Merge tag 'for_linus' of git://git.kernel.org/pub/scm/linux/kernel/git/mst/vhost
[cris-mirror.git] / drivers / gpu / drm / i915 / i915_irq.c
blob3517c6548e2cccd3c21985a0c52266c1f818d99c
1 /* i915_irq.c -- IRQ support for the I915 -*- linux-c -*-
2 */
3 /*
4 * Copyright 2003 Tungsten Graphics, Inc., Cedar Park, Texas.
5 * All Rights Reserved.
7 * Permission is hereby granted, free of charge, to any person obtaining a
8 * copy of this software and associated documentation files (the
9 * "Software"), to deal in the Software without restriction, including
10 * without limitation the rights to use, copy, modify, merge, publish,
11 * distribute, sub license, and/or sell copies of the Software, and to
12 * permit persons to whom the Software is furnished to do so, subject to
13 * the following conditions:
15 * The above copyright notice and this permission notice (including the
16 * next paragraph) shall be included in all copies or substantial portions
17 * of the Software.
19 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
20 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
21 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
22 * IN NO EVENT SHALL TUNGSTEN GRAPHICS AND/OR ITS SUPPLIERS BE LIABLE FOR
23 * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
24 * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
25 * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
29 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
31 #include <linux/sysrq.h>
32 #include <linux/slab.h>
33 #include <linux/circ_buf.h>
34 #include <drm/drmP.h>
35 #include <drm/i915_drm.h>
36 #include "i915_drv.h"
37 #include "i915_trace.h"
38 #include "intel_drv.h"
40 /**
41 * DOC: interrupt handling
43 * These functions provide the basic support for enabling and disabling the
44 * interrupt handling support. There's a lot more functionality in i915_irq.c
45 * and related files, but that will be described in separate chapters.
48 static const u32 hpd_ilk[HPD_NUM_PINS] = {
49 [HPD_PORT_A] = DE_DP_A_HOTPLUG,
52 static const u32 hpd_ivb[HPD_NUM_PINS] = {
53 [HPD_PORT_A] = DE_DP_A_HOTPLUG_IVB,
56 static const u32 hpd_bdw[HPD_NUM_PINS] = {
57 [HPD_PORT_A] = GEN8_PORT_DP_A_HOTPLUG,
60 static const u32 hpd_ibx[HPD_NUM_PINS] = {
61 [HPD_CRT] = SDE_CRT_HOTPLUG,
62 [HPD_SDVO_B] = SDE_SDVOB_HOTPLUG,
63 [HPD_PORT_B] = SDE_PORTB_HOTPLUG,
64 [HPD_PORT_C] = SDE_PORTC_HOTPLUG,
65 [HPD_PORT_D] = SDE_PORTD_HOTPLUG
68 static const u32 hpd_cpt[HPD_NUM_PINS] = {
69 [HPD_CRT] = SDE_CRT_HOTPLUG_CPT,
70 [HPD_SDVO_B] = SDE_SDVOB_HOTPLUG_CPT,
71 [HPD_PORT_B] = SDE_PORTB_HOTPLUG_CPT,
72 [HPD_PORT_C] = SDE_PORTC_HOTPLUG_CPT,
73 [HPD_PORT_D] = SDE_PORTD_HOTPLUG_CPT
76 static const u32 hpd_spt[HPD_NUM_PINS] = {
77 [HPD_PORT_A] = SDE_PORTA_HOTPLUG_SPT,
78 [HPD_PORT_B] = SDE_PORTB_HOTPLUG_CPT,
79 [HPD_PORT_C] = SDE_PORTC_HOTPLUG_CPT,
80 [HPD_PORT_D] = SDE_PORTD_HOTPLUG_CPT,
81 [HPD_PORT_E] = SDE_PORTE_HOTPLUG_SPT
84 static const u32 hpd_mask_i915[HPD_NUM_PINS] = {
85 [HPD_CRT] = CRT_HOTPLUG_INT_EN,
86 [HPD_SDVO_B] = SDVOB_HOTPLUG_INT_EN,
87 [HPD_SDVO_C] = SDVOC_HOTPLUG_INT_EN,
88 [HPD_PORT_B] = PORTB_HOTPLUG_INT_EN,
89 [HPD_PORT_C] = PORTC_HOTPLUG_INT_EN,
90 [HPD_PORT_D] = PORTD_HOTPLUG_INT_EN
93 static const u32 hpd_status_g4x[HPD_NUM_PINS] = {
94 [HPD_CRT] = CRT_HOTPLUG_INT_STATUS,
95 [HPD_SDVO_B] = SDVOB_HOTPLUG_INT_STATUS_G4X,
96 [HPD_SDVO_C] = SDVOC_HOTPLUG_INT_STATUS_G4X,
97 [HPD_PORT_B] = PORTB_HOTPLUG_INT_STATUS,
98 [HPD_PORT_C] = PORTC_HOTPLUG_INT_STATUS,
99 [HPD_PORT_D] = PORTD_HOTPLUG_INT_STATUS
102 static const u32 hpd_status_i915[HPD_NUM_PINS] = {
103 [HPD_CRT] = CRT_HOTPLUG_INT_STATUS,
104 [HPD_SDVO_B] = SDVOB_HOTPLUG_INT_STATUS_I915,
105 [HPD_SDVO_C] = SDVOC_HOTPLUG_INT_STATUS_I915,
106 [HPD_PORT_B] = PORTB_HOTPLUG_INT_STATUS,
107 [HPD_PORT_C] = PORTC_HOTPLUG_INT_STATUS,
108 [HPD_PORT_D] = PORTD_HOTPLUG_INT_STATUS
111 /* BXT hpd list */
112 static const u32 hpd_bxt[HPD_NUM_PINS] = {
113 [HPD_PORT_A] = BXT_DE_PORT_HP_DDIA,
114 [HPD_PORT_B] = BXT_DE_PORT_HP_DDIB,
115 [HPD_PORT_C] = BXT_DE_PORT_HP_DDIC
118 /* IIR can theoretically queue up two events. Be paranoid. */
119 #define GEN8_IRQ_RESET_NDX(type, which) do { \
120 I915_WRITE(GEN8_##type##_IMR(which), 0xffffffff); \
121 POSTING_READ(GEN8_##type##_IMR(which)); \
122 I915_WRITE(GEN8_##type##_IER(which), 0); \
123 I915_WRITE(GEN8_##type##_IIR(which), 0xffffffff); \
124 POSTING_READ(GEN8_##type##_IIR(which)); \
125 I915_WRITE(GEN8_##type##_IIR(which), 0xffffffff); \
126 POSTING_READ(GEN8_##type##_IIR(which)); \
127 } while (0)
129 #define GEN3_IRQ_RESET(type) do { \
130 I915_WRITE(type##IMR, 0xffffffff); \
131 POSTING_READ(type##IMR); \
132 I915_WRITE(type##IER, 0); \
133 I915_WRITE(type##IIR, 0xffffffff); \
134 POSTING_READ(type##IIR); \
135 I915_WRITE(type##IIR, 0xffffffff); \
136 POSTING_READ(type##IIR); \
137 } while (0)
139 #define GEN2_IRQ_RESET(type) do { \
140 I915_WRITE16(type##IMR, 0xffff); \
141 POSTING_READ16(type##IMR); \
142 I915_WRITE16(type##IER, 0); \
143 I915_WRITE16(type##IIR, 0xffff); \
144 POSTING_READ16(type##IIR); \
145 I915_WRITE16(type##IIR, 0xffff); \
146 POSTING_READ16(type##IIR); \
147 } while (0)
150 * We should clear IMR at preinstall/uninstall, and just check at postinstall.
152 static void gen3_assert_iir_is_zero(struct drm_i915_private *dev_priv,
153 i915_reg_t reg)
155 u32 val = I915_READ(reg);
157 if (val == 0)
158 return;
160 WARN(1, "Interrupt register 0x%x is not zero: 0x%08x\n",
161 i915_mmio_reg_offset(reg), val);
162 I915_WRITE(reg, 0xffffffff);
163 POSTING_READ(reg);
164 I915_WRITE(reg, 0xffffffff);
165 POSTING_READ(reg);
168 static void gen2_assert_iir_is_zero(struct drm_i915_private *dev_priv,
169 i915_reg_t reg)
171 u16 val = I915_READ16(reg);
173 if (val == 0)
174 return;
176 WARN(1, "Interrupt register 0x%x is not zero: 0x%08x\n",
177 i915_mmio_reg_offset(reg), val);
178 I915_WRITE16(reg, 0xffff);
179 POSTING_READ16(reg);
180 I915_WRITE16(reg, 0xffff);
181 POSTING_READ16(reg);
184 #define GEN8_IRQ_INIT_NDX(type, which, imr_val, ier_val) do { \
185 gen3_assert_iir_is_zero(dev_priv, GEN8_##type##_IIR(which)); \
186 I915_WRITE(GEN8_##type##_IER(which), (ier_val)); \
187 I915_WRITE(GEN8_##type##_IMR(which), (imr_val)); \
188 POSTING_READ(GEN8_##type##_IMR(which)); \
189 } while (0)
191 #define GEN3_IRQ_INIT(type, imr_val, ier_val) do { \
192 gen3_assert_iir_is_zero(dev_priv, type##IIR); \
193 I915_WRITE(type##IER, (ier_val)); \
194 I915_WRITE(type##IMR, (imr_val)); \
195 POSTING_READ(type##IMR); \
196 } while (0)
198 #define GEN2_IRQ_INIT(type, imr_val, ier_val) do { \
199 gen2_assert_iir_is_zero(dev_priv, type##IIR); \
200 I915_WRITE16(type##IER, (ier_val)); \
201 I915_WRITE16(type##IMR, (imr_val)); \
202 POSTING_READ16(type##IMR); \
203 } while (0)
205 static void gen6_rps_irq_handler(struct drm_i915_private *dev_priv, u32 pm_iir);
206 static void gen9_guc_irq_handler(struct drm_i915_private *dev_priv, u32 pm_iir);
208 /* For display hotplug interrupt */
209 static inline void
210 i915_hotplug_interrupt_update_locked(struct drm_i915_private *dev_priv,
211 uint32_t mask,
212 uint32_t bits)
214 uint32_t val;
216 lockdep_assert_held(&dev_priv->irq_lock);
217 WARN_ON(bits & ~mask);
219 val = I915_READ(PORT_HOTPLUG_EN);
220 val &= ~mask;
221 val |= bits;
222 I915_WRITE(PORT_HOTPLUG_EN, val);
226 * i915_hotplug_interrupt_update - update hotplug interrupt enable
227 * @dev_priv: driver private
228 * @mask: bits to update
229 * @bits: bits to enable
230 * NOTE: the HPD enable bits are modified both inside and outside
231 * of an interrupt context. To avoid that read-modify-write cycles
232 * interfer, these bits are protected by a spinlock. Since this
233 * function is usually not called from a context where the lock is
234 * held already, this function acquires the lock itself. A non-locking
235 * version is also available.
237 void i915_hotplug_interrupt_update(struct drm_i915_private *dev_priv,
238 uint32_t mask,
239 uint32_t bits)
241 spin_lock_irq(&dev_priv->irq_lock);
242 i915_hotplug_interrupt_update_locked(dev_priv, mask, bits);
243 spin_unlock_irq(&dev_priv->irq_lock);
247 * ilk_update_display_irq - update DEIMR
248 * @dev_priv: driver private
249 * @interrupt_mask: mask of interrupt bits to update
250 * @enabled_irq_mask: mask of interrupt bits to enable
252 void ilk_update_display_irq(struct drm_i915_private *dev_priv,
253 uint32_t interrupt_mask,
254 uint32_t enabled_irq_mask)
256 uint32_t new_val;
258 lockdep_assert_held(&dev_priv->irq_lock);
260 WARN_ON(enabled_irq_mask & ~interrupt_mask);
262 if (WARN_ON(!intel_irqs_enabled(dev_priv)))
263 return;
265 new_val = dev_priv->irq_mask;
266 new_val &= ~interrupt_mask;
267 new_val |= (~enabled_irq_mask & interrupt_mask);
269 if (new_val != dev_priv->irq_mask) {
270 dev_priv->irq_mask = new_val;
271 I915_WRITE(DEIMR, dev_priv->irq_mask);
272 POSTING_READ(DEIMR);
277 * ilk_update_gt_irq - update GTIMR
278 * @dev_priv: driver private
279 * @interrupt_mask: mask of interrupt bits to update
280 * @enabled_irq_mask: mask of interrupt bits to enable
282 static void ilk_update_gt_irq(struct drm_i915_private *dev_priv,
283 uint32_t interrupt_mask,
284 uint32_t enabled_irq_mask)
286 lockdep_assert_held(&dev_priv->irq_lock);
288 WARN_ON(enabled_irq_mask & ~interrupt_mask);
290 if (WARN_ON(!intel_irqs_enabled(dev_priv)))
291 return;
293 dev_priv->gt_irq_mask &= ~interrupt_mask;
294 dev_priv->gt_irq_mask |= (~enabled_irq_mask & interrupt_mask);
295 I915_WRITE(GTIMR, dev_priv->gt_irq_mask);
298 void gen5_enable_gt_irq(struct drm_i915_private *dev_priv, uint32_t mask)
300 ilk_update_gt_irq(dev_priv, mask, mask);
301 POSTING_READ_FW(GTIMR);
304 void gen5_disable_gt_irq(struct drm_i915_private *dev_priv, uint32_t mask)
306 ilk_update_gt_irq(dev_priv, mask, 0);
309 static i915_reg_t gen6_pm_iir(struct drm_i915_private *dev_priv)
311 return INTEL_GEN(dev_priv) >= 8 ? GEN8_GT_IIR(2) : GEN6_PMIIR;
314 static i915_reg_t gen6_pm_imr(struct drm_i915_private *dev_priv)
316 return INTEL_GEN(dev_priv) >= 8 ? GEN8_GT_IMR(2) : GEN6_PMIMR;
319 static i915_reg_t gen6_pm_ier(struct drm_i915_private *dev_priv)
321 return INTEL_GEN(dev_priv) >= 8 ? GEN8_GT_IER(2) : GEN6_PMIER;
325 * snb_update_pm_irq - update GEN6_PMIMR
326 * @dev_priv: driver private
327 * @interrupt_mask: mask of interrupt bits to update
328 * @enabled_irq_mask: mask of interrupt bits to enable
330 static void snb_update_pm_irq(struct drm_i915_private *dev_priv,
331 uint32_t interrupt_mask,
332 uint32_t enabled_irq_mask)
334 uint32_t new_val;
336 WARN_ON(enabled_irq_mask & ~interrupt_mask);
338 lockdep_assert_held(&dev_priv->irq_lock);
340 new_val = dev_priv->pm_imr;
341 new_val &= ~interrupt_mask;
342 new_val |= (~enabled_irq_mask & interrupt_mask);
344 if (new_val != dev_priv->pm_imr) {
345 dev_priv->pm_imr = new_val;
346 I915_WRITE(gen6_pm_imr(dev_priv), dev_priv->pm_imr);
347 POSTING_READ(gen6_pm_imr(dev_priv));
351 void gen6_unmask_pm_irq(struct drm_i915_private *dev_priv, u32 mask)
353 if (WARN_ON(!intel_irqs_enabled(dev_priv)))
354 return;
356 snb_update_pm_irq(dev_priv, mask, mask);
359 static void __gen6_mask_pm_irq(struct drm_i915_private *dev_priv, u32 mask)
361 snb_update_pm_irq(dev_priv, mask, 0);
364 void gen6_mask_pm_irq(struct drm_i915_private *dev_priv, u32 mask)
366 if (WARN_ON(!intel_irqs_enabled(dev_priv)))
367 return;
369 __gen6_mask_pm_irq(dev_priv, mask);
372 static void gen6_reset_pm_iir(struct drm_i915_private *dev_priv, u32 reset_mask)
374 i915_reg_t reg = gen6_pm_iir(dev_priv);
376 lockdep_assert_held(&dev_priv->irq_lock);
378 I915_WRITE(reg, reset_mask);
379 I915_WRITE(reg, reset_mask);
380 POSTING_READ(reg);
383 static void gen6_enable_pm_irq(struct drm_i915_private *dev_priv, u32 enable_mask)
385 lockdep_assert_held(&dev_priv->irq_lock);
387 dev_priv->pm_ier |= enable_mask;
388 I915_WRITE(gen6_pm_ier(dev_priv), dev_priv->pm_ier);
389 gen6_unmask_pm_irq(dev_priv, enable_mask);
390 /* unmask_pm_irq provides an implicit barrier (POSTING_READ) */
393 static void gen6_disable_pm_irq(struct drm_i915_private *dev_priv, u32 disable_mask)
395 lockdep_assert_held(&dev_priv->irq_lock);
397 dev_priv->pm_ier &= ~disable_mask;
398 __gen6_mask_pm_irq(dev_priv, disable_mask);
399 I915_WRITE(gen6_pm_ier(dev_priv), dev_priv->pm_ier);
400 /* though a barrier is missing here, but don't really need a one */
403 void gen6_reset_rps_interrupts(struct drm_i915_private *dev_priv)
405 spin_lock_irq(&dev_priv->irq_lock);
406 gen6_reset_pm_iir(dev_priv, dev_priv->pm_rps_events);
407 dev_priv->gt_pm.rps.pm_iir = 0;
408 spin_unlock_irq(&dev_priv->irq_lock);
411 void gen6_enable_rps_interrupts(struct drm_i915_private *dev_priv)
413 struct intel_rps *rps = &dev_priv->gt_pm.rps;
415 if (READ_ONCE(rps->interrupts_enabled))
416 return;
418 spin_lock_irq(&dev_priv->irq_lock);
419 WARN_ON_ONCE(rps->pm_iir);
420 WARN_ON_ONCE(I915_READ(gen6_pm_iir(dev_priv)) & dev_priv->pm_rps_events);
421 rps->interrupts_enabled = true;
422 gen6_enable_pm_irq(dev_priv, dev_priv->pm_rps_events);
424 spin_unlock_irq(&dev_priv->irq_lock);
427 void gen6_disable_rps_interrupts(struct drm_i915_private *dev_priv)
429 struct intel_rps *rps = &dev_priv->gt_pm.rps;
431 if (!READ_ONCE(rps->interrupts_enabled))
432 return;
434 spin_lock_irq(&dev_priv->irq_lock);
435 rps->interrupts_enabled = false;
437 I915_WRITE(GEN6_PMINTRMSK, gen6_sanitize_rps_pm_mask(dev_priv, ~0u));
439 gen6_disable_pm_irq(dev_priv, dev_priv->pm_rps_events);
441 spin_unlock_irq(&dev_priv->irq_lock);
442 synchronize_irq(dev_priv->drm.irq);
444 /* Now that we will not be generating any more work, flush any
445 * outstanding tasks. As we are called on the RPS idle path,
446 * we will reset the GPU to minimum frequencies, so the current
447 * state of the worker can be discarded.
449 cancel_work_sync(&rps->work);
450 gen6_reset_rps_interrupts(dev_priv);
453 void gen9_reset_guc_interrupts(struct drm_i915_private *dev_priv)
455 spin_lock_irq(&dev_priv->irq_lock);
456 gen6_reset_pm_iir(dev_priv, dev_priv->pm_guc_events);
457 spin_unlock_irq(&dev_priv->irq_lock);
460 void gen9_enable_guc_interrupts(struct drm_i915_private *dev_priv)
462 spin_lock_irq(&dev_priv->irq_lock);
463 if (!dev_priv->guc.interrupts_enabled) {
464 WARN_ON_ONCE(I915_READ(gen6_pm_iir(dev_priv)) &
465 dev_priv->pm_guc_events);
466 dev_priv->guc.interrupts_enabled = true;
467 gen6_enable_pm_irq(dev_priv, dev_priv->pm_guc_events);
469 spin_unlock_irq(&dev_priv->irq_lock);
472 void gen9_disable_guc_interrupts(struct drm_i915_private *dev_priv)
474 spin_lock_irq(&dev_priv->irq_lock);
475 dev_priv->guc.interrupts_enabled = false;
477 gen6_disable_pm_irq(dev_priv, dev_priv->pm_guc_events);
479 spin_unlock_irq(&dev_priv->irq_lock);
480 synchronize_irq(dev_priv->drm.irq);
482 gen9_reset_guc_interrupts(dev_priv);
486 * bdw_update_port_irq - update DE port interrupt
487 * @dev_priv: driver private
488 * @interrupt_mask: mask of interrupt bits to update
489 * @enabled_irq_mask: mask of interrupt bits to enable
491 static void bdw_update_port_irq(struct drm_i915_private *dev_priv,
492 uint32_t interrupt_mask,
493 uint32_t enabled_irq_mask)
495 uint32_t new_val;
496 uint32_t old_val;
498 lockdep_assert_held(&dev_priv->irq_lock);
500 WARN_ON(enabled_irq_mask & ~interrupt_mask);
502 if (WARN_ON(!intel_irqs_enabled(dev_priv)))
503 return;
505 old_val = I915_READ(GEN8_DE_PORT_IMR);
507 new_val = old_val;
508 new_val &= ~interrupt_mask;
509 new_val |= (~enabled_irq_mask & interrupt_mask);
511 if (new_val != old_val) {
512 I915_WRITE(GEN8_DE_PORT_IMR, new_val);
513 POSTING_READ(GEN8_DE_PORT_IMR);
518 * bdw_update_pipe_irq - update DE pipe interrupt
519 * @dev_priv: driver private
520 * @pipe: pipe whose interrupt to update
521 * @interrupt_mask: mask of interrupt bits to update
522 * @enabled_irq_mask: mask of interrupt bits to enable
524 void bdw_update_pipe_irq(struct drm_i915_private *dev_priv,
525 enum pipe pipe,
526 uint32_t interrupt_mask,
527 uint32_t enabled_irq_mask)
529 uint32_t new_val;
531 lockdep_assert_held(&dev_priv->irq_lock);
533 WARN_ON(enabled_irq_mask & ~interrupt_mask);
535 if (WARN_ON(!intel_irqs_enabled(dev_priv)))
536 return;
538 new_val = dev_priv->de_irq_mask[pipe];
539 new_val &= ~interrupt_mask;
540 new_val |= (~enabled_irq_mask & interrupt_mask);
542 if (new_val != dev_priv->de_irq_mask[pipe]) {
543 dev_priv->de_irq_mask[pipe] = new_val;
544 I915_WRITE(GEN8_DE_PIPE_IMR(pipe), dev_priv->de_irq_mask[pipe]);
545 POSTING_READ(GEN8_DE_PIPE_IMR(pipe));
550 * ibx_display_interrupt_update - update SDEIMR
551 * @dev_priv: driver private
552 * @interrupt_mask: mask of interrupt bits to update
553 * @enabled_irq_mask: mask of interrupt bits to enable
555 void ibx_display_interrupt_update(struct drm_i915_private *dev_priv,
556 uint32_t interrupt_mask,
557 uint32_t enabled_irq_mask)
559 uint32_t sdeimr = I915_READ(SDEIMR);
560 sdeimr &= ~interrupt_mask;
561 sdeimr |= (~enabled_irq_mask & interrupt_mask);
563 WARN_ON(enabled_irq_mask & ~interrupt_mask);
565 lockdep_assert_held(&dev_priv->irq_lock);
567 if (WARN_ON(!intel_irqs_enabled(dev_priv)))
568 return;
570 I915_WRITE(SDEIMR, sdeimr);
571 POSTING_READ(SDEIMR);
574 u32 i915_pipestat_enable_mask(struct drm_i915_private *dev_priv,
575 enum pipe pipe)
577 u32 status_mask = dev_priv->pipestat_irq_mask[pipe];
578 u32 enable_mask = status_mask << 16;
580 lockdep_assert_held(&dev_priv->irq_lock);
582 if (INTEL_GEN(dev_priv) < 5)
583 goto out;
586 * On pipe A we don't support the PSR interrupt yet,
587 * on pipe B and C the same bit MBZ.
589 if (WARN_ON_ONCE(status_mask & PIPE_A_PSR_STATUS_VLV))
590 return 0;
592 * On pipe B and C we don't support the PSR interrupt yet, on pipe
593 * A the same bit is for perf counters which we don't use either.
595 if (WARN_ON_ONCE(status_mask & PIPE_B_PSR_STATUS_VLV))
596 return 0;
598 enable_mask &= ~(PIPE_FIFO_UNDERRUN_STATUS |
599 SPRITE0_FLIP_DONE_INT_EN_VLV |
600 SPRITE1_FLIP_DONE_INT_EN_VLV);
601 if (status_mask & SPRITE0_FLIP_DONE_INT_STATUS_VLV)
602 enable_mask |= SPRITE0_FLIP_DONE_INT_EN_VLV;
603 if (status_mask & SPRITE1_FLIP_DONE_INT_STATUS_VLV)
604 enable_mask |= SPRITE1_FLIP_DONE_INT_EN_VLV;
606 out:
607 WARN_ONCE(enable_mask & ~PIPESTAT_INT_ENABLE_MASK ||
608 status_mask & ~PIPESTAT_INT_STATUS_MASK,
609 "pipe %c: enable_mask=0x%x, status_mask=0x%x\n",
610 pipe_name(pipe), enable_mask, status_mask);
612 return enable_mask;
615 void i915_enable_pipestat(struct drm_i915_private *dev_priv,
616 enum pipe pipe, u32 status_mask)
618 i915_reg_t reg = PIPESTAT(pipe);
619 u32 enable_mask;
621 WARN_ONCE(status_mask & ~PIPESTAT_INT_STATUS_MASK,
622 "pipe %c: status_mask=0x%x\n",
623 pipe_name(pipe), status_mask);
625 lockdep_assert_held(&dev_priv->irq_lock);
626 WARN_ON(!intel_irqs_enabled(dev_priv));
628 if ((dev_priv->pipestat_irq_mask[pipe] & status_mask) == status_mask)
629 return;
631 dev_priv->pipestat_irq_mask[pipe] |= status_mask;
632 enable_mask = i915_pipestat_enable_mask(dev_priv, pipe);
634 I915_WRITE(reg, enable_mask | status_mask);
635 POSTING_READ(reg);
638 void i915_disable_pipestat(struct drm_i915_private *dev_priv,
639 enum pipe pipe, u32 status_mask)
641 i915_reg_t reg = PIPESTAT(pipe);
642 u32 enable_mask;
644 WARN_ONCE(status_mask & ~PIPESTAT_INT_STATUS_MASK,
645 "pipe %c: status_mask=0x%x\n",
646 pipe_name(pipe), status_mask);
648 lockdep_assert_held(&dev_priv->irq_lock);
649 WARN_ON(!intel_irqs_enabled(dev_priv));
651 if ((dev_priv->pipestat_irq_mask[pipe] & status_mask) == 0)
652 return;
654 dev_priv->pipestat_irq_mask[pipe] &= ~status_mask;
655 enable_mask = i915_pipestat_enable_mask(dev_priv, pipe);
657 I915_WRITE(reg, enable_mask | status_mask);
658 POSTING_READ(reg);
662 * i915_enable_asle_pipestat - enable ASLE pipestat for OpRegion
663 * @dev_priv: i915 device private
665 static void i915_enable_asle_pipestat(struct drm_i915_private *dev_priv)
667 if (!dev_priv->opregion.asle || !IS_MOBILE(dev_priv))
668 return;
670 spin_lock_irq(&dev_priv->irq_lock);
672 i915_enable_pipestat(dev_priv, PIPE_B, PIPE_LEGACY_BLC_EVENT_STATUS);
673 if (INTEL_GEN(dev_priv) >= 4)
674 i915_enable_pipestat(dev_priv, PIPE_A,
675 PIPE_LEGACY_BLC_EVENT_STATUS);
677 spin_unlock_irq(&dev_priv->irq_lock);
681 * This timing diagram depicts the video signal in and
682 * around the vertical blanking period.
684 * Assumptions about the fictitious mode used in this example:
685 * vblank_start >= 3
686 * vsync_start = vblank_start + 1
687 * vsync_end = vblank_start + 2
688 * vtotal = vblank_start + 3
690 * start of vblank:
691 * latch double buffered registers
692 * increment frame counter (ctg+)
693 * generate start of vblank interrupt (gen4+)
695 * | frame start:
696 * | generate frame start interrupt (aka. vblank interrupt) (gmch)
697 * | may be shifted forward 1-3 extra lines via PIPECONF
698 * | |
699 * | | start of vsync:
700 * | | generate vsync interrupt
701 * | | |
702 * ___xxxx___ ___xxxx___ ___xxxx___ ___xxxx___ ___xxxx___ ___xxxx
703 * . \hs/ . \hs/ \hs/ \hs/ . \hs/
704 * ----va---> <-----------------vb--------------------> <--------va-------------
705 * | | <----vs-----> |
706 * -vbs-----> <---vbs+1---> <---vbs+2---> <-----0-----> <-----1-----> <-----2--- (scanline counter gen2)
707 * -vbs-2---> <---vbs-1---> <---vbs-----> <---vbs+1---> <---vbs+2---> <-----0--- (scanline counter gen3+)
708 * -vbs-2---> <---vbs-2---> <---vbs-1---> <---vbs-----> <---vbs+1---> <---vbs+2- (scanline counter hsw+ hdmi)
709 * | | |
710 * last visible pixel first visible pixel
711 * | increment frame counter (gen3/4)
712 * pixel counter = vblank_start * htotal pixel counter = 0 (gen3/4)
714 * x = horizontal active
715 * _ = horizontal blanking
716 * hs = horizontal sync
717 * va = vertical active
718 * vb = vertical blanking
719 * vs = vertical sync
720 * vbs = vblank_start (number)
722 * Summary:
723 * - most events happen at the start of horizontal sync
724 * - frame start happens at the start of horizontal blank, 1-4 lines
725 * (depending on PIPECONF settings) after the start of vblank
726 * - gen3/4 pixel and frame counter are synchronized with the start
727 * of horizontal active on the first line of vertical active
730 /* Called from drm generic code, passed a 'crtc', which
731 * we use as a pipe index
733 static u32 i915_get_vblank_counter(struct drm_device *dev, unsigned int pipe)
735 struct drm_i915_private *dev_priv = to_i915(dev);
736 i915_reg_t high_frame, low_frame;
737 u32 high1, high2, low, pixel, vbl_start, hsync_start, htotal;
738 const struct drm_display_mode *mode = &dev->vblank[pipe].hwmode;
739 unsigned long irqflags;
741 htotal = mode->crtc_htotal;
742 hsync_start = mode->crtc_hsync_start;
743 vbl_start = mode->crtc_vblank_start;
744 if (mode->flags & DRM_MODE_FLAG_INTERLACE)
745 vbl_start = DIV_ROUND_UP(vbl_start, 2);
747 /* Convert to pixel count */
748 vbl_start *= htotal;
750 /* Start of vblank event occurs at start of hsync */
751 vbl_start -= htotal - hsync_start;
753 high_frame = PIPEFRAME(pipe);
754 low_frame = PIPEFRAMEPIXEL(pipe);
756 spin_lock_irqsave(&dev_priv->uncore.lock, irqflags);
759 * High & low register fields aren't synchronized, so make sure
760 * we get a low value that's stable across two reads of the high
761 * register.
763 do {
764 high1 = I915_READ_FW(high_frame) & PIPE_FRAME_HIGH_MASK;
765 low = I915_READ_FW(low_frame);
766 high2 = I915_READ_FW(high_frame) & PIPE_FRAME_HIGH_MASK;
767 } while (high1 != high2);
769 spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags);
771 high1 >>= PIPE_FRAME_HIGH_SHIFT;
772 pixel = low & PIPE_PIXEL_MASK;
773 low >>= PIPE_FRAME_LOW_SHIFT;
776 * The frame counter increments at beginning of active.
777 * Cook up a vblank counter by also checking the pixel
778 * counter against vblank start.
780 return (((high1 << 8) | low) + (pixel >= vbl_start)) & 0xffffff;
783 static u32 g4x_get_vblank_counter(struct drm_device *dev, unsigned int pipe)
785 struct drm_i915_private *dev_priv = to_i915(dev);
787 return I915_READ(PIPE_FRMCOUNT_G4X(pipe));
791 * On certain encoders on certain platforms, pipe
792 * scanline register will not work to get the scanline,
793 * since the timings are driven from the PORT or issues
794 * with scanline register updates.
795 * This function will use Framestamp and current
796 * timestamp registers to calculate the scanline.
798 static u32 __intel_get_crtc_scanline_from_timestamp(struct intel_crtc *crtc)
800 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
801 struct drm_vblank_crtc *vblank =
802 &crtc->base.dev->vblank[drm_crtc_index(&crtc->base)];
803 const struct drm_display_mode *mode = &vblank->hwmode;
804 u32 vblank_start = mode->crtc_vblank_start;
805 u32 vtotal = mode->crtc_vtotal;
806 u32 htotal = mode->crtc_htotal;
807 u32 clock = mode->crtc_clock;
808 u32 scanline, scan_prev_time, scan_curr_time, scan_post_time;
811 * To avoid the race condition where we might cross into the
812 * next vblank just between the PIPE_FRMTMSTMP and TIMESTAMP_CTR
813 * reads. We make sure we read PIPE_FRMTMSTMP and TIMESTAMP_CTR
814 * during the same frame.
816 do {
818 * This field provides read back of the display
819 * pipe frame time stamp. The time stamp value
820 * is sampled at every start of vertical blank.
822 scan_prev_time = I915_READ_FW(PIPE_FRMTMSTMP(crtc->pipe));
825 * The TIMESTAMP_CTR register has the current
826 * time stamp value.
828 scan_curr_time = I915_READ_FW(IVB_TIMESTAMP_CTR);
830 scan_post_time = I915_READ_FW(PIPE_FRMTMSTMP(crtc->pipe));
831 } while (scan_post_time != scan_prev_time);
833 scanline = div_u64(mul_u32_u32(scan_curr_time - scan_prev_time,
834 clock), 1000 * htotal);
835 scanline = min(scanline, vtotal - 1);
836 scanline = (scanline + vblank_start) % vtotal;
838 return scanline;
841 /* I915_READ_FW, only for fast reads of display block, no need for forcewake etc. */
842 static int __intel_get_crtc_scanline(struct intel_crtc *crtc)
844 struct drm_device *dev = crtc->base.dev;
845 struct drm_i915_private *dev_priv = to_i915(dev);
846 const struct drm_display_mode *mode;
847 struct drm_vblank_crtc *vblank;
848 enum pipe pipe = crtc->pipe;
849 int position, vtotal;
851 if (!crtc->active)
852 return -1;
854 vblank = &crtc->base.dev->vblank[drm_crtc_index(&crtc->base)];
855 mode = &vblank->hwmode;
857 if (mode->private_flags & I915_MODE_FLAG_GET_SCANLINE_FROM_TIMESTAMP)
858 return __intel_get_crtc_scanline_from_timestamp(crtc);
860 vtotal = mode->crtc_vtotal;
861 if (mode->flags & DRM_MODE_FLAG_INTERLACE)
862 vtotal /= 2;
864 if (IS_GEN2(dev_priv))
865 position = I915_READ_FW(PIPEDSL(pipe)) & DSL_LINEMASK_GEN2;
866 else
867 position = I915_READ_FW(PIPEDSL(pipe)) & DSL_LINEMASK_GEN3;
870 * On HSW, the DSL reg (0x70000) appears to return 0 if we
871 * read it just before the start of vblank. So try it again
872 * so we don't accidentally end up spanning a vblank frame
873 * increment, causing the pipe_update_end() code to squak at us.
875 * The nature of this problem means we can't simply check the ISR
876 * bit and return the vblank start value; nor can we use the scanline
877 * debug register in the transcoder as it appears to have the same
878 * problem. We may need to extend this to include other platforms,
879 * but so far testing only shows the problem on HSW.
881 if (HAS_DDI(dev_priv) && !position) {
882 int i, temp;
884 for (i = 0; i < 100; i++) {
885 udelay(1);
886 temp = I915_READ_FW(PIPEDSL(pipe)) & DSL_LINEMASK_GEN3;
887 if (temp != position) {
888 position = temp;
889 break;
895 * See update_scanline_offset() for the details on the
896 * scanline_offset adjustment.
898 return (position + crtc->scanline_offset) % vtotal;
901 static bool i915_get_crtc_scanoutpos(struct drm_device *dev, unsigned int pipe,
902 bool in_vblank_irq, int *vpos, int *hpos,
903 ktime_t *stime, ktime_t *etime,
904 const struct drm_display_mode *mode)
906 struct drm_i915_private *dev_priv = to_i915(dev);
907 struct intel_crtc *intel_crtc = intel_get_crtc_for_pipe(dev_priv,
908 pipe);
909 int position;
910 int vbl_start, vbl_end, hsync_start, htotal, vtotal;
911 unsigned long irqflags;
913 if (WARN_ON(!mode->crtc_clock)) {
914 DRM_DEBUG_DRIVER("trying to get scanoutpos for disabled "
915 "pipe %c\n", pipe_name(pipe));
916 return false;
919 htotal = mode->crtc_htotal;
920 hsync_start = mode->crtc_hsync_start;
921 vtotal = mode->crtc_vtotal;
922 vbl_start = mode->crtc_vblank_start;
923 vbl_end = mode->crtc_vblank_end;
925 if (mode->flags & DRM_MODE_FLAG_INTERLACE) {
926 vbl_start = DIV_ROUND_UP(vbl_start, 2);
927 vbl_end /= 2;
928 vtotal /= 2;
932 * Lock uncore.lock, as we will do multiple timing critical raw
933 * register reads, potentially with preemption disabled, so the
934 * following code must not block on uncore.lock.
936 spin_lock_irqsave(&dev_priv->uncore.lock, irqflags);
938 /* preempt_disable_rt() should go right here in PREEMPT_RT patchset. */
940 /* Get optional system timestamp before query. */
941 if (stime)
942 *stime = ktime_get();
944 if (IS_GEN2(dev_priv) || IS_G4X(dev_priv) || INTEL_GEN(dev_priv) >= 5) {
945 /* No obvious pixelcount register. Only query vertical
946 * scanout position from Display scan line register.
948 position = __intel_get_crtc_scanline(intel_crtc);
949 } else {
950 /* Have access to pixelcount since start of frame.
951 * We can split this into vertical and horizontal
952 * scanout position.
954 position = (I915_READ_FW(PIPEFRAMEPIXEL(pipe)) & PIPE_PIXEL_MASK) >> PIPE_PIXEL_SHIFT;
956 /* convert to pixel counts */
957 vbl_start *= htotal;
958 vbl_end *= htotal;
959 vtotal *= htotal;
962 * In interlaced modes, the pixel counter counts all pixels,
963 * so one field will have htotal more pixels. In order to avoid
964 * the reported position from jumping backwards when the pixel
965 * counter is beyond the length of the shorter field, just
966 * clamp the position the length of the shorter field. This
967 * matches how the scanline counter based position works since
968 * the scanline counter doesn't count the two half lines.
970 if (position >= vtotal)
971 position = vtotal - 1;
974 * Start of vblank interrupt is triggered at start of hsync,
975 * just prior to the first active line of vblank. However we
976 * consider lines to start at the leading edge of horizontal
977 * active. So, should we get here before we've crossed into
978 * the horizontal active of the first line in vblank, we would
979 * not set the DRM_SCANOUTPOS_INVBL flag. In order to fix that,
980 * always add htotal-hsync_start to the current pixel position.
982 position = (position + htotal - hsync_start) % vtotal;
985 /* Get optional system timestamp after query. */
986 if (etime)
987 *etime = ktime_get();
989 /* preempt_enable_rt() should go right here in PREEMPT_RT patchset. */
991 spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags);
994 * While in vblank, position will be negative
995 * counting up towards 0 at vbl_end. And outside
996 * vblank, position will be positive counting
997 * up since vbl_end.
999 if (position >= vbl_start)
1000 position -= vbl_end;
1001 else
1002 position += vtotal - vbl_end;
1004 if (IS_GEN2(dev_priv) || IS_G4X(dev_priv) || INTEL_GEN(dev_priv) >= 5) {
1005 *vpos = position;
1006 *hpos = 0;
1007 } else {
1008 *vpos = position / htotal;
1009 *hpos = position - (*vpos * htotal);
1012 return true;
1015 int intel_get_crtc_scanline(struct intel_crtc *crtc)
1017 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1018 unsigned long irqflags;
1019 int position;
1021 spin_lock_irqsave(&dev_priv->uncore.lock, irqflags);
1022 position = __intel_get_crtc_scanline(crtc);
1023 spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags);
1025 return position;
1028 static void ironlake_rps_change_irq_handler(struct drm_i915_private *dev_priv)
1030 u32 busy_up, busy_down, max_avg, min_avg;
1031 u8 new_delay;
1033 spin_lock(&mchdev_lock);
1035 I915_WRITE16(MEMINTRSTS, I915_READ(MEMINTRSTS));
1037 new_delay = dev_priv->ips.cur_delay;
1039 I915_WRITE16(MEMINTRSTS, MEMINT_EVAL_CHG);
1040 busy_up = I915_READ(RCPREVBSYTUPAVG);
1041 busy_down = I915_READ(RCPREVBSYTDNAVG);
1042 max_avg = I915_READ(RCBMAXAVG);
1043 min_avg = I915_READ(RCBMINAVG);
1045 /* Handle RCS change request from hw */
1046 if (busy_up > max_avg) {
1047 if (dev_priv->ips.cur_delay != dev_priv->ips.max_delay)
1048 new_delay = dev_priv->ips.cur_delay - 1;
1049 if (new_delay < dev_priv->ips.max_delay)
1050 new_delay = dev_priv->ips.max_delay;
1051 } else if (busy_down < min_avg) {
1052 if (dev_priv->ips.cur_delay != dev_priv->ips.min_delay)
1053 new_delay = dev_priv->ips.cur_delay + 1;
1054 if (new_delay > dev_priv->ips.min_delay)
1055 new_delay = dev_priv->ips.min_delay;
1058 if (ironlake_set_drps(dev_priv, new_delay))
1059 dev_priv->ips.cur_delay = new_delay;
1061 spin_unlock(&mchdev_lock);
1063 return;
1066 static void notify_ring(struct intel_engine_cs *engine)
1068 struct drm_i915_gem_request *rq = NULL;
1069 struct intel_wait *wait;
1071 if (!engine->breadcrumbs.irq_armed)
1072 return;
1074 atomic_inc(&engine->irq_count);
1075 set_bit(ENGINE_IRQ_BREADCRUMB, &engine->irq_posted);
1077 spin_lock(&engine->breadcrumbs.irq_lock);
1078 wait = engine->breadcrumbs.irq_wait;
1079 if (wait) {
1080 bool wakeup = engine->irq_seqno_barrier;
1082 /* We use a callback from the dma-fence to submit
1083 * requests after waiting on our own requests. To
1084 * ensure minimum delay in queuing the next request to
1085 * hardware, signal the fence now rather than wait for
1086 * the signaler to be woken up. We still wake up the
1087 * waiter in order to handle the irq-seqno coherency
1088 * issues (we may receive the interrupt before the
1089 * seqno is written, see __i915_request_irq_complete())
1090 * and to handle coalescing of multiple seqno updates
1091 * and many waiters.
1093 if (i915_seqno_passed(intel_engine_get_seqno(engine),
1094 wait->seqno)) {
1095 struct drm_i915_gem_request *waiter = wait->request;
1097 wakeup = true;
1098 if (!test_bit(DMA_FENCE_FLAG_SIGNALED_BIT,
1099 &waiter->fence.flags) &&
1100 intel_wait_check_request(wait, waiter))
1101 rq = i915_gem_request_get(waiter);
1104 if (wakeup)
1105 wake_up_process(wait->tsk);
1106 } else {
1107 if (engine->breadcrumbs.irq_armed)
1108 __intel_engine_disarm_breadcrumbs(engine);
1110 spin_unlock(&engine->breadcrumbs.irq_lock);
1112 if (rq) {
1113 dma_fence_signal(&rq->fence);
1114 i915_gem_request_put(rq);
1117 trace_intel_engine_notify(engine, wait);
1120 static void vlv_c0_read(struct drm_i915_private *dev_priv,
1121 struct intel_rps_ei *ei)
1123 ei->ktime = ktime_get_raw();
1124 ei->render_c0 = I915_READ(VLV_RENDER_C0_COUNT);
1125 ei->media_c0 = I915_READ(VLV_MEDIA_C0_COUNT);
1128 void gen6_rps_reset_ei(struct drm_i915_private *dev_priv)
1130 memset(&dev_priv->gt_pm.rps.ei, 0, sizeof(dev_priv->gt_pm.rps.ei));
1133 static u32 vlv_wa_c0_ei(struct drm_i915_private *dev_priv, u32 pm_iir)
1135 struct intel_rps *rps = &dev_priv->gt_pm.rps;
1136 const struct intel_rps_ei *prev = &rps->ei;
1137 struct intel_rps_ei now;
1138 u32 events = 0;
1140 if ((pm_iir & GEN6_PM_RP_UP_EI_EXPIRED) == 0)
1141 return 0;
1143 vlv_c0_read(dev_priv, &now);
1145 if (prev->ktime) {
1146 u64 time, c0;
1147 u32 render, media;
1149 time = ktime_us_delta(now.ktime, prev->ktime);
1151 time *= dev_priv->czclk_freq;
1153 /* Workload can be split between render + media,
1154 * e.g. SwapBuffers being blitted in X after being rendered in
1155 * mesa. To account for this we need to combine both engines
1156 * into our activity counter.
1158 render = now.render_c0 - prev->render_c0;
1159 media = now.media_c0 - prev->media_c0;
1160 c0 = max(render, media);
1161 c0 *= 1000 * 100 << 8; /* to usecs and scale to threshold% */
1163 if (c0 > time * rps->up_threshold)
1164 events = GEN6_PM_RP_UP_THRESHOLD;
1165 else if (c0 < time * rps->down_threshold)
1166 events = GEN6_PM_RP_DOWN_THRESHOLD;
1169 rps->ei = now;
1170 return events;
1173 static void gen6_pm_rps_work(struct work_struct *work)
1175 struct drm_i915_private *dev_priv =
1176 container_of(work, struct drm_i915_private, gt_pm.rps.work);
1177 struct intel_rps *rps = &dev_priv->gt_pm.rps;
1178 bool client_boost = false;
1179 int new_delay, adj, min, max;
1180 u32 pm_iir = 0;
1182 spin_lock_irq(&dev_priv->irq_lock);
1183 if (rps->interrupts_enabled) {
1184 pm_iir = fetch_and_zero(&rps->pm_iir);
1185 client_boost = atomic_read(&rps->num_waiters);
1187 spin_unlock_irq(&dev_priv->irq_lock);
1189 /* Make sure we didn't queue anything we're not going to process. */
1190 WARN_ON(pm_iir & ~dev_priv->pm_rps_events);
1191 if ((pm_iir & dev_priv->pm_rps_events) == 0 && !client_boost)
1192 goto out;
1194 mutex_lock(&dev_priv->pcu_lock);
1196 pm_iir |= vlv_wa_c0_ei(dev_priv, pm_iir);
1198 adj = rps->last_adj;
1199 new_delay = rps->cur_freq;
1200 min = rps->min_freq_softlimit;
1201 max = rps->max_freq_softlimit;
1202 if (client_boost)
1203 max = rps->max_freq;
1204 if (client_boost && new_delay < rps->boost_freq) {
1205 new_delay = rps->boost_freq;
1206 adj = 0;
1207 } else if (pm_iir & GEN6_PM_RP_UP_THRESHOLD) {
1208 if (adj > 0)
1209 adj *= 2;
1210 else /* CHV needs even encode values */
1211 adj = IS_CHERRYVIEW(dev_priv) ? 2 : 1;
1213 if (new_delay >= rps->max_freq_softlimit)
1214 adj = 0;
1215 } else if (client_boost) {
1216 adj = 0;
1217 } else if (pm_iir & GEN6_PM_RP_DOWN_TIMEOUT) {
1218 if (rps->cur_freq > rps->efficient_freq)
1219 new_delay = rps->efficient_freq;
1220 else if (rps->cur_freq > rps->min_freq_softlimit)
1221 new_delay = rps->min_freq_softlimit;
1222 adj = 0;
1223 } else if (pm_iir & GEN6_PM_RP_DOWN_THRESHOLD) {
1224 if (adj < 0)
1225 adj *= 2;
1226 else /* CHV needs even encode values */
1227 adj = IS_CHERRYVIEW(dev_priv) ? -2 : -1;
1229 if (new_delay <= rps->min_freq_softlimit)
1230 adj = 0;
1231 } else { /* unknown event */
1232 adj = 0;
1235 rps->last_adj = adj;
1237 /* sysfs frequency interfaces may have snuck in while servicing the
1238 * interrupt
1240 new_delay += adj;
1241 new_delay = clamp_t(int, new_delay, min, max);
1243 if (intel_set_rps(dev_priv, new_delay)) {
1244 DRM_DEBUG_DRIVER("Failed to set new GPU frequency\n");
1245 rps->last_adj = 0;
1248 mutex_unlock(&dev_priv->pcu_lock);
1250 out:
1251 /* Make sure not to corrupt PMIMR state used by ringbuffer on GEN6 */
1252 spin_lock_irq(&dev_priv->irq_lock);
1253 if (rps->interrupts_enabled)
1254 gen6_unmask_pm_irq(dev_priv, dev_priv->pm_rps_events);
1255 spin_unlock_irq(&dev_priv->irq_lock);
1260 * ivybridge_parity_work - Workqueue called when a parity error interrupt
1261 * occurred.
1262 * @work: workqueue struct
1264 * Doesn't actually do anything except notify userspace. As a consequence of
1265 * this event, userspace should try to remap the bad rows since statistically
1266 * it is likely the same row is more likely to go bad again.
1268 static void ivybridge_parity_work(struct work_struct *work)
1270 struct drm_i915_private *dev_priv =
1271 container_of(work, typeof(*dev_priv), l3_parity.error_work);
1272 u32 error_status, row, bank, subbank;
1273 char *parity_event[6];
1274 uint32_t misccpctl;
1275 uint8_t slice = 0;
1277 /* We must turn off DOP level clock gating to access the L3 registers.
1278 * In order to prevent a get/put style interface, acquire struct mutex
1279 * any time we access those registers.
1281 mutex_lock(&dev_priv->drm.struct_mutex);
1283 /* If we've screwed up tracking, just let the interrupt fire again */
1284 if (WARN_ON(!dev_priv->l3_parity.which_slice))
1285 goto out;
1287 misccpctl = I915_READ(GEN7_MISCCPCTL);
1288 I915_WRITE(GEN7_MISCCPCTL, misccpctl & ~GEN7_DOP_CLOCK_GATE_ENABLE);
1289 POSTING_READ(GEN7_MISCCPCTL);
1291 while ((slice = ffs(dev_priv->l3_parity.which_slice)) != 0) {
1292 i915_reg_t reg;
1294 slice--;
1295 if (WARN_ON_ONCE(slice >= NUM_L3_SLICES(dev_priv)))
1296 break;
1298 dev_priv->l3_parity.which_slice &= ~(1<<slice);
1300 reg = GEN7_L3CDERRST1(slice);
1302 error_status = I915_READ(reg);
1303 row = GEN7_PARITY_ERROR_ROW(error_status);
1304 bank = GEN7_PARITY_ERROR_BANK(error_status);
1305 subbank = GEN7_PARITY_ERROR_SUBBANK(error_status);
1307 I915_WRITE(reg, GEN7_PARITY_ERROR_VALID | GEN7_L3CDERRST1_ENABLE);
1308 POSTING_READ(reg);
1310 parity_event[0] = I915_L3_PARITY_UEVENT "=1";
1311 parity_event[1] = kasprintf(GFP_KERNEL, "ROW=%d", row);
1312 parity_event[2] = kasprintf(GFP_KERNEL, "BANK=%d", bank);
1313 parity_event[3] = kasprintf(GFP_KERNEL, "SUBBANK=%d", subbank);
1314 parity_event[4] = kasprintf(GFP_KERNEL, "SLICE=%d", slice);
1315 parity_event[5] = NULL;
1317 kobject_uevent_env(&dev_priv->drm.primary->kdev->kobj,
1318 KOBJ_CHANGE, parity_event);
1320 DRM_DEBUG("Parity error: Slice = %d, Row = %d, Bank = %d, Sub bank = %d.\n",
1321 slice, row, bank, subbank);
1323 kfree(parity_event[4]);
1324 kfree(parity_event[3]);
1325 kfree(parity_event[2]);
1326 kfree(parity_event[1]);
1329 I915_WRITE(GEN7_MISCCPCTL, misccpctl);
1331 out:
1332 WARN_ON(dev_priv->l3_parity.which_slice);
1333 spin_lock_irq(&dev_priv->irq_lock);
1334 gen5_enable_gt_irq(dev_priv, GT_PARITY_ERROR(dev_priv));
1335 spin_unlock_irq(&dev_priv->irq_lock);
1337 mutex_unlock(&dev_priv->drm.struct_mutex);
1340 static void ivybridge_parity_error_irq_handler(struct drm_i915_private *dev_priv,
1341 u32 iir)
1343 if (!HAS_L3_DPF(dev_priv))
1344 return;
1346 spin_lock(&dev_priv->irq_lock);
1347 gen5_disable_gt_irq(dev_priv, GT_PARITY_ERROR(dev_priv));
1348 spin_unlock(&dev_priv->irq_lock);
1350 iir &= GT_PARITY_ERROR(dev_priv);
1351 if (iir & GT_RENDER_L3_PARITY_ERROR_INTERRUPT_S1)
1352 dev_priv->l3_parity.which_slice |= 1 << 1;
1354 if (iir & GT_RENDER_L3_PARITY_ERROR_INTERRUPT)
1355 dev_priv->l3_parity.which_slice |= 1 << 0;
1357 queue_work(dev_priv->wq, &dev_priv->l3_parity.error_work);
1360 static void ilk_gt_irq_handler(struct drm_i915_private *dev_priv,
1361 u32 gt_iir)
1363 if (gt_iir & GT_RENDER_USER_INTERRUPT)
1364 notify_ring(dev_priv->engine[RCS]);
1365 if (gt_iir & ILK_BSD_USER_INTERRUPT)
1366 notify_ring(dev_priv->engine[VCS]);
1369 static void snb_gt_irq_handler(struct drm_i915_private *dev_priv,
1370 u32 gt_iir)
1372 if (gt_iir & GT_RENDER_USER_INTERRUPT)
1373 notify_ring(dev_priv->engine[RCS]);
1374 if (gt_iir & GT_BSD_USER_INTERRUPT)
1375 notify_ring(dev_priv->engine[VCS]);
1376 if (gt_iir & GT_BLT_USER_INTERRUPT)
1377 notify_ring(dev_priv->engine[BCS]);
1379 if (gt_iir & (GT_BLT_CS_ERROR_INTERRUPT |
1380 GT_BSD_CS_ERROR_INTERRUPT |
1381 GT_RENDER_CS_MASTER_ERROR_INTERRUPT))
1382 DRM_DEBUG("Command parser error, gt_iir 0x%08x\n", gt_iir);
1384 if (gt_iir & GT_PARITY_ERROR(dev_priv))
1385 ivybridge_parity_error_irq_handler(dev_priv, gt_iir);
1388 static void
1389 gen8_cs_irq_handler(struct intel_engine_cs *engine, u32 iir, int test_shift)
1391 struct intel_engine_execlists * const execlists = &engine->execlists;
1392 bool tasklet = false;
1394 if (iir & (GT_CONTEXT_SWITCH_INTERRUPT << test_shift)) {
1395 if (READ_ONCE(engine->execlists.active)) {
1396 __set_bit(ENGINE_IRQ_EXECLIST, &engine->irq_posted);
1397 tasklet = true;
1401 if (iir & (GT_RENDER_USER_INTERRUPT << test_shift)) {
1402 notify_ring(engine);
1403 tasklet |= USES_GUC_SUBMISSION(engine->i915);
1406 if (tasklet)
1407 tasklet_hi_schedule(&execlists->tasklet);
1410 static irqreturn_t gen8_gt_irq_ack(struct drm_i915_private *dev_priv,
1411 u32 master_ctl,
1412 u32 gt_iir[4])
1414 irqreturn_t ret = IRQ_NONE;
1416 if (master_ctl & (GEN8_GT_RCS_IRQ | GEN8_GT_BCS_IRQ)) {
1417 gt_iir[0] = I915_READ_FW(GEN8_GT_IIR(0));
1418 if (gt_iir[0]) {
1419 I915_WRITE_FW(GEN8_GT_IIR(0), gt_iir[0]);
1420 ret = IRQ_HANDLED;
1421 } else
1422 DRM_ERROR("The master control interrupt lied (GT0)!\n");
1425 if (master_ctl & (GEN8_GT_VCS1_IRQ | GEN8_GT_VCS2_IRQ)) {
1426 gt_iir[1] = I915_READ_FW(GEN8_GT_IIR(1));
1427 if (gt_iir[1]) {
1428 I915_WRITE_FW(GEN8_GT_IIR(1), gt_iir[1]);
1429 ret = IRQ_HANDLED;
1430 } else
1431 DRM_ERROR("The master control interrupt lied (GT1)!\n");
1434 if (master_ctl & GEN8_GT_VECS_IRQ) {
1435 gt_iir[3] = I915_READ_FW(GEN8_GT_IIR(3));
1436 if (gt_iir[3]) {
1437 I915_WRITE_FW(GEN8_GT_IIR(3), gt_iir[3]);
1438 ret = IRQ_HANDLED;
1439 } else
1440 DRM_ERROR("The master control interrupt lied (GT3)!\n");
1443 if (master_ctl & (GEN8_GT_PM_IRQ | GEN8_GT_GUC_IRQ)) {
1444 gt_iir[2] = I915_READ_FW(GEN8_GT_IIR(2));
1445 if (gt_iir[2] & (dev_priv->pm_rps_events |
1446 dev_priv->pm_guc_events)) {
1447 I915_WRITE_FW(GEN8_GT_IIR(2),
1448 gt_iir[2] & (dev_priv->pm_rps_events |
1449 dev_priv->pm_guc_events));
1450 ret = IRQ_HANDLED;
1451 } else
1452 DRM_ERROR("The master control interrupt lied (PM)!\n");
1455 return ret;
1458 static void gen8_gt_irq_handler(struct drm_i915_private *dev_priv,
1459 u32 gt_iir[4])
1461 if (gt_iir[0]) {
1462 gen8_cs_irq_handler(dev_priv->engine[RCS],
1463 gt_iir[0], GEN8_RCS_IRQ_SHIFT);
1464 gen8_cs_irq_handler(dev_priv->engine[BCS],
1465 gt_iir[0], GEN8_BCS_IRQ_SHIFT);
1468 if (gt_iir[1]) {
1469 gen8_cs_irq_handler(dev_priv->engine[VCS],
1470 gt_iir[1], GEN8_VCS1_IRQ_SHIFT);
1471 gen8_cs_irq_handler(dev_priv->engine[VCS2],
1472 gt_iir[1], GEN8_VCS2_IRQ_SHIFT);
1475 if (gt_iir[3])
1476 gen8_cs_irq_handler(dev_priv->engine[VECS],
1477 gt_iir[3], GEN8_VECS_IRQ_SHIFT);
1479 if (gt_iir[2] & dev_priv->pm_rps_events)
1480 gen6_rps_irq_handler(dev_priv, gt_iir[2]);
1482 if (gt_iir[2] & dev_priv->pm_guc_events)
1483 gen9_guc_irq_handler(dev_priv, gt_iir[2]);
1486 static bool bxt_port_hotplug_long_detect(enum port port, u32 val)
1488 switch (port) {
1489 case PORT_A:
1490 return val & PORTA_HOTPLUG_LONG_DETECT;
1491 case PORT_B:
1492 return val & PORTB_HOTPLUG_LONG_DETECT;
1493 case PORT_C:
1494 return val & PORTC_HOTPLUG_LONG_DETECT;
1495 default:
1496 return false;
1500 static bool spt_port_hotplug2_long_detect(enum port port, u32 val)
1502 switch (port) {
1503 case PORT_E:
1504 return val & PORTE_HOTPLUG_LONG_DETECT;
1505 default:
1506 return false;
1510 static bool spt_port_hotplug_long_detect(enum port port, u32 val)
1512 switch (port) {
1513 case PORT_A:
1514 return val & PORTA_HOTPLUG_LONG_DETECT;
1515 case PORT_B:
1516 return val & PORTB_HOTPLUG_LONG_DETECT;
1517 case PORT_C:
1518 return val & PORTC_HOTPLUG_LONG_DETECT;
1519 case PORT_D:
1520 return val & PORTD_HOTPLUG_LONG_DETECT;
1521 default:
1522 return false;
1526 static bool ilk_port_hotplug_long_detect(enum port port, u32 val)
1528 switch (port) {
1529 case PORT_A:
1530 return val & DIGITAL_PORTA_HOTPLUG_LONG_DETECT;
1531 default:
1532 return false;
1536 static bool pch_port_hotplug_long_detect(enum port port, u32 val)
1538 switch (port) {
1539 case PORT_B:
1540 return val & PORTB_HOTPLUG_LONG_DETECT;
1541 case PORT_C:
1542 return val & PORTC_HOTPLUG_LONG_DETECT;
1543 case PORT_D:
1544 return val & PORTD_HOTPLUG_LONG_DETECT;
1545 default:
1546 return false;
1550 static bool i9xx_port_hotplug_long_detect(enum port port, u32 val)
1552 switch (port) {
1553 case PORT_B:
1554 return val & PORTB_HOTPLUG_INT_LONG_PULSE;
1555 case PORT_C:
1556 return val & PORTC_HOTPLUG_INT_LONG_PULSE;
1557 case PORT_D:
1558 return val & PORTD_HOTPLUG_INT_LONG_PULSE;
1559 default:
1560 return false;
1565 * Get a bit mask of pins that have triggered, and which ones may be long.
1566 * This can be called multiple times with the same masks to accumulate
1567 * hotplug detection results from several registers.
1569 * Note that the caller is expected to zero out the masks initially.
1571 static void intel_get_hpd_pins(u32 *pin_mask, u32 *long_mask,
1572 u32 hotplug_trigger, u32 dig_hotplug_reg,
1573 const u32 hpd[HPD_NUM_PINS],
1574 bool long_pulse_detect(enum port port, u32 val))
1576 enum port port;
1577 int i;
1579 for_each_hpd_pin(i) {
1580 if ((hpd[i] & hotplug_trigger) == 0)
1581 continue;
1583 *pin_mask |= BIT(i);
1585 port = intel_hpd_pin_to_port(i);
1586 if (port == PORT_NONE)
1587 continue;
1589 if (long_pulse_detect(port, dig_hotplug_reg))
1590 *long_mask |= BIT(i);
1593 DRM_DEBUG_DRIVER("hotplug event received, stat 0x%08x, dig 0x%08x, pins 0x%08x\n",
1594 hotplug_trigger, dig_hotplug_reg, *pin_mask);
1598 static void gmbus_irq_handler(struct drm_i915_private *dev_priv)
1600 wake_up_all(&dev_priv->gmbus_wait_queue);
1603 static void dp_aux_irq_handler(struct drm_i915_private *dev_priv)
1605 wake_up_all(&dev_priv->gmbus_wait_queue);
1608 #if defined(CONFIG_DEBUG_FS)
1609 static void display_pipe_crc_irq_handler(struct drm_i915_private *dev_priv,
1610 enum pipe pipe,
1611 uint32_t crc0, uint32_t crc1,
1612 uint32_t crc2, uint32_t crc3,
1613 uint32_t crc4)
1615 struct intel_pipe_crc *pipe_crc = &dev_priv->pipe_crc[pipe];
1616 struct intel_pipe_crc_entry *entry;
1617 struct intel_crtc *crtc = intel_get_crtc_for_pipe(dev_priv, pipe);
1618 struct drm_driver *driver = dev_priv->drm.driver;
1619 uint32_t crcs[5];
1620 int head, tail;
1622 spin_lock(&pipe_crc->lock);
1623 if (pipe_crc->source) {
1624 if (!pipe_crc->entries) {
1625 spin_unlock(&pipe_crc->lock);
1626 DRM_DEBUG_KMS("spurious interrupt\n");
1627 return;
1630 head = pipe_crc->head;
1631 tail = pipe_crc->tail;
1633 if (CIRC_SPACE(head, tail, INTEL_PIPE_CRC_ENTRIES_NR) < 1) {
1634 spin_unlock(&pipe_crc->lock);
1635 DRM_ERROR("CRC buffer overflowing\n");
1636 return;
1639 entry = &pipe_crc->entries[head];
1641 entry->frame = driver->get_vblank_counter(&dev_priv->drm, pipe);
1642 entry->crc[0] = crc0;
1643 entry->crc[1] = crc1;
1644 entry->crc[2] = crc2;
1645 entry->crc[3] = crc3;
1646 entry->crc[4] = crc4;
1648 head = (head + 1) & (INTEL_PIPE_CRC_ENTRIES_NR - 1);
1649 pipe_crc->head = head;
1651 spin_unlock(&pipe_crc->lock);
1653 wake_up_interruptible(&pipe_crc->wq);
1654 } else {
1656 * For some not yet identified reason, the first CRC is
1657 * bonkers. So let's just wait for the next vblank and read
1658 * out the buggy result.
1660 * On GEN8+ sometimes the second CRC is bonkers as well, so
1661 * don't trust that one either.
1663 if (pipe_crc->skipped == 0 ||
1664 (INTEL_GEN(dev_priv) >= 8 && pipe_crc->skipped == 1)) {
1665 pipe_crc->skipped++;
1666 spin_unlock(&pipe_crc->lock);
1667 return;
1669 spin_unlock(&pipe_crc->lock);
1670 crcs[0] = crc0;
1671 crcs[1] = crc1;
1672 crcs[2] = crc2;
1673 crcs[3] = crc3;
1674 crcs[4] = crc4;
1675 drm_crtc_add_crc_entry(&crtc->base, true,
1676 drm_crtc_accurate_vblank_count(&crtc->base),
1677 crcs);
1680 #else
1681 static inline void
1682 display_pipe_crc_irq_handler(struct drm_i915_private *dev_priv,
1683 enum pipe pipe,
1684 uint32_t crc0, uint32_t crc1,
1685 uint32_t crc2, uint32_t crc3,
1686 uint32_t crc4) {}
1687 #endif
1690 static void hsw_pipe_crc_irq_handler(struct drm_i915_private *dev_priv,
1691 enum pipe pipe)
1693 display_pipe_crc_irq_handler(dev_priv, pipe,
1694 I915_READ(PIPE_CRC_RES_1_IVB(pipe)),
1695 0, 0, 0, 0);
1698 static void ivb_pipe_crc_irq_handler(struct drm_i915_private *dev_priv,
1699 enum pipe pipe)
1701 display_pipe_crc_irq_handler(dev_priv, pipe,
1702 I915_READ(PIPE_CRC_RES_1_IVB(pipe)),
1703 I915_READ(PIPE_CRC_RES_2_IVB(pipe)),
1704 I915_READ(PIPE_CRC_RES_3_IVB(pipe)),
1705 I915_READ(PIPE_CRC_RES_4_IVB(pipe)),
1706 I915_READ(PIPE_CRC_RES_5_IVB(pipe)));
1709 static void i9xx_pipe_crc_irq_handler(struct drm_i915_private *dev_priv,
1710 enum pipe pipe)
1712 uint32_t res1, res2;
1714 if (INTEL_GEN(dev_priv) >= 3)
1715 res1 = I915_READ(PIPE_CRC_RES_RES1_I915(pipe));
1716 else
1717 res1 = 0;
1719 if (INTEL_GEN(dev_priv) >= 5 || IS_G4X(dev_priv))
1720 res2 = I915_READ(PIPE_CRC_RES_RES2_G4X(pipe));
1721 else
1722 res2 = 0;
1724 display_pipe_crc_irq_handler(dev_priv, pipe,
1725 I915_READ(PIPE_CRC_RES_RED(pipe)),
1726 I915_READ(PIPE_CRC_RES_GREEN(pipe)),
1727 I915_READ(PIPE_CRC_RES_BLUE(pipe)),
1728 res1, res2);
1731 /* The RPS events need forcewake, so we add them to a work queue and mask their
1732 * IMR bits until the work is done. Other interrupts can be processed without
1733 * the work queue. */
1734 static void gen6_rps_irq_handler(struct drm_i915_private *dev_priv, u32 pm_iir)
1736 struct intel_rps *rps = &dev_priv->gt_pm.rps;
1738 if (pm_iir & dev_priv->pm_rps_events) {
1739 spin_lock(&dev_priv->irq_lock);
1740 gen6_mask_pm_irq(dev_priv, pm_iir & dev_priv->pm_rps_events);
1741 if (rps->interrupts_enabled) {
1742 rps->pm_iir |= pm_iir & dev_priv->pm_rps_events;
1743 schedule_work(&rps->work);
1745 spin_unlock(&dev_priv->irq_lock);
1748 if (INTEL_GEN(dev_priv) >= 8)
1749 return;
1751 if (HAS_VEBOX(dev_priv)) {
1752 if (pm_iir & PM_VEBOX_USER_INTERRUPT)
1753 notify_ring(dev_priv->engine[VECS]);
1755 if (pm_iir & PM_VEBOX_CS_ERROR_INTERRUPT)
1756 DRM_DEBUG("Command parser error, pm_iir 0x%08x\n", pm_iir);
1760 static void gen9_guc_irq_handler(struct drm_i915_private *dev_priv, u32 gt_iir)
1762 if (gt_iir & GEN9_GUC_TO_HOST_INT_EVENT) {
1763 /* Sample the log buffer flush related bits & clear them out now
1764 * itself from the message identity register to minimize the
1765 * probability of losing a flush interrupt, when there are back
1766 * to back flush interrupts.
1767 * There can be a new flush interrupt, for different log buffer
1768 * type (like for ISR), whilst Host is handling one (for DPC).
1769 * Since same bit is used in message register for ISR & DPC, it
1770 * could happen that GuC sets the bit for 2nd interrupt but Host
1771 * clears out the bit on handling the 1st interrupt.
1773 u32 msg, flush;
1775 msg = I915_READ(SOFT_SCRATCH(15));
1776 flush = msg & (INTEL_GUC_RECV_MSG_CRASH_DUMP_POSTED |
1777 INTEL_GUC_RECV_MSG_FLUSH_LOG_BUFFER);
1778 if (flush) {
1779 /* Clear the message bits that are handled */
1780 I915_WRITE(SOFT_SCRATCH(15), msg & ~flush);
1782 /* Handle flush interrupt in bottom half */
1783 queue_work(dev_priv->guc.log.runtime.flush_wq,
1784 &dev_priv->guc.log.runtime.flush_work);
1786 dev_priv->guc.log.flush_interrupt_count++;
1787 } else {
1788 /* Not clearing of unhandled event bits won't result in
1789 * re-triggering of the interrupt.
1795 static void i9xx_pipestat_irq_reset(struct drm_i915_private *dev_priv)
1797 enum pipe pipe;
1799 for_each_pipe(dev_priv, pipe) {
1800 I915_WRITE(PIPESTAT(pipe),
1801 PIPESTAT_INT_STATUS_MASK |
1802 PIPE_FIFO_UNDERRUN_STATUS);
1804 dev_priv->pipestat_irq_mask[pipe] = 0;
1808 static void i9xx_pipestat_irq_ack(struct drm_i915_private *dev_priv,
1809 u32 iir, u32 pipe_stats[I915_MAX_PIPES])
1811 int pipe;
1813 spin_lock(&dev_priv->irq_lock);
1815 if (!dev_priv->display_irqs_enabled) {
1816 spin_unlock(&dev_priv->irq_lock);
1817 return;
1820 for_each_pipe(dev_priv, pipe) {
1821 i915_reg_t reg;
1822 u32 status_mask, enable_mask, iir_bit = 0;
1825 * PIPESTAT bits get signalled even when the interrupt is
1826 * disabled with the mask bits, and some of the status bits do
1827 * not generate interrupts at all (like the underrun bit). Hence
1828 * we need to be careful that we only handle what we want to
1829 * handle.
1832 /* fifo underruns are filterered in the underrun handler. */
1833 status_mask = PIPE_FIFO_UNDERRUN_STATUS;
1835 switch (pipe) {
1836 case PIPE_A:
1837 iir_bit = I915_DISPLAY_PIPE_A_EVENT_INTERRUPT;
1838 break;
1839 case PIPE_B:
1840 iir_bit = I915_DISPLAY_PIPE_B_EVENT_INTERRUPT;
1841 break;
1842 case PIPE_C:
1843 iir_bit = I915_DISPLAY_PIPE_C_EVENT_INTERRUPT;
1844 break;
1846 if (iir & iir_bit)
1847 status_mask |= dev_priv->pipestat_irq_mask[pipe];
1849 if (!status_mask)
1850 continue;
1852 reg = PIPESTAT(pipe);
1853 pipe_stats[pipe] = I915_READ(reg) & status_mask;
1854 enable_mask = i915_pipestat_enable_mask(dev_priv, pipe);
1857 * Clear the PIPE*STAT regs before the IIR
1859 if (pipe_stats[pipe])
1860 I915_WRITE(reg, enable_mask | pipe_stats[pipe]);
1862 spin_unlock(&dev_priv->irq_lock);
1865 static void i8xx_pipestat_irq_handler(struct drm_i915_private *dev_priv,
1866 u16 iir, u32 pipe_stats[I915_MAX_PIPES])
1868 enum pipe pipe;
1870 for_each_pipe(dev_priv, pipe) {
1871 if (pipe_stats[pipe] & PIPE_VBLANK_INTERRUPT_STATUS)
1872 drm_handle_vblank(&dev_priv->drm, pipe);
1874 if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
1875 i9xx_pipe_crc_irq_handler(dev_priv, pipe);
1877 if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS)
1878 intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
1882 static void i915_pipestat_irq_handler(struct drm_i915_private *dev_priv,
1883 u32 iir, u32 pipe_stats[I915_MAX_PIPES])
1885 bool blc_event = false;
1886 enum pipe pipe;
1888 for_each_pipe(dev_priv, pipe) {
1889 if (pipe_stats[pipe] & PIPE_VBLANK_INTERRUPT_STATUS)
1890 drm_handle_vblank(&dev_priv->drm, pipe);
1892 if (pipe_stats[pipe] & PIPE_LEGACY_BLC_EVENT_STATUS)
1893 blc_event = true;
1895 if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
1896 i9xx_pipe_crc_irq_handler(dev_priv, pipe);
1898 if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS)
1899 intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
1902 if (blc_event || (iir & I915_ASLE_INTERRUPT))
1903 intel_opregion_asle_intr(dev_priv);
1906 static void i965_pipestat_irq_handler(struct drm_i915_private *dev_priv,
1907 u32 iir, u32 pipe_stats[I915_MAX_PIPES])
1909 bool blc_event = false;
1910 enum pipe pipe;
1912 for_each_pipe(dev_priv, pipe) {
1913 if (pipe_stats[pipe] & PIPE_START_VBLANK_INTERRUPT_STATUS)
1914 drm_handle_vblank(&dev_priv->drm, pipe);
1916 if (pipe_stats[pipe] & PIPE_LEGACY_BLC_EVENT_STATUS)
1917 blc_event = true;
1919 if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
1920 i9xx_pipe_crc_irq_handler(dev_priv, pipe);
1922 if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS)
1923 intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
1926 if (blc_event || (iir & I915_ASLE_INTERRUPT))
1927 intel_opregion_asle_intr(dev_priv);
1929 if (pipe_stats[0] & PIPE_GMBUS_INTERRUPT_STATUS)
1930 gmbus_irq_handler(dev_priv);
1933 static void valleyview_pipestat_irq_handler(struct drm_i915_private *dev_priv,
1934 u32 pipe_stats[I915_MAX_PIPES])
1936 enum pipe pipe;
1938 for_each_pipe(dev_priv, pipe) {
1939 if (pipe_stats[pipe] & PIPE_START_VBLANK_INTERRUPT_STATUS)
1940 drm_handle_vblank(&dev_priv->drm, pipe);
1942 if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
1943 i9xx_pipe_crc_irq_handler(dev_priv, pipe);
1945 if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS)
1946 intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
1949 if (pipe_stats[0] & PIPE_GMBUS_INTERRUPT_STATUS)
1950 gmbus_irq_handler(dev_priv);
1953 static u32 i9xx_hpd_irq_ack(struct drm_i915_private *dev_priv)
1955 u32 hotplug_status = I915_READ(PORT_HOTPLUG_STAT);
1957 if (hotplug_status)
1958 I915_WRITE(PORT_HOTPLUG_STAT, hotplug_status);
1960 return hotplug_status;
1963 static void i9xx_hpd_irq_handler(struct drm_i915_private *dev_priv,
1964 u32 hotplug_status)
1966 u32 pin_mask = 0, long_mask = 0;
1968 if (IS_G4X(dev_priv) || IS_VALLEYVIEW(dev_priv) ||
1969 IS_CHERRYVIEW(dev_priv)) {
1970 u32 hotplug_trigger = hotplug_status & HOTPLUG_INT_STATUS_G4X;
1972 if (hotplug_trigger) {
1973 intel_get_hpd_pins(&pin_mask, &long_mask, hotplug_trigger,
1974 hotplug_trigger, hpd_status_g4x,
1975 i9xx_port_hotplug_long_detect);
1977 intel_hpd_irq_handler(dev_priv, pin_mask, long_mask);
1980 if (hotplug_status & DP_AUX_CHANNEL_MASK_INT_STATUS_G4X)
1981 dp_aux_irq_handler(dev_priv);
1982 } else {
1983 u32 hotplug_trigger = hotplug_status & HOTPLUG_INT_STATUS_I915;
1985 if (hotplug_trigger) {
1986 intel_get_hpd_pins(&pin_mask, &long_mask, hotplug_trigger,
1987 hotplug_trigger, hpd_status_i915,
1988 i9xx_port_hotplug_long_detect);
1989 intel_hpd_irq_handler(dev_priv, pin_mask, long_mask);
1994 static irqreturn_t valleyview_irq_handler(int irq, void *arg)
1996 struct drm_device *dev = arg;
1997 struct drm_i915_private *dev_priv = to_i915(dev);
1998 irqreturn_t ret = IRQ_NONE;
2000 if (!intel_irqs_enabled(dev_priv))
2001 return IRQ_NONE;
2003 /* IRQs are synced during runtime_suspend, we don't require a wakeref */
2004 disable_rpm_wakeref_asserts(dev_priv);
2006 do {
2007 u32 iir, gt_iir, pm_iir;
2008 u32 pipe_stats[I915_MAX_PIPES] = {};
2009 u32 hotplug_status = 0;
2010 u32 ier = 0;
2012 gt_iir = I915_READ(GTIIR);
2013 pm_iir = I915_READ(GEN6_PMIIR);
2014 iir = I915_READ(VLV_IIR);
2016 if (gt_iir == 0 && pm_iir == 0 && iir == 0)
2017 break;
2019 ret = IRQ_HANDLED;
2022 * Theory on interrupt generation, based on empirical evidence:
2024 * x = ((VLV_IIR & VLV_IER) ||
2025 * (((GT_IIR & GT_IER) || (GEN6_PMIIR & GEN6_PMIER)) &&
2026 * (VLV_MASTER_IER & MASTER_INTERRUPT_ENABLE)));
2028 * A CPU interrupt will only be raised when 'x' has a 0->1 edge.
2029 * Hence we clear MASTER_INTERRUPT_ENABLE and VLV_IER to
2030 * guarantee the CPU interrupt will be raised again even if we
2031 * don't end up clearing all the VLV_IIR, GT_IIR, GEN6_PMIIR
2032 * bits this time around.
2034 I915_WRITE(VLV_MASTER_IER, 0);
2035 ier = I915_READ(VLV_IER);
2036 I915_WRITE(VLV_IER, 0);
2038 if (gt_iir)
2039 I915_WRITE(GTIIR, gt_iir);
2040 if (pm_iir)
2041 I915_WRITE(GEN6_PMIIR, pm_iir);
2043 if (iir & I915_DISPLAY_PORT_INTERRUPT)
2044 hotplug_status = i9xx_hpd_irq_ack(dev_priv);
2046 /* Call regardless, as some status bits might not be
2047 * signalled in iir */
2048 i9xx_pipestat_irq_ack(dev_priv, iir, pipe_stats);
2050 if (iir & (I915_LPE_PIPE_A_INTERRUPT |
2051 I915_LPE_PIPE_B_INTERRUPT))
2052 intel_lpe_audio_irq_handler(dev_priv);
2055 * VLV_IIR is single buffered, and reflects the level
2056 * from PIPESTAT/PORT_HOTPLUG_STAT, hence clear it last.
2058 if (iir)
2059 I915_WRITE(VLV_IIR, iir);
2061 I915_WRITE(VLV_IER, ier);
2062 I915_WRITE(VLV_MASTER_IER, MASTER_INTERRUPT_ENABLE);
2063 POSTING_READ(VLV_MASTER_IER);
2065 if (gt_iir)
2066 snb_gt_irq_handler(dev_priv, gt_iir);
2067 if (pm_iir)
2068 gen6_rps_irq_handler(dev_priv, pm_iir);
2070 if (hotplug_status)
2071 i9xx_hpd_irq_handler(dev_priv, hotplug_status);
2073 valleyview_pipestat_irq_handler(dev_priv, pipe_stats);
2074 } while (0);
2076 enable_rpm_wakeref_asserts(dev_priv);
2078 return ret;
2081 static irqreturn_t cherryview_irq_handler(int irq, void *arg)
2083 struct drm_device *dev = arg;
2084 struct drm_i915_private *dev_priv = to_i915(dev);
2085 irqreturn_t ret = IRQ_NONE;
2087 if (!intel_irqs_enabled(dev_priv))
2088 return IRQ_NONE;
2090 /* IRQs are synced during runtime_suspend, we don't require a wakeref */
2091 disable_rpm_wakeref_asserts(dev_priv);
2093 do {
2094 u32 master_ctl, iir;
2095 u32 gt_iir[4] = {};
2096 u32 pipe_stats[I915_MAX_PIPES] = {};
2097 u32 hotplug_status = 0;
2098 u32 ier = 0;
2100 master_ctl = I915_READ(GEN8_MASTER_IRQ) & ~GEN8_MASTER_IRQ_CONTROL;
2101 iir = I915_READ(VLV_IIR);
2103 if (master_ctl == 0 && iir == 0)
2104 break;
2106 ret = IRQ_HANDLED;
2109 * Theory on interrupt generation, based on empirical evidence:
2111 * x = ((VLV_IIR & VLV_IER) ||
2112 * ((GEN8_MASTER_IRQ & ~GEN8_MASTER_IRQ_CONTROL) &&
2113 * (GEN8_MASTER_IRQ & GEN8_MASTER_IRQ_CONTROL)));
2115 * A CPU interrupt will only be raised when 'x' has a 0->1 edge.
2116 * Hence we clear GEN8_MASTER_IRQ_CONTROL and VLV_IER to
2117 * guarantee the CPU interrupt will be raised again even if we
2118 * don't end up clearing all the VLV_IIR and GEN8_MASTER_IRQ_CONTROL
2119 * bits this time around.
2121 I915_WRITE(GEN8_MASTER_IRQ, 0);
2122 ier = I915_READ(VLV_IER);
2123 I915_WRITE(VLV_IER, 0);
2125 gen8_gt_irq_ack(dev_priv, master_ctl, gt_iir);
2127 if (iir & I915_DISPLAY_PORT_INTERRUPT)
2128 hotplug_status = i9xx_hpd_irq_ack(dev_priv);
2130 /* Call regardless, as some status bits might not be
2131 * signalled in iir */
2132 i9xx_pipestat_irq_ack(dev_priv, iir, pipe_stats);
2134 if (iir & (I915_LPE_PIPE_A_INTERRUPT |
2135 I915_LPE_PIPE_B_INTERRUPT |
2136 I915_LPE_PIPE_C_INTERRUPT))
2137 intel_lpe_audio_irq_handler(dev_priv);
2140 * VLV_IIR is single buffered, and reflects the level
2141 * from PIPESTAT/PORT_HOTPLUG_STAT, hence clear it last.
2143 if (iir)
2144 I915_WRITE(VLV_IIR, iir);
2146 I915_WRITE(VLV_IER, ier);
2147 I915_WRITE(GEN8_MASTER_IRQ, GEN8_MASTER_IRQ_CONTROL);
2148 POSTING_READ(GEN8_MASTER_IRQ);
2150 gen8_gt_irq_handler(dev_priv, gt_iir);
2152 if (hotplug_status)
2153 i9xx_hpd_irq_handler(dev_priv, hotplug_status);
2155 valleyview_pipestat_irq_handler(dev_priv, pipe_stats);
2156 } while (0);
2158 enable_rpm_wakeref_asserts(dev_priv);
2160 return ret;
2163 static void ibx_hpd_irq_handler(struct drm_i915_private *dev_priv,
2164 u32 hotplug_trigger,
2165 const u32 hpd[HPD_NUM_PINS])
2167 u32 dig_hotplug_reg, pin_mask = 0, long_mask = 0;
2170 * Somehow the PCH doesn't seem to really ack the interrupt to the CPU
2171 * unless we touch the hotplug register, even if hotplug_trigger is
2172 * zero. Not acking leads to "The master control interrupt lied (SDE)!"
2173 * errors.
2175 dig_hotplug_reg = I915_READ(PCH_PORT_HOTPLUG);
2176 if (!hotplug_trigger) {
2177 u32 mask = PORTA_HOTPLUG_STATUS_MASK |
2178 PORTD_HOTPLUG_STATUS_MASK |
2179 PORTC_HOTPLUG_STATUS_MASK |
2180 PORTB_HOTPLUG_STATUS_MASK;
2181 dig_hotplug_reg &= ~mask;
2184 I915_WRITE(PCH_PORT_HOTPLUG, dig_hotplug_reg);
2185 if (!hotplug_trigger)
2186 return;
2188 intel_get_hpd_pins(&pin_mask, &long_mask, hotplug_trigger,
2189 dig_hotplug_reg, hpd,
2190 pch_port_hotplug_long_detect);
2192 intel_hpd_irq_handler(dev_priv, pin_mask, long_mask);
2195 static void ibx_irq_handler(struct drm_i915_private *dev_priv, u32 pch_iir)
2197 int pipe;
2198 u32 hotplug_trigger = pch_iir & SDE_HOTPLUG_MASK;
2200 ibx_hpd_irq_handler(dev_priv, hotplug_trigger, hpd_ibx);
2202 if (pch_iir & SDE_AUDIO_POWER_MASK) {
2203 int port = ffs((pch_iir & SDE_AUDIO_POWER_MASK) >>
2204 SDE_AUDIO_POWER_SHIFT);
2205 DRM_DEBUG_DRIVER("PCH audio power change on port %d\n",
2206 port_name(port));
2209 if (pch_iir & SDE_AUX_MASK)
2210 dp_aux_irq_handler(dev_priv);
2212 if (pch_iir & SDE_GMBUS)
2213 gmbus_irq_handler(dev_priv);
2215 if (pch_iir & SDE_AUDIO_HDCP_MASK)
2216 DRM_DEBUG_DRIVER("PCH HDCP audio interrupt\n");
2218 if (pch_iir & SDE_AUDIO_TRANS_MASK)
2219 DRM_DEBUG_DRIVER("PCH transcoder audio interrupt\n");
2221 if (pch_iir & SDE_POISON)
2222 DRM_ERROR("PCH poison interrupt\n");
2224 if (pch_iir & SDE_FDI_MASK)
2225 for_each_pipe(dev_priv, pipe)
2226 DRM_DEBUG_DRIVER(" pipe %c FDI IIR: 0x%08x\n",
2227 pipe_name(pipe),
2228 I915_READ(FDI_RX_IIR(pipe)));
2230 if (pch_iir & (SDE_TRANSB_CRC_DONE | SDE_TRANSA_CRC_DONE))
2231 DRM_DEBUG_DRIVER("PCH transcoder CRC done interrupt\n");
2233 if (pch_iir & (SDE_TRANSB_CRC_ERR | SDE_TRANSA_CRC_ERR))
2234 DRM_DEBUG_DRIVER("PCH transcoder CRC error interrupt\n");
2236 if (pch_iir & SDE_TRANSA_FIFO_UNDER)
2237 intel_pch_fifo_underrun_irq_handler(dev_priv, PIPE_A);
2239 if (pch_iir & SDE_TRANSB_FIFO_UNDER)
2240 intel_pch_fifo_underrun_irq_handler(dev_priv, PIPE_B);
2243 static void ivb_err_int_handler(struct drm_i915_private *dev_priv)
2245 u32 err_int = I915_READ(GEN7_ERR_INT);
2246 enum pipe pipe;
2248 if (err_int & ERR_INT_POISON)
2249 DRM_ERROR("Poison interrupt\n");
2251 for_each_pipe(dev_priv, pipe) {
2252 if (err_int & ERR_INT_FIFO_UNDERRUN(pipe))
2253 intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
2255 if (err_int & ERR_INT_PIPE_CRC_DONE(pipe)) {
2256 if (IS_IVYBRIDGE(dev_priv))
2257 ivb_pipe_crc_irq_handler(dev_priv, pipe);
2258 else
2259 hsw_pipe_crc_irq_handler(dev_priv, pipe);
2263 I915_WRITE(GEN7_ERR_INT, err_int);
2266 static void cpt_serr_int_handler(struct drm_i915_private *dev_priv)
2268 u32 serr_int = I915_READ(SERR_INT);
2269 enum pipe pipe;
2271 if (serr_int & SERR_INT_POISON)
2272 DRM_ERROR("PCH poison interrupt\n");
2274 for_each_pipe(dev_priv, pipe)
2275 if (serr_int & SERR_INT_TRANS_FIFO_UNDERRUN(pipe))
2276 intel_pch_fifo_underrun_irq_handler(dev_priv, pipe);
2278 I915_WRITE(SERR_INT, serr_int);
2281 static void cpt_irq_handler(struct drm_i915_private *dev_priv, u32 pch_iir)
2283 int pipe;
2284 u32 hotplug_trigger = pch_iir & SDE_HOTPLUG_MASK_CPT;
2286 ibx_hpd_irq_handler(dev_priv, hotplug_trigger, hpd_cpt);
2288 if (pch_iir & SDE_AUDIO_POWER_MASK_CPT) {
2289 int port = ffs((pch_iir & SDE_AUDIO_POWER_MASK_CPT) >>
2290 SDE_AUDIO_POWER_SHIFT_CPT);
2291 DRM_DEBUG_DRIVER("PCH audio power change on port %c\n",
2292 port_name(port));
2295 if (pch_iir & SDE_AUX_MASK_CPT)
2296 dp_aux_irq_handler(dev_priv);
2298 if (pch_iir & SDE_GMBUS_CPT)
2299 gmbus_irq_handler(dev_priv);
2301 if (pch_iir & SDE_AUDIO_CP_REQ_CPT)
2302 DRM_DEBUG_DRIVER("Audio CP request interrupt\n");
2304 if (pch_iir & SDE_AUDIO_CP_CHG_CPT)
2305 DRM_DEBUG_DRIVER("Audio CP change interrupt\n");
2307 if (pch_iir & SDE_FDI_MASK_CPT)
2308 for_each_pipe(dev_priv, pipe)
2309 DRM_DEBUG_DRIVER(" pipe %c FDI IIR: 0x%08x\n",
2310 pipe_name(pipe),
2311 I915_READ(FDI_RX_IIR(pipe)));
2313 if (pch_iir & SDE_ERROR_CPT)
2314 cpt_serr_int_handler(dev_priv);
2317 static void spt_irq_handler(struct drm_i915_private *dev_priv, u32 pch_iir)
2319 u32 hotplug_trigger = pch_iir & SDE_HOTPLUG_MASK_SPT &
2320 ~SDE_PORTE_HOTPLUG_SPT;
2321 u32 hotplug2_trigger = pch_iir & SDE_PORTE_HOTPLUG_SPT;
2322 u32 pin_mask = 0, long_mask = 0;
2324 if (hotplug_trigger) {
2325 u32 dig_hotplug_reg;
2327 dig_hotplug_reg = I915_READ(PCH_PORT_HOTPLUG);
2328 I915_WRITE(PCH_PORT_HOTPLUG, dig_hotplug_reg);
2330 intel_get_hpd_pins(&pin_mask, &long_mask, hotplug_trigger,
2331 dig_hotplug_reg, hpd_spt,
2332 spt_port_hotplug_long_detect);
2335 if (hotplug2_trigger) {
2336 u32 dig_hotplug_reg;
2338 dig_hotplug_reg = I915_READ(PCH_PORT_HOTPLUG2);
2339 I915_WRITE(PCH_PORT_HOTPLUG2, dig_hotplug_reg);
2341 intel_get_hpd_pins(&pin_mask, &long_mask, hotplug2_trigger,
2342 dig_hotplug_reg, hpd_spt,
2343 spt_port_hotplug2_long_detect);
2346 if (pin_mask)
2347 intel_hpd_irq_handler(dev_priv, pin_mask, long_mask);
2349 if (pch_iir & SDE_GMBUS_CPT)
2350 gmbus_irq_handler(dev_priv);
2353 static void ilk_hpd_irq_handler(struct drm_i915_private *dev_priv,
2354 u32 hotplug_trigger,
2355 const u32 hpd[HPD_NUM_PINS])
2357 u32 dig_hotplug_reg, pin_mask = 0, long_mask = 0;
2359 dig_hotplug_reg = I915_READ(DIGITAL_PORT_HOTPLUG_CNTRL);
2360 I915_WRITE(DIGITAL_PORT_HOTPLUG_CNTRL, dig_hotplug_reg);
2362 intel_get_hpd_pins(&pin_mask, &long_mask, hotplug_trigger,
2363 dig_hotplug_reg, hpd,
2364 ilk_port_hotplug_long_detect);
2366 intel_hpd_irq_handler(dev_priv, pin_mask, long_mask);
2369 static void ilk_display_irq_handler(struct drm_i915_private *dev_priv,
2370 u32 de_iir)
2372 enum pipe pipe;
2373 u32 hotplug_trigger = de_iir & DE_DP_A_HOTPLUG;
2375 if (hotplug_trigger)
2376 ilk_hpd_irq_handler(dev_priv, hotplug_trigger, hpd_ilk);
2378 if (de_iir & DE_AUX_CHANNEL_A)
2379 dp_aux_irq_handler(dev_priv);
2381 if (de_iir & DE_GSE)
2382 intel_opregion_asle_intr(dev_priv);
2384 if (de_iir & DE_POISON)
2385 DRM_ERROR("Poison interrupt\n");
2387 for_each_pipe(dev_priv, pipe) {
2388 if (de_iir & DE_PIPE_VBLANK(pipe))
2389 drm_handle_vblank(&dev_priv->drm, pipe);
2391 if (de_iir & DE_PIPE_FIFO_UNDERRUN(pipe))
2392 intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
2394 if (de_iir & DE_PIPE_CRC_DONE(pipe))
2395 i9xx_pipe_crc_irq_handler(dev_priv, pipe);
2398 /* check event from PCH */
2399 if (de_iir & DE_PCH_EVENT) {
2400 u32 pch_iir = I915_READ(SDEIIR);
2402 if (HAS_PCH_CPT(dev_priv))
2403 cpt_irq_handler(dev_priv, pch_iir);
2404 else
2405 ibx_irq_handler(dev_priv, pch_iir);
2407 /* should clear PCH hotplug event before clear CPU irq */
2408 I915_WRITE(SDEIIR, pch_iir);
2411 if (IS_GEN5(dev_priv) && de_iir & DE_PCU_EVENT)
2412 ironlake_rps_change_irq_handler(dev_priv);
2415 static void ivb_display_irq_handler(struct drm_i915_private *dev_priv,
2416 u32 de_iir)
2418 enum pipe pipe;
2419 u32 hotplug_trigger = de_iir & DE_DP_A_HOTPLUG_IVB;
2421 if (hotplug_trigger)
2422 ilk_hpd_irq_handler(dev_priv, hotplug_trigger, hpd_ivb);
2424 if (de_iir & DE_ERR_INT_IVB)
2425 ivb_err_int_handler(dev_priv);
2427 if (de_iir & DE_AUX_CHANNEL_A_IVB)
2428 dp_aux_irq_handler(dev_priv);
2430 if (de_iir & DE_GSE_IVB)
2431 intel_opregion_asle_intr(dev_priv);
2433 for_each_pipe(dev_priv, pipe) {
2434 if (de_iir & (DE_PIPE_VBLANK_IVB(pipe)))
2435 drm_handle_vblank(&dev_priv->drm, pipe);
2438 /* check event from PCH */
2439 if (!HAS_PCH_NOP(dev_priv) && (de_iir & DE_PCH_EVENT_IVB)) {
2440 u32 pch_iir = I915_READ(SDEIIR);
2442 cpt_irq_handler(dev_priv, pch_iir);
2444 /* clear PCH hotplug event before clear CPU irq */
2445 I915_WRITE(SDEIIR, pch_iir);
2450 * To handle irqs with the minimum potential races with fresh interrupts, we:
2451 * 1 - Disable Master Interrupt Control.
2452 * 2 - Find the source(s) of the interrupt.
2453 * 3 - Clear the Interrupt Identity bits (IIR).
2454 * 4 - Process the interrupt(s) that had bits set in the IIRs.
2455 * 5 - Re-enable Master Interrupt Control.
2457 static irqreturn_t ironlake_irq_handler(int irq, void *arg)
2459 struct drm_device *dev = arg;
2460 struct drm_i915_private *dev_priv = to_i915(dev);
2461 u32 de_iir, gt_iir, de_ier, sde_ier = 0;
2462 irqreturn_t ret = IRQ_NONE;
2464 if (!intel_irqs_enabled(dev_priv))
2465 return IRQ_NONE;
2467 /* IRQs are synced during runtime_suspend, we don't require a wakeref */
2468 disable_rpm_wakeref_asserts(dev_priv);
2470 /* disable master interrupt before clearing iir */
2471 de_ier = I915_READ(DEIER);
2472 I915_WRITE(DEIER, de_ier & ~DE_MASTER_IRQ_CONTROL);
2473 POSTING_READ(DEIER);
2475 /* Disable south interrupts. We'll only write to SDEIIR once, so further
2476 * interrupts will will be stored on its back queue, and then we'll be
2477 * able to process them after we restore SDEIER (as soon as we restore
2478 * it, we'll get an interrupt if SDEIIR still has something to process
2479 * due to its back queue). */
2480 if (!HAS_PCH_NOP(dev_priv)) {
2481 sde_ier = I915_READ(SDEIER);
2482 I915_WRITE(SDEIER, 0);
2483 POSTING_READ(SDEIER);
2486 /* Find, clear, then process each source of interrupt */
2488 gt_iir = I915_READ(GTIIR);
2489 if (gt_iir) {
2490 I915_WRITE(GTIIR, gt_iir);
2491 ret = IRQ_HANDLED;
2492 if (INTEL_GEN(dev_priv) >= 6)
2493 snb_gt_irq_handler(dev_priv, gt_iir);
2494 else
2495 ilk_gt_irq_handler(dev_priv, gt_iir);
2498 de_iir = I915_READ(DEIIR);
2499 if (de_iir) {
2500 I915_WRITE(DEIIR, de_iir);
2501 ret = IRQ_HANDLED;
2502 if (INTEL_GEN(dev_priv) >= 7)
2503 ivb_display_irq_handler(dev_priv, de_iir);
2504 else
2505 ilk_display_irq_handler(dev_priv, de_iir);
2508 if (INTEL_GEN(dev_priv) >= 6) {
2509 u32 pm_iir = I915_READ(GEN6_PMIIR);
2510 if (pm_iir) {
2511 I915_WRITE(GEN6_PMIIR, pm_iir);
2512 ret = IRQ_HANDLED;
2513 gen6_rps_irq_handler(dev_priv, pm_iir);
2517 I915_WRITE(DEIER, de_ier);
2518 POSTING_READ(DEIER);
2519 if (!HAS_PCH_NOP(dev_priv)) {
2520 I915_WRITE(SDEIER, sde_ier);
2521 POSTING_READ(SDEIER);
2524 /* IRQs are synced during runtime_suspend, we don't require a wakeref */
2525 enable_rpm_wakeref_asserts(dev_priv);
2527 return ret;
2530 static void bxt_hpd_irq_handler(struct drm_i915_private *dev_priv,
2531 u32 hotplug_trigger,
2532 const u32 hpd[HPD_NUM_PINS])
2534 u32 dig_hotplug_reg, pin_mask = 0, long_mask = 0;
2536 dig_hotplug_reg = I915_READ(PCH_PORT_HOTPLUG);
2537 I915_WRITE(PCH_PORT_HOTPLUG, dig_hotplug_reg);
2539 intel_get_hpd_pins(&pin_mask, &long_mask, hotplug_trigger,
2540 dig_hotplug_reg, hpd,
2541 bxt_port_hotplug_long_detect);
2543 intel_hpd_irq_handler(dev_priv, pin_mask, long_mask);
2546 static irqreturn_t
2547 gen8_de_irq_handler(struct drm_i915_private *dev_priv, u32 master_ctl)
2549 irqreturn_t ret = IRQ_NONE;
2550 u32 iir;
2551 enum pipe pipe;
2553 if (master_ctl & GEN8_DE_MISC_IRQ) {
2554 iir = I915_READ(GEN8_DE_MISC_IIR);
2555 if (iir) {
2556 I915_WRITE(GEN8_DE_MISC_IIR, iir);
2557 ret = IRQ_HANDLED;
2558 if (iir & GEN8_DE_MISC_GSE)
2559 intel_opregion_asle_intr(dev_priv);
2560 else
2561 DRM_ERROR("Unexpected DE Misc interrupt\n");
2563 else
2564 DRM_ERROR("The master control interrupt lied (DE MISC)!\n");
2567 if (master_ctl & GEN8_DE_PORT_IRQ) {
2568 iir = I915_READ(GEN8_DE_PORT_IIR);
2569 if (iir) {
2570 u32 tmp_mask;
2571 bool found = false;
2573 I915_WRITE(GEN8_DE_PORT_IIR, iir);
2574 ret = IRQ_HANDLED;
2576 tmp_mask = GEN8_AUX_CHANNEL_A;
2577 if (INTEL_GEN(dev_priv) >= 9)
2578 tmp_mask |= GEN9_AUX_CHANNEL_B |
2579 GEN9_AUX_CHANNEL_C |
2580 GEN9_AUX_CHANNEL_D;
2582 if (iir & tmp_mask) {
2583 dp_aux_irq_handler(dev_priv);
2584 found = true;
2587 if (IS_GEN9_LP(dev_priv)) {
2588 tmp_mask = iir & BXT_DE_PORT_HOTPLUG_MASK;
2589 if (tmp_mask) {
2590 bxt_hpd_irq_handler(dev_priv, tmp_mask,
2591 hpd_bxt);
2592 found = true;
2594 } else if (IS_BROADWELL(dev_priv)) {
2595 tmp_mask = iir & GEN8_PORT_DP_A_HOTPLUG;
2596 if (tmp_mask) {
2597 ilk_hpd_irq_handler(dev_priv,
2598 tmp_mask, hpd_bdw);
2599 found = true;
2603 if (IS_GEN9_LP(dev_priv) && (iir & BXT_DE_PORT_GMBUS)) {
2604 gmbus_irq_handler(dev_priv);
2605 found = true;
2608 if (!found)
2609 DRM_ERROR("Unexpected DE Port interrupt\n");
2611 else
2612 DRM_ERROR("The master control interrupt lied (DE PORT)!\n");
2615 for_each_pipe(dev_priv, pipe) {
2616 u32 fault_errors;
2618 if (!(master_ctl & GEN8_DE_PIPE_IRQ(pipe)))
2619 continue;
2621 iir = I915_READ(GEN8_DE_PIPE_IIR(pipe));
2622 if (!iir) {
2623 DRM_ERROR("The master control interrupt lied (DE PIPE)!\n");
2624 continue;
2627 ret = IRQ_HANDLED;
2628 I915_WRITE(GEN8_DE_PIPE_IIR(pipe), iir);
2630 if (iir & GEN8_PIPE_VBLANK)
2631 drm_handle_vblank(&dev_priv->drm, pipe);
2633 if (iir & GEN8_PIPE_CDCLK_CRC_DONE)
2634 hsw_pipe_crc_irq_handler(dev_priv, pipe);
2636 if (iir & GEN8_PIPE_FIFO_UNDERRUN)
2637 intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
2639 fault_errors = iir;
2640 if (INTEL_GEN(dev_priv) >= 9)
2641 fault_errors &= GEN9_DE_PIPE_IRQ_FAULT_ERRORS;
2642 else
2643 fault_errors &= GEN8_DE_PIPE_IRQ_FAULT_ERRORS;
2645 if (fault_errors)
2646 DRM_ERROR("Fault errors on pipe %c: 0x%08x\n",
2647 pipe_name(pipe),
2648 fault_errors);
2651 if (HAS_PCH_SPLIT(dev_priv) && !HAS_PCH_NOP(dev_priv) &&
2652 master_ctl & GEN8_DE_PCH_IRQ) {
2654 * FIXME(BDW): Assume for now that the new interrupt handling
2655 * scheme also closed the SDE interrupt handling race we've seen
2656 * on older pch-split platforms. But this needs testing.
2658 iir = I915_READ(SDEIIR);
2659 if (iir) {
2660 I915_WRITE(SDEIIR, iir);
2661 ret = IRQ_HANDLED;
2663 if (HAS_PCH_SPT(dev_priv) || HAS_PCH_KBP(dev_priv) ||
2664 HAS_PCH_CNP(dev_priv))
2665 spt_irq_handler(dev_priv, iir);
2666 else
2667 cpt_irq_handler(dev_priv, iir);
2668 } else {
2670 * Like on previous PCH there seems to be something
2671 * fishy going on with forwarding PCH interrupts.
2673 DRM_DEBUG_DRIVER("The master control interrupt lied (SDE)!\n");
2677 return ret;
2680 static irqreturn_t gen8_irq_handler(int irq, void *arg)
2682 struct drm_device *dev = arg;
2683 struct drm_i915_private *dev_priv = to_i915(dev);
2684 u32 master_ctl;
2685 u32 gt_iir[4] = {};
2686 irqreturn_t ret;
2688 if (!intel_irqs_enabled(dev_priv))
2689 return IRQ_NONE;
2691 master_ctl = I915_READ_FW(GEN8_MASTER_IRQ);
2692 master_ctl &= ~GEN8_MASTER_IRQ_CONTROL;
2693 if (!master_ctl)
2694 return IRQ_NONE;
2696 I915_WRITE_FW(GEN8_MASTER_IRQ, 0);
2698 /* IRQs are synced during runtime_suspend, we don't require a wakeref */
2699 disable_rpm_wakeref_asserts(dev_priv);
2701 /* Find, clear, then process each source of interrupt */
2702 ret = gen8_gt_irq_ack(dev_priv, master_ctl, gt_iir);
2703 gen8_gt_irq_handler(dev_priv, gt_iir);
2704 ret |= gen8_de_irq_handler(dev_priv, master_ctl);
2706 I915_WRITE_FW(GEN8_MASTER_IRQ, GEN8_MASTER_IRQ_CONTROL);
2707 POSTING_READ_FW(GEN8_MASTER_IRQ);
2709 enable_rpm_wakeref_asserts(dev_priv);
2711 return ret;
2714 struct wedge_me {
2715 struct delayed_work work;
2716 struct drm_i915_private *i915;
2717 const char *name;
2720 static void wedge_me(struct work_struct *work)
2722 struct wedge_me *w = container_of(work, typeof(*w), work.work);
2724 dev_err(w->i915->drm.dev,
2725 "%s timed out, cancelling all in-flight rendering.\n",
2726 w->name);
2727 i915_gem_set_wedged(w->i915);
2730 static void __init_wedge(struct wedge_me *w,
2731 struct drm_i915_private *i915,
2732 long timeout,
2733 const char *name)
2735 w->i915 = i915;
2736 w->name = name;
2738 INIT_DELAYED_WORK_ONSTACK(&w->work, wedge_me);
2739 schedule_delayed_work(&w->work, timeout);
2742 static void __fini_wedge(struct wedge_me *w)
2744 cancel_delayed_work_sync(&w->work);
2745 destroy_delayed_work_on_stack(&w->work);
2746 w->i915 = NULL;
2749 #define i915_wedge_on_timeout(W, DEV, TIMEOUT) \
2750 for (__init_wedge((W), (DEV), (TIMEOUT), __func__); \
2751 (W)->i915; \
2752 __fini_wedge((W)))
2755 * i915_reset_device - do process context error handling work
2756 * @dev_priv: i915 device private
2758 * Fire an error uevent so userspace can see that a hang or error
2759 * was detected.
2761 static void i915_reset_device(struct drm_i915_private *dev_priv)
2763 struct kobject *kobj = &dev_priv->drm.primary->kdev->kobj;
2764 char *error_event[] = { I915_ERROR_UEVENT "=1", NULL };
2765 char *reset_event[] = { I915_RESET_UEVENT "=1", NULL };
2766 char *reset_done_event[] = { I915_ERROR_UEVENT "=0", NULL };
2767 struct wedge_me w;
2769 kobject_uevent_env(kobj, KOBJ_CHANGE, error_event);
2771 DRM_DEBUG_DRIVER("resetting chip\n");
2772 kobject_uevent_env(kobj, KOBJ_CHANGE, reset_event);
2774 /* Use a watchdog to ensure that our reset completes */
2775 i915_wedge_on_timeout(&w, dev_priv, 5*HZ) {
2776 intel_prepare_reset(dev_priv);
2778 /* Signal that locked waiters should reset the GPU */
2779 set_bit(I915_RESET_HANDOFF, &dev_priv->gpu_error.flags);
2780 wake_up_all(&dev_priv->gpu_error.wait_queue);
2782 /* Wait for anyone holding the lock to wakeup, without
2783 * blocking indefinitely on struct_mutex.
2785 do {
2786 if (mutex_trylock(&dev_priv->drm.struct_mutex)) {
2787 i915_reset(dev_priv, 0);
2788 mutex_unlock(&dev_priv->drm.struct_mutex);
2790 } while (wait_on_bit_timeout(&dev_priv->gpu_error.flags,
2791 I915_RESET_HANDOFF,
2792 TASK_UNINTERRUPTIBLE,
2793 1));
2795 intel_finish_reset(dev_priv);
2798 if (!test_bit(I915_WEDGED, &dev_priv->gpu_error.flags))
2799 kobject_uevent_env(kobj,
2800 KOBJ_CHANGE, reset_done_event);
2803 static void i915_clear_error_registers(struct drm_i915_private *dev_priv)
2805 u32 eir;
2807 if (!IS_GEN2(dev_priv))
2808 I915_WRITE(PGTBL_ER, I915_READ(PGTBL_ER));
2810 if (INTEL_GEN(dev_priv) < 4)
2811 I915_WRITE(IPEIR, I915_READ(IPEIR));
2812 else
2813 I915_WRITE(IPEIR_I965, I915_READ(IPEIR_I965));
2815 I915_WRITE(EIR, I915_READ(EIR));
2816 eir = I915_READ(EIR);
2817 if (eir) {
2819 * some errors might have become stuck,
2820 * mask them.
2822 DRM_DEBUG_DRIVER("EIR stuck: 0x%08x, masking\n", eir);
2823 I915_WRITE(EMR, I915_READ(EMR) | eir);
2824 I915_WRITE(IIR, I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT);
2829 * i915_handle_error - handle a gpu error
2830 * @dev_priv: i915 device private
2831 * @engine_mask: mask representing engines that are hung
2832 * @fmt: Error message format string
2834 * Do some basic checking of register state at error time and
2835 * dump it to the syslog. Also call i915_capture_error_state() to make
2836 * sure we get a record and make it available in debugfs. Fire a uevent
2837 * so userspace knows something bad happened (should trigger collection
2838 * of a ring dump etc.).
2840 void i915_handle_error(struct drm_i915_private *dev_priv,
2841 u32 engine_mask,
2842 const char *fmt, ...)
2844 struct intel_engine_cs *engine;
2845 unsigned int tmp;
2846 va_list args;
2847 char error_msg[80];
2849 va_start(args, fmt);
2850 vscnprintf(error_msg, sizeof(error_msg), fmt, args);
2851 va_end(args);
2854 * In most cases it's guaranteed that we get here with an RPM
2855 * reference held, for example because there is a pending GPU
2856 * request that won't finish until the reset is done. This
2857 * isn't the case at least when we get here by doing a
2858 * simulated reset via debugfs, so get an RPM reference.
2860 intel_runtime_pm_get(dev_priv);
2862 i915_capture_error_state(dev_priv, engine_mask, error_msg);
2863 i915_clear_error_registers(dev_priv);
2866 * Try engine reset when available. We fall back to full reset if
2867 * single reset fails.
2869 if (intel_has_reset_engine(dev_priv)) {
2870 for_each_engine_masked(engine, dev_priv, engine_mask, tmp) {
2871 BUILD_BUG_ON(I915_RESET_MODESET >= I915_RESET_ENGINE);
2872 if (test_and_set_bit(I915_RESET_ENGINE + engine->id,
2873 &dev_priv->gpu_error.flags))
2874 continue;
2876 if (i915_reset_engine(engine, 0) == 0)
2877 engine_mask &= ~intel_engine_flag(engine);
2879 clear_bit(I915_RESET_ENGINE + engine->id,
2880 &dev_priv->gpu_error.flags);
2881 wake_up_bit(&dev_priv->gpu_error.flags,
2882 I915_RESET_ENGINE + engine->id);
2886 if (!engine_mask)
2887 goto out;
2889 /* Full reset needs the mutex, stop any other user trying to do so. */
2890 if (test_and_set_bit(I915_RESET_BACKOFF, &dev_priv->gpu_error.flags)) {
2891 wait_event(dev_priv->gpu_error.reset_queue,
2892 !test_bit(I915_RESET_BACKOFF,
2893 &dev_priv->gpu_error.flags));
2894 goto out;
2897 /* Prevent any other reset-engine attempt. */
2898 for_each_engine(engine, dev_priv, tmp) {
2899 while (test_and_set_bit(I915_RESET_ENGINE + engine->id,
2900 &dev_priv->gpu_error.flags))
2901 wait_on_bit(&dev_priv->gpu_error.flags,
2902 I915_RESET_ENGINE + engine->id,
2903 TASK_UNINTERRUPTIBLE);
2906 i915_reset_device(dev_priv);
2908 for_each_engine(engine, dev_priv, tmp) {
2909 clear_bit(I915_RESET_ENGINE + engine->id,
2910 &dev_priv->gpu_error.flags);
2913 clear_bit(I915_RESET_BACKOFF, &dev_priv->gpu_error.flags);
2914 wake_up_all(&dev_priv->gpu_error.reset_queue);
2916 out:
2917 intel_runtime_pm_put(dev_priv);
2920 /* Called from drm generic code, passed 'crtc' which
2921 * we use as a pipe index
2923 static int i8xx_enable_vblank(struct drm_device *dev, unsigned int pipe)
2925 struct drm_i915_private *dev_priv = to_i915(dev);
2926 unsigned long irqflags;
2928 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2929 i915_enable_pipestat(dev_priv, pipe, PIPE_VBLANK_INTERRUPT_STATUS);
2930 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2932 return 0;
2935 static int i965_enable_vblank(struct drm_device *dev, unsigned int pipe)
2937 struct drm_i915_private *dev_priv = to_i915(dev);
2938 unsigned long irqflags;
2940 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2941 i915_enable_pipestat(dev_priv, pipe,
2942 PIPE_START_VBLANK_INTERRUPT_STATUS);
2943 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2945 return 0;
2948 static int ironlake_enable_vblank(struct drm_device *dev, unsigned int pipe)
2950 struct drm_i915_private *dev_priv = to_i915(dev);
2951 unsigned long irqflags;
2952 uint32_t bit = INTEL_GEN(dev_priv) >= 7 ?
2953 DE_PIPE_VBLANK_IVB(pipe) : DE_PIPE_VBLANK(pipe);
2955 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2956 ilk_enable_display_irq(dev_priv, bit);
2957 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2959 return 0;
2962 static int gen8_enable_vblank(struct drm_device *dev, unsigned int pipe)
2964 struct drm_i915_private *dev_priv = to_i915(dev);
2965 unsigned long irqflags;
2967 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2968 bdw_enable_pipe_irq(dev_priv, pipe, GEN8_PIPE_VBLANK);
2969 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2971 return 0;
2974 /* Called from drm generic code, passed 'crtc' which
2975 * we use as a pipe index
2977 static void i8xx_disable_vblank(struct drm_device *dev, unsigned int pipe)
2979 struct drm_i915_private *dev_priv = to_i915(dev);
2980 unsigned long irqflags;
2982 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2983 i915_disable_pipestat(dev_priv, pipe, PIPE_VBLANK_INTERRUPT_STATUS);
2984 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2987 static void i965_disable_vblank(struct drm_device *dev, unsigned int pipe)
2989 struct drm_i915_private *dev_priv = to_i915(dev);
2990 unsigned long irqflags;
2992 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2993 i915_disable_pipestat(dev_priv, pipe,
2994 PIPE_START_VBLANK_INTERRUPT_STATUS);
2995 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2998 static void ironlake_disable_vblank(struct drm_device *dev, unsigned int pipe)
3000 struct drm_i915_private *dev_priv = to_i915(dev);
3001 unsigned long irqflags;
3002 uint32_t bit = INTEL_GEN(dev_priv) >= 7 ?
3003 DE_PIPE_VBLANK_IVB(pipe) : DE_PIPE_VBLANK(pipe);
3005 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
3006 ilk_disable_display_irq(dev_priv, bit);
3007 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
3010 static void gen8_disable_vblank(struct drm_device *dev, unsigned int pipe)
3012 struct drm_i915_private *dev_priv = to_i915(dev);
3013 unsigned long irqflags;
3015 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
3016 bdw_disable_pipe_irq(dev_priv, pipe, GEN8_PIPE_VBLANK);
3017 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
3020 static void ibx_irq_reset(struct drm_i915_private *dev_priv)
3022 if (HAS_PCH_NOP(dev_priv))
3023 return;
3025 GEN3_IRQ_RESET(SDE);
3027 if (HAS_PCH_CPT(dev_priv) || HAS_PCH_LPT(dev_priv))
3028 I915_WRITE(SERR_INT, 0xffffffff);
3032 * SDEIER is also touched by the interrupt handler to work around missed PCH
3033 * interrupts. Hence we can't update it after the interrupt handler is enabled -
3034 * instead we unconditionally enable all PCH interrupt sources here, but then
3035 * only unmask them as needed with SDEIMR.
3037 * This function needs to be called before interrupts are enabled.
3039 static void ibx_irq_pre_postinstall(struct drm_device *dev)
3041 struct drm_i915_private *dev_priv = to_i915(dev);
3043 if (HAS_PCH_NOP(dev_priv))
3044 return;
3046 WARN_ON(I915_READ(SDEIER) != 0);
3047 I915_WRITE(SDEIER, 0xffffffff);
3048 POSTING_READ(SDEIER);
3051 static void gen5_gt_irq_reset(struct drm_i915_private *dev_priv)
3053 GEN3_IRQ_RESET(GT);
3054 if (INTEL_GEN(dev_priv) >= 6)
3055 GEN3_IRQ_RESET(GEN6_PM);
3058 static void vlv_display_irq_reset(struct drm_i915_private *dev_priv)
3060 if (IS_CHERRYVIEW(dev_priv))
3061 I915_WRITE(DPINVGTT, DPINVGTT_STATUS_MASK_CHV);
3062 else
3063 I915_WRITE(DPINVGTT, DPINVGTT_STATUS_MASK);
3065 i915_hotplug_interrupt_update_locked(dev_priv, 0xffffffff, 0);
3066 I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
3068 i9xx_pipestat_irq_reset(dev_priv);
3070 GEN3_IRQ_RESET(VLV_);
3071 dev_priv->irq_mask = ~0u;
3074 static void vlv_display_irq_postinstall(struct drm_i915_private *dev_priv)
3076 u32 pipestat_mask;
3077 u32 enable_mask;
3078 enum pipe pipe;
3080 pipestat_mask = PIPE_CRC_DONE_INTERRUPT_STATUS;
3082 i915_enable_pipestat(dev_priv, PIPE_A, PIPE_GMBUS_INTERRUPT_STATUS);
3083 for_each_pipe(dev_priv, pipe)
3084 i915_enable_pipestat(dev_priv, pipe, pipestat_mask);
3086 enable_mask = I915_DISPLAY_PORT_INTERRUPT |
3087 I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3088 I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
3089 I915_LPE_PIPE_A_INTERRUPT |
3090 I915_LPE_PIPE_B_INTERRUPT;
3092 if (IS_CHERRYVIEW(dev_priv))
3093 enable_mask |= I915_DISPLAY_PIPE_C_EVENT_INTERRUPT |
3094 I915_LPE_PIPE_C_INTERRUPT;
3096 WARN_ON(dev_priv->irq_mask != ~0u);
3098 dev_priv->irq_mask = ~enable_mask;
3100 GEN3_IRQ_INIT(VLV_, dev_priv->irq_mask, enable_mask);
3103 /* drm_dma.h hooks
3105 static void ironlake_irq_reset(struct drm_device *dev)
3107 struct drm_i915_private *dev_priv = to_i915(dev);
3109 if (IS_GEN5(dev_priv))
3110 I915_WRITE(HWSTAM, 0xffffffff);
3112 GEN3_IRQ_RESET(DE);
3113 if (IS_GEN7(dev_priv))
3114 I915_WRITE(GEN7_ERR_INT, 0xffffffff);
3116 gen5_gt_irq_reset(dev_priv);
3118 ibx_irq_reset(dev_priv);
3121 static void valleyview_irq_reset(struct drm_device *dev)
3123 struct drm_i915_private *dev_priv = to_i915(dev);
3125 I915_WRITE(VLV_MASTER_IER, 0);
3126 POSTING_READ(VLV_MASTER_IER);
3128 gen5_gt_irq_reset(dev_priv);
3130 spin_lock_irq(&dev_priv->irq_lock);
3131 if (dev_priv->display_irqs_enabled)
3132 vlv_display_irq_reset(dev_priv);
3133 spin_unlock_irq(&dev_priv->irq_lock);
3136 static void gen8_gt_irq_reset(struct drm_i915_private *dev_priv)
3138 GEN8_IRQ_RESET_NDX(GT, 0);
3139 GEN8_IRQ_RESET_NDX(GT, 1);
3140 GEN8_IRQ_RESET_NDX(GT, 2);
3141 GEN8_IRQ_RESET_NDX(GT, 3);
3144 static void gen8_irq_reset(struct drm_device *dev)
3146 struct drm_i915_private *dev_priv = to_i915(dev);
3147 int pipe;
3149 I915_WRITE(GEN8_MASTER_IRQ, 0);
3150 POSTING_READ(GEN8_MASTER_IRQ);
3152 gen8_gt_irq_reset(dev_priv);
3154 for_each_pipe(dev_priv, pipe)
3155 if (intel_display_power_is_enabled(dev_priv,
3156 POWER_DOMAIN_PIPE(pipe)))
3157 GEN8_IRQ_RESET_NDX(DE_PIPE, pipe);
3159 GEN3_IRQ_RESET(GEN8_DE_PORT_);
3160 GEN3_IRQ_RESET(GEN8_DE_MISC_);
3161 GEN3_IRQ_RESET(GEN8_PCU_);
3163 if (HAS_PCH_SPLIT(dev_priv))
3164 ibx_irq_reset(dev_priv);
3167 void gen8_irq_power_well_post_enable(struct drm_i915_private *dev_priv,
3168 u8 pipe_mask)
3170 uint32_t extra_ier = GEN8_PIPE_VBLANK | GEN8_PIPE_FIFO_UNDERRUN;
3171 enum pipe pipe;
3173 spin_lock_irq(&dev_priv->irq_lock);
3175 if (!intel_irqs_enabled(dev_priv)) {
3176 spin_unlock_irq(&dev_priv->irq_lock);
3177 return;
3180 for_each_pipe_masked(dev_priv, pipe, pipe_mask)
3181 GEN8_IRQ_INIT_NDX(DE_PIPE, pipe,
3182 dev_priv->de_irq_mask[pipe],
3183 ~dev_priv->de_irq_mask[pipe] | extra_ier);
3185 spin_unlock_irq(&dev_priv->irq_lock);
3188 void gen8_irq_power_well_pre_disable(struct drm_i915_private *dev_priv,
3189 u8 pipe_mask)
3191 enum pipe pipe;
3193 spin_lock_irq(&dev_priv->irq_lock);
3195 if (!intel_irqs_enabled(dev_priv)) {
3196 spin_unlock_irq(&dev_priv->irq_lock);
3197 return;
3200 for_each_pipe_masked(dev_priv, pipe, pipe_mask)
3201 GEN8_IRQ_RESET_NDX(DE_PIPE, pipe);
3203 spin_unlock_irq(&dev_priv->irq_lock);
3205 /* make sure we're done processing display irqs */
3206 synchronize_irq(dev_priv->drm.irq);
3209 static void cherryview_irq_reset(struct drm_device *dev)
3211 struct drm_i915_private *dev_priv = to_i915(dev);
3213 I915_WRITE(GEN8_MASTER_IRQ, 0);
3214 POSTING_READ(GEN8_MASTER_IRQ);
3216 gen8_gt_irq_reset(dev_priv);
3218 GEN3_IRQ_RESET(GEN8_PCU_);
3220 spin_lock_irq(&dev_priv->irq_lock);
3221 if (dev_priv->display_irqs_enabled)
3222 vlv_display_irq_reset(dev_priv);
3223 spin_unlock_irq(&dev_priv->irq_lock);
3226 static u32 intel_hpd_enabled_irqs(struct drm_i915_private *dev_priv,
3227 const u32 hpd[HPD_NUM_PINS])
3229 struct intel_encoder *encoder;
3230 u32 enabled_irqs = 0;
3232 for_each_intel_encoder(&dev_priv->drm, encoder)
3233 if (dev_priv->hotplug.stats[encoder->hpd_pin].state == HPD_ENABLED)
3234 enabled_irqs |= hpd[encoder->hpd_pin];
3236 return enabled_irqs;
3239 static void ibx_hpd_detection_setup(struct drm_i915_private *dev_priv)
3241 u32 hotplug;
3244 * Enable digital hotplug on the PCH, and configure the DP short pulse
3245 * duration to 2ms (which is the minimum in the Display Port spec).
3246 * The pulse duration bits are reserved on LPT+.
3248 hotplug = I915_READ(PCH_PORT_HOTPLUG);
3249 hotplug &= ~(PORTB_PULSE_DURATION_MASK |
3250 PORTC_PULSE_DURATION_MASK |
3251 PORTD_PULSE_DURATION_MASK);
3252 hotplug |= PORTB_HOTPLUG_ENABLE | PORTB_PULSE_DURATION_2ms;
3253 hotplug |= PORTC_HOTPLUG_ENABLE | PORTC_PULSE_DURATION_2ms;
3254 hotplug |= PORTD_HOTPLUG_ENABLE | PORTD_PULSE_DURATION_2ms;
3256 * When CPU and PCH are on the same package, port A
3257 * HPD must be enabled in both north and south.
3259 if (HAS_PCH_LPT_LP(dev_priv))
3260 hotplug |= PORTA_HOTPLUG_ENABLE;
3261 I915_WRITE(PCH_PORT_HOTPLUG, hotplug);
3264 static void ibx_hpd_irq_setup(struct drm_i915_private *dev_priv)
3266 u32 hotplug_irqs, enabled_irqs;
3268 if (HAS_PCH_IBX(dev_priv)) {
3269 hotplug_irqs = SDE_HOTPLUG_MASK;
3270 enabled_irqs = intel_hpd_enabled_irqs(dev_priv, hpd_ibx);
3271 } else {
3272 hotplug_irqs = SDE_HOTPLUG_MASK_CPT;
3273 enabled_irqs = intel_hpd_enabled_irqs(dev_priv, hpd_cpt);
3276 ibx_display_interrupt_update(dev_priv, hotplug_irqs, enabled_irqs);
3278 ibx_hpd_detection_setup(dev_priv);
3281 static void spt_hpd_detection_setup(struct drm_i915_private *dev_priv)
3283 u32 val, hotplug;
3285 /* Display WA #1179 WaHardHangonHotPlug: cnp */
3286 if (HAS_PCH_CNP(dev_priv)) {
3287 val = I915_READ(SOUTH_CHICKEN1);
3288 val &= ~CHASSIS_CLK_REQ_DURATION_MASK;
3289 val |= CHASSIS_CLK_REQ_DURATION(0xf);
3290 I915_WRITE(SOUTH_CHICKEN1, val);
3293 /* Enable digital hotplug on the PCH */
3294 hotplug = I915_READ(PCH_PORT_HOTPLUG);
3295 hotplug |= PORTA_HOTPLUG_ENABLE |
3296 PORTB_HOTPLUG_ENABLE |
3297 PORTC_HOTPLUG_ENABLE |
3298 PORTD_HOTPLUG_ENABLE;
3299 I915_WRITE(PCH_PORT_HOTPLUG, hotplug);
3301 hotplug = I915_READ(PCH_PORT_HOTPLUG2);
3302 hotplug |= PORTE_HOTPLUG_ENABLE;
3303 I915_WRITE(PCH_PORT_HOTPLUG2, hotplug);
3306 static void spt_hpd_irq_setup(struct drm_i915_private *dev_priv)
3308 u32 hotplug_irqs, enabled_irqs;
3310 hotplug_irqs = SDE_HOTPLUG_MASK_SPT;
3311 enabled_irqs = intel_hpd_enabled_irqs(dev_priv, hpd_spt);
3313 ibx_display_interrupt_update(dev_priv, hotplug_irqs, enabled_irqs);
3315 spt_hpd_detection_setup(dev_priv);
3318 static void ilk_hpd_detection_setup(struct drm_i915_private *dev_priv)
3320 u32 hotplug;
3323 * Enable digital hotplug on the CPU, and configure the DP short pulse
3324 * duration to 2ms (which is the minimum in the Display Port spec)
3325 * The pulse duration bits are reserved on HSW+.
3327 hotplug = I915_READ(DIGITAL_PORT_HOTPLUG_CNTRL);
3328 hotplug &= ~DIGITAL_PORTA_PULSE_DURATION_MASK;
3329 hotplug |= DIGITAL_PORTA_HOTPLUG_ENABLE |
3330 DIGITAL_PORTA_PULSE_DURATION_2ms;
3331 I915_WRITE(DIGITAL_PORT_HOTPLUG_CNTRL, hotplug);
3334 static void ilk_hpd_irq_setup(struct drm_i915_private *dev_priv)
3336 u32 hotplug_irqs, enabled_irqs;
3338 if (INTEL_GEN(dev_priv) >= 8) {
3339 hotplug_irqs = GEN8_PORT_DP_A_HOTPLUG;
3340 enabled_irqs = intel_hpd_enabled_irqs(dev_priv, hpd_bdw);
3342 bdw_update_port_irq(dev_priv, hotplug_irqs, enabled_irqs);
3343 } else if (INTEL_GEN(dev_priv) >= 7) {
3344 hotplug_irqs = DE_DP_A_HOTPLUG_IVB;
3345 enabled_irqs = intel_hpd_enabled_irqs(dev_priv, hpd_ivb);
3347 ilk_update_display_irq(dev_priv, hotplug_irqs, enabled_irqs);
3348 } else {
3349 hotplug_irqs = DE_DP_A_HOTPLUG;
3350 enabled_irqs = intel_hpd_enabled_irqs(dev_priv, hpd_ilk);
3352 ilk_update_display_irq(dev_priv, hotplug_irqs, enabled_irqs);
3355 ilk_hpd_detection_setup(dev_priv);
3357 ibx_hpd_irq_setup(dev_priv);
3360 static void __bxt_hpd_detection_setup(struct drm_i915_private *dev_priv,
3361 u32 enabled_irqs)
3363 u32 hotplug;
3365 hotplug = I915_READ(PCH_PORT_HOTPLUG);
3366 hotplug |= PORTA_HOTPLUG_ENABLE |
3367 PORTB_HOTPLUG_ENABLE |
3368 PORTC_HOTPLUG_ENABLE;
3370 DRM_DEBUG_KMS("Invert bit setting: hp_ctl:%x hp_port:%x\n",
3371 hotplug, enabled_irqs);
3372 hotplug &= ~BXT_DDI_HPD_INVERT_MASK;
3375 * For BXT invert bit has to be set based on AOB design
3376 * for HPD detection logic, update it based on VBT fields.
3378 if ((enabled_irqs & BXT_DE_PORT_HP_DDIA) &&
3379 intel_bios_is_port_hpd_inverted(dev_priv, PORT_A))
3380 hotplug |= BXT_DDIA_HPD_INVERT;
3381 if ((enabled_irqs & BXT_DE_PORT_HP_DDIB) &&
3382 intel_bios_is_port_hpd_inverted(dev_priv, PORT_B))
3383 hotplug |= BXT_DDIB_HPD_INVERT;
3384 if ((enabled_irqs & BXT_DE_PORT_HP_DDIC) &&
3385 intel_bios_is_port_hpd_inverted(dev_priv, PORT_C))
3386 hotplug |= BXT_DDIC_HPD_INVERT;
3388 I915_WRITE(PCH_PORT_HOTPLUG, hotplug);
3391 static void bxt_hpd_detection_setup(struct drm_i915_private *dev_priv)
3393 __bxt_hpd_detection_setup(dev_priv, BXT_DE_PORT_HOTPLUG_MASK);
3396 static void bxt_hpd_irq_setup(struct drm_i915_private *dev_priv)
3398 u32 hotplug_irqs, enabled_irqs;
3400 enabled_irqs = intel_hpd_enabled_irqs(dev_priv, hpd_bxt);
3401 hotplug_irqs = BXT_DE_PORT_HOTPLUG_MASK;
3403 bdw_update_port_irq(dev_priv, hotplug_irqs, enabled_irqs);
3405 __bxt_hpd_detection_setup(dev_priv, enabled_irqs);
3408 static void ibx_irq_postinstall(struct drm_device *dev)
3410 struct drm_i915_private *dev_priv = to_i915(dev);
3411 u32 mask;
3413 if (HAS_PCH_NOP(dev_priv))
3414 return;
3416 if (HAS_PCH_IBX(dev_priv))
3417 mask = SDE_GMBUS | SDE_AUX_MASK | SDE_POISON;
3418 else if (HAS_PCH_CPT(dev_priv) || HAS_PCH_LPT(dev_priv))
3419 mask = SDE_GMBUS_CPT | SDE_AUX_MASK_CPT;
3420 else
3421 mask = SDE_GMBUS_CPT;
3423 gen3_assert_iir_is_zero(dev_priv, SDEIIR);
3424 I915_WRITE(SDEIMR, ~mask);
3426 if (HAS_PCH_IBX(dev_priv) || HAS_PCH_CPT(dev_priv) ||
3427 HAS_PCH_LPT(dev_priv))
3428 ibx_hpd_detection_setup(dev_priv);
3429 else
3430 spt_hpd_detection_setup(dev_priv);
3433 static void gen5_gt_irq_postinstall(struct drm_device *dev)
3435 struct drm_i915_private *dev_priv = to_i915(dev);
3436 u32 pm_irqs, gt_irqs;
3438 pm_irqs = gt_irqs = 0;
3440 dev_priv->gt_irq_mask = ~0;
3441 if (HAS_L3_DPF(dev_priv)) {
3442 /* L3 parity interrupt is always unmasked. */
3443 dev_priv->gt_irq_mask = ~GT_PARITY_ERROR(dev_priv);
3444 gt_irqs |= GT_PARITY_ERROR(dev_priv);
3447 gt_irqs |= GT_RENDER_USER_INTERRUPT;
3448 if (IS_GEN5(dev_priv)) {
3449 gt_irqs |= ILK_BSD_USER_INTERRUPT;
3450 } else {
3451 gt_irqs |= GT_BLT_USER_INTERRUPT | GT_BSD_USER_INTERRUPT;
3454 GEN3_IRQ_INIT(GT, dev_priv->gt_irq_mask, gt_irqs);
3456 if (INTEL_GEN(dev_priv) >= 6) {
3458 * RPS interrupts will get enabled/disabled on demand when RPS
3459 * itself is enabled/disabled.
3461 if (HAS_VEBOX(dev_priv)) {
3462 pm_irqs |= PM_VEBOX_USER_INTERRUPT;
3463 dev_priv->pm_ier |= PM_VEBOX_USER_INTERRUPT;
3466 dev_priv->pm_imr = 0xffffffff;
3467 GEN3_IRQ_INIT(GEN6_PM, dev_priv->pm_imr, pm_irqs);
3471 static int ironlake_irq_postinstall(struct drm_device *dev)
3473 struct drm_i915_private *dev_priv = to_i915(dev);
3474 u32 display_mask, extra_mask;
3476 if (INTEL_GEN(dev_priv) >= 7) {
3477 display_mask = (DE_MASTER_IRQ_CONTROL | DE_GSE_IVB |
3478 DE_PCH_EVENT_IVB | DE_AUX_CHANNEL_A_IVB);
3479 extra_mask = (DE_PIPEC_VBLANK_IVB | DE_PIPEB_VBLANK_IVB |
3480 DE_PIPEA_VBLANK_IVB | DE_ERR_INT_IVB |
3481 DE_DP_A_HOTPLUG_IVB);
3482 } else {
3483 display_mask = (DE_MASTER_IRQ_CONTROL | DE_GSE | DE_PCH_EVENT |
3484 DE_AUX_CHANNEL_A | DE_PIPEB_CRC_DONE |
3485 DE_PIPEA_CRC_DONE | DE_POISON);
3486 extra_mask = (DE_PIPEA_VBLANK | DE_PIPEB_VBLANK | DE_PCU_EVENT |
3487 DE_PIPEB_FIFO_UNDERRUN | DE_PIPEA_FIFO_UNDERRUN |
3488 DE_DP_A_HOTPLUG);
3491 dev_priv->irq_mask = ~display_mask;
3493 ibx_irq_pre_postinstall(dev);
3495 GEN3_IRQ_INIT(DE, dev_priv->irq_mask, display_mask | extra_mask);
3497 gen5_gt_irq_postinstall(dev);
3499 ilk_hpd_detection_setup(dev_priv);
3501 ibx_irq_postinstall(dev);
3503 if (IS_IRONLAKE_M(dev_priv)) {
3504 /* Enable PCU event interrupts
3506 * spinlocking not required here for correctness since interrupt
3507 * setup is guaranteed to run in single-threaded context. But we
3508 * need it to make the assert_spin_locked happy. */
3509 spin_lock_irq(&dev_priv->irq_lock);
3510 ilk_enable_display_irq(dev_priv, DE_PCU_EVENT);
3511 spin_unlock_irq(&dev_priv->irq_lock);
3514 return 0;
3517 void valleyview_enable_display_irqs(struct drm_i915_private *dev_priv)
3519 lockdep_assert_held(&dev_priv->irq_lock);
3521 if (dev_priv->display_irqs_enabled)
3522 return;
3524 dev_priv->display_irqs_enabled = true;
3526 if (intel_irqs_enabled(dev_priv)) {
3527 vlv_display_irq_reset(dev_priv);
3528 vlv_display_irq_postinstall(dev_priv);
3532 void valleyview_disable_display_irqs(struct drm_i915_private *dev_priv)
3534 lockdep_assert_held(&dev_priv->irq_lock);
3536 if (!dev_priv->display_irqs_enabled)
3537 return;
3539 dev_priv->display_irqs_enabled = false;
3541 if (intel_irqs_enabled(dev_priv))
3542 vlv_display_irq_reset(dev_priv);
3546 static int valleyview_irq_postinstall(struct drm_device *dev)
3548 struct drm_i915_private *dev_priv = to_i915(dev);
3550 gen5_gt_irq_postinstall(dev);
3552 spin_lock_irq(&dev_priv->irq_lock);
3553 if (dev_priv->display_irqs_enabled)
3554 vlv_display_irq_postinstall(dev_priv);
3555 spin_unlock_irq(&dev_priv->irq_lock);
3557 I915_WRITE(VLV_MASTER_IER, MASTER_INTERRUPT_ENABLE);
3558 POSTING_READ(VLV_MASTER_IER);
3560 return 0;
3563 static void gen8_gt_irq_postinstall(struct drm_i915_private *dev_priv)
3565 /* These are interrupts we'll toggle with the ring mask register */
3566 uint32_t gt_interrupts[] = {
3567 GT_RENDER_USER_INTERRUPT << GEN8_RCS_IRQ_SHIFT |
3568 GT_CONTEXT_SWITCH_INTERRUPT << GEN8_RCS_IRQ_SHIFT |
3569 GT_RENDER_USER_INTERRUPT << GEN8_BCS_IRQ_SHIFT |
3570 GT_CONTEXT_SWITCH_INTERRUPT << GEN8_BCS_IRQ_SHIFT,
3571 GT_RENDER_USER_INTERRUPT << GEN8_VCS1_IRQ_SHIFT |
3572 GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VCS1_IRQ_SHIFT |
3573 GT_RENDER_USER_INTERRUPT << GEN8_VCS2_IRQ_SHIFT |
3574 GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VCS2_IRQ_SHIFT,
3576 GT_RENDER_USER_INTERRUPT << GEN8_VECS_IRQ_SHIFT |
3577 GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VECS_IRQ_SHIFT
3580 if (HAS_L3_DPF(dev_priv))
3581 gt_interrupts[0] |= GT_RENDER_L3_PARITY_ERROR_INTERRUPT;
3583 dev_priv->pm_ier = 0x0;
3584 dev_priv->pm_imr = ~dev_priv->pm_ier;
3585 GEN8_IRQ_INIT_NDX(GT, 0, ~gt_interrupts[0], gt_interrupts[0]);
3586 GEN8_IRQ_INIT_NDX(GT, 1, ~gt_interrupts[1], gt_interrupts[1]);
3588 * RPS interrupts will get enabled/disabled on demand when RPS itself
3589 * is enabled/disabled. Same wil be the case for GuC interrupts.
3591 GEN8_IRQ_INIT_NDX(GT, 2, dev_priv->pm_imr, dev_priv->pm_ier);
3592 GEN8_IRQ_INIT_NDX(GT, 3, ~gt_interrupts[3], gt_interrupts[3]);
3595 static void gen8_de_irq_postinstall(struct drm_i915_private *dev_priv)
3597 uint32_t de_pipe_masked = GEN8_PIPE_CDCLK_CRC_DONE;
3598 uint32_t de_pipe_enables;
3599 u32 de_port_masked = GEN8_AUX_CHANNEL_A;
3600 u32 de_port_enables;
3601 u32 de_misc_masked = GEN8_DE_MISC_GSE;
3602 enum pipe pipe;
3604 if (INTEL_GEN(dev_priv) >= 9) {
3605 de_pipe_masked |= GEN9_DE_PIPE_IRQ_FAULT_ERRORS;
3606 de_port_masked |= GEN9_AUX_CHANNEL_B | GEN9_AUX_CHANNEL_C |
3607 GEN9_AUX_CHANNEL_D;
3608 if (IS_GEN9_LP(dev_priv))
3609 de_port_masked |= BXT_DE_PORT_GMBUS;
3610 } else {
3611 de_pipe_masked |= GEN8_DE_PIPE_IRQ_FAULT_ERRORS;
3614 de_pipe_enables = de_pipe_masked | GEN8_PIPE_VBLANK |
3615 GEN8_PIPE_FIFO_UNDERRUN;
3617 de_port_enables = de_port_masked;
3618 if (IS_GEN9_LP(dev_priv))
3619 de_port_enables |= BXT_DE_PORT_HOTPLUG_MASK;
3620 else if (IS_BROADWELL(dev_priv))
3621 de_port_enables |= GEN8_PORT_DP_A_HOTPLUG;
3623 for_each_pipe(dev_priv, pipe) {
3624 dev_priv->de_irq_mask[pipe] = ~de_pipe_masked;
3626 if (intel_display_power_is_enabled(dev_priv,
3627 POWER_DOMAIN_PIPE(pipe)))
3628 GEN8_IRQ_INIT_NDX(DE_PIPE, pipe,
3629 dev_priv->de_irq_mask[pipe],
3630 de_pipe_enables);
3633 GEN3_IRQ_INIT(GEN8_DE_PORT_, ~de_port_masked, de_port_enables);
3634 GEN3_IRQ_INIT(GEN8_DE_MISC_, ~de_misc_masked, de_misc_masked);
3636 if (IS_GEN9_LP(dev_priv))
3637 bxt_hpd_detection_setup(dev_priv);
3638 else if (IS_BROADWELL(dev_priv))
3639 ilk_hpd_detection_setup(dev_priv);
3642 static int gen8_irq_postinstall(struct drm_device *dev)
3644 struct drm_i915_private *dev_priv = to_i915(dev);
3646 if (HAS_PCH_SPLIT(dev_priv))
3647 ibx_irq_pre_postinstall(dev);
3649 gen8_gt_irq_postinstall(dev_priv);
3650 gen8_de_irq_postinstall(dev_priv);
3652 if (HAS_PCH_SPLIT(dev_priv))
3653 ibx_irq_postinstall(dev);
3655 I915_WRITE(GEN8_MASTER_IRQ, GEN8_MASTER_IRQ_CONTROL);
3656 POSTING_READ(GEN8_MASTER_IRQ);
3658 return 0;
3661 static int cherryview_irq_postinstall(struct drm_device *dev)
3663 struct drm_i915_private *dev_priv = to_i915(dev);
3665 gen8_gt_irq_postinstall(dev_priv);
3667 spin_lock_irq(&dev_priv->irq_lock);
3668 if (dev_priv->display_irqs_enabled)
3669 vlv_display_irq_postinstall(dev_priv);
3670 spin_unlock_irq(&dev_priv->irq_lock);
3672 I915_WRITE(GEN8_MASTER_IRQ, GEN8_MASTER_IRQ_CONTROL);
3673 POSTING_READ(GEN8_MASTER_IRQ);
3675 return 0;
3678 static void i8xx_irq_reset(struct drm_device *dev)
3680 struct drm_i915_private *dev_priv = to_i915(dev);
3682 i9xx_pipestat_irq_reset(dev_priv);
3684 I915_WRITE16(HWSTAM, 0xffff);
3686 GEN2_IRQ_RESET();
3689 static int i8xx_irq_postinstall(struct drm_device *dev)
3691 struct drm_i915_private *dev_priv = to_i915(dev);
3692 u16 enable_mask;
3694 I915_WRITE16(EMR, ~(I915_ERROR_PAGE_TABLE |
3695 I915_ERROR_MEMORY_REFRESH));
3697 /* Unmask the interrupts that we always want on. */
3698 dev_priv->irq_mask =
3699 ~(I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3700 I915_DISPLAY_PIPE_B_EVENT_INTERRUPT);
3702 enable_mask =
3703 I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3704 I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
3705 I915_USER_INTERRUPT;
3707 GEN2_IRQ_INIT(, dev_priv->irq_mask, enable_mask);
3709 /* Interrupt setup is already guaranteed to be single-threaded, this is
3710 * just to make the assert_spin_locked check happy. */
3711 spin_lock_irq(&dev_priv->irq_lock);
3712 i915_enable_pipestat(dev_priv, PIPE_A, PIPE_CRC_DONE_INTERRUPT_STATUS);
3713 i915_enable_pipestat(dev_priv, PIPE_B, PIPE_CRC_DONE_INTERRUPT_STATUS);
3714 spin_unlock_irq(&dev_priv->irq_lock);
3716 return 0;
3719 static irqreturn_t i8xx_irq_handler(int irq, void *arg)
3721 struct drm_device *dev = arg;
3722 struct drm_i915_private *dev_priv = to_i915(dev);
3723 irqreturn_t ret = IRQ_NONE;
3725 if (!intel_irqs_enabled(dev_priv))
3726 return IRQ_NONE;
3728 /* IRQs are synced during runtime_suspend, we don't require a wakeref */
3729 disable_rpm_wakeref_asserts(dev_priv);
3731 do {
3732 u32 pipe_stats[I915_MAX_PIPES] = {};
3733 u16 iir;
3735 iir = I915_READ16(IIR);
3736 if (iir == 0)
3737 break;
3739 ret = IRQ_HANDLED;
3741 /* Call regardless, as some status bits might not be
3742 * signalled in iir */
3743 i9xx_pipestat_irq_ack(dev_priv, iir, pipe_stats);
3745 I915_WRITE16(IIR, iir);
3747 if (iir & I915_USER_INTERRUPT)
3748 notify_ring(dev_priv->engine[RCS]);
3750 if (iir & I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT)
3751 DRM_DEBUG("Command parser error, iir 0x%08x\n", iir);
3753 i8xx_pipestat_irq_handler(dev_priv, iir, pipe_stats);
3754 } while (0);
3756 enable_rpm_wakeref_asserts(dev_priv);
3758 return ret;
3761 static void i915_irq_reset(struct drm_device *dev)
3763 struct drm_i915_private *dev_priv = to_i915(dev);
3765 if (I915_HAS_HOTPLUG(dev_priv)) {
3766 i915_hotplug_interrupt_update(dev_priv, 0xffffffff, 0);
3767 I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
3770 i9xx_pipestat_irq_reset(dev_priv);
3772 I915_WRITE(HWSTAM, 0xffffffff);
3774 GEN3_IRQ_RESET();
3777 static int i915_irq_postinstall(struct drm_device *dev)
3779 struct drm_i915_private *dev_priv = to_i915(dev);
3780 u32 enable_mask;
3782 I915_WRITE(EMR, ~(I915_ERROR_PAGE_TABLE |
3783 I915_ERROR_MEMORY_REFRESH));
3785 /* Unmask the interrupts that we always want on. */
3786 dev_priv->irq_mask =
3787 ~(I915_ASLE_INTERRUPT |
3788 I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3789 I915_DISPLAY_PIPE_B_EVENT_INTERRUPT);
3791 enable_mask =
3792 I915_ASLE_INTERRUPT |
3793 I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3794 I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
3795 I915_USER_INTERRUPT;
3797 if (I915_HAS_HOTPLUG(dev_priv)) {
3798 /* Enable in IER... */
3799 enable_mask |= I915_DISPLAY_PORT_INTERRUPT;
3800 /* and unmask in IMR */
3801 dev_priv->irq_mask &= ~I915_DISPLAY_PORT_INTERRUPT;
3804 GEN3_IRQ_INIT(, dev_priv->irq_mask, enable_mask);
3806 /* Interrupt setup is already guaranteed to be single-threaded, this is
3807 * just to make the assert_spin_locked check happy. */
3808 spin_lock_irq(&dev_priv->irq_lock);
3809 i915_enable_pipestat(dev_priv, PIPE_A, PIPE_CRC_DONE_INTERRUPT_STATUS);
3810 i915_enable_pipestat(dev_priv, PIPE_B, PIPE_CRC_DONE_INTERRUPT_STATUS);
3811 spin_unlock_irq(&dev_priv->irq_lock);
3813 i915_enable_asle_pipestat(dev_priv);
3815 return 0;
3818 static irqreturn_t i915_irq_handler(int irq, void *arg)
3820 struct drm_device *dev = arg;
3821 struct drm_i915_private *dev_priv = to_i915(dev);
3822 irqreturn_t ret = IRQ_NONE;
3824 if (!intel_irqs_enabled(dev_priv))
3825 return IRQ_NONE;
3827 /* IRQs are synced during runtime_suspend, we don't require a wakeref */
3828 disable_rpm_wakeref_asserts(dev_priv);
3830 do {
3831 u32 pipe_stats[I915_MAX_PIPES] = {};
3832 u32 hotplug_status = 0;
3833 u32 iir;
3835 iir = I915_READ(IIR);
3836 if (iir == 0)
3837 break;
3839 ret = IRQ_HANDLED;
3841 if (I915_HAS_HOTPLUG(dev_priv) &&
3842 iir & I915_DISPLAY_PORT_INTERRUPT)
3843 hotplug_status = i9xx_hpd_irq_ack(dev_priv);
3845 /* Call regardless, as some status bits might not be
3846 * signalled in iir */
3847 i9xx_pipestat_irq_ack(dev_priv, iir, pipe_stats);
3849 I915_WRITE(IIR, iir);
3851 if (iir & I915_USER_INTERRUPT)
3852 notify_ring(dev_priv->engine[RCS]);
3854 if (iir & I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT)
3855 DRM_DEBUG("Command parser error, iir 0x%08x\n", iir);
3857 if (hotplug_status)
3858 i9xx_hpd_irq_handler(dev_priv, hotplug_status);
3860 i915_pipestat_irq_handler(dev_priv, iir, pipe_stats);
3861 } while (0);
3863 enable_rpm_wakeref_asserts(dev_priv);
3865 return ret;
3868 static void i965_irq_reset(struct drm_device *dev)
3870 struct drm_i915_private *dev_priv = to_i915(dev);
3872 i915_hotplug_interrupt_update(dev_priv, 0xffffffff, 0);
3873 I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
3875 i9xx_pipestat_irq_reset(dev_priv);
3877 I915_WRITE(HWSTAM, 0xffffffff);
3879 GEN3_IRQ_RESET();
3882 static int i965_irq_postinstall(struct drm_device *dev)
3884 struct drm_i915_private *dev_priv = to_i915(dev);
3885 u32 enable_mask;
3886 u32 error_mask;
3889 * Enable some error detection, note the instruction error mask
3890 * bit is reserved, so we leave it masked.
3892 if (IS_G4X(dev_priv)) {
3893 error_mask = ~(GM45_ERROR_PAGE_TABLE |
3894 GM45_ERROR_MEM_PRIV |
3895 GM45_ERROR_CP_PRIV |
3896 I915_ERROR_MEMORY_REFRESH);
3897 } else {
3898 error_mask = ~(I915_ERROR_PAGE_TABLE |
3899 I915_ERROR_MEMORY_REFRESH);
3901 I915_WRITE(EMR, error_mask);
3903 /* Unmask the interrupts that we always want on. */
3904 dev_priv->irq_mask =
3905 ~(I915_ASLE_INTERRUPT |
3906 I915_DISPLAY_PORT_INTERRUPT |
3907 I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3908 I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
3909 I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT);
3911 enable_mask =
3912 I915_ASLE_INTERRUPT |
3913 I915_DISPLAY_PORT_INTERRUPT |
3914 I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3915 I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
3916 I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT |
3917 I915_USER_INTERRUPT;
3919 if (IS_G4X(dev_priv))
3920 enable_mask |= I915_BSD_USER_INTERRUPT;
3922 GEN3_IRQ_INIT(, dev_priv->irq_mask, enable_mask);
3924 /* Interrupt setup is already guaranteed to be single-threaded, this is
3925 * just to make the assert_spin_locked check happy. */
3926 spin_lock_irq(&dev_priv->irq_lock);
3927 i915_enable_pipestat(dev_priv, PIPE_A, PIPE_GMBUS_INTERRUPT_STATUS);
3928 i915_enable_pipestat(dev_priv, PIPE_A, PIPE_CRC_DONE_INTERRUPT_STATUS);
3929 i915_enable_pipestat(dev_priv, PIPE_B, PIPE_CRC_DONE_INTERRUPT_STATUS);
3930 spin_unlock_irq(&dev_priv->irq_lock);
3932 i915_enable_asle_pipestat(dev_priv);
3934 return 0;
3937 static void i915_hpd_irq_setup(struct drm_i915_private *dev_priv)
3939 u32 hotplug_en;
3941 lockdep_assert_held(&dev_priv->irq_lock);
3943 /* Note HDMI and DP share hotplug bits */
3944 /* enable bits are the same for all generations */
3945 hotplug_en = intel_hpd_enabled_irqs(dev_priv, hpd_mask_i915);
3946 /* Programming the CRT detection parameters tends
3947 to generate a spurious hotplug event about three
3948 seconds later. So just do it once.
3950 if (IS_G4X(dev_priv))
3951 hotplug_en |= CRT_HOTPLUG_ACTIVATION_PERIOD_64;
3952 hotplug_en |= CRT_HOTPLUG_VOLTAGE_COMPARE_50;
3954 /* Ignore TV since it's buggy */
3955 i915_hotplug_interrupt_update_locked(dev_priv,
3956 HOTPLUG_INT_EN_MASK |
3957 CRT_HOTPLUG_VOLTAGE_COMPARE_MASK |
3958 CRT_HOTPLUG_ACTIVATION_PERIOD_64,
3959 hotplug_en);
3962 static irqreturn_t i965_irq_handler(int irq, void *arg)
3964 struct drm_device *dev = arg;
3965 struct drm_i915_private *dev_priv = to_i915(dev);
3966 irqreturn_t ret = IRQ_NONE;
3968 if (!intel_irqs_enabled(dev_priv))
3969 return IRQ_NONE;
3971 /* IRQs are synced during runtime_suspend, we don't require a wakeref */
3972 disable_rpm_wakeref_asserts(dev_priv);
3974 do {
3975 u32 pipe_stats[I915_MAX_PIPES] = {};
3976 u32 hotplug_status = 0;
3977 u32 iir;
3979 iir = I915_READ(IIR);
3980 if (iir == 0)
3981 break;
3983 ret = IRQ_HANDLED;
3985 if (iir & I915_DISPLAY_PORT_INTERRUPT)
3986 hotplug_status = i9xx_hpd_irq_ack(dev_priv);
3988 /* Call regardless, as some status bits might not be
3989 * signalled in iir */
3990 i9xx_pipestat_irq_ack(dev_priv, iir, pipe_stats);
3992 I915_WRITE(IIR, iir);
3994 if (iir & I915_USER_INTERRUPT)
3995 notify_ring(dev_priv->engine[RCS]);
3997 if (iir & I915_BSD_USER_INTERRUPT)
3998 notify_ring(dev_priv->engine[VCS]);
4000 if (iir & I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT)
4001 DRM_DEBUG("Command parser error, iir 0x%08x\n", iir);
4003 if (hotplug_status)
4004 i9xx_hpd_irq_handler(dev_priv, hotplug_status);
4006 i965_pipestat_irq_handler(dev_priv, iir, pipe_stats);
4007 } while (0);
4009 enable_rpm_wakeref_asserts(dev_priv);
4011 return ret;
4015 * intel_irq_init - initializes irq support
4016 * @dev_priv: i915 device instance
4018 * This function initializes all the irq support including work items, timers
4019 * and all the vtables. It does not setup the interrupt itself though.
4021 void intel_irq_init(struct drm_i915_private *dev_priv)
4023 struct drm_device *dev = &dev_priv->drm;
4024 struct intel_rps *rps = &dev_priv->gt_pm.rps;
4025 int i;
4027 intel_hpd_init_work(dev_priv);
4029 INIT_WORK(&rps->work, gen6_pm_rps_work);
4031 INIT_WORK(&dev_priv->l3_parity.error_work, ivybridge_parity_work);
4032 for (i = 0; i < MAX_L3_SLICES; ++i)
4033 dev_priv->l3_parity.remap_info[i] = NULL;
4035 if (HAS_GUC_SCHED(dev_priv))
4036 dev_priv->pm_guc_events = GEN9_GUC_TO_HOST_INT_EVENT;
4038 /* Let's track the enabled rps events */
4039 if (IS_VALLEYVIEW(dev_priv))
4040 /* WaGsvRC0ResidencyMethod:vlv */
4041 dev_priv->pm_rps_events = GEN6_PM_RP_UP_EI_EXPIRED;
4042 else
4043 dev_priv->pm_rps_events = GEN6_PM_RPS_EVENTS;
4045 rps->pm_intrmsk_mbz = 0;
4048 * SNB,IVB,HSW can while VLV,CHV may hard hang on looping batchbuffer
4049 * if GEN6_PM_UP_EI_EXPIRED is masked.
4051 * TODO: verify if this can be reproduced on VLV,CHV.
4053 if (INTEL_GEN(dev_priv) <= 7)
4054 rps->pm_intrmsk_mbz |= GEN6_PM_RP_UP_EI_EXPIRED;
4056 if (INTEL_GEN(dev_priv) >= 8)
4057 rps->pm_intrmsk_mbz |= GEN8_PMINTR_DISABLE_REDIRECT_TO_GUC;
4059 if (IS_GEN2(dev_priv)) {
4060 /* Gen2 doesn't have a hardware frame counter */
4061 dev->max_vblank_count = 0;
4062 } else if (IS_G4X(dev_priv) || INTEL_GEN(dev_priv) >= 5) {
4063 dev->max_vblank_count = 0xffffffff; /* full 32 bit counter */
4064 dev->driver->get_vblank_counter = g4x_get_vblank_counter;
4065 } else {
4066 dev->driver->get_vblank_counter = i915_get_vblank_counter;
4067 dev->max_vblank_count = 0xffffff; /* only 24 bits of frame count */
4071 * Opt out of the vblank disable timer on everything except gen2.
4072 * Gen2 doesn't have a hardware frame counter and so depends on
4073 * vblank interrupts to produce sane vblank seuquence numbers.
4075 if (!IS_GEN2(dev_priv))
4076 dev->vblank_disable_immediate = true;
4078 /* Most platforms treat the display irq block as an always-on
4079 * power domain. vlv/chv can disable it at runtime and need
4080 * special care to avoid writing any of the display block registers
4081 * outside of the power domain. We defer setting up the display irqs
4082 * in this case to the runtime pm.
4084 dev_priv->display_irqs_enabled = true;
4085 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
4086 dev_priv->display_irqs_enabled = false;
4088 dev_priv->hotplug.hpd_storm_threshold = HPD_STORM_DEFAULT_THRESHOLD;
4090 dev->driver->get_vblank_timestamp = drm_calc_vbltimestamp_from_scanoutpos;
4091 dev->driver->get_scanout_position = i915_get_crtc_scanoutpos;
4093 if (IS_CHERRYVIEW(dev_priv)) {
4094 dev->driver->irq_handler = cherryview_irq_handler;
4095 dev->driver->irq_preinstall = cherryview_irq_reset;
4096 dev->driver->irq_postinstall = cherryview_irq_postinstall;
4097 dev->driver->irq_uninstall = cherryview_irq_reset;
4098 dev->driver->enable_vblank = i965_enable_vblank;
4099 dev->driver->disable_vblank = i965_disable_vblank;
4100 dev_priv->display.hpd_irq_setup = i915_hpd_irq_setup;
4101 } else if (IS_VALLEYVIEW(dev_priv)) {
4102 dev->driver->irq_handler = valleyview_irq_handler;
4103 dev->driver->irq_preinstall = valleyview_irq_reset;
4104 dev->driver->irq_postinstall = valleyview_irq_postinstall;
4105 dev->driver->irq_uninstall = valleyview_irq_reset;
4106 dev->driver->enable_vblank = i965_enable_vblank;
4107 dev->driver->disable_vblank = i965_disable_vblank;
4108 dev_priv->display.hpd_irq_setup = i915_hpd_irq_setup;
4109 } else if (INTEL_GEN(dev_priv) >= 8) {
4110 dev->driver->irq_handler = gen8_irq_handler;
4111 dev->driver->irq_preinstall = gen8_irq_reset;
4112 dev->driver->irq_postinstall = gen8_irq_postinstall;
4113 dev->driver->irq_uninstall = gen8_irq_reset;
4114 dev->driver->enable_vblank = gen8_enable_vblank;
4115 dev->driver->disable_vblank = gen8_disable_vblank;
4116 if (IS_GEN9_LP(dev_priv))
4117 dev_priv->display.hpd_irq_setup = bxt_hpd_irq_setup;
4118 else if (HAS_PCH_SPT(dev_priv) || HAS_PCH_KBP(dev_priv) ||
4119 HAS_PCH_CNP(dev_priv))
4120 dev_priv->display.hpd_irq_setup = spt_hpd_irq_setup;
4121 else
4122 dev_priv->display.hpd_irq_setup = ilk_hpd_irq_setup;
4123 } else if (HAS_PCH_SPLIT(dev_priv)) {
4124 dev->driver->irq_handler = ironlake_irq_handler;
4125 dev->driver->irq_preinstall = ironlake_irq_reset;
4126 dev->driver->irq_postinstall = ironlake_irq_postinstall;
4127 dev->driver->irq_uninstall = ironlake_irq_reset;
4128 dev->driver->enable_vblank = ironlake_enable_vblank;
4129 dev->driver->disable_vblank = ironlake_disable_vblank;
4130 dev_priv->display.hpd_irq_setup = ilk_hpd_irq_setup;
4131 } else {
4132 if (IS_GEN2(dev_priv)) {
4133 dev->driver->irq_preinstall = i8xx_irq_reset;
4134 dev->driver->irq_postinstall = i8xx_irq_postinstall;
4135 dev->driver->irq_handler = i8xx_irq_handler;
4136 dev->driver->irq_uninstall = i8xx_irq_reset;
4137 dev->driver->enable_vblank = i8xx_enable_vblank;
4138 dev->driver->disable_vblank = i8xx_disable_vblank;
4139 } else if (IS_GEN3(dev_priv)) {
4140 dev->driver->irq_preinstall = i915_irq_reset;
4141 dev->driver->irq_postinstall = i915_irq_postinstall;
4142 dev->driver->irq_uninstall = i915_irq_reset;
4143 dev->driver->irq_handler = i915_irq_handler;
4144 dev->driver->enable_vblank = i8xx_enable_vblank;
4145 dev->driver->disable_vblank = i8xx_disable_vblank;
4146 } else {
4147 dev->driver->irq_preinstall = i965_irq_reset;
4148 dev->driver->irq_postinstall = i965_irq_postinstall;
4149 dev->driver->irq_uninstall = i965_irq_reset;
4150 dev->driver->irq_handler = i965_irq_handler;
4151 dev->driver->enable_vblank = i965_enable_vblank;
4152 dev->driver->disable_vblank = i965_disable_vblank;
4154 if (I915_HAS_HOTPLUG(dev_priv))
4155 dev_priv->display.hpd_irq_setup = i915_hpd_irq_setup;
4160 * intel_irq_fini - deinitializes IRQ support
4161 * @i915: i915 device instance
4163 * This function deinitializes all the IRQ support.
4165 void intel_irq_fini(struct drm_i915_private *i915)
4167 int i;
4169 for (i = 0; i < MAX_L3_SLICES; ++i)
4170 kfree(i915->l3_parity.remap_info[i]);
4174 * intel_irq_install - enables the hardware interrupt
4175 * @dev_priv: i915 device instance
4177 * This function enables the hardware interrupt handling, but leaves the hotplug
4178 * handling still disabled. It is called after intel_irq_init().
4180 * In the driver load and resume code we need working interrupts in a few places
4181 * but don't want to deal with the hassle of concurrent probe and hotplug
4182 * workers. Hence the split into this two-stage approach.
4184 int intel_irq_install(struct drm_i915_private *dev_priv)
4187 * We enable some interrupt sources in our postinstall hooks, so mark
4188 * interrupts as enabled _before_ actually enabling them to avoid
4189 * special cases in our ordering checks.
4191 dev_priv->runtime_pm.irqs_enabled = true;
4193 return drm_irq_install(&dev_priv->drm, dev_priv->drm.pdev->irq);
4197 * intel_irq_uninstall - finilizes all irq handling
4198 * @dev_priv: i915 device instance
4200 * This stops interrupt and hotplug handling and unregisters and frees all
4201 * resources acquired in the init functions.
4203 void intel_irq_uninstall(struct drm_i915_private *dev_priv)
4205 drm_irq_uninstall(&dev_priv->drm);
4206 intel_hpd_cancel_work(dev_priv);
4207 dev_priv->runtime_pm.irqs_enabled = false;
4211 * intel_runtime_pm_disable_interrupts - runtime interrupt disabling
4212 * @dev_priv: i915 device instance
4214 * This function is used to disable interrupts at runtime, both in the runtime
4215 * pm and the system suspend/resume code.
4217 void intel_runtime_pm_disable_interrupts(struct drm_i915_private *dev_priv)
4219 dev_priv->drm.driver->irq_uninstall(&dev_priv->drm);
4220 dev_priv->runtime_pm.irqs_enabled = false;
4221 synchronize_irq(dev_priv->drm.irq);
4225 * intel_runtime_pm_enable_interrupts - runtime interrupt enabling
4226 * @dev_priv: i915 device instance
4228 * This function is used to enable interrupts at runtime, both in the runtime
4229 * pm and the system suspend/resume code.
4231 void intel_runtime_pm_enable_interrupts(struct drm_i915_private *dev_priv)
4233 dev_priv->runtime_pm.irqs_enabled = true;
4234 dev_priv->drm.driver->irq_preinstall(&dev_priv->drm);
4235 dev_priv->drm.driver->irq_postinstall(&dev_priv->drm);