2 * Copyright © 2008-2015 Intel Corporation
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
24 * Eric Anholt <eric@anholt.net>
29 #include <drm/drm_vma_manager.h>
30 #include <drm/i915_drm.h>
32 #include "i915_gem_clflush.h"
33 #include "i915_vgpu.h"
34 #include "i915_trace.h"
35 #include "intel_drv.h"
36 #include "intel_frontbuffer.h"
37 #include "intel_mocs.h"
38 #include "i915_gemfs.h"
39 #include <linux/dma-fence-array.h>
40 #include <linux/kthread.h>
41 #include <linux/reservation.h>
42 #include <linux/shmem_fs.h>
43 #include <linux/slab.h>
44 #include <linux/stop_machine.h>
45 #include <linux/swap.h>
46 #include <linux/pci.h>
47 #include <linux/dma-buf.h>
49 static void i915_gem_flush_free_objects(struct drm_i915_private
*i915
);
51 static bool cpu_write_needs_clflush(struct drm_i915_gem_object
*obj
)
56 if (!(obj
->cache_coherent
& I915_BO_CACHE_COHERENT_FOR_WRITE
))
59 return obj
->pin_global
; /* currently in use by HW, keep flushed */
63 insert_mappable_node(struct i915_ggtt
*ggtt
,
64 struct drm_mm_node
*node
, u32 size
)
66 memset(node
, 0, sizeof(*node
));
67 return drm_mm_insert_node_in_range(&ggtt
->base
.mm
, node
,
68 size
, 0, I915_COLOR_UNEVICTABLE
,
69 0, ggtt
->mappable_end
,
74 remove_mappable_node(struct drm_mm_node
*node
)
76 drm_mm_remove_node(node
);
79 /* some bookkeeping */
80 static void i915_gem_info_add_obj(struct drm_i915_private
*dev_priv
,
83 spin_lock(&dev_priv
->mm
.object_stat_lock
);
84 dev_priv
->mm
.object_count
++;
85 dev_priv
->mm
.object_memory
+= size
;
86 spin_unlock(&dev_priv
->mm
.object_stat_lock
);
89 static void i915_gem_info_remove_obj(struct drm_i915_private
*dev_priv
,
92 spin_lock(&dev_priv
->mm
.object_stat_lock
);
93 dev_priv
->mm
.object_count
--;
94 dev_priv
->mm
.object_memory
-= size
;
95 spin_unlock(&dev_priv
->mm
.object_stat_lock
);
99 i915_gem_wait_for_error(struct i915_gpu_error
*error
)
106 * Only wait 10 seconds for the gpu reset to complete to avoid hanging
107 * userspace. If it takes that long something really bad is going on and
108 * we should simply try to bail out and fail as gracefully as possible.
110 ret
= wait_event_interruptible_timeout(error
->reset_queue
,
111 !i915_reset_backoff(error
),
114 DRM_ERROR("Timed out waiting for the gpu reset to complete\n");
116 } else if (ret
< 0) {
123 int i915_mutex_lock_interruptible(struct drm_device
*dev
)
125 struct drm_i915_private
*dev_priv
= to_i915(dev
);
128 ret
= i915_gem_wait_for_error(&dev_priv
->gpu_error
);
132 ret
= mutex_lock_interruptible(&dev
->struct_mutex
);
140 i915_gem_get_aperture_ioctl(struct drm_device
*dev
, void *data
,
141 struct drm_file
*file
)
143 struct drm_i915_private
*dev_priv
= to_i915(dev
);
144 struct i915_ggtt
*ggtt
= &dev_priv
->ggtt
;
145 struct drm_i915_gem_get_aperture
*args
= data
;
146 struct i915_vma
*vma
;
149 pinned
= ggtt
->base
.reserved
;
150 mutex_lock(&dev
->struct_mutex
);
151 list_for_each_entry(vma
, &ggtt
->base
.active_list
, vm_link
)
152 if (i915_vma_is_pinned(vma
))
153 pinned
+= vma
->node
.size
;
154 list_for_each_entry(vma
, &ggtt
->base
.inactive_list
, vm_link
)
155 if (i915_vma_is_pinned(vma
))
156 pinned
+= vma
->node
.size
;
157 mutex_unlock(&dev
->struct_mutex
);
159 args
->aper_size
= ggtt
->base
.total
;
160 args
->aper_available_size
= args
->aper_size
- pinned
;
165 static int i915_gem_object_get_pages_phys(struct drm_i915_gem_object
*obj
)
167 struct address_space
*mapping
= obj
->base
.filp
->f_mapping
;
168 drm_dma_handle_t
*phys
;
170 struct scatterlist
*sg
;
175 if (WARN_ON(i915_gem_object_needs_bit17_swizzle(obj
)))
178 /* Always aligning to the object size, allows a single allocation
179 * to handle all possible callers, and given typical object sizes,
180 * the alignment of the buddy allocation will naturally match.
182 phys
= drm_pci_alloc(obj
->base
.dev
,
183 roundup_pow_of_two(obj
->base
.size
),
184 roundup_pow_of_two(obj
->base
.size
));
189 for (i
= 0; i
< obj
->base
.size
/ PAGE_SIZE
; i
++) {
193 page
= shmem_read_mapping_page(mapping
, i
);
199 src
= kmap_atomic(page
);
200 memcpy(vaddr
, src
, PAGE_SIZE
);
201 drm_clflush_virt_range(vaddr
, PAGE_SIZE
);
208 i915_gem_chipset_flush(to_i915(obj
->base
.dev
));
210 st
= kmalloc(sizeof(*st
), GFP_KERNEL
);
216 if (sg_alloc_table(st
, 1, GFP_KERNEL
)) {
224 sg
->length
= obj
->base
.size
;
226 sg_dma_address(sg
) = phys
->busaddr
;
227 sg_dma_len(sg
) = obj
->base
.size
;
229 obj
->phys_handle
= phys
;
231 __i915_gem_object_set_pages(obj
, st
, sg
->length
);
236 drm_pci_free(obj
->base
.dev
, phys
);
241 static void __start_cpu_write(struct drm_i915_gem_object
*obj
)
243 obj
->base
.read_domains
= I915_GEM_DOMAIN_CPU
;
244 obj
->base
.write_domain
= I915_GEM_DOMAIN_CPU
;
245 if (cpu_write_needs_clflush(obj
))
246 obj
->cache_dirty
= true;
250 __i915_gem_object_release_shmem(struct drm_i915_gem_object
*obj
,
251 struct sg_table
*pages
,
254 GEM_BUG_ON(obj
->mm
.madv
== __I915_MADV_PURGED
);
256 if (obj
->mm
.madv
== I915_MADV_DONTNEED
)
257 obj
->mm
.dirty
= false;
260 (obj
->base
.read_domains
& I915_GEM_DOMAIN_CPU
) == 0 &&
261 !(obj
->cache_coherent
& I915_BO_CACHE_COHERENT_FOR_READ
))
262 drm_clflush_sg(pages
);
264 __start_cpu_write(obj
);
268 i915_gem_object_put_pages_phys(struct drm_i915_gem_object
*obj
,
269 struct sg_table
*pages
)
271 __i915_gem_object_release_shmem(obj
, pages
, false);
274 struct address_space
*mapping
= obj
->base
.filp
->f_mapping
;
275 char *vaddr
= obj
->phys_handle
->vaddr
;
278 for (i
= 0; i
< obj
->base
.size
/ PAGE_SIZE
; i
++) {
282 page
= shmem_read_mapping_page(mapping
, i
);
286 dst
= kmap_atomic(page
);
287 drm_clflush_virt_range(vaddr
, PAGE_SIZE
);
288 memcpy(dst
, vaddr
, PAGE_SIZE
);
291 set_page_dirty(page
);
292 if (obj
->mm
.madv
== I915_MADV_WILLNEED
)
293 mark_page_accessed(page
);
297 obj
->mm
.dirty
= false;
300 sg_free_table(pages
);
303 drm_pci_free(obj
->base
.dev
, obj
->phys_handle
);
307 i915_gem_object_release_phys(struct drm_i915_gem_object
*obj
)
309 i915_gem_object_unpin_pages(obj
);
312 static const struct drm_i915_gem_object_ops i915_gem_phys_ops
= {
313 .get_pages
= i915_gem_object_get_pages_phys
,
314 .put_pages
= i915_gem_object_put_pages_phys
,
315 .release
= i915_gem_object_release_phys
,
318 static const struct drm_i915_gem_object_ops i915_gem_object_ops
;
320 int i915_gem_object_unbind(struct drm_i915_gem_object
*obj
)
322 struct i915_vma
*vma
;
323 LIST_HEAD(still_in_list
);
326 lockdep_assert_held(&obj
->base
.dev
->struct_mutex
);
328 /* Closed vma are removed from the obj->vma_list - but they may
329 * still have an active binding on the object. To remove those we
330 * must wait for all rendering to complete to the object (as unbinding
331 * must anyway), and retire the requests.
333 ret
= i915_gem_object_set_to_cpu_domain(obj
, false);
337 while ((vma
= list_first_entry_or_null(&obj
->vma_list
,
340 list_move_tail(&vma
->obj_link
, &still_in_list
);
341 ret
= i915_vma_unbind(vma
);
345 list_splice(&still_in_list
, &obj
->vma_list
);
351 i915_gem_object_wait_fence(struct dma_fence
*fence
,
354 struct intel_rps_client
*rps_client
)
356 struct drm_i915_gem_request
*rq
;
358 BUILD_BUG_ON(I915_WAIT_INTERRUPTIBLE
!= 0x1);
360 if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT
, &fence
->flags
))
363 if (!dma_fence_is_i915(fence
))
364 return dma_fence_wait_timeout(fence
,
365 flags
& I915_WAIT_INTERRUPTIBLE
,
368 rq
= to_request(fence
);
369 if (i915_gem_request_completed(rq
))
372 /* This client is about to stall waiting for the GPU. In many cases
373 * this is undesirable and limits the throughput of the system, as
374 * many clients cannot continue processing user input/output whilst
375 * blocked. RPS autotuning may take tens of milliseconds to respond
376 * to the GPU load and thus incurs additional latency for the client.
377 * We can circumvent that by promoting the GPU frequency to maximum
378 * before we wait. This makes the GPU throttle up much more quickly
379 * (good for benchmarks and user experience, e.g. window animations),
380 * but at a cost of spending more power processing the workload
381 * (bad for battery). Not all clients even want their results
382 * immediately and for them we should just let the GPU select its own
383 * frequency to maximise efficiency. To prevent a single client from
384 * forcing the clocks too high for the whole system, we only allow
385 * each client to waitboost once in a busy period.
388 if (INTEL_GEN(rq
->i915
) >= 6)
389 gen6_rps_boost(rq
, rps_client
);
394 timeout
= i915_wait_request(rq
, flags
, timeout
);
397 if (flags
& I915_WAIT_LOCKED
&& i915_gem_request_completed(rq
))
398 i915_gem_request_retire_upto(rq
);
404 i915_gem_object_wait_reservation(struct reservation_object
*resv
,
407 struct intel_rps_client
*rps_client
)
409 unsigned int seq
= __read_seqcount_begin(&resv
->seq
);
410 struct dma_fence
*excl
;
411 bool prune_fences
= false;
413 if (flags
& I915_WAIT_ALL
) {
414 struct dma_fence
**shared
;
415 unsigned int count
, i
;
418 ret
= reservation_object_get_fences_rcu(resv
,
419 &excl
, &count
, &shared
);
423 for (i
= 0; i
< count
; i
++) {
424 timeout
= i915_gem_object_wait_fence(shared
[i
],
430 dma_fence_put(shared
[i
]);
433 for (; i
< count
; i
++)
434 dma_fence_put(shared
[i
]);
437 prune_fences
= count
&& timeout
>= 0;
439 excl
= reservation_object_get_excl_rcu(resv
);
442 if (excl
&& timeout
>= 0) {
443 timeout
= i915_gem_object_wait_fence(excl
, flags
, timeout
,
445 prune_fences
= timeout
>= 0;
450 /* Oportunistically prune the fences iff we know they have *all* been
451 * signaled and that the reservation object has not been changed (i.e.
452 * no new fences have been added).
454 if (prune_fences
&& !__read_seqcount_retry(&resv
->seq
, seq
)) {
455 if (reservation_object_trylock(resv
)) {
456 if (!__read_seqcount_retry(&resv
->seq
, seq
))
457 reservation_object_add_excl_fence(resv
, NULL
);
458 reservation_object_unlock(resv
);
465 static void __fence_set_priority(struct dma_fence
*fence
, int prio
)
467 struct drm_i915_gem_request
*rq
;
468 struct intel_engine_cs
*engine
;
470 if (dma_fence_is_signaled(fence
) || !dma_fence_is_i915(fence
))
473 rq
= to_request(fence
);
475 if (!engine
->schedule
)
478 engine
->schedule(rq
, prio
);
481 static void fence_set_priority(struct dma_fence
*fence
, int prio
)
483 /* Recurse once into a fence-array */
484 if (dma_fence_is_array(fence
)) {
485 struct dma_fence_array
*array
= to_dma_fence_array(fence
);
488 for (i
= 0; i
< array
->num_fences
; i
++)
489 __fence_set_priority(array
->fences
[i
], prio
);
491 __fence_set_priority(fence
, prio
);
496 i915_gem_object_wait_priority(struct drm_i915_gem_object
*obj
,
500 struct dma_fence
*excl
;
502 if (flags
& I915_WAIT_ALL
) {
503 struct dma_fence
**shared
;
504 unsigned int count
, i
;
507 ret
= reservation_object_get_fences_rcu(obj
->resv
,
508 &excl
, &count
, &shared
);
512 for (i
= 0; i
< count
; i
++) {
513 fence_set_priority(shared
[i
], prio
);
514 dma_fence_put(shared
[i
]);
519 excl
= reservation_object_get_excl_rcu(obj
->resv
);
523 fence_set_priority(excl
, prio
);
530 * Waits for rendering to the object to be completed
531 * @obj: i915 gem object
532 * @flags: how to wait (under a lock, for all rendering or just for writes etc)
533 * @timeout: how long to wait
534 * @rps_client: client (user process) to charge for any waitboosting
537 i915_gem_object_wait(struct drm_i915_gem_object
*obj
,
540 struct intel_rps_client
*rps_client
)
543 #if IS_ENABLED(CONFIG_LOCKDEP)
544 GEM_BUG_ON(debug_locks
&&
545 !!lockdep_is_held(&obj
->base
.dev
->struct_mutex
) !=
546 !!(flags
& I915_WAIT_LOCKED
));
548 GEM_BUG_ON(timeout
< 0);
550 timeout
= i915_gem_object_wait_reservation(obj
->resv
,
553 return timeout
< 0 ? timeout
: 0;
556 static struct intel_rps_client
*to_rps_client(struct drm_file
*file
)
558 struct drm_i915_file_private
*fpriv
= file
->driver_priv
;
560 return &fpriv
->rps_client
;
564 i915_gem_phys_pwrite(struct drm_i915_gem_object
*obj
,
565 struct drm_i915_gem_pwrite
*args
,
566 struct drm_file
*file
)
568 void *vaddr
= obj
->phys_handle
->vaddr
+ args
->offset
;
569 char __user
*user_data
= u64_to_user_ptr(args
->data_ptr
);
571 /* We manually control the domain here and pretend that it
572 * remains coherent i.e. in the GTT domain, like shmem_pwrite.
574 intel_fb_obj_invalidate(obj
, ORIGIN_CPU
);
575 if (copy_from_user(vaddr
, user_data
, args
->size
))
578 drm_clflush_virt_range(vaddr
, args
->size
);
579 i915_gem_chipset_flush(to_i915(obj
->base
.dev
));
581 intel_fb_obj_flush(obj
, ORIGIN_CPU
);
585 void *i915_gem_object_alloc(struct drm_i915_private
*dev_priv
)
587 return kmem_cache_zalloc(dev_priv
->objects
, GFP_KERNEL
);
590 void i915_gem_object_free(struct drm_i915_gem_object
*obj
)
592 struct drm_i915_private
*dev_priv
= to_i915(obj
->base
.dev
);
593 kmem_cache_free(dev_priv
->objects
, obj
);
597 i915_gem_create(struct drm_file
*file
,
598 struct drm_i915_private
*dev_priv
,
602 struct drm_i915_gem_object
*obj
;
606 size
= roundup(size
, PAGE_SIZE
);
610 /* Allocate the new object */
611 obj
= i915_gem_object_create(dev_priv
, size
);
615 ret
= drm_gem_handle_create(file
, &obj
->base
, &handle
);
616 /* drop reference from allocate - handle holds it now */
617 i915_gem_object_put(obj
);
626 i915_gem_dumb_create(struct drm_file
*file
,
627 struct drm_device
*dev
,
628 struct drm_mode_create_dumb
*args
)
630 /* have to work out size/pitch and return them */
631 args
->pitch
= ALIGN(args
->width
* DIV_ROUND_UP(args
->bpp
, 8), 64);
632 args
->size
= args
->pitch
* args
->height
;
633 return i915_gem_create(file
, to_i915(dev
),
634 args
->size
, &args
->handle
);
637 static bool gpu_write_needs_clflush(struct drm_i915_gem_object
*obj
)
639 return !(obj
->cache_level
== I915_CACHE_NONE
||
640 obj
->cache_level
== I915_CACHE_WT
);
644 * Creates a new mm object and returns a handle to it.
645 * @dev: drm device pointer
646 * @data: ioctl data blob
647 * @file: drm file pointer
650 i915_gem_create_ioctl(struct drm_device
*dev
, void *data
,
651 struct drm_file
*file
)
653 struct drm_i915_private
*dev_priv
= to_i915(dev
);
654 struct drm_i915_gem_create
*args
= data
;
656 i915_gem_flush_free_objects(dev_priv
);
658 return i915_gem_create(file
, dev_priv
,
659 args
->size
, &args
->handle
);
662 static inline enum fb_op_origin
663 fb_write_origin(struct drm_i915_gem_object
*obj
, unsigned int domain
)
665 return (domain
== I915_GEM_DOMAIN_GTT
?
666 obj
->frontbuffer_ggtt_origin
: ORIGIN_CPU
);
669 void i915_gem_flush_ggtt_writes(struct drm_i915_private
*dev_priv
)
672 * No actual flushing is required for the GTT write domain for reads
673 * from the GTT domain. Writes to it "immediately" go to main memory
674 * as far as we know, so there's no chipset flush. It also doesn't
675 * land in the GPU render cache.
677 * However, we do have to enforce the order so that all writes through
678 * the GTT land before any writes to the device, such as updates to
681 * We also have to wait a bit for the writes to land from the GTT.
682 * An uncached read (i.e. mmio) seems to be ideal for the round-trip
683 * timing. This issue has only been observed when switching quickly
684 * between GTT writes and CPU reads from inside the kernel on recent hw,
685 * and it appears to only affect discrete GTT blocks (i.e. on LLC
686 * system agents we cannot reproduce this behaviour, until Cannonlake
692 intel_runtime_pm_get(dev_priv
);
693 spin_lock_irq(&dev_priv
->uncore
.lock
);
695 POSTING_READ_FW(RING_HEAD(RENDER_RING_BASE
));
697 spin_unlock_irq(&dev_priv
->uncore
.lock
);
698 intel_runtime_pm_put(dev_priv
);
702 flush_write_domain(struct drm_i915_gem_object
*obj
, unsigned int flush_domains
)
704 struct drm_i915_private
*dev_priv
= to_i915(obj
->base
.dev
);
705 struct i915_vma
*vma
;
707 if (!(obj
->base
.write_domain
& flush_domains
))
710 switch (obj
->base
.write_domain
) {
711 case I915_GEM_DOMAIN_GTT
:
712 i915_gem_flush_ggtt_writes(dev_priv
);
714 intel_fb_obj_flush(obj
,
715 fb_write_origin(obj
, I915_GEM_DOMAIN_GTT
));
717 for_each_ggtt_vma(vma
, obj
) {
721 i915_vma_unset_ggtt_write(vma
);
725 case I915_GEM_DOMAIN_CPU
:
726 i915_gem_clflush_object(obj
, I915_CLFLUSH_SYNC
);
729 case I915_GEM_DOMAIN_RENDER
:
730 if (gpu_write_needs_clflush(obj
))
731 obj
->cache_dirty
= true;
735 obj
->base
.write_domain
= 0;
739 __copy_to_user_swizzled(char __user
*cpu_vaddr
,
740 const char *gpu_vaddr
, int gpu_offset
,
743 int ret
, cpu_offset
= 0;
746 int cacheline_end
= ALIGN(gpu_offset
+ 1, 64);
747 int this_length
= min(cacheline_end
- gpu_offset
, length
);
748 int swizzled_gpu_offset
= gpu_offset
^ 64;
750 ret
= __copy_to_user(cpu_vaddr
+ cpu_offset
,
751 gpu_vaddr
+ swizzled_gpu_offset
,
756 cpu_offset
+= this_length
;
757 gpu_offset
+= this_length
;
758 length
-= this_length
;
765 __copy_from_user_swizzled(char *gpu_vaddr
, int gpu_offset
,
766 const char __user
*cpu_vaddr
,
769 int ret
, cpu_offset
= 0;
772 int cacheline_end
= ALIGN(gpu_offset
+ 1, 64);
773 int this_length
= min(cacheline_end
- gpu_offset
, length
);
774 int swizzled_gpu_offset
= gpu_offset
^ 64;
776 ret
= __copy_from_user(gpu_vaddr
+ swizzled_gpu_offset
,
777 cpu_vaddr
+ cpu_offset
,
782 cpu_offset
+= this_length
;
783 gpu_offset
+= this_length
;
784 length
-= this_length
;
791 * Pins the specified object's pages and synchronizes the object with
792 * GPU accesses. Sets needs_clflush to non-zero if the caller should
793 * flush the object from the CPU cache.
795 int i915_gem_obj_prepare_shmem_read(struct drm_i915_gem_object
*obj
,
796 unsigned int *needs_clflush
)
800 lockdep_assert_held(&obj
->base
.dev
->struct_mutex
);
803 if (!i915_gem_object_has_struct_page(obj
))
806 ret
= i915_gem_object_wait(obj
,
807 I915_WAIT_INTERRUPTIBLE
|
809 MAX_SCHEDULE_TIMEOUT
,
814 ret
= i915_gem_object_pin_pages(obj
);
818 if (obj
->cache_coherent
& I915_BO_CACHE_COHERENT_FOR_READ
||
819 !static_cpu_has(X86_FEATURE_CLFLUSH
)) {
820 ret
= i915_gem_object_set_to_cpu_domain(obj
, false);
827 flush_write_domain(obj
, ~I915_GEM_DOMAIN_CPU
);
829 /* If we're not in the cpu read domain, set ourself into the gtt
830 * read domain and manually flush cachelines (if required). This
831 * optimizes for the case when the gpu will dirty the data
832 * anyway again before the next pread happens.
834 if (!obj
->cache_dirty
&&
835 !(obj
->base
.read_domains
& I915_GEM_DOMAIN_CPU
))
836 *needs_clflush
= CLFLUSH_BEFORE
;
839 /* return with the pages pinned */
843 i915_gem_object_unpin_pages(obj
);
847 int i915_gem_obj_prepare_shmem_write(struct drm_i915_gem_object
*obj
,
848 unsigned int *needs_clflush
)
852 lockdep_assert_held(&obj
->base
.dev
->struct_mutex
);
855 if (!i915_gem_object_has_struct_page(obj
))
858 ret
= i915_gem_object_wait(obj
,
859 I915_WAIT_INTERRUPTIBLE
|
862 MAX_SCHEDULE_TIMEOUT
,
867 ret
= i915_gem_object_pin_pages(obj
);
871 if (obj
->cache_coherent
& I915_BO_CACHE_COHERENT_FOR_WRITE
||
872 !static_cpu_has(X86_FEATURE_CLFLUSH
)) {
873 ret
= i915_gem_object_set_to_cpu_domain(obj
, true);
880 flush_write_domain(obj
, ~I915_GEM_DOMAIN_CPU
);
882 /* If we're not in the cpu write domain, set ourself into the
883 * gtt write domain and manually flush cachelines (as required).
884 * This optimizes for the case when the gpu will use the data
885 * right away and we therefore have to clflush anyway.
887 if (!obj
->cache_dirty
) {
888 *needs_clflush
|= CLFLUSH_AFTER
;
891 * Same trick applies to invalidate partially written
892 * cachelines read before writing.
894 if (!(obj
->base
.read_domains
& I915_GEM_DOMAIN_CPU
))
895 *needs_clflush
|= CLFLUSH_BEFORE
;
899 intel_fb_obj_invalidate(obj
, ORIGIN_CPU
);
900 obj
->mm
.dirty
= true;
901 /* return with the pages pinned */
905 i915_gem_object_unpin_pages(obj
);
910 shmem_clflush_swizzled_range(char *addr
, unsigned long length
,
913 if (unlikely(swizzled
)) {
914 unsigned long start
= (unsigned long) addr
;
915 unsigned long end
= (unsigned long) addr
+ length
;
917 /* For swizzling simply ensure that we always flush both
918 * channels. Lame, but simple and it works. Swizzled
919 * pwrite/pread is far from a hotpath - current userspace
920 * doesn't use it at all. */
921 start
= round_down(start
, 128);
922 end
= round_up(end
, 128);
924 drm_clflush_virt_range((void *)start
, end
- start
);
926 drm_clflush_virt_range(addr
, length
);
931 /* Only difference to the fast-path function is that this can handle bit17
932 * and uses non-atomic copy and kmap functions. */
934 shmem_pread_slow(struct page
*page
, int offset
, int length
,
935 char __user
*user_data
,
936 bool page_do_bit17_swizzling
, bool needs_clflush
)
943 shmem_clflush_swizzled_range(vaddr
+ offset
, length
,
944 page_do_bit17_swizzling
);
946 if (page_do_bit17_swizzling
)
947 ret
= __copy_to_user_swizzled(user_data
, vaddr
, offset
, length
);
949 ret
= __copy_to_user(user_data
, vaddr
+ offset
, length
);
952 return ret
? - EFAULT
: 0;
956 shmem_pread(struct page
*page
, int offset
, int length
, char __user
*user_data
,
957 bool page_do_bit17_swizzling
, bool needs_clflush
)
962 if (!page_do_bit17_swizzling
) {
963 char *vaddr
= kmap_atomic(page
);
966 drm_clflush_virt_range(vaddr
+ offset
, length
);
967 ret
= __copy_to_user_inatomic(user_data
, vaddr
+ offset
, length
);
968 kunmap_atomic(vaddr
);
973 return shmem_pread_slow(page
, offset
, length
, user_data
,
974 page_do_bit17_swizzling
, needs_clflush
);
978 i915_gem_shmem_pread(struct drm_i915_gem_object
*obj
,
979 struct drm_i915_gem_pread
*args
)
981 char __user
*user_data
;
983 unsigned int obj_do_bit17_swizzling
;
984 unsigned int needs_clflush
;
985 unsigned int idx
, offset
;
988 obj_do_bit17_swizzling
= 0;
989 if (i915_gem_object_needs_bit17_swizzle(obj
))
990 obj_do_bit17_swizzling
= BIT(17);
992 ret
= mutex_lock_interruptible(&obj
->base
.dev
->struct_mutex
);
996 ret
= i915_gem_obj_prepare_shmem_read(obj
, &needs_clflush
);
997 mutex_unlock(&obj
->base
.dev
->struct_mutex
);
1001 remain
= args
->size
;
1002 user_data
= u64_to_user_ptr(args
->data_ptr
);
1003 offset
= offset_in_page(args
->offset
);
1004 for (idx
= args
->offset
>> PAGE_SHIFT
; remain
; idx
++) {
1005 struct page
*page
= i915_gem_object_get_page(obj
, idx
);
1009 if (offset
+ length
> PAGE_SIZE
)
1010 length
= PAGE_SIZE
- offset
;
1012 ret
= shmem_pread(page
, offset
, length
, user_data
,
1013 page_to_phys(page
) & obj_do_bit17_swizzling
,
1019 user_data
+= length
;
1023 i915_gem_obj_finish_shmem_access(obj
);
1028 gtt_user_read(struct io_mapping
*mapping
,
1029 loff_t base
, int offset
,
1030 char __user
*user_data
, int length
)
1032 void __iomem
*vaddr
;
1033 unsigned long unwritten
;
1035 /* We can use the cpu mem copy function because this is X86. */
1036 vaddr
= io_mapping_map_atomic_wc(mapping
, base
);
1037 unwritten
= __copy_to_user_inatomic(user_data
,
1038 (void __force
*)vaddr
+ offset
,
1040 io_mapping_unmap_atomic(vaddr
);
1042 vaddr
= io_mapping_map_wc(mapping
, base
, PAGE_SIZE
);
1043 unwritten
= copy_to_user(user_data
,
1044 (void __force
*)vaddr
+ offset
,
1046 io_mapping_unmap(vaddr
);
1052 i915_gem_gtt_pread(struct drm_i915_gem_object
*obj
,
1053 const struct drm_i915_gem_pread
*args
)
1055 struct drm_i915_private
*i915
= to_i915(obj
->base
.dev
);
1056 struct i915_ggtt
*ggtt
= &i915
->ggtt
;
1057 struct drm_mm_node node
;
1058 struct i915_vma
*vma
;
1059 void __user
*user_data
;
1063 ret
= mutex_lock_interruptible(&i915
->drm
.struct_mutex
);
1067 intel_runtime_pm_get(i915
);
1068 vma
= i915_gem_object_ggtt_pin(obj
, NULL
, 0, 0,
1073 node
.start
= i915_ggtt_offset(vma
);
1074 node
.allocated
= false;
1075 ret
= i915_vma_put_fence(vma
);
1077 i915_vma_unpin(vma
);
1082 ret
= insert_mappable_node(ggtt
, &node
, PAGE_SIZE
);
1085 GEM_BUG_ON(!node
.allocated
);
1088 ret
= i915_gem_object_set_to_gtt_domain(obj
, false);
1092 mutex_unlock(&i915
->drm
.struct_mutex
);
1094 user_data
= u64_to_user_ptr(args
->data_ptr
);
1095 remain
= args
->size
;
1096 offset
= args
->offset
;
1098 while (remain
> 0) {
1099 /* Operation in this page
1101 * page_base = page offset within aperture
1102 * page_offset = offset within page
1103 * page_length = bytes to copy for this page
1105 u32 page_base
= node
.start
;
1106 unsigned page_offset
= offset_in_page(offset
);
1107 unsigned page_length
= PAGE_SIZE
- page_offset
;
1108 page_length
= remain
< page_length
? remain
: page_length
;
1109 if (node
.allocated
) {
1111 ggtt
->base
.insert_page(&ggtt
->base
,
1112 i915_gem_object_get_dma_address(obj
, offset
>> PAGE_SHIFT
),
1113 node
.start
, I915_CACHE_NONE
, 0);
1116 page_base
+= offset
& PAGE_MASK
;
1119 if (gtt_user_read(&ggtt
->iomap
, page_base
, page_offset
,
1120 user_data
, page_length
)) {
1125 remain
-= page_length
;
1126 user_data
+= page_length
;
1127 offset
+= page_length
;
1130 mutex_lock(&i915
->drm
.struct_mutex
);
1132 if (node
.allocated
) {
1134 ggtt
->base
.clear_range(&ggtt
->base
,
1135 node
.start
, node
.size
);
1136 remove_mappable_node(&node
);
1138 i915_vma_unpin(vma
);
1141 intel_runtime_pm_put(i915
);
1142 mutex_unlock(&i915
->drm
.struct_mutex
);
1148 * Reads data from the object referenced by handle.
1149 * @dev: drm device pointer
1150 * @data: ioctl data blob
1151 * @file: drm file pointer
1153 * On error, the contents of *data are undefined.
1156 i915_gem_pread_ioctl(struct drm_device
*dev
, void *data
,
1157 struct drm_file
*file
)
1159 struct drm_i915_gem_pread
*args
= data
;
1160 struct drm_i915_gem_object
*obj
;
1163 if (args
->size
== 0)
1166 if (!access_ok(VERIFY_WRITE
,
1167 u64_to_user_ptr(args
->data_ptr
),
1171 obj
= i915_gem_object_lookup(file
, args
->handle
);
1175 /* Bounds check source. */
1176 if (range_overflows_t(u64
, args
->offset
, args
->size
, obj
->base
.size
)) {
1181 trace_i915_gem_object_pread(obj
, args
->offset
, args
->size
);
1183 ret
= i915_gem_object_wait(obj
,
1184 I915_WAIT_INTERRUPTIBLE
,
1185 MAX_SCHEDULE_TIMEOUT
,
1186 to_rps_client(file
));
1190 ret
= i915_gem_object_pin_pages(obj
);
1194 ret
= i915_gem_shmem_pread(obj
, args
);
1195 if (ret
== -EFAULT
|| ret
== -ENODEV
)
1196 ret
= i915_gem_gtt_pread(obj
, args
);
1198 i915_gem_object_unpin_pages(obj
);
1200 i915_gem_object_put(obj
);
1204 /* This is the fast write path which cannot handle
1205 * page faults in the source data
1209 ggtt_write(struct io_mapping
*mapping
,
1210 loff_t base
, int offset
,
1211 char __user
*user_data
, int length
)
1213 void __iomem
*vaddr
;
1214 unsigned long unwritten
;
1216 /* We can use the cpu mem copy function because this is X86. */
1217 vaddr
= io_mapping_map_atomic_wc(mapping
, base
);
1218 unwritten
= __copy_from_user_inatomic_nocache((void __force
*)vaddr
+ offset
,
1220 io_mapping_unmap_atomic(vaddr
);
1222 vaddr
= io_mapping_map_wc(mapping
, base
, PAGE_SIZE
);
1223 unwritten
= copy_from_user((void __force
*)vaddr
+ offset
,
1225 io_mapping_unmap(vaddr
);
1232 * This is the fast pwrite path, where we copy the data directly from the
1233 * user into the GTT, uncached.
1234 * @obj: i915 GEM object
1235 * @args: pwrite arguments structure
1238 i915_gem_gtt_pwrite_fast(struct drm_i915_gem_object
*obj
,
1239 const struct drm_i915_gem_pwrite
*args
)
1241 struct drm_i915_private
*i915
= to_i915(obj
->base
.dev
);
1242 struct i915_ggtt
*ggtt
= &i915
->ggtt
;
1243 struct drm_mm_node node
;
1244 struct i915_vma
*vma
;
1246 void __user
*user_data
;
1249 ret
= mutex_lock_interruptible(&i915
->drm
.struct_mutex
);
1253 if (i915_gem_object_has_struct_page(obj
)) {
1255 * Avoid waking the device up if we can fallback, as
1256 * waking/resuming is very slow (worst-case 10-100 ms
1257 * depending on PCI sleeps and our own resume time).
1258 * This easily dwarfs any performance advantage from
1259 * using the cache bypass of indirect GGTT access.
1261 if (!intel_runtime_pm_get_if_in_use(i915
)) {
1266 /* No backing pages, no fallback, we must force GGTT access */
1267 intel_runtime_pm_get(i915
);
1270 vma
= i915_gem_object_ggtt_pin(obj
, NULL
, 0, 0,
1275 node
.start
= i915_ggtt_offset(vma
);
1276 node
.allocated
= false;
1277 ret
= i915_vma_put_fence(vma
);
1279 i915_vma_unpin(vma
);
1284 ret
= insert_mappable_node(ggtt
, &node
, PAGE_SIZE
);
1287 GEM_BUG_ON(!node
.allocated
);
1290 ret
= i915_gem_object_set_to_gtt_domain(obj
, true);
1294 mutex_unlock(&i915
->drm
.struct_mutex
);
1296 intel_fb_obj_invalidate(obj
, ORIGIN_CPU
);
1298 user_data
= u64_to_user_ptr(args
->data_ptr
);
1299 offset
= args
->offset
;
1300 remain
= args
->size
;
1302 /* Operation in this page
1304 * page_base = page offset within aperture
1305 * page_offset = offset within page
1306 * page_length = bytes to copy for this page
1308 u32 page_base
= node
.start
;
1309 unsigned int page_offset
= offset_in_page(offset
);
1310 unsigned int page_length
= PAGE_SIZE
- page_offset
;
1311 page_length
= remain
< page_length
? remain
: page_length
;
1312 if (node
.allocated
) {
1313 wmb(); /* flush the write before we modify the GGTT */
1314 ggtt
->base
.insert_page(&ggtt
->base
,
1315 i915_gem_object_get_dma_address(obj
, offset
>> PAGE_SHIFT
),
1316 node
.start
, I915_CACHE_NONE
, 0);
1317 wmb(); /* flush modifications to the GGTT (insert_page) */
1319 page_base
+= offset
& PAGE_MASK
;
1321 /* If we get a fault while copying data, then (presumably) our
1322 * source page isn't available. Return the error and we'll
1323 * retry in the slow path.
1324 * If the object is non-shmem backed, we retry again with the
1325 * path that handles page fault.
1327 if (ggtt_write(&ggtt
->iomap
, page_base
, page_offset
,
1328 user_data
, page_length
)) {
1333 remain
-= page_length
;
1334 user_data
+= page_length
;
1335 offset
+= page_length
;
1337 intel_fb_obj_flush(obj
, ORIGIN_CPU
);
1339 mutex_lock(&i915
->drm
.struct_mutex
);
1341 if (node
.allocated
) {
1343 ggtt
->base
.clear_range(&ggtt
->base
,
1344 node
.start
, node
.size
);
1345 remove_mappable_node(&node
);
1347 i915_vma_unpin(vma
);
1350 intel_runtime_pm_put(i915
);
1352 mutex_unlock(&i915
->drm
.struct_mutex
);
1357 shmem_pwrite_slow(struct page
*page
, int offset
, int length
,
1358 char __user
*user_data
,
1359 bool page_do_bit17_swizzling
,
1360 bool needs_clflush_before
,
1361 bool needs_clflush_after
)
1367 if (unlikely(needs_clflush_before
|| page_do_bit17_swizzling
))
1368 shmem_clflush_swizzled_range(vaddr
+ offset
, length
,
1369 page_do_bit17_swizzling
);
1370 if (page_do_bit17_swizzling
)
1371 ret
= __copy_from_user_swizzled(vaddr
, offset
, user_data
,
1374 ret
= __copy_from_user(vaddr
+ offset
, user_data
, length
);
1375 if (needs_clflush_after
)
1376 shmem_clflush_swizzled_range(vaddr
+ offset
, length
,
1377 page_do_bit17_swizzling
);
1380 return ret
? -EFAULT
: 0;
1383 /* Per-page copy function for the shmem pwrite fastpath.
1384 * Flushes invalid cachelines before writing to the target if
1385 * needs_clflush_before is set and flushes out any written cachelines after
1386 * writing if needs_clflush is set.
1389 shmem_pwrite(struct page
*page
, int offset
, int len
, char __user
*user_data
,
1390 bool page_do_bit17_swizzling
,
1391 bool needs_clflush_before
,
1392 bool needs_clflush_after
)
1397 if (!page_do_bit17_swizzling
) {
1398 char *vaddr
= kmap_atomic(page
);
1400 if (needs_clflush_before
)
1401 drm_clflush_virt_range(vaddr
+ offset
, len
);
1402 ret
= __copy_from_user_inatomic(vaddr
+ offset
, user_data
, len
);
1403 if (needs_clflush_after
)
1404 drm_clflush_virt_range(vaddr
+ offset
, len
);
1406 kunmap_atomic(vaddr
);
1411 return shmem_pwrite_slow(page
, offset
, len
, user_data
,
1412 page_do_bit17_swizzling
,
1413 needs_clflush_before
,
1414 needs_clflush_after
);
1418 i915_gem_shmem_pwrite(struct drm_i915_gem_object
*obj
,
1419 const struct drm_i915_gem_pwrite
*args
)
1421 struct drm_i915_private
*i915
= to_i915(obj
->base
.dev
);
1422 void __user
*user_data
;
1424 unsigned int obj_do_bit17_swizzling
;
1425 unsigned int partial_cacheline_write
;
1426 unsigned int needs_clflush
;
1427 unsigned int offset
, idx
;
1430 ret
= mutex_lock_interruptible(&i915
->drm
.struct_mutex
);
1434 ret
= i915_gem_obj_prepare_shmem_write(obj
, &needs_clflush
);
1435 mutex_unlock(&i915
->drm
.struct_mutex
);
1439 obj_do_bit17_swizzling
= 0;
1440 if (i915_gem_object_needs_bit17_swizzle(obj
))
1441 obj_do_bit17_swizzling
= BIT(17);
1443 /* If we don't overwrite a cacheline completely we need to be
1444 * careful to have up-to-date data by first clflushing. Don't
1445 * overcomplicate things and flush the entire patch.
1447 partial_cacheline_write
= 0;
1448 if (needs_clflush
& CLFLUSH_BEFORE
)
1449 partial_cacheline_write
= boot_cpu_data
.x86_clflush_size
- 1;
1451 user_data
= u64_to_user_ptr(args
->data_ptr
);
1452 remain
= args
->size
;
1453 offset
= offset_in_page(args
->offset
);
1454 for (idx
= args
->offset
>> PAGE_SHIFT
; remain
; idx
++) {
1455 struct page
*page
= i915_gem_object_get_page(obj
, idx
);
1459 if (offset
+ length
> PAGE_SIZE
)
1460 length
= PAGE_SIZE
- offset
;
1462 ret
= shmem_pwrite(page
, offset
, length
, user_data
,
1463 page_to_phys(page
) & obj_do_bit17_swizzling
,
1464 (offset
| length
) & partial_cacheline_write
,
1465 needs_clflush
& CLFLUSH_AFTER
);
1470 user_data
+= length
;
1474 intel_fb_obj_flush(obj
, ORIGIN_CPU
);
1475 i915_gem_obj_finish_shmem_access(obj
);
1480 * Writes data to the object referenced by handle.
1482 * @data: ioctl data blob
1485 * On error, the contents of the buffer that were to be modified are undefined.
1488 i915_gem_pwrite_ioctl(struct drm_device
*dev
, void *data
,
1489 struct drm_file
*file
)
1491 struct drm_i915_gem_pwrite
*args
= data
;
1492 struct drm_i915_gem_object
*obj
;
1495 if (args
->size
== 0)
1498 if (!access_ok(VERIFY_READ
,
1499 u64_to_user_ptr(args
->data_ptr
),
1503 obj
= i915_gem_object_lookup(file
, args
->handle
);
1507 /* Bounds check destination. */
1508 if (range_overflows_t(u64
, args
->offset
, args
->size
, obj
->base
.size
)) {
1513 trace_i915_gem_object_pwrite(obj
, args
->offset
, args
->size
);
1516 if (obj
->ops
->pwrite
)
1517 ret
= obj
->ops
->pwrite(obj
, args
);
1521 ret
= i915_gem_object_wait(obj
,
1522 I915_WAIT_INTERRUPTIBLE
|
1524 MAX_SCHEDULE_TIMEOUT
,
1525 to_rps_client(file
));
1529 ret
= i915_gem_object_pin_pages(obj
);
1534 /* We can only do the GTT pwrite on untiled buffers, as otherwise
1535 * it would end up going through the fenced access, and we'll get
1536 * different detiling behavior between reading and writing.
1537 * pread/pwrite currently are reading and writing from the CPU
1538 * perspective, requiring manual detiling by the client.
1540 if (!i915_gem_object_has_struct_page(obj
) ||
1541 cpu_write_needs_clflush(obj
))
1542 /* Note that the gtt paths might fail with non-page-backed user
1543 * pointers (e.g. gtt mappings when moving data between
1544 * textures). Fallback to the shmem path in that case.
1546 ret
= i915_gem_gtt_pwrite_fast(obj
, args
);
1548 if (ret
== -EFAULT
|| ret
== -ENOSPC
) {
1549 if (obj
->phys_handle
)
1550 ret
= i915_gem_phys_pwrite(obj
, args
, file
);
1552 ret
= i915_gem_shmem_pwrite(obj
, args
);
1555 i915_gem_object_unpin_pages(obj
);
1557 i915_gem_object_put(obj
);
1561 static void i915_gem_object_bump_inactive_ggtt(struct drm_i915_gem_object
*obj
)
1563 struct drm_i915_private
*i915
;
1564 struct list_head
*list
;
1565 struct i915_vma
*vma
;
1567 GEM_BUG_ON(!i915_gem_object_has_pinned_pages(obj
));
1569 for_each_ggtt_vma(vma
, obj
) {
1570 if (i915_vma_is_active(vma
))
1573 if (!drm_mm_node_allocated(&vma
->node
))
1576 list_move_tail(&vma
->vm_link
, &vma
->vm
->inactive_list
);
1579 i915
= to_i915(obj
->base
.dev
);
1580 spin_lock(&i915
->mm
.obj_lock
);
1581 list
= obj
->bind_count
? &i915
->mm
.bound_list
: &i915
->mm
.unbound_list
;
1582 list_move_tail(&obj
->mm
.link
, list
);
1583 spin_unlock(&i915
->mm
.obj_lock
);
1587 * Called when user space prepares to use an object with the CPU, either
1588 * through the mmap ioctl's mapping or a GTT mapping.
1590 * @data: ioctl data blob
1594 i915_gem_set_domain_ioctl(struct drm_device
*dev
, void *data
,
1595 struct drm_file
*file
)
1597 struct drm_i915_gem_set_domain
*args
= data
;
1598 struct drm_i915_gem_object
*obj
;
1599 uint32_t read_domains
= args
->read_domains
;
1600 uint32_t write_domain
= args
->write_domain
;
1603 /* Only handle setting domains to types used by the CPU. */
1604 if ((write_domain
| read_domains
) & I915_GEM_GPU_DOMAINS
)
1607 /* Having something in the write domain implies it's in the read
1608 * domain, and only that read domain. Enforce that in the request.
1610 if (write_domain
!= 0 && read_domains
!= write_domain
)
1613 obj
= i915_gem_object_lookup(file
, args
->handle
);
1617 /* Try to flush the object off the GPU without holding the lock.
1618 * We will repeat the flush holding the lock in the normal manner
1619 * to catch cases where we are gazumped.
1621 err
= i915_gem_object_wait(obj
,
1622 I915_WAIT_INTERRUPTIBLE
|
1623 (write_domain
? I915_WAIT_ALL
: 0),
1624 MAX_SCHEDULE_TIMEOUT
,
1625 to_rps_client(file
));
1630 * Proxy objects do not control access to the backing storage, ergo
1631 * they cannot be used as a means to manipulate the cache domain
1632 * tracking for that backing storage. The proxy object is always
1633 * considered to be outside of any cache domain.
1635 if (i915_gem_object_is_proxy(obj
)) {
1641 * Flush and acquire obj->pages so that we are coherent through
1642 * direct access in memory with previous cached writes through
1643 * shmemfs and that our cache domain tracking remains valid.
1644 * For example, if the obj->filp was moved to swap without us
1645 * being notified and releasing the pages, we would mistakenly
1646 * continue to assume that the obj remained out of the CPU cached
1649 err
= i915_gem_object_pin_pages(obj
);
1653 err
= i915_mutex_lock_interruptible(dev
);
1657 if (read_domains
& I915_GEM_DOMAIN_WC
)
1658 err
= i915_gem_object_set_to_wc_domain(obj
, write_domain
);
1659 else if (read_domains
& I915_GEM_DOMAIN_GTT
)
1660 err
= i915_gem_object_set_to_gtt_domain(obj
, write_domain
);
1662 err
= i915_gem_object_set_to_cpu_domain(obj
, write_domain
);
1664 /* And bump the LRU for this access */
1665 i915_gem_object_bump_inactive_ggtt(obj
);
1667 mutex_unlock(&dev
->struct_mutex
);
1669 if (write_domain
!= 0)
1670 intel_fb_obj_invalidate(obj
,
1671 fb_write_origin(obj
, write_domain
));
1674 i915_gem_object_unpin_pages(obj
);
1676 i915_gem_object_put(obj
);
1681 * Called when user space has done writes to this buffer
1683 * @data: ioctl data blob
1687 i915_gem_sw_finish_ioctl(struct drm_device
*dev
, void *data
,
1688 struct drm_file
*file
)
1690 struct drm_i915_gem_sw_finish
*args
= data
;
1691 struct drm_i915_gem_object
*obj
;
1693 obj
= i915_gem_object_lookup(file
, args
->handle
);
1698 * Proxy objects are barred from CPU access, so there is no
1699 * need to ban sw_finish as it is a nop.
1702 /* Pinned buffers may be scanout, so flush the cache */
1703 i915_gem_object_flush_if_display(obj
);
1704 i915_gem_object_put(obj
);
1710 * i915_gem_mmap_ioctl - Maps the contents of an object, returning the address
1713 * @data: ioctl data blob
1716 * While the mapping holds a reference on the contents of the object, it doesn't
1717 * imply a ref on the object itself.
1721 * DRM driver writers who look a this function as an example for how to do GEM
1722 * mmap support, please don't implement mmap support like here. The modern way
1723 * to implement DRM mmap support is with an mmap offset ioctl (like
1724 * i915_gem_mmap_gtt) and then using the mmap syscall on the DRM fd directly.
1725 * That way debug tooling like valgrind will understand what's going on, hiding
1726 * the mmap call in a driver private ioctl will break that. The i915 driver only
1727 * does cpu mmaps this way because we didn't know better.
1730 i915_gem_mmap_ioctl(struct drm_device
*dev
, void *data
,
1731 struct drm_file
*file
)
1733 struct drm_i915_gem_mmap
*args
= data
;
1734 struct drm_i915_gem_object
*obj
;
1737 if (args
->flags
& ~(I915_MMAP_WC
))
1740 if (args
->flags
& I915_MMAP_WC
&& !boot_cpu_has(X86_FEATURE_PAT
))
1743 obj
= i915_gem_object_lookup(file
, args
->handle
);
1747 /* prime objects have no backing filp to GEM mmap
1750 if (!obj
->base
.filp
) {
1751 i915_gem_object_put(obj
);
1755 addr
= vm_mmap(obj
->base
.filp
, 0, args
->size
,
1756 PROT_READ
| PROT_WRITE
, MAP_SHARED
,
1758 if (args
->flags
& I915_MMAP_WC
) {
1759 struct mm_struct
*mm
= current
->mm
;
1760 struct vm_area_struct
*vma
;
1762 if (down_write_killable(&mm
->mmap_sem
)) {
1763 i915_gem_object_put(obj
);
1766 vma
= find_vma(mm
, addr
);
1769 pgprot_writecombine(vm_get_page_prot(vma
->vm_flags
));
1772 up_write(&mm
->mmap_sem
);
1774 /* This may race, but that's ok, it only gets set */
1775 WRITE_ONCE(obj
->frontbuffer_ggtt_origin
, ORIGIN_CPU
);
1777 i915_gem_object_put(obj
);
1778 if (IS_ERR((void *)addr
))
1781 args
->addr_ptr
= (uint64_t) addr
;
1786 static unsigned int tile_row_pages(struct drm_i915_gem_object
*obj
)
1788 return i915_gem_object_get_tile_row_size(obj
) >> PAGE_SHIFT
;
1792 * i915_gem_mmap_gtt_version - report the current feature set for GTT mmaps
1794 * A history of the GTT mmap interface:
1796 * 0 - Everything had to fit into the GTT. Both parties of a memcpy had to
1797 * aligned and suitable for fencing, and still fit into the available
1798 * mappable space left by the pinned display objects. A classic problem
1799 * we called the page-fault-of-doom where we would ping-pong between
1800 * two objects that could not fit inside the GTT and so the memcpy
1801 * would page one object in at the expense of the other between every
1804 * 1 - Objects can be any size, and have any compatible fencing (X Y, or none
1805 * as set via i915_gem_set_tiling() [DRM_I915_GEM_SET_TILING]). If the
1806 * object is too large for the available space (or simply too large
1807 * for the mappable aperture!), a view is created instead and faulted
1808 * into userspace. (This view is aligned and sized appropriately for
1811 * 2 - Recognise WC as a separate cache domain so that we can flush the
1812 * delayed writes via GTT before performing direct access via WC.
1816 * * snoopable objects cannot be accessed via the GTT. It can cause machine
1817 * hangs on some architectures, corruption on others. An attempt to service
1818 * a GTT page fault from a snoopable object will generate a SIGBUS.
1820 * * the object must be able to fit into RAM (physical memory, though no
1821 * limited to the mappable aperture).
1826 * * a new GTT page fault will synchronize rendering from the GPU and flush
1827 * all data to system memory. Subsequent access will not be synchronized.
1829 * * all mappings are revoked on runtime device suspend.
1831 * * there are only 8, 16 or 32 fence registers to share between all users
1832 * (older machines require fence register for display and blitter access
1833 * as well). Contention of the fence registers will cause the previous users
1834 * to be unmapped and any new access will generate new page faults.
1836 * * running out of memory while servicing a fault may generate a SIGBUS,
1837 * rather than the expected SIGSEGV.
1839 int i915_gem_mmap_gtt_version(void)
1844 static inline struct i915_ggtt_view
1845 compute_partial_view(struct drm_i915_gem_object
*obj
,
1846 pgoff_t page_offset
,
1849 struct i915_ggtt_view view
;
1851 if (i915_gem_object_is_tiled(obj
))
1852 chunk
= roundup(chunk
, tile_row_pages(obj
));
1854 view
.type
= I915_GGTT_VIEW_PARTIAL
;
1855 view
.partial
.offset
= rounddown(page_offset
, chunk
);
1857 min_t(unsigned int, chunk
,
1858 (obj
->base
.size
>> PAGE_SHIFT
) - view
.partial
.offset
);
1860 /* If the partial covers the entire object, just create a normal VMA. */
1861 if (chunk
>= obj
->base
.size
>> PAGE_SHIFT
)
1862 view
.type
= I915_GGTT_VIEW_NORMAL
;
1868 * i915_gem_fault - fault a page into the GTT
1871 * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
1872 * from userspace. The fault handler takes care of binding the object to
1873 * the GTT (if needed), allocating and programming a fence register (again,
1874 * only if needed based on whether the old reg is still valid or the object
1875 * is tiled) and inserting a new PTE into the faulting process.
1877 * Note that the faulting process may involve evicting existing objects
1878 * from the GTT and/or fence registers to make room. So performance may
1879 * suffer if the GTT working set is large or there are few fence registers
1882 * The current feature set supported by i915_gem_fault() and thus GTT mmaps
1883 * is exposed via I915_PARAM_MMAP_GTT_VERSION (see i915_gem_mmap_gtt_version).
1885 int i915_gem_fault(struct vm_fault
*vmf
)
1887 #define MIN_CHUNK_PAGES ((1 << 20) >> PAGE_SHIFT) /* 1 MiB */
1888 struct vm_area_struct
*area
= vmf
->vma
;
1889 struct drm_i915_gem_object
*obj
= to_intel_bo(area
->vm_private_data
);
1890 struct drm_device
*dev
= obj
->base
.dev
;
1891 struct drm_i915_private
*dev_priv
= to_i915(dev
);
1892 struct i915_ggtt
*ggtt
= &dev_priv
->ggtt
;
1893 bool write
= !!(vmf
->flags
& FAULT_FLAG_WRITE
);
1894 struct i915_vma
*vma
;
1895 pgoff_t page_offset
;
1899 /* We don't use vmf->pgoff since that has the fake offset */
1900 page_offset
= (vmf
->address
- area
->vm_start
) >> PAGE_SHIFT
;
1902 trace_i915_gem_object_fault(obj
, page_offset
, true, write
);
1904 /* Try to flush the object off the GPU first without holding the lock.
1905 * Upon acquiring the lock, we will perform our sanity checks and then
1906 * repeat the flush holding the lock in the normal manner to catch cases
1907 * where we are gazumped.
1909 ret
= i915_gem_object_wait(obj
,
1910 I915_WAIT_INTERRUPTIBLE
,
1911 MAX_SCHEDULE_TIMEOUT
,
1916 ret
= i915_gem_object_pin_pages(obj
);
1920 intel_runtime_pm_get(dev_priv
);
1922 ret
= i915_mutex_lock_interruptible(dev
);
1926 /* Access to snoopable pages through the GTT is incoherent. */
1927 if (obj
->cache_level
!= I915_CACHE_NONE
&& !HAS_LLC(dev_priv
)) {
1932 /* If the object is smaller than a couple of partial vma, it is
1933 * not worth only creating a single partial vma - we may as well
1934 * clear enough space for the full object.
1936 flags
= PIN_MAPPABLE
;
1937 if (obj
->base
.size
> 2 * MIN_CHUNK_PAGES
<< PAGE_SHIFT
)
1938 flags
|= PIN_NONBLOCK
| PIN_NONFAULT
;
1940 /* Now pin it into the GTT as needed */
1941 vma
= i915_gem_object_ggtt_pin(obj
, NULL
, 0, 0, flags
);
1943 /* Use a partial view if it is bigger than available space */
1944 struct i915_ggtt_view view
=
1945 compute_partial_view(obj
, page_offset
, MIN_CHUNK_PAGES
);
1947 /* Userspace is now writing through an untracked VMA, abandon
1948 * all hope that the hardware is able to track future writes.
1950 obj
->frontbuffer_ggtt_origin
= ORIGIN_CPU
;
1952 vma
= i915_gem_object_ggtt_pin(obj
, &view
, 0, 0, PIN_MAPPABLE
);
1959 ret
= i915_gem_object_set_to_gtt_domain(obj
, write
);
1963 ret
= i915_vma_pin_fence(vma
);
1967 /* Finally, remap it using the new GTT offset */
1968 ret
= remap_io_mapping(area
,
1969 area
->vm_start
+ (vma
->ggtt_view
.partial
.offset
<< PAGE_SHIFT
),
1970 (ggtt
->gmadr
.start
+ vma
->node
.start
) >> PAGE_SHIFT
,
1971 min_t(u64
, vma
->size
, area
->vm_end
- area
->vm_start
),
1976 /* Mark as being mmapped into userspace for later revocation */
1977 assert_rpm_wakelock_held(dev_priv
);
1978 if (!i915_vma_set_userfault(vma
) && !obj
->userfault_count
++)
1979 list_add(&obj
->userfault_link
, &dev_priv
->mm
.userfault_list
);
1980 GEM_BUG_ON(!obj
->userfault_count
);
1982 i915_vma_set_ggtt_write(vma
);
1985 i915_vma_unpin_fence(vma
);
1987 __i915_vma_unpin(vma
);
1989 mutex_unlock(&dev
->struct_mutex
);
1991 intel_runtime_pm_put(dev_priv
);
1992 i915_gem_object_unpin_pages(obj
);
1997 * We eat errors when the gpu is terminally wedged to avoid
1998 * userspace unduly crashing (gl has no provisions for mmaps to
1999 * fail). But any other -EIO isn't ours (e.g. swap in failure)
2000 * and so needs to be reported.
2002 if (!i915_terminally_wedged(&dev_priv
->gpu_error
)) {
2003 ret
= VM_FAULT_SIGBUS
;
2008 * EAGAIN means the gpu is hung and we'll wait for the error
2009 * handler to reset everything when re-faulting in
2010 * i915_mutex_lock_interruptible.
2017 * EBUSY is ok: this just means that another thread
2018 * already did the job.
2020 ret
= VM_FAULT_NOPAGE
;
2027 ret
= VM_FAULT_SIGBUS
;
2030 WARN_ONCE(ret
, "unhandled error in i915_gem_fault: %i\n", ret
);
2031 ret
= VM_FAULT_SIGBUS
;
2037 static void __i915_gem_object_release_mmap(struct drm_i915_gem_object
*obj
)
2039 struct i915_vma
*vma
;
2041 GEM_BUG_ON(!obj
->userfault_count
);
2043 obj
->userfault_count
= 0;
2044 list_del(&obj
->userfault_link
);
2045 drm_vma_node_unmap(&obj
->base
.vma_node
,
2046 obj
->base
.dev
->anon_inode
->i_mapping
);
2048 for_each_ggtt_vma(vma
, obj
)
2049 i915_vma_unset_userfault(vma
);
2053 * i915_gem_release_mmap - remove physical page mappings
2054 * @obj: obj in question
2056 * Preserve the reservation of the mmapping with the DRM core code, but
2057 * relinquish ownership of the pages back to the system.
2059 * It is vital that we remove the page mapping if we have mapped a tiled
2060 * object through the GTT and then lose the fence register due to
2061 * resource pressure. Similarly if the object has been moved out of the
2062 * aperture, than pages mapped into userspace must be revoked. Removing the
2063 * mapping will then trigger a page fault on the next user access, allowing
2064 * fixup by i915_gem_fault().
2067 i915_gem_release_mmap(struct drm_i915_gem_object
*obj
)
2069 struct drm_i915_private
*i915
= to_i915(obj
->base
.dev
);
2071 /* Serialisation between user GTT access and our code depends upon
2072 * revoking the CPU's PTE whilst the mutex is held. The next user
2073 * pagefault then has to wait until we release the mutex.
2075 * Note that RPM complicates somewhat by adding an additional
2076 * requirement that operations to the GGTT be made holding the RPM
2079 lockdep_assert_held(&i915
->drm
.struct_mutex
);
2080 intel_runtime_pm_get(i915
);
2082 if (!obj
->userfault_count
)
2085 __i915_gem_object_release_mmap(obj
);
2087 /* Ensure that the CPU's PTE are revoked and there are not outstanding
2088 * memory transactions from userspace before we return. The TLB
2089 * flushing implied above by changing the PTE above *should* be
2090 * sufficient, an extra barrier here just provides us with a bit
2091 * of paranoid documentation about our requirement to serialise
2092 * memory writes before touching registers / GSM.
2097 intel_runtime_pm_put(i915
);
2100 void i915_gem_runtime_suspend(struct drm_i915_private
*dev_priv
)
2102 struct drm_i915_gem_object
*obj
, *on
;
2106 * Only called during RPM suspend. All users of the userfault_list
2107 * must be holding an RPM wakeref to ensure that this can not
2108 * run concurrently with themselves (and use the struct_mutex for
2109 * protection between themselves).
2112 list_for_each_entry_safe(obj
, on
,
2113 &dev_priv
->mm
.userfault_list
, userfault_link
)
2114 __i915_gem_object_release_mmap(obj
);
2116 /* The fence will be lost when the device powers down. If any were
2117 * in use by hardware (i.e. they are pinned), we should not be powering
2118 * down! All other fences will be reacquired by the user upon waking.
2120 for (i
= 0; i
< dev_priv
->num_fence_regs
; i
++) {
2121 struct drm_i915_fence_reg
*reg
= &dev_priv
->fence_regs
[i
];
2123 /* Ideally we want to assert that the fence register is not
2124 * live at this point (i.e. that no piece of code will be
2125 * trying to write through fence + GTT, as that both violates
2126 * our tracking of activity and associated locking/barriers,
2127 * but also is illegal given that the hw is powered down).
2129 * Previously we used reg->pin_count as a "liveness" indicator.
2130 * That is not sufficient, and we need a more fine-grained
2131 * tool if we want to have a sanity check here.
2137 GEM_BUG_ON(i915_vma_has_userfault(reg
->vma
));
2142 static int i915_gem_object_create_mmap_offset(struct drm_i915_gem_object
*obj
)
2144 struct drm_i915_private
*dev_priv
= to_i915(obj
->base
.dev
);
2147 err
= drm_gem_create_mmap_offset(&obj
->base
);
2151 /* Attempt to reap some mmap space from dead objects */
2153 err
= i915_gem_wait_for_idle(dev_priv
, I915_WAIT_INTERRUPTIBLE
);
2157 i915_gem_drain_freed_objects(dev_priv
);
2158 err
= drm_gem_create_mmap_offset(&obj
->base
);
2162 } while (flush_delayed_work(&dev_priv
->gt
.retire_work
));
2167 static void i915_gem_object_free_mmap_offset(struct drm_i915_gem_object
*obj
)
2169 drm_gem_free_mmap_offset(&obj
->base
);
2173 i915_gem_mmap_gtt(struct drm_file
*file
,
2174 struct drm_device
*dev
,
2178 struct drm_i915_gem_object
*obj
;
2181 obj
= i915_gem_object_lookup(file
, handle
);
2185 ret
= i915_gem_object_create_mmap_offset(obj
);
2187 *offset
= drm_vma_node_offset_addr(&obj
->base
.vma_node
);
2189 i915_gem_object_put(obj
);
2194 * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
2196 * @data: GTT mapping ioctl data
2197 * @file: GEM object info
2199 * Simply returns the fake offset to userspace so it can mmap it.
2200 * The mmap call will end up in drm_gem_mmap(), which will set things
2201 * up so we can get faults in the handler above.
2203 * The fault handler will take care of binding the object into the GTT
2204 * (since it may have been evicted to make room for something), allocating
2205 * a fence register, and mapping the appropriate aperture address into
2209 i915_gem_mmap_gtt_ioctl(struct drm_device
*dev
, void *data
,
2210 struct drm_file
*file
)
2212 struct drm_i915_gem_mmap_gtt
*args
= data
;
2214 return i915_gem_mmap_gtt(file
, dev
, args
->handle
, &args
->offset
);
2217 /* Immediately discard the backing storage */
2219 i915_gem_object_truncate(struct drm_i915_gem_object
*obj
)
2221 i915_gem_object_free_mmap_offset(obj
);
2223 if (obj
->base
.filp
== NULL
)
2226 /* Our goal here is to return as much of the memory as
2227 * is possible back to the system as we are called from OOM.
2228 * To do this we must instruct the shmfs to drop all of its
2229 * backing pages, *now*.
2231 shmem_truncate_range(file_inode(obj
->base
.filp
), 0, (loff_t
)-1);
2232 obj
->mm
.madv
= __I915_MADV_PURGED
;
2233 obj
->mm
.pages
= ERR_PTR(-EFAULT
);
2236 /* Try to discard unwanted pages */
2237 void __i915_gem_object_invalidate(struct drm_i915_gem_object
*obj
)
2239 struct address_space
*mapping
;
2241 lockdep_assert_held(&obj
->mm
.lock
);
2242 GEM_BUG_ON(i915_gem_object_has_pages(obj
));
2244 switch (obj
->mm
.madv
) {
2245 case I915_MADV_DONTNEED
:
2246 i915_gem_object_truncate(obj
);
2247 case __I915_MADV_PURGED
:
2251 if (obj
->base
.filp
== NULL
)
2254 mapping
= obj
->base
.filp
->f_mapping
,
2255 invalidate_mapping_pages(mapping
, 0, (loff_t
)-1);
2259 i915_gem_object_put_pages_gtt(struct drm_i915_gem_object
*obj
,
2260 struct sg_table
*pages
)
2262 struct sgt_iter sgt_iter
;
2265 __i915_gem_object_release_shmem(obj
, pages
, true);
2267 i915_gem_gtt_finish_pages(obj
, pages
);
2269 if (i915_gem_object_needs_bit17_swizzle(obj
))
2270 i915_gem_object_save_bit_17_swizzle(obj
, pages
);
2272 for_each_sgt_page(page
, sgt_iter
, pages
) {
2274 set_page_dirty(page
);
2276 if (obj
->mm
.madv
== I915_MADV_WILLNEED
)
2277 mark_page_accessed(page
);
2281 obj
->mm
.dirty
= false;
2283 sg_free_table(pages
);
2287 static void __i915_gem_object_reset_page_iter(struct drm_i915_gem_object
*obj
)
2289 struct radix_tree_iter iter
;
2293 radix_tree_for_each_slot(slot
, &obj
->mm
.get_page
.radix
, &iter
, 0)
2294 radix_tree_delete(&obj
->mm
.get_page
.radix
, iter
.index
);
2298 void __i915_gem_object_put_pages(struct drm_i915_gem_object
*obj
,
2299 enum i915_mm_subclass subclass
)
2301 struct drm_i915_private
*i915
= to_i915(obj
->base
.dev
);
2302 struct sg_table
*pages
;
2304 if (i915_gem_object_has_pinned_pages(obj
))
2307 GEM_BUG_ON(obj
->bind_count
);
2308 if (!i915_gem_object_has_pages(obj
))
2311 /* May be called by shrinker from within get_pages() (on another bo) */
2312 mutex_lock_nested(&obj
->mm
.lock
, subclass
);
2313 if (unlikely(atomic_read(&obj
->mm
.pages_pin_count
)))
2316 /* ->put_pages might need to allocate memory for the bit17 swizzle
2317 * array, hence protect them from being reaped by removing them from gtt
2319 pages
= fetch_and_zero(&obj
->mm
.pages
);
2322 spin_lock(&i915
->mm
.obj_lock
);
2323 list_del(&obj
->mm
.link
);
2324 spin_unlock(&i915
->mm
.obj_lock
);
2326 if (obj
->mm
.mapping
) {
2329 ptr
= page_mask_bits(obj
->mm
.mapping
);
2330 if (is_vmalloc_addr(ptr
))
2333 kunmap(kmap_to_page(ptr
));
2335 obj
->mm
.mapping
= NULL
;
2338 __i915_gem_object_reset_page_iter(obj
);
2341 obj
->ops
->put_pages(obj
, pages
);
2343 obj
->mm
.page_sizes
.phys
= obj
->mm
.page_sizes
.sg
= 0;
2346 mutex_unlock(&obj
->mm
.lock
);
2349 static bool i915_sg_trim(struct sg_table
*orig_st
)
2351 struct sg_table new_st
;
2352 struct scatterlist
*sg
, *new_sg
;
2355 if (orig_st
->nents
== orig_st
->orig_nents
)
2358 if (sg_alloc_table(&new_st
, orig_st
->nents
, GFP_KERNEL
| __GFP_NOWARN
))
2361 new_sg
= new_st
.sgl
;
2362 for_each_sg(orig_st
->sgl
, sg
, orig_st
->nents
, i
) {
2363 sg_set_page(new_sg
, sg_page(sg
), sg
->length
, 0);
2364 /* called before being DMA mapped, no need to copy sg->dma_* */
2365 new_sg
= sg_next(new_sg
);
2367 GEM_BUG_ON(new_sg
); /* Should walk exactly nents and hit the end */
2369 sg_free_table(orig_st
);
2375 static int i915_gem_object_get_pages_gtt(struct drm_i915_gem_object
*obj
)
2377 struct drm_i915_private
*dev_priv
= to_i915(obj
->base
.dev
);
2378 const unsigned long page_count
= obj
->base
.size
/ PAGE_SIZE
;
2380 struct address_space
*mapping
;
2381 struct sg_table
*st
;
2382 struct scatterlist
*sg
;
2383 struct sgt_iter sgt_iter
;
2385 unsigned long last_pfn
= 0; /* suppress gcc warning */
2386 unsigned int max_segment
= i915_sg_segment_size();
2387 unsigned int sg_page_sizes
;
2391 /* Assert that the object is not currently in any GPU domain. As it
2392 * wasn't in the GTT, there shouldn't be any way it could have been in
2395 GEM_BUG_ON(obj
->base
.read_domains
& I915_GEM_GPU_DOMAINS
);
2396 GEM_BUG_ON(obj
->base
.write_domain
& I915_GEM_GPU_DOMAINS
);
2398 st
= kmalloc(sizeof(*st
), GFP_KERNEL
);
2403 if (sg_alloc_table(st
, page_count
, GFP_KERNEL
)) {
2408 /* Get the list of pages out of our struct file. They'll be pinned
2409 * at this point until we release them.
2411 * Fail silently without starting the shrinker
2413 mapping
= obj
->base
.filp
->f_mapping
;
2414 noreclaim
= mapping_gfp_constraint(mapping
, ~__GFP_RECLAIM
);
2415 noreclaim
|= __GFP_NORETRY
| __GFP_NOWARN
;
2420 for (i
= 0; i
< page_count
; i
++) {
2421 const unsigned int shrink
[] = {
2422 I915_SHRINK_BOUND
| I915_SHRINK_UNBOUND
| I915_SHRINK_PURGEABLE
,
2425 gfp_t gfp
= noreclaim
;
2428 page
= shmem_read_mapping_page_gfp(mapping
, i
, gfp
);
2429 if (likely(!IS_ERR(page
)))
2433 ret
= PTR_ERR(page
);
2437 i915_gem_shrink(dev_priv
, 2 * page_count
, NULL
, *s
++);
2440 /* We've tried hard to allocate the memory by reaping
2441 * our own buffer, now let the real VM do its job and
2442 * go down in flames if truly OOM.
2444 * However, since graphics tend to be disposable,
2445 * defer the oom here by reporting the ENOMEM back
2449 /* reclaim and warn, but no oom */
2450 gfp
= mapping_gfp_mask(mapping
);
2452 /* Our bo are always dirty and so we require
2453 * kswapd to reclaim our pages (direct reclaim
2454 * does not effectively begin pageout of our
2455 * buffers on its own). However, direct reclaim
2456 * only waits for kswapd when under allocation
2457 * congestion. So as a result __GFP_RECLAIM is
2458 * unreliable and fails to actually reclaim our
2459 * dirty pages -- unless you try over and over
2460 * again with !__GFP_NORETRY. However, we still
2461 * want to fail this allocation rather than
2462 * trigger the out-of-memory killer and for
2463 * this we want __GFP_RETRY_MAYFAIL.
2465 gfp
|= __GFP_RETRY_MAYFAIL
;
2470 sg
->length
>= max_segment
||
2471 page_to_pfn(page
) != last_pfn
+ 1) {
2473 sg_page_sizes
|= sg
->length
;
2477 sg_set_page(sg
, page
, PAGE_SIZE
, 0);
2479 sg
->length
+= PAGE_SIZE
;
2481 last_pfn
= page_to_pfn(page
);
2483 /* Check that the i965g/gm workaround works. */
2484 WARN_ON((gfp
& __GFP_DMA32
) && (last_pfn
>= 0x00100000UL
));
2486 if (sg
) { /* loop terminated early; short sg table */
2487 sg_page_sizes
|= sg
->length
;
2491 /* Trim unused sg entries to avoid wasting memory. */
2494 ret
= i915_gem_gtt_prepare_pages(obj
, st
);
2496 /* DMA remapping failed? One possible cause is that
2497 * it could not reserve enough large entries, asking
2498 * for PAGE_SIZE chunks instead may be helpful.
2500 if (max_segment
> PAGE_SIZE
) {
2501 for_each_sgt_page(page
, sgt_iter
, st
)
2505 max_segment
= PAGE_SIZE
;
2508 dev_warn(&dev_priv
->drm
.pdev
->dev
,
2509 "Failed to DMA remap %lu pages\n",
2515 if (i915_gem_object_needs_bit17_swizzle(obj
))
2516 i915_gem_object_do_bit_17_swizzle(obj
, st
);
2518 __i915_gem_object_set_pages(obj
, st
, sg_page_sizes
);
2525 for_each_sgt_page(page
, sgt_iter
, st
)
2530 /* shmemfs first checks if there is enough memory to allocate the page
2531 * and reports ENOSPC should there be insufficient, along with the usual
2532 * ENOMEM for a genuine allocation failure.
2534 * We use ENOSPC in our driver to mean that we have run out of aperture
2535 * space and so want to translate the error from shmemfs back to our
2536 * usual understanding of ENOMEM.
2544 void __i915_gem_object_set_pages(struct drm_i915_gem_object
*obj
,
2545 struct sg_table
*pages
,
2546 unsigned int sg_page_sizes
)
2548 struct drm_i915_private
*i915
= to_i915(obj
->base
.dev
);
2549 unsigned long supported
= INTEL_INFO(i915
)->page_sizes
;
2552 lockdep_assert_held(&obj
->mm
.lock
);
2554 obj
->mm
.get_page
.sg_pos
= pages
->sgl
;
2555 obj
->mm
.get_page
.sg_idx
= 0;
2557 obj
->mm
.pages
= pages
;
2559 if (i915_gem_object_is_tiled(obj
) &&
2560 i915
->quirks
& QUIRK_PIN_SWIZZLED_PAGES
) {
2561 GEM_BUG_ON(obj
->mm
.quirked
);
2562 __i915_gem_object_pin_pages(obj
);
2563 obj
->mm
.quirked
= true;
2566 GEM_BUG_ON(!sg_page_sizes
);
2567 obj
->mm
.page_sizes
.phys
= sg_page_sizes
;
2570 * Calculate the supported page-sizes which fit into the given
2571 * sg_page_sizes. This will give us the page-sizes which we may be able
2572 * to use opportunistically when later inserting into the GTT. For
2573 * example if phys=2G, then in theory we should be able to use 1G, 2M,
2574 * 64K or 4K pages, although in practice this will depend on a number of
2577 obj
->mm
.page_sizes
.sg
= 0;
2578 for_each_set_bit(i
, &supported
, ilog2(I915_GTT_MAX_PAGE_SIZE
) + 1) {
2579 if (obj
->mm
.page_sizes
.phys
& ~0u << i
)
2580 obj
->mm
.page_sizes
.sg
|= BIT(i
);
2582 GEM_BUG_ON(!HAS_PAGE_SIZES(i915
, obj
->mm
.page_sizes
.sg
));
2584 spin_lock(&i915
->mm
.obj_lock
);
2585 list_add(&obj
->mm
.link
, &i915
->mm
.unbound_list
);
2586 spin_unlock(&i915
->mm
.obj_lock
);
2589 static int ____i915_gem_object_get_pages(struct drm_i915_gem_object
*obj
)
2593 if (unlikely(obj
->mm
.madv
!= I915_MADV_WILLNEED
)) {
2594 DRM_DEBUG("Attempting to obtain a purgeable object\n");
2598 err
= obj
->ops
->get_pages(obj
);
2599 GEM_BUG_ON(!err
&& !i915_gem_object_has_pages(obj
));
2604 /* Ensure that the associated pages are gathered from the backing storage
2605 * and pinned into our object. i915_gem_object_pin_pages() may be called
2606 * multiple times before they are released by a single call to
2607 * i915_gem_object_unpin_pages() - once the pages are no longer referenced
2608 * either as a result of memory pressure (reaping pages under the shrinker)
2609 * or as the object is itself released.
2611 int __i915_gem_object_get_pages(struct drm_i915_gem_object
*obj
)
2615 err
= mutex_lock_interruptible(&obj
->mm
.lock
);
2619 if (unlikely(!i915_gem_object_has_pages(obj
))) {
2620 GEM_BUG_ON(i915_gem_object_has_pinned_pages(obj
));
2622 err
= ____i915_gem_object_get_pages(obj
);
2626 smp_mb__before_atomic();
2628 atomic_inc(&obj
->mm
.pages_pin_count
);
2631 mutex_unlock(&obj
->mm
.lock
);
2635 /* The 'mapping' part of i915_gem_object_pin_map() below */
2636 static void *i915_gem_object_map(const struct drm_i915_gem_object
*obj
,
2637 enum i915_map_type type
)
2639 unsigned long n_pages
= obj
->base
.size
>> PAGE_SHIFT
;
2640 struct sg_table
*sgt
= obj
->mm
.pages
;
2641 struct sgt_iter sgt_iter
;
2643 struct page
*stack_pages
[32];
2644 struct page
**pages
= stack_pages
;
2645 unsigned long i
= 0;
2649 /* A single page can always be kmapped */
2650 if (n_pages
== 1 && type
== I915_MAP_WB
)
2651 return kmap(sg_page(sgt
->sgl
));
2653 if (n_pages
> ARRAY_SIZE(stack_pages
)) {
2654 /* Too big for stack -- allocate temporary array instead */
2655 pages
= kvmalloc_array(n_pages
, sizeof(*pages
), GFP_KERNEL
);
2660 for_each_sgt_page(page
, sgt_iter
, sgt
)
2663 /* Check that we have the expected number of pages */
2664 GEM_BUG_ON(i
!= n_pages
);
2669 /* fallthrough to use PAGE_KERNEL anyway */
2671 pgprot
= PAGE_KERNEL
;
2674 pgprot
= pgprot_writecombine(PAGE_KERNEL_IO
);
2677 addr
= vmap(pages
, n_pages
, 0, pgprot
);
2679 if (pages
!= stack_pages
)
2685 /* get, pin, and map the pages of the object into kernel space */
2686 void *i915_gem_object_pin_map(struct drm_i915_gem_object
*obj
,
2687 enum i915_map_type type
)
2689 enum i915_map_type has_type
;
2694 if (unlikely(!i915_gem_object_has_struct_page(obj
)))
2695 return ERR_PTR(-ENXIO
);
2697 ret
= mutex_lock_interruptible(&obj
->mm
.lock
);
2699 return ERR_PTR(ret
);
2701 pinned
= !(type
& I915_MAP_OVERRIDE
);
2702 type
&= ~I915_MAP_OVERRIDE
;
2704 if (!atomic_inc_not_zero(&obj
->mm
.pages_pin_count
)) {
2705 if (unlikely(!i915_gem_object_has_pages(obj
))) {
2706 GEM_BUG_ON(i915_gem_object_has_pinned_pages(obj
));
2708 ret
= ____i915_gem_object_get_pages(obj
);
2712 smp_mb__before_atomic();
2714 atomic_inc(&obj
->mm
.pages_pin_count
);
2717 GEM_BUG_ON(!i915_gem_object_has_pages(obj
));
2719 ptr
= page_unpack_bits(obj
->mm
.mapping
, &has_type
);
2720 if (ptr
&& has_type
!= type
) {
2726 if (is_vmalloc_addr(ptr
))
2729 kunmap(kmap_to_page(ptr
));
2731 ptr
= obj
->mm
.mapping
= NULL
;
2735 ptr
= i915_gem_object_map(obj
, type
);
2741 obj
->mm
.mapping
= page_pack_bits(ptr
, type
);
2745 mutex_unlock(&obj
->mm
.lock
);
2749 atomic_dec(&obj
->mm
.pages_pin_count
);
2756 i915_gem_object_pwrite_gtt(struct drm_i915_gem_object
*obj
,
2757 const struct drm_i915_gem_pwrite
*arg
)
2759 struct address_space
*mapping
= obj
->base
.filp
->f_mapping
;
2760 char __user
*user_data
= u64_to_user_ptr(arg
->data_ptr
);
2764 /* Before we instantiate/pin the backing store for our use, we
2765 * can prepopulate the shmemfs filp efficiently using a write into
2766 * the pagecache. We avoid the penalty of instantiating all the
2767 * pages, important if the user is just writing to a few and never
2768 * uses the object on the GPU, and using a direct write into shmemfs
2769 * allows it to avoid the cost of retrieving a page (either swapin
2770 * or clearing-before-use) before it is overwritten.
2772 if (i915_gem_object_has_pages(obj
))
2775 if (obj
->mm
.madv
!= I915_MADV_WILLNEED
)
2778 /* Before the pages are instantiated the object is treated as being
2779 * in the CPU domain. The pages will be clflushed as required before
2780 * use, and we can freely write into the pages directly. If userspace
2781 * races pwrite with any other operation; corruption will ensue -
2782 * that is userspace's prerogative!
2786 offset
= arg
->offset
;
2787 pg
= offset_in_page(offset
);
2790 unsigned int len
, unwritten
;
2795 len
= PAGE_SIZE
- pg
;
2799 err
= pagecache_write_begin(obj
->base
.filp
, mapping
,
2806 unwritten
= copy_from_user(vaddr
+ pg
, user_data
, len
);
2809 err
= pagecache_write_end(obj
->base
.filp
, mapping
,
2810 offset
, len
, len
- unwritten
,
2827 static bool ban_context(const struct i915_gem_context
*ctx
,
2830 return (i915_gem_context_is_bannable(ctx
) &&
2831 score
>= CONTEXT_SCORE_BAN_THRESHOLD
);
2834 static void i915_gem_context_mark_guilty(struct i915_gem_context
*ctx
)
2839 atomic_inc(&ctx
->guilty_count
);
2841 score
= atomic_add_return(CONTEXT_SCORE_GUILTY
, &ctx
->ban_score
);
2842 banned
= ban_context(ctx
, score
);
2843 DRM_DEBUG_DRIVER("context %s marked guilty (score %d) banned? %s\n",
2844 ctx
->name
, score
, yesno(banned
));
2848 i915_gem_context_set_banned(ctx
);
2849 if (!IS_ERR_OR_NULL(ctx
->file_priv
)) {
2850 atomic_inc(&ctx
->file_priv
->context_bans
);
2851 DRM_DEBUG_DRIVER("client %s has had %d context banned\n",
2852 ctx
->name
, atomic_read(&ctx
->file_priv
->context_bans
));
2856 static void i915_gem_context_mark_innocent(struct i915_gem_context
*ctx
)
2858 atomic_inc(&ctx
->active_count
);
2861 struct drm_i915_gem_request
*
2862 i915_gem_find_active_request(struct intel_engine_cs
*engine
)
2864 struct drm_i915_gem_request
*request
, *active
= NULL
;
2865 unsigned long flags
;
2867 /* We are called by the error capture and reset at a random
2868 * point in time. In particular, note that neither is crucially
2869 * ordered with an interrupt. After a hang, the GPU is dead and we
2870 * assume that no more writes can happen (we waited long enough for
2871 * all writes that were in transaction to be flushed) - adding an
2872 * extra delay for a recent interrupt is pointless. Hence, we do
2873 * not need an engine->irq_seqno_barrier() before the seqno reads.
2875 spin_lock_irqsave(&engine
->timeline
->lock
, flags
);
2876 list_for_each_entry(request
, &engine
->timeline
->requests
, link
) {
2877 if (__i915_gem_request_completed(request
,
2878 request
->global_seqno
))
2881 GEM_BUG_ON(request
->engine
!= engine
);
2882 GEM_BUG_ON(test_bit(DMA_FENCE_FLAG_SIGNALED_BIT
,
2883 &request
->fence
.flags
));
2888 spin_unlock_irqrestore(&engine
->timeline
->lock
, flags
);
2893 static bool engine_stalled(struct intel_engine_cs
*engine
)
2895 if (!engine
->hangcheck
.stalled
)
2898 /* Check for possible seqno movement after hang declaration */
2899 if (engine
->hangcheck
.seqno
!= intel_engine_get_seqno(engine
)) {
2900 DRM_DEBUG_DRIVER("%s pardoned\n", engine
->name
);
2908 * Ensure irq handler finishes, and not run again.
2909 * Also return the active request so that we only search for it once.
2911 struct drm_i915_gem_request
*
2912 i915_gem_reset_prepare_engine(struct intel_engine_cs
*engine
)
2914 struct drm_i915_gem_request
*request
= NULL
;
2917 * During the reset sequence, we must prevent the engine from
2918 * entering RC6. As the context state is undefined until we restart
2919 * the engine, if it does enter RC6 during the reset, the state
2920 * written to the powercontext is undefined and so we may lose
2921 * GPU state upon resume, i.e. fail to restart after a reset.
2923 intel_uncore_forcewake_get(engine
->i915
, FORCEWAKE_ALL
);
2926 * Prevent the signaler thread from updating the request
2927 * state (by calling dma_fence_signal) as we are processing
2928 * the reset. The write from the GPU of the seqno is
2929 * asynchronous and the signaler thread may see a different
2930 * value to us and declare the request complete, even though
2931 * the reset routine have picked that request as the active
2932 * (incomplete) request. This conflict is not handled
2935 kthread_park(engine
->breadcrumbs
.signaler
);
2938 * Prevent request submission to the hardware until we have
2939 * completed the reset in i915_gem_reset_finish(). If a request
2940 * is completed by one engine, it may then queue a request
2941 * to a second via its execlists->tasklet *just* as we are
2942 * calling engine->init_hw() and also writing the ELSP.
2943 * Turning off the execlists->tasklet until the reset is over
2944 * prevents the race.
2946 tasklet_kill(&engine
->execlists
.tasklet
);
2947 tasklet_disable(&engine
->execlists
.tasklet
);
2950 * We're using worker to queue preemption requests from the tasklet in
2951 * GuC submission mode.
2952 * Even though tasklet was disabled, we may still have a worker queued.
2953 * Let's make sure that all workers scheduled before disabling the
2954 * tasklet are completed before continuing with the reset.
2956 if (engine
->i915
->guc
.preempt_wq
)
2957 flush_workqueue(engine
->i915
->guc
.preempt_wq
);
2959 if (engine
->irq_seqno_barrier
)
2960 engine
->irq_seqno_barrier(engine
);
2962 request
= i915_gem_find_active_request(engine
);
2963 if (request
&& request
->fence
.error
== -EIO
)
2964 request
= ERR_PTR(-EIO
); /* Previous reset failed! */
2969 int i915_gem_reset_prepare(struct drm_i915_private
*dev_priv
)
2971 struct intel_engine_cs
*engine
;
2972 struct drm_i915_gem_request
*request
;
2973 enum intel_engine_id id
;
2976 for_each_engine(engine
, dev_priv
, id
) {
2977 request
= i915_gem_reset_prepare_engine(engine
);
2978 if (IS_ERR(request
)) {
2979 err
= PTR_ERR(request
);
2983 engine
->hangcheck
.active_request
= request
;
2986 i915_gem_revoke_fences(dev_priv
);
2991 static void skip_request(struct drm_i915_gem_request
*request
)
2993 void *vaddr
= request
->ring
->vaddr
;
2996 /* As this request likely depends on state from the lost
2997 * context, clear out all the user operations leaving the
2998 * breadcrumb at the end (so we get the fence notifications).
3000 head
= request
->head
;
3001 if (request
->postfix
< head
) {
3002 memset(vaddr
+ head
, 0, request
->ring
->size
- head
);
3005 memset(vaddr
+ head
, 0, request
->postfix
- head
);
3007 dma_fence_set_error(&request
->fence
, -EIO
);
3010 static void engine_skip_context(struct drm_i915_gem_request
*request
)
3012 struct intel_engine_cs
*engine
= request
->engine
;
3013 struct i915_gem_context
*hung_ctx
= request
->ctx
;
3014 struct intel_timeline
*timeline
;
3015 unsigned long flags
;
3017 timeline
= i915_gem_context_lookup_timeline(hung_ctx
, engine
);
3019 spin_lock_irqsave(&engine
->timeline
->lock
, flags
);
3020 spin_lock(&timeline
->lock
);
3022 list_for_each_entry_continue(request
, &engine
->timeline
->requests
, link
)
3023 if (request
->ctx
== hung_ctx
)
3024 skip_request(request
);
3026 list_for_each_entry(request
, &timeline
->requests
, link
)
3027 skip_request(request
);
3029 spin_unlock(&timeline
->lock
);
3030 spin_unlock_irqrestore(&engine
->timeline
->lock
, flags
);
3033 /* Returns the request if it was guilty of the hang */
3034 static struct drm_i915_gem_request
*
3035 i915_gem_reset_request(struct intel_engine_cs
*engine
,
3036 struct drm_i915_gem_request
*request
)
3038 /* The guilty request will get skipped on a hung engine.
3040 * Users of client default contexts do not rely on logical
3041 * state preserved between batches so it is safe to execute
3042 * queued requests following the hang. Non default contexts
3043 * rely on preserved state, so skipping a batch loses the
3044 * evolution of the state and it needs to be considered corrupted.
3045 * Executing more queued batches on top of corrupted state is
3046 * risky. But we take the risk by trying to advance through
3047 * the queued requests in order to make the client behaviour
3048 * more predictable around resets, by not throwing away random
3049 * amount of batches it has prepared for execution. Sophisticated
3050 * clients can use gem_reset_stats_ioctl and dma fence status
3051 * (exported via sync_file info ioctl on explicit fences) to observe
3052 * when it loses the context state and should rebuild accordingly.
3054 * The context ban, and ultimately the client ban, mechanism are safety
3055 * valves if client submission ends up resulting in nothing more than
3059 if (engine_stalled(engine
)) {
3060 i915_gem_context_mark_guilty(request
->ctx
);
3061 skip_request(request
);
3063 /* If this context is now banned, skip all pending requests. */
3064 if (i915_gem_context_is_banned(request
->ctx
))
3065 engine_skip_context(request
);
3068 * Since this is not the hung engine, it may have advanced
3069 * since the hang declaration. Double check by refinding
3070 * the active request at the time of the reset.
3072 request
= i915_gem_find_active_request(engine
);
3074 i915_gem_context_mark_innocent(request
->ctx
);
3075 dma_fence_set_error(&request
->fence
, -EAGAIN
);
3077 /* Rewind the engine to replay the incomplete rq */
3078 spin_lock_irq(&engine
->timeline
->lock
);
3079 request
= list_prev_entry(request
, link
);
3080 if (&request
->link
== &engine
->timeline
->requests
)
3082 spin_unlock_irq(&engine
->timeline
->lock
);
3089 void i915_gem_reset_engine(struct intel_engine_cs
*engine
,
3090 struct drm_i915_gem_request
*request
)
3093 * Make sure this write is visible before we re-enable the interrupt
3094 * handlers on another CPU, as tasklet_enable() resolves to just
3095 * a compiler barrier which is insufficient for our purpose here.
3097 smp_store_mb(engine
->irq_posted
, 0);
3100 request
= i915_gem_reset_request(engine
, request
);
3103 DRM_DEBUG_DRIVER("resetting %s to restart from tail of request 0x%x\n",
3104 engine
->name
, request
->global_seqno
);
3107 /* Setup the CS to resume from the breadcrumb of the hung request */
3108 engine
->reset_hw(engine
, request
);
3111 void i915_gem_reset(struct drm_i915_private
*dev_priv
)
3113 struct intel_engine_cs
*engine
;
3114 enum intel_engine_id id
;
3116 lockdep_assert_held(&dev_priv
->drm
.struct_mutex
);
3118 i915_gem_retire_requests(dev_priv
);
3120 for_each_engine(engine
, dev_priv
, id
) {
3121 struct i915_gem_context
*ctx
;
3123 i915_gem_reset_engine(engine
, engine
->hangcheck
.active_request
);
3124 ctx
= fetch_and_zero(&engine
->last_retired_context
);
3126 engine
->context_unpin(engine
, ctx
);
3129 * Ostensibily, we always want a context loaded for powersaving,
3130 * so if the engine is idle after the reset, send a request
3131 * to load our scratch kernel_context.
3133 * More mysteriously, if we leave the engine idle after a reset,
3134 * the next userspace batch may hang, with what appears to be
3135 * an incoherent read by the CS (presumably stale TLB). An
3136 * empty request appears sufficient to paper over the glitch.
3138 if (list_empty(&engine
->timeline
->requests
)) {
3139 struct drm_i915_gem_request
*rq
;
3141 rq
= i915_gem_request_alloc(engine
,
3142 dev_priv
->kernel_context
);
3144 __i915_add_request(rq
, false);
3148 i915_gem_restore_fences(dev_priv
);
3150 if (dev_priv
->gt
.awake
) {
3151 intel_sanitize_gt_powersave(dev_priv
);
3152 intel_enable_gt_powersave(dev_priv
);
3153 if (INTEL_GEN(dev_priv
) >= 6)
3154 gen6_rps_busy(dev_priv
);
3158 void i915_gem_reset_finish_engine(struct intel_engine_cs
*engine
)
3160 tasklet_enable(&engine
->execlists
.tasklet
);
3161 kthread_unpark(engine
->breadcrumbs
.signaler
);
3163 intel_uncore_forcewake_put(engine
->i915
, FORCEWAKE_ALL
);
3166 void i915_gem_reset_finish(struct drm_i915_private
*dev_priv
)
3168 struct intel_engine_cs
*engine
;
3169 enum intel_engine_id id
;
3171 lockdep_assert_held(&dev_priv
->drm
.struct_mutex
);
3173 for_each_engine(engine
, dev_priv
, id
) {
3174 engine
->hangcheck
.active_request
= NULL
;
3175 i915_gem_reset_finish_engine(engine
);
3179 static void nop_submit_request(struct drm_i915_gem_request
*request
)
3181 dma_fence_set_error(&request
->fence
, -EIO
);
3183 i915_gem_request_submit(request
);
3186 static void nop_complete_submit_request(struct drm_i915_gem_request
*request
)
3188 unsigned long flags
;
3190 dma_fence_set_error(&request
->fence
, -EIO
);
3192 spin_lock_irqsave(&request
->engine
->timeline
->lock
, flags
);
3193 __i915_gem_request_submit(request
);
3194 intel_engine_init_global_seqno(request
->engine
, request
->global_seqno
);
3195 spin_unlock_irqrestore(&request
->engine
->timeline
->lock
, flags
);
3198 void i915_gem_set_wedged(struct drm_i915_private
*i915
)
3200 struct intel_engine_cs
*engine
;
3201 enum intel_engine_id id
;
3204 * First, stop submission to hw, but do not yet complete requests by
3205 * rolling the global seqno forward (since this would complete requests
3206 * for which we haven't set the fence error to EIO yet).
3208 for_each_engine(engine
, i915
, id
)
3209 engine
->submit_request
= nop_submit_request
;
3212 * Make sure no one is running the old callback before we proceed with
3213 * cancelling requests and resetting the completion tracking. Otherwise
3214 * we might submit a request to the hardware which never completes.
3218 for_each_engine(engine
, i915
, id
) {
3219 /* Mark all executing requests as skipped */
3220 engine
->cancel_requests(engine
);
3223 * Only once we've force-cancelled all in-flight requests can we
3224 * start to complete all requests.
3226 engine
->submit_request
= nop_complete_submit_request
;
3230 * Make sure no request can slip through without getting completed by
3231 * either this call here to intel_engine_init_global_seqno, or the one
3232 * in nop_complete_submit_request.
3236 for_each_engine(engine
, i915
, id
) {
3237 unsigned long flags
;
3239 /* Mark all pending requests as complete so that any concurrent
3240 * (lockless) lookup doesn't try and wait upon the request as we
3243 spin_lock_irqsave(&engine
->timeline
->lock
, flags
);
3244 intel_engine_init_global_seqno(engine
,
3245 intel_engine_last_submit(engine
));
3246 spin_unlock_irqrestore(&engine
->timeline
->lock
, flags
);
3249 set_bit(I915_WEDGED
, &i915
->gpu_error
.flags
);
3250 wake_up_all(&i915
->gpu_error
.reset_queue
);
3253 bool i915_gem_unset_wedged(struct drm_i915_private
*i915
)
3255 struct i915_gem_timeline
*tl
;
3258 lockdep_assert_held(&i915
->drm
.struct_mutex
);
3259 if (!test_bit(I915_WEDGED
, &i915
->gpu_error
.flags
))
3262 /* Before unwedging, make sure that all pending operations
3263 * are flushed and errored out - we may have requests waiting upon
3264 * third party fences. We marked all inflight requests as EIO, and
3265 * every execbuf since returned EIO, for consistency we want all
3266 * the currently pending requests to also be marked as EIO, which
3267 * is done inside our nop_submit_request - and so we must wait.
3269 * No more can be submitted until we reset the wedged bit.
3271 list_for_each_entry(tl
, &i915
->gt
.timelines
, link
) {
3272 for (i
= 0; i
< ARRAY_SIZE(tl
->engine
); i
++) {
3273 struct drm_i915_gem_request
*rq
;
3275 rq
= i915_gem_active_peek(&tl
->engine
[i
].last_request
,
3276 &i915
->drm
.struct_mutex
);
3280 /* We can't use our normal waiter as we want to
3281 * avoid recursively trying to handle the current
3282 * reset. The basic dma_fence_default_wait() installs
3283 * a callback for dma_fence_signal(), which is
3284 * triggered by our nop handler (indirectly, the
3285 * callback enables the signaler thread which is
3286 * woken by the nop_submit_request() advancing the seqno
3287 * and when the seqno passes the fence, the signaler
3288 * then signals the fence waking us up).
3290 if (dma_fence_default_wait(&rq
->fence
, true,
3291 MAX_SCHEDULE_TIMEOUT
) < 0)
3296 /* Undo nop_submit_request. We prevent all new i915 requests from
3297 * being queued (by disallowing execbuf whilst wedged) so having
3298 * waited for all active requests above, we know the system is idle
3299 * and do not have to worry about a thread being inside
3300 * engine->submit_request() as we swap over. So unlike installing
3301 * the nop_submit_request on reset, we can do this from normal
3302 * context and do not require stop_machine().
3304 intel_engines_reset_default_submission(i915
);
3305 i915_gem_contexts_lost(i915
);
3307 smp_mb__before_atomic(); /* complete takeover before enabling execbuf */
3308 clear_bit(I915_WEDGED
, &i915
->gpu_error
.flags
);
3314 i915_gem_retire_work_handler(struct work_struct
*work
)
3316 struct drm_i915_private
*dev_priv
=
3317 container_of(work
, typeof(*dev_priv
), gt
.retire_work
.work
);
3318 struct drm_device
*dev
= &dev_priv
->drm
;
3320 /* Come back later if the device is busy... */
3321 if (mutex_trylock(&dev
->struct_mutex
)) {
3322 i915_gem_retire_requests(dev_priv
);
3323 mutex_unlock(&dev
->struct_mutex
);
3327 * Keep the retire handler running until we are finally idle.
3328 * We do not need to do this test under locking as in the worst-case
3329 * we queue the retire worker once too often.
3331 if (READ_ONCE(dev_priv
->gt
.awake
))
3332 queue_delayed_work(dev_priv
->wq
,
3333 &dev_priv
->gt
.retire_work
,
3334 round_jiffies_up_relative(HZ
));
3338 new_requests_since_last_retire(const struct drm_i915_private
*i915
)
3340 return (READ_ONCE(i915
->gt
.active_requests
) ||
3341 work_pending(&i915
->gt
.idle_work
.work
));
3345 i915_gem_idle_work_handler(struct work_struct
*work
)
3347 struct drm_i915_private
*dev_priv
=
3348 container_of(work
, typeof(*dev_priv
), gt
.idle_work
.work
);
3349 bool rearm_hangcheck
;
3352 if (!READ_ONCE(dev_priv
->gt
.awake
))
3356 * Wait for last execlists context complete, but bail out in case a
3357 * new request is submitted.
3359 end
= ktime_add_ms(ktime_get(), I915_IDLE_ENGINES_TIMEOUT
);
3361 if (new_requests_since_last_retire(dev_priv
))
3364 if (intel_engines_are_idle(dev_priv
))
3367 usleep_range(100, 500);
3368 } while (ktime_before(ktime_get(), end
));
3371 cancel_delayed_work_sync(&dev_priv
->gpu_error
.hangcheck_work
);
3373 if (!mutex_trylock(&dev_priv
->drm
.struct_mutex
)) {
3374 /* Currently busy, come back later */
3375 mod_delayed_work(dev_priv
->wq
,
3376 &dev_priv
->gt
.idle_work
,
3377 msecs_to_jiffies(50));
3382 * New request retired after this work handler started, extend active
3383 * period until next instance of the work.
3385 if (new_requests_since_last_retire(dev_priv
))
3389 * Be paranoid and flush a concurrent interrupt to make sure
3390 * we don't reactivate any irq tasklets after parking.
3392 * FIXME: Note that even though we have waited for execlists to be idle,
3393 * there may still be an in-flight interrupt even though the CSB
3394 * is now empty. synchronize_irq() makes sure that a residual interrupt
3395 * is completed before we continue, but it doesn't prevent the HW from
3396 * raising a spurious interrupt later. To complete the shield we should
3397 * coordinate disabling the CS irq with flushing the interrupts.
3399 synchronize_irq(dev_priv
->drm
.irq
);
3401 intel_engines_park(dev_priv
);
3402 i915_gem_timelines_park(dev_priv
);
3404 i915_pmu_gt_parked(dev_priv
);
3406 GEM_BUG_ON(!dev_priv
->gt
.awake
);
3407 dev_priv
->gt
.awake
= false;
3408 rearm_hangcheck
= false;
3410 if (INTEL_GEN(dev_priv
) >= 6)
3411 gen6_rps_idle(dev_priv
);
3413 intel_display_power_put(dev_priv
, POWER_DOMAIN_GT_IRQ
);
3415 intel_runtime_pm_put(dev_priv
);
3417 mutex_unlock(&dev_priv
->drm
.struct_mutex
);
3420 if (rearm_hangcheck
) {
3421 GEM_BUG_ON(!dev_priv
->gt
.awake
);
3422 i915_queue_hangcheck(dev_priv
);
3426 void i915_gem_close_object(struct drm_gem_object
*gem
, struct drm_file
*file
)
3428 struct drm_i915_private
*i915
= to_i915(gem
->dev
);
3429 struct drm_i915_gem_object
*obj
= to_intel_bo(gem
);
3430 struct drm_i915_file_private
*fpriv
= file
->driver_priv
;
3431 struct i915_lut_handle
*lut
, *ln
;
3433 mutex_lock(&i915
->drm
.struct_mutex
);
3435 list_for_each_entry_safe(lut
, ln
, &obj
->lut_list
, obj_link
) {
3436 struct i915_gem_context
*ctx
= lut
->ctx
;
3437 struct i915_vma
*vma
;
3439 GEM_BUG_ON(ctx
->file_priv
== ERR_PTR(-EBADF
));
3440 if (ctx
->file_priv
!= fpriv
)
3443 vma
= radix_tree_delete(&ctx
->handles_vma
, lut
->handle
);
3444 GEM_BUG_ON(vma
->obj
!= obj
);
3446 /* We allow the process to have multiple handles to the same
3447 * vma, in the same fd namespace, by virtue of flink/open.
3449 GEM_BUG_ON(!vma
->open_count
);
3450 if (!--vma
->open_count
&& !i915_vma_is_ggtt(vma
))
3451 i915_vma_close(vma
);
3453 list_del(&lut
->obj_link
);
3454 list_del(&lut
->ctx_link
);
3456 kmem_cache_free(i915
->luts
, lut
);
3457 __i915_gem_object_release_unless_active(obj
);
3460 mutex_unlock(&i915
->drm
.struct_mutex
);
3463 static unsigned long to_wait_timeout(s64 timeout_ns
)
3466 return MAX_SCHEDULE_TIMEOUT
;
3468 if (timeout_ns
== 0)
3471 return nsecs_to_jiffies_timeout(timeout_ns
);
3475 * i915_gem_wait_ioctl - implements DRM_IOCTL_I915_GEM_WAIT
3476 * @dev: drm device pointer
3477 * @data: ioctl data blob
3478 * @file: drm file pointer
3480 * Returns 0 if successful, else an error is returned with the remaining time in
3481 * the timeout parameter.
3482 * -ETIME: object is still busy after timeout
3483 * -ERESTARTSYS: signal interrupted the wait
3484 * -ENONENT: object doesn't exist
3485 * Also possible, but rare:
3486 * -EAGAIN: incomplete, restart syscall
3488 * -ENODEV: Internal IRQ fail
3489 * -E?: The add request failed
3491 * The wait ioctl with a timeout of 0 reimplements the busy ioctl. With any
3492 * non-zero timeout parameter the wait ioctl will wait for the given number of
3493 * nanoseconds on an object becoming unbusy. Since the wait itself does so
3494 * without holding struct_mutex the object may become re-busied before this
3495 * function completes. A similar but shorter * race condition exists in the busy
3499 i915_gem_wait_ioctl(struct drm_device
*dev
, void *data
, struct drm_file
*file
)
3501 struct drm_i915_gem_wait
*args
= data
;
3502 struct drm_i915_gem_object
*obj
;
3506 if (args
->flags
!= 0)
3509 obj
= i915_gem_object_lookup(file
, args
->bo_handle
);
3513 start
= ktime_get();
3515 ret
= i915_gem_object_wait(obj
,
3516 I915_WAIT_INTERRUPTIBLE
| I915_WAIT_ALL
,
3517 to_wait_timeout(args
->timeout_ns
),
3518 to_rps_client(file
));
3520 if (args
->timeout_ns
> 0) {
3521 args
->timeout_ns
-= ktime_to_ns(ktime_sub(ktime_get(), start
));
3522 if (args
->timeout_ns
< 0)
3523 args
->timeout_ns
= 0;
3526 * Apparently ktime isn't accurate enough and occasionally has a
3527 * bit of mismatch in the jiffies<->nsecs<->ktime loop. So patch
3528 * things up to make the test happy. We allow up to 1 jiffy.
3530 * This is a regression from the timespec->ktime conversion.
3532 if (ret
== -ETIME
&& !nsecs_to_jiffies(args
->timeout_ns
))
3533 args
->timeout_ns
= 0;
3535 /* Asked to wait beyond the jiffie/scheduler precision? */
3536 if (ret
== -ETIME
&& args
->timeout_ns
)
3540 i915_gem_object_put(obj
);
3544 static int wait_for_timeline(struct i915_gem_timeline
*tl
, unsigned int flags
)
3548 for (i
= 0; i
< ARRAY_SIZE(tl
->engine
); i
++) {
3549 ret
= i915_gem_active_wait(&tl
->engine
[i
].last_request
, flags
);
3557 static int wait_for_engines(struct drm_i915_private
*i915
)
3559 if (wait_for(intel_engines_are_idle(i915
), I915_IDLE_ENGINES_TIMEOUT
)) {
3560 dev_err(i915
->drm
.dev
,
3561 "Failed to idle engines, declaring wedged!\n");
3562 if (drm_debug
& DRM_UT_DRIVER
) {
3563 struct drm_printer p
= drm_debug_printer(__func__
);
3564 struct intel_engine_cs
*engine
;
3565 enum intel_engine_id id
;
3567 for_each_engine(engine
, i915
, id
)
3568 intel_engine_dump(engine
, &p
,
3569 "%s", engine
->name
);
3572 i915_gem_set_wedged(i915
);
3579 int i915_gem_wait_for_idle(struct drm_i915_private
*i915
, unsigned int flags
)
3583 /* If the device is asleep, we have no requests outstanding */
3584 if (!READ_ONCE(i915
->gt
.awake
))
3587 if (flags
& I915_WAIT_LOCKED
) {
3588 struct i915_gem_timeline
*tl
;
3590 lockdep_assert_held(&i915
->drm
.struct_mutex
);
3592 list_for_each_entry(tl
, &i915
->gt
.timelines
, link
) {
3593 ret
= wait_for_timeline(tl
, flags
);
3597 i915_gem_retire_requests(i915
);
3599 ret
= wait_for_engines(i915
);
3601 ret
= wait_for_timeline(&i915
->gt
.global_timeline
, flags
);
3607 static void __i915_gem_object_flush_for_display(struct drm_i915_gem_object
*obj
)
3610 * We manually flush the CPU domain so that we can override and
3611 * force the flush for the display, and perform it asyncrhonously.
3613 flush_write_domain(obj
, ~I915_GEM_DOMAIN_CPU
);
3614 if (obj
->cache_dirty
)
3615 i915_gem_clflush_object(obj
, I915_CLFLUSH_FORCE
);
3616 obj
->base
.write_domain
= 0;
3619 void i915_gem_object_flush_if_display(struct drm_i915_gem_object
*obj
)
3621 if (!READ_ONCE(obj
->pin_global
))
3624 mutex_lock(&obj
->base
.dev
->struct_mutex
);
3625 __i915_gem_object_flush_for_display(obj
);
3626 mutex_unlock(&obj
->base
.dev
->struct_mutex
);
3630 * Moves a single object to the WC read, and possibly write domain.
3631 * @obj: object to act on
3632 * @write: ask for write access or read only
3634 * This function returns when the move is complete, including waiting on
3638 i915_gem_object_set_to_wc_domain(struct drm_i915_gem_object
*obj
, bool write
)
3642 lockdep_assert_held(&obj
->base
.dev
->struct_mutex
);
3644 ret
= i915_gem_object_wait(obj
,
3645 I915_WAIT_INTERRUPTIBLE
|
3647 (write
? I915_WAIT_ALL
: 0),
3648 MAX_SCHEDULE_TIMEOUT
,
3653 if (obj
->base
.write_domain
== I915_GEM_DOMAIN_WC
)
3656 /* Flush and acquire obj->pages so that we are coherent through
3657 * direct access in memory with previous cached writes through
3658 * shmemfs and that our cache domain tracking remains valid.
3659 * For example, if the obj->filp was moved to swap without us
3660 * being notified and releasing the pages, we would mistakenly
3661 * continue to assume that the obj remained out of the CPU cached
3664 ret
= i915_gem_object_pin_pages(obj
);
3668 flush_write_domain(obj
, ~I915_GEM_DOMAIN_WC
);
3670 /* Serialise direct access to this object with the barriers for
3671 * coherent writes from the GPU, by effectively invalidating the
3672 * WC domain upon first access.
3674 if ((obj
->base
.read_domains
& I915_GEM_DOMAIN_WC
) == 0)
3677 /* It should now be out of any other write domains, and we can update
3678 * the domain values for our changes.
3680 GEM_BUG_ON((obj
->base
.write_domain
& ~I915_GEM_DOMAIN_WC
) != 0);
3681 obj
->base
.read_domains
|= I915_GEM_DOMAIN_WC
;
3683 obj
->base
.read_domains
= I915_GEM_DOMAIN_WC
;
3684 obj
->base
.write_domain
= I915_GEM_DOMAIN_WC
;
3685 obj
->mm
.dirty
= true;
3688 i915_gem_object_unpin_pages(obj
);
3693 * Moves a single object to the GTT read, and possibly write domain.
3694 * @obj: object to act on
3695 * @write: ask for write access or read only
3697 * This function returns when the move is complete, including waiting on
3701 i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object
*obj
, bool write
)
3705 lockdep_assert_held(&obj
->base
.dev
->struct_mutex
);
3707 ret
= i915_gem_object_wait(obj
,
3708 I915_WAIT_INTERRUPTIBLE
|
3710 (write
? I915_WAIT_ALL
: 0),
3711 MAX_SCHEDULE_TIMEOUT
,
3716 if (obj
->base
.write_domain
== I915_GEM_DOMAIN_GTT
)
3719 /* Flush and acquire obj->pages so that we are coherent through
3720 * direct access in memory with previous cached writes through
3721 * shmemfs and that our cache domain tracking remains valid.
3722 * For example, if the obj->filp was moved to swap without us
3723 * being notified and releasing the pages, we would mistakenly
3724 * continue to assume that the obj remained out of the CPU cached
3727 ret
= i915_gem_object_pin_pages(obj
);
3731 flush_write_domain(obj
, ~I915_GEM_DOMAIN_GTT
);
3733 /* Serialise direct access to this object with the barriers for
3734 * coherent writes from the GPU, by effectively invalidating the
3735 * GTT domain upon first access.
3737 if ((obj
->base
.read_domains
& I915_GEM_DOMAIN_GTT
) == 0)
3740 /* It should now be out of any other write domains, and we can update
3741 * the domain values for our changes.
3743 GEM_BUG_ON((obj
->base
.write_domain
& ~I915_GEM_DOMAIN_GTT
) != 0);
3744 obj
->base
.read_domains
|= I915_GEM_DOMAIN_GTT
;
3746 obj
->base
.read_domains
= I915_GEM_DOMAIN_GTT
;
3747 obj
->base
.write_domain
= I915_GEM_DOMAIN_GTT
;
3748 obj
->mm
.dirty
= true;
3751 i915_gem_object_unpin_pages(obj
);
3756 * Changes the cache-level of an object across all VMA.
3757 * @obj: object to act on
3758 * @cache_level: new cache level to set for the object
3760 * After this function returns, the object will be in the new cache-level
3761 * across all GTT and the contents of the backing storage will be coherent,
3762 * with respect to the new cache-level. In order to keep the backing storage
3763 * coherent for all users, we only allow a single cache level to be set
3764 * globally on the object and prevent it from being changed whilst the
3765 * hardware is reading from the object. That is if the object is currently
3766 * on the scanout it will be set to uncached (or equivalent display
3767 * cache coherency) and all non-MOCS GPU access will also be uncached so
3768 * that all direct access to the scanout remains coherent.
3770 int i915_gem_object_set_cache_level(struct drm_i915_gem_object
*obj
,
3771 enum i915_cache_level cache_level
)
3773 struct i915_vma
*vma
;
3776 lockdep_assert_held(&obj
->base
.dev
->struct_mutex
);
3778 if (obj
->cache_level
== cache_level
)
3781 /* Inspect the list of currently bound VMA and unbind any that would
3782 * be invalid given the new cache-level. This is principally to
3783 * catch the issue of the CS prefetch crossing page boundaries and
3784 * reading an invalid PTE on older architectures.
3787 list_for_each_entry(vma
, &obj
->vma_list
, obj_link
) {
3788 if (!drm_mm_node_allocated(&vma
->node
))
3791 if (i915_vma_is_pinned(vma
)) {
3792 DRM_DEBUG("can not change the cache level of pinned objects\n");
3796 if (!i915_vma_is_closed(vma
) &&
3797 i915_gem_valid_gtt_space(vma
, cache_level
))
3800 ret
= i915_vma_unbind(vma
);
3804 /* As unbinding may affect other elements in the
3805 * obj->vma_list (due to side-effects from retiring
3806 * an active vma), play safe and restart the iterator.
3811 /* We can reuse the existing drm_mm nodes but need to change the
3812 * cache-level on the PTE. We could simply unbind them all and
3813 * rebind with the correct cache-level on next use. However since
3814 * we already have a valid slot, dma mapping, pages etc, we may as
3815 * rewrite the PTE in the belief that doing so tramples upon less
3816 * state and so involves less work.
3818 if (obj
->bind_count
) {
3819 /* Before we change the PTE, the GPU must not be accessing it.
3820 * If we wait upon the object, we know that all the bound
3821 * VMA are no longer active.
3823 ret
= i915_gem_object_wait(obj
,
3824 I915_WAIT_INTERRUPTIBLE
|
3827 MAX_SCHEDULE_TIMEOUT
,
3832 if (!HAS_LLC(to_i915(obj
->base
.dev
)) &&
3833 cache_level
!= I915_CACHE_NONE
) {
3834 /* Access to snoopable pages through the GTT is
3835 * incoherent and on some machines causes a hard
3836 * lockup. Relinquish the CPU mmaping to force
3837 * userspace to refault in the pages and we can
3838 * then double check if the GTT mapping is still
3839 * valid for that pointer access.
3841 i915_gem_release_mmap(obj
);
3843 /* As we no longer need a fence for GTT access,
3844 * we can relinquish it now (and so prevent having
3845 * to steal a fence from someone else on the next
3846 * fence request). Note GPU activity would have
3847 * dropped the fence as all snoopable access is
3848 * supposed to be linear.
3850 for_each_ggtt_vma(vma
, obj
) {
3851 ret
= i915_vma_put_fence(vma
);
3856 /* We either have incoherent backing store and
3857 * so no GTT access or the architecture is fully
3858 * coherent. In such cases, existing GTT mmaps
3859 * ignore the cache bit in the PTE and we can
3860 * rewrite it without confusing the GPU or having
3861 * to force userspace to fault back in its mmaps.
3865 list_for_each_entry(vma
, &obj
->vma_list
, obj_link
) {
3866 if (!drm_mm_node_allocated(&vma
->node
))
3869 ret
= i915_vma_bind(vma
, cache_level
, PIN_UPDATE
);
3875 list_for_each_entry(vma
, &obj
->vma_list
, obj_link
)
3876 vma
->node
.color
= cache_level
;
3877 i915_gem_object_set_cache_coherency(obj
, cache_level
);
3878 obj
->cache_dirty
= true; /* Always invalidate stale cachelines */
3883 int i915_gem_get_caching_ioctl(struct drm_device
*dev
, void *data
,
3884 struct drm_file
*file
)
3886 struct drm_i915_gem_caching
*args
= data
;
3887 struct drm_i915_gem_object
*obj
;
3891 obj
= i915_gem_object_lookup_rcu(file
, args
->handle
);
3897 switch (obj
->cache_level
) {
3898 case I915_CACHE_LLC
:
3899 case I915_CACHE_L3_LLC
:
3900 args
->caching
= I915_CACHING_CACHED
;
3904 args
->caching
= I915_CACHING_DISPLAY
;
3908 args
->caching
= I915_CACHING_NONE
;
3916 int i915_gem_set_caching_ioctl(struct drm_device
*dev
, void *data
,
3917 struct drm_file
*file
)
3919 struct drm_i915_private
*i915
= to_i915(dev
);
3920 struct drm_i915_gem_caching
*args
= data
;
3921 struct drm_i915_gem_object
*obj
;
3922 enum i915_cache_level level
;
3925 switch (args
->caching
) {
3926 case I915_CACHING_NONE
:
3927 level
= I915_CACHE_NONE
;
3929 case I915_CACHING_CACHED
:
3931 * Due to a HW issue on BXT A stepping, GPU stores via a
3932 * snooped mapping may leave stale data in a corresponding CPU
3933 * cacheline, whereas normally such cachelines would get
3936 if (!HAS_LLC(i915
) && !HAS_SNOOP(i915
))
3939 level
= I915_CACHE_LLC
;
3941 case I915_CACHING_DISPLAY
:
3942 level
= HAS_WT(i915
) ? I915_CACHE_WT
: I915_CACHE_NONE
;
3948 obj
= i915_gem_object_lookup(file
, args
->handle
);
3953 * The caching mode of proxy object is handled by its generator, and
3954 * not allowed to be changed by userspace.
3956 if (i915_gem_object_is_proxy(obj
)) {
3961 if (obj
->cache_level
== level
)
3964 ret
= i915_gem_object_wait(obj
,
3965 I915_WAIT_INTERRUPTIBLE
,
3966 MAX_SCHEDULE_TIMEOUT
,
3967 to_rps_client(file
));
3971 ret
= i915_mutex_lock_interruptible(dev
);
3975 ret
= i915_gem_object_set_cache_level(obj
, level
);
3976 mutex_unlock(&dev
->struct_mutex
);
3979 i915_gem_object_put(obj
);
3984 * Prepare buffer for display plane (scanout, cursors, etc).
3985 * Can be called from an uninterruptible phase (modesetting) and allows
3986 * any flushes to be pipelined (for pageflips).
3989 i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object
*obj
,
3991 const struct i915_ggtt_view
*view
)
3993 struct i915_vma
*vma
;
3996 lockdep_assert_held(&obj
->base
.dev
->struct_mutex
);
3998 /* Mark the global pin early so that we account for the
3999 * display coherency whilst setting up the cache domains.
4003 /* The display engine is not coherent with the LLC cache on gen6. As
4004 * a result, we make sure that the pinning that is about to occur is
4005 * done with uncached PTEs. This is lowest common denominator for all
4008 * However for gen6+, we could do better by using the GFDT bit instead
4009 * of uncaching, which would allow us to flush all the LLC-cached data
4010 * with that bit in the PTE to main memory with just one PIPE_CONTROL.
4012 ret
= i915_gem_object_set_cache_level(obj
,
4013 HAS_WT(to_i915(obj
->base
.dev
)) ?
4014 I915_CACHE_WT
: I915_CACHE_NONE
);
4017 goto err_unpin_global
;
4020 /* As the user may map the buffer once pinned in the display plane
4021 * (e.g. libkms for the bootup splash), we have to ensure that we
4022 * always use map_and_fenceable for all scanout buffers. However,
4023 * it may simply be too big to fit into mappable, in which case
4024 * put it anyway and hope that userspace can cope (but always first
4025 * try to preserve the existing ABI).
4027 vma
= ERR_PTR(-ENOSPC
);
4028 if (!view
|| view
->type
== I915_GGTT_VIEW_NORMAL
)
4029 vma
= i915_gem_object_ggtt_pin(obj
, view
, 0, alignment
,
4030 PIN_MAPPABLE
| PIN_NONBLOCK
);
4032 struct drm_i915_private
*i915
= to_i915(obj
->base
.dev
);
4035 /* Valleyview is definitely limited to scanning out the first
4036 * 512MiB. Lets presume this behaviour was inherited from the
4037 * g4x display engine and that all earlier gen are similarly
4038 * limited. Testing suggests that it is a little more
4039 * complicated than this. For example, Cherryview appears quite
4040 * happy to scanout from anywhere within its global aperture.
4043 if (HAS_GMCH_DISPLAY(i915
))
4044 flags
= PIN_MAPPABLE
;
4045 vma
= i915_gem_object_ggtt_pin(obj
, view
, 0, alignment
, flags
);
4048 goto err_unpin_global
;
4050 vma
->display_alignment
= max_t(u64
, vma
->display_alignment
, alignment
);
4052 /* Treat this as an end-of-frame, like intel_user_framebuffer_dirty() */
4053 __i915_gem_object_flush_for_display(obj
);
4054 intel_fb_obj_flush(obj
, ORIGIN_DIRTYFB
);
4056 /* It should now be out of any other write domains, and we can update
4057 * the domain values for our changes.
4059 obj
->base
.read_domains
|= I915_GEM_DOMAIN_GTT
;
4069 i915_gem_object_unpin_from_display_plane(struct i915_vma
*vma
)
4071 lockdep_assert_held(&vma
->vm
->i915
->drm
.struct_mutex
);
4073 if (WARN_ON(vma
->obj
->pin_global
== 0))
4076 if (--vma
->obj
->pin_global
== 0)
4077 vma
->display_alignment
= I915_GTT_MIN_ALIGNMENT
;
4079 /* Bump the LRU to try and avoid premature eviction whilst flipping */
4080 i915_gem_object_bump_inactive_ggtt(vma
->obj
);
4082 i915_vma_unpin(vma
);
4086 * Moves a single object to the CPU read, and possibly write domain.
4087 * @obj: object to act on
4088 * @write: requesting write or read-only access
4090 * This function returns when the move is complete, including waiting on
4094 i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object
*obj
, bool write
)
4098 lockdep_assert_held(&obj
->base
.dev
->struct_mutex
);
4100 ret
= i915_gem_object_wait(obj
,
4101 I915_WAIT_INTERRUPTIBLE
|
4103 (write
? I915_WAIT_ALL
: 0),
4104 MAX_SCHEDULE_TIMEOUT
,
4109 flush_write_domain(obj
, ~I915_GEM_DOMAIN_CPU
);
4111 /* Flush the CPU cache if it's still invalid. */
4112 if ((obj
->base
.read_domains
& I915_GEM_DOMAIN_CPU
) == 0) {
4113 i915_gem_clflush_object(obj
, I915_CLFLUSH_SYNC
);
4114 obj
->base
.read_domains
|= I915_GEM_DOMAIN_CPU
;
4117 /* It should now be out of any other write domains, and we can update
4118 * the domain values for our changes.
4120 GEM_BUG_ON(obj
->base
.write_domain
& ~I915_GEM_DOMAIN_CPU
);
4122 /* If we're writing through the CPU, then the GPU read domains will
4123 * need to be invalidated at next use.
4126 __start_cpu_write(obj
);
4131 /* Throttle our rendering by waiting until the ring has completed our requests
4132 * emitted over 20 msec ago.
4134 * Note that if we were to use the current jiffies each time around the loop,
4135 * we wouldn't escape the function with any frames outstanding if the time to
4136 * render a frame was over 20ms.
4138 * This should get us reasonable parallelism between CPU and GPU but also
4139 * relatively low latency when blocking on a particular request to finish.
4142 i915_gem_ring_throttle(struct drm_device
*dev
, struct drm_file
*file
)
4144 struct drm_i915_private
*dev_priv
= to_i915(dev
);
4145 struct drm_i915_file_private
*file_priv
= file
->driver_priv
;
4146 unsigned long recent_enough
= jiffies
- DRM_I915_THROTTLE_JIFFIES
;
4147 struct drm_i915_gem_request
*request
, *target
= NULL
;
4150 /* ABI: return -EIO if already wedged */
4151 if (i915_terminally_wedged(&dev_priv
->gpu_error
))
4154 spin_lock(&file_priv
->mm
.lock
);
4155 list_for_each_entry(request
, &file_priv
->mm
.request_list
, client_link
) {
4156 if (time_after_eq(request
->emitted_jiffies
, recent_enough
))
4160 list_del(&target
->client_link
);
4161 target
->file_priv
= NULL
;
4167 i915_gem_request_get(target
);
4168 spin_unlock(&file_priv
->mm
.lock
);
4173 ret
= i915_wait_request(target
,
4174 I915_WAIT_INTERRUPTIBLE
,
4175 MAX_SCHEDULE_TIMEOUT
);
4176 i915_gem_request_put(target
);
4178 return ret
< 0 ? ret
: 0;
4182 i915_gem_object_ggtt_pin(struct drm_i915_gem_object
*obj
,
4183 const struct i915_ggtt_view
*view
,
4188 struct drm_i915_private
*dev_priv
= to_i915(obj
->base
.dev
);
4189 struct i915_address_space
*vm
= &dev_priv
->ggtt
.base
;
4190 struct i915_vma
*vma
;
4193 lockdep_assert_held(&obj
->base
.dev
->struct_mutex
);
4195 if (!view
&& flags
& PIN_MAPPABLE
) {
4196 /* If the required space is larger than the available
4197 * aperture, we will not able to find a slot for the
4198 * object and unbinding the object now will be in
4199 * vain. Worse, doing so may cause us to ping-pong
4200 * the object in and out of the Global GTT and
4201 * waste a lot of cycles under the mutex.
4203 if (obj
->base
.size
> dev_priv
->ggtt
.mappable_end
)
4204 return ERR_PTR(-E2BIG
);
4206 /* If NONBLOCK is set the caller is optimistically
4207 * trying to cache the full object within the mappable
4208 * aperture, and *must* have a fallback in place for
4209 * situations where we cannot bind the object. We
4210 * can be a little more lax here and use the fallback
4211 * more often to avoid costly migrations of ourselves
4212 * and other objects within the aperture.
4214 * Half-the-aperture is used as a simple heuristic.
4215 * More interesting would to do search for a free
4216 * block prior to making the commitment to unbind.
4217 * That caters for the self-harm case, and with a
4218 * little more heuristics (e.g. NOFAULT, NOEVICT)
4219 * we could try to minimise harm to others.
4221 if (flags
& PIN_NONBLOCK
&&
4222 obj
->base
.size
> dev_priv
->ggtt
.mappable_end
/ 2)
4223 return ERR_PTR(-ENOSPC
);
4226 vma
= i915_vma_instance(obj
, vm
, view
);
4227 if (unlikely(IS_ERR(vma
)))
4230 if (i915_vma_misplaced(vma
, size
, alignment
, flags
)) {
4231 if (flags
& PIN_NONBLOCK
) {
4232 if (i915_vma_is_pinned(vma
) || i915_vma_is_active(vma
))
4233 return ERR_PTR(-ENOSPC
);
4235 if (flags
& PIN_MAPPABLE
&&
4236 vma
->fence_size
> dev_priv
->ggtt
.mappable_end
/ 2)
4237 return ERR_PTR(-ENOSPC
);
4240 WARN(i915_vma_is_pinned(vma
),
4241 "bo is already pinned in ggtt with incorrect alignment:"
4242 " offset=%08x, req.alignment=%llx,"
4243 " req.map_and_fenceable=%d, vma->map_and_fenceable=%d\n",
4244 i915_ggtt_offset(vma
), alignment
,
4245 !!(flags
& PIN_MAPPABLE
),
4246 i915_vma_is_map_and_fenceable(vma
));
4247 ret
= i915_vma_unbind(vma
);
4249 return ERR_PTR(ret
);
4252 ret
= i915_vma_pin(vma
, size
, alignment
, flags
| PIN_GLOBAL
);
4254 return ERR_PTR(ret
);
4259 static __always_inline
unsigned int __busy_read_flag(unsigned int id
)
4261 /* Note that we could alias engines in the execbuf API, but
4262 * that would be very unwise as it prevents userspace from
4263 * fine control over engine selection. Ahem.
4265 * This should be something like EXEC_MAX_ENGINE instead of
4268 BUILD_BUG_ON(I915_NUM_ENGINES
> 16);
4269 return 0x10000 << id
;
4272 static __always_inline
unsigned int __busy_write_id(unsigned int id
)
4274 /* The uABI guarantees an active writer is also amongst the read
4275 * engines. This would be true if we accessed the activity tracking
4276 * under the lock, but as we perform the lookup of the object and
4277 * its activity locklessly we can not guarantee that the last_write
4278 * being active implies that we have set the same engine flag from
4279 * last_read - hence we always set both read and write busy for
4282 return id
| __busy_read_flag(id
);
4285 static __always_inline
unsigned int
4286 __busy_set_if_active(const struct dma_fence
*fence
,
4287 unsigned int (*flag
)(unsigned int id
))
4289 struct drm_i915_gem_request
*rq
;
4291 /* We have to check the current hw status of the fence as the uABI
4292 * guarantees forward progress. We could rely on the idle worker
4293 * to eventually flush us, but to minimise latency just ask the
4296 * Note we only report on the status of native fences.
4298 if (!dma_fence_is_i915(fence
))
4301 /* opencode to_request() in order to avoid const warnings */
4302 rq
= container_of(fence
, struct drm_i915_gem_request
, fence
);
4303 if (i915_gem_request_completed(rq
))
4306 return flag(rq
->engine
->uabi_id
);
4309 static __always_inline
unsigned int
4310 busy_check_reader(const struct dma_fence
*fence
)
4312 return __busy_set_if_active(fence
, __busy_read_flag
);
4315 static __always_inline
unsigned int
4316 busy_check_writer(const struct dma_fence
*fence
)
4321 return __busy_set_if_active(fence
, __busy_write_id
);
4325 i915_gem_busy_ioctl(struct drm_device
*dev
, void *data
,
4326 struct drm_file
*file
)
4328 struct drm_i915_gem_busy
*args
= data
;
4329 struct drm_i915_gem_object
*obj
;
4330 struct reservation_object_list
*list
;
4336 obj
= i915_gem_object_lookup_rcu(file
, args
->handle
);
4340 /* A discrepancy here is that we do not report the status of
4341 * non-i915 fences, i.e. even though we may report the object as idle,
4342 * a call to set-domain may still stall waiting for foreign rendering.
4343 * This also means that wait-ioctl may report an object as busy,
4344 * where busy-ioctl considers it idle.
4346 * We trade the ability to warn of foreign fences to report on which
4347 * i915 engines are active for the object.
4349 * Alternatively, we can trade that extra information on read/write
4352 * !reservation_object_test_signaled_rcu(obj->resv, true);
4353 * to report the overall busyness. This is what the wait-ioctl does.
4357 seq
= raw_read_seqcount(&obj
->resv
->seq
);
4359 /* Translate the exclusive fence to the READ *and* WRITE engine */
4360 args
->busy
= busy_check_writer(rcu_dereference(obj
->resv
->fence_excl
));
4362 /* Translate shared fences to READ set of engines */
4363 list
= rcu_dereference(obj
->resv
->fence
);
4365 unsigned int shared_count
= list
->shared_count
, i
;
4367 for (i
= 0; i
< shared_count
; ++i
) {
4368 struct dma_fence
*fence
=
4369 rcu_dereference(list
->shared
[i
]);
4371 args
->busy
|= busy_check_reader(fence
);
4375 if (args
->busy
&& read_seqcount_retry(&obj
->resv
->seq
, seq
))
4385 i915_gem_throttle_ioctl(struct drm_device
*dev
, void *data
,
4386 struct drm_file
*file_priv
)
4388 return i915_gem_ring_throttle(dev
, file_priv
);
4392 i915_gem_madvise_ioctl(struct drm_device
*dev
, void *data
,
4393 struct drm_file
*file_priv
)
4395 struct drm_i915_private
*dev_priv
= to_i915(dev
);
4396 struct drm_i915_gem_madvise
*args
= data
;
4397 struct drm_i915_gem_object
*obj
;
4400 switch (args
->madv
) {
4401 case I915_MADV_DONTNEED
:
4402 case I915_MADV_WILLNEED
:
4408 obj
= i915_gem_object_lookup(file_priv
, args
->handle
);
4412 err
= mutex_lock_interruptible(&obj
->mm
.lock
);
4416 if (i915_gem_object_has_pages(obj
) &&
4417 i915_gem_object_is_tiled(obj
) &&
4418 dev_priv
->quirks
& QUIRK_PIN_SWIZZLED_PAGES
) {
4419 if (obj
->mm
.madv
== I915_MADV_WILLNEED
) {
4420 GEM_BUG_ON(!obj
->mm
.quirked
);
4421 __i915_gem_object_unpin_pages(obj
);
4422 obj
->mm
.quirked
= false;
4424 if (args
->madv
== I915_MADV_WILLNEED
) {
4425 GEM_BUG_ON(obj
->mm
.quirked
);
4426 __i915_gem_object_pin_pages(obj
);
4427 obj
->mm
.quirked
= true;
4431 if (obj
->mm
.madv
!= __I915_MADV_PURGED
)
4432 obj
->mm
.madv
= args
->madv
;
4434 /* if the object is no longer attached, discard its backing storage */
4435 if (obj
->mm
.madv
== I915_MADV_DONTNEED
&&
4436 !i915_gem_object_has_pages(obj
))
4437 i915_gem_object_truncate(obj
);
4439 args
->retained
= obj
->mm
.madv
!= __I915_MADV_PURGED
;
4440 mutex_unlock(&obj
->mm
.lock
);
4443 i915_gem_object_put(obj
);
4448 frontbuffer_retire(struct i915_gem_active
*active
,
4449 struct drm_i915_gem_request
*request
)
4451 struct drm_i915_gem_object
*obj
=
4452 container_of(active
, typeof(*obj
), frontbuffer_write
);
4454 intel_fb_obj_flush(obj
, ORIGIN_CS
);
4457 void i915_gem_object_init(struct drm_i915_gem_object
*obj
,
4458 const struct drm_i915_gem_object_ops
*ops
)
4460 mutex_init(&obj
->mm
.lock
);
4462 INIT_LIST_HEAD(&obj
->vma_list
);
4463 INIT_LIST_HEAD(&obj
->lut_list
);
4464 INIT_LIST_HEAD(&obj
->batch_pool_link
);
4468 reservation_object_init(&obj
->__builtin_resv
);
4469 obj
->resv
= &obj
->__builtin_resv
;
4471 obj
->frontbuffer_ggtt_origin
= ORIGIN_GTT
;
4472 init_request_active(&obj
->frontbuffer_write
, frontbuffer_retire
);
4474 obj
->mm
.madv
= I915_MADV_WILLNEED
;
4475 INIT_RADIX_TREE(&obj
->mm
.get_page
.radix
, GFP_KERNEL
| __GFP_NOWARN
);
4476 mutex_init(&obj
->mm
.get_page
.lock
);
4478 i915_gem_info_add_obj(to_i915(obj
->base
.dev
), obj
->base
.size
);
4481 static const struct drm_i915_gem_object_ops i915_gem_object_ops
= {
4482 .flags
= I915_GEM_OBJECT_HAS_STRUCT_PAGE
|
4483 I915_GEM_OBJECT_IS_SHRINKABLE
,
4485 .get_pages
= i915_gem_object_get_pages_gtt
,
4486 .put_pages
= i915_gem_object_put_pages_gtt
,
4488 .pwrite
= i915_gem_object_pwrite_gtt
,
4491 static int i915_gem_object_create_shmem(struct drm_device
*dev
,
4492 struct drm_gem_object
*obj
,
4495 struct drm_i915_private
*i915
= to_i915(dev
);
4496 unsigned long flags
= VM_NORESERVE
;
4499 drm_gem_private_object_init(dev
, obj
, size
);
4502 filp
= shmem_file_setup_with_mnt(i915
->mm
.gemfs
, "i915", size
,
4505 filp
= shmem_file_setup("i915", size
, flags
);
4508 return PTR_ERR(filp
);
4515 struct drm_i915_gem_object
*
4516 i915_gem_object_create(struct drm_i915_private
*dev_priv
, u64 size
)
4518 struct drm_i915_gem_object
*obj
;
4519 struct address_space
*mapping
;
4520 unsigned int cache_level
;
4524 /* There is a prevalence of the assumption that we fit the object's
4525 * page count inside a 32bit _signed_ variable. Let's document this and
4526 * catch if we ever need to fix it. In the meantime, if you do spot
4527 * such a local variable, please consider fixing!
4529 if (size
>> PAGE_SHIFT
> INT_MAX
)
4530 return ERR_PTR(-E2BIG
);
4532 if (overflows_type(size
, obj
->base
.size
))
4533 return ERR_PTR(-E2BIG
);
4535 obj
= i915_gem_object_alloc(dev_priv
);
4537 return ERR_PTR(-ENOMEM
);
4539 ret
= i915_gem_object_create_shmem(&dev_priv
->drm
, &obj
->base
, size
);
4543 mask
= GFP_HIGHUSER
| __GFP_RECLAIMABLE
;
4544 if (IS_I965GM(dev_priv
) || IS_I965G(dev_priv
)) {
4545 /* 965gm cannot relocate objects above 4GiB. */
4546 mask
&= ~__GFP_HIGHMEM
;
4547 mask
|= __GFP_DMA32
;
4550 mapping
= obj
->base
.filp
->f_mapping
;
4551 mapping_set_gfp_mask(mapping
, mask
);
4552 GEM_BUG_ON(!(mapping_gfp_mask(mapping
) & __GFP_RECLAIM
));
4554 i915_gem_object_init(obj
, &i915_gem_object_ops
);
4556 obj
->base
.write_domain
= I915_GEM_DOMAIN_CPU
;
4557 obj
->base
.read_domains
= I915_GEM_DOMAIN_CPU
;
4559 if (HAS_LLC(dev_priv
))
4560 /* On some devices, we can have the GPU use the LLC (the CPU
4561 * cache) for about a 10% performance improvement
4562 * compared to uncached. Graphics requests other than
4563 * display scanout are coherent with the CPU in
4564 * accessing this cache. This means in this mode we
4565 * don't need to clflush on the CPU side, and on the
4566 * GPU side we only need to flush internal caches to
4567 * get data visible to the CPU.
4569 * However, we maintain the display planes as UC, and so
4570 * need to rebind when first used as such.
4572 cache_level
= I915_CACHE_LLC
;
4574 cache_level
= I915_CACHE_NONE
;
4576 i915_gem_object_set_cache_coherency(obj
, cache_level
);
4578 trace_i915_gem_object_create(obj
);
4583 i915_gem_object_free(obj
);
4584 return ERR_PTR(ret
);
4587 static bool discard_backing_storage(struct drm_i915_gem_object
*obj
)
4589 /* If we are the last user of the backing storage (be it shmemfs
4590 * pages or stolen etc), we know that the pages are going to be
4591 * immediately released. In this case, we can then skip copying
4592 * back the contents from the GPU.
4595 if (obj
->mm
.madv
!= I915_MADV_WILLNEED
)
4598 if (obj
->base
.filp
== NULL
)
4601 /* At first glance, this looks racy, but then again so would be
4602 * userspace racing mmap against close. However, the first external
4603 * reference to the filp can only be obtained through the
4604 * i915_gem_mmap_ioctl() which safeguards us against the user
4605 * acquiring such a reference whilst we are in the middle of
4606 * freeing the object.
4608 return atomic_long_read(&obj
->base
.filp
->f_count
) == 1;
4611 static void __i915_gem_free_objects(struct drm_i915_private
*i915
,
4612 struct llist_node
*freed
)
4614 struct drm_i915_gem_object
*obj
, *on
;
4616 intel_runtime_pm_get(i915
);
4617 llist_for_each_entry_safe(obj
, on
, freed
, freed
) {
4618 struct i915_vma
*vma
, *vn
;
4620 trace_i915_gem_object_destroy(obj
);
4622 mutex_lock(&i915
->drm
.struct_mutex
);
4624 GEM_BUG_ON(i915_gem_object_is_active(obj
));
4625 list_for_each_entry_safe(vma
, vn
,
4626 &obj
->vma_list
, obj_link
) {
4627 GEM_BUG_ON(i915_vma_is_active(vma
));
4628 vma
->flags
&= ~I915_VMA_PIN_MASK
;
4629 i915_vma_close(vma
);
4631 GEM_BUG_ON(!list_empty(&obj
->vma_list
));
4632 GEM_BUG_ON(!RB_EMPTY_ROOT(&obj
->vma_tree
));
4634 /* This serializes freeing with the shrinker. Since the free
4635 * is delayed, first by RCU then by the workqueue, we want the
4636 * shrinker to be able to free pages of unreferenced objects,
4637 * or else we may oom whilst there are plenty of deferred
4640 if (i915_gem_object_has_pages(obj
)) {
4641 spin_lock(&i915
->mm
.obj_lock
);
4642 list_del_init(&obj
->mm
.link
);
4643 spin_unlock(&i915
->mm
.obj_lock
);
4646 mutex_unlock(&i915
->drm
.struct_mutex
);
4648 GEM_BUG_ON(obj
->bind_count
);
4649 GEM_BUG_ON(obj
->userfault_count
);
4650 GEM_BUG_ON(atomic_read(&obj
->frontbuffer_bits
));
4651 GEM_BUG_ON(!list_empty(&obj
->lut_list
));
4653 if (obj
->ops
->release
)
4654 obj
->ops
->release(obj
);
4656 if (WARN_ON(i915_gem_object_has_pinned_pages(obj
)))
4657 atomic_set(&obj
->mm
.pages_pin_count
, 0);
4658 __i915_gem_object_put_pages(obj
, I915_MM_NORMAL
);
4659 GEM_BUG_ON(i915_gem_object_has_pages(obj
));
4661 if (obj
->base
.import_attach
)
4662 drm_prime_gem_destroy(&obj
->base
, NULL
);
4664 reservation_object_fini(&obj
->__builtin_resv
);
4665 drm_gem_object_release(&obj
->base
);
4666 i915_gem_info_remove_obj(i915
, obj
->base
.size
);
4669 i915_gem_object_free(obj
);
4674 intel_runtime_pm_put(i915
);
4677 static void i915_gem_flush_free_objects(struct drm_i915_private
*i915
)
4679 struct llist_node
*freed
;
4681 /* Free the oldest, most stale object to keep the free_list short */
4683 if (!llist_empty(&i915
->mm
.free_list
)) { /* quick test for hotpath */
4684 /* Only one consumer of llist_del_first() allowed */
4685 spin_lock(&i915
->mm
.free_lock
);
4686 freed
= llist_del_first(&i915
->mm
.free_list
);
4687 spin_unlock(&i915
->mm
.free_lock
);
4689 if (unlikely(freed
)) {
4691 __i915_gem_free_objects(i915
, freed
);
4695 static void __i915_gem_free_work(struct work_struct
*work
)
4697 struct drm_i915_private
*i915
=
4698 container_of(work
, struct drm_i915_private
, mm
.free_work
);
4699 struct llist_node
*freed
;
4701 /* All file-owned VMA should have been released by this point through
4702 * i915_gem_close_object(), or earlier by i915_gem_context_close().
4703 * However, the object may also be bound into the global GTT (e.g.
4704 * older GPUs without per-process support, or for direct access through
4705 * the GTT either for the user or for scanout). Those VMA still need to
4709 spin_lock(&i915
->mm
.free_lock
);
4710 while ((freed
= llist_del_all(&i915
->mm
.free_list
))) {
4711 spin_unlock(&i915
->mm
.free_lock
);
4713 __i915_gem_free_objects(i915
, freed
);
4717 spin_lock(&i915
->mm
.free_lock
);
4719 spin_unlock(&i915
->mm
.free_lock
);
4722 static void __i915_gem_free_object_rcu(struct rcu_head
*head
)
4724 struct drm_i915_gem_object
*obj
=
4725 container_of(head
, typeof(*obj
), rcu
);
4726 struct drm_i915_private
*i915
= to_i915(obj
->base
.dev
);
4728 /* We can't simply use call_rcu() from i915_gem_free_object()
4729 * as we need to block whilst unbinding, and the call_rcu
4730 * task may be called from softirq context. So we take a
4731 * detour through a worker.
4733 if (llist_add(&obj
->freed
, &i915
->mm
.free_list
))
4734 schedule_work(&i915
->mm
.free_work
);
4737 void i915_gem_free_object(struct drm_gem_object
*gem_obj
)
4739 struct drm_i915_gem_object
*obj
= to_intel_bo(gem_obj
);
4741 if (obj
->mm
.quirked
)
4742 __i915_gem_object_unpin_pages(obj
);
4744 if (discard_backing_storage(obj
))
4745 obj
->mm
.madv
= I915_MADV_DONTNEED
;
4747 /* Before we free the object, make sure any pure RCU-only
4748 * read-side critical sections are complete, e.g.
4749 * i915_gem_busy_ioctl(). For the corresponding synchronized
4750 * lookup see i915_gem_object_lookup_rcu().
4752 call_rcu(&obj
->rcu
, __i915_gem_free_object_rcu
);
4755 void __i915_gem_object_release_unless_active(struct drm_i915_gem_object
*obj
)
4757 lockdep_assert_held(&obj
->base
.dev
->struct_mutex
);
4759 if (!i915_gem_object_has_active_reference(obj
) &&
4760 i915_gem_object_is_active(obj
))
4761 i915_gem_object_set_active_reference(obj
);
4763 i915_gem_object_put(obj
);
4766 static void assert_kernel_context_is_current(struct drm_i915_private
*i915
)
4768 struct i915_gem_context
*kernel_context
= i915
->kernel_context
;
4769 struct intel_engine_cs
*engine
;
4770 enum intel_engine_id id
;
4772 for_each_engine(engine
, i915
, id
) {
4773 GEM_BUG_ON(__i915_gem_active_peek(&engine
->timeline
->last_request
));
4774 GEM_BUG_ON(engine
->last_retired_context
!= kernel_context
);
4778 void i915_gem_sanitize(struct drm_i915_private
*i915
)
4780 if (i915_terminally_wedged(&i915
->gpu_error
)) {
4781 mutex_lock(&i915
->drm
.struct_mutex
);
4782 i915_gem_unset_wedged(i915
);
4783 mutex_unlock(&i915
->drm
.struct_mutex
);
4787 * If we inherit context state from the BIOS or earlier occupants
4788 * of the GPU, the GPU may be in an inconsistent state when we
4789 * try to take over. The only way to remove the earlier state
4790 * is by resetting. However, resetting on earlier gen is tricky as
4791 * it may impact the display and we are uncertain about the stability
4792 * of the reset, so this could be applied to even earlier gen.
4794 if (INTEL_GEN(i915
) >= 5) {
4795 int reset
= intel_gpu_reset(i915
, ALL_ENGINES
);
4796 WARN_ON(reset
&& reset
!= -ENODEV
);
4800 int i915_gem_suspend(struct drm_i915_private
*dev_priv
)
4802 struct drm_device
*dev
= &dev_priv
->drm
;
4805 intel_runtime_pm_get(dev_priv
);
4806 intel_suspend_gt_powersave(dev_priv
);
4808 mutex_lock(&dev
->struct_mutex
);
4810 /* We have to flush all the executing contexts to main memory so
4811 * that they can saved in the hibernation image. To ensure the last
4812 * context image is coherent, we have to switch away from it. That
4813 * leaves the dev_priv->kernel_context still active when
4814 * we actually suspend, and its image in memory may not match the GPU
4815 * state. Fortunately, the kernel_context is disposable and we do
4816 * not rely on its state.
4818 if (!i915_terminally_wedged(&dev_priv
->gpu_error
)) {
4819 ret
= i915_gem_switch_to_kernel_context(dev_priv
);
4823 ret
= i915_gem_wait_for_idle(dev_priv
,
4824 I915_WAIT_INTERRUPTIBLE
|
4826 if (ret
&& ret
!= -EIO
)
4829 assert_kernel_context_is_current(dev_priv
);
4831 i915_gem_contexts_lost(dev_priv
);
4832 mutex_unlock(&dev
->struct_mutex
);
4834 intel_guc_suspend(dev_priv
);
4836 cancel_delayed_work_sync(&dev_priv
->gpu_error
.hangcheck_work
);
4837 cancel_delayed_work_sync(&dev_priv
->gt
.retire_work
);
4839 /* As the idle_work is rearming if it detects a race, play safe and
4840 * repeat the flush until it is definitely idle.
4842 drain_delayed_work(&dev_priv
->gt
.idle_work
);
4844 /* Assert that we sucessfully flushed all the work and
4845 * reset the GPU back to its idle, low power state.
4847 WARN_ON(dev_priv
->gt
.awake
);
4848 if (WARN_ON(!intel_engines_are_idle(dev_priv
)))
4849 i915_gem_set_wedged(dev_priv
); /* no hope, discard everything */
4852 * Neither the BIOS, ourselves or any other kernel
4853 * expects the system to be in execlists mode on startup,
4854 * so we need to reset the GPU back to legacy mode. And the only
4855 * known way to disable logical contexts is through a GPU reset.
4857 * So in order to leave the system in a known default configuration,
4858 * always reset the GPU upon unload and suspend. Afterwards we then
4859 * clean up the GEM state tracking, flushing off the requests and
4860 * leaving the system in a known idle state.
4862 * Note that is of the upmost importance that the GPU is idle and
4863 * all stray writes are flushed *before* we dismantle the backing
4864 * storage for the pinned objects.
4866 * However, since we are uncertain that resetting the GPU on older
4867 * machines is a good idea, we don't - just in case it leaves the
4868 * machine in an unusable condition.
4870 i915_gem_sanitize(dev_priv
);
4872 intel_runtime_pm_put(dev_priv
);
4876 mutex_unlock(&dev
->struct_mutex
);
4877 intel_runtime_pm_put(dev_priv
);
4881 void i915_gem_resume(struct drm_i915_private
*i915
)
4883 WARN_ON(i915
->gt
.awake
);
4885 mutex_lock(&i915
->drm
.struct_mutex
);
4886 intel_uncore_forcewake_get(i915
, FORCEWAKE_ALL
);
4888 i915_gem_restore_gtt_mappings(i915
);
4889 i915_gem_restore_fences(i915
);
4892 * As we didn't flush the kernel context before suspend, we cannot
4893 * guarantee that the context image is complete. So let's just reset
4894 * it and start again.
4896 i915
->gt
.resume(i915
);
4898 if (i915_gem_init_hw(i915
))
4901 intel_guc_resume(i915
);
4903 /* Always reload a context for powersaving. */
4904 if (i915_gem_switch_to_kernel_context(i915
))
4908 intel_uncore_forcewake_put(i915
, FORCEWAKE_ALL
);
4909 mutex_unlock(&i915
->drm
.struct_mutex
);
4913 if (!i915_terminally_wedged(&i915
->gpu_error
)) {
4914 DRM_ERROR("failed to re-initialize GPU, declaring wedged!\n");
4915 i915_gem_set_wedged(i915
);
4920 void i915_gem_init_swizzling(struct drm_i915_private
*dev_priv
)
4922 if (INTEL_GEN(dev_priv
) < 5 ||
4923 dev_priv
->mm
.bit_6_swizzle_x
== I915_BIT_6_SWIZZLE_NONE
)
4926 I915_WRITE(DISP_ARB_CTL
, I915_READ(DISP_ARB_CTL
) |
4927 DISP_TILE_SURFACE_SWIZZLING
);
4929 if (IS_GEN5(dev_priv
))
4932 I915_WRITE(TILECTL
, I915_READ(TILECTL
) | TILECTL_SWZCTL
);
4933 if (IS_GEN6(dev_priv
))
4934 I915_WRITE(ARB_MODE
, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB
));
4935 else if (IS_GEN7(dev_priv
))
4936 I915_WRITE(ARB_MODE
, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB
));
4937 else if (IS_GEN8(dev_priv
))
4938 I915_WRITE(GAMTARBMODE
, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_BDW
));
4943 static void init_unused_ring(struct drm_i915_private
*dev_priv
, u32 base
)
4945 I915_WRITE(RING_CTL(base
), 0);
4946 I915_WRITE(RING_HEAD(base
), 0);
4947 I915_WRITE(RING_TAIL(base
), 0);
4948 I915_WRITE(RING_START(base
), 0);
4951 static void init_unused_rings(struct drm_i915_private
*dev_priv
)
4953 if (IS_I830(dev_priv
)) {
4954 init_unused_ring(dev_priv
, PRB1_BASE
);
4955 init_unused_ring(dev_priv
, SRB0_BASE
);
4956 init_unused_ring(dev_priv
, SRB1_BASE
);
4957 init_unused_ring(dev_priv
, SRB2_BASE
);
4958 init_unused_ring(dev_priv
, SRB3_BASE
);
4959 } else if (IS_GEN2(dev_priv
)) {
4960 init_unused_ring(dev_priv
, SRB0_BASE
);
4961 init_unused_ring(dev_priv
, SRB1_BASE
);
4962 } else if (IS_GEN3(dev_priv
)) {
4963 init_unused_ring(dev_priv
, PRB1_BASE
);
4964 init_unused_ring(dev_priv
, PRB2_BASE
);
4968 static int __i915_gem_restart_engines(void *data
)
4970 struct drm_i915_private
*i915
= data
;
4971 struct intel_engine_cs
*engine
;
4972 enum intel_engine_id id
;
4975 for_each_engine(engine
, i915
, id
) {
4976 err
= engine
->init_hw(engine
);
4984 int i915_gem_init_hw(struct drm_i915_private
*dev_priv
)
4988 dev_priv
->gt
.last_init_time
= ktime_get();
4990 /* Double layer security blanket, see i915_gem_init() */
4991 intel_uncore_forcewake_get(dev_priv
, FORCEWAKE_ALL
);
4993 if (HAS_EDRAM(dev_priv
) && INTEL_GEN(dev_priv
) < 9)
4994 I915_WRITE(HSW_IDICR
, I915_READ(HSW_IDICR
) | IDIHASHMSK(0xf));
4996 if (IS_HASWELL(dev_priv
))
4997 I915_WRITE(MI_PREDICATE_RESULT_2
, IS_HSW_GT3(dev_priv
) ?
4998 LOWER_SLICE_ENABLED
: LOWER_SLICE_DISABLED
);
5000 if (HAS_PCH_NOP(dev_priv
)) {
5001 if (IS_IVYBRIDGE(dev_priv
)) {
5002 u32 temp
= I915_READ(GEN7_MSG_CTL
);
5003 temp
&= ~(WAIT_FOR_PCH_FLR_ACK
| WAIT_FOR_PCH_RESET_ACK
);
5004 I915_WRITE(GEN7_MSG_CTL
, temp
);
5005 } else if (INTEL_GEN(dev_priv
) >= 7) {
5006 u32 temp
= I915_READ(HSW_NDE_RSTWRN_OPT
);
5007 temp
&= ~RESET_PCH_HANDSHAKE_ENABLE
;
5008 I915_WRITE(HSW_NDE_RSTWRN_OPT
, temp
);
5012 i915_gem_init_swizzling(dev_priv
);
5015 * At least 830 can leave some of the unused rings
5016 * "active" (ie. head != tail) after resume which
5017 * will prevent c3 entry. Makes sure all unused rings
5020 init_unused_rings(dev_priv
);
5022 BUG_ON(!dev_priv
->kernel_context
);
5023 if (i915_terminally_wedged(&dev_priv
->gpu_error
)) {
5028 ret
= i915_ppgtt_init_hw(dev_priv
);
5030 DRM_ERROR("PPGTT enable HW failed %d\n", ret
);
5034 /* We can't enable contexts until all firmware is loaded */
5035 ret
= intel_uc_init_hw(dev_priv
);
5039 intel_mocs_init_l3cc_table(dev_priv
);
5041 /* Only when the HW is re-initialised, can we replay the requests */
5042 ret
= __i915_gem_restart_engines(dev_priv
);
5044 intel_uncore_forcewake_put(dev_priv
, FORCEWAKE_ALL
);
5048 static int __intel_engines_record_defaults(struct drm_i915_private
*i915
)
5050 struct i915_gem_context
*ctx
;
5051 struct intel_engine_cs
*engine
;
5052 enum intel_engine_id id
;
5056 * As we reset the gpu during very early sanitisation, the current
5057 * register state on the GPU should reflect its defaults values.
5058 * We load a context onto the hw (with restore-inhibit), then switch
5059 * over to a second context to save that default register state. We
5060 * can then prime every new context with that state so they all start
5061 * from the same default HW values.
5064 ctx
= i915_gem_context_create_kernel(i915
, 0);
5066 return PTR_ERR(ctx
);
5068 for_each_engine(engine
, i915
, id
) {
5069 struct drm_i915_gem_request
*rq
;
5071 rq
= i915_gem_request_alloc(engine
, ctx
);
5078 if (engine
->init_context
)
5079 err
= engine
->init_context(rq
);
5081 __i915_add_request(rq
, true);
5086 err
= i915_gem_switch_to_kernel_context(i915
);
5090 err
= i915_gem_wait_for_idle(i915
, I915_WAIT_LOCKED
);
5094 assert_kernel_context_is_current(i915
);
5096 for_each_engine(engine
, i915
, id
) {
5097 struct i915_vma
*state
;
5099 state
= ctx
->engine
[id
].state
;
5104 * As we will hold a reference to the logical state, it will
5105 * not be torn down with the context, and importantly the
5106 * object will hold onto its vma (making it possible for a
5107 * stray GTT write to corrupt our defaults). Unmap the vma
5108 * from the GTT to prevent such accidents and reclaim the
5111 err
= i915_vma_unbind(state
);
5115 err
= i915_gem_object_set_to_cpu_domain(state
->obj
, false);
5119 engine
->default_state
= i915_gem_object_get(state
->obj
);
5122 if (IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM
)) {
5123 unsigned int found
= intel_engines_has_context_isolation(i915
);
5126 * Make sure that classes with multiple engine instances all
5127 * share the same basic configuration.
5129 for_each_engine(engine
, i915
, id
) {
5130 unsigned int bit
= BIT(engine
->uabi_class
);
5131 unsigned int expected
= engine
->default_state
? bit
: 0;
5133 if ((found
& bit
) != expected
) {
5134 DRM_ERROR("mismatching default context state for class %d on engine %s\n",
5135 engine
->uabi_class
, engine
->name
);
5141 i915_gem_context_set_closed(ctx
);
5142 i915_gem_context_put(ctx
);
5147 * If we have to abandon now, we expect the engines to be idle
5148 * and ready to be torn-down. First try to flush any remaining
5149 * request, ensure we are pointing at the kernel context and
5152 if (WARN_ON(i915_gem_switch_to_kernel_context(i915
)))
5155 if (WARN_ON(i915_gem_wait_for_idle(i915
, I915_WAIT_LOCKED
)))
5158 i915_gem_contexts_lost(i915
);
5162 int i915_gem_init(struct drm_i915_private
*dev_priv
)
5167 * We need to fallback to 4K pages since gvt gtt handling doesn't
5168 * support huge page entries - we will need to check either hypervisor
5169 * mm can support huge guest page or just do emulation in gvt.
5171 if (intel_vgpu_active(dev_priv
))
5172 mkwrite_device_info(dev_priv
)->page_sizes
=
5173 I915_GTT_PAGE_SIZE_4K
;
5175 dev_priv
->mm
.unordered_timeline
= dma_fence_context_alloc(1);
5177 if (HAS_LOGICAL_RING_CONTEXTS(dev_priv
)) {
5178 dev_priv
->gt
.resume
= intel_lr_context_resume
;
5179 dev_priv
->gt
.cleanup_engine
= intel_logical_ring_cleanup
;
5181 dev_priv
->gt
.resume
= intel_legacy_submission_resume
;
5182 dev_priv
->gt
.cleanup_engine
= intel_engine_cleanup
;
5185 ret
= i915_gem_init_userptr(dev_priv
);
5189 ret
= intel_uc_init_wq(dev_priv
);
5193 /* This is just a security blanket to placate dragons.
5194 * On some systems, we very sporadically observe that the first TLBs
5195 * used by the CS may be stale, despite us poking the TLB reset. If
5196 * we hold the forcewake during initialisation these problems
5197 * just magically go away.
5199 mutex_lock(&dev_priv
->drm
.struct_mutex
);
5200 intel_uncore_forcewake_get(dev_priv
, FORCEWAKE_ALL
);
5202 ret
= i915_gem_init_ggtt(dev_priv
);
5204 GEM_BUG_ON(ret
== -EIO
);
5208 ret
= i915_gem_contexts_init(dev_priv
);
5210 GEM_BUG_ON(ret
== -EIO
);
5214 ret
= intel_engines_init(dev_priv
);
5216 GEM_BUG_ON(ret
== -EIO
);
5220 intel_init_gt_powersave(dev_priv
);
5222 ret
= intel_uc_init(dev_priv
);
5226 ret
= i915_gem_init_hw(dev_priv
);
5231 * Despite its name intel_init_clock_gating applies both display
5232 * clock gating workarounds; GT mmio workarounds and the occasional
5233 * GT power context workaround. Worse, sometimes it includes a context
5234 * register workaround which we need to apply before we record the
5235 * default HW state for all contexts.
5237 * FIXME: break up the workarounds and apply them at the right time!
5239 intel_init_clock_gating(dev_priv
);
5241 ret
= __intel_engines_record_defaults(dev_priv
);
5245 if (i915_inject_load_failure()) {
5250 if (i915_inject_load_failure()) {
5255 intel_uncore_forcewake_put(dev_priv
, FORCEWAKE_ALL
);
5256 mutex_unlock(&dev_priv
->drm
.struct_mutex
);
5261 * Unwinding is complicated by that we want to handle -EIO to mean
5262 * disable GPU submission but keep KMS alive. We want to mark the
5263 * HW as irrevisibly wedged, but keep enough state around that the
5264 * driver doesn't explode during runtime.
5267 i915_gem_wait_for_idle(dev_priv
, I915_WAIT_LOCKED
);
5268 i915_gem_contexts_lost(dev_priv
);
5269 intel_uc_fini_hw(dev_priv
);
5271 intel_uc_fini(dev_priv
);
5274 intel_cleanup_gt_powersave(dev_priv
);
5275 i915_gem_cleanup_engines(dev_priv
);
5279 i915_gem_contexts_fini(dev_priv
);
5282 intel_uncore_forcewake_put(dev_priv
, FORCEWAKE_ALL
);
5283 mutex_unlock(&dev_priv
->drm
.struct_mutex
);
5285 intel_uc_fini_wq(dev_priv
);
5288 i915_gem_cleanup_userptr(dev_priv
);
5292 * Allow engine initialisation to fail by marking the GPU as
5293 * wedged. But we only want to do this where the GPU is angry,
5294 * for all other failure, such as an allocation failure, bail.
5296 if (!i915_terminally_wedged(&dev_priv
->gpu_error
)) {
5297 DRM_ERROR("Failed to initialize GPU, declaring it wedged\n");
5298 i915_gem_set_wedged(dev_priv
);
5303 i915_gem_drain_freed_objects(dev_priv
);
5307 void i915_gem_init_mmio(struct drm_i915_private
*i915
)
5309 i915_gem_sanitize(i915
);
5313 i915_gem_cleanup_engines(struct drm_i915_private
*dev_priv
)
5315 struct intel_engine_cs
*engine
;
5316 enum intel_engine_id id
;
5318 for_each_engine(engine
, dev_priv
, id
)
5319 dev_priv
->gt
.cleanup_engine(engine
);
5323 i915_gem_load_init_fences(struct drm_i915_private
*dev_priv
)
5327 if (INTEL_INFO(dev_priv
)->gen
>= 7 && !IS_VALLEYVIEW(dev_priv
) &&
5328 !IS_CHERRYVIEW(dev_priv
))
5329 dev_priv
->num_fence_regs
= 32;
5330 else if (INTEL_INFO(dev_priv
)->gen
>= 4 ||
5331 IS_I945G(dev_priv
) || IS_I945GM(dev_priv
) ||
5332 IS_G33(dev_priv
) || IS_PINEVIEW(dev_priv
))
5333 dev_priv
->num_fence_regs
= 16;
5335 dev_priv
->num_fence_regs
= 8;
5337 if (intel_vgpu_active(dev_priv
))
5338 dev_priv
->num_fence_regs
=
5339 I915_READ(vgtif_reg(avail_rs
.fence_num
));
5341 /* Initialize fence registers to zero */
5342 for (i
= 0; i
< dev_priv
->num_fence_regs
; i
++) {
5343 struct drm_i915_fence_reg
*fence
= &dev_priv
->fence_regs
[i
];
5345 fence
->i915
= dev_priv
;
5347 list_add_tail(&fence
->link
, &dev_priv
->mm
.fence_list
);
5349 i915_gem_restore_fences(dev_priv
);
5351 i915_gem_detect_bit_6_swizzle(dev_priv
);
5354 static void i915_gem_init__mm(struct drm_i915_private
*i915
)
5356 spin_lock_init(&i915
->mm
.object_stat_lock
);
5357 spin_lock_init(&i915
->mm
.obj_lock
);
5358 spin_lock_init(&i915
->mm
.free_lock
);
5360 init_llist_head(&i915
->mm
.free_list
);
5362 INIT_LIST_HEAD(&i915
->mm
.unbound_list
);
5363 INIT_LIST_HEAD(&i915
->mm
.bound_list
);
5364 INIT_LIST_HEAD(&i915
->mm
.fence_list
);
5365 INIT_LIST_HEAD(&i915
->mm
.userfault_list
);
5367 INIT_WORK(&i915
->mm
.free_work
, __i915_gem_free_work
);
5371 i915_gem_load_init(struct drm_i915_private
*dev_priv
)
5375 dev_priv
->objects
= KMEM_CACHE(drm_i915_gem_object
, SLAB_HWCACHE_ALIGN
);
5376 if (!dev_priv
->objects
)
5379 dev_priv
->vmas
= KMEM_CACHE(i915_vma
, SLAB_HWCACHE_ALIGN
);
5380 if (!dev_priv
->vmas
)
5383 dev_priv
->luts
= KMEM_CACHE(i915_lut_handle
, 0);
5384 if (!dev_priv
->luts
)
5387 dev_priv
->requests
= KMEM_CACHE(drm_i915_gem_request
,
5388 SLAB_HWCACHE_ALIGN
|
5389 SLAB_RECLAIM_ACCOUNT
|
5390 SLAB_TYPESAFE_BY_RCU
);
5391 if (!dev_priv
->requests
)
5394 dev_priv
->dependencies
= KMEM_CACHE(i915_dependency
,
5395 SLAB_HWCACHE_ALIGN
|
5396 SLAB_RECLAIM_ACCOUNT
);
5397 if (!dev_priv
->dependencies
)
5400 dev_priv
->priorities
= KMEM_CACHE(i915_priolist
, SLAB_HWCACHE_ALIGN
);
5401 if (!dev_priv
->priorities
)
5402 goto err_dependencies
;
5404 mutex_lock(&dev_priv
->drm
.struct_mutex
);
5405 INIT_LIST_HEAD(&dev_priv
->gt
.timelines
);
5406 err
= i915_gem_timeline_init__global(dev_priv
);
5407 mutex_unlock(&dev_priv
->drm
.struct_mutex
);
5409 goto err_priorities
;
5411 i915_gem_init__mm(dev_priv
);
5413 INIT_DELAYED_WORK(&dev_priv
->gt
.retire_work
,
5414 i915_gem_retire_work_handler
);
5415 INIT_DELAYED_WORK(&dev_priv
->gt
.idle_work
,
5416 i915_gem_idle_work_handler
);
5417 init_waitqueue_head(&dev_priv
->gpu_error
.wait_queue
);
5418 init_waitqueue_head(&dev_priv
->gpu_error
.reset_queue
);
5420 atomic_set(&dev_priv
->mm
.bsd_engine_dispatch_index
, 0);
5422 spin_lock_init(&dev_priv
->fb_tracking
.lock
);
5424 err
= i915_gemfs_init(dev_priv
);
5426 DRM_NOTE("Unable to create a private tmpfs mount, hugepage support will be disabled(%d).\n", err
);
5431 kmem_cache_destroy(dev_priv
->priorities
);
5433 kmem_cache_destroy(dev_priv
->dependencies
);
5435 kmem_cache_destroy(dev_priv
->requests
);
5437 kmem_cache_destroy(dev_priv
->luts
);
5439 kmem_cache_destroy(dev_priv
->vmas
);
5441 kmem_cache_destroy(dev_priv
->objects
);
5446 void i915_gem_load_cleanup(struct drm_i915_private
*dev_priv
)
5448 i915_gem_drain_freed_objects(dev_priv
);
5449 WARN_ON(!llist_empty(&dev_priv
->mm
.free_list
));
5450 WARN_ON(dev_priv
->mm
.object_count
);
5452 mutex_lock(&dev_priv
->drm
.struct_mutex
);
5453 i915_gem_timeline_fini(&dev_priv
->gt
.global_timeline
);
5454 WARN_ON(!list_empty(&dev_priv
->gt
.timelines
));
5455 mutex_unlock(&dev_priv
->drm
.struct_mutex
);
5457 kmem_cache_destroy(dev_priv
->priorities
);
5458 kmem_cache_destroy(dev_priv
->dependencies
);
5459 kmem_cache_destroy(dev_priv
->requests
);
5460 kmem_cache_destroy(dev_priv
->luts
);
5461 kmem_cache_destroy(dev_priv
->vmas
);
5462 kmem_cache_destroy(dev_priv
->objects
);
5464 /* And ensure that our DESTROY_BY_RCU slabs are truly destroyed */
5467 i915_gemfs_fini(dev_priv
);
5470 int i915_gem_freeze(struct drm_i915_private
*dev_priv
)
5472 /* Discard all purgeable objects, let userspace recover those as
5473 * required after resuming.
5475 i915_gem_shrink_all(dev_priv
);
5480 int i915_gem_freeze_late(struct drm_i915_private
*dev_priv
)
5482 struct drm_i915_gem_object
*obj
;
5483 struct list_head
*phases
[] = {
5484 &dev_priv
->mm
.unbound_list
,
5485 &dev_priv
->mm
.bound_list
,
5489 /* Called just before we write the hibernation image.
5491 * We need to update the domain tracking to reflect that the CPU
5492 * will be accessing all the pages to create and restore from the
5493 * hibernation, and so upon restoration those pages will be in the
5496 * To make sure the hibernation image contains the latest state,
5497 * we update that state just before writing out the image.
5499 * To try and reduce the hibernation image, we manually shrink
5500 * the objects as well, see i915_gem_freeze()
5503 i915_gem_shrink(dev_priv
, -1UL, NULL
, I915_SHRINK_UNBOUND
);
5504 i915_gem_drain_freed_objects(dev_priv
);
5506 spin_lock(&dev_priv
->mm
.obj_lock
);
5507 for (p
= phases
; *p
; p
++) {
5508 list_for_each_entry(obj
, *p
, mm
.link
)
5509 __start_cpu_write(obj
);
5511 spin_unlock(&dev_priv
->mm
.obj_lock
);
5516 void i915_gem_release(struct drm_device
*dev
, struct drm_file
*file
)
5518 struct drm_i915_file_private
*file_priv
= file
->driver_priv
;
5519 struct drm_i915_gem_request
*request
;
5521 /* Clean up our request list when the client is going away, so that
5522 * later retire_requests won't dereference our soon-to-be-gone
5525 spin_lock(&file_priv
->mm
.lock
);
5526 list_for_each_entry(request
, &file_priv
->mm
.request_list
, client_link
)
5527 request
->file_priv
= NULL
;
5528 spin_unlock(&file_priv
->mm
.lock
);
5531 int i915_gem_open(struct drm_i915_private
*i915
, struct drm_file
*file
)
5533 struct drm_i915_file_private
*file_priv
;
5538 file_priv
= kzalloc(sizeof(*file_priv
), GFP_KERNEL
);
5542 file
->driver_priv
= file_priv
;
5543 file_priv
->dev_priv
= i915
;
5544 file_priv
->file
= file
;
5546 spin_lock_init(&file_priv
->mm
.lock
);
5547 INIT_LIST_HEAD(&file_priv
->mm
.request_list
);
5549 file_priv
->bsd_engine
= -1;
5551 ret
= i915_gem_context_open(i915
, file
);
5559 * i915_gem_track_fb - update frontbuffer tracking
5560 * @old: current GEM buffer for the frontbuffer slots
5561 * @new: new GEM buffer for the frontbuffer slots
5562 * @frontbuffer_bits: bitmask of frontbuffer slots
5564 * This updates the frontbuffer tracking bits @frontbuffer_bits by clearing them
5565 * from @old and setting them in @new. Both @old and @new can be NULL.
5567 void i915_gem_track_fb(struct drm_i915_gem_object
*old
,
5568 struct drm_i915_gem_object
*new,
5569 unsigned frontbuffer_bits
)
5571 /* Control of individual bits within the mask are guarded by
5572 * the owning plane->mutex, i.e. we can never see concurrent
5573 * manipulation of individual bits. But since the bitfield as a whole
5574 * is updated using RMW, we need to use atomics in order to update
5577 BUILD_BUG_ON(INTEL_FRONTBUFFER_BITS_PER_PIPE
* I915_MAX_PIPES
>
5578 sizeof(atomic_t
) * BITS_PER_BYTE
);
5581 WARN_ON(!(atomic_read(&old
->frontbuffer_bits
) & frontbuffer_bits
));
5582 atomic_andnot(frontbuffer_bits
, &old
->frontbuffer_bits
);
5586 WARN_ON(atomic_read(&new->frontbuffer_bits
) & frontbuffer_bits
);
5587 atomic_or(frontbuffer_bits
, &new->frontbuffer_bits
);
5591 /* Allocate a new GEM object and fill it with the supplied data */
5592 struct drm_i915_gem_object
*
5593 i915_gem_object_create_from_data(struct drm_i915_private
*dev_priv
,
5594 const void *data
, size_t size
)
5596 struct drm_i915_gem_object
*obj
;
5601 obj
= i915_gem_object_create(dev_priv
, round_up(size
, PAGE_SIZE
));
5605 GEM_BUG_ON(obj
->base
.write_domain
!= I915_GEM_DOMAIN_CPU
);
5607 file
= obj
->base
.filp
;
5610 unsigned int len
= min_t(typeof(size
), size
, PAGE_SIZE
);
5612 void *pgdata
, *vaddr
;
5614 err
= pagecache_write_begin(file
, file
->f_mapping
,
5621 memcpy(vaddr
, data
, len
);
5624 err
= pagecache_write_end(file
, file
->f_mapping
,
5638 i915_gem_object_put(obj
);
5639 return ERR_PTR(err
);
5642 struct scatterlist
*
5643 i915_gem_object_get_sg(struct drm_i915_gem_object
*obj
,
5645 unsigned int *offset
)
5647 struct i915_gem_object_page_iter
*iter
= &obj
->mm
.get_page
;
5648 struct scatterlist
*sg
;
5649 unsigned int idx
, count
;
5652 GEM_BUG_ON(n
>= obj
->base
.size
>> PAGE_SHIFT
);
5653 GEM_BUG_ON(!i915_gem_object_has_pinned_pages(obj
));
5655 /* As we iterate forward through the sg, we record each entry in a
5656 * radixtree for quick repeated (backwards) lookups. If we have seen
5657 * this index previously, we will have an entry for it.
5659 * Initial lookup is O(N), but this is amortized to O(1) for
5660 * sequential page access (where each new request is consecutive
5661 * to the previous one). Repeated lookups are O(lg(obj->base.size)),
5662 * i.e. O(1) with a large constant!
5664 if (n
< READ_ONCE(iter
->sg_idx
))
5667 mutex_lock(&iter
->lock
);
5669 /* We prefer to reuse the last sg so that repeated lookup of this
5670 * (or the subsequent) sg are fast - comparing against the last
5671 * sg is faster than going through the radixtree.
5676 count
= __sg_page_count(sg
);
5678 while (idx
+ count
<= n
) {
5679 unsigned long exception
, i
;
5682 /* If we cannot allocate and insert this entry, or the
5683 * individual pages from this range, cancel updating the
5684 * sg_idx so that on this lookup we are forced to linearly
5685 * scan onwards, but on future lookups we will try the
5686 * insertion again (in which case we need to be careful of
5687 * the error return reporting that we have already inserted
5690 ret
= radix_tree_insert(&iter
->radix
, idx
, sg
);
5691 if (ret
&& ret
!= -EEXIST
)
5695 RADIX_TREE_EXCEPTIONAL_ENTRY
|
5696 idx
<< RADIX_TREE_EXCEPTIONAL_SHIFT
;
5697 for (i
= 1; i
< count
; i
++) {
5698 ret
= radix_tree_insert(&iter
->radix
, idx
+ i
,
5700 if (ret
&& ret
!= -EEXIST
)
5705 sg
= ____sg_next(sg
);
5706 count
= __sg_page_count(sg
);
5713 mutex_unlock(&iter
->lock
);
5715 if (unlikely(n
< idx
)) /* insertion completed by another thread */
5718 /* In case we failed to insert the entry into the radixtree, we need
5719 * to look beyond the current sg.
5721 while (idx
+ count
<= n
) {
5723 sg
= ____sg_next(sg
);
5724 count
= __sg_page_count(sg
);
5733 sg
= radix_tree_lookup(&iter
->radix
, n
);
5736 /* If this index is in the middle of multi-page sg entry,
5737 * the radixtree will contain an exceptional entry that points
5738 * to the start of that range. We will return the pointer to
5739 * the base page and the offset of this page within the
5743 if (unlikely(radix_tree_exception(sg
))) {
5744 unsigned long base
=
5745 (unsigned long)sg
>> RADIX_TREE_EXCEPTIONAL_SHIFT
;
5747 sg
= radix_tree_lookup(&iter
->radix
, base
);
5759 i915_gem_object_get_page(struct drm_i915_gem_object
*obj
, unsigned int n
)
5761 struct scatterlist
*sg
;
5762 unsigned int offset
;
5764 GEM_BUG_ON(!i915_gem_object_has_struct_page(obj
));
5766 sg
= i915_gem_object_get_sg(obj
, n
, &offset
);
5767 return nth_page(sg_page(sg
), offset
);
5770 /* Like i915_gem_object_get_page(), but mark the returned page dirty */
5772 i915_gem_object_get_dirty_page(struct drm_i915_gem_object
*obj
,
5777 page
= i915_gem_object_get_page(obj
, n
);
5779 set_page_dirty(page
);
5785 i915_gem_object_get_dma_address(struct drm_i915_gem_object
*obj
,
5788 struct scatterlist
*sg
;
5789 unsigned int offset
;
5791 sg
= i915_gem_object_get_sg(obj
, n
, &offset
);
5792 return sg_dma_address(sg
) + (offset
<< PAGE_SHIFT
);
5795 int i915_gem_object_attach_phys(struct drm_i915_gem_object
*obj
, int align
)
5797 struct sg_table
*pages
;
5800 if (align
> obj
->base
.size
)
5803 if (obj
->ops
== &i915_gem_phys_ops
)
5806 if (obj
->ops
!= &i915_gem_object_ops
)
5809 err
= i915_gem_object_unbind(obj
);
5813 mutex_lock(&obj
->mm
.lock
);
5815 if (obj
->mm
.madv
!= I915_MADV_WILLNEED
) {
5820 if (obj
->mm
.quirked
) {
5825 if (obj
->mm
.mapping
) {
5830 pages
= fetch_and_zero(&obj
->mm
.pages
);
5832 struct drm_i915_private
*i915
= to_i915(obj
->base
.dev
);
5834 __i915_gem_object_reset_page_iter(obj
);
5836 spin_lock(&i915
->mm
.obj_lock
);
5837 list_del(&obj
->mm
.link
);
5838 spin_unlock(&i915
->mm
.obj_lock
);
5841 obj
->ops
= &i915_gem_phys_ops
;
5843 err
= ____i915_gem_object_get_pages(obj
);
5847 /* Perma-pin (until release) the physical set of pages */
5848 __i915_gem_object_pin_pages(obj
);
5850 if (!IS_ERR_OR_NULL(pages
))
5851 i915_gem_object_ops
.put_pages(obj
, pages
);
5852 mutex_unlock(&obj
->mm
.lock
);
5856 obj
->ops
= &i915_gem_object_ops
;
5857 obj
->mm
.pages
= pages
;
5859 mutex_unlock(&obj
->mm
.lock
);
5863 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
5864 #include "selftests/scatterlist.c"
5865 #include "selftests/mock_gem_device.c"
5866 #include "selftests/huge_gem_object.c"
5867 #include "selftests/huge_pages.c"
5868 #include "selftests/i915_gem_object.c"
5869 #include "selftests/i915_gem_coherency.c"