Merge tag 'for_linus' of git://git.kernel.org/pub/scm/linux/kernel/git/mst/vhost
[cris-mirror.git] / drivers / gpu / drm / i915 / i915_gem_evict.c
blob60ca4f05ae94a2f73c3f2b8dcf7a63f9b9bbf8f7
1 /*
2 * Copyright © 2008-2010 Intel Corporation
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 * Chris Wilson <chris@chris-wilson.co.uuk>
29 #include <drm/drmP.h>
30 #include <drm/i915_drm.h>
32 #include "i915_drv.h"
33 #include "intel_drv.h"
34 #include "i915_trace.h"
36 I915_SELFTEST_DECLARE(static struct igt_evict_ctl {
37 bool fail_if_busy:1;
38 } igt_evict_ctl;)
40 static bool ggtt_is_idle(struct drm_i915_private *i915)
42 struct intel_engine_cs *engine;
43 enum intel_engine_id id;
45 if (i915->gt.active_requests)
46 return false;
48 for_each_engine(engine, i915, id) {
49 if (!intel_engine_has_kernel_context(engine))
50 return false;
53 return true;
56 static int ggtt_flush(struct drm_i915_private *i915)
58 int err;
60 /* Not everything in the GGTT is tracked via vma (otherwise we
61 * could evict as required with minimal stalling) so we are forced
62 * to idle the GPU and explicitly retire outstanding requests in
63 * the hopes that we can then remove contexts and the like only
64 * bound by their active reference.
66 err = i915_gem_switch_to_kernel_context(i915);
67 if (err)
68 return err;
70 err = i915_gem_wait_for_idle(i915,
71 I915_WAIT_INTERRUPTIBLE |
72 I915_WAIT_LOCKED);
73 if (err)
74 return err;
76 GEM_BUG_ON(!ggtt_is_idle(i915));
77 return 0;
80 static bool
81 mark_free(struct drm_mm_scan *scan,
82 struct i915_vma *vma,
83 unsigned int flags,
84 struct list_head *unwind)
86 if (i915_vma_is_pinned(vma))
87 return false;
89 if (flags & PIN_NONFAULT && i915_vma_has_userfault(vma))
90 return false;
92 list_add(&vma->evict_link, unwind);
93 return drm_mm_scan_add_block(scan, &vma->node);
96 /**
97 * i915_gem_evict_something - Evict vmas to make room for binding a new one
98 * @vm: address space to evict from
99 * @min_size: size of the desired free space
100 * @alignment: alignment constraint of the desired free space
101 * @cache_level: cache_level for the desired space
102 * @start: start (inclusive) of the range from which to evict objects
103 * @end: end (exclusive) of the range from which to evict objects
104 * @flags: additional flags to control the eviction algorithm
106 * This function will try to evict vmas until a free space satisfying the
107 * requirements is found. Callers must check first whether any such hole exists
108 * already before calling this function.
110 * This function is used by the object/vma binding code.
112 * Since this function is only used to free up virtual address space it only
113 * ignores pinned vmas, and not object where the backing storage itself is
114 * pinned. Hence obj->pages_pin_count does not protect against eviction.
116 * To clarify: This is for freeing up virtual address space, not for freeing
117 * memory in e.g. the shrinker.
120 i915_gem_evict_something(struct i915_address_space *vm,
121 u64 min_size, u64 alignment,
122 unsigned cache_level,
123 u64 start, u64 end,
124 unsigned flags)
126 struct drm_i915_private *dev_priv = vm->i915;
127 struct drm_mm_scan scan;
128 struct list_head eviction_list;
129 struct list_head *phases[] = {
130 &vm->inactive_list,
131 &vm->active_list,
132 NULL,
133 }, **phase;
134 struct i915_vma *vma, *next;
135 struct drm_mm_node *node;
136 enum drm_mm_insert_mode mode;
137 int ret;
139 lockdep_assert_held(&vm->i915->drm.struct_mutex);
140 trace_i915_gem_evict(vm, min_size, alignment, flags);
143 * The goal is to evict objects and amalgamate space in LRU order.
144 * The oldest idle objects reside on the inactive list, which is in
145 * retirement order. The next objects to retire are those in flight,
146 * on the active list, again in retirement order.
148 * The retirement sequence is thus:
149 * 1. Inactive objects (already retired)
150 * 2. Active objects (will stall on unbinding)
152 * On each list, the oldest objects lie at the HEAD with the freshest
153 * object on the TAIL.
155 mode = DRM_MM_INSERT_BEST;
156 if (flags & PIN_HIGH)
157 mode = DRM_MM_INSERT_HIGH;
158 if (flags & PIN_MAPPABLE)
159 mode = DRM_MM_INSERT_LOW;
160 drm_mm_scan_init_with_range(&scan, &vm->mm,
161 min_size, alignment, cache_level,
162 start, end, mode);
165 * Retire before we search the active list. Although we have
166 * reasonable accuracy in our retirement lists, we may have
167 * a stray pin (preventing eviction) that can only be resolved by
168 * retiring.
170 if (!(flags & PIN_NONBLOCK))
171 i915_gem_retire_requests(dev_priv);
172 else
173 phases[1] = NULL;
175 search_again:
176 INIT_LIST_HEAD(&eviction_list);
177 phase = phases;
178 do {
179 list_for_each_entry(vma, *phase, vm_link)
180 if (mark_free(&scan, vma, flags, &eviction_list))
181 goto found;
182 } while (*++phase);
184 /* Nothing found, clean up and bail out! */
185 list_for_each_entry_safe(vma, next, &eviction_list, evict_link) {
186 ret = drm_mm_scan_remove_block(&scan, &vma->node);
187 BUG_ON(ret);
191 * Can we unpin some objects such as idle hw contents,
192 * or pending flips? But since only the GGTT has global entries
193 * such as scanouts, rinbuffers and contexts, we can skip the
194 * purge when inspecting per-process local address spaces.
196 if (!i915_is_ggtt(vm) || flags & PIN_NONBLOCK)
197 return -ENOSPC;
200 * Not everything in the GGTT is tracked via VMA using
201 * i915_vma_move_to_active(), otherwise we could evict as required
202 * with minimal stalling. Instead we are forced to idle the GPU and
203 * explicitly retire outstanding requests which will then remove
204 * the pinning for active objects such as contexts and ring,
205 * enabling us to evict them on the next iteration.
207 * To ensure that all user contexts are evictable, we perform
208 * a switch to the perma-pinned kernel context. This all also gives
209 * us a termination condition, when the last retired context is
210 * the kernel's there is no more we can evict.
212 if (!ggtt_is_idle(dev_priv)) {
213 if (I915_SELFTEST_ONLY(igt_evict_ctl.fail_if_busy))
214 return -EBUSY;
216 ret = ggtt_flush(dev_priv);
217 if (ret)
218 return ret;
220 cond_resched();
221 goto search_again;
225 * If we still have pending pageflip completions, drop
226 * back to userspace to give our workqueues time to
227 * acquire our locks and unpin the old scanouts.
229 return intel_has_pending_fb_unpin(dev_priv) ? -EAGAIN : -ENOSPC;
231 found:
232 /* drm_mm doesn't allow any other other operations while
233 * scanning, therefore store to-be-evicted objects on a
234 * temporary list and take a reference for all before
235 * calling unbind (which may remove the active reference
236 * of any of our objects, thus corrupting the list).
238 list_for_each_entry_safe(vma, next, &eviction_list, evict_link) {
239 if (drm_mm_scan_remove_block(&scan, &vma->node))
240 __i915_vma_pin(vma);
241 else
242 list_del(&vma->evict_link);
245 /* Unbinding will emit any required flushes */
246 ret = 0;
247 list_for_each_entry_safe(vma, next, &eviction_list, evict_link) {
248 __i915_vma_unpin(vma);
249 if (ret == 0)
250 ret = i915_vma_unbind(vma);
253 while (ret == 0 && (node = drm_mm_scan_color_evict(&scan))) {
254 vma = container_of(node, struct i915_vma, node);
255 ret = i915_vma_unbind(vma);
258 return ret;
262 * i915_gem_evict_for_vma - Evict vmas to make room for binding a new one
263 * @vm: address space to evict from
264 * @target: range (and color) to evict for
265 * @flags: additional flags to control the eviction algorithm
267 * This function will try to evict vmas that overlap the target node.
269 * To clarify: This is for freeing up virtual address space, not for freeing
270 * memory in e.g. the shrinker.
272 int i915_gem_evict_for_node(struct i915_address_space *vm,
273 struct drm_mm_node *target,
274 unsigned int flags)
276 LIST_HEAD(eviction_list);
277 struct drm_mm_node *node;
278 u64 start = target->start;
279 u64 end = start + target->size;
280 struct i915_vma *vma, *next;
281 bool check_color;
282 int ret = 0;
284 lockdep_assert_held(&vm->i915->drm.struct_mutex);
285 GEM_BUG_ON(!IS_ALIGNED(start, I915_GTT_PAGE_SIZE));
286 GEM_BUG_ON(!IS_ALIGNED(end, I915_GTT_PAGE_SIZE));
288 trace_i915_gem_evict_node(vm, target, flags);
290 /* Retire before we search the active list. Although we have
291 * reasonable accuracy in our retirement lists, we may have
292 * a stray pin (preventing eviction) that can only be resolved by
293 * retiring.
295 if (!(flags & PIN_NONBLOCK))
296 i915_gem_retire_requests(vm->i915);
298 check_color = vm->mm.color_adjust;
299 if (check_color) {
300 /* Expand search to cover neighbouring guard pages (or lack!) */
301 if (start)
302 start -= I915_GTT_PAGE_SIZE;
304 /* Always look at the page afterwards to avoid the end-of-GTT */
305 end += I915_GTT_PAGE_SIZE;
307 GEM_BUG_ON(start >= end);
309 drm_mm_for_each_node_in_range(node, &vm->mm, start, end) {
310 /* If we find any non-objects (!vma), we cannot evict them */
311 if (node->color == I915_COLOR_UNEVICTABLE) {
312 ret = -ENOSPC;
313 break;
316 GEM_BUG_ON(!node->allocated);
317 vma = container_of(node, typeof(*vma), node);
319 /* If we are using coloring to insert guard pages between
320 * different cache domains within the address space, we have
321 * to check whether the objects on either side of our range
322 * abutt and conflict. If they are in conflict, then we evict
323 * those as well to make room for our guard pages.
325 if (check_color) {
326 if (node->start + node->size == target->start) {
327 if (node->color == target->color)
328 continue;
330 if (node->start == target->start + target->size) {
331 if (node->color == target->color)
332 continue;
336 if (flags & PIN_NONBLOCK &&
337 (i915_vma_is_pinned(vma) || i915_vma_is_active(vma))) {
338 ret = -ENOSPC;
339 break;
342 if (flags & PIN_NONFAULT && i915_vma_has_userfault(vma)) {
343 ret = -ENOSPC;
344 break;
347 /* Overlap of objects in the same batch? */
348 if (i915_vma_is_pinned(vma)) {
349 ret = -ENOSPC;
350 if (vma->exec_flags &&
351 *vma->exec_flags & EXEC_OBJECT_PINNED)
352 ret = -EINVAL;
353 break;
356 /* Never show fear in the face of dragons!
358 * We cannot directly remove this node from within this
359 * iterator and as with i915_gem_evict_something() we employ
360 * the vma pin_count in order to prevent the action of
361 * unbinding one vma from freeing (by dropping its active
362 * reference) another in our eviction list.
364 __i915_vma_pin(vma);
365 list_add(&vma->evict_link, &eviction_list);
368 list_for_each_entry_safe(vma, next, &eviction_list, evict_link) {
369 __i915_vma_unpin(vma);
370 if (ret == 0)
371 ret = i915_vma_unbind(vma);
374 return ret;
378 * i915_gem_evict_vm - Evict all idle vmas from a vm
379 * @vm: Address space to cleanse
381 * This function evicts all vmas from a vm.
383 * This is used by the execbuf code as a last-ditch effort to defragment the
384 * address space.
386 * To clarify: This is for freeing up virtual address space, not for freeing
387 * memory in e.g. the shrinker.
389 int i915_gem_evict_vm(struct i915_address_space *vm)
391 struct list_head *phases[] = {
392 &vm->inactive_list,
393 &vm->active_list,
394 NULL
395 }, **phase;
396 struct list_head eviction_list;
397 struct i915_vma *vma, *next;
398 int ret;
400 lockdep_assert_held(&vm->i915->drm.struct_mutex);
401 trace_i915_gem_evict_vm(vm);
403 /* Switch back to the default context in order to unpin
404 * the existing context objects. However, such objects only
405 * pin themselves inside the global GTT and performing the
406 * switch otherwise is ineffective.
408 if (i915_is_ggtt(vm)) {
409 ret = ggtt_flush(vm->i915);
410 if (ret)
411 return ret;
414 INIT_LIST_HEAD(&eviction_list);
415 phase = phases;
416 do {
417 list_for_each_entry(vma, *phase, vm_link) {
418 if (i915_vma_is_pinned(vma))
419 continue;
421 __i915_vma_pin(vma);
422 list_add(&vma->evict_link, &eviction_list);
424 } while (*++phase);
426 ret = 0;
427 list_for_each_entry_safe(vma, next, &eviction_list, evict_link) {
428 __i915_vma_unpin(vma);
429 if (ret == 0)
430 ret = i915_vma_unbind(vma);
432 return ret;
435 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
436 #include "selftests/i915_gem_evict.c"
437 #endif