Merge tag 'for_linus' of git://git.kernel.org/pub/scm/linux/kernel/git/mst/vhost
[cris-mirror.git] / drivers / firmware / dmi_scan.c
blobe763e148433115328930debe838a8c2c20da430e
1 #include <linux/types.h>
2 #include <linux/string.h>
3 #include <linux/init.h>
4 #include <linux/module.h>
5 #include <linux/ctype.h>
6 #include <linux/dmi.h>
7 #include <linux/efi.h>
8 #include <linux/bootmem.h>
9 #include <linux/random.h>
10 #include <asm/dmi.h>
11 #include <asm/unaligned.h>
13 struct kobject *dmi_kobj;
14 EXPORT_SYMBOL_GPL(dmi_kobj);
17 * DMI stands for "Desktop Management Interface". It is part
18 * of and an antecedent to, SMBIOS, which stands for System
19 * Management BIOS. See further: http://www.dmtf.org/standards
21 static const char dmi_empty_string[] = "";
23 static u32 dmi_ver __initdata;
24 static u32 dmi_len;
25 static u16 dmi_num;
26 static u8 smbios_entry_point[32];
27 static int smbios_entry_point_size;
29 /* DMI system identification string used during boot */
30 static char dmi_ids_string[128] __initdata;
32 static struct dmi_memdev_info {
33 const char *device;
34 const char *bank;
35 u16 handle;
36 } *dmi_memdev;
37 static int dmi_memdev_nr;
39 static const char * __init dmi_string_nosave(const struct dmi_header *dm, u8 s)
41 const u8 *bp = ((u8 *) dm) + dm->length;
42 const u8 *nsp;
44 if (s) {
45 while (--s > 0 && *bp)
46 bp += strlen(bp) + 1;
48 /* Strings containing only spaces are considered empty */
49 nsp = bp;
50 while (*nsp == ' ')
51 nsp++;
52 if (*nsp != '\0')
53 return bp;
56 return dmi_empty_string;
59 static const char * __init dmi_string(const struct dmi_header *dm, u8 s)
61 const char *bp = dmi_string_nosave(dm, s);
62 char *str;
63 size_t len;
65 if (bp == dmi_empty_string)
66 return dmi_empty_string;
68 len = strlen(bp) + 1;
69 str = dmi_alloc(len);
70 if (str != NULL)
71 strcpy(str, bp);
73 return str;
77 * We have to be cautious here. We have seen BIOSes with DMI pointers
78 * pointing to completely the wrong place for example
80 static void dmi_decode_table(u8 *buf,
81 void (*decode)(const struct dmi_header *, void *),
82 void *private_data)
84 u8 *data = buf;
85 int i = 0;
88 * Stop when we have seen all the items the table claimed to have
89 * (SMBIOS < 3.0 only) OR we reach an end-of-table marker (SMBIOS
90 * >= 3.0 only) OR we run off the end of the table (should never
91 * happen but sometimes does on bogus implementations.)
93 while ((!dmi_num || i < dmi_num) &&
94 (data - buf + sizeof(struct dmi_header)) <= dmi_len) {
95 const struct dmi_header *dm = (const struct dmi_header *)data;
98 * We want to know the total length (formatted area and
99 * strings) before decoding to make sure we won't run off the
100 * table in dmi_decode or dmi_string
102 data += dm->length;
103 while ((data - buf < dmi_len - 1) && (data[0] || data[1]))
104 data++;
105 if (data - buf < dmi_len - 1)
106 decode(dm, private_data);
108 data += 2;
109 i++;
112 * 7.45 End-of-Table (Type 127) [SMBIOS reference spec v3.0.0]
113 * For tables behind a 64-bit entry point, we have no item
114 * count and no exact table length, so stop on end-of-table
115 * marker. For tables behind a 32-bit entry point, we have
116 * seen OEM structures behind the end-of-table marker on
117 * some systems, so don't trust it.
119 if (!dmi_num && dm->type == DMI_ENTRY_END_OF_TABLE)
120 break;
123 /* Trim DMI table length if needed */
124 if (dmi_len > data - buf)
125 dmi_len = data - buf;
128 static phys_addr_t dmi_base;
130 static int __init dmi_walk_early(void (*decode)(const struct dmi_header *,
131 void *))
133 u8 *buf;
134 u32 orig_dmi_len = dmi_len;
136 buf = dmi_early_remap(dmi_base, orig_dmi_len);
137 if (buf == NULL)
138 return -ENOMEM;
140 dmi_decode_table(buf, decode, NULL);
142 add_device_randomness(buf, dmi_len);
144 dmi_early_unmap(buf, orig_dmi_len);
145 return 0;
148 static int __init dmi_checksum(const u8 *buf, u8 len)
150 u8 sum = 0;
151 int a;
153 for (a = 0; a < len; a++)
154 sum += buf[a];
156 return sum == 0;
159 static const char *dmi_ident[DMI_STRING_MAX];
160 static LIST_HEAD(dmi_devices);
161 int dmi_available;
164 * Save a DMI string
166 static void __init dmi_save_ident(const struct dmi_header *dm, int slot,
167 int string)
169 const char *d = (const char *) dm;
170 const char *p;
172 if (dmi_ident[slot] || dm->length <= string)
173 return;
175 p = dmi_string(dm, d[string]);
176 if (p == NULL)
177 return;
179 dmi_ident[slot] = p;
182 static void __init dmi_save_uuid(const struct dmi_header *dm, int slot,
183 int index)
185 const u8 *d;
186 char *s;
187 int is_ff = 1, is_00 = 1, i;
189 if (dmi_ident[slot] || dm->length <= index + 16)
190 return;
192 d = (u8 *) dm + index;
193 for (i = 0; i < 16 && (is_ff || is_00); i++) {
194 if (d[i] != 0x00)
195 is_00 = 0;
196 if (d[i] != 0xFF)
197 is_ff = 0;
200 if (is_ff || is_00)
201 return;
203 s = dmi_alloc(16*2+4+1);
204 if (!s)
205 return;
208 * As of version 2.6 of the SMBIOS specification, the first 3 fields of
209 * the UUID are supposed to be little-endian encoded. The specification
210 * says that this is the defacto standard.
212 if (dmi_ver >= 0x020600)
213 sprintf(s, "%pUL", d);
214 else
215 sprintf(s, "%pUB", d);
217 dmi_ident[slot] = s;
220 static void __init dmi_save_type(const struct dmi_header *dm, int slot,
221 int index)
223 const u8 *d;
224 char *s;
226 if (dmi_ident[slot] || dm->length <= index)
227 return;
229 s = dmi_alloc(4);
230 if (!s)
231 return;
233 d = (u8 *) dm + index;
234 sprintf(s, "%u", *d & 0x7F);
235 dmi_ident[slot] = s;
238 static void __init dmi_save_one_device(int type, const char *name)
240 struct dmi_device *dev;
242 /* No duplicate device */
243 if (dmi_find_device(type, name, NULL))
244 return;
246 dev = dmi_alloc(sizeof(*dev) + strlen(name) + 1);
247 if (!dev)
248 return;
250 dev->type = type;
251 strcpy((char *)(dev + 1), name);
252 dev->name = (char *)(dev + 1);
253 dev->device_data = NULL;
254 list_add(&dev->list, &dmi_devices);
257 static void __init dmi_save_devices(const struct dmi_header *dm)
259 int i, count = (dm->length - sizeof(struct dmi_header)) / 2;
261 for (i = 0; i < count; i++) {
262 const char *d = (char *)(dm + 1) + (i * 2);
264 /* Skip disabled device */
265 if ((*d & 0x80) == 0)
266 continue;
268 dmi_save_one_device(*d & 0x7f, dmi_string_nosave(dm, *(d + 1)));
272 static void __init dmi_save_oem_strings_devices(const struct dmi_header *dm)
274 int i, count;
275 struct dmi_device *dev;
277 if (dm->length < 0x05)
278 return;
280 count = *(u8 *)(dm + 1);
281 for (i = 1; i <= count; i++) {
282 const char *devname = dmi_string(dm, i);
284 if (devname == dmi_empty_string)
285 continue;
287 dev = dmi_alloc(sizeof(*dev));
288 if (!dev)
289 break;
291 dev->type = DMI_DEV_TYPE_OEM_STRING;
292 dev->name = devname;
293 dev->device_data = NULL;
295 list_add(&dev->list, &dmi_devices);
299 static void __init dmi_save_ipmi_device(const struct dmi_header *dm)
301 struct dmi_device *dev;
302 void *data;
304 data = dmi_alloc(dm->length);
305 if (data == NULL)
306 return;
308 memcpy(data, dm, dm->length);
310 dev = dmi_alloc(sizeof(*dev));
311 if (!dev)
312 return;
314 dev->type = DMI_DEV_TYPE_IPMI;
315 dev->name = "IPMI controller";
316 dev->device_data = data;
318 list_add_tail(&dev->list, &dmi_devices);
321 static void __init dmi_save_dev_pciaddr(int instance, int segment, int bus,
322 int devfn, const char *name, int type)
324 struct dmi_dev_onboard *dev;
326 /* Ignore invalid values */
327 if (type == DMI_DEV_TYPE_DEV_SLOT &&
328 segment == 0xFFFF && bus == 0xFF && devfn == 0xFF)
329 return;
331 dev = dmi_alloc(sizeof(*dev) + strlen(name) + 1);
332 if (!dev)
333 return;
335 dev->instance = instance;
336 dev->segment = segment;
337 dev->bus = bus;
338 dev->devfn = devfn;
340 strcpy((char *)&dev[1], name);
341 dev->dev.type = type;
342 dev->dev.name = (char *)&dev[1];
343 dev->dev.device_data = dev;
345 list_add(&dev->dev.list, &dmi_devices);
348 static void __init dmi_save_extended_devices(const struct dmi_header *dm)
350 const char *name;
351 const u8 *d = (u8 *)dm;
353 if (dm->length < 0x0B)
354 return;
356 /* Skip disabled device */
357 if ((d[0x5] & 0x80) == 0)
358 return;
360 name = dmi_string_nosave(dm, d[0x4]);
361 dmi_save_dev_pciaddr(d[0x6], *(u16 *)(d + 0x7), d[0x9], d[0xA], name,
362 DMI_DEV_TYPE_DEV_ONBOARD);
363 dmi_save_one_device(d[0x5] & 0x7f, name);
366 static void __init dmi_save_system_slot(const struct dmi_header *dm)
368 const u8 *d = (u8 *)dm;
370 /* Need SMBIOS 2.6+ structure */
371 if (dm->length < 0x11)
372 return;
373 dmi_save_dev_pciaddr(*(u16 *)(d + 0x9), *(u16 *)(d + 0xD), d[0xF],
374 d[0x10], dmi_string_nosave(dm, d[0x4]),
375 DMI_DEV_TYPE_DEV_SLOT);
378 static void __init count_mem_devices(const struct dmi_header *dm, void *v)
380 if (dm->type != DMI_ENTRY_MEM_DEVICE)
381 return;
382 dmi_memdev_nr++;
385 static void __init save_mem_devices(const struct dmi_header *dm, void *v)
387 const char *d = (const char *)dm;
388 static int nr;
390 if (dm->type != DMI_ENTRY_MEM_DEVICE || dm->length < 0x12)
391 return;
392 if (nr >= dmi_memdev_nr) {
393 pr_warn(FW_BUG "Too many DIMM entries in SMBIOS table\n");
394 return;
396 dmi_memdev[nr].handle = get_unaligned(&dm->handle);
397 dmi_memdev[nr].device = dmi_string(dm, d[0x10]);
398 dmi_memdev[nr].bank = dmi_string(dm, d[0x11]);
399 nr++;
402 void __init dmi_memdev_walk(void)
404 if (!dmi_available)
405 return;
407 if (dmi_walk_early(count_mem_devices) == 0 && dmi_memdev_nr) {
408 dmi_memdev = dmi_alloc(sizeof(*dmi_memdev) * dmi_memdev_nr);
409 if (dmi_memdev)
410 dmi_walk_early(save_mem_devices);
415 * Process a DMI table entry. Right now all we care about are the BIOS
416 * and machine entries. For 2.5 we should pull the smbus controller info
417 * out of here.
419 static void __init dmi_decode(const struct dmi_header *dm, void *dummy)
421 switch (dm->type) {
422 case 0: /* BIOS Information */
423 dmi_save_ident(dm, DMI_BIOS_VENDOR, 4);
424 dmi_save_ident(dm, DMI_BIOS_VERSION, 5);
425 dmi_save_ident(dm, DMI_BIOS_DATE, 8);
426 break;
427 case 1: /* System Information */
428 dmi_save_ident(dm, DMI_SYS_VENDOR, 4);
429 dmi_save_ident(dm, DMI_PRODUCT_NAME, 5);
430 dmi_save_ident(dm, DMI_PRODUCT_VERSION, 6);
431 dmi_save_ident(dm, DMI_PRODUCT_SERIAL, 7);
432 dmi_save_uuid(dm, DMI_PRODUCT_UUID, 8);
433 dmi_save_ident(dm, DMI_PRODUCT_FAMILY, 26);
434 break;
435 case 2: /* Base Board Information */
436 dmi_save_ident(dm, DMI_BOARD_VENDOR, 4);
437 dmi_save_ident(dm, DMI_BOARD_NAME, 5);
438 dmi_save_ident(dm, DMI_BOARD_VERSION, 6);
439 dmi_save_ident(dm, DMI_BOARD_SERIAL, 7);
440 dmi_save_ident(dm, DMI_BOARD_ASSET_TAG, 8);
441 break;
442 case 3: /* Chassis Information */
443 dmi_save_ident(dm, DMI_CHASSIS_VENDOR, 4);
444 dmi_save_type(dm, DMI_CHASSIS_TYPE, 5);
445 dmi_save_ident(dm, DMI_CHASSIS_VERSION, 6);
446 dmi_save_ident(dm, DMI_CHASSIS_SERIAL, 7);
447 dmi_save_ident(dm, DMI_CHASSIS_ASSET_TAG, 8);
448 break;
449 case 9: /* System Slots */
450 dmi_save_system_slot(dm);
451 break;
452 case 10: /* Onboard Devices Information */
453 dmi_save_devices(dm);
454 break;
455 case 11: /* OEM Strings */
456 dmi_save_oem_strings_devices(dm);
457 break;
458 case 38: /* IPMI Device Information */
459 dmi_save_ipmi_device(dm);
460 break;
461 case 41: /* Onboard Devices Extended Information */
462 dmi_save_extended_devices(dm);
466 static int __init print_filtered(char *buf, size_t len, const char *info)
468 int c = 0;
469 const char *p;
471 if (!info)
472 return c;
474 for (p = info; *p; p++)
475 if (isprint(*p))
476 c += scnprintf(buf + c, len - c, "%c", *p);
477 else
478 c += scnprintf(buf + c, len - c, "\\x%02x", *p & 0xff);
479 return c;
482 static void __init dmi_format_ids(char *buf, size_t len)
484 int c = 0;
485 const char *board; /* Board Name is optional */
487 c += print_filtered(buf + c, len - c,
488 dmi_get_system_info(DMI_SYS_VENDOR));
489 c += scnprintf(buf + c, len - c, " ");
490 c += print_filtered(buf + c, len - c,
491 dmi_get_system_info(DMI_PRODUCT_NAME));
493 board = dmi_get_system_info(DMI_BOARD_NAME);
494 if (board) {
495 c += scnprintf(buf + c, len - c, "/");
496 c += print_filtered(buf + c, len - c, board);
498 c += scnprintf(buf + c, len - c, ", BIOS ");
499 c += print_filtered(buf + c, len - c,
500 dmi_get_system_info(DMI_BIOS_VERSION));
501 c += scnprintf(buf + c, len - c, " ");
502 c += print_filtered(buf + c, len - c,
503 dmi_get_system_info(DMI_BIOS_DATE));
507 * Check for DMI/SMBIOS headers in the system firmware image. Any
508 * SMBIOS header must start 16 bytes before the DMI header, so take a
509 * 32 byte buffer and check for DMI at offset 16 and SMBIOS at offset
510 * 0. If the DMI header is present, set dmi_ver accordingly (SMBIOS
511 * takes precedence) and return 0. Otherwise return 1.
513 static int __init dmi_present(const u8 *buf)
515 u32 smbios_ver;
517 if (memcmp(buf, "_SM_", 4) == 0 &&
518 buf[5] < 32 && dmi_checksum(buf, buf[5])) {
519 smbios_ver = get_unaligned_be16(buf + 6);
520 smbios_entry_point_size = buf[5];
521 memcpy(smbios_entry_point, buf, smbios_entry_point_size);
523 /* Some BIOS report weird SMBIOS version, fix that up */
524 switch (smbios_ver) {
525 case 0x021F:
526 case 0x0221:
527 pr_debug("SMBIOS version fixup (2.%d->2.%d)\n",
528 smbios_ver & 0xFF, 3);
529 smbios_ver = 0x0203;
530 break;
531 case 0x0233:
532 pr_debug("SMBIOS version fixup (2.%d->2.%d)\n", 51, 6);
533 smbios_ver = 0x0206;
534 break;
536 } else {
537 smbios_ver = 0;
540 buf += 16;
542 if (memcmp(buf, "_DMI_", 5) == 0 && dmi_checksum(buf, 15)) {
543 if (smbios_ver)
544 dmi_ver = smbios_ver;
545 else
546 dmi_ver = (buf[14] & 0xF0) << 4 | (buf[14] & 0x0F);
547 dmi_ver <<= 8;
548 dmi_num = get_unaligned_le16(buf + 12);
549 dmi_len = get_unaligned_le16(buf + 6);
550 dmi_base = get_unaligned_le32(buf + 8);
552 if (dmi_walk_early(dmi_decode) == 0) {
553 if (smbios_ver) {
554 pr_info("SMBIOS %d.%d present.\n",
555 dmi_ver >> 16, (dmi_ver >> 8) & 0xFF);
556 } else {
557 smbios_entry_point_size = 15;
558 memcpy(smbios_entry_point, buf,
559 smbios_entry_point_size);
560 pr_info("Legacy DMI %d.%d present.\n",
561 dmi_ver >> 16, (dmi_ver >> 8) & 0xFF);
563 dmi_format_ids(dmi_ids_string, sizeof(dmi_ids_string));
564 pr_info("DMI: %s\n", dmi_ids_string);
565 return 0;
569 return 1;
573 * Check for the SMBIOS 3.0 64-bit entry point signature. Unlike the legacy
574 * 32-bit entry point, there is no embedded DMI header (_DMI_) in here.
576 static int __init dmi_smbios3_present(const u8 *buf)
578 if (memcmp(buf, "_SM3_", 5) == 0 &&
579 buf[6] < 32 && dmi_checksum(buf, buf[6])) {
580 dmi_ver = get_unaligned_be32(buf + 6) & 0xFFFFFF;
581 dmi_num = 0; /* No longer specified */
582 dmi_len = get_unaligned_le32(buf + 12);
583 dmi_base = get_unaligned_le64(buf + 16);
584 smbios_entry_point_size = buf[6];
585 memcpy(smbios_entry_point, buf, smbios_entry_point_size);
587 if (dmi_walk_early(dmi_decode) == 0) {
588 pr_info("SMBIOS %d.%d.%d present.\n",
589 dmi_ver >> 16, (dmi_ver >> 8) & 0xFF,
590 dmi_ver & 0xFF);
591 dmi_format_ids(dmi_ids_string, sizeof(dmi_ids_string));
592 pr_info("DMI: %s\n", dmi_ids_string);
593 return 0;
596 return 1;
599 void __init dmi_scan_machine(void)
601 char __iomem *p, *q;
602 char buf[32];
604 if (efi_enabled(EFI_CONFIG_TABLES)) {
606 * According to the DMTF SMBIOS reference spec v3.0.0, it is
607 * allowed to define both the 64-bit entry point (smbios3) and
608 * the 32-bit entry point (smbios), in which case they should
609 * either both point to the same SMBIOS structure table, or the
610 * table pointed to by the 64-bit entry point should contain a
611 * superset of the table contents pointed to by the 32-bit entry
612 * point (section 5.2)
613 * This implies that the 64-bit entry point should have
614 * precedence if it is defined and supported by the OS. If we
615 * have the 64-bit entry point, but fail to decode it, fall
616 * back to the legacy one (if available)
618 if (efi.smbios3 != EFI_INVALID_TABLE_ADDR) {
619 p = dmi_early_remap(efi.smbios3, 32);
620 if (p == NULL)
621 goto error;
622 memcpy_fromio(buf, p, 32);
623 dmi_early_unmap(p, 32);
625 if (!dmi_smbios3_present(buf)) {
626 dmi_available = 1;
627 return;
630 if (efi.smbios == EFI_INVALID_TABLE_ADDR)
631 goto error;
633 /* This is called as a core_initcall() because it isn't
634 * needed during early boot. This also means we can
635 * iounmap the space when we're done with it.
637 p = dmi_early_remap(efi.smbios, 32);
638 if (p == NULL)
639 goto error;
640 memcpy_fromio(buf, p, 32);
641 dmi_early_unmap(p, 32);
643 if (!dmi_present(buf)) {
644 dmi_available = 1;
645 return;
647 } else if (IS_ENABLED(CONFIG_DMI_SCAN_MACHINE_NON_EFI_FALLBACK)) {
648 p = dmi_early_remap(0xF0000, 0x10000);
649 if (p == NULL)
650 goto error;
653 * Same logic as above, look for a 64-bit entry point
654 * first, and if not found, fall back to 32-bit entry point.
656 memcpy_fromio(buf, p, 16);
657 for (q = p + 16; q < p + 0x10000; q += 16) {
658 memcpy_fromio(buf + 16, q, 16);
659 if (!dmi_smbios3_present(buf)) {
660 dmi_available = 1;
661 dmi_early_unmap(p, 0x10000);
662 return;
664 memcpy(buf, buf + 16, 16);
668 * Iterate over all possible DMI header addresses q.
669 * Maintain the 32 bytes around q in buf. On the
670 * first iteration, substitute zero for the
671 * out-of-range bytes so there is no chance of falsely
672 * detecting an SMBIOS header.
674 memset(buf, 0, 16);
675 for (q = p; q < p + 0x10000; q += 16) {
676 memcpy_fromio(buf + 16, q, 16);
677 if (!dmi_present(buf)) {
678 dmi_available = 1;
679 dmi_early_unmap(p, 0x10000);
680 return;
682 memcpy(buf, buf + 16, 16);
684 dmi_early_unmap(p, 0x10000);
686 error:
687 pr_info("DMI not present or invalid.\n");
690 static ssize_t raw_table_read(struct file *file, struct kobject *kobj,
691 struct bin_attribute *attr, char *buf,
692 loff_t pos, size_t count)
694 memcpy(buf, attr->private + pos, count);
695 return count;
698 static BIN_ATTR(smbios_entry_point, S_IRUSR, raw_table_read, NULL, 0);
699 static BIN_ATTR(DMI, S_IRUSR, raw_table_read, NULL, 0);
701 static int __init dmi_init(void)
703 struct kobject *tables_kobj;
704 u8 *dmi_table;
705 int ret = -ENOMEM;
707 if (!dmi_available)
708 return 0;
711 * Set up dmi directory at /sys/firmware/dmi. This entry should stay
712 * even after farther error, as it can be used by other modules like
713 * dmi-sysfs.
715 dmi_kobj = kobject_create_and_add("dmi", firmware_kobj);
716 if (!dmi_kobj)
717 goto err;
719 tables_kobj = kobject_create_and_add("tables", dmi_kobj);
720 if (!tables_kobj)
721 goto err;
723 dmi_table = dmi_remap(dmi_base, dmi_len);
724 if (!dmi_table)
725 goto err_tables;
727 bin_attr_smbios_entry_point.size = smbios_entry_point_size;
728 bin_attr_smbios_entry_point.private = smbios_entry_point;
729 ret = sysfs_create_bin_file(tables_kobj, &bin_attr_smbios_entry_point);
730 if (ret)
731 goto err_unmap;
733 bin_attr_DMI.size = dmi_len;
734 bin_attr_DMI.private = dmi_table;
735 ret = sysfs_create_bin_file(tables_kobj, &bin_attr_DMI);
736 if (!ret)
737 return 0;
739 sysfs_remove_bin_file(tables_kobj,
740 &bin_attr_smbios_entry_point);
741 err_unmap:
742 dmi_unmap(dmi_table);
743 err_tables:
744 kobject_del(tables_kobj);
745 kobject_put(tables_kobj);
746 err:
747 pr_err("dmi: Firmware registration failed.\n");
749 return ret;
751 subsys_initcall(dmi_init);
754 * dmi_set_dump_stack_arch_desc - set arch description for dump_stack()
756 * Invoke dump_stack_set_arch_desc() with DMI system information so that
757 * DMI identifiers are printed out on task dumps. Arch boot code should
758 * call this function after dmi_scan_machine() if it wants to print out DMI
759 * identifiers on task dumps.
761 void __init dmi_set_dump_stack_arch_desc(void)
763 dump_stack_set_arch_desc("%s", dmi_ids_string);
767 * dmi_matches - check if dmi_system_id structure matches system DMI data
768 * @dmi: pointer to the dmi_system_id structure to check
770 static bool dmi_matches(const struct dmi_system_id *dmi)
772 int i;
774 for (i = 0; i < ARRAY_SIZE(dmi->matches); i++) {
775 int s = dmi->matches[i].slot;
776 if (s == DMI_NONE)
777 break;
778 if (dmi_ident[s]) {
779 if (dmi->matches[i].exact_match) {
780 if (!strcmp(dmi_ident[s],
781 dmi->matches[i].substr))
782 continue;
783 } else {
784 if (strstr(dmi_ident[s],
785 dmi->matches[i].substr))
786 continue;
790 /* No match */
791 return false;
793 return true;
797 * dmi_is_end_of_table - check for end-of-table marker
798 * @dmi: pointer to the dmi_system_id structure to check
800 static bool dmi_is_end_of_table(const struct dmi_system_id *dmi)
802 return dmi->matches[0].slot == DMI_NONE;
806 * dmi_check_system - check system DMI data
807 * @list: array of dmi_system_id structures to match against
808 * All non-null elements of the list must match
809 * their slot's (field index's) data (i.e., each
810 * list string must be a substring of the specified
811 * DMI slot's string data) to be considered a
812 * successful match.
814 * Walk the blacklist table running matching functions until someone
815 * returns non zero or we hit the end. Callback function is called for
816 * each successful match. Returns the number of matches.
818 * dmi_scan_machine must be called before this function is called.
820 int dmi_check_system(const struct dmi_system_id *list)
822 int count = 0;
823 const struct dmi_system_id *d;
825 for (d = list; !dmi_is_end_of_table(d); d++)
826 if (dmi_matches(d)) {
827 count++;
828 if (d->callback && d->callback(d))
829 break;
832 return count;
834 EXPORT_SYMBOL(dmi_check_system);
837 * dmi_first_match - find dmi_system_id structure matching system DMI data
838 * @list: array of dmi_system_id structures to match against
839 * All non-null elements of the list must match
840 * their slot's (field index's) data (i.e., each
841 * list string must be a substring of the specified
842 * DMI slot's string data) to be considered a
843 * successful match.
845 * Walk the blacklist table until the first match is found. Return the
846 * pointer to the matching entry or NULL if there's no match.
848 * dmi_scan_machine must be called before this function is called.
850 const struct dmi_system_id *dmi_first_match(const struct dmi_system_id *list)
852 const struct dmi_system_id *d;
854 for (d = list; !dmi_is_end_of_table(d); d++)
855 if (dmi_matches(d))
856 return d;
858 return NULL;
860 EXPORT_SYMBOL(dmi_first_match);
863 * dmi_get_system_info - return DMI data value
864 * @field: data index (see enum dmi_field)
866 * Returns one DMI data value, can be used to perform
867 * complex DMI data checks.
869 const char *dmi_get_system_info(int field)
871 return dmi_ident[field];
873 EXPORT_SYMBOL(dmi_get_system_info);
876 * dmi_name_in_serial - Check if string is in the DMI product serial information
877 * @str: string to check for
879 int dmi_name_in_serial(const char *str)
881 int f = DMI_PRODUCT_SERIAL;
882 if (dmi_ident[f] && strstr(dmi_ident[f], str))
883 return 1;
884 return 0;
888 * dmi_name_in_vendors - Check if string is in the DMI system or board vendor name
889 * @str: Case sensitive Name
891 int dmi_name_in_vendors(const char *str)
893 static int fields[] = { DMI_SYS_VENDOR, DMI_BOARD_VENDOR, DMI_NONE };
894 int i;
895 for (i = 0; fields[i] != DMI_NONE; i++) {
896 int f = fields[i];
897 if (dmi_ident[f] && strstr(dmi_ident[f], str))
898 return 1;
900 return 0;
902 EXPORT_SYMBOL(dmi_name_in_vendors);
905 * dmi_find_device - find onboard device by type/name
906 * @type: device type or %DMI_DEV_TYPE_ANY to match all device types
907 * @name: device name string or %NULL to match all
908 * @from: previous device found in search, or %NULL for new search.
910 * Iterates through the list of known onboard devices. If a device is
911 * found with a matching @type and @name, a pointer to its device
912 * structure is returned. Otherwise, %NULL is returned.
913 * A new search is initiated by passing %NULL as the @from argument.
914 * If @from is not %NULL, searches continue from next device.
916 const struct dmi_device *dmi_find_device(int type, const char *name,
917 const struct dmi_device *from)
919 const struct list_head *head = from ? &from->list : &dmi_devices;
920 struct list_head *d;
922 for (d = head->next; d != &dmi_devices; d = d->next) {
923 const struct dmi_device *dev =
924 list_entry(d, struct dmi_device, list);
926 if (((type == DMI_DEV_TYPE_ANY) || (dev->type == type)) &&
927 ((name == NULL) || (strcmp(dev->name, name) == 0)))
928 return dev;
931 return NULL;
933 EXPORT_SYMBOL(dmi_find_device);
936 * dmi_get_date - parse a DMI date
937 * @field: data index (see enum dmi_field)
938 * @yearp: optional out parameter for the year
939 * @monthp: optional out parameter for the month
940 * @dayp: optional out parameter for the day
942 * The date field is assumed to be in the form resembling
943 * [mm[/dd]]/yy[yy] and the result is stored in the out
944 * parameters any or all of which can be omitted.
946 * If the field doesn't exist, all out parameters are set to zero
947 * and false is returned. Otherwise, true is returned with any
948 * invalid part of date set to zero.
950 * On return, year, month and day are guaranteed to be in the
951 * range of [0,9999], [0,12] and [0,31] respectively.
953 bool dmi_get_date(int field, int *yearp, int *monthp, int *dayp)
955 int year = 0, month = 0, day = 0;
956 bool exists;
957 const char *s, *y;
958 char *e;
960 s = dmi_get_system_info(field);
961 exists = s;
962 if (!exists)
963 goto out;
966 * Determine year first. We assume the date string resembles
967 * mm/dd/yy[yy] but the original code extracted only the year
968 * from the end. Keep the behavior in the spirit of no
969 * surprises.
971 y = strrchr(s, '/');
972 if (!y)
973 goto out;
975 y++;
976 year = simple_strtoul(y, &e, 10);
977 if (y != e && year < 100) { /* 2-digit year */
978 year += 1900;
979 if (year < 1996) /* no dates < spec 1.0 */
980 year += 100;
982 if (year > 9999) /* year should fit in %04d */
983 year = 0;
985 /* parse the mm and dd */
986 month = simple_strtoul(s, &e, 10);
987 if (s == e || *e != '/' || !month || month > 12) {
988 month = 0;
989 goto out;
992 s = e + 1;
993 day = simple_strtoul(s, &e, 10);
994 if (s == y || s == e || *e != '/' || day > 31)
995 day = 0;
996 out:
997 if (yearp)
998 *yearp = year;
999 if (monthp)
1000 *monthp = month;
1001 if (dayp)
1002 *dayp = day;
1003 return exists;
1005 EXPORT_SYMBOL(dmi_get_date);
1008 * dmi_walk - Walk the DMI table and get called back for every record
1009 * @decode: Callback function
1010 * @private_data: Private data to be passed to the callback function
1012 * Returns 0 on success, -ENXIO if DMI is not selected or not present,
1013 * or a different negative error code if DMI walking fails.
1015 int dmi_walk(void (*decode)(const struct dmi_header *, void *),
1016 void *private_data)
1018 u8 *buf;
1020 if (!dmi_available)
1021 return -ENXIO;
1023 buf = dmi_remap(dmi_base, dmi_len);
1024 if (buf == NULL)
1025 return -ENOMEM;
1027 dmi_decode_table(buf, decode, private_data);
1029 dmi_unmap(buf);
1030 return 0;
1032 EXPORT_SYMBOL_GPL(dmi_walk);
1035 * dmi_match - compare a string to the dmi field (if exists)
1036 * @f: DMI field identifier
1037 * @str: string to compare the DMI field to
1039 * Returns true if the requested field equals to the str (including NULL).
1041 bool dmi_match(enum dmi_field f, const char *str)
1043 const char *info = dmi_get_system_info(f);
1045 if (info == NULL || str == NULL)
1046 return info == str;
1048 return !strcmp(info, str);
1050 EXPORT_SYMBOL_GPL(dmi_match);
1052 void dmi_memdev_name(u16 handle, const char **bank, const char **device)
1054 int n;
1056 if (dmi_memdev == NULL)
1057 return;
1059 for (n = 0; n < dmi_memdev_nr; n++) {
1060 if (handle == dmi_memdev[n].handle) {
1061 *bank = dmi_memdev[n].bank;
1062 *device = dmi_memdev[n].device;
1063 break;
1067 EXPORT_SYMBOL_GPL(dmi_memdev_name);