Merge tag 'for_linus' of git://git.kernel.org/pub/scm/linux/kernel/git/mst/vhost
[cris-mirror.git] / drivers / gpu / drm / i915 / i915_gem.c
blobdd89abd2263d20334403ae4c4b1ef61af5482135
1 /*
2 * Copyright © 2008-2015 Intel Corporation
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
28 #include <drm/drmP.h>
29 #include <drm/drm_vma_manager.h>
30 #include <drm/i915_drm.h>
31 #include "i915_drv.h"
32 #include "i915_gem_clflush.h"
33 #include "i915_vgpu.h"
34 #include "i915_trace.h"
35 #include "intel_drv.h"
36 #include "intel_frontbuffer.h"
37 #include "intel_mocs.h"
38 #include "i915_gemfs.h"
39 #include <linux/dma-fence-array.h>
40 #include <linux/kthread.h>
41 #include <linux/reservation.h>
42 #include <linux/shmem_fs.h>
43 #include <linux/slab.h>
44 #include <linux/stop_machine.h>
45 #include <linux/swap.h>
46 #include <linux/pci.h>
47 #include <linux/dma-buf.h>
49 static void i915_gem_flush_free_objects(struct drm_i915_private *i915);
51 static bool cpu_write_needs_clflush(struct drm_i915_gem_object *obj)
53 if (obj->cache_dirty)
54 return false;
56 if (!(obj->cache_coherent & I915_BO_CACHE_COHERENT_FOR_WRITE))
57 return true;
59 return obj->pin_global; /* currently in use by HW, keep flushed */
62 static int
63 insert_mappable_node(struct i915_ggtt *ggtt,
64 struct drm_mm_node *node, u32 size)
66 memset(node, 0, sizeof(*node));
67 return drm_mm_insert_node_in_range(&ggtt->base.mm, node,
68 size, 0, I915_COLOR_UNEVICTABLE,
69 0, ggtt->mappable_end,
70 DRM_MM_INSERT_LOW);
73 static void
74 remove_mappable_node(struct drm_mm_node *node)
76 drm_mm_remove_node(node);
79 /* some bookkeeping */
80 static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
81 u64 size)
83 spin_lock(&dev_priv->mm.object_stat_lock);
84 dev_priv->mm.object_count++;
85 dev_priv->mm.object_memory += size;
86 spin_unlock(&dev_priv->mm.object_stat_lock);
89 static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
90 u64 size)
92 spin_lock(&dev_priv->mm.object_stat_lock);
93 dev_priv->mm.object_count--;
94 dev_priv->mm.object_memory -= size;
95 spin_unlock(&dev_priv->mm.object_stat_lock);
98 static int
99 i915_gem_wait_for_error(struct i915_gpu_error *error)
101 int ret;
103 might_sleep();
106 * Only wait 10 seconds for the gpu reset to complete to avoid hanging
107 * userspace. If it takes that long something really bad is going on and
108 * we should simply try to bail out and fail as gracefully as possible.
110 ret = wait_event_interruptible_timeout(error->reset_queue,
111 !i915_reset_backoff(error),
112 I915_RESET_TIMEOUT);
113 if (ret == 0) {
114 DRM_ERROR("Timed out waiting for the gpu reset to complete\n");
115 return -EIO;
116 } else if (ret < 0) {
117 return ret;
118 } else {
119 return 0;
123 int i915_mutex_lock_interruptible(struct drm_device *dev)
125 struct drm_i915_private *dev_priv = to_i915(dev);
126 int ret;
128 ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
129 if (ret)
130 return ret;
132 ret = mutex_lock_interruptible(&dev->struct_mutex);
133 if (ret)
134 return ret;
136 return 0;
140 i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
141 struct drm_file *file)
143 struct drm_i915_private *dev_priv = to_i915(dev);
144 struct i915_ggtt *ggtt = &dev_priv->ggtt;
145 struct drm_i915_gem_get_aperture *args = data;
146 struct i915_vma *vma;
147 u64 pinned;
149 pinned = ggtt->base.reserved;
150 mutex_lock(&dev->struct_mutex);
151 list_for_each_entry(vma, &ggtt->base.active_list, vm_link)
152 if (i915_vma_is_pinned(vma))
153 pinned += vma->node.size;
154 list_for_each_entry(vma, &ggtt->base.inactive_list, vm_link)
155 if (i915_vma_is_pinned(vma))
156 pinned += vma->node.size;
157 mutex_unlock(&dev->struct_mutex);
159 args->aper_size = ggtt->base.total;
160 args->aper_available_size = args->aper_size - pinned;
162 return 0;
165 static int i915_gem_object_get_pages_phys(struct drm_i915_gem_object *obj)
167 struct address_space *mapping = obj->base.filp->f_mapping;
168 drm_dma_handle_t *phys;
169 struct sg_table *st;
170 struct scatterlist *sg;
171 char *vaddr;
172 int i;
173 int err;
175 if (WARN_ON(i915_gem_object_needs_bit17_swizzle(obj)))
176 return -EINVAL;
178 /* Always aligning to the object size, allows a single allocation
179 * to handle all possible callers, and given typical object sizes,
180 * the alignment of the buddy allocation will naturally match.
182 phys = drm_pci_alloc(obj->base.dev,
183 roundup_pow_of_two(obj->base.size),
184 roundup_pow_of_two(obj->base.size));
185 if (!phys)
186 return -ENOMEM;
188 vaddr = phys->vaddr;
189 for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
190 struct page *page;
191 char *src;
193 page = shmem_read_mapping_page(mapping, i);
194 if (IS_ERR(page)) {
195 err = PTR_ERR(page);
196 goto err_phys;
199 src = kmap_atomic(page);
200 memcpy(vaddr, src, PAGE_SIZE);
201 drm_clflush_virt_range(vaddr, PAGE_SIZE);
202 kunmap_atomic(src);
204 put_page(page);
205 vaddr += PAGE_SIZE;
208 i915_gem_chipset_flush(to_i915(obj->base.dev));
210 st = kmalloc(sizeof(*st), GFP_KERNEL);
211 if (!st) {
212 err = -ENOMEM;
213 goto err_phys;
216 if (sg_alloc_table(st, 1, GFP_KERNEL)) {
217 kfree(st);
218 err = -ENOMEM;
219 goto err_phys;
222 sg = st->sgl;
223 sg->offset = 0;
224 sg->length = obj->base.size;
226 sg_dma_address(sg) = phys->busaddr;
227 sg_dma_len(sg) = obj->base.size;
229 obj->phys_handle = phys;
231 __i915_gem_object_set_pages(obj, st, sg->length);
233 return 0;
235 err_phys:
236 drm_pci_free(obj->base.dev, phys);
238 return err;
241 static void __start_cpu_write(struct drm_i915_gem_object *obj)
243 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
244 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
245 if (cpu_write_needs_clflush(obj))
246 obj->cache_dirty = true;
249 static void
250 __i915_gem_object_release_shmem(struct drm_i915_gem_object *obj,
251 struct sg_table *pages,
252 bool needs_clflush)
254 GEM_BUG_ON(obj->mm.madv == __I915_MADV_PURGED);
256 if (obj->mm.madv == I915_MADV_DONTNEED)
257 obj->mm.dirty = false;
259 if (needs_clflush &&
260 (obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0 &&
261 !(obj->cache_coherent & I915_BO_CACHE_COHERENT_FOR_READ))
262 drm_clflush_sg(pages);
264 __start_cpu_write(obj);
267 static void
268 i915_gem_object_put_pages_phys(struct drm_i915_gem_object *obj,
269 struct sg_table *pages)
271 __i915_gem_object_release_shmem(obj, pages, false);
273 if (obj->mm.dirty) {
274 struct address_space *mapping = obj->base.filp->f_mapping;
275 char *vaddr = obj->phys_handle->vaddr;
276 int i;
278 for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
279 struct page *page;
280 char *dst;
282 page = shmem_read_mapping_page(mapping, i);
283 if (IS_ERR(page))
284 continue;
286 dst = kmap_atomic(page);
287 drm_clflush_virt_range(vaddr, PAGE_SIZE);
288 memcpy(dst, vaddr, PAGE_SIZE);
289 kunmap_atomic(dst);
291 set_page_dirty(page);
292 if (obj->mm.madv == I915_MADV_WILLNEED)
293 mark_page_accessed(page);
294 put_page(page);
295 vaddr += PAGE_SIZE;
297 obj->mm.dirty = false;
300 sg_free_table(pages);
301 kfree(pages);
303 drm_pci_free(obj->base.dev, obj->phys_handle);
306 static void
307 i915_gem_object_release_phys(struct drm_i915_gem_object *obj)
309 i915_gem_object_unpin_pages(obj);
312 static const struct drm_i915_gem_object_ops i915_gem_phys_ops = {
313 .get_pages = i915_gem_object_get_pages_phys,
314 .put_pages = i915_gem_object_put_pages_phys,
315 .release = i915_gem_object_release_phys,
318 static const struct drm_i915_gem_object_ops i915_gem_object_ops;
320 int i915_gem_object_unbind(struct drm_i915_gem_object *obj)
322 struct i915_vma *vma;
323 LIST_HEAD(still_in_list);
324 int ret;
326 lockdep_assert_held(&obj->base.dev->struct_mutex);
328 /* Closed vma are removed from the obj->vma_list - but they may
329 * still have an active binding on the object. To remove those we
330 * must wait for all rendering to complete to the object (as unbinding
331 * must anyway), and retire the requests.
333 ret = i915_gem_object_set_to_cpu_domain(obj, false);
334 if (ret)
335 return ret;
337 while ((vma = list_first_entry_or_null(&obj->vma_list,
338 struct i915_vma,
339 obj_link))) {
340 list_move_tail(&vma->obj_link, &still_in_list);
341 ret = i915_vma_unbind(vma);
342 if (ret)
343 break;
345 list_splice(&still_in_list, &obj->vma_list);
347 return ret;
350 static long
351 i915_gem_object_wait_fence(struct dma_fence *fence,
352 unsigned int flags,
353 long timeout,
354 struct intel_rps_client *rps_client)
356 struct drm_i915_gem_request *rq;
358 BUILD_BUG_ON(I915_WAIT_INTERRUPTIBLE != 0x1);
360 if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags))
361 return timeout;
363 if (!dma_fence_is_i915(fence))
364 return dma_fence_wait_timeout(fence,
365 flags & I915_WAIT_INTERRUPTIBLE,
366 timeout);
368 rq = to_request(fence);
369 if (i915_gem_request_completed(rq))
370 goto out;
372 /* This client is about to stall waiting for the GPU. In many cases
373 * this is undesirable and limits the throughput of the system, as
374 * many clients cannot continue processing user input/output whilst
375 * blocked. RPS autotuning may take tens of milliseconds to respond
376 * to the GPU load and thus incurs additional latency for the client.
377 * We can circumvent that by promoting the GPU frequency to maximum
378 * before we wait. This makes the GPU throttle up much more quickly
379 * (good for benchmarks and user experience, e.g. window animations),
380 * but at a cost of spending more power processing the workload
381 * (bad for battery). Not all clients even want their results
382 * immediately and for them we should just let the GPU select its own
383 * frequency to maximise efficiency. To prevent a single client from
384 * forcing the clocks too high for the whole system, we only allow
385 * each client to waitboost once in a busy period.
387 if (rps_client) {
388 if (INTEL_GEN(rq->i915) >= 6)
389 gen6_rps_boost(rq, rps_client);
390 else
391 rps_client = NULL;
394 timeout = i915_wait_request(rq, flags, timeout);
396 out:
397 if (flags & I915_WAIT_LOCKED && i915_gem_request_completed(rq))
398 i915_gem_request_retire_upto(rq);
400 return timeout;
403 static long
404 i915_gem_object_wait_reservation(struct reservation_object *resv,
405 unsigned int flags,
406 long timeout,
407 struct intel_rps_client *rps_client)
409 unsigned int seq = __read_seqcount_begin(&resv->seq);
410 struct dma_fence *excl;
411 bool prune_fences = false;
413 if (flags & I915_WAIT_ALL) {
414 struct dma_fence **shared;
415 unsigned int count, i;
416 int ret;
418 ret = reservation_object_get_fences_rcu(resv,
419 &excl, &count, &shared);
420 if (ret)
421 return ret;
423 for (i = 0; i < count; i++) {
424 timeout = i915_gem_object_wait_fence(shared[i],
425 flags, timeout,
426 rps_client);
427 if (timeout < 0)
428 break;
430 dma_fence_put(shared[i]);
433 for (; i < count; i++)
434 dma_fence_put(shared[i]);
435 kfree(shared);
437 prune_fences = count && timeout >= 0;
438 } else {
439 excl = reservation_object_get_excl_rcu(resv);
442 if (excl && timeout >= 0) {
443 timeout = i915_gem_object_wait_fence(excl, flags, timeout,
444 rps_client);
445 prune_fences = timeout >= 0;
448 dma_fence_put(excl);
450 /* Oportunistically prune the fences iff we know they have *all* been
451 * signaled and that the reservation object has not been changed (i.e.
452 * no new fences have been added).
454 if (prune_fences && !__read_seqcount_retry(&resv->seq, seq)) {
455 if (reservation_object_trylock(resv)) {
456 if (!__read_seqcount_retry(&resv->seq, seq))
457 reservation_object_add_excl_fence(resv, NULL);
458 reservation_object_unlock(resv);
462 return timeout;
465 static void __fence_set_priority(struct dma_fence *fence, int prio)
467 struct drm_i915_gem_request *rq;
468 struct intel_engine_cs *engine;
470 if (dma_fence_is_signaled(fence) || !dma_fence_is_i915(fence))
471 return;
473 rq = to_request(fence);
474 engine = rq->engine;
475 if (!engine->schedule)
476 return;
478 engine->schedule(rq, prio);
481 static void fence_set_priority(struct dma_fence *fence, int prio)
483 /* Recurse once into a fence-array */
484 if (dma_fence_is_array(fence)) {
485 struct dma_fence_array *array = to_dma_fence_array(fence);
486 int i;
488 for (i = 0; i < array->num_fences; i++)
489 __fence_set_priority(array->fences[i], prio);
490 } else {
491 __fence_set_priority(fence, prio);
496 i915_gem_object_wait_priority(struct drm_i915_gem_object *obj,
497 unsigned int flags,
498 int prio)
500 struct dma_fence *excl;
502 if (flags & I915_WAIT_ALL) {
503 struct dma_fence **shared;
504 unsigned int count, i;
505 int ret;
507 ret = reservation_object_get_fences_rcu(obj->resv,
508 &excl, &count, &shared);
509 if (ret)
510 return ret;
512 for (i = 0; i < count; i++) {
513 fence_set_priority(shared[i], prio);
514 dma_fence_put(shared[i]);
517 kfree(shared);
518 } else {
519 excl = reservation_object_get_excl_rcu(obj->resv);
522 if (excl) {
523 fence_set_priority(excl, prio);
524 dma_fence_put(excl);
526 return 0;
530 * Waits for rendering to the object to be completed
531 * @obj: i915 gem object
532 * @flags: how to wait (under a lock, for all rendering or just for writes etc)
533 * @timeout: how long to wait
534 * @rps_client: client (user process) to charge for any waitboosting
537 i915_gem_object_wait(struct drm_i915_gem_object *obj,
538 unsigned int flags,
539 long timeout,
540 struct intel_rps_client *rps_client)
542 might_sleep();
543 #if IS_ENABLED(CONFIG_LOCKDEP)
544 GEM_BUG_ON(debug_locks &&
545 !!lockdep_is_held(&obj->base.dev->struct_mutex) !=
546 !!(flags & I915_WAIT_LOCKED));
547 #endif
548 GEM_BUG_ON(timeout < 0);
550 timeout = i915_gem_object_wait_reservation(obj->resv,
551 flags, timeout,
552 rps_client);
553 return timeout < 0 ? timeout : 0;
556 static struct intel_rps_client *to_rps_client(struct drm_file *file)
558 struct drm_i915_file_private *fpriv = file->driver_priv;
560 return &fpriv->rps_client;
563 static int
564 i915_gem_phys_pwrite(struct drm_i915_gem_object *obj,
565 struct drm_i915_gem_pwrite *args,
566 struct drm_file *file)
568 void *vaddr = obj->phys_handle->vaddr + args->offset;
569 char __user *user_data = u64_to_user_ptr(args->data_ptr);
571 /* We manually control the domain here and pretend that it
572 * remains coherent i.e. in the GTT domain, like shmem_pwrite.
574 intel_fb_obj_invalidate(obj, ORIGIN_CPU);
575 if (copy_from_user(vaddr, user_data, args->size))
576 return -EFAULT;
578 drm_clflush_virt_range(vaddr, args->size);
579 i915_gem_chipset_flush(to_i915(obj->base.dev));
581 intel_fb_obj_flush(obj, ORIGIN_CPU);
582 return 0;
585 void *i915_gem_object_alloc(struct drm_i915_private *dev_priv)
587 return kmem_cache_zalloc(dev_priv->objects, GFP_KERNEL);
590 void i915_gem_object_free(struct drm_i915_gem_object *obj)
592 struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
593 kmem_cache_free(dev_priv->objects, obj);
596 static int
597 i915_gem_create(struct drm_file *file,
598 struct drm_i915_private *dev_priv,
599 uint64_t size,
600 uint32_t *handle_p)
602 struct drm_i915_gem_object *obj;
603 int ret;
604 u32 handle;
606 size = roundup(size, PAGE_SIZE);
607 if (size == 0)
608 return -EINVAL;
610 /* Allocate the new object */
611 obj = i915_gem_object_create(dev_priv, size);
612 if (IS_ERR(obj))
613 return PTR_ERR(obj);
615 ret = drm_gem_handle_create(file, &obj->base, &handle);
616 /* drop reference from allocate - handle holds it now */
617 i915_gem_object_put(obj);
618 if (ret)
619 return ret;
621 *handle_p = handle;
622 return 0;
626 i915_gem_dumb_create(struct drm_file *file,
627 struct drm_device *dev,
628 struct drm_mode_create_dumb *args)
630 /* have to work out size/pitch and return them */
631 args->pitch = ALIGN(args->width * DIV_ROUND_UP(args->bpp, 8), 64);
632 args->size = args->pitch * args->height;
633 return i915_gem_create(file, to_i915(dev),
634 args->size, &args->handle);
637 static bool gpu_write_needs_clflush(struct drm_i915_gem_object *obj)
639 return !(obj->cache_level == I915_CACHE_NONE ||
640 obj->cache_level == I915_CACHE_WT);
644 * Creates a new mm object and returns a handle to it.
645 * @dev: drm device pointer
646 * @data: ioctl data blob
647 * @file: drm file pointer
650 i915_gem_create_ioctl(struct drm_device *dev, void *data,
651 struct drm_file *file)
653 struct drm_i915_private *dev_priv = to_i915(dev);
654 struct drm_i915_gem_create *args = data;
656 i915_gem_flush_free_objects(dev_priv);
658 return i915_gem_create(file, dev_priv,
659 args->size, &args->handle);
662 static inline enum fb_op_origin
663 fb_write_origin(struct drm_i915_gem_object *obj, unsigned int domain)
665 return (domain == I915_GEM_DOMAIN_GTT ?
666 obj->frontbuffer_ggtt_origin : ORIGIN_CPU);
669 void i915_gem_flush_ggtt_writes(struct drm_i915_private *dev_priv)
672 * No actual flushing is required for the GTT write domain for reads
673 * from the GTT domain. Writes to it "immediately" go to main memory
674 * as far as we know, so there's no chipset flush. It also doesn't
675 * land in the GPU render cache.
677 * However, we do have to enforce the order so that all writes through
678 * the GTT land before any writes to the device, such as updates to
679 * the GATT itself.
681 * We also have to wait a bit for the writes to land from the GTT.
682 * An uncached read (i.e. mmio) seems to be ideal for the round-trip
683 * timing. This issue has only been observed when switching quickly
684 * between GTT writes and CPU reads from inside the kernel on recent hw,
685 * and it appears to only affect discrete GTT blocks (i.e. on LLC
686 * system agents we cannot reproduce this behaviour, until Cannonlake
687 * that was!).
690 wmb();
692 intel_runtime_pm_get(dev_priv);
693 spin_lock_irq(&dev_priv->uncore.lock);
695 POSTING_READ_FW(RING_HEAD(RENDER_RING_BASE));
697 spin_unlock_irq(&dev_priv->uncore.lock);
698 intel_runtime_pm_put(dev_priv);
701 static void
702 flush_write_domain(struct drm_i915_gem_object *obj, unsigned int flush_domains)
704 struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
705 struct i915_vma *vma;
707 if (!(obj->base.write_domain & flush_domains))
708 return;
710 switch (obj->base.write_domain) {
711 case I915_GEM_DOMAIN_GTT:
712 i915_gem_flush_ggtt_writes(dev_priv);
714 intel_fb_obj_flush(obj,
715 fb_write_origin(obj, I915_GEM_DOMAIN_GTT));
717 for_each_ggtt_vma(vma, obj) {
718 if (vma->iomap)
719 continue;
721 i915_vma_unset_ggtt_write(vma);
723 break;
725 case I915_GEM_DOMAIN_CPU:
726 i915_gem_clflush_object(obj, I915_CLFLUSH_SYNC);
727 break;
729 case I915_GEM_DOMAIN_RENDER:
730 if (gpu_write_needs_clflush(obj))
731 obj->cache_dirty = true;
732 break;
735 obj->base.write_domain = 0;
738 static inline int
739 __copy_to_user_swizzled(char __user *cpu_vaddr,
740 const char *gpu_vaddr, int gpu_offset,
741 int length)
743 int ret, cpu_offset = 0;
745 while (length > 0) {
746 int cacheline_end = ALIGN(gpu_offset + 1, 64);
747 int this_length = min(cacheline_end - gpu_offset, length);
748 int swizzled_gpu_offset = gpu_offset ^ 64;
750 ret = __copy_to_user(cpu_vaddr + cpu_offset,
751 gpu_vaddr + swizzled_gpu_offset,
752 this_length);
753 if (ret)
754 return ret + length;
756 cpu_offset += this_length;
757 gpu_offset += this_length;
758 length -= this_length;
761 return 0;
764 static inline int
765 __copy_from_user_swizzled(char *gpu_vaddr, int gpu_offset,
766 const char __user *cpu_vaddr,
767 int length)
769 int ret, cpu_offset = 0;
771 while (length > 0) {
772 int cacheline_end = ALIGN(gpu_offset + 1, 64);
773 int this_length = min(cacheline_end - gpu_offset, length);
774 int swizzled_gpu_offset = gpu_offset ^ 64;
776 ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset,
777 cpu_vaddr + cpu_offset,
778 this_length);
779 if (ret)
780 return ret + length;
782 cpu_offset += this_length;
783 gpu_offset += this_length;
784 length -= this_length;
787 return 0;
791 * Pins the specified object's pages and synchronizes the object with
792 * GPU accesses. Sets needs_clflush to non-zero if the caller should
793 * flush the object from the CPU cache.
795 int i915_gem_obj_prepare_shmem_read(struct drm_i915_gem_object *obj,
796 unsigned int *needs_clflush)
798 int ret;
800 lockdep_assert_held(&obj->base.dev->struct_mutex);
802 *needs_clflush = 0;
803 if (!i915_gem_object_has_struct_page(obj))
804 return -ENODEV;
806 ret = i915_gem_object_wait(obj,
807 I915_WAIT_INTERRUPTIBLE |
808 I915_WAIT_LOCKED,
809 MAX_SCHEDULE_TIMEOUT,
810 NULL);
811 if (ret)
812 return ret;
814 ret = i915_gem_object_pin_pages(obj);
815 if (ret)
816 return ret;
818 if (obj->cache_coherent & I915_BO_CACHE_COHERENT_FOR_READ ||
819 !static_cpu_has(X86_FEATURE_CLFLUSH)) {
820 ret = i915_gem_object_set_to_cpu_domain(obj, false);
821 if (ret)
822 goto err_unpin;
823 else
824 goto out;
827 flush_write_domain(obj, ~I915_GEM_DOMAIN_CPU);
829 /* If we're not in the cpu read domain, set ourself into the gtt
830 * read domain and manually flush cachelines (if required). This
831 * optimizes for the case when the gpu will dirty the data
832 * anyway again before the next pread happens.
834 if (!obj->cache_dirty &&
835 !(obj->base.read_domains & I915_GEM_DOMAIN_CPU))
836 *needs_clflush = CLFLUSH_BEFORE;
838 out:
839 /* return with the pages pinned */
840 return 0;
842 err_unpin:
843 i915_gem_object_unpin_pages(obj);
844 return ret;
847 int i915_gem_obj_prepare_shmem_write(struct drm_i915_gem_object *obj,
848 unsigned int *needs_clflush)
850 int ret;
852 lockdep_assert_held(&obj->base.dev->struct_mutex);
854 *needs_clflush = 0;
855 if (!i915_gem_object_has_struct_page(obj))
856 return -ENODEV;
858 ret = i915_gem_object_wait(obj,
859 I915_WAIT_INTERRUPTIBLE |
860 I915_WAIT_LOCKED |
861 I915_WAIT_ALL,
862 MAX_SCHEDULE_TIMEOUT,
863 NULL);
864 if (ret)
865 return ret;
867 ret = i915_gem_object_pin_pages(obj);
868 if (ret)
869 return ret;
871 if (obj->cache_coherent & I915_BO_CACHE_COHERENT_FOR_WRITE ||
872 !static_cpu_has(X86_FEATURE_CLFLUSH)) {
873 ret = i915_gem_object_set_to_cpu_domain(obj, true);
874 if (ret)
875 goto err_unpin;
876 else
877 goto out;
880 flush_write_domain(obj, ~I915_GEM_DOMAIN_CPU);
882 /* If we're not in the cpu write domain, set ourself into the
883 * gtt write domain and manually flush cachelines (as required).
884 * This optimizes for the case when the gpu will use the data
885 * right away and we therefore have to clflush anyway.
887 if (!obj->cache_dirty) {
888 *needs_clflush |= CLFLUSH_AFTER;
891 * Same trick applies to invalidate partially written
892 * cachelines read before writing.
894 if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU))
895 *needs_clflush |= CLFLUSH_BEFORE;
898 out:
899 intel_fb_obj_invalidate(obj, ORIGIN_CPU);
900 obj->mm.dirty = true;
901 /* return with the pages pinned */
902 return 0;
904 err_unpin:
905 i915_gem_object_unpin_pages(obj);
906 return ret;
909 static void
910 shmem_clflush_swizzled_range(char *addr, unsigned long length,
911 bool swizzled)
913 if (unlikely(swizzled)) {
914 unsigned long start = (unsigned long) addr;
915 unsigned long end = (unsigned long) addr + length;
917 /* For swizzling simply ensure that we always flush both
918 * channels. Lame, but simple and it works. Swizzled
919 * pwrite/pread is far from a hotpath - current userspace
920 * doesn't use it at all. */
921 start = round_down(start, 128);
922 end = round_up(end, 128);
924 drm_clflush_virt_range((void *)start, end - start);
925 } else {
926 drm_clflush_virt_range(addr, length);
931 /* Only difference to the fast-path function is that this can handle bit17
932 * and uses non-atomic copy and kmap functions. */
933 static int
934 shmem_pread_slow(struct page *page, int offset, int length,
935 char __user *user_data,
936 bool page_do_bit17_swizzling, bool needs_clflush)
938 char *vaddr;
939 int ret;
941 vaddr = kmap(page);
942 if (needs_clflush)
943 shmem_clflush_swizzled_range(vaddr + offset, length,
944 page_do_bit17_swizzling);
946 if (page_do_bit17_swizzling)
947 ret = __copy_to_user_swizzled(user_data, vaddr, offset, length);
948 else
949 ret = __copy_to_user(user_data, vaddr + offset, length);
950 kunmap(page);
952 return ret ? - EFAULT : 0;
955 static int
956 shmem_pread(struct page *page, int offset, int length, char __user *user_data,
957 bool page_do_bit17_swizzling, bool needs_clflush)
959 int ret;
961 ret = -ENODEV;
962 if (!page_do_bit17_swizzling) {
963 char *vaddr = kmap_atomic(page);
965 if (needs_clflush)
966 drm_clflush_virt_range(vaddr + offset, length);
967 ret = __copy_to_user_inatomic(user_data, vaddr + offset, length);
968 kunmap_atomic(vaddr);
970 if (ret == 0)
971 return 0;
973 return shmem_pread_slow(page, offset, length, user_data,
974 page_do_bit17_swizzling, needs_clflush);
977 static int
978 i915_gem_shmem_pread(struct drm_i915_gem_object *obj,
979 struct drm_i915_gem_pread *args)
981 char __user *user_data;
982 u64 remain;
983 unsigned int obj_do_bit17_swizzling;
984 unsigned int needs_clflush;
985 unsigned int idx, offset;
986 int ret;
988 obj_do_bit17_swizzling = 0;
989 if (i915_gem_object_needs_bit17_swizzle(obj))
990 obj_do_bit17_swizzling = BIT(17);
992 ret = mutex_lock_interruptible(&obj->base.dev->struct_mutex);
993 if (ret)
994 return ret;
996 ret = i915_gem_obj_prepare_shmem_read(obj, &needs_clflush);
997 mutex_unlock(&obj->base.dev->struct_mutex);
998 if (ret)
999 return ret;
1001 remain = args->size;
1002 user_data = u64_to_user_ptr(args->data_ptr);
1003 offset = offset_in_page(args->offset);
1004 for (idx = args->offset >> PAGE_SHIFT; remain; idx++) {
1005 struct page *page = i915_gem_object_get_page(obj, idx);
1006 int length;
1008 length = remain;
1009 if (offset + length > PAGE_SIZE)
1010 length = PAGE_SIZE - offset;
1012 ret = shmem_pread(page, offset, length, user_data,
1013 page_to_phys(page) & obj_do_bit17_swizzling,
1014 needs_clflush);
1015 if (ret)
1016 break;
1018 remain -= length;
1019 user_data += length;
1020 offset = 0;
1023 i915_gem_obj_finish_shmem_access(obj);
1024 return ret;
1027 static inline bool
1028 gtt_user_read(struct io_mapping *mapping,
1029 loff_t base, int offset,
1030 char __user *user_data, int length)
1032 void __iomem *vaddr;
1033 unsigned long unwritten;
1035 /* We can use the cpu mem copy function because this is X86. */
1036 vaddr = io_mapping_map_atomic_wc(mapping, base);
1037 unwritten = __copy_to_user_inatomic(user_data,
1038 (void __force *)vaddr + offset,
1039 length);
1040 io_mapping_unmap_atomic(vaddr);
1041 if (unwritten) {
1042 vaddr = io_mapping_map_wc(mapping, base, PAGE_SIZE);
1043 unwritten = copy_to_user(user_data,
1044 (void __force *)vaddr + offset,
1045 length);
1046 io_mapping_unmap(vaddr);
1048 return unwritten;
1051 static int
1052 i915_gem_gtt_pread(struct drm_i915_gem_object *obj,
1053 const struct drm_i915_gem_pread *args)
1055 struct drm_i915_private *i915 = to_i915(obj->base.dev);
1056 struct i915_ggtt *ggtt = &i915->ggtt;
1057 struct drm_mm_node node;
1058 struct i915_vma *vma;
1059 void __user *user_data;
1060 u64 remain, offset;
1061 int ret;
1063 ret = mutex_lock_interruptible(&i915->drm.struct_mutex);
1064 if (ret)
1065 return ret;
1067 intel_runtime_pm_get(i915);
1068 vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0,
1069 PIN_MAPPABLE |
1070 PIN_NONFAULT |
1071 PIN_NONBLOCK);
1072 if (!IS_ERR(vma)) {
1073 node.start = i915_ggtt_offset(vma);
1074 node.allocated = false;
1075 ret = i915_vma_put_fence(vma);
1076 if (ret) {
1077 i915_vma_unpin(vma);
1078 vma = ERR_PTR(ret);
1081 if (IS_ERR(vma)) {
1082 ret = insert_mappable_node(ggtt, &node, PAGE_SIZE);
1083 if (ret)
1084 goto out_unlock;
1085 GEM_BUG_ON(!node.allocated);
1088 ret = i915_gem_object_set_to_gtt_domain(obj, false);
1089 if (ret)
1090 goto out_unpin;
1092 mutex_unlock(&i915->drm.struct_mutex);
1094 user_data = u64_to_user_ptr(args->data_ptr);
1095 remain = args->size;
1096 offset = args->offset;
1098 while (remain > 0) {
1099 /* Operation in this page
1101 * page_base = page offset within aperture
1102 * page_offset = offset within page
1103 * page_length = bytes to copy for this page
1105 u32 page_base = node.start;
1106 unsigned page_offset = offset_in_page(offset);
1107 unsigned page_length = PAGE_SIZE - page_offset;
1108 page_length = remain < page_length ? remain : page_length;
1109 if (node.allocated) {
1110 wmb();
1111 ggtt->base.insert_page(&ggtt->base,
1112 i915_gem_object_get_dma_address(obj, offset >> PAGE_SHIFT),
1113 node.start, I915_CACHE_NONE, 0);
1114 wmb();
1115 } else {
1116 page_base += offset & PAGE_MASK;
1119 if (gtt_user_read(&ggtt->iomap, page_base, page_offset,
1120 user_data, page_length)) {
1121 ret = -EFAULT;
1122 break;
1125 remain -= page_length;
1126 user_data += page_length;
1127 offset += page_length;
1130 mutex_lock(&i915->drm.struct_mutex);
1131 out_unpin:
1132 if (node.allocated) {
1133 wmb();
1134 ggtt->base.clear_range(&ggtt->base,
1135 node.start, node.size);
1136 remove_mappable_node(&node);
1137 } else {
1138 i915_vma_unpin(vma);
1140 out_unlock:
1141 intel_runtime_pm_put(i915);
1142 mutex_unlock(&i915->drm.struct_mutex);
1144 return ret;
1148 * Reads data from the object referenced by handle.
1149 * @dev: drm device pointer
1150 * @data: ioctl data blob
1151 * @file: drm file pointer
1153 * On error, the contents of *data are undefined.
1156 i915_gem_pread_ioctl(struct drm_device *dev, void *data,
1157 struct drm_file *file)
1159 struct drm_i915_gem_pread *args = data;
1160 struct drm_i915_gem_object *obj;
1161 int ret;
1163 if (args->size == 0)
1164 return 0;
1166 if (!access_ok(VERIFY_WRITE,
1167 u64_to_user_ptr(args->data_ptr),
1168 args->size))
1169 return -EFAULT;
1171 obj = i915_gem_object_lookup(file, args->handle);
1172 if (!obj)
1173 return -ENOENT;
1175 /* Bounds check source. */
1176 if (range_overflows_t(u64, args->offset, args->size, obj->base.size)) {
1177 ret = -EINVAL;
1178 goto out;
1181 trace_i915_gem_object_pread(obj, args->offset, args->size);
1183 ret = i915_gem_object_wait(obj,
1184 I915_WAIT_INTERRUPTIBLE,
1185 MAX_SCHEDULE_TIMEOUT,
1186 to_rps_client(file));
1187 if (ret)
1188 goto out;
1190 ret = i915_gem_object_pin_pages(obj);
1191 if (ret)
1192 goto out;
1194 ret = i915_gem_shmem_pread(obj, args);
1195 if (ret == -EFAULT || ret == -ENODEV)
1196 ret = i915_gem_gtt_pread(obj, args);
1198 i915_gem_object_unpin_pages(obj);
1199 out:
1200 i915_gem_object_put(obj);
1201 return ret;
1204 /* This is the fast write path which cannot handle
1205 * page faults in the source data
1208 static inline bool
1209 ggtt_write(struct io_mapping *mapping,
1210 loff_t base, int offset,
1211 char __user *user_data, int length)
1213 void __iomem *vaddr;
1214 unsigned long unwritten;
1216 /* We can use the cpu mem copy function because this is X86. */
1217 vaddr = io_mapping_map_atomic_wc(mapping, base);
1218 unwritten = __copy_from_user_inatomic_nocache((void __force *)vaddr + offset,
1219 user_data, length);
1220 io_mapping_unmap_atomic(vaddr);
1221 if (unwritten) {
1222 vaddr = io_mapping_map_wc(mapping, base, PAGE_SIZE);
1223 unwritten = copy_from_user((void __force *)vaddr + offset,
1224 user_data, length);
1225 io_mapping_unmap(vaddr);
1228 return unwritten;
1232 * This is the fast pwrite path, where we copy the data directly from the
1233 * user into the GTT, uncached.
1234 * @obj: i915 GEM object
1235 * @args: pwrite arguments structure
1237 static int
1238 i915_gem_gtt_pwrite_fast(struct drm_i915_gem_object *obj,
1239 const struct drm_i915_gem_pwrite *args)
1241 struct drm_i915_private *i915 = to_i915(obj->base.dev);
1242 struct i915_ggtt *ggtt = &i915->ggtt;
1243 struct drm_mm_node node;
1244 struct i915_vma *vma;
1245 u64 remain, offset;
1246 void __user *user_data;
1247 int ret;
1249 ret = mutex_lock_interruptible(&i915->drm.struct_mutex);
1250 if (ret)
1251 return ret;
1253 if (i915_gem_object_has_struct_page(obj)) {
1255 * Avoid waking the device up if we can fallback, as
1256 * waking/resuming is very slow (worst-case 10-100 ms
1257 * depending on PCI sleeps and our own resume time).
1258 * This easily dwarfs any performance advantage from
1259 * using the cache bypass of indirect GGTT access.
1261 if (!intel_runtime_pm_get_if_in_use(i915)) {
1262 ret = -EFAULT;
1263 goto out_unlock;
1265 } else {
1266 /* No backing pages, no fallback, we must force GGTT access */
1267 intel_runtime_pm_get(i915);
1270 vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0,
1271 PIN_MAPPABLE |
1272 PIN_NONFAULT |
1273 PIN_NONBLOCK);
1274 if (!IS_ERR(vma)) {
1275 node.start = i915_ggtt_offset(vma);
1276 node.allocated = false;
1277 ret = i915_vma_put_fence(vma);
1278 if (ret) {
1279 i915_vma_unpin(vma);
1280 vma = ERR_PTR(ret);
1283 if (IS_ERR(vma)) {
1284 ret = insert_mappable_node(ggtt, &node, PAGE_SIZE);
1285 if (ret)
1286 goto out_rpm;
1287 GEM_BUG_ON(!node.allocated);
1290 ret = i915_gem_object_set_to_gtt_domain(obj, true);
1291 if (ret)
1292 goto out_unpin;
1294 mutex_unlock(&i915->drm.struct_mutex);
1296 intel_fb_obj_invalidate(obj, ORIGIN_CPU);
1298 user_data = u64_to_user_ptr(args->data_ptr);
1299 offset = args->offset;
1300 remain = args->size;
1301 while (remain) {
1302 /* Operation in this page
1304 * page_base = page offset within aperture
1305 * page_offset = offset within page
1306 * page_length = bytes to copy for this page
1308 u32 page_base = node.start;
1309 unsigned int page_offset = offset_in_page(offset);
1310 unsigned int page_length = PAGE_SIZE - page_offset;
1311 page_length = remain < page_length ? remain : page_length;
1312 if (node.allocated) {
1313 wmb(); /* flush the write before we modify the GGTT */
1314 ggtt->base.insert_page(&ggtt->base,
1315 i915_gem_object_get_dma_address(obj, offset >> PAGE_SHIFT),
1316 node.start, I915_CACHE_NONE, 0);
1317 wmb(); /* flush modifications to the GGTT (insert_page) */
1318 } else {
1319 page_base += offset & PAGE_MASK;
1321 /* If we get a fault while copying data, then (presumably) our
1322 * source page isn't available. Return the error and we'll
1323 * retry in the slow path.
1324 * If the object is non-shmem backed, we retry again with the
1325 * path that handles page fault.
1327 if (ggtt_write(&ggtt->iomap, page_base, page_offset,
1328 user_data, page_length)) {
1329 ret = -EFAULT;
1330 break;
1333 remain -= page_length;
1334 user_data += page_length;
1335 offset += page_length;
1337 intel_fb_obj_flush(obj, ORIGIN_CPU);
1339 mutex_lock(&i915->drm.struct_mutex);
1340 out_unpin:
1341 if (node.allocated) {
1342 wmb();
1343 ggtt->base.clear_range(&ggtt->base,
1344 node.start, node.size);
1345 remove_mappable_node(&node);
1346 } else {
1347 i915_vma_unpin(vma);
1349 out_rpm:
1350 intel_runtime_pm_put(i915);
1351 out_unlock:
1352 mutex_unlock(&i915->drm.struct_mutex);
1353 return ret;
1356 static int
1357 shmem_pwrite_slow(struct page *page, int offset, int length,
1358 char __user *user_data,
1359 bool page_do_bit17_swizzling,
1360 bool needs_clflush_before,
1361 bool needs_clflush_after)
1363 char *vaddr;
1364 int ret;
1366 vaddr = kmap(page);
1367 if (unlikely(needs_clflush_before || page_do_bit17_swizzling))
1368 shmem_clflush_swizzled_range(vaddr + offset, length,
1369 page_do_bit17_swizzling);
1370 if (page_do_bit17_swizzling)
1371 ret = __copy_from_user_swizzled(vaddr, offset, user_data,
1372 length);
1373 else
1374 ret = __copy_from_user(vaddr + offset, user_data, length);
1375 if (needs_clflush_after)
1376 shmem_clflush_swizzled_range(vaddr + offset, length,
1377 page_do_bit17_swizzling);
1378 kunmap(page);
1380 return ret ? -EFAULT : 0;
1383 /* Per-page copy function for the shmem pwrite fastpath.
1384 * Flushes invalid cachelines before writing to the target if
1385 * needs_clflush_before is set and flushes out any written cachelines after
1386 * writing if needs_clflush is set.
1388 static int
1389 shmem_pwrite(struct page *page, int offset, int len, char __user *user_data,
1390 bool page_do_bit17_swizzling,
1391 bool needs_clflush_before,
1392 bool needs_clflush_after)
1394 int ret;
1396 ret = -ENODEV;
1397 if (!page_do_bit17_swizzling) {
1398 char *vaddr = kmap_atomic(page);
1400 if (needs_clflush_before)
1401 drm_clflush_virt_range(vaddr + offset, len);
1402 ret = __copy_from_user_inatomic(vaddr + offset, user_data, len);
1403 if (needs_clflush_after)
1404 drm_clflush_virt_range(vaddr + offset, len);
1406 kunmap_atomic(vaddr);
1408 if (ret == 0)
1409 return ret;
1411 return shmem_pwrite_slow(page, offset, len, user_data,
1412 page_do_bit17_swizzling,
1413 needs_clflush_before,
1414 needs_clflush_after);
1417 static int
1418 i915_gem_shmem_pwrite(struct drm_i915_gem_object *obj,
1419 const struct drm_i915_gem_pwrite *args)
1421 struct drm_i915_private *i915 = to_i915(obj->base.dev);
1422 void __user *user_data;
1423 u64 remain;
1424 unsigned int obj_do_bit17_swizzling;
1425 unsigned int partial_cacheline_write;
1426 unsigned int needs_clflush;
1427 unsigned int offset, idx;
1428 int ret;
1430 ret = mutex_lock_interruptible(&i915->drm.struct_mutex);
1431 if (ret)
1432 return ret;
1434 ret = i915_gem_obj_prepare_shmem_write(obj, &needs_clflush);
1435 mutex_unlock(&i915->drm.struct_mutex);
1436 if (ret)
1437 return ret;
1439 obj_do_bit17_swizzling = 0;
1440 if (i915_gem_object_needs_bit17_swizzle(obj))
1441 obj_do_bit17_swizzling = BIT(17);
1443 /* If we don't overwrite a cacheline completely we need to be
1444 * careful to have up-to-date data by first clflushing. Don't
1445 * overcomplicate things and flush the entire patch.
1447 partial_cacheline_write = 0;
1448 if (needs_clflush & CLFLUSH_BEFORE)
1449 partial_cacheline_write = boot_cpu_data.x86_clflush_size - 1;
1451 user_data = u64_to_user_ptr(args->data_ptr);
1452 remain = args->size;
1453 offset = offset_in_page(args->offset);
1454 for (idx = args->offset >> PAGE_SHIFT; remain; idx++) {
1455 struct page *page = i915_gem_object_get_page(obj, idx);
1456 int length;
1458 length = remain;
1459 if (offset + length > PAGE_SIZE)
1460 length = PAGE_SIZE - offset;
1462 ret = shmem_pwrite(page, offset, length, user_data,
1463 page_to_phys(page) & obj_do_bit17_swizzling,
1464 (offset | length) & partial_cacheline_write,
1465 needs_clflush & CLFLUSH_AFTER);
1466 if (ret)
1467 break;
1469 remain -= length;
1470 user_data += length;
1471 offset = 0;
1474 intel_fb_obj_flush(obj, ORIGIN_CPU);
1475 i915_gem_obj_finish_shmem_access(obj);
1476 return ret;
1480 * Writes data to the object referenced by handle.
1481 * @dev: drm device
1482 * @data: ioctl data blob
1483 * @file: drm file
1485 * On error, the contents of the buffer that were to be modified are undefined.
1488 i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
1489 struct drm_file *file)
1491 struct drm_i915_gem_pwrite *args = data;
1492 struct drm_i915_gem_object *obj;
1493 int ret;
1495 if (args->size == 0)
1496 return 0;
1498 if (!access_ok(VERIFY_READ,
1499 u64_to_user_ptr(args->data_ptr),
1500 args->size))
1501 return -EFAULT;
1503 obj = i915_gem_object_lookup(file, args->handle);
1504 if (!obj)
1505 return -ENOENT;
1507 /* Bounds check destination. */
1508 if (range_overflows_t(u64, args->offset, args->size, obj->base.size)) {
1509 ret = -EINVAL;
1510 goto err;
1513 trace_i915_gem_object_pwrite(obj, args->offset, args->size);
1515 ret = -ENODEV;
1516 if (obj->ops->pwrite)
1517 ret = obj->ops->pwrite(obj, args);
1518 if (ret != -ENODEV)
1519 goto err;
1521 ret = i915_gem_object_wait(obj,
1522 I915_WAIT_INTERRUPTIBLE |
1523 I915_WAIT_ALL,
1524 MAX_SCHEDULE_TIMEOUT,
1525 to_rps_client(file));
1526 if (ret)
1527 goto err;
1529 ret = i915_gem_object_pin_pages(obj);
1530 if (ret)
1531 goto err;
1533 ret = -EFAULT;
1534 /* We can only do the GTT pwrite on untiled buffers, as otherwise
1535 * it would end up going through the fenced access, and we'll get
1536 * different detiling behavior between reading and writing.
1537 * pread/pwrite currently are reading and writing from the CPU
1538 * perspective, requiring manual detiling by the client.
1540 if (!i915_gem_object_has_struct_page(obj) ||
1541 cpu_write_needs_clflush(obj))
1542 /* Note that the gtt paths might fail with non-page-backed user
1543 * pointers (e.g. gtt mappings when moving data between
1544 * textures). Fallback to the shmem path in that case.
1546 ret = i915_gem_gtt_pwrite_fast(obj, args);
1548 if (ret == -EFAULT || ret == -ENOSPC) {
1549 if (obj->phys_handle)
1550 ret = i915_gem_phys_pwrite(obj, args, file);
1551 else
1552 ret = i915_gem_shmem_pwrite(obj, args);
1555 i915_gem_object_unpin_pages(obj);
1556 err:
1557 i915_gem_object_put(obj);
1558 return ret;
1561 static void i915_gem_object_bump_inactive_ggtt(struct drm_i915_gem_object *obj)
1563 struct drm_i915_private *i915;
1564 struct list_head *list;
1565 struct i915_vma *vma;
1567 GEM_BUG_ON(!i915_gem_object_has_pinned_pages(obj));
1569 for_each_ggtt_vma(vma, obj) {
1570 if (i915_vma_is_active(vma))
1571 continue;
1573 if (!drm_mm_node_allocated(&vma->node))
1574 continue;
1576 list_move_tail(&vma->vm_link, &vma->vm->inactive_list);
1579 i915 = to_i915(obj->base.dev);
1580 spin_lock(&i915->mm.obj_lock);
1581 list = obj->bind_count ? &i915->mm.bound_list : &i915->mm.unbound_list;
1582 list_move_tail(&obj->mm.link, list);
1583 spin_unlock(&i915->mm.obj_lock);
1587 * Called when user space prepares to use an object with the CPU, either
1588 * through the mmap ioctl's mapping or a GTT mapping.
1589 * @dev: drm device
1590 * @data: ioctl data blob
1591 * @file: drm file
1594 i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
1595 struct drm_file *file)
1597 struct drm_i915_gem_set_domain *args = data;
1598 struct drm_i915_gem_object *obj;
1599 uint32_t read_domains = args->read_domains;
1600 uint32_t write_domain = args->write_domain;
1601 int err;
1603 /* Only handle setting domains to types used by the CPU. */
1604 if ((write_domain | read_domains) & I915_GEM_GPU_DOMAINS)
1605 return -EINVAL;
1607 /* Having something in the write domain implies it's in the read
1608 * domain, and only that read domain. Enforce that in the request.
1610 if (write_domain != 0 && read_domains != write_domain)
1611 return -EINVAL;
1613 obj = i915_gem_object_lookup(file, args->handle);
1614 if (!obj)
1615 return -ENOENT;
1617 /* Try to flush the object off the GPU without holding the lock.
1618 * We will repeat the flush holding the lock in the normal manner
1619 * to catch cases where we are gazumped.
1621 err = i915_gem_object_wait(obj,
1622 I915_WAIT_INTERRUPTIBLE |
1623 (write_domain ? I915_WAIT_ALL : 0),
1624 MAX_SCHEDULE_TIMEOUT,
1625 to_rps_client(file));
1626 if (err)
1627 goto out;
1630 * Proxy objects do not control access to the backing storage, ergo
1631 * they cannot be used as a means to manipulate the cache domain
1632 * tracking for that backing storage. The proxy object is always
1633 * considered to be outside of any cache domain.
1635 if (i915_gem_object_is_proxy(obj)) {
1636 err = -ENXIO;
1637 goto out;
1641 * Flush and acquire obj->pages so that we are coherent through
1642 * direct access in memory with previous cached writes through
1643 * shmemfs and that our cache domain tracking remains valid.
1644 * For example, if the obj->filp was moved to swap without us
1645 * being notified and releasing the pages, we would mistakenly
1646 * continue to assume that the obj remained out of the CPU cached
1647 * domain.
1649 err = i915_gem_object_pin_pages(obj);
1650 if (err)
1651 goto out;
1653 err = i915_mutex_lock_interruptible(dev);
1654 if (err)
1655 goto out_unpin;
1657 if (read_domains & I915_GEM_DOMAIN_WC)
1658 err = i915_gem_object_set_to_wc_domain(obj, write_domain);
1659 else if (read_domains & I915_GEM_DOMAIN_GTT)
1660 err = i915_gem_object_set_to_gtt_domain(obj, write_domain);
1661 else
1662 err = i915_gem_object_set_to_cpu_domain(obj, write_domain);
1664 /* And bump the LRU for this access */
1665 i915_gem_object_bump_inactive_ggtt(obj);
1667 mutex_unlock(&dev->struct_mutex);
1669 if (write_domain != 0)
1670 intel_fb_obj_invalidate(obj,
1671 fb_write_origin(obj, write_domain));
1673 out_unpin:
1674 i915_gem_object_unpin_pages(obj);
1675 out:
1676 i915_gem_object_put(obj);
1677 return err;
1681 * Called when user space has done writes to this buffer
1682 * @dev: drm device
1683 * @data: ioctl data blob
1684 * @file: drm file
1687 i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
1688 struct drm_file *file)
1690 struct drm_i915_gem_sw_finish *args = data;
1691 struct drm_i915_gem_object *obj;
1693 obj = i915_gem_object_lookup(file, args->handle);
1694 if (!obj)
1695 return -ENOENT;
1698 * Proxy objects are barred from CPU access, so there is no
1699 * need to ban sw_finish as it is a nop.
1702 /* Pinned buffers may be scanout, so flush the cache */
1703 i915_gem_object_flush_if_display(obj);
1704 i915_gem_object_put(obj);
1706 return 0;
1710 * i915_gem_mmap_ioctl - Maps the contents of an object, returning the address
1711 * it is mapped to.
1712 * @dev: drm device
1713 * @data: ioctl data blob
1714 * @file: drm file
1716 * While the mapping holds a reference on the contents of the object, it doesn't
1717 * imply a ref on the object itself.
1719 * IMPORTANT:
1721 * DRM driver writers who look a this function as an example for how to do GEM
1722 * mmap support, please don't implement mmap support like here. The modern way
1723 * to implement DRM mmap support is with an mmap offset ioctl (like
1724 * i915_gem_mmap_gtt) and then using the mmap syscall on the DRM fd directly.
1725 * That way debug tooling like valgrind will understand what's going on, hiding
1726 * the mmap call in a driver private ioctl will break that. The i915 driver only
1727 * does cpu mmaps this way because we didn't know better.
1730 i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
1731 struct drm_file *file)
1733 struct drm_i915_gem_mmap *args = data;
1734 struct drm_i915_gem_object *obj;
1735 unsigned long addr;
1737 if (args->flags & ~(I915_MMAP_WC))
1738 return -EINVAL;
1740 if (args->flags & I915_MMAP_WC && !boot_cpu_has(X86_FEATURE_PAT))
1741 return -ENODEV;
1743 obj = i915_gem_object_lookup(file, args->handle);
1744 if (!obj)
1745 return -ENOENT;
1747 /* prime objects have no backing filp to GEM mmap
1748 * pages from.
1750 if (!obj->base.filp) {
1751 i915_gem_object_put(obj);
1752 return -ENXIO;
1755 addr = vm_mmap(obj->base.filp, 0, args->size,
1756 PROT_READ | PROT_WRITE, MAP_SHARED,
1757 args->offset);
1758 if (args->flags & I915_MMAP_WC) {
1759 struct mm_struct *mm = current->mm;
1760 struct vm_area_struct *vma;
1762 if (down_write_killable(&mm->mmap_sem)) {
1763 i915_gem_object_put(obj);
1764 return -EINTR;
1766 vma = find_vma(mm, addr);
1767 if (vma)
1768 vma->vm_page_prot =
1769 pgprot_writecombine(vm_get_page_prot(vma->vm_flags));
1770 else
1771 addr = -ENOMEM;
1772 up_write(&mm->mmap_sem);
1774 /* This may race, but that's ok, it only gets set */
1775 WRITE_ONCE(obj->frontbuffer_ggtt_origin, ORIGIN_CPU);
1777 i915_gem_object_put(obj);
1778 if (IS_ERR((void *)addr))
1779 return addr;
1781 args->addr_ptr = (uint64_t) addr;
1783 return 0;
1786 static unsigned int tile_row_pages(struct drm_i915_gem_object *obj)
1788 return i915_gem_object_get_tile_row_size(obj) >> PAGE_SHIFT;
1792 * i915_gem_mmap_gtt_version - report the current feature set for GTT mmaps
1794 * A history of the GTT mmap interface:
1796 * 0 - Everything had to fit into the GTT. Both parties of a memcpy had to
1797 * aligned and suitable for fencing, and still fit into the available
1798 * mappable space left by the pinned display objects. A classic problem
1799 * we called the page-fault-of-doom where we would ping-pong between
1800 * two objects that could not fit inside the GTT and so the memcpy
1801 * would page one object in at the expense of the other between every
1802 * single byte.
1804 * 1 - Objects can be any size, and have any compatible fencing (X Y, or none
1805 * as set via i915_gem_set_tiling() [DRM_I915_GEM_SET_TILING]). If the
1806 * object is too large for the available space (or simply too large
1807 * for the mappable aperture!), a view is created instead and faulted
1808 * into userspace. (This view is aligned and sized appropriately for
1809 * fenced access.)
1811 * 2 - Recognise WC as a separate cache domain so that we can flush the
1812 * delayed writes via GTT before performing direct access via WC.
1814 * Restrictions:
1816 * * snoopable objects cannot be accessed via the GTT. It can cause machine
1817 * hangs on some architectures, corruption on others. An attempt to service
1818 * a GTT page fault from a snoopable object will generate a SIGBUS.
1820 * * the object must be able to fit into RAM (physical memory, though no
1821 * limited to the mappable aperture).
1824 * Caveats:
1826 * * a new GTT page fault will synchronize rendering from the GPU and flush
1827 * all data to system memory. Subsequent access will not be synchronized.
1829 * * all mappings are revoked on runtime device suspend.
1831 * * there are only 8, 16 or 32 fence registers to share between all users
1832 * (older machines require fence register for display and blitter access
1833 * as well). Contention of the fence registers will cause the previous users
1834 * to be unmapped and any new access will generate new page faults.
1836 * * running out of memory while servicing a fault may generate a SIGBUS,
1837 * rather than the expected SIGSEGV.
1839 int i915_gem_mmap_gtt_version(void)
1841 return 2;
1844 static inline struct i915_ggtt_view
1845 compute_partial_view(struct drm_i915_gem_object *obj,
1846 pgoff_t page_offset,
1847 unsigned int chunk)
1849 struct i915_ggtt_view view;
1851 if (i915_gem_object_is_tiled(obj))
1852 chunk = roundup(chunk, tile_row_pages(obj));
1854 view.type = I915_GGTT_VIEW_PARTIAL;
1855 view.partial.offset = rounddown(page_offset, chunk);
1856 view.partial.size =
1857 min_t(unsigned int, chunk,
1858 (obj->base.size >> PAGE_SHIFT) - view.partial.offset);
1860 /* If the partial covers the entire object, just create a normal VMA. */
1861 if (chunk >= obj->base.size >> PAGE_SHIFT)
1862 view.type = I915_GGTT_VIEW_NORMAL;
1864 return view;
1868 * i915_gem_fault - fault a page into the GTT
1869 * @vmf: fault info
1871 * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
1872 * from userspace. The fault handler takes care of binding the object to
1873 * the GTT (if needed), allocating and programming a fence register (again,
1874 * only if needed based on whether the old reg is still valid or the object
1875 * is tiled) and inserting a new PTE into the faulting process.
1877 * Note that the faulting process may involve evicting existing objects
1878 * from the GTT and/or fence registers to make room. So performance may
1879 * suffer if the GTT working set is large or there are few fence registers
1880 * left.
1882 * The current feature set supported by i915_gem_fault() and thus GTT mmaps
1883 * is exposed via I915_PARAM_MMAP_GTT_VERSION (see i915_gem_mmap_gtt_version).
1885 int i915_gem_fault(struct vm_fault *vmf)
1887 #define MIN_CHUNK_PAGES ((1 << 20) >> PAGE_SHIFT) /* 1 MiB */
1888 struct vm_area_struct *area = vmf->vma;
1889 struct drm_i915_gem_object *obj = to_intel_bo(area->vm_private_data);
1890 struct drm_device *dev = obj->base.dev;
1891 struct drm_i915_private *dev_priv = to_i915(dev);
1892 struct i915_ggtt *ggtt = &dev_priv->ggtt;
1893 bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
1894 struct i915_vma *vma;
1895 pgoff_t page_offset;
1896 unsigned int flags;
1897 int ret;
1899 /* We don't use vmf->pgoff since that has the fake offset */
1900 page_offset = (vmf->address - area->vm_start) >> PAGE_SHIFT;
1902 trace_i915_gem_object_fault(obj, page_offset, true, write);
1904 /* Try to flush the object off the GPU first without holding the lock.
1905 * Upon acquiring the lock, we will perform our sanity checks and then
1906 * repeat the flush holding the lock in the normal manner to catch cases
1907 * where we are gazumped.
1909 ret = i915_gem_object_wait(obj,
1910 I915_WAIT_INTERRUPTIBLE,
1911 MAX_SCHEDULE_TIMEOUT,
1912 NULL);
1913 if (ret)
1914 goto err;
1916 ret = i915_gem_object_pin_pages(obj);
1917 if (ret)
1918 goto err;
1920 intel_runtime_pm_get(dev_priv);
1922 ret = i915_mutex_lock_interruptible(dev);
1923 if (ret)
1924 goto err_rpm;
1926 /* Access to snoopable pages through the GTT is incoherent. */
1927 if (obj->cache_level != I915_CACHE_NONE && !HAS_LLC(dev_priv)) {
1928 ret = -EFAULT;
1929 goto err_unlock;
1932 /* If the object is smaller than a couple of partial vma, it is
1933 * not worth only creating a single partial vma - we may as well
1934 * clear enough space for the full object.
1936 flags = PIN_MAPPABLE;
1937 if (obj->base.size > 2 * MIN_CHUNK_PAGES << PAGE_SHIFT)
1938 flags |= PIN_NONBLOCK | PIN_NONFAULT;
1940 /* Now pin it into the GTT as needed */
1941 vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0, flags);
1942 if (IS_ERR(vma)) {
1943 /* Use a partial view if it is bigger than available space */
1944 struct i915_ggtt_view view =
1945 compute_partial_view(obj, page_offset, MIN_CHUNK_PAGES);
1947 /* Userspace is now writing through an untracked VMA, abandon
1948 * all hope that the hardware is able to track future writes.
1950 obj->frontbuffer_ggtt_origin = ORIGIN_CPU;
1952 vma = i915_gem_object_ggtt_pin(obj, &view, 0, 0, PIN_MAPPABLE);
1954 if (IS_ERR(vma)) {
1955 ret = PTR_ERR(vma);
1956 goto err_unlock;
1959 ret = i915_gem_object_set_to_gtt_domain(obj, write);
1960 if (ret)
1961 goto err_unpin;
1963 ret = i915_vma_pin_fence(vma);
1964 if (ret)
1965 goto err_unpin;
1967 /* Finally, remap it using the new GTT offset */
1968 ret = remap_io_mapping(area,
1969 area->vm_start + (vma->ggtt_view.partial.offset << PAGE_SHIFT),
1970 (ggtt->gmadr.start + vma->node.start) >> PAGE_SHIFT,
1971 min_t(u64, vma->size, area->vm_end - area->vm_start),
1972 &ggtt->iomap);
1973 if (ret)
1974 goto err_fence;
1976 /* Mark as being mmapped into userspace for later revocation */
1977 assert_rpm_wakelock_held(dev_priv);
1978 if (!i915_vma_set_userfault(vma) && !obj->userfault_count++)
1979 list_add(&obj->userfault_link, &dev_priv->mm.userfault_list);
1980 GEM_BUG_ON(!obj->userfault_count);
1982 i915_vma_set_ggtt_write(vma);
1984 err_fence:
1985 i915_vma_unpin_fence(vma);
1986 err_unpin:
1987 __i915_vma_unpin(vma);
1988 err_unlock:
1989 mutex_unlock(&dev->struct_mutex);
1990 err_rpm:
1991 intel_runtime_pm_put(dev_priv);
1992 i915_gem_object_unpin_pages(obj);
1993 err:
1994 switch (ret) {
1995 case -EIO:
1997 * We eat errors when the gpu is terminally wedged to avoid
1998 * userspace unduly crashing (gl has no provisions for mmaps to
1999 * fail). But any other -EIO isn't ours (e.g. swap in failure)
2000 * and so needs to be reported.
2002 if (!i915_terminally_wedged(&dev_priv->gpu_error)) {
2003 ret = VM_FAULT_SIGBUS;
2004 break;
2006 case -EAGAIN:
2008 * EAGAIN means the gpu is hung and we'll wait for the error
2009 * handler to reset everything when re-faulting in
2010 * i915_mutex_lock_interruptible.
2012 case 0:
2013 case -ERESTARTSYS:
2014 case -EINTR:
2015 case -EBUSY:
2017 * EBUSY is ok: this just means that another thread
2018 * already did the job.
2020 ret = VM_FAULT_NOPAGE;
2021 break;
2022 case -ENOMEM:
2023 ret = VM_FAULT_OOM;
2024 break;
2025 case -ENOSPC:
2026 case -EFAULT:
2027 ret = VM_FAULT_SIGBUS;
2028 break;
2029 default:
2030 WARN_ONCE(ret, "unhandled error in i915_gem_fault: %i\n", ret);
2031 ret = VM_FAULT_SIGBUS;
2032 break;
2034 return ret;
2037 static void __i915_gem_object_release_mmap(struct drm_i915_gem_object *obj)
2039 struct i915_vma *vma;
2041 GEM_BUG_ON(!obj->userfault_count);
2043 obj->userfault_count = 0;
2044 list_del(&obj->userfault_link);
2045 drm_vma_node_unmap(&obj->base.vma_node,
2046 obj->base.dev->anon_inode->i_mapping);
2048 for_each_ggtt_vma(vma, obj)
2049 i915_vma_unset_userfault(vma);
2053 * i915_gem_release_mmap - remove physical page mappings
2054 * @obj: obj in question
2056 * Preserve the reservation of the mmapping with the DRM core code, but
2057 * relinquish ownership of the pages back to the system.
2059 * It is vital that we remove the page mapping if we have mapped a tiled
2060 * object through the GTT and then lose the fence register due to
2061 * resource pressure. Similarly if the object has been moved out of the
2062 * aperture, than pages mapped into userspace must be revoked. Removing the
2063 * mapping will then trigger a page fault on the next user access, allowing
2064 * fixup by i915_gem_fault().
2066 void
2067 i915_gem_release_mmap(struct drm_i915_gem_object *obj)
2069 struct drm_i915_private *i915 = to_i915(obj->base.dev);
2071 /* Serialisation between user GTT access and our code depends upon
2072 * revoking the CPU's PTE whilst the mutex is held. The next user
2073 * pagefault then has to wait until we release the mutex.
2075 * Note that RPM complicates somewhat by adding an additional
2076 * requirement that operations to the GGTT be made holding the RPM
2077 * wakeref.
2079 lockdep_assert_held(&i915->drm.struct_mutex);
2080 intel_runtime_pm_get(i915);
2082 if (!obj->userfault_count)
2083 goto out;
2085 __i915_gem_object_release_mmap(obj);
2087 /* Ensure that the CPU's PTE are revoked and there are not outstanding
2088 * memory transactions from userspace before we return. The TLB
2089 * flushing implied above by changing the PTE above *should* be
2090 * sufficient, an extra barrier here just provides us with a bit
2091 * of paranoid documentation about our requirement to serialise
2092 * memory writes before touching registers / GSM.
2094 wmb();
2096 out:
2097 intel_runtime_pm_put(i915);
2100 void i915_gem_runtime_suspend(struct drm_i915_private *dev_priv)
2102 struct drm_i915_gem_object *obj, *on;
2103 int i;
2106 * Only called during RPM suspend. All users of the userfault_list
2107 * must be holding an RPM wakeref to ensure that this can not
2108 * run concurrently with themselves (and use the struct_mutex for
2109 * protection between themselves).
2112 list_for_each_entry_safe(obj, on,
2113 &dev_priv->mm.userfault_list, userfault_link)
2114 __i915_gem_object_release_mmap(obj);
2116 /* The fence will be lost when the device powers down. If any were
2117 * in use by hardware (i.e. they are pinned), we should not be powering
2118 * down! All other fences will be reacquired by the user upon waking.
2120 for (i = 0; i < dev_priv->num_fence_regs; i++) {
2121 struct drm_i915_fence_reg *reg = &dev_priv->fence_regs[i];
2123 /* Ideally we want to assert that the fence register is not
2124 * live at this point (i.e. that no piece of code will be
2125 * trying to write through fence + GTT, as that both violates
2126 * our tracking of activity and associated locking/barriers,
2127 * but also is illegal given that the hw is powered down).
2129 * Previously we used reg->pin_count as a "liveness" indicator.
2130 * That is not sufficient, and we need a more fine-grained
2131 * tool if we want to have a sanity check here.
2134 if (!reg->vma)
2135 continue;
2137 GEM_BUG_ON(i915_vma_has_userfault(reg->vma));
2138 reg->dirty = true;
2142 static int i915_gem_object_create_mmap_offset(struct drm_i915_gem_object *obj)
2144 struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
2145 int err;
2147 err = drm_gem_create_mmap_offset(&obj->base);
2148 if (likely(!err))
2149 return 0;
2151 /* Attempt to reap some mmap space from dead objects */
2152 do {
2153 err = i915_gem_wait_for_idle(dev_priv, I915_WAIT_INTERRUPTIBLE);
2154 if (err)
2155 break;
2157 i915_gem_drain_freed_objects(dev_priv);
2158 err = drm_gem_create_mmap_offset(&obj->base);
2159 if (!err)
2160 break;
2162 } while (flush_delayed_work(&dev_priv->gt.retire_work));
2164 return err;
2167 static void i915_gem_object_free_mmap_offset(struct drm_i915_gem_object *obj)
2169 drm_gem_free_mmap_offset(&obj->base);
2173 i915_gem_mmap_gtt(struct drm_file *file,
2174 struct drm_device *dev,
2175 uint32_t handle,
2176 uint64_t *offset)
2178 struct drm_i915_gem_object *obj;
2179 int ret;
2181 obj = i915_gem_object_lookup(file, handle);
2182 if (!obj)
2183 return -ENOENT;
2185 ret = i915_gem_object_create_mmap_offset(obj);
2186 if (ret == 0)
2187 *offset = drm_vma_node_offset_addr(&obj->base.vma_node);
2189 i915_gem_object_put(obj);
2190 return ret;
2194 * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
2195 * @dev: DRM device
2196 * @data: GTT mapping ioctl data
2197 * @file: GEM object info
2199 * Simply returns the fake offset to userspace so it can mmap it.
2200 * The mmap call will end up in drm_gem_mmap(), which will set things
2201 * up so we can get faults in the handler above.
2203 * The fault handler will take care of binding the object into the GTT
2204 * (since it may have been evicted to make room for something), allocating
2205 * a fence register, and mapping the appropriate aperture address into
2206 * userspace.
2209 i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
2210 struct drm_file *file)
2212 struct drm_i915_gem_mmap_gtt *args = data;
2214 return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
2217 /* Immediately discard the backing storage */
2218 static void
2219 i915_gem_object_truncate(struct drm_i915_gem_object *obj)
2221 i915_gem_object_free_mmap_offset(obj);
2223 if (obj->base.filp == NULL)
2224 return;
2226 /* Our goal here is to return as much of the memory as
2227 * is possible back to the system as we are called from OOM.
2228 * To do this we must instruct the shmfs to drop all of its
2229 * backing pages, *now*.
2231 shmem_truncate_range(file_inode(obj->base.filp), 0, (loff_t)-1);
2232 obj->mm.madv = __I915_MADV_PURGED;
2233 obj->mm.pages = ERR_PTR(-EFAULT);
2236 /* Try to discard unwanted pages */
2237 void __i915_gem_object_invalidate(struct drm_i915_gem_object *obj)
2239 struct address_space *mapping;
2241 lockdep_assert_held(&obj->mm.lock);
2242 GEM_BUG_ON(i915_gem_object_has_pages(obj));
2244 switch (obj->mm.madv) {
2245 case I915_MADV_DONTNEED:
2246 i915_gem_object_truncate(obj);
2247 case __I915_MADV_PURGED:
2248 return;
2251 if (obj->base.filp == NULL)
2252 return;
2254 mapping = obj->base.filp->f_mapping,
2255 invalidate_mapping_pages(mapping, 0, (loff_t)-1);
2258 static void
2259 i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj,
2260 struct sg_table *pages)
2262 struct sgt_iter sgt_iter;
2263 struct page *page;
2265 __i915_gem_object_release_shmem(obj, pages, true);
2267 i915_gem_gtt_finish_pages(obj, pages);
2269 if (i915_gem_object_needs_bit17_swizzle(obj))
2270 i915_gem_object_save_bit_17_swizzle(obj, pages);
2272 for_each_sgt_page(page, sgt_iter, pages) {
2273 if (obj->mm.dirty)
2274 set_page_dirty(page);
2276 if (obj->mm.madv == I915_MADV_WILLNEED)
2277 mark_page_accessed(page);
2279 put_page(page);
2281 obj->mm.dirty = false;
2283 sg_free_table(pages);
2284 kfree(pages);
2287 static void __i915_gem_object_reset_page_iter(struct drm_i915_gem_object *obj)
2289 struct radix_tree_iter iter;
2290 void __rcu **slot;
2292 rcu_read_lock();
2293 radix_tree_for_each_slot(slot, &obj->mm.get_page.radix, &iter, 0)
2294 radix_tree_delete(&obj->mm.get_page.radix, iter.index);
2295 rcu_read_unlock();
2298 void __i915_gem_object_put_pages(struct drm_i915_gem_object *obj,
2299 enum i915_mm_subclass subclass)
2301 struct drm_i915_private *i915 = to_i915(obj->base.dev);
2302 struct sg_table *pages;
2304 if (i915_gem_object_has_pinned_pages(obj))
2305 return;
2307 GEM_BUG_ON(obj->bind_count);
2308 if (!i915_gem_object_has_pages(obj))
2309 return;
2311 /* May be called by shrinker from within get_pages() (on another bo) */
2312 mutex_lock_nested(&obj->mm.lock, subclass);
2313 if (unlikely(atomic_read(&obj->mm.pages_pin_count)))
2314 goto unlock;
2316 /* ->put_pages might need to allocate memory for the bit17 swizzle
2317 * array, hence protect them from being reaped by removing them from gtt
2318 * lists early. */
2319 pages = fetch_and_zero(&obj->mm.pages);
2320 GEM_BUG_ON(!pages);
2322 spin_lock(&i915->mm.obj_lock);
2323 list_del(&obj->mm.link);
2324 spin_unlock(&i915->mm.obj_lock);
2326 if (obj->mm.mapping) {
2327 void *ptr;
2329 ptr = page_mask_bits(obj->mm.mapping);
2330 if (is_vmalloc_addr(ptr))
2331 vunmap(ptr);
2332 else
2333 kunmap(kmap_to_page(ptr));
2335 obj->mm.mapping = NULL;
2338 __i915_gem_object_reset_page_iter(obj);
2340 if (!IS_ERR(pages))
2341 obj->ops->put_pages(obj, pages);
2343 obj->mm.page_sizes.phys = obj->mm.page_sizes.sg = 0;
2345 unlock:
2346 mutex_unlock(&obj->mm.lock);
2349 static bool i915_sg_trim(struct sg_table *orig_st)
2351 struct sg_table new_st;
2352 struct scatterlist *sg, *new_sg;
2353 unsigned int i;
2355 if (orig_st->nents == orig_st->orig_nents)
2356 return false;
2358 if (sg_alloc_table(&new_st, orig_st->nents, GFP_KERNEL | __GFP_NOWARN))
2359 return false;
2361 new_sg = new_st.sgl;
2362 for_each_sg(orig_st->sgl, sg, orig_st->nents, i) {
2363 sg_set_page(new_sg, sg_page(sg), sg->length, 0);
2364 /* called before being DMA mapped, no need to copy sg->dma_* */
2365 new_sg = sg_next(new_sg);
2367 GEM_BUG_ON(new_sg); /* Should walk exactly nents and hit the end */
2369 sg_free_table(orig_st);
2371 *orig_st = new_st;
2372 return true;
2375 static int i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj)
2377 struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
2378 const unsigned long page_count = obj->base.size / PAGE_SIZE;
2379 unsigned long i;
2380 struct address_space *mapping;
2381 struct sg_table *st;
2382 struct scatterlist *sg;
2383 struct sgt_iter sgt_iter;
2384 struct page *page;
2385 unsigned long last_pfn = 0; /* suppress gcc warning */
2386 unsigned int max_segment = i915_sg_segment_size();
2387 unsigned int sg_page_sizes;
2388 gfp_t noreclaim;
2389 int ret;
2391 /* Assert that the object is not currently in any GPU domain. As it
2392 * wasn't in the GTT, there shouldn't be any way it could have been in
2393 * a GPU cache
2395 GEM_BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
2396 GEM_BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);
2398 st = kmalloc(sizeof(*st), GFP_KERNEL);
2399 if (st == NULL)
2400 return -ENOMEM;
2402 rebuild_st:
2403 if (sg_alloc_table(st, page_count, GFP_KERNEL)) {
2404 kfree(st);
2405 return -ENOMEM;
2408 /* Get the list of pages out of our struct file. They'll be pinned
2409 * at this point until we release them.
2411 * Fail silently without starting the shrinker
2413 mapping = obj->base.filp->f_mapping;
2414 noreclaim = mapping_gfp_constraint(mapping, ~__GFP_RECLAIM);
2415 noreclaim |= __GFP_NORETRY | __GFP_NOWARN;
2417 sg = st->sgl;
2418 st->nents = 0;
2419 sg_page_sizes = 0;
2420 for (i = 0; i < page_count; i++) {
2421 const unsigned int shrink[] = {
2422 I915_SHRINK_BOUND | I915_SHRINK_UNBOUND | I915_SHRINK_PURGEABLE,
2424 }, *s = shrink;
2425 gfp_t gfp = noreclaim;
2427 do {
2428 page = shmem_read_mapping_page_gfp(mapping, i, gfp);
2429 if (likely(!IS_ERR(page)))
2430 break;
2432 if (!*s) {
2433 ret = PTR_ERR(page);
2434 goto err_sg;
2437 i915_gem_shrink(dev_priv, 2 * page_count, NULL, *s++);
2438 cond_resched();
2440 /* We've tried hard to allocate the memory by reaping
2441 * our own buffer, now let the real VM do its job and
2442 * go down in flames if truly OOM.
2444 * However, since graphics tend to be disposable,
2445 * defer the oom here by reporting the ENOMEM back
2446 * to userspace.
2448 if (!*s) {
2449 /* reclaim and warn, but no oom */
2450 gfp = mapping_gfp_mask(mapping);
2452 /* Our bo are always dirty and so we require
2453 * kswapd to reclaim our pages (direct reclaim
2454 * does not effectively begin pageout of our
2455 * buffers on its own). However, direct reclaim
2456 * only waits for kswapd when under allocation
2457 * congestion. So as a result __GFP_RECLAIM is
2458 * unreliable and fails to actually reclaim our
2459 * dirty pages -- unless you try over and over
2460 * again with !__GFP_NORETRY. However, we still
2461 * want to fail this allocation rather than
2462 * trigger the out-of-memory killer and for
2463 * this we want __GFP_RETRY_MAYFAIL.
2465 gfp |= __GFP_RETRY_MAYFAIL;
2467 } while (1);
2469 if (!i ||
2470 sg->length >= max_segment ||
2471 page_to_pfn(page) != last_pfn + 1) {
2472 if (i) {
2473 sg_page_sizes |= sg->length;
2474 sg = sg_next(sg);
2476 st->nents++;
2477 sg_set_page(sg, page, PAGE_SIZE, 0);
2478 } else {
2479 sg->length += PAGE_SIZE;
2481 last_pfn = page_to_pfn(page);
2483 /* Check that the i965g/gm workaround works. */
2484 WARN_ON((gfp & __GFP_DMA32) && (last_pfn >= 0x00100000UL));
2486 if (sg) { /* loop terminated early; short sg table */
2487 sg_page_sizes |= sg->length;
2488 sg_mark_end(sg);
2491 /* Trim unused sg entries to avoid wasting memory. */
2492 i915_sg_trim(st);
2494 ret = i915_gem_gtt_prepare_pages(obj, st);
2495 if (ret) {
2496 /* DMA remapping failed? One possible cause is that
2497 * it could not reserve enough large entries, asking
2498 * for PAGE_SIZE chunks instead may be helpful.
2500 if (max_segment > PAGE_SIZE) {
2501 for_each_sgt_page(page, sgt_iter, st)
2502 put_page(page);
2503 sg_free_table(st);
2505 max_segment = PAGE_SIZE;
2506 goto rebuild_st;
2507 } else {
2508 dev_warn(&dev_priv->drm.pdev->dev,
2509 "Failed to DMA remap %lu pages\n",
2510 page_count);
2511 goto err_pages;
2515 if (i915_gem_object_needs_bit17_swizzle(obj))
2516 i915_gem_object_do_bit_17_swizzle(obj, st);
2518 __i915_gem_object_set_pages(obj, st, sg_page_sizes);
2520 return 0;
2522 err_sg:
2523 sg_mark_end(sg);
2524 err_pages:
2525 for_each_sgt_page(page, sgt_iter, st)
2526 put_page(page);
2527 sg_free_table(st);
2528 kfree(st);
2530 /* shmemfs first checks if there is enough memory to allocate the page
2531 * and reports ENOSPC should there be insufficient, along with the usual
2532 * ENOMEM for a genuine allocation failure.
2534 * We use ENOSPC in our driver to mean that we have run out of aperture
2535 * space and so want to translate the error from shmemfs back to our
2536 * usual understanding of ENOMEM.
2538 if (ret == -ENOSPC)
2539 ret = -ENOMEM;
2541 return ret;
2544 void __i915_gem_object_set_pages(struct drm_i915_gem_object *obj,
2545 struct sg_table *pages,
2546 unsigned int sg_page_sizes)
2548 struct drm_i915_private *i915 = to_i915(obj->base.dev);
2549 unsigned long supported = INTEL_INFO(i915)->page_sizes;
2550 int i;
2552 lockdep_assert_held(&obj->mm.lock);
2554 obj->mm.get_page.sg_pos = pages->sgl;
2555 obj->mm.get_page.sg_idx = 0;
2557 obj->mm.pages = pages;
2559 if (i915_gem_object_is_tiled(obj) &&
2560 i915->quirks & QUIRK_PIN_SWIZZLED_PAGES) {
2561 GEM_BUG_ON(obj->mm.quirked);
2562 __i915_gem_object_pin_pages(obj);
2563 obj->mm.quirked = true;
2566 GEM_BUG_ON(!sg_page_sizes);
2567 obj->mm.page_sizes.phys = sg_page_sizes;
2570 * Calculate the supported page-sizes which fit into the given
2571 * sg_page_sizes. This will give us the page-sizes which we may be able
2572 * to use opportunistically when later inserting into the GTT. For
2573 * example if phys=2G, then in theory we should be able to use 1G, 2M,
2574 * 64K or 4K pages, although in practice this will depend on a number of
2575 * other factors.
2577 obj->mm.page_sizes.sg = 0;
2578 for_each_set_bit(i, &supported, ilog2(I915_GTT_MAX_PAGE_SIZE) + 1) {
2579 if (obj->mm.page_sizes.phys & ~0u << i)
2580 obj->mm.page_sizes.sg |= BIT(i);
2582 GEM_BUG_ON(!HAS_PAGE_SIZES(i915, obj->mm.page_sizes.sg));
2584 spin_lock(&i915->mm.obj_lock);
2585 list_add(&obj->mm.link, &i915->mm.unbound_list);
2586 spin_unlock(&i915->mm.obj_lock);
2589 static int ____i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
2591 int err;
2593 if (unlikely(obj->mm.madv != I915_MADV_WILLNEED)) {
2594 DRM_DEBUG("Attempting to obtain a purgeable object\n");
2595 return -EFAULT;
2598 err = obj->ops->get_pages(obj);
2599 GEM_BUG_ON(!err && !i915_gem_object_has_pages(obj));
2601 return err;
2604 /* Ensure that the associated pages are gathered from the backing storage
2605 * and pinned into our object. i915_gem_object_pin_pages() may be called
2606 * multiple times before they are released by a single call to
2607 * i915_gem_object_unpin_pages() - once the pages are no longer referenced
2608 * either as a result of memory pressure (reaping pages under the shrinker)
2609 * or as the object is itself released.
2611 int __i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
2613 int err;
2615 err = mutex_lock_interruptible(&obj->mm.lock);
2616 if (err)
2617 return err;
2619 if (unlikely(!i915_gem_object_has_pages(obj))) {
2620 GEM_BUG_ON(i915_gem_object_has_pinned_pages(obj));
2622 err = ____i915_gem_object_get_pages(obj);
2623 if (err)
2624 goto unlock;
2626 smp_mb__before_atomic();
2628 atomic_inc(&obj->mm.pages_pin_count);
2630 unlock:
2631 mutex_unlock(&obj->mm.lock);
2632 return err;
2635 /* The 'mapping' part of i915_gem_object_pin_map() below */
2636 static void *i915_gem_object_map(const struct drm_i915_gem_object *obj,
2637 enum i915_map_type type)
2639 unsigned long n_pages = obj->base.size >> PAGE_SHIFT;
2640 struct sg_table *sgt = obj->mm.pages;
2641 struct sgt_iter sgt_iter;
2642 struct page *page;
2643 struct page *stack_pages[32];
2644 struct page **pages = stack_pages;
2645 unsigned long i = 0;
2646 pgprot_t pgprot;
2647 void *addr;
2649 /* A single page can always be kmapped */
2650 if (n_pages == 1 && type == I915_MAP_WB)
2651 return kmap(sg_page(sgt->sgl));
2653 if (n_pages > ARRAY_SIZE(stack_pages)) {
2654 /* Too big for stack -- allocate temporary array instead */
2655 pages = kvmalloc_array(n_pages, sizeof(*pages), GFP_KERNEL);
2656 if (!pages)
2657 return NULL;
2660 for_each_sgt_page(page, sgt_iter, sgt)
2661 pages[i++] = page;
2663 /* Check that we have the expected number of pages */
2664 GEM_BUG_ON(i != n_pages);
2666 switch (type) {
2667 default:
2668 MISSING_CASE(type);
2669 /* fallthrough to use PAGE_KERNEL anyway */
2670 case I915_MAP_WB:
2671 pgprot = PAGE_KERNEL;
2672 break;
2673 case I915_MAP_WC:
2674 pgprot = pgprot_writecombine(PAGE_KERNEL_IO);
2675 break;
2677 addr = vmap(pages, n_pages, 0, pgprot);
2679 if (pages != stack_pages)
2680 kvfree(pages);
2682 return addr;
2685 /* get, pin, and map the pages of the object into kernel space */
2686 void *i915_gem_object_pin_map(struct drm_i915_gem_object *obj,
2687 enum i915_map_type type)
2689 enum i915_map_type has_type;
2690 bool pinned;
2691 void *ptr;
2692 int ret;
2694 if (unlikely(!i915_gem_object_has_struct_page(obj)))
2695 return ERR_PTR(-ENXIO);
2697 ret = mutex_lock_interruptible(&obj->mm.lock);
2698 if (ret)
2699 return ERR_PTR(ret);
2701 pinned = !(type & I915_MAP_OVERRIDE);
2702 type &= ~I915_MAP_OVERRIDE;
2704 if (!atomic_inc_not_zero(&obj->mm.pages_pin_count)) {
2705 if (unlikely(!i915_gem_object_has_pages(obj))) {
2706 GEM_BUG_ON(i915_gem_object_has_pinned_pages(obj));
2708 ret = ____i915_gem_object_get_pages(obj);
2709 if (ret)
2710 goto err_unlock;
2712 smp_mb__before_atomic();
2714 atomic_inc(&obj->mm.pages_pin_count);
2715 pinned = false;
2717 GEM_BUG_ON(!i915_gem_object_has_pages(obj));
2719 ptr = page_unpack_bits(obj->mm.mapping, &has_type);
2720 if (ptr && has_type != type) {
2721 if (pinned) {
2722 ret = -EBUSY;
2723 goto err_unpin;
2726 if (is_vmalloc_addr(ptr))
2727 vunmap(ptr);
2728 else
2729 kunmap(kmap_to_page(ptr));
2731 ptr = obj->mm.mapping = NULL;
2734 if (!ptr) {
2735 ptr = i915_gem_object_map(obj, type);
2736 if (!ptr) {
2737 ret = -ENOMEM;
2738 goto err_unpin;
2741 obj->mm.mapping = page_pack_bits(ptr, type);
2744 out_unlock:
2745 mutex_unlock(&obj->mm.lock);
2746 return ptr;
2748 err_unpin:
2749 atomic_dec(&obj->mm.pages_pin_count);
2750 err_unlock:
2751 ptr = ERR_PTR(ret);
2752 goto out_unlock;
2755 static int
2756 i915_gem_object_pwrite_gtt(struct drm_i915_gem_object *obj,
2757 const struct drm_i915_gem_pwrite *arg)
2759 struct address_space *mapping = obj->base.filp->f_mapping;
2760 char __user *user_data = u64_to_user_ptr(arg->data_ptr);
2761 u64 remain, offset;
2762 unsigned int pg;
2764 /* Before we instantiate/pin the backing store for our use, we
2765 * can prepopulate the shmemfs filp efficiently using a write into
2766 * the pagecache. We avoid the penalty of instantiating all the
2767 * pages, important if the user is just writing to a few and never
2768 * uses the object on the GPU, and using a direct write into shmemfs
2769 * allows it to avoid the cost of retrieving a page (either swapin
2770 * or clearing-before-use) before it is overwritten.
2772 if (i915_gem_object_has_pages(obj))
2773 return -ENODEV;
2775 if (obj->mm.madv != I915_MADV_WILLNEED)
2776 return -EFAULT;
2778 /* Before the pages are instantiated the object is treated as being
2779 * in the CPU domain. The pages will be clflushed as required before
2780 * use, and we can freely write into the pages directly. If userspace
2781 * races pwrite with any other operation; corruption will ensue -
2782 * that is userspace's prerogative!
2785 remain = arg->size;
2786 offset = arg->offset;
2787 pg = offset_in_page(offset);
2789 do {
2790 unsigned int len, unwritten;
2791 struct page *page;
2792 void *data, *vaddr;
2793 int err;
2795 len = PAGE_SIZE - pg;
2796 if (len > remain)
2797 len = remain;
2799 err = pagecache_write_begin(obj->base.filp, mapping,
2800 offset, len, 0,
2801 &page, &data);
2802 if (err < 0)
2803 return err;
2805 vaddr = kmap(page);
2806 unwritten = copy_from_user(vaddr + pg, user_data, len);
2807 kunmap(page);
2809 err = pagecache_write_end(obj->base.filp, mapping,
2810 offset, len, len - unwritten,
2811 page, data);
2812 if (err < 0)
2813 return err;
2815 if (unwritten)
2816 return -EFAULT;
2818 remain -= len;
2819 user_data += len;
2820 offset += len;
2821 pg = 0;
2822 } while (remain);
2824 return 0;
2827 static bool ban_context(const struct i915_gem_context *ctx,
2828 unsigned int score)
2830 return (i915_gem_context_is_bannable(ctx) &&
2831 score >= CONTEXT_SCORE_BAN_THRESHOLD);
2834 static void i915_gem_context_mark_guilty(struct i915_gem_context *ctx)
2836 unsigned int score;
2837 bool banned;
2839 atomic_inc(&ctx->guilty_count);
2841 score = atomic_add_return(CONTEXT_SCORE_GUILTY, &ctx->ban_score);
2842 banned = ban_context(ctx, score);
2843 DRM_DEBUG_DRIVER("context %s marked guilty (score %d) banned? %s\n",
2844 ctx->name, score, yesno(banned));
2845 if (!banned)
2846 return;
2848 i915_gem_context_set_banned(ctx);
2849 if (!IS_ERR_OR_NULL(ctx->file_priv)) {
2850 atomic_inc(&ctx->file_priv->context_bans);
2851 DRM_DEBUG_DRIVER("client %s has had %d context banned\n",
2852 ctx->name, atomic_read(&ctx->file_priv->context_bans));
2856 static void i915_gem_context_mark_innocent(struct i915_gem_context *ctx)
2858 atomic_inc(&ctx->active_count);
2861 struct drm_i915_gem_request *
2862 i915_gem_find_active_request(struct intel_engine_cs *engine)
2864 struct drm_i915_gem_request *request, *active = NULL;
2865 unsigned long flags;
2867 /* We are called by the error capture and reset at a random
2868 * point in time. In particular, note that neither is crucially
2869 * ordered with an interrupt. After a hang, the GPU is dead and we
2870 * assume that no more writes can happen (we waited long enough for
2871 * all writes that were in transaction to be flushed) - adding an
2872 * extra delay for a recent interrupt is pointless. Hence, we do
2873 * not need an engine->irq_seqno_barrier() before the seqno reads.
2875 spin_lock_irqsave(&engine->timeline->lock, flags);
2876 list_for_each_entry(request, &engine->timeline->requests, link) {
2877 if (__i915_gem_request_completed(request,
2878 request->global_seqno))
2879 continue;
2881 GEM_BUG_ON(request->engine != engine);
2882 GEM_BUG_ON(test_bit(DMA_FENCE_FLAG_SIGNALED_BIT,
2883 &request->fence.flags));
2885 active = request;
2886 break;
2888 spin_unlock_irqrestore(&engine->timeline->lock, flags);
2890 return active;
2893 static bool engine_stalled(struct intel_engine_cs *engine)
2895 if (!engine->hangcheck.stalled)
2896 return false;
2898 /* Check for possible seqno movement after hang declaration */
2899 if (engine->hangcheck.seqno != intel_engine_get_seqno(engine)) {
2900 DRM_DEBUG_DRIVER("%s pardoned\n", engine->name);
2901 return false;
2904 return true;
2908 * Ensure irq handler finishes, and not run again.
2909 * Also return the active request so that we only search for it once.
2911 struct drm_i915_gem_request *
2912 i915_gem_reset_prepare_engine(struct intel_engine_cs *engine)
2914 struct drm_i915_gem_request *request = NULL;
2917 * During the reset sequence, we must prevent the engine from
2918 * entering RC6. As the context state is undefined until we restart
2919 * the engine, if it does enter RC6 during the reset, the state
2920 * written to the powercontext is undefined and so we may lose
2921 * GPU state upon resume, i.e. fail to restart after a reset.
2923 intel_uncore_forcewake_get(engine->i915, FORCEWAKE_ALL);
2926 * Prevent the signaler thread from updating the request
2927 * state (by calling dma_fence_signal) as we are processing
2928 * the reset. The write from the GPU of the seqno is
2929 * asynchronous and the signaler thread may see a different
2930 * value to us and declare the request complete, even though
2931 * the reset routine have picked that request as the active
2932 * (incomplete) request. This conflict is not handled
2933 * gracefully!
2935 kthread_park(engine->breadcrumbs.signaler);
2938 * Prevent request submission to the hardware until we have
2939 * completed the reset in i915_gem_reset_finish(). If a request
2940 * is completed by one engine, it may then queue a request
2941 * to a second via its execlists->tasklet *just* as we are
2942 * calling engine->init_hw() and also writing the ELSP.
2943 * Turning off the execlists->tasklet until the reset is over
2944 * prevents the race.
2946 tasklet_kill(&engine->execlists.tasklet);
2947 tasklet_disable(&engine->execlists.tasklet);
2950 * We're using worker to queue preemption requests from the tasklet in
2951 * GuC submission mode.
2952 * Even though tasklet was disabled, we may still have a worker queued.
2953 * Let's make sure that all workers scheduled before disabling the
2954 * tasklet are completed before continuing with the reset.
2956 if (engine->i915->guc.preempt_wq)
2957 flush_workqueue(engine->i915->guc.preempt_wq);
2959 if (engine->irq_seqno_barrier)
2960 engine->irq_seqno_barrier(engine);
2962 request = i915_gem_find_active_request(engine);
2963 if (request && request->fence.error == -EIO)
2964 request = ERR_PTR(-EIO); /* Previous reset failed! */
2966 return request;
2969 int i915_gem_reset_prepare(struct drm_i915_private *dev_priv)
2971 struct intel_engine_cs *engine;
2972 struct drm_i915_gem_request *request;
2973 enum intel_engine_id id;
2974 int err = 0;
2976 for_each_engine(engine, dev_priv, id) {
2977 request = i915_gem_reset_prepare_engine(engine);
2978 if (IS_ERR(request)) {
2979 err = PTR_ERR(request);
2980 continue;
2983 engine->hangcheck.active_request = request;
2986 i915_gem_revoke_fences(dev_priv);
2988 return err;
2991 static void skip_request(struct drm_i915_gem_request *request)
2993 void *vaddr = request->ring->vaddr;
2994 u32 head;
2996 /* As this request likely depends on state from the lost
2997 * context, clear out all the user operations leaving the
2998 * breadcrumb at the end (so we get the fence notifications).
3000 head = request->head;
3001 if (request->postfix < head) {
3002 memset(vaddr + head, 0, request->ring->size - head);
3003 head = 0;
3005 memset(vaddr + head, 0, request->postfix - head);
3007 dma_fence_set_error(&request->fence, -EIO);
3010 static void engine_skip_context(struct drm_i915_gem_request *request)
3012 struct intel_engine_cs *engine = request->engine;
3013 struct i915_gem_context *hung_ctx = request->ctx;
3014 struct intel_timeline *timeline;
3015 unsigned long flags;
3017 timeline = i915_gem_context_lookup_timeline(hung_ctx, engine);
3019 spin_lock_irqsave(&engine->timeline->lock, flags);
3020 spin_lock(&timeline->lock);
3022 list_for_each_entry_continue(request, &engine->timeline->requests, link)
3023 if (request->ctx == hung_ctx)
3024 skip_request(request);
3026 list_for_each_entry(request, &timeline->requests, link)
3027 skip_request(request);
3029 spin_unlock(&timeline->lock);
3030 spin_unlock_irqrestore(&engine->timeline->lock, flags);
3033 /* Returns the request if it was guilty of the hang */
3034 static struct drm_i915_gem_request *
3035 i915_gem_reset_request(struct intel_engine_cs *engine,
3036 struct drm_i915_gem_request *request)
3038 /* The guilty request will get skipped on a hung engine.
3040 * Users of client default contexts do not rely on logical
3041 * state preserved between batches so it is safe to execute
3042 * queued requests following the hang. Non default contexts
3043 * rely on preserved state, so skipping a batch loses the
3044 * evolution of the state and it needs to be considered corrupted.
3045 * Executing more queued batches on top of corrupted state is
3046 * risky. But we take the risk by trying to advance through
3047 * the queued requests in order to make the client behaviour
3048 * more predictable around resets, by not throwing away random
3049 * amount of batches it has prepared for execution. Sophisticated
3050 * clients can use gem_reset_stats_ioctl and dma fence status
3051 * (exported via sync_file info ioctl on explicit fences) to observe
3052 * when it loses the context state and should rebuild accordingly.
3054 * The context ban, and ultimately the client ban, mechanism are safety
3055 * valves if client submission ends up resulting in nothing more than
3056 * subsequent hangs.
3059 if (engine_stalled(engine)) {
3060 i915_gem_context_mark_guilty(request->ctx);
3061 skip_request(request);
3063 /* If this context is now banned, skip all pending requests. */
3064 if (i915_gem_context_is_banned(request->ctx))
3065 engine_skip_context(request);
3066 } else {
3068 * Since this is not the hung engine, it may have advanced
3069 * since the hang declaration. Double check by refinding
3070 * the active request at the time of the reset.
3072 request = i915_gem_find_active_request(engine);
3073 if (request) {
3074 i915_gem_context_mark_innocent(request->ctx);
3075 dma_fence_set_error(&request->fence, -EAGAIN);
3077 /* Rewind the engine to replay the incomplete rq */
3078 spin_lock_irq(&engine->timeline->lock);
3079 request = list_prev_entry(request, link);
3080 if (&request->link == &engine->timeline->requests)
3081 request = NULL;
3082 spin_unlock_irq(&engine->timeline->lock);
3086 return request;
3089 void i915_gem_reset_engine(struct intel_engine_cs *engine,
3090 struct drm_i915_gem_request *request)
3093 * Make sure this write is visible before we re-enable the interrupt
3094 * handlers on another CPU, as tasklet_enable() resolves to just
3095 * a compiler barrier which is insufficient for our purpose here.
3097 smp_store_mb(engine->irq_posted, 0);
3099 if (request)
3100 request = i915_gem_reset_request(engine, request);
3102 if (request) {
3103 DRM_DEBUG_DRIVER("resetting %s to restart from tail of request 0x%x\n",
3104 engine->name, request->global_seqno);
3107 /* Setup the CS to resume from the breadcrumb of the hung request */
3108 engine->reset_hw(engine, request);
3111 void i915_gem_reset(struct drm_i915_private *dev_priv)
3113 struct intel_engine_cs *engine;
3114 enum intel_engine_id id;
3116 lockdep_assert_held(&dev_priv->drm.struct_mutex);
3118 i915_gem_retire_requests(dev_priv);
3120 for_each_engine(engine, dev_priv, id) {
3121 struct i915_gem_context *ctx;
3123 i915_gem_reset_engine(engine, engine->hangcheck.active_request);
3124 ctx = fetch_and_zero(&engine->last_retired_context);
3125 if (ctx)
3126 engine->context_unpin(engine, ctx);
3129 * Ostensibily, we always want a context loaded for powersaving,
3130 * so if the engine is idle after the reset, send a request
3131 * to load our scratch kernel_context.
3133 * More mysteriously, if we leave the engine idle after a reset,
3134 * the next userspace batch may hang, with what appears to be
3135 * an incoherent read by the CS (presumably stale TLB). An
3136 * empty request appears sufficient to paper over the glitch.
3138 if (list_empty(&engine->timeline->requests)) {
3139 struct drm_i915_gem_request *rq;
3141 rq = i915_gem_request_alloc(engine,
3142 dev_priv->kernel_context);
3143 if (!IS_ERR(rq))
3144 __i915_add_request(rq, false);
3148 i915_gem_restore_fences(dev_priv);
3150 if (dev_priv->gt.awake) {
3151 intel_sanitize_gt_powersave(dev_priv);
3152 intel_enable_gt_powersave(dev_priv);
3153 if (INTEL_GEN(dev_priv) >= 6)
3154 gen6_rps_busy(dev_priv);
3158 void i915_gem_reset_finish_engine(struct intel_engine_cs *engine)
3160 tasklet_enable(&engine->execlists.tasklet);
3161 kthread_unpark(engine->breadcrumbs.signaler);
3163 intel_uncore_forcewake_put(engine->i915, FORCEWAKE_ALL);
3166 void i915_gem_reset_finish(struct drm_i915_private *dev_priv)
3168 struct intel_engine_cs *engine;
3169 enum intel_engine_id id;
3171 lockdep_assert_held(&dev_priv->drm.struct_mutex);
3173 for_each_engine(engine, dev_priv, id) {
3174 engine->hangcheck.active_request = NULL;
3175 i915_gem_reset_finish_engine(engine);
3179 static void nop_submit_request(struct drm_i915_gem_request *request)
3181 dma_fence_set_error(&request->fence, -EIO);
3183 i915_gem_request_submit(request);
3186 static void nop_complete_submit_request(struct drm_i915_gem_request *request)
3188 unsigned long flags;
3190 dma_fence_set_error(&request->fence, -EIO);
3192 spin_lock_irqsave(&request->engine->timeline->lock, flags);
3193 __i915_gem_request_submit(request);
3194 intel_engine_init_global_seqno(request->engine, request->global_seqno);
3195 spin_unlock_irqrestore(&request->engine->timeline->lock, flags);
3198 void i915_gem_set_wedged(struct drm_i915_private *i915)
3200 struct intel_engine_cs *engine;
3201 enum intel_engine_id id;
3204 * First, stop submission to hw, but do not yet complete requests by
3205 * rolling the global seqno forward (since this would complete requests
3206 * for which we haven't set the fence error to EIO yet).
3208 for_each_engine(engine, i915, id)
3209 engine->submit_request = nop_submit_request;
3212 * Make sure no one is running the old callback before we proceed with
3213 * cancelling requests and resetting the completion tracking. Otherwise
3214 * we might submit a request to the hardware which never completes.
3216 synchronize_rcu();
3218 for_each_engine(engine, i915, id) {
3219 /* Mark all executing requests as skipped */
3220 engine->cancel_requests(engine);
3223 * Only once we've force-cancelled all in-flight requests can we
3224 * start to complete all requests.
3226 engine->submit_request = nop_complete_submit_request;
3230 * Make sure no request can slip through without getting completed by
3231 * either this call here to intel_engine_init_global_seqno, or the one
3232 * in nop_complete_submit_request.
3234 synchronize_rcu();
3236 for_each_engine(engine, i915, id) {
3237 unsigned long flags;
3239 /* Mark all pending requests as complete so that any concurrent
3240 * (lockless) lookup doesn't try and wait upon the request as we
3241 * reset it.
3243 spin_lock_irqsave(&engine->timeline->lock, flags);
3244 intel_engine_init_global_seqno(engine,
3245 intel_engine_last_submit(engine));
3246 spin_unlock_irqrestore(&engine->timeline->lock, flags);
3249 set_bit(I915_WEDGED, &i915->gpu_error.flags);
3250 wake_up_all(&i915->gpu_error.reset_queue);
3253 bool i915_gem_unset_wedged(struct drm_i915_private *i915)
3255 struct i915_gem_timeline *tl;
3256 int i;
3258 lockdep_assert_held(&i915->drm.struct_mutex);
3259 if (!test_bit(I915_WEDGED, &i915->gpu_error.flags))
3260 return true;
3262 /* Before unwedging, make sure that all pending operations
3263 * are flushed and errored out - we may have requests waiting upon
3264 * third party fences. We marked all inflight requests as EIO, and
3265 * every execbuf since returned EIO, for consistency we want all
3266 * the currently pending requests to also be marked as EIO, which
3267 * is done inside our nop_submit_request - and so we must wait.
3269 * No more can be submitted until we reset the wedged bit.
3271 list_for_each_entry(tl, &i915->gt.timelines, link) {
3272 for (i = 0; i < ARRAY_SIZE(tl->engine); i++) {
3273 struct drm_i915_gem_request *rq;
3275 rq = i915_gem_active_peek(&tl->engine[i].last_request,
3276 &i915->drm.struct_mutex);
3277 if (!rq)
3278 continue;
3280 /* We can't use our normal waiter as we want to
3281 * avoid recursively trying to handle the current
3282 * reset. The basic dma_fence_default_wait() installs
3283 * a callback for dma_fence_signal(), which is
3284 * triggered by our nop handler (indirectly, the
3285 * callback enables the signaler thread which is
3286 * woken by the nop_submit_request() advancing the seqno
3287 * and when the seqno passes the fence, the signaler
3288 * then signals the fence waking us up).
3290 if (dma_fence_default_wait(&rq->fence, true,
3291 MAX_SCHEDULE_TIMEOUT) < 0)
3292 return false;
3296 /* Undo nop_submit_request. We prevent all new i915 requests from
3297 * being queued (by disallowing execbuf whilst wedged) so having
3298 * waited for all active requests above, we know the system is idle
3299 * and do not have to worry about a thread being inside
3300 * engine->submit_request() as we swap over. So unlike installing
3301 * the nop_submit_request on reset, we can do this from normal
3302 * context and do not require stop_machine().
3304 intel_engines_reset_default_submission(i915);
3305 i915_gem_contexts_lost(i915);
3307 smp_mb__before_atomic(); /* complete takeover before enabling execbuf */
3308 clear_bit(I915_WEDGED, &i915->gpu_error.flags);
3310 return true;
3313 static void
3314 i915_gem_retire_work_handler(struct work_struct *work)
3316 struct drm_i915_private *dev_priv =
3317 container_of(work, typeof(*dev_priv), gt.retire_work.work);
3318 struct drm_device *dev = &dev_priv->drm;
3320 /* Come back later if the device is busy... */
3321 if (mutex_trylock(&dev->struct_mutex)) {
3322 i915_gem_retire_requests(dev_priv);
3323 mutex_unlock(&dev->struct_mutex);
3327 * Keep the retire handler running until we are finally idle.
3328 * We do not need to do this test under locking as in the worst-case
3329 * we queue the retire worker once too often.
3331 if (READ_ONCE(dev_priv->gt.awake))
3332 queue_delayed_work(dev_priv->wq,
3333 &dev_priv->gt.retire_work,
3334 round_jiffies_up_relative(HZ));
3337 static inline bool
3338 new_requests_since_last_retire(const struct drm_i915_private *i915)
3340 return (READ_ONCE(i915->gt.active_requests) ||
3341 work_pending(&i915->gt.idle_work.work));
3344 static void
3345 i915_gem_idle_work_handler(struct work_struct *work)
3347 struct drm_i915_private *dev_priv =
3348 container_of(work, typeof(*dev_priv), gt.idle_work.work);
3349 bool rearm_hangcheck;
3350 ktime_t end;
3352 if (!READ_ONCE(dev_priv->gt.awake))
3353 return;
3356 * Wait for last execlists context complete, but bail out in case a
3357 * new request is submitted.
3359 end = ktime_add_ms(ktime_get(), I915_IDLE_ENGINES_TIMEOUT);
3360 do {
3361 if (new_requests_since_last_retire(dev_priv))
3362 return;
3364 if (intel_engines_are_idle(dev_priv))
3365 break;
3367 usleep_range(100, 500);
3368 } while (ktime_before(ktime_get(), end));
3370 rearm_hangcheck =
3371 cancel_delayed_work_sync(&dev_priv->gpu_error.hangcheck_work);
3373 if (!mutex_trylock(&dev_priv->drm.struct_mutex)) {
3374 /* Currently busy, come back later */
3375 mod_delayed_work(dev_priv->wq,
3376 &dev_priv->gt.idle_work,
3377 msecs_to_jiffies(50));
3378 goto out_rearm;
3382 * New request retired after this work handler started, extend active
3383 * period until next instance of the work.
3385 if (new_requests_since_last_retire(dev_priv))
3386 goto out_unlock;
3389 * Be paranoid and flush a concurrent interrupt to make sure
3390 * we don't reactivate any irq tasklets after parking.
3392 * FIXME: Note that even though we have waited for execlists to be idle,
3393 * there may still be an in-flight interrupt even though the CSB
3394 * is now empty. synchronize_irq() makes sure that a residual interrupt
3395 * is completed before we continue, but it doesn't prevent the HW from
3396 * raising a spurious interrupt later. To complete the shield we should
3397 * coordinate disabling the CS irq with flushing the interrupts.
3399 synchronize_irq(dev_priv->drm.irq);
3401 intel_engines_park(dev_priv);
3402 i915_gem_timelines_park(dev_priv);
3404 i915_pmu_gt_parked(dev_priv);
3406 GEM_BUG_ON(!dev_priv->gt.awake);
3407 dev_priv->gt.awake = false;
3408 rearm_hangcheck = false;
3410 if (INTEL_GEN(dev_priv) >= 6)
3411 gen6_rps_idle(dev_priv);
3413 intel_display_power_put(dev_priv, POWER_DOMAIN_GT_IRQ);
3415 intel_runtime_pm_put(dev_priv);
3416 out_unlock:
3417 mutex_unlock(&dev_priv->drm.struct_mutex);
3419 out_rearm:
3420 if (rearm_hangcheck) {
3421 GEM_BUG_ON(!dev_priv->gt.awake);
3422 i915_queue_hangcheck(dev_priv);
3426 void i915_gem_close_object(struct drm_gem_object *gem, struct drm_file *file)
3428 struct drm_i915_private *i915 = to_i915(gem->dev);
3429 struct drm_i915_gem_object *obj = to_intel_bo(gem);
3430 struct drm_i915_file_private *fpriv = file->driver_priv;
3431 struct i915_lut_handle *lut, *ln;
3433 mutex_lock(&i915->drm.struct_mutex);
3435 list_for_each_entry_safe(lut, ln, &obj->lut_list, obj_link) {
3436 struct i915_gem_context *ctx = lut->ctx;
3437 struct i915_vma *vma;
3439 GEM_BUG_ON(ctx->file_priv == ERR_PTR(-EBADF));
3440 if (ctx->file_priv != fpriv)
3441 continue;
3443 vma = radix_tree_delete(&ctx->handles_vma, lut->handle);
3444 GEM_BUG_ON(vma->obj != obj);
3446 /* We allow the process to have multiple handles to the same
3447 * vma, in the same fd namespace, by virtue of flink/open.
3449 GEM_BUG_ON(!vma->open_count);
3450 if (!--vma->open_count && !i915_vma_is_ggtt(vma))
3451 i915_vma_close(vma);
3453 list_del(&lut->obj_link);
3454 list_del(&lut->ctx_link);
3456 kmem_cache_free(i915->luts, lut);
3457 __i915_gem_object_release_unless_active(obj);
3460 mutex_unlock(&i915->drm.struct_mutex);
3463 static unsigned long to_wait_timeout(s64 timeout_ns)
3465 if (timeout_ns < 0)
3466 return MAX_SCHEDULE_TIMEOUT;
3468 if (timeout_ns == 0)
3469 return 0;
3471 return nsecs_to_jiffies_timeout(timeout_ns);
3475 * i915_gem_wait_ioctl - implements DRM_IOCTL_I915_GEM_WAIT
3476 * @dev: drm device pointer
3477 * @data: ioctl data blob
3478 * @file: drm file pointer
3480 * Returns 0 if successful, else an error is returned with the remaining time in
3481 * the timeout parameter.
3482 * -ETIME: object is still busy after timeout
3483 * -ERESTARTSYS: signal interrupted the wait
3484 * -ENONENT: object doesn't exist
3485 * Also possible, but rare:
3486 * -EAGAIN: incomplete, restart syscall
3487 * -ENOMEM: damn
3488 * -ENODEV: Internal IRQ fail
3489 * -E?: The add request failed
3491 * The wait ioctl with a timeout of 0 reimplements the busy ioctl. With any
3492 * non-zero timeout parameter the wait ioctl will wait for the given number of
3493 * nanoseconds on an object becoming unbusy. Since the wait itself does so
3494 * without holding struct_mutex the object may become re-busied before this
3495 * function completes. A similar but shorter * race condition exists in the busy
3496 * ioctl
3499 i915_gem_wait_ioctl(struct drm_device *dev, void *data, struct drm_file *file)
3501 struct drm_i915_gem_wait *args = data;
3502 struct drm_i915_gem_object *obj;
3503 ktime_t start;
3504 long ret;
3506 if (args->flags != 0)
3507 return -EINVAL;
3509 obj = i915_gem_object_lookup(file, args->bo_handle);
3510 if (!obj)
3511 return -ENOENT;
3513 start = ktime_get();
3515 ret = i915_gem_object_wait(obj,
3516 I915_WAIT_INTERRUPTIBLE | I915_WAIT_ALL,
3517 to_wait_timeout(args->timeout_ns),
3518 to_rps_client(file));
3520 if (args->timeout_ns > 0) {
3521 args->timeout_ns -= ktime_to_ns(ktime_sub(ktime_get(), start));
3522 if (args->timeout_ns < 0)
3523 args->timeout_ns = 0;
3526 * Apparently ktime isn't accurate enough and occasionally has a
3527 * bit of mismatch in the jiffies<->nsecs<->ktime loop. So patch
3528 * things up to make the test happy. We allow up to 1 jiffy.
3530 * This is a regression from the timespec->ktime conversion.
3532 if (ret == -ETIME && !nsecs_to_jiffies(args->timeout_ns))
3533 args->timeout_ns = 0;
3535 /* Asked to wait beyond the jiffie/scheduler precision? */
3536 if (ret == -ETIME && args->timeout_ns)
3537 ret = -EAGAIN;
3540 i915_gem_object_put(obj);
3541 return ret;
3544 static int wait_for_timeline(struct i915_gem_timeline *tl, unsigned int flags)
3546 int ret, i;
3548 for (i = 0; i < ARRAY_SIZE(tl->engine); i++) {
3549 ret = i915_gem_active_wait(&tl->engine[i].last_request, flags);
3550 if (ret)
3551 return ret;
3554 return 0;
3557 static int wait_for_engines(struct drm_i915_private *i915)
3559 if (wait_for(intel_engines_are_idle(i915), I915_IDLE_ENGINES_TIMEOUT)) {
3560 dev_err(i915->drm.dev,
3561 "Failed to idle engines, declaring wedged!\n");
3562 if (drm_debug & DRM_UT_DRIVER) {
3563 struct drm_printer p = drm_debug_printer(__func__);
3564 struct intel_engine_cs *engine;
3565 enum intel_engine_id id;
3567 for_each_engine(engine, i915, id)
3568 intel_engine_dump(engine, &p,
3569 "%s", engine->name);
3572 i915_gem_set_wedged(i915);
3573 return -EIO;
3576 return 0;
3579 int i915_gem_wait_for_idle(struct drm_i915_private *i915, unsigned int flags)
3581 int ret;
3583 /* If the device is asleep, we have no requests outstanding */
3584 if (!READ_ONCE(i915->gt.awake))
3585 return 0;
3587 if (flags & I915_WAIT_LOCKED) {
3588 struct i915_gem_timeline *tl;
3590 lockdep_assert_held(&i915->drm.struct_mutex);
3592 list_for_each_entry(tl, &i915->gt.timelines, link) {
3593 ret = wait_for_timeline(tl, flags);
3594 if (ret)
3595 return ret;
3597 i915_gem_retire_requests(i915);
3599 ret = wait_for_engines(i915);
3600 } else {
3601 ret = wait_for_timeline(&i915->gt.global_timeline, flags);
3604 return ret;
3607 static void __i915_gem_object_flush_for_display(struct drm_i915_gem_object *obj)
3610 * We manually flush the CPU domain so that we can override and
3611 * force the flush for the display, and perform it asyncrhonously.
3613 flush_write_domain(obj, ~I915_GEM_DOMAIN_CPU);
3614 if (obj->cache_dirty)
3615 i915_gem_clflush_object(obj, I915_CLFLUSH_FORCE);
3616 obj->base.write_domain = 0;
3619 void i915_gem_object_flush_if_display(struct drm_i915_gem_object *obj)
3621 if (!READ_ONCE(obj->pin_global))
3622 return;
3624 mutex_lock(&obj->base.dev->struct_mutex);
3625 __i915_gem_object_flush_for_display(obj);
3626 mutex_unlock(&obj->base.dev->struct_mutex);
3630 * Moves a single object to the WC read, and possibly write domain.
3631 * @obj: object to act on
3632 * @write: ask for write access or read only
3634 * This function returns when the move is complete, including waiting on
3635 * flushes to occur.
3638 i915_gem_object_set_to_wc_domain(struct drm_i915_gem_object *obj, bool write)
3640 int ret;
3642 lockdep_assert_held(&obj->base.dev->struct_mutex);
3644 ret = i915_gem_object_wait(obj,
3645 I915_WAIT_INTERRUPTIBLE |
3646 I915_WAIT_LOCKED |
3647 (write ? I915_WAIT_ALL : 0),
3648 MAX_SCHEDULE_TIMEOUT,
3649 NULL);
3650 if (ret)
3651 return ret;
3653 if (obj->base.write_domain == I915_GEM_DOMAIN_WC)
3654 return 0;
3656 /* Flush and acquire obj->pages so that we are coherent through
3657 * direct access in memory with previous cached writes through
3658 * shmemfs and that our cache domain tracking remains valid.
3659 * For example, if the obj->filp was moved to swap without us
3660 * being notified and releasing the pages, we would mistakenly
3661 * continue to assume that the obj remained out of the CPU cached
3662 * domain.
3664 ret = i915_gem_object_pin_pages(obj);
3665 if (ret)
3666 return ret;
3668 flush_write_domain(obj, ~I915_GEM_DOMAIN_WC);
3670 /* Serialise direct access to this object with the barriers for
3671 * coherent writes from the GPU, by effectively invalidating the
3672 * WC domain upon first access.
3674 if ((obj->base.read_domains & I915_GEM_DOMAIN_WC) == 0)
3675 mb();
3677 /* It should now be out of any other write domains, and we can update
3678 * the domain values for our changes.
3680 GEM_BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_WC) != 0);
3681 obj->base.read_domains |= I915_GEM_DOMAIN_WC;
3682 if (write) {
3683 obj->base.read_domains = I915_GEM_DOMAIN_WC;
3684 obj->base.write_domain = I915_GEM_DOMAIN_WC;
3685 obj->mm.dirty = true;
3688 i915_gem_object_unpin_pages(obj);
3689 return 0;
3693 * Moves a single object to the GTT read, and possibly write domain.
3694 * @obj: object to act on
3695 * @write: ask for write access or read only
3697 * This function returns when the move is complete, including waiting on
3698 * flushes to occur.
3701 i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
3703 int ret;
3705 lockdep_assert_held(&obj->base.dev->struct_mutex);
3707 ret = i915_gem_object_wait(obj,
3708 I915_WAIT_INTERRUPTIBLE |
3709 I915_WAIT_LOCKED |
3710 (write ? I915_WAIT_ALL : 0),
3711 MAX_SCHEDULE_TIMEOUT,
3712 NULL);
3713 if (ret)
3714 return ret;
3716 if (obj->base.write_domain == I915_GEM_DOMAIN_GTT)
3717 return 0;
3719 /* Flush and acquire obj->pages so that we are coherent through
3720 * direct access in memory with previous cached writes through
3721 * shmemfs and that our cache domain tracking remains valid.
3722 * For example, if the obj->filp was moved to swap without us
3723 * being notified and releasing the pages, we would mistakenly
3724 * continue to assume that the obj remained out of the CPU cached
3725 * domain.
3727 ret = i915_gem_object_pin_pages(obj);
3728 if (ret)
3729 return ret;
3731 flush_write_domain(obj, ~I915_GEM_DOMAIN_GTT);
3733 /* Serialise direct access to this object with the barriers for
3734 * coherent writes from the GPU, by effectively invalidating the
3735 * GTT domain upon first access.
3737 if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
3738 mb();
3740 /* It should now be out of any other write domains, and we can update
3741 * the domain values for our changes.
3743 GEM_BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
3744 obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3745 if (write) {
3746 obj->base.read_domains = I915_GEM_DOMAIN_GTT;
3747 obj->base.write_domain = I915_GEM_DOMAIN_GTT;
3748 obj->mm.dirty = true;
3751 i915_gem_object_unpin_pages(obj);
3752 return 0;
3756 * Changes the cache-level of an object across all VMA.
3757 * @obj: object to act on
3758 * @cache_level: new cache level to set for the object
3760 * After this function returns, the object will be in the new cache-level
3761 * across all GTT and the contents of the backing storage will be coherent,
3762 * with respect to the new cache-level. In order to keep the backing storage
3763 * coherent for all users, we only allow a single cache level to be set
3764 * globally on the object and prevent it from being changed whilst the
3765 * hardware is reading from the object. That is if the object is currently
3766 * on the scanout it will be set to uncached (or equivalent display
3767 * cache coherency) and all non-MOCS GPU access will also be uncached so
3768 * that all direct access to the scanout remains coherent.
3770 int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
3771 enum i915_cache_level cache_level)
3773 struct i915_vma *vma;
3774 int ret;
3776 lockdep_assert_held(&obj->base.dev->struct_mutex);
3778 if (obj->cache_level == cache_level)
3779 return 0;
3781 /* Inspect the list of currently bound VMA and unbind any that would
3782 * be invalid given the new cache-level. This is principally to
3783 * catch the issue of the CS prefetch crossing page boundaries and
3784 * reading an invalid PTE on older architectures.
3786 restart:
3787 list_for_each_entry(vma, &obj->vma_list, obj_link) {
3788 if (!drm_mm_node_allocated(&vma->node))
3789 continue;
3791 if (i915_vma_is_pinned(vma)) {
3792 DRM_DEBUG("can not change the cache level of pinned objects\n");
3793 return -EBUSY;
3796 if (!i915_vma_is_closed(vma) &&
3797 i915_gem_valid_gtt_space(vma, cache_level))
3798 continue;
3800 ret = i915_vma_unbind(vma);
3801 if (ret)
3802 return ret;
3804 /* As unbinding may affect other elements in the
3805 * obj->vma_list (due to side-effects from retiring
3806 * an active vma), play safe and restart the iterator.
3808 goto restart;
3811 /* We can reuse the existing drm_mm nodes but need to change the
3812 * cache-level on the PTE. We could simply unbind them all and
3813 * rebind with the correct cache-level on next use. However since
3814 * we already have a valid slot, dma mapping, pages etc, we may as
3815 * rewrite the PTE in the belief that doing so tramples upon less
3816 * state and so involves less work.
3818 if (obj->bind_count) {
3819 /* Before we change the PTE, the GPU must not be accessing it.
3820 * If we wait upon the object, we know that all the bound
3821 * VMA are no longer active.
3823 ret = i915_gem_object_wait(obj,
3824 I915_WAIT_INTERRUPTIBLE |
3825 I915_WAIT_LOCKED |
3826 I915_WAIT_ALL,
3827 MAX_SCHEDULE_TIMEOUT,
3828 NULL);
3829 if (ret)
3830 return ret;
3832 if (!HAS_LLC(to_i915(obj->base.dev)) &&
3833 cache_level != I915_CACHE_NONE) {
3834 /* Access to snoopable pages through the GTT is
3835 * incoherent and on some machines causes a hard
3836 * lockup. Relinquish the CPU mmaping to force
3837 * userspace to refault in the pages and we can
3838 * then double check if the GTT mapping is still
3839 * valid for that pointer access.
3841 i915_gem_release_mmap(obj);
3843 /* As we no longer need a fence for GTT access,
3844 * we can relinquish it now (and so prevent having
3845 * to steal a fence from someone else on the next
3846 * fence request). Note GPU activity would have
3847 * dropped the fence as all snoopable access is
3848 * supposed to be linear.
3850 for_each_ggtt_vma(vma, obj) {
3851 ret = i915_vma_put_fence(vma);
3852 if (ret)
3853 return ret;
3855 } else {
3856 /* We either have incoherent backing store and
3857 * so no GTT access or the architecture is fully
3858 * coherent. In such cases, existing GTT mmaps
3859 * ignore the cache bit in the PTE and we can
3860 * rewrite it without confusing the GPU or having
3861 * to force userspace to fault back in its mmaps.
3865 list_for_each_entry(vma, &obj->vma_list, obj_link) {
3866 if (!drm_mm_node_allocated(&vma->node))
3867 continue;
3869 ret = i915_vma_bind(vma, cache_level, PIN_UPDATE);
3870 if (ret)
3871 return ret;
3875 list_for_each_entry(vma, &obj->vma_list, obj_link)
3876 vma->node.color = cache_level;
3877 i915_gem_object_set_cache_coherency(obj, cache_level);
3878 obj->cache_dirty = true; /* Always invalidate stale cachelines */
3880 return 0;
3883 int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
3884 struct drm_file *file)
3886 struct drm_i915_gem_caching *args = data;
3887 struct drm_i915_gem_object *obj;
3888 int err = 0;
3890 rcu_read_lock();
3891 obj = i915_gem_object_lookup_rcu(file, args->handle);
3892 if (!obj) {
3893 err = -ENOENT;
3894 goto out;
3897 switch (obj->cache_level) {
3898 case I915_CACHE_LLC:
3899 case I915_CACHE_L3_LLC:
3900 args->caching = I915_CACHING_CACHED;
3901 break;
3903 case I915_CACHE_WT:
3904 args->caching = I915_CACHING_DISPLAY;
3905 break;
3907 default:
3908 args->caching = I915_CACHING_NONE;
3909 break;
3911 out:
3912 rcu_read_unlock();
3913 return err;
3916 int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
3917 struct drm_file *file)
3919 struct drm_i915_private *i915 = to_i915(dev);
3920 struct drm_i915_gem_caching *args = data;
3921 struct drm_i915_gem_object *obj;
3922 enum i915_cache_level level;
3923 int ret = 0;
3925 switch (args->caching) {
3926 case I915_CACHING_NONE:
3927 level = I915_CACHE_NONE;
3928 break;
3929 case I915_CACHING_CACHED:
3931 * Due to a HW issue on BXT A stepping, GPU stores via a
3932 * snooped mapping may leave stale data in a corresponding CPU
3933 * cacheline, whereas normally such cachelines would get
3934 * invalidated.
3936 if (!HAS_LLC(i915) && !HAS_SNOOP(i915))
3937 return -ENODEV;
3939 level = I915_CACHE_LLC;
3940 break;
3941 case I915_CACHING_DISPLAY:
3942 level = HAS_WT(i915) ? I915_CACHE_WT : I915_CACHE_NONE;
3943 break;
3944 default:
3945 return -EINVAL;
3948 obj = i915_gem_object_lookup(file, args->handle);
3949 if (!obj)
3950 return -ENOENT;
3953 * The caching mode of proxy object is handled by its generator, and
3954 * not allowed to be changed by userspace.
3956 if (i915_gem_object_is_proxy(obj)) {
3957 ret = -ENXIO;
3958 goto out;
3961 if (obj->cache_level == level)
3962 goto out;
3964 ret = i915_gem_object_wait(obj,
3965 I915_WAIT_INTERRUPTIBLE,
3966 MAX_SCHEDULE_TIMEOUT,
3967 to_rps_client(file));
3968 if (ret)
3969 goto out;
3971 ret = i915_mutex_lock_interruptible(dev);
3972 if (ret)
3973 goto out;
3975 ret = i915_gem_object_set_cache_level(obj, level);
3976 mutex_unlock(&dev->struct_mutex);
3978 out:
3979 i915_gem_object_put(obj);
3980 return ret;
3984 * Prepare buffer for display plane (scanout, cursors, etc).
3985 * Can be called from an uninterruptible phase (modesetting) and allows
3986 * any flushes to be pipelined (for pageflips).
3988 struct i915_vma *
3989 i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
3990 u32 alignment,
3991 const struct i915_ggtt_view *view)
3993 struct i915_vma *vma;
3994 int ret;
3996 lockdep_assert_held(&obj->base.dev->struct_mutex);
3998 /* Mark the global pin early so that we account for the
3999 * display coherency whilst setting up the cache domains.
4001 obj->pin_global++;
4003 /* The display engine is not coherent with the LLC cache on gen6. As
4004 * a result, we make sure that the pinning that is about to occur is
4005 * done with uncached PTEs. This is lowest common denominator for all
4006 * chipsets.
4008 * However for gen6+, we could do better by using the GFDT bit instead
4009 * of uncaching, which would allow us to flush all the LLC-cached data
4010 * with that bit in the PTE to main memory with just one PIPE_CONTROL.
4012 ret = i915_gem_object_set_cache_level(obj,
4013 HAS_WT(to_i915(obj->base.dev)) ?
4014 I915_CACHE_WT : I915_CACHE_NONE);
4015 if (ret) {
4016 vma = ERR_PTR(ret);
4017 goto err_unpin_global;
4020 /* As the user may map the buffer once pinned in the display plane
4021 * (e.g. libkms for the bootup splash), we have to ensure that we
4022 * always use map_and_fenceable for all scanout buffers. However,
4023 * it may simply be too big to fit into mappable, in which case
4024 * put it anyway and hope that userspace can cope (but always first
4025 * try to preserve the existing ABI).
4027 vma = ERR_PTR(-ENOSPC);
4028 if (!view || view->type == I915_GGTT_VIEW_NORMAL)
4029 vma = i915_gem_object_ggtt_pin(obj, view, 0, alignment,
4030 PIN_MAPPABLE | PIN_NONBLOCK);
4031 if (IS_ERR(vma)) {
4032 struct drm_i915_private *i915 = to_i915(obj->base.dev);
4033 unsigned int flags;
4035 /* Valleyview is definitely limited to scanning out the first
4036 * 512MiB. Lets presume this behaviour was inherited from the
4037 * g4x display engine and that all earlier gen are similarly
4038 * limited. Testing suggests that it is a little more
4039 * complicated than this. For example, Cherryview appears quite
4040 * happy to scanout from anywhere within its global aperture.
4042 flags = 0;
4043 if (HAS_GMCH_DISPLAY(i915))
4044 flags = PIN_MAPPABLE;
4045 vma = i915_gem_object_ggtt_pin(obj, view, 0, alignment, flags);
4047 if (IS_ERR(vma))
4048 goto err_unpin_global;
4050 vma->display_alignment = max_t(u64, vma->display_alignment, alignment);
4052 /* Treat this as an end-of-frame, like intel_user_framebuffer_dirty() */
4053 __i915_gem_object_flush_for_display(obj);
4054 intel_fb_obj_flush(obj, ORIGIN_DIRTYFB);
4056 /* It should now be out of any other write domains, and we can update
4057 * the domain values for our changes.
4059 obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
4061 return vma;
4063 err_unpin_global:
4064 obj->pin_global--;
4065 return vma;
4068 void
4069 i915_gem_object_unpin_from_display_plane(struct i915_vma *vma)
4071 lockdep_assert_held(&vma->vm->i915->drm.struct_mutex);
4073 if (WARN_ON(vma->obj->pin_global == 0))
4074 return;
4076 if (--vma->obj->pin_global == 0)
4077 vma->display_alignment = I915_GTT_MIN_ALIGNMENT;
4079 /* Bump the LRU to try and avoid premature eviction whilst flipping */
4080 i915_gem_object_bump_inactive_ggtt(vma->obj);
4082 i915_vma_unpin(vma);
4086 * Moves a single object to the CPU read, and possibly write domain.
4087 * @obj: object to act on
4088 * @write: requesting write or read-only access
4090 * This function returns when the move is complete, including waiting on
4091 * flushes to occur.
4094 i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
4096 int ret;
4098 lockdep_assert_held(&obj->base.dev->struct_mutex);
4100 ret = i915_gem_object_wait(obj,
4101 I915_WAIT_INTERRUPTIBLE |
4102 I915_WAIT_LOCKED |
4103 (write ? I915_WAIT_ALL : 0),
4104 MAX_SCHEDULE_TIMEOUT,
4105 NULL);
4106 if (ret)
4107 return ret;
4109 flush_write_domain(obj, ~I915_GEM_DOMAIN_CPU);
4111 /* Flush the CPU cache if it's still invalid. */
4112 if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
4113 i915_gem_clflush_object(obj, I915_CLFLUSH_SYNC);
4114 obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
4117 /* It should now be out of any other write domains, and we can update
4118 * the domain values for our changes.
4120 GEM_BUG_ON(obj->base.write_domain & ~I915_GEM_DOMAIN_CPU);
4122 /* If we're writing through the CPU, then the GPU read domains will
4123 * need to be invalidated at next use.
4125 if (write)
4126 __start_cpu_write(obj);
4128 return 0;
4131 /* Throttle our rendering by waiting until the ring has completed our requests
4132 * emitted over 20 msec ago.
4134 * Note that if we were to use the current jiffies each time around the loop,
4135 * we wouldn't escape the function with any frames outstanding if the time to
4136 * render a frame was over 20ms.
4138 * This should get us reasonable parallelism between CPU and GPU but also
4139 * relatively low latency when blocking on a particular request to finish.
4141 static int
4142 i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
4144 struct drm_i915_private *dev_priv = to_i915(dev);
4145 struct drm_i915_file_private *file_priv = file->driver_priv;
4146 unsigned long recent_enough = jiffies - DRM_I915_THROTTLE_JIFFIES;
4147 struct drm_i915_gem_request *request, *target = NULL;
4148 long ret;
4150 /* ABI: return -EIO if already wedged */
4151 if (i915_terminally_wedged(&dev_priv->gpu_error))
4152 return -EIO;
4154 spin_lock(&file_priv->mm.lock);
4155 list_for_each_entry(request, &file_priv->mm.request_list, client_link) {
4156 if (time_after_eq(request->emitted_jiffies, recent_enough))
4157 break;
4159 if (target) {
4160 list_del(&target->client_link);
4161 target->file_priv = NULL;
4164 target = request;
4166 if (target)
4167 i915_gem_request_get(target);
4168 spin_unlock(&file_priv->mm.lock);
4170 if (target == NULL)
4171 return 0;
4173 ret = i915_wait_request(target,
4174 I915_WAIT_INTERRUPTIBLE,
4175 MAX_SCHEDULE_TIMEOUT);
4176 i915_gem_request_put(target);
4178 return ret < 0 ? ret : 0;
4181 struct i915_vma *
4182 i915_gem_object_ggtt_pin(struct drm_i915_gem_object *obj,
4183 const struct i915_ggtt_view *view,
4184 u64 size,
4185 u64 alignment,
4186 u64 flags)
4188 struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
4189 struct i915_address_space *vm = &dev_priv->ggtt.base;
4190 struct i915_vma *vma;
4191 int ret;
4193 lockdep_assert_held(&obj->base.dev->struct_mutex);
4195 if (!view && flags & PIN_MAPPABLE) {
4196 /* If the required space is larger than the available
4197 * aperture, we will not able to find a slot for the
4198 * object and unbinding the object now will be in
4199 * vain. Worse, doing so may cause us to ping-pong
4200 * the object in and out of the Global GTT and
4201 * waste a lot of cycles under the mutex.
4203 if (obj->base.size > dev_priv->ggtt.mappable_end)
4204 return ERR_PTR(-E2BIG);
4206 /* If NONBLOCK is set the caller is optimistically
4207 * trying to cache the full object within the mappable
4208 * aperture, and *must* have a fallback in place for
4209 * situations where we cannot bind the object. We
4210 * can be a little more lax here and use the fallback
4211 * more often to avoid costly migrations of ourselves
4212 * and other objects within the aperture.
4214 * Half-the-aperture is used as a simple heuristic.
4215 * More interesting would to do search for a free
4216 * block prior to making the commitment to unbind.
4217 * That caters for the self-harm case, and with a
4218 * little more heuristics (e.g. NOFAULT, NOEVICT)
4219 * we could try to minimise harm to others.
4221 if (flags & PIN_NONBLOCK &&
4222 obj->base.size > dev_priv->ggtt.mappable_end / 2)
4223 return ERR_PTR(-ENOSPC);
4226 vma = i915_vma_instance(obj, vm, view);
4227 if (unlikely(IS_ERR(vma)))
4228 return vma;
4230 if (i915_vma_misplaced(vma, size, alignment, flags)) {
4231 if (flags & PIN_NONBLOCK) {
4232 if (i915_vma_is_pinned(vma) || i915_vma_is_active(vma))
4233 return ERR_PTR(-ENOSPC);
4235 if (flags & PIN_MAPPABLE &&
4236 vma->fence_size > dev_priv->ggtt.mappable_end / 2)
4237 return ERR_PTR(-ENOSPC);
4240 WARN(i915_vma_is_pinned(vma),
4241 "bo is already pinned in ggtt with incorrect alignment:"
4242 " offset=%08x, req.alignment=%llx,"
4243 " req.map_and_fenceable=%d, vma->map_and_fenceable=%d\n",
4244 i915_ggtt_offset(vma), alignment,
4245 !!(flags & PIN_MAPPABLE),
4246 i915_vma_is_map_and_fenceable(vma));
4247 ret = i915_vma_unbind(vma);
4248 if (ret)
4249 return ERR_PTR(ret);
4252 ret = i915_vma_pin(vma, size, alignment, flags | PIN_GLOBAL);
4253 if (ret)
4254 return ERR_PTR(ret);
4256 return vma;
4259 static __always_inline unsigned int __busy_read_flag(unsigned int id)
4261 /* Note that we could alias engines in the execbuf API, but
4262 * that would be very unwise as it prevents userspace from
4263 * fine control over engine selection. Ahem.
4265 * This should be something like EXEC_MAX_ENGINE instead of
4266 * I915_NUM_ENGINES.
4268 BUILD_BUG_ON(I915_NUM_ENGINES > 16);
4269 return 0x10000 << id;
4272 static __always_inline unsigned int __busy_write_id(unsigned int id)
4274 /* The uABI guarantees an active writer is also amongst the read
4275 * engines. This would be true if we accessed the activity tracking
4276 * under the lock, but as we perform the lookup of the object and
4277 * its activity locklessly we can not guarantee that the last_write
4278 * being active implies that we have set the same engine flag from
4279 * last_read - hence we always set both read and write busy for
4280 * last_write.
4282 return id | __busy_read_flag(id);
4285 static __always_inline unsigned int
4286 __busy_set_if_active(const struct dma_fence *fence,
4287 unsigned int (*flag)(unsigned int id))
4289 struct drm_i915_gem_request *rq;
4291 /* We have to check the current hw status of the fence as the uABI
4292 * guarantees forward progress. We could rely on the idle worker
4293 * to eventually flush us, but to minimise latency just ask the
4294 * hardware.
4296 * Note we only report on the status of native fences.
4298 if (!dma_fence_is_i915(fence))
4299 return 0;
4301 /* opencode to_request() in order to avoid const warnings */
4302 rq = container_of(fence, struct drm_i915_gem_request, fence);
4303 if (i915_gem_request_completed(rq))
4304 return 0;
4306 return flag(rq->engine->uabi_id);
4309 static __always_inline unsigned int
4310 busy_check_reader(const struct dma_fence *fence)
4312 return __busy_set_if_active(fence, __busy_read_flag);
4315 static __always_inline unsigned int
4316 busy_check_writer(const struct dma_fence *fence)
4318 if (!fence)
4319 return 0;
4321 return __busy_set_if_active(fence, __busy_write_id);
4325 i915_gem_busy_ioctl(struct drm_device *dev, void *data,
4326 struct drm_file *file)
4328 struct drm_i915_gem_busy *args = data;
4329 struct drm_i915_gem_object *obj;
4330 struct reservation_object_list *list;
4331 unsigned int seq;
4332 int err;
4334 err = -ENOENT;
4335 rcu_read_lock();
4336 obj = i915_gem_object_lookup_rcu(file, args->handle);
4337 if (!obj)
4338 goto out;
4340 /* A discrepancy here is that we do not report the status of
4341 * non-i915 fences, i.e. even though we may report the object as idle,
4342 * a call to set-domain may still stall waiting for foreign rendering.
4343 * This also means that wait-ioctl may report an object as busy,
4344 * where busy-ioctl considers it idle.
4346 * We trade the ability to warn of foreign fences to report on which
4347 * i915 engines are active for the object.
4349 * Alternatively, we can trade that extra information on read/write
4350 * activity with
4351 * args->busy =
4352 * !reservation_object_test_signaled_rcu(obj->resv, true);
4353 * to report the overall busyness. This is what the wait-ioctl does.
4356 retry:
4357 seq = raw_read_seqcount(&obj->resv->seq);
4359 /* Translate the exclusive fence to the READ *and* WRITE engine */
4360 args->busy = busy_check_writer(rcu_dereference(obj->resv->fence_excl));
4362 /* Translate shared fences to READ set of engines */
4363 list = rcu_dereference(obj->resv->fence);
4364 if (list) {
4365 unsigned int shared_count = list->shared_count, i;
4367 for (i = 0; i < shared_count; ++i) {
4368 struct dma_fence *fence =
4369 rcu_dereference(list->shared[i]);
4371 args->busy |= busy_check_reader(fence);
4375 if (args->busy && read_seqcount_retry(&obj->resv->seq, seq))
4376 goto retry;
4378 err = 0;
4379 out:
4380 rcu_read_unlock();
4381 return err;
4385 i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
4386 struct drm_file *file_priv)
4388 return i915_gem_ring_throttle(dev, file_priv);
4392 i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
4393 struct drm_file *file_priv)
4395 struct drm_i915_private *dev_priv = to_i915(dev);
4396 struct drm_i915_gem_madvise *args = data;
4397 struct drm_i915_gem_object *obj;
4398 int err;
4400 switch (args->madv) {
4401 case I915_MADV_DONTNEED:
4402 case I915_MADV_WILLNEED:
4403 break;
4404 default:
4405 return -EINVAL;
4408 obj = i915_gem_object_lookup(file_priv, args->handle);
4409 if (!obj)
4410 return -ENOENT;
4412 err = mutex_lock_interruptible(&obj->mm.lock);
4413 if (err)
4414 goto out;
4416 if (i915_gem_object_has_pages(obj) &&
4417 i915_gem_object_is_tiled(obj) &&
4418 dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES) {
4419 if (obj->mm.madv == I915_MADV_WILLNEED) {
4420 GEM_BUG_ON(!obj->mm.quirked);
4421 __i915_gem_object_unpin_pages(obj);
4422 obj->mm.quirked = false;
4424 if (args->madv == I915_MADV_WILLNEED) {
4425 GEM_BUG_ON(obj->mm.quirked);
4426 __i915_gem_object_pin_pages(obj);
4427 obj->mm.quirked = true;
4431 if (obj->mm.madv != __I915_MADV_PURGED)
4432 obj->mm.madv = args->madv;
4434 /* if the object is no longer attached, discard its backing storage */
4435 if (obj->mm.madv == I915_MADV_DONTNEED &&
4436 !i915_gem_object_has_pages(obj))
4437 i915_gem_object_truncate(obj);
4439 args->retained = obj->mm.madv != __I915_MADV_PURGED;
4440 mutex_unlock(&obj->mm.lock);
4442 out:
4443 i915_gem_object_put(obj);
4444 return err;
4447 static void
4448 frontbuffer_retire(struct i915_gem_active *active,
4449 struct drm_i915_gem_request *request)
4451 struct drm_i915_gem_object *obj =
4452 container_of(active, typeof(*obj), frontbuffer_write);
4454 intel_fb_obj_flush(obj, ORIGIN_CS);
4457 void i915_gem_object_init(struct drm_i915_gem_object *obj,
4458 const struct drm_i915_gem_object_ops *ops)
4460 mutex_init(&obj->mm.lock);
4462 INIT_LIST_HEAD(&obj->vma_list);
4463 INIT_LIST_HEAD(&obj->lut_list);
4464 INIT_LIST_HEAD(&obj->batch_pool_link);
4466 obj->ops = ops;
4468 reservation_object_init(&obj->__builtin_resv);
4469 obj->resv = &obj->__builtin_resv;
4471 obj->frontbuffer_ggtt_origin = ORIGIN_GTT;
4472 init_request_active(&obj->frontbuffer_write, frontbuffer_retire);
4474 obj->mm.madv = I915_MADV_WILLNEED;
4475 INIT_RADIX_TREE(&obj->mm.get_page.radix, GFP_KERNEL | __GFP_NOWARN);
4476 mutex_init(&obj->mm.get_page.lock);
4478 i915_gem_info_add_obj(to_i915(obj->base.dev), obj->base.size);
4481 static const struct drm_i915_gem_object_ops i915_gem_object_ops = {
4482 .flags = I915_GEM_OBJECT_HAS_STRUCT_PAGE |
4483 I915_GEM_OBJECT_IS_SHRINKABLE,
4485 .get_pages = i915_gem_object_get_pages_gtt,
4486 .put_pages = i915_gem_object_put_pages_gtt,
4488 .pwrite = i915_gem_object_pwrite_gtt,
4491 static int i915_gem_object_create_shmem(struct drm_device *dev,
4492 struct drm_gem_object *obj,
4493 size_t size)
4495 struct drm_i915_private *i915 = to_i915(dev);
4496 unsigned long flags = VM_NORESERVE;
4497 struct file *filp;
4499 drm_gem_private_object_init(dev, obj, size);
4501 if (i915->mm.gemfs)
4502 filp = shmem_file_setup_with_mnt(i915->mm.gemfs, "i915", size,
4503 flags);
4504 else
4505 filp = shmem_file_setup("i915", size, flags);
4507 if (IS_ERR(filp))
4508 return PTR_ERR(filp);
4510 obj->filp = filp;
4512 return 0;
4515 struct drm_i915_gem_object *
4516 i915_gem_object_create(struct drm_i915_private *dev_priv, u64 size)
4518 struct drm_i915_gem_object *obj;
4519 struct address_space *mapping;
4520 unsigned int cache_level;
4521 gfp_t mask;
4522 int ret;
4524 /* There is a prevalence of the assumption that we fit the object's
4525 * page count inside a 32bit _signed_ variable. Let's document this and
4526 * catch if we ever need to fix it. In the meantime, if you do spot
4527 * such a local variable, please consider fixing!
4529 if (size >> PAGE_SHIFT > INT_MAX)
4530 return ERR_PTR(-E2BIG);
4532 if (overflows_type(size, obj->base.size))
4533 return ERR_PTR(-E2BIG);
4535 obj = i915_gem_object_alloc(dev_priv);
4536 if (obj == NULL)
4537 return ERR_PTR(-ENOMEM);
4539 ret = i915_gem_object_create_shmem(&dev_priv->drm, &obj->base, size);
4540 if (ret)
4541 goto fail;
4543 mask = GFP_HIGHUSER | __GFP_RECLAIMABLE;
4544 if (IS_I965GM(dev_priv) || IS_I965G(dev_priv)) {
4545 /* 965gm cannot relocate objects above 4GiB. */
4546 mask &= ~__GFP_HIGHMEM;
4547 mask |= __GFP_DMA32;
4550 mapping = obj->base.filp->f_mapping;
4551 mapping_set_gfp_mask(mapping, mask);
4552 GEM_BUG_ON(!(mapping_gfp_mask(mapping) & __GFP_RECLAIM));
4554 i915_gem_object_init(obj, &i915_gem_object_ops);
4556 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
4557 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
4559 if (HAS_LLC(dev_priv))
4560 /* On some devices, we can have the GPU use the LLC (the CPU
4561 * cache) for about a 10% performance improvement
4562 * compared to uncached. Graphics requests other than
4563 * display scanout are coherent with the CPU in
4564 * accessing this cache. This means in this mode we
4565 * don't need to clflush on the CPU side, and on the
4566 * GPU side we only need to flush internal caches to
4567 * get data visible to the CPU.
4569 * However, we maintain the display planes as UC, and so
4570 * need to rebind when first used as such.
4572 cache_level = I915_CACHE_LLC;
4573 else
4574 cache_level = I915_CACHE_NONE;
4576 i915_gem_object_set_cache_coherency(obj, cache_level);
4578 trace_i915_gem_object_create(obj);
4580 return obj;
4582 fail:
4583 i915_gem_object_free(obj);
4584 return ERR_PTR(ret);
4587 static bool discard_backing_storage(struct drm_i915_gem_object *obj)
4589 /* If we are the last user of the backing storage (be it shmemfs
4590 * pages or stolen etc), we know that the pages are going to be
4591 * immediately released. In this case, we can then skip copying
4592 * back the contents from the GPU.
4595 if (obj->mm.madv != I915_MADV_WILLNEED)
4596 return false;
4598 if (obj->base.filp == NULL)
4599 return true;
4601 /* At first glance, this looks racy, but then again so would be
4602 * userspace racing mmap against close. However, the first external
4603 * reference to the filp can only be obtained through the
4604 * i915_gem_mmap_ioctl() which safeguards us against the user
4605 * acquiring such a reference whilst we are in the middle of
4606 * freeing the object.
4608 return atomic_long_read(&obj->base.filp->f_count) == 1;
4611 static void __i915_gem_free_objects(struct drm_i915_private *i915,
4612 struct llist_node *freed)
4614 struct drm_i915_gem_object *obj, *on;
4616 intel_runtime_pm_get(i915);
4617 llist_for_each_entry_safe(obj, on, freed, freed) {
4618 struct i915_vma *vma, *vn;
4620 trace_i915_gem_object_destroy(obj);
4622 mutex_lock(&i915->drm.struct_mutex);
4624 GEM_BUG_ON(i915_gem_object_is_active(obj));
4625 list_for_each_entry_safe(vma, vn,
4626 &obj->vma_list, obj_link) {
4627 GEM_BUG_ON(i915_vma_is_active(vma));
4628 vma->flags &= ~I915_VMA_PIN_MASK;
4629 i915_vma_close(vma);
4631 GEM_BUG_ON(!list_empty(&obj->vma_list));
4632 GEM_BUG_ON(!RB_EMPTY_ROOT(&obj->vma_tree));
4634 /* This serializes freeing with the shrinker. Since the free
4635 * is delayed, first by RCU then by the workqueue, we want the
4636 * shrinker to be able to free pages of unreferenced objects,
4637 * or else we may oom whilst there are plenty of deferred
4638 * freed objects.
4640 if (i915_gem_object_has_pages(obj)) {
4641 spin_lock(&i915->mm.obj_lock);
4642 list_del_init(&obj->mm.link);
4643 spin_unlock(&i915->mm.obj_lock);
4646 mutex_unlock(&i915->drm.struct_mutex);
4648 GEM_BUG_ON(obj->bind_count);
4649 GEM_BUG_ON(obj->userfault_count);
4650 GEM_BUG_ON(atomic_read(&obj->frontbuffer_bits));
4651 GEM_BUG_ON(!list_empty(&obj->lut_list));
4653 if (obj->ops->release)
4654 obj->ops->release(obj);
4656 if (WARN_ON(i915_gem_object_has_pinned_pages(obj)))
4657 atomic_set(&obj->mm.pages_pin_count, 0);
4658 __i915_gem_object_put_pages(obj, I915_MM_NORMAL);
4659 GEM_BUG_ON(i915_gem_object_has_pages(obj));
4661 if (obj->base.import_attach)
4662 drm_prime_gem_destroy(&obj->base, NULL);
4664 reservation_object_fini(&obj->__builtin_resv);
4665 drm_gem_object_release(&obj->base);
4666 i915_gem_info_remove_obj(i915, obj->base.size);
4668 kfree(obj->bit_17);
4669 i915_gem_object_free(obj);
4671 if (on)
4672 cond_resched();
4674 intel_runtime_pm_put(i915);
4677 static void i915_gem_flush_free_objects(struct drm_i915_private *i915)
4679 struct llist_node *freed;
4681 /* Free the oldest, most stale object to keep the free_list short */
4682 freed = NULL;
4683 if (!llist_empty(&i915->mm.free_list)) { /* quick test for hotpath */
4684 /* Only one consumer of llist_del_first() allowed */
4685 spin_lock(&i915->mm.free_lock);
4686 freed = llist_del_first(&i915->mm.free_list);
4687 spin_unlock(&i915->mm.free_lock);
4689 if (unlikely(freed)) {
4690 freed->next = NULL;
4691 __i915_gem_free_objects(i915, freed);
4695 static void __i915_gem_free_work(struct work_struct *work)
4697 struct drm_i915_private *i915 =
4698 container_of(work, struct drm_i915_private, mm.free_work);
4699 struct llist_node *freed;
4701 /* All file-owned VMA should have been released by this point through
4702 * i915_gem_close_object(), or earlier by i915_gem_context_close().
4703 * However, the object may also be bound into the global GTT (e.g.
4704 * older GPUs without per-process support, or for direct access through
4705 * the GTT either for the user or for scanout). Those VMA still need to
4706 * unbound now.
4709 spin_lock(&i915->mm.free_lock);
4710 while ((freed = llist_del_all(&i915->mm.free_list))) {
4711 spin_unlock(&i915->mm.free_lock);
4713 __i915_gem_free_objects(i915, freed);
4714 if (need_resched())
4715 return;
4717 spin_lock(&i915->mm.free_lock);
4719 spin_unlock(&i915->mm.free_lock);
4722 static void __i915_gem_free_object_rcu(struct rcu_head *head)
4724 struct drm_i915_gem_object *obj =
4725 container_of(head, typeof(*obj), rcu);
4726 struct drm_i915_private *i915 = to_i915(obj->base.dev);
4728 /* We can't simply use call_rcu() from i915_gem_free_object()
4729 * as we need to block whilst unbinding, and the call_rcu
4730 * task may be called from softirq context. So we take a
4731 * detour through a worker.
4733 if (llist_add(&obj->freed, &i915->mm.free_list))
4734 schedule_work(&i915->mm.free_work);
4737 void i915_gem_free_object(struct drm_gem_object *gem_obj)
4739 struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
4741 if (obj->mm.quirked)
4742 __i915_gem_object_unpin_pages(obj);
4744 if (discard_backing_storage(obj))
4745 obj->mm.madv = I915_MADV_DONTNEED;
4747 /* Before we free the object, make sure any pure RCU-only
4748 * read-side critical sections are complete, e.g.
4749 * i915_gem_busy_ioctl(). For the corresponding synchronized
4750 * lookup see i915_gem_object_lookup_rcu().
4752 call_rcu(&obj->rcu, __i915_gem_free_object_rcu);
4755 void __i915_gem_object_release_unless_active(struct drm_i915_gem_object *obj)
4757 lockdep_assert_held(&obj->base.dev->struct_mutex);
4759 if (!i915_gem_object_has_active_reference(obj) &&
4760 i915_gem_object_is_active(obj))
4761 i915_gem_object_set_active_reference(obj);
4762 else
4763 i915_gem_object_put(obj);
4766 static void assert_kernel_context_is_current(struct drm_i915_private *i915)
4768 struct i915_gem_context *kernel_context = i915->kernel_context;
4769 struct intel_engine_cs *engine;
4770 enum intel_engine_id id;
4772 for_each_engine(engine, i915, id) {
4773 GEM_BUG_ON(__i915_gem_active_peek(&engine->timeline->last_request));
4774 GEM_BUG_ON(engine->last_retired_context != kernel_context);
4778 void i915_gem_sanitize(struct drm_i915_private *i915)
4780 if (i915_terminally_wedged(&i915->gpu_error)) {
4781 mutex_lock(&i915->drm.struct_mutex);
4782 i915_gem_unset_wedged(i915);
4783 mutex_unlock(&i915->drm.struct_mutex);
4787 * If we inherit context state from the BIOS or earlier occupants
4788 * of the GPU, the GPU may be in an inconsistent state when we
4789 * try to take over. The only way to remove the earlier state
4790 * is by resetting. However, resetting on earlier gen is tricky as
4791 * it may impact the display and we are uncertain about the stability
4792 * of the reset, so this could be applied to even earlier gen.
4794 if (INTEL_GEN(i915) >= 5) {
4795 int reset = intel_gpu_reset(i915, ALL_ENGINES);
4796 WARN_ON(reset && reset != -ENODEV);
4800 int i915_gem_suspend(struct drm_i915_private *dev_priv)
4802 struct drm_device *dev = &dev_priv->drm;
4803 int ret;
4805 intel_runtime_pm_get(dev_priv);
4806 intel_suspend_gt_powersave(dev_priv);
4808 mutex_lock(&dev->struct_mutex);
4810 /* We have to flush all the executing contexts to main memory so
4811 * that they can saved in the hibernation image. To ensure the last
4812 * context image is coherent, we have to switch away from it. That
4813 * leaves the dev_priv->kernel_context still active when
4814 * we actually suspend, and its image in memory may not match the GPU
4815 * state. Fortunately, the kernel_context is disposable and we do
4816 * not rely on its state.
4818 if (!i915_terminally_wedged(&dev_priv->gpu_error)) {
4819 ret = i915_gem_switch_to_kernel_context(dev_priv);
4820 if (ret)
4821 goto err_unlock;
4823 ret = i915_gem_wait_for_idle(dev_priv,
4824 I915_WAIT_INTERRUPTIBLE |
4825 I915_WAIT_LOCKED);
4826 if (ret && ret != -EIO)
4827 goto err_unlock;
4829 assert_kernel_context_is_current(dev_priv);
4831 i915_gem_contexts_lost(dev_priv);
4832 mutex_unlock(&dev->struct_mutex);
4834 intel_guc_suspend(dev_priv);
4836 cancel_delayed_work_sync(&dev_priv->gpu_error.hangcheck_work);
4837 cancel_delayed_work_sync(&dev_priv->gt.retire_work);
4839 /* As the idle_work is rearming if it detects a race, play safe and
4840 * repeat the flush until it is definitely idle.
4842 drain_delayed_work(&dev_priv->gt.idle_work);
4844 /* Assert that we sucessfully flushed all the work and
4845 * reset the GPU back to its idle, low power state.
4847 WARN_ON(dev_priv->gt.awake);
4848 if (WARN_ON(!intel_engines_are_idle(dev_priv)))
4849 i915_gem_set_wedged(dev_priv); /* no hope, discard everything */
4852 * Neither the BIOS, ourselves or any other kernel
4853 * expects the system to be in execlists mode on startup,
4854 * so we need to reset the GPU back to legacy mode. And the only
4855 * known way to disable logical contexts is through a GPU reset.
4857 * So in order to leave the system in a known default configuration,
4858 * always reset the GPU upon unload and suspend. Afterwards we then
4859 * clean up the GEM state tracking, flushing off the requests and
4860 * leaving the system in a known idle state.
4862 * Note that is of the upmost importance that the GPU is idle and
4863 * all stray writes are flushed *before* we dismantle the backing
4864 * storage for the pinned objects.
4866 * However, since we are uncertain that resetting the GPU on older
4867 * machines is a good idea, we don't - just in case it leaves the
4868 * machine in an unusable condition.
4870 i915_gem_sanitize(dev_priv);
4872 intel_runtime_pm_put(dev_priv);
4873 return 0;
4875 err_unlock:
4876 mutex_unlock(&dev->struct_mutex);
4877 intel_runtime_pm_put(dev_priv);
4878 return ret;
4881 void i915_gem_resume(struct drm_i915_private *i915)
4883 WARN_ON(i915->gt.awake);
4885 mutex_lock(&i915->drm.struct_mutex);
4886 intel_uncore_forcewake_get(i915, FORCEWAKE_ALL);
4888 i915_gem_restore_gtt_mappings(i915);
4889 i915_gem_restore_fences(i915);
4892 * As we didn't flush the kernel context before suspend, we cannot
4893 * guarantee that the context image is complete. So let's just reset
4894 * it and start again.
4896 i915->gt.resume(i915);
4898 if (i915_gem_init_hw(i915))
4899 goto err_wedged;
4901 intel_guc_resume(i915);
4903 /* Always reload a context for powersaving. */
4904 if (i915_gem_switch_to_kernel_context(i915))
4905 goto err_wedged;
4907 out_unlock:
4908 intel_uncore_forcewake_put(i915, FORCEWAKE_ALL);
4909 mutex_unlock(&i915->drm.struct_mutex);
4910 return;
4912 err_wedged:
4913 if (!i915_terminally_wedged(&i915->gpu_error)) {
4914 DRM_ERROR("failed to re-initialize GPU, declaring wedged!\n");
4915 i915_gem_set_wedged(i915);
4917 goto out_unlock;
4920 void i915_gem_init_swizzling(struct drm_i915_private *dev_priv)
4922 if (INTEL_GEN(dev_priv) < 5 ||
4923 dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
4924 return;
4926 I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
4927 DISP_TILE_SURFACE_SWIZZLING);
4929 if (IS_GEN5(dev_priv))
4930 return;
4932 I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
4933 if (IS_GEN6(dev_priv))
4934 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB));
4935 else if (IS_GEN7(dev_priv))
4936 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB));
4937 else if (IS_GEN8(dev_priv))
4938 I915_WRITE(GAMTARBMODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_BDW));
4939 else
4940 BUG();
4943 static void init_unused_ring(struct drm_i915_private *dev_priv, u32 base)
4945 I915_WRITE(RING_CTL(base), 0);
4946 I915_WRITE(RING_HEAD(base), 0);
4947 I915_WRITE(RING_TAIL(base), 0);
4948 I915_WRITE(RING_START(base), 0);
4951 static void init_unused_rings(struct drm_i915_private *dev_priv)
4953 if (IS_I830(dev_priv)) {
4954 init_unused_ring(dev_priv, PRB1_BASE);
4955 init_unused_ring(dev_priv, SRB0_BASE);
4956 init_unused_ring(dev_priv, SRB1_BASE);
4957 init_unused_ring(dev_priv, SRB2_BASE);
4958 init_unused_ring(dev_priv, SRB3_BASE);
4959 } else if (IS_GEN2(dev_priv)) {
4960 init_unused_ring(dev_priv, SRB0_BASE);
4961 init_unused_ring(dev_priv, SRB1_BASE);
4962 } else if (IS_GEN3(dev_priv)) {
4963 init_unused_ring(dev_priv, PRB1_BASE);
4964 init_unused_ring(dev_priv, PRB2_BASE);
4968 static int __i915_gem_restart_engines(void *data)
4970 struct drm_i915_private *i915 = data;
4971 struct intel_engine_cs *engine;
4972 enum intel_engine_id id;
4973 int err;
4975 for_each_engine(engine, i915, id) {
4976 err = engine->init_hw(engine);
4977 if (err)
4978 return err;
4981 return 0;
4984 int i915_gem_init_hw(struct drm_i915_private *dev_priv)
4986 int ret;
4988 dev_priv->gt.last_init_time = ktime_get();
4990 /* Double layer security blanket, see i915_gem_init() */
4991 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
4993 if (HAS_EDRAM(dev_priv) && INTEL_GEN(dev_priv) < 9)
4994 I915_WRITE(HSW_IDICR, I915_READ(HSW_IDICR) | IDIHASHMSK(0xf));
4996 if (IS_HASWELL(dev_priv))
4997 I915_WRITE(MI_PREDICATE_RESULT_2, IS_HSW_GT3(dev_priv) ?
4998 LOWER_SLICE_ENABLED : LOWER_SLICE_DISABLED);
5000 if (HAS_PCH_NOP(dev_priv)) {
5001 if (IS_IVYBRIDGE(dev_priv)) {
5002 u32 temp = I915_READ(GEN7_MSG_CTL);
5003 temp &= ~(WAIT_FOR_PCH_FLR_ACK | WAIT_FOR_PCH_RESET_ACK);
5004 I915_WRITE(GEN7_MSG_CTL, temp);
5005 } else if (INTEL_GEN(dev_priv) >= 7) {
5006 u32 temp = I915_READ(HSW_NDE_RSTWRN_OPT);
5007 temp &= ~RESET_PCH_HANDSHAKE_ENABLE;
5008 I915_WRITE(HSW_NDE_RSTWRN_OPT, temp);
5012 i915_gem_init_swizzling(dev_priv);
5015 * At least 830 can leave some of the unused rings
5016 * "active" (ie. head != tail) after resume which
5017 * will prevent c3 entry. Makes sure all unused rings
5018 * are totally idle.
5020 init_unused_rings(dev_priv);
5022 BUG_ON(!dev_priv->kernel_context);
5023 if (i915_terminally_wedged(&dev_priv->gpu_error)) {
5024 ret = -EIO;
5025 goto out;
5028 ret = i915_ppgtt_init_hw(dev_priv);
5029 if (ret) {
5030 DRM_ERROR("PPGTT enable HW failed %d\n", ret);
5031 goto out;
5034 /* We can't enable contexts until all firmware is loaded */
5035 ret = intel_uc_init_hw(dev_priv);
5036 if (ret)
5037 goto out;
5039 intel_mocs_init_l3cc_table(dev_priv);
5041 /* Only when the HW is re-initialised, can we replay the requests */
5042 ret = __i915_gem_restart_engines(dev_priv);
5043 out:
5044 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
5045 return ret;
5048 static int __intel_engines_record_defaults(struct drm_i915_private *i915)
5050 struct i915_gem_context *ctx;
5051 struct intel_engine_cs *engine;
5052 enum intel_engine_id id;
5053 int err;
5056 * As we reset the gpu during very early sanitisation, the current
5057 * register state on the GPU should reflect its defaults values.
5058 * We load a context onto the hw (with restore-inhibit), then switch
5059 * over to a second context to save that default register state. We
5060 * can then prime every new context with that state so they all start
5061 * from the same default HW values.
5064 ctx = i915_gem_context_create_kernel(i915, 0);
5065 if (IS_ERR(ctx))
5066 return PTR_ERR(ctx);
5068 for_each_engine(engine, i915, id) {
5069 struct drm_i915_gem_request *rq;
5071 rq = i915_gem_request_alloc(engine, ctx);
5072 if (IS_ERR(rq)) {
5073 err = PTR_ERR(rq);
5074 goto out_ctx;
5077 err = 0;
5078 if (engine->init_context)
5079 err = engine->init_context(rq);
5081 __i915_add_request(rq, true);
5082 if (err)
5083 goto err_active;
5086 err = i915_gem_switch_to_kernel_context(i915);
5087 if (err)
5088 goto err_active;
5090 err = i915_gem_wait_for_idle(i915, I915_WAIT_LOCKED);
5091 if (err)
5092 goto err_active;
5094 assert_kernel_context_is_current(i915);
5096 for_each_engine(engine, i915, id) {
5097 struct i915_vma *state;
5099 state = ctx->engine[id].state;
5100 if (!state)
5101 continue;
5104 * As we will hold a reference to the logical state, it will
5105 * not be torn down with the context, and importantly the
5106 * object will hold onto its vma (making it possible for a
5107 * stray GTT write to corrupt our defaults). Unmap the vma
5108 * from the GTT to prevent such accidents and reclaim the
5109 * space.
5111 err = i915_vma_unbind(state);
5112 if (err)
5113 goto err_active;
5115 err = i915_gem_object_set_to_cpu_domain(state->obj, false);
5116 if (err)
5117 goto err_active;
5119 engine->default_state = i915_gem_object_get(state->obj);
5122 if (IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM)) {
5123 unsigned int found = intel_engines_has_context_isolation(i915);
5126 * Make sure that classes with multiple engine instances all
5127 * share the same basic configuration.
5129 for_each_engine(engine, i915, id) {
5130 unsigned int bit = BIT(engine->uabi_class);
5131 unsigned int expected = engine->default_state ? bit : 0;
5133 if ((found & bit) != expected) {
5134 DRM_ERROR("mismatching default context state for class %d on engine %s\n",
5135 engine->uabi_class, engine->name);
5140 out_ctx:
5141 i915_gem_context_set_closed(ctx);
5142 i915_gem_context_put(ctx);
5143 return err;
5145 err_active:
5147 * If we have to abandon now, we expect the engines to be idle
5148 * and ready to be torn-down. First try to flush any remaining
5149 * request, ensure we are pointing at the kernel context and
5150 * then remove it.
5152 if (WARN_ON(i915_gem_switch_to_kernel_context(i915)))
5153 goto out_ctx;
5155 if (WARN_ON(i915_gem_wait_for_idle(i915, I915_WAIT_LOCKED)))
5156 goto out_ctx;
5158 i915_gem_contexts_lost(i915);
5159 goto out_ctx;
5162 int i915_gem_init(struct drm_i915_private *dev_priv)
5164 int ret;
5167 * We need to fallback to 4K pages since gvt gtt handling doesn't
5168 * support huge page entries - we will need to check either hypervisor
5169 * mm can support huge guest page or just do emulation in gvt.
5171 if (intel_vgpu_active(dev_priv))
5172 mkwrite_device_info(dev_priv)->page_sizes =
5173 I915_GTT_PAGE_SIZE_4K;
5175 dev_priv->mm.unordered_timeline = dma_fence_context_alloc(1);
5177 if (HAS_LOGICAL_RING_CONTEXTS(dev_priv)) {
5178 dev_priv->gt.resume = intel_lr_context_resume;
5179 dev_priv->gt.cleanup_engine = intel_logical_ring_cleanup;
5180 } else {
5181 dev_priv->gt.resume = intel_legacy_submission_resume;
5182 dev_priv->gt.cleanup_engine = intel_engine_cleanup;
5185 ret = i915_gem_init_userptr(dev_priv);
5186 if (ret)
5187 return ret;
5189 ret = intel_uc_init_wq(dev_priv);
5190 if (ret)
5191 return ret;
5193 /* This is just a security blanket to placate dragons.
5194 * On some systems, we very sporadically observe that the first TLBs
5195 * used by the CS may be stale, despite us poking the TLB reset. If
5196 * we hold the forcewake during initialisation these problems
5197 * just magically go away.
5199 mutex_lock(&dev_priv->drm.struct_mutex);
5200 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
5202 ret = i915_gem_init_ggtt(dev_priv);
5203 if (ret) {
5204 GEM_BUG_ON(ret == -EIO);
5205 goto err_unlock;
5208 ret = i915_gem_contexts_init(dev_priv);
5209 if (ret) {
5210 GEM_BUG_ON(ret == -EIO);
5211 goto err_ggtt;
5214 ret = intel_engines_init(dev_priv);
5215 if (ret) {
5216 GEM_BUG_ON(ret == -EIO);
5217 goto err_context;
5220 intel_init_gt_powersave(dev_priv);
5222 ret = intel_uc_init(dev_priv);
5223 if (ret)
5224 goto err_pm;
5226 ret = i915_gem_init_hw(dev_priv);
5227 if (ret)
5228 goto err_uc_init;
5231 * Despite its name intel_init_clock_gating applies both display
5232 * clock gating workarounds; GT mmio workarounds and the occasional
5233 * GT power context workaround. Worse, sometimes it includes a context
5234 * register workaround which we need to apply before we record the
5235 * default HW state for all contexts.
5237 * FIXME: break up the workarounds and apply them at the right time!
5239 intel_init_clock_gating(dev_priv);
5241 ret = __intel_engines_record_defaults(dev_priv);
5242 if (ret)
5243 goto err_init_hw;
5245 if (i915_inject_load_failure()) {
5246 ret = -ENODEV;
5247 goto err_init_hw;
5250 if (i915_inject_load_failure()) {
5251 ret = -EIO;
5252 goto err_init_hw;
5255 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
5256 mutex_unlock(&dev_priv->drm.struct_mutex);
5258 return 0;
5261 * Unwinding is complicated by that we want to handle -EIO to mean
5262 * disable GPU submission but keep KMS alive. We want to mark the
5263 * HW as irrevisibly wedged, but keep enough state around that the
5264 * driver doesn't explode during runtime.
5266 err_init_hw:
5267 i915_gem_wait_for_idle(dev_priv, I915_WAIT_LOCKED);
5268 i915_gem_contexts_lost(dev_priv);
5269 intel_uc_fini_hw(dev_priv);
5270 err_uc_init:
5271 intel_uc_fini(dev_priv);
5272 err_pm:
5273 if (ret != -EIO) {
5274 intel_cleanup_gt_powersave(dev_priv);
5275 i915_gem_cleanup_engines(dev_priv);
5277 err_context:
5278 if (ret != -EIO)
5279 i915_gem_contexts_fini(dev_priv);
5280 err_ggtt:
5281 err_unlock:
5282 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
5283 mutex_unlock(&dev_priv->drm.struct_mutex);
5285 intel_uc_fini_wq(dev_priv);
5287 if (ret != -EIO)
5288 i915_gem_cleanup_userptr(dev_priv);
5290 if (ret == -EIO) {
5292 * Allow engine initialisation to fail by marking the GPU as
5293 * wedged. But we only want to do this where the GPU is angry,
5294 * for all other failure, such as an allocation failure, bail.
5296 if (!i915_terminally_wedged(&dev_priv->gpu_error)) {
5297 DRM_ERROR("Failed to initialize GPU, declaring it wedged\n");
5298 i915_gem_set_wedged(dev_priv);
5300 ret = 0;
5303 i915_gem_drain_freed_objects(dev_priv);
5304 return ret;
5307 void i915_gem_init_mmio(struct drm_i915_private *i915)
5309 i915_gem_sanitize(i915);
5312 void
5313 i915_gem_cleanup_engines(struct drm_i915_private *dev_priv)
5315 struct intel_engine_cs *engine;
5316 enum intel_engine_id id;
5318 for_each_engine(engine, dev_priv, id)
5319 dev_priv->gt.cleanup_engine(engine);
5322 void
5323 i915_gem_load_init_fences(struct drm_i915_private *dev_priv)
5325 int i;
5327 if (INTEL_INFO(dev_priv)->gen >= 7 && !IS_VALLEYVIEW(dev_priv) &&
5328 !IS_CHERRYVIEW(dev_priv))
5329 dev_priv->num_fence_regs = 32;
5330 else if (INTEL_INFO(dev_priv)->gen >= 4 ||
5331 IS_I945G(dev_priv) || IS_I945GM(dev_priv) ||
5332 IS_G33(dev_priv) || IS_PINEVIEW(dev_priv))
5333 dev_priv->num_fence_regs = 16;
5334 else
5335 dev_priv->num_fence_regs = 8;
5337 if (intel_vgpu_active(dev_priv))
5338 dev_priv->num_fence_regs =
5339 I915_READ(vgtif_reg(avail_rs.fence_num));
5341 /* Initialize fence registers to zero */
5342 for (i = 0; i < dev_priv->num_fence_regs; i++) {
5343 struct drm_i915_fence_reg *fence = &dev_priv->fence_regs[i];
5345 fence->i915 = dev_priv;
5346 fence->id = i;
5347 list_add_tail(&fence->link, &dev_priv->mm.fence_list);
5349 i915_gem_restore_fences(dev_priv);
5351 i915_gem_detect_bit_6_swizzle(dev_priv);
5354 static void i915_gem_init__mm(struct drm_i915_private *i915)
5356 spin_lock_init(&i915->mm.object_stat_lock);
5357 spin_lock_init(&i915->mm.obj_lock);
5358 spin_lock_init(&i915->mm.free_lock);
5360 init_llist_head(&i915->mm.free_list);
5362 INIT_LIST_HEAD(&i915->mm.unbound_list);
5363 INIT_LIST_HEAD(&i915->mm.bound_list);
5364 INIT_LIST_HEAD(&i915->mm.fence_list);
5365 INIT_LIST_HEAD(&i915->mm.userfault_list);
5367 INIT_WORK(&i915->mm.free_work, __i915_gem_free_work);
5371 i915_gem_load_init(struct drm_i915_private *dev_priv)
5373 int err = -ENOMEM;
5375 dev_priv->objects = KMEM_CACHE(drm_i915_gem_object, SLAB_HWCACHE_ALIGN);
5376 if (!dev_priv->objects)
5377 goto err_out;
5379 dev_priv->vmas = KMEM_CACHE(i915_vma, SLAB_HWCACHE_ALIGN);
5380 if (!dev_priv->vmas)
5381 goto err_objects;
5383 dev_priv->luts = KMEM_CACHE(i915_lut_handle, 0);
5384 if (!dev_priv->luts)
5385 goto err_vmas;
5387 dev_priv->requests = KMEM_CACHE(drm_i915_gem_request,
5388 SLAB_HWCACHE_ALIGN |
5389 SLAB_RECLAIM_ACCOUNT |
5390 SLAB_TYPESAFE_BY_RCU);
5391 if (!dev_priv->requests)
5392 goto err_luts;
5394 dev_priv->dependencies = KMEM_CACHE(i915_dependency,
5395 SLAB_HWCACHE_ALIGN |
5396 SLAB_RECLAIM_ACCOUNT);
5397 if (!dev_priv->dependencies)
5398 goto err_requests;
5400 dev_priv->priorities = KMEM_CACHE(i915_priolist, SLAB_HWCACHE_ALIGN);
5401 if (!dev_priv->priorities)
5402 goto err_dependencies;
5404 mutex_lock(&dev_priv->drm.struct_mutex);
5405 INIT_LIST_HEAD(&dev_priv->gt.timelines);
5406 err = i915_gem_timeline_init__global(dev_priv);
5407 mutex_unlock(&dev_priv->drm.struct_mutex);
5408 if (err)
5409 goto err_priorities;
5411 i915_gem_init__mm(dev_priv);
5413 INIT_DELAYED_WORK(&dev_priv->gt.retire_work,
5414 i915_gem_retire_work_handler);
5415 INIT_DELAYED_WORK(&dev_priv->gt.idle_work,
5416 i915_gem_idle_work_handler);
5417 init_waitqueue_head(&dev_priv->gpu_error.wait_queue);
5418 init_waitqueue_head(&dev_priv->gpu_error.reset_queue);
5420 atomic_set(&dev_priv->mm.bsd_engine_dispatch_index, 0);
5422 spin_lock_init(&dev_priv->fb_tracking.lock);
5424 err = i915_gemfs_init(dev_priv);
5425 if (err)
5426 DRM_NOTE("Unable to create a private tmpfs mount, hugepage support will be disabled(%d).\n", err);
5428 return 0;
5430 err_priorities:
5431 kmem_cache_destroy(dev_priv->priorities);
5432 err_dependencies:
5433 kmem_cache_destroy(dev_priv->dependencies);
5434 err_requests:
5435 kmem_cache_destroy(dev_priv->requests);
5436 err_luts:
5437 kmem_cache_destroy(dev_priv->luts);
5438 err_vmas:
5439 kmem_cache_destroy(dev_priv->vmas);
5440 err_objects:
5441 kmem_cache_destroy(dev_priv->objects);
5442 err_out:
5443 return err;
5446 void i915_gem_load_cleanup(struct drm_i915_private *dev_priv)
5448 i915_gem_drain_freed_objects(dev_priv);
5449 WARN_ON(!llist_empty(&dev_priv->mm.free_list));
5450 WARN_ON(dev_priv->mm.object_count);
5452 mutex_lock(&dev_priv->drm.struct_mutex);
5453 i915_gem_timeline_fini(&dev_priv->gt.global_timeline);
5454 WARN_ON(!list_empty(&dev_priv->gt.timelines));
5455 mutex_unlock(&dev_priv->drm.struct_mutex);
5457 kmem_cache_destroy(dev_priv->priorities);
5458 kmem_cache_destroy(dev_priv->dependencies);
5459 kmem_cache_destroy(dev_priv->requests);
5460 kmem_cache_destroy(dev_priv->luts);
5461 kmem_cache_destroy(dev_priv->vmas);
5462 kmem_cache_destroy(dev_priv->objects);
5464 /* And ensure that our DESTROY_BY_RCU slabs are truly destroyed */
5465 rcu_barrier();
5467 i915_gemfs_fini(dev_priv);
5470 int i915_gem_freeze(struct drm_i915_private *dev_priv)
5472 /* Discard all purgeable objects, let userspace recover those as
5473 * required after resuming.
5475 i915_gem_shrink_all(dev_priv);
5477 return 0;
5480 int i915_gem_freeze_late(struct drm_i915_private *dev_priv)
5482 struct drm_i915_gem_object *obj;
5483 struct list_head *phases[] = {
5484 &dev_priv->mm.unbound_list,
5485 &dev_priv->mm.bound_list,
5486 NULL
5487 }, **p;
5489 /* Called just before we write the hibernation image.
5491 * We need to update the domain tracking to reflect that the CPU
5492 * will be accessing all the pages to create and restore from the
5493 * hibernation, and so upon restoration those pages will be in the
5494 * CPU domain.
5496 * To make sure the hibernation image contains the latest state,
5497 * we update that state just before writing out the image.
5499 * To try and reduce the hibernation image, we manually shrink
5500 * the objects as well, see i915_gem_freeze()
5503 i915_gem_shrink(dev_priv, -1UL, NULL, I915_SHRINK_UNBOUND);
5504 i915_gem_drain_freed_objects(dev_priv);
5506 spin_lock(&dev_priv->mm.obj_lock);
5507 for (p = phases; *p; p++) {
5508 list_for_each_entry(obj, *p, mm.link)
5509 __start_cpu_write(obj);
5511 spin_unlock(&dev_priv->mm.obj_lock);
5513 return 0;
5516 void i915_gem_release(struct drm_device *dev, struct drm_file *file)
5518 struct drm_i915_file_private *file_priv = file->driver_priv;
5519 struct drm_i915_gem_request *request;
5521 /* Clean up our request list when the client is going away, so that
5522 * later retire_requests won't dereference our soon-to-be-gone
5523 * file_priv.
5525 spin_lock(&file_priv->mm.lock);
5526 list_for_each_entry(request, &file_priv->mm.request_list, client_link)
5527 request->file_priv = NULL;
5528 spin_unlock(&file_priv->mm.lock);
5531 int i915_gem_open(struct drm_i915_private *i915, struct drm_file *file)
5533 struct drm_i915_file_private *file_priv;
5534 int ret;
5536 DRM_DEBUG("\n");
5538 file_priv = kzalloc(sizeof(*file_priv), GFP_KERNEL);
5539 if (!file_priv)
5540 return -ENOMEM;
5542 file->driver_priv = file_priv;
5543 file_priv->dev_priv = i915;
5544 file_priv->file = file;
5546 spin_lock_init(&file_priv->mm.lock);
5547 INIT_LIST_HEAD(&file_priv->mm.request_list);
5549 file_priv->bsd_engine = -1;
5551 ret = i915_gem_context_open(i915, file);
5552 if (ret)
5553 kfree(file_priv);
5555 return ret;
5559 * i915_gem_track_fb - update frontbuffer tracking
5560 * @old: current GEM buffer for the frontbuffer slots
5561 * @new: new GEM buffer for the frontbuffer slots
5562 * @frontbuffer_bits: bitmask of frontbuffer slots
5564 * This updates the frontbuffer tracking bits @frontbuffer_bits by clearing them
5565 * from @old and setting them in @new. Both @old and @new can be NULL.
5567 void i915_gem_track_fb(struct drm_i915_gem_object *old,
5568 struct drm_i915_gem_object *new,
5569 unsigned frontbuffer_bits)
5571 /* Control of individual bits within the mask are guarded by
5572 * the owning plane->mutex, i.e. we can never see concurrent
5573 * manipulation of individual bits. But since the bitfield as a whole
5574 * is updated using RMW, we need to use atomics in order to update
5575 * the bits.
5577 BUILD_BUG_ON(INTEL_FRONTBUFFER_BITS_PER_PIPE * I915_MAX_PIPES >
5578 sizeof(atomic_t) * BITS_PER_BYTE);
5580 if (old) {
5581 WARN_ON(!(atomic_read(&old->frontbuffer_bits) & frontbuffer_bits));
5582 atomic_andnot(frontbuffer_bits, &old->frontbuffer_bits);
5585 if (new) {
5586 WARN_ON(atomic_read(&new->frontbuffer_bits) & frontbuffer_bits);
5587 atomic_or(frontbuffer_bits, &new->frontbuffer_bits);
5591 /* Allocate a new GEM object and fill it with the supplied data */
5592 struct drm_i915_gem_object *
5593 i915_gem_object_create_from_data(struct drm_i915_private *dev_priv,
5594 const void *data, size_t size)
5596 struct drm_i915_gem_object *obj;
5597 struct file *file;
5598 size_t offset;
5599 int err;
5601 obj = i915_gem_object_create(dev_priv, round_up(size, PAGE_SIZE));
5602 if (IS_ERR(obj))
5603 return obj;
5605 GEM_BUG_ON(obj->base.write_domain != I915_GEM_DOMAIN_CPU);
5607 file = obj->base.filp;
5608 offset = 0;
5609 do {
5610 unsigned int len = min_t(typeof(size), size, PAGE_SIZE);
5611 struct page *page;
5612 void *pgdata, *vaddr;
5614 err = pagecache_write_begin(file, file->f_mapping,
5615 offset, len, 0,
5616 &page, &pgdata);
5617 if (err < 0)
5618 goto fail;
5620 vaddr = kmap(page);
5621 memcpy(vaddr, data, len);
5622 kunmap(page);
5624 err = pagecache_write_end(file, file->f_mapping,
5625 offset, len, len,
5626 page, pgdata);
5627 if (err < 0)
5628 goto fail;
5630 size -= len;
5631 data += len;
5632 offset += len;
5633 } while (size);
5635 return obj;
5637 fail:
5638 i915_gem_object_put(obj);
5639 return ERR_PTR(err);
5642 struct scatterlist *
5643 i915_gem_object_get_sg(struct drm_i915_gem_object *obj,
5644 unsigned int n,
5645 unsigned int *offset)
5647 struct i915_gem_object_page_iter *iter = &obj->mm.get_page;
5648 struct scatterlist *sg;
5649 unsigned int idx, count;
5651 might_sleep();
5652 GEM_BUG_ON(n >= obj->base.size >> PAGE_SHIFT);
5653 GEM_BUG_ON(!i915_gem_object_has_pinned_pages(obj));
5655 /* As we iterate forward through the sg, we record each entry in a
5656 * radixtree for quick repeated (backwards) lookups. If we have seen
5657 * this index previously, we will have an entry for it.
5659 * Initial lookup is O(N), but this is amortized to O(1) for
5660 * sequential page access (where each new request is consecutive
5661 * to the previous one). Repeated lookups are O(lg(obj->base.size)),
5662 * i.e. O(1) with a large constant!
5664 if (n < READ_ONCE(iter->sg_idx))
5665 goto lookup;
5667 mutex_lock(&iter->lock);
5669 /* We prefer to reuse the last sg so that repeated lookup of this
5670 * (or the subsequent) sg are fast - comparing against the last
5671 * sg is faster than going through the radixtree.
5674 sg = iter->sg_pos;
5675 idx = iter->sg_idx;
5676 count = __sg_page_count(sg);
5678 while (idx + count <= n) {
5679 unsigned long exception, i;
5680 int ret;
5682 /* If we cannot allocate and insert this entry, or the
5683 * individual pages from this range, cancel updating the
5684 * sg_idx so that on this lookup we are forced to linearly
5685 * scan onwards, but on future lookups we will try the
5686 * insertion again (in which case we need to be careful of
5687 * the error return reporting that we have already inserted
5688 * this index).
5690 ret = radix_tree_insert(&iter->radix, idx, sg);
5691 if (ret && ret != -EEXIST)
5692 goto scan;
5694 exception =
5695 RADIX_TREE_EXCEPTIONAL_ENTRY |
5696 idx << RADIX_TREE_EXCEPTIONAL_SHIFT;
5697 for (i = 1; i < count; i++) {
5698 ret = radix_tree_insert(&iter->radix, idx + i,
5699 (void *)exception);
5700 if (ret && ret != -EEXIST)
5701 goto scan;
5704 idx += count;
5705 sg = ____sg_next(sg);
5706 count = __sg_page_count(sg);
5709 scan:
5710 iter->sg_pos = sg;
5711 iter->sg_idx = idx;
5713 mutex_unlock(&iter->lock);
5715 if (unlikely(n < idx)) /* insertion completed by another thread */
5716 goto lookup;
5718 /* In case we failed to insert the entry into the radixtree, we need
5719 * to look beyond the current sg.
5721 while (idx + count <= n) {
5722 idx += count;
5723 sg = ____sg_next(sg);
5724 count = __sg_page_count(sg);
5727 *offset = n - idx;
5728 return sg;
5730 lookup:
5731 rcu_read_lock();
5733 sg = radix_tree_lookup(&iter->radix, n);
5734 GEM_BUG_ON(!sg);
5736 /* If this index is in the middle of multi-page sg entry,
5737 * the radixtree will contain an exceptional entry that points
5738 * to the start of that range. We will return the pointer to
5739 * the base page and the offset of this page within the
5740 * sg entry's range.
5742 *offset = 0;
5743 if (unlikely(radix_tree_exception(sg))) {
5744 unsigned long base =
5745 (unsigned long)sg >> RADIX_TREE_EXCEPTIONAL_SHIFT;
5747 sg = radix_tree_lookup(&iter->radix, base);
5748 GEM_BUG_ON(!sg);
5750 *offset = n - base;
5753 rcu_read_unlock();
5755 return sg;
5758 struct page *
5759 i915_gem_object_get_page(struct drm_i915_gem_object *obj, unsigned int n)
5761 struct scatterlist *sg;
5762 unsigned int offset;
5764 GEM_BUG_ON(!i915_gem_object_has_struct_page(obj));
5766 sg = i915_gem_object_get_sg(obj, n, &offset);
5767 return nth_page(sg_page(sg), offset);
5770 /* Like i915_gem_object_get_page(), but mark the returned page dirty */
5771 struct page *
5772 i915_gem_object_get_dirty_page(struct drm_i915_gem_object *obj,
5773 unsigned int n)
5775 struct page *page;
5777 page = i915_gem_object_get_page(obj, n);
5778 if (!obj->mm.dirty)
5779 set_page_dirty(page);
5781 return page;
5784 dma_addr_t
5785 i915_gem_object_get_dma_address(struct drm_i915_gem_object *obj,
5786 unsigned long n)
5788 struct scatterlist *sg;
5789 unsigned int offset;
5791 sg = i915_gem_object_get_sg(obj, n, &offset);
5792 return sg_dma_address(sg) + (offset << PAGE_SHIFT);
5795 int i915_gem_object_attach_phys(struct drm_i915_gem_object *obj, int align)
5797 struct sg_table *pages;
5798 int err;
5800 if (align > obj->base.size)
5801 return -EINVAL;
5803 if (obj->ops == &i915_gem_phys_ops)
5804 return 0;
5806 if (obj->ops != &i915_gem_object_ops)
5807 return -EINVAL;
5809 err = i915_gem_object_unbind(obj);
5810 if (err)
5811 return err;
5813 mutex_lock(&obj->mm.lock);
5815 if (obj->mm.madv != I915_MADV_WILLNEED) {
5816 err = -EFAULT;
5817 goto err_unlock;
5820 if (obj->mm.quirked) {
5821 err = -EFAULT;
5822 goto err_unlock;
5825 if (obj->mm.mapping) {
5826 err = -EBUSY;
5827 goto err_unlock;
5830 pages = fetch_and_zero(&obj->mm.pages);
5831 if (pages) {
5832 struct drm_i915_private *i915 = to_i915(obj->base.dev);
5834 __i915_gem_object_reset_page_iter(obj);
5836 spin_lock(&i915->mm.obj_lock);
5837 list_del(&obj->mm.link);
5838 spin_unlock(&i915->mm.obj_lock);
5841 obj->ops = &i915_gem_phys_ops;
5843 err = ____i915_gem_object_get_pages(obj);
5844 if (err)
5845 goto err_xfer;
5847 /* Perma-pin (until release) the physical set of pages */
5848 __i915_gem_object_pin_pages(obj);
5850 if (!IS_ERR_OR_NULL(pages))
5851 i915_gem_object_ops.put_pages(obj, pages);
5852 mutex_unlock(&obj->mm.lock);
5853 return 0;
5855 err_xfer:
5856 obj->ops = &i915_gem_object_ops;
5857 obj->mm.pages = pages;
5858 err_unlock:
5859 mutex_unlock(&obj->mm.lock);
5860 return err;
5863 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
5864 #include "selftests/scatterlist.c"
5865 #include "selftests/mock_gem_device.c"
5866 #include "selftests/huge_gem_object.c"
5867 #include "selftests/huge_pages.c"
5868 #include "selftests/i915_gem_object.c"
5869 #include "selftests/i915_gem_coherency.c"
5870 #endif