_dbg(3, "\tmci->mtype_cap = %lx\n", mci
->mtype_cap
);
182 edac_dbg(3, "\tmci->edac_ctl_cap = %lx\n", mci
->edac_ctl_cap
);
183 edac_dbg(3, "\tmci->edac_cap = %lx\n", mci
->edac_cap
);
184 edac_dbg(4, "\tmci->edac_check = %p\n", mci
->edac_check
);
185 edac_dbg(3, "\tmci->nr_csrows = %d, csrows = %p\n",
186 mci
->nr_csrows
, mci
->csrows
);
187 edac_dbg(3, "\tmci->nr_dimms = %d, dimms = %p\n",
188 mci
->tot_dimms
, mci
->dimms
);
189 edac_dbg(3, "\tdev = %p\n", mci
->pdev
);
190 edac_dbg(3, "\tmod_name:ctl_name = %s:%s\n",
191 mci
->mod_name
, mci
->ctl_name
);
192 edac_dbg(3, "\tpvt_info = %p\n\n", mci
->pvt_info
);
195 #endif /* CONFIG_EDAC_DEBUG */
197 const char * const edac_mem_types
[] = {
198 [MEM_EMPTY
] = "Empty csrow",
199 [MEM_RESERVED
] = "Reserved csrow type",
200 [MEM_UNKNOWN
] = "Unknown csrow type",
201 [MEM_FPM
] = "Fast page mode RAM",
202 [MEM_EDO
] = "Extended data out RAM",
203 [MEM_BEDO
] = "Burst Extended data out RAM",
204 [MEM_SDR
] = "Single data rate SDRAM",
205 [MEM_RDR
] = "Registered single data rate SDRAM",
206 [MEM_DDR
] = "Double data rate SDRAM",
207 [MEM_RDDR
] = "Registered Double data rate SDRAM",
208 [MEM_RMBS
] = "Rambus DRAM",
209 [MEM_DDR2
] = "Unbuffered DDR2 RAM",
210 [MEM_FB_DDR2
] = "Fully buffered DDR2",
211 [MEM_RDDR2
] = "Registered DDR2 RAM",
212 [MEM_XDR
] = "Rambus XDR",
213 [MEM_DDR3
] = "Unbuffered DDR3 RAM",
214 [MEM_RDDR3
] = "Registered DDR3 RAM",
215 [MEM_LRDDR3
] = "Load-Reduced DDR3 RAM",
216 [MEM_DDR4
] = "Unbuffered DDR4 RAM",
217 [MEM_RDDR4
] = "Registered DDR4 RAM",
219 EXPORT_SYMBOL_GPL(edac_mem_types
);
222 * edac_align_ptr - Prepares the pointer offsets for a single-shot allocation
223 * @p: pointer to a pointer with the memory offset to be used. At
224 * return, this will be incremented to point to the next offset
225 * @size: Size of the data structure to be reserved
226 * @n_elems: Number of elements that should be reserved
228 * If 'size' is a constant, the compiler will optimize this whole function
229 * down to either a no-op or the addition of a constant to the value of '*p'.
231 * The 'p' pointer is absolutely needed to keep the proper advancing
232 * further in memory to the proper offsets when allocating the struct along
233 * with its embedded structs, as edac_device_alloc_ctl_info() does it
234 * above, for example.
236 * At return, the pointer 'p' will be incremented to be used on a next call
239 void *edac_align_ptr(void **p
, unsigned size
, int n_elems
)
244 *p
+= size
* n_elems
;
247 * 'p' can possibly be an unaligned item X such that sizeof(X) is
248 * 'size'. Adjust 'p' so that its alignment is at least as
249 * stringent as what the compiler would provide for X and return
250 * the aligned result.
251 * Here we assume that the alignment of a "long long" is the most
252 * stringent alignment that the compiler will ever provide by default.
253 * As far as I know, this is a reasonable assumption.
255 if (size
> sizeof(long))
256 align
= sizeof(long long);
257 else if (size
> sizeof(int))
258 align
= sizeof(long);
259 else if (size
> sizeof(short))
261 else if (size
> sizeof(char))
262 align
= sizeof(short);
266 r
= (unsigned long)p
% align
;
273 return (void *)(((unsigned long)ptr
) + align
- r
);
276 static void _edac_mc_free(struct mem_ctl_info
*mci
)
279 struct csrow_info
*csr
;
280 const unsigned int tot_dimms
= mci
->tot_dimms
;
281 const unsigned int tot_channels
= mci
->num_cschannel
;
282 const unsigned int tot_csrows
= mci
->nr_csrows
;
285 for (i
= 0; i
< tot_dimms
; i
++)
286 kfree(mci
->dimms
[i
]);
290 for (row
= 0; row
< tot_csrows
; row
++) {
291 csr
= mci
->csrows
[row
];
294 for (chn
= 0; chn
< tot_channels
; chn
++)
295 kfree(csr
->channels
[chn
]);
296 kfree(csr
->channels
);
306 struct mem_ctl_info
*edac_mc_alloc(unsigned mc_num
,
308 struct edac_mc_layer
*layers
,
311 struct mem_ctl_info
*mci
;
312 struct edac_mc_layer
*layer
;
313 struct csrow_info
*csr
;
314 struct rank_info
*chan
;
315 struct dimm_info
*dimm
;
316 u32
*ce_per_layer
[EDAC_MAX_LAYERS
], *ue_per_layer
[EDAC_MAX_LAYERS
];
317 unsigned pos
[EDAC_MAX_LAYERS
];
318 unsigned size
, tot_dimms
= 1, count
= 1;
319 unsigned tot_csrows
= 1, tot_channels
= 1, tot_errcount
= 0;
320 void *pvt
, *p
, *ptr
= NULL
;
321 int i
, j
, row
, chn
, n
, len
, off
;
322 bool per_rank
= false;
324 BUG_ON(n_layers
> EDAC_MAX_LAYERS
|| n_layers
== 0);
326 * Calculate the total amount of dimms and csrows/cschannels while
327 * in the old API emulation mode
329 for (i
= 0; i
< n_layers
; i
++) {
330 tot_dimms
*= layers
[i
].size
;
331 if (layers
[i
].is_virt_csrow
)
332 tot_csrows
*= layers
[i
].size
;
334 tot_channels
*= layers
[i
].size
;
336 if (layers
[i
].type
== EDAC_MC_LAYER_CHIP_SELECT
)
340 /* Figure out the offsets of the various items from the start of an mc
341 * structure. We want the alignment of each item to be at least as
342 * stringent as what the compiler would provide if we could simply
343 * hardcode everything into a single struct.
345 mci
= edac_align_ptr(&ptr
, sizeof(*mci
), 1);
346 layer
= edac_align_ptr(&ptr
, sizeof(*layer
), n_layers
);
347 for (i
= 0; i
< n_layers
; i
++) {
348 count
*= layers
[i
].size
;
349 edac_dbg(4, "errcount layer %d size %d\n", i
, count
);
350 ce_per_layer
[i
] = edac_align_ptr(&ptr
, sizeof(u32
), count
);
351 ue_per_layer
[i
] = edac_align_ptr(&ptr
, sizeof(u32
), count
);
352 tot_errcount
+= 2 * count
;
355 edac_dbg(4, "allocating %d error counters\n", tot_errcount
);
356 pvt
= edac_align_ptr(&ptr
, sz_pvt
, 1);
357 size
= ((unsigned long)pvt
) + sz_pvt
;
359 edac_dbg(1, "allocating %u bytes for mci data (%d %s, %d csrows/channels)\n",
362 per_rank
? "ranks" : "dimms",
363 tot_csrows
* tot_channels
);
365 mci
= kzalloc(size
, GFP_KERNEL
);
369 /* Adjust pointers so they point within the memory we just allocated
370 * rather than an imaginary chunk of memory located at address 0.
372 layer
= (struct edac_mc_layer
*)(((char *)mci
) + ((unsigned long)layer
));
373 for (i
= 0; i
< n_layers
; i
++) {
374 mci
->ce_per_layer
[i
] = (u32
*)((char *)mci
+ ((unsigned long)ce_per_layer
[i
]));
375 mci
->ue_per_layer
[i
] = (u32
*)((char *)mci
+ ((unsigned long)ue_per_layer
[i
]));
377 pvt
= sz_pvt
? (((char *)mci
) + ((unsigned long)pvt
)) : NULL
;
379 /* setup index and various internal pointers */
380 mci
->mc_idx
= mc_num
;
381 mci
->tot_dimms
= tot_dimms
;
383 mci
->n_layers
= n_layers
;
385 memcpy(mci
->layers
, layers
, sizeof(*layer
) * n_layers
);
386 mci
->nr_csrows
= tot_csrows
;
387 mci
->num_cschannel
= tot_channels
;
388 mci
->csbased
= per_rank
;
391 * Alocate and fill the csrow/channels structs
393 mci
->csrows
= kcalloc(tot_csrows
, sizeof(*mci
->csrows
), GFP_KERNEL
);
396 for (row
= 0; row
< tot_csrows
; row
++) {
397 csr
= kzalloc(sizeof(**mci
->csrows
), GFP_KERNEL
);
400 mci
->csrows
[row
] = csr
;
401 csr
->csrow_idx
= row
;
403 csr
->nr_channels
= tot_channels
;
404 csr
->channels
= kcalloc(tot_channels
, sizeof(*csr
->channels
),
409 for (chn
= 0; chn
< tot_channels
; chn
++) {
410 chan
= kzalloc(sizeof(**csr
->channels
), GFP_KERNEL
);
413 csr
->channels
[chn
] = chan
;
414 chan
->chan_idx
= chn
;
420 * Allocate and fill the dimm structs
422 mci
->dimms
= kcalloc(tot_dimms
, sizeof(*mci
->dimms
), GFP_KERNEL
);
426 memset(&pos
, 0, sizeof(pos
));
429 for (i
= 0; i
< tot_dimms
; i
++) {
430 chan
= mci
->csrows
[row
]->channels
[chn
];
431 off
= EDAC_DIMM_OFF(layer
, n_layers
, pos
[0], pos
[1], pos
[2]);
432 if (off
< 0 || off
>= tot_dimms
) {
433 edac_mc_printk(mci
, KERN_ERR
, "EDAC core bug: EDAC_DIMM_OFF is trying to do an illegal data access\n");
437 dimm
= kzalloc(sizeof(**mci
->dimms
), GFP_KERNEL
);
440 mci
->dimms
[off
] = dimm
;
444 * Copy DIMM location and initialize it.
446 len
= sizeof(dimm
->label
);
448 n
= snprintf(p
, len
, "mc#%u", mc_num
);
451 for (j
= 0; j
< n_layers
; j
++) {
452 n
= snprintf(p
, len
, "%s#%u",
453 edac_layer_name
[layers
[j
].type
],
457 dimm
->location
[j
] = pos
[j
];
463 /* Link it to the csrows old API data */
466 dimm
->cschannel
= chn
;
468 /* Increment csrow location */
469 if (layers
[0].is_virt_csrow
) {
471 if (chn
== tot_channels
) {
477 if (row
== tot_csrows
) {
483 /* Increment dimm location */
484 for (j
= n_layers
- 1; j
>= 0; j
--) {
486 if (pos
[j
] < layers
[j
].size
)
492 mci
->op_state
= OP_ALLOC
;
501 EXPORT_SYMBOL_GPL(edac_mc_alloc
);
503 void edac_mc_free(struct mem_ctl_info
*mci
)
507 /* If we're not yet registered with sysfs free only what was allocated
508 * in edac_mc_alloc().
510 if (!device_is_registered(&mci
->dev
)) {
515 /* the mci instance is freed here, when the sysfs object is dropped */
516 edac_unregister_sysfs(mci
);
518 EXPORT_SYMBOL_GPL(edac_mc_free
);
520 bool edac_has_mcs(void)
524 mutex_lock(&mem_ctls_mutex
);
526 ret
= list_empty(&mc_devices
);
528 mutex_unlock(&mem_ctls_mutex
);
532 EXPORT_SYMBOL_GPL(edac_has_mcs
);
534 /* Caller must hold mem_ctls_mutex */
535 static struct mem_ctl_info
*__find_mci_by_dev(struct device
*dev
)
537 struct mem_ctl_info
*mci
;
538 struct list_head
*item
;
542 list_for_each(item
, &mc_devices
) {
543 mci
= list_entry(item
, struct mem_ctl_info
, link
);
545 if (mci
->pdev
== dev
)
555 * scan list of controllers looking for the one that manages
557 * @dev: pointer to a struct device related with the MCI
559 struct mem_ctl_info
*find_mci_by_dev(struct device
*dev
)
561 struct mem_ctl_info
*ret
;
563 mutex_lock(&mem_ctls_mutex
);
564 ret
= __find_mci_by_dev(dev
);
565 mutex_unlock(&mem_ctls_mutex
);
569 EXPORT_SYMBOL_GPL(find_mci_by_dev
);
572 * edac_mc_workq_function
573 * performs the operation scheduled by a workq request
575 static void edac_mc_workq_function(struct work_struct
*work_req
)
577 struct delayed_work
*d_work
= to_delayed_work(work_req
);
578 struct mem_ctl_info
*mci
= to_edac_mem_ctl_work(d_work
);
580 mutex_lock(&mem_ctls_mutex
);
582 if (mci
->op_state
!= OP_RUNNING_POLL
) {
583 mutex_unlock(&mem_ctls_mutex
);
587 if (edac_op_state
== EDAC_OPSTATE_POLL
)
588 mci
->edac_check(mci
);
590 mutex_unlock(&mem_ctls_mutex
);
592 /* Queue ourselves again. */
593 edac_queue_work(&mci
->work
, msecs_to_jiffies(edac_mc_get_poll_msec()));
597 * edac_mc_reset_delay_period(unsigned long value)
599 * user space has updated our poll period value, need to
600 * reset our workq delays
602 void edac_mc_reset_delay_period(unsigned long value
)
604 struct mem_ctl_info
*mci
;
605 struct list_head
*item
;
607 mutex_lock(&mem_ctls_mutex
);
609 list_for_each(item
, &mc_devices
) {
610 mci
= list_entry(item
, struct mem_ctl_info
, link
);
612 if (mci
->op_state
== OP_RUNNING_POLL
)
613 edac_mod_work(&mci
->work
, value
);
615 mutex_unlock(&mem_ctls_mutex
);
620 /* Return 0 on success, 1 on failure.
621 * Before calling this function, caller must
622 * assign a unique value to mci->mc_idx.
626 * called with the mem_ctls_mutex lock held
628 static int add_mc_to_global_list(struct mem_ctl_info
*mci
)
630 struct list_head
*item
, *insert_before
;
631 struct mem_ctl_info
*p
;
633 insert_before
= &mc_devices
;
635 p
= __find_mci_by_dev(mci
->pdev
);
636 if (unlikely(p
!= NULL
))
639 list_for_each(item
, &mc_devices
) {
640 p
= list_entry(item
, struct mem_ctl_info
, link
);
642 if (p
->mc_idx
>= mci
->mc_idx
) {
643 if (unlikely(p
->mc_idx
== mci
->mc_idx
))
646 insert_before
= item
;
651 list_add_tail_rcu(&mci
->link
, insert_before
);
655 edac_printk(KERN_WARNING
, EDAC_MC
,
656 "%s (%s) %s %s already assigned %d\n", dev_name(p
->pdev
),
657 edac_dev_name(mci
), p
->mod_name
, p
->ctl_name
, p
->mc_idx
);
661 edac_printk(KERN_WARNING
, EDAC_MC
,
662 "bug in low-level driver: attempt to assign\n"
663 " duplicate mc_idx %d in %s()\n", p
->mc_idx
, __func__
);
667 static int del_mc_from_global_list(struct mem_ctl_info
*mci
)
669 list_del_rcu(&mci
->link
);
671 /* these are for safe removal of devices from global list while
672 * NMI handlers may be traversing list
675 INIT_LIST_HEAD(&mci
->link
);
677 return list_empty(&mc_devices
);
680 struct mem_ctl_info
*edac_mc_find(int idx
)
682 struct mem_ctl_info
*mci
= NULL
;
683 struct list_head
*item
;
685 mutex_lock(&mem_ctls_mutex
);
687 list_for_each(item
, &mc_devices
) {
688 mci
= list_entry(item
, struct mem_ctl_info
, link
);
690 if (mci
->mc_idx
>= idx
) {
691 if (mci
->mc_idx
== idx
) {
699 mutex_unlock(&mem_ctls_mutex
);
702 EXPORT_SYMBOL(edac_mc_find
);
704 const char *edac_get_owner(void)
706 return edac_mc_owner
;
708 EXPORT_SYMBOL_GPL(edac_get_owner
);
710 /* FIXME - should a warning be printed if no error detection? correction? */
711 int edac_mc_add_mc_with_groups(struct mem_ctl_info
*mci
,
712 const struct attribute_group
**groups
)
717 if (mci
->mc_idx
>= EDAC_MAX_MCS
) {
718 pr_warn_once("Too many memory controllers: %d\n", mci
->mc_idx
);
722 #ifdef CONFIG_EDAC_DEBUG
723 if (edac_debug_level
>= 3)
724 edac_mc_dump_mci(mci
);
726 if (edac_debug_level
>= 4) {
729 for (i
= 0; i
< mci
->nr_csrows
; i
++) {
730 struct csrow_info
*csrow
= mci
->csrows
[i
];
734 for (j
= 0; j
< csrow
->nr_channels
; j
++)
735 nr_pages
+= csrow
->channels
[j
]->dimm
->nr_pages
;
738 edac_mc_dump_csrow(csrow
);
739 for (j
= 0; j
< csrow
->nr_channels
; j
++)
740 if (csrow
->channels
[j
]->dimm
->nr_pages
)
741 edac_mc_dump_channel(csrow
->channels
[j
]);
743 for (i
= 0; i
< mci
->tot_dimms
; i
++)
744 if (mci
->dimms
[i
]->nr_pages
)
745 edac_mc_dump_dimm(mci
->dimms
[i
], i
);
748 mutex_lock(&mem_ctls_mutex
);
750 if (edac_mc_owner
&& edac_mc_owner
!= mci
->mod_name
) {
755 if (add_mc_to_global_list(mci
))
758 /* set load time so that error rate can be tracked */
759 mci
->start_time
= jiffies
;
761 mci
->bus
= &mc_bus
[mci
->mc_idx
];
763 if (edac_create_sysfs_mci_device(mci
, groups
)) {
764 edac_mc_printk(mci
, KERN_WARNING
,
765 "failed to create sysfs device\n");
769 if (mci
->edac_check
) {
770 mci
->op_state
= OP_RUNNING_POLL
;
772 INIT_DELAYED_WORK(&mci
->work
, edac_mc_workq_function
);
773 edac_queue_work(&mci
->work
, msecs_to_jiffies(edac_mc_get_poll_msec()));
776 mci
->op_state
= OP_RUNNING_INTERRUPT
;
779 /* Report action taken */
780 edac_mc_printk(mci
, KERN_INFO
,
781 "Giving out device to module %s controller %s: DEV %s (%s)\n",
782 mci
->mod_name
, mci
->ctl_name
, mci
->dev_name
,
783 edac_op_state_to_string(mci
->op_state
));
785 edac_mc_owner
= mci
->mod_name
;
787 mutex_unlock(&mem_ctls_mutex
);
791 del_mc_from_global_list(mci
);
794 mutex_unlock(&mem_ctls_mutex
);
797 EXPORT_SYMBOL_GPL(edac_mc_add_mc_with_groups
);
799 struct mem_ctl_info
*edac_mc_del_mc(struct device
*dev
)
801 struct mem_ctl_info
*mci
;
805 mutex_lock(&mem_ctls_mutex
);
807 /* find the requested mci struct in the global list */
808 mci
= __find_mci_by_dev(dev
);
810 mutex_unlock(&mem_ctls_mutex
);
814 /* mark MCI offline: */
815 mci
->op_state
= OP_OFFLINE
;
817 if (del_mc_from_global_list(mci
))
818 edac_mc_owner
= NULL
;
820 mutex_unlock(&mem_ctls_mutex
);
823 edac_stop_work(&mci
->work
);
825 /* remove from sysfs */
826 edac_remove_sysfs_mci_device(mci
);
828 edac_printk(KERN_INFO
, EDAC_MC
,
829 "Removed device %d for %s %s: DEV %s\n", mci
->mc_idx
,
830 mci
->mod_name
, mci
->ctl_name
, edac_dev_name(mci
));
834 EXPORT_SYMBOL_GPL(edac_mc_del_mc
);
836 static void edac_mc_scrub_block(unsigned long page
, unsigned long offset
,
841 unsigned long flags
= 0;
845 /* ECC error page was not in our memory. Ignore it. */
846 if (!pfn_valid(page
))
849 /* Find the actual page structure then map it and fix */
850 pg
= pfn_to_page(page
);
853 local_irq_save(flags
);
855 virt_addr
= kmap_atomic(pg
);
857 /* Perform architecture specific atomic scrub operation */
858 edac_atomic_scrub(virt_addr
+ offset
, size
);
860 /* Unmap and complete */
861 kunmap_atomic(virt_addr
);
864 local_irq_restore(flags
);
867 /* FIXME - should return -1 */
868 int edac_mc_find_csrow_by_page(struct mem_ctl_info
*mci
, unsigned long page
)
870 struct csrow_info
**csrows
= mci
->csrows
;
873 edac_dbg(1, "MC%d: 0x%lx\n", mci
->mc_idx
, page
);
876 for (i
= 0; i
< mci
->nr_csrows
; i
++) {
877 struct csrow_info
*csrow
= csrows
[i
];
879 for (j
= 0; j
< csrow
->nr_channels
; j
++) {
880 struct dimm_info
*dimm
= csrow
->channels
[j
]->dimm
;
886 edac_dbg(3, "MC%d: first(0x%lx) page(0x%lx) last(0x%lx) mask(0x%lx)\n",
888 csrow
->first_page
, page
, csrow
->last_page
,
891 if ((page
>= csrow
->first_page
) &&
892 (page
<= csrow
->last_page
) &&
893 ((page
& csrow
->page_mask
) ==
894 (csrow
->first_page
& csrow
->page_mask
))) {
901 edac_mc_printk(mci
, KERN_ERR
,
902 "could not look up page error address %lx\n",
903 (unsigned long)page
);
907 EXPORT_SYMBOL_GPL(edac_mc_find_csrow_by_page
);
909 const char *edac_layer_name
[] = {
910 [EDAC_MC_LAYER_BRANCH
] = "branch",
911 [EDAC_MC_LAYER_CHANNEL
] = "channel",
912 [EDAC_MC_LAYER_SLOT
] = "slot",
913 [EDAC_MC_LAYER_CHIP_SELECT
] = "csrow",
914 [EDAC_MC_LAYER_ALL_MEM
] = "memory",
916 EXPORT_SYMBOL_GPL(edac_layer_name
);
918 static void edac_inc_ce_error(struct mem_ctl_info
*mci
,
919 bool enable_per_layer_report
,
920 const int pos
[EDAC_MAX_LAYERS
],
927 if (!enable_per_layer_report
) {
928 mci
->ce_noinfo_count
+= count
;
932 for (i
= 0; i
< mci
->n_layers
; i
++) {
936 mci
->ce_per_layer
[i
][index
] += count
;
938 if (i
< mci
->n_layers
- 1)
939 index
*= mci
->layers
[i
+ 1].size
;
943 static void edac_inc_ue_error(struct mem_ctl_info
*mci
,
944 bool enable_per_layer_report
,
945 const int pos
[EDAC_MAX_LAYERS
],
952 if (!enable_per_layer_report
) {
953 mci
->ue_noinfo_count
+= count
;
957 for (i
= 0; i
< mci
->n_layers
; i
++) {
961 mci
->ue_per_layer
[i
][index
] += count
;
963 if (i
< mci
->n_layers
- 1)
964 index
*= mci
->layers
[i
+ 1].size
;
968 static void edac_ce_error(struct mem_ctl_info
*mci
,
969 const u16 error_count
,
970 const int pos
[EDAC_MAX_LAYERS
],
972 const char *location
,
975 const char *other_detail
,
976 const bool enable_per_layer_report
,
977 const unsigned long page_frame_number
,
978 const unsigned long offset_in_page
,
981 unsigned long remapped_page
;
987 if (edac_mc_get_log_ce()) {
988 if (other_detail
&& *other_detail
)
989 edac_mc_printk(mci
, KERN_WARNING
,
990 "%d CE %s%son %s (%s %s - %s)\n",
991 error_count
, msg
, msg_aux
, label
,
992 location
, detail
, other_detail
);
994 edac_mc_printk(mci
, KERN_WARNING
,
995 "%d CE %s%son %s (%s %s)\n",
996 error_count
, msg
, msg_aux
, label
,
999 edac_inc_ce_error(mci
, enable_per_layer_report
, pos
, error_count
);
1001 if (mci
->scrub_mode
== SCRUB_SW_SRC
) {
1003 * Some memory controllers (called MCs below) can remap
1004 * memory so that it is still available at a different
1005 * address when PCI devices map into memory.
1006 * MC's that can't do this, lose the memory where PCI
1007 * devices are mapped. This mapping is MC-dependent
1008 * and so we call back into the MC driver for it to
1009 * map the MC page to a physical (CPU) page which can
1010 * then be mapped to a virtual page - which can then
1013 remapped_page
= mci
->ctl_page_to_phys
?
1014 mci
->ctl_page_to_phys(mci
, page_frame_number
) :
1017 edac_mc_scrub_block(remapped_page
,
1018 offset_in_page
, grain
);
1022 static void edac_ue_error(struct mem_ctl_info
*mci
,
1023 const u16 error_count
,
1024 const int pos
[EDAC_MAX_LAYERS
],
1026 const char *location
,
1029 const char *other_detail
,
1030 const bool enable_per_layer_report
)
1037 if (edac_mc_get_log_ue()) {
1038 if (other_detail
&& *other_detail
)
1039 edac_mc_printk(mci
, KERN_WARNING
,
1040 "%d UE %s%son %s (%s %s - %s)\n",
1041 error_count
, msg
, msg_aux
, label
,
1042 location
, detail
, other_detail
);
1044 edac_mc_printk(mci
, KERN_WARNING
,
1045 "%d UE %s%son %s (%s %s)\n",
1046 error_count
, msg
, msg_aux
, label
,
1050 if (edac_mc_get_panic_on_ue()) {
1051 if (other_detail
&& *other_detail
)
1052 panic("UE %s%son %s (%s%s - %s)\n",
1053 msg
, msg_aux
, label
, location
, detail
, other_detail
);
1055 panic("UE %s%son %s (%s%s)\n",
1056 msg
, msg_aux
, label
, location
, detail
);
1059 edac_inc_ue_error(mci
, enable_per_layer_report
, pos
, error_count
);
1062 void edac_raw_mc_handle_error(const enum hw_event_mc_err_type type
,
1063 struct mem_ctl_info
*mci
,
1064 struct edac_raw_error_desc
*e
)
1067 int pos
[EDAC_MAX_LAYERS
] = { e
->top_layer
, e
->mid_layer
, e
->low_layer
};
1069 /* Memory type dependent details about the error */
1070 if (type
== HW_EVENT_ERR_CORRECTED
) {
1071 snprintf(detail
, sizeof(detail
),
1072 "page:0x%lx offset:0x%lx grain:%ld syndrome:0x%lx",
1073 e
->page_frame_number
, e
->offset_in_page
,
1074 e
->grain
, e
->syndrome
);
1075 edac_ce_error(mci
, e
->error_count
, pos
, e
->msg
, e
->location
, e
->label
,
1076 detail
, e
->other_detail
, e
->enable_per_layer_report
,
1077 e
->page_frame_number
, e
->offset_in_page
, e
->grain
);
1079 snprintf(detail
, sizeof(detail
),
1080 "page:0x%lx offset:0x%lx grain:%ld",
1081 e
->page_frame_number
, e
->offset_in_page
, e
->grain
);
1083 edac_ue_error(mci
, e
->error_count
, pos
, e
->msg
, e
->location
, e
->label
,
1084 detail
, e
->other_detail
, e
->enable_per_layer_report
);
1089 EXPORT_SYMBOL_GPL(edac_raw_mc_handle_error
);
1091 void edac_mc_handle_error(const enum hw_event_mc_err_type type
,
1092 struct mem_ctl_info
*mci
,
1093 const u16 error_count
,
1094 const unsigned long page_frame_number
,
1095 const unsigned long offset_in_page
,
1096 const unsigned long syndrome
,
1097 const int top_layer
,
1098 const int mid_layer
,
1099 const int low_layer
,
1101 const char *other_detail
)
1104 int row
= -1, chan
= -1;
1105 int pos
[EDAC_MAX_LAYERS
] = { top_layer
, mid_layer
, low_layer
};
1106 int i
, n_labels
= 0;
1108 struct edac_raw_error_desc
*e
= &mci
->error_desc
;
1110 edac_dbg(3, "MC%d\n", mci
->mc_idx
);
1112 /* Fills the error report buffer */
1113 memset(e
, 0, sizeof (*e
));
1114 e
->error_count
= error_count
;
1115 e
->top_layer
= top_layer
;
1116 e
->mid_layer
= mid_layer
;
1117 e
->low_layer
= low_layer
;
1118 e
->page_frame_number
= page_frame_number
;
1119 e
->offset_in_page
= offset_in_page
;
1120 e
->syndrome
= syndrome
;
1122 e
->other_detail
= other_detail
;
1125 * Check if the event report is consistent and if the memory
1126 * location is known. If it is known, enable_per_layer_report will be
1127 * true, the DIMM(s) label info will be filled and the per-layer
1128 * error counters will be incremented.
1130 for (i
= 0; i
< mci
->n_layers
; i
++) {
1131 if (pos
[i
] >= (int)mci
->layers
[i
].size
) {
1133 edac_mc_printk(mci
, KERN_ERR
,
1134 "INTERNAL ERROR: %s value is out of range (%d >= %d)\n",
1135 edac_layer_name
[mci
->layers
[i
].type
],
1136 pos
[i
], mci
->layers
[i
].size
);
1138 * Instead of just returning it, let's use what's
1139 * known about the error. The increment routines and
1140 * the DIMM filter logic will do the right thing by
1141 * pointing the likely damaged DIMMs.
1146 e
->enable_per_layer_report
= true;
1150 * Get the dimm label/grain that applies to the match criteria.
1151 * As the error algorithm may not be able to point to just one memory
1152 * stick, the logic here will get all possible labels that could
1153 * pottentially be affected by the error.
1154 * On FB-DIMM memory controllers, for uncorrected errors, it is common
1155 * to have only the MC channel and the MC dimm (also called "branch")
1156 * but the channel is not known, as the memory is arranged in pairs,
1157 * where each memory belongs to a separate channel within the same
1163 for (i
= 0; i
< mci
->tot_dimms
; i
++) {
1164 struct dimm_info
*dimm
= mci
->dimms
[i
];
1166 if (top_layer
>= 0 && top_layer
!= dimm
->location
[0])
1168 if (mid_layer
>= 0 && mid_layer
!= dimm
->location
[1])
1170 if (low_layer
>= 0 && low_layer
!= dimm
->location
[2])
1173 /* get the max grain, over the error match range */
1174 if (dimm
->grain
> e
->grain
)
1175 e
->grain
= dimm
->grain
;
1178 * If the error is memory-controller wide, there's no need to
1179 * seek for the affected DIMMs because the whole
1180 * channel/memory controller/... may be affected.
1181 * Also, don't show errors for empty DIMM slots.
1183 if (e
->enable_per_layer_report
&& dimm
->nr_pages
) {
1184 if (n_labels
>= EDAC_MAX_LABELS
) {
1185 e
->enable_per_layer_report
= false;
1189 if (p
!= e
->label
) {
1190 strcpy(p
, OTHER_LABEL
);
1191 p
+= strlen(OTHER_LABEL
);
1193 strcpy(p
, dimm
->label
);
1198 * get csrow/channel of the DIMM, in order to allow
1199 * incrementing the compat API counters
1201 edac_dbg(4, "%s csrows map: (%d,%d)\n",
1202 mci
->csbased
? "rank" : "dimm",
1203 dimm
->csrow
, dimm
->cschannel
);
1206 else if (row
>= 0 && row
!= dimm
->csrow
)
1210 chan
= dimm
->cschannel
;
1211 else if (chan
>= 0 && chan
!= dimm
->cschannel
)
1216 if (!e
->enable_per_layer_report
) {
1217 strcpy(e
->label
, "any memory");
1219 edac_dbg(4, "csrow/channel to increment: (%d,%d)\n", row
, chan
);
1221 strcpy(e
->label
, "unknown memory");
1222 if (type
== HW_EVENT_ERR_CORRECTED
) {
1224 mci
->csrows
[row
]->ce_count
+= error_count
;
1226 mci
->csrows
[row
]->channels
[chan
]->ce_count
+= error_count
;
1230 mci
->csrows
[row
]->ue_count
+= error_count
;
1233 /* Fill the RAM location data */
1236 for (i
= 0; i
< mci
->n_layers
; i
++) {
1240 p
+= sprintf(p
, "%s:%d ",
1241 edac_layer_name
[mci
->layers
[i
].type
],
1244 if (p
> e
->location
)
1247 /* Report the error via the trace interface */
1248 grain_bits
= fls_long(e
->grain
) + 1;
1250 if (IS_ENABLED(CONFIG_RAS
))
1251 trace_mc_event(type
, e
->msg
, e
->label
, e
->error_count
,
1252 mci
->mc_idx
, e
->top_layer
, e
->mid_layer
,
1254 (e
->page_frame_number
<< PAGE_SHIFT
) | e
->offset_in_page
,
1255 grain_bits
, e
->syndrome
, e
->other_detail
);
1257 edac_raw_mc_handle_error(type
, mci
, e
);
1259 EXPORT_SYMBOL_GPL(edac_mc_handle_error
);