1 /* i915_irq.c -- IRQ support for the I915 -*- linux-c -*-
4 * Copyright 2003 Tungsten Graphics, Inc., Cedar Park, Texas.
7 * Permission is hereby granted, free of charge, to any person obtaining a
8 * copy of this software and associated documentation files (the
9 * "Software"), to deal in the Software without restriction, including
10 * without limitation the rights to use, copy, modify, merge, publish,
11 * distribute, sub license, and/or sell copies of the Software, and to
12 * permit persons to whom the Software is furnished to do so, subject to
13 * the following conditions:
15 * The above copyright notice and this permission notice (including the
16 * next paragraph) shall be included in all copies or substantial portions
19 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
20 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
21 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
22 * IN NO EVENT SHALL TUNGSTEN GRAPHICS AND/OR ITS SUPPLIERS BE LIABLE FOR
23 * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
24 * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
25 * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
29 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
31 #include <linux/sysrq.h>
32 #include <linux/slab.h>
33 #include <linux/circ_buf.h>
35 #include <drm/i915_drm.h>
37 #include "i915_trace.h"
38 #include "intel_drv.h"
41 * DOC: interrupt handling
43 * These functions provide the basic support for enabling and disabling the
44 * interrupt handling support. There's a lot more functionality in i915_irq.c
45 * and related files, but that will be described in separate chapters.
48 static const u32 hpd_ilk
[HPD_NUM_PINS
] = {
49 [HPD_PORT_A
] = DE_DP_A_HOTPLUG
,
52 static const u32 hpd_ivb
[HPD_NUM_PINS
] = {
53 [HPD_PORT_A
] = DE_DP_A_HOTPLUG_IVB
,
56 static const u32 hpd_bdw
[HPD_NUM_PINS
] = {
57 [HPD_PORT_A
] = GEN8_PORT_DP_A_HOTPLUG
,
60 static const u32 hpd_ibx
[HPD_NUM_PINS
] = {
61 [HPD_CRT
] = SDE_CRT_HOTPLUG
,
62 [HPD_SDVO_B
] = SDE_SDVOB_HOTPLUG
,
63 [HPD_PORT_B
] = SDE_PORTB_HOTPLUG
,
64 [HPD_PORT_C
] = SDE_PORTC_HOTPLUG
,
65 [HPD_PORT_D
] = SDE_PORTD_HOTPLUG
68 static const u32 hpd_cpt
[HPD_NUM_PINS
] = {
69 [HPD_CRT
] = SDE_CRT_HOTPLUG_CPT
,
70 [HPD_SDVO_B
] = SDE_SDVOB_HOTPLUG_CPT
,
71 [HPD_PORT_B
] = SDE_PORTB_HOTPLUG_CPT
,
72 [HPD_PORT_C
] = SDE_PORTC_HOTPLUG_CPT
,
73 [HPD_PORT_D
] = SDE_PORTD_HOTPLUG_CPT
76 static const u32 hpd_spt
[HPD_NUM_PINS
] = {
77 [HPD_PORT_A
] = SDE_PORTA_HOTPLUG_SPT
,
78 [HPD_PORT_B
] = SDE_PORTB_HOTPLUG_CPT
,
79 [HPD_PORT_C
] = SDE_PORTC_HOTPLUG_CPT
,
80 [HPD_PORT_D
] = SDE_PORTD_HOTPLUG_CPT
,
81 [HPD_PORT_E
] = SDE_PORTE_HOTPLUG_SPT
84 static const u32 hpd_mask_i915
[HPD_NUM_PINS
] = {
85 [HPD_CRT
] = CRT_HOTPLUG_INT_EN
,
86 [HPD_SDVO_B
] = SDVOB_HOTPLUG_INT_EN
,
87 [HPD_SDVO_C
] = SDVOC_HOTPLUG_INT_EN
,
88 [HPD_PORT_B
] = PORTB_HOTPLUG_INT_EN
,
89 [HPD_PORT_C
] = PORTC_HOTPLUG_INT_EN
,
90 [HPD_PORT_D
] = PORTD_HOTPLUG_INT_EN
93 static const u32 hpd_status_g4x
[HPD_NUM_PINS
] = {
94 [HPD_CRT
] = CRT_HOTPLUG_INT_STATUS
,
95 [HPD_SDVO_B
] = SDVOB_HOTPLUG_INT_STATUS_G4X
,
96 [HPD_SDVO_C
] = SDVOC_HOTPLUG_INT_STATUS_G4X
,
97 [HPD_PORT_B
] = PORTB_HOTPLUG_INT_STATUS
,
98 [HPD_PORT_C
] = PORTC_HOTPLUG_INT_STATUS
,
99 [HPD_PORT_D
] = PORTD_HOTPLUG_INT_STATUS
102 static const u32 hpd_status_i915
[HPD_NUM_PINS
] = {
103 [HPD_CRT
] = CRT_HOTPLUG_INT_STATUS
,
104 [HPD_SDVO_B
] = SDVOB_HOTPLUG_INT_STATUS_I915
,
105 [HPD_SDVO_C
] = SDVOC_HOTPLUG_INT_STATUS_I915
,
106 [HPD_PORT_B
] = PORTB_HOTPLUG_INT_STATUS
,
107 [HPD_PORT_C
] = PORTC_HOTPLUG_INT_STATUS
,
108 [HPD_PORT_D
] = PORTD_HOTPLUG_INT_STATUS
112 static const u32 hpd_bxt
[HPD_NUM_PINS
] = {
113 [HPD_PORT_A
] = BXT_DE_PORT_HP_DDIA
,
114 [HPD_PORT_B
] = BXT_DE_PORT_HP_DDIB
,
115 [HPD_PORT_C
] = BXT_DE_PORT_HP_DDIC
118 /* IIR can theoretically queue up two events. Be paranoid. */
119 #define GEN8_IRQ_RESET_NDX(type, which) do { \
120 I915_WRITE(GEN8_##type##_IMR(which), 0xffffffff); \
121 POSTING_READ(GEN8_##type##_IMR(which)); \
122 I915_WRITE(GEN8_##type##_IER(which), 0); \
123 I915_WRITE(GEN8_##type##_IIR(which), 0xffffffff); \
124 POSTING_READ(GEN8_##type##_IIR(which)); \
125 I915_WRITE(GEN8_##type##_IIR(which), 0xffffffff); \
126 POSTING_READ(GEN8_##type##_IIR(which)); \
129 #define GEN3_IRQ_RESET(type) do { \
130 I915_WRITE(type##IMR, 0xffffffff); \
131 POSTING_READ(type##IMR); \
132 I915_WRITE(type##IER, 0); \
133 I915_WRITE(type##IIR, 0xffffffff); \
134 POSTING_READ(type##IIR); \
135 I915_WRITE(type##IIR, 0xffffffff); \
136 POSTING_READ(type##IIR); \
139 #define GEN2_IRQ_RESET(type) do { \
140 I915_WRITE16(type##IMR, 0xffff); \
141 POSTING_READ16(type##IMR); \
142 I915_WRITE16(type##IER, 0); \
143 I915_WRITE16(type##IIR, 0xffff); \
144 POSTING_READ16(type##IIR); \
145 I915_WRITE16(type##IIR, 0xffff); \
146 POSTING_READ16(type##IIR); \
150 * We should clear IMR at preinstall/uninstall, and just check at postinstall.
152 static void gen3_assert_iir_is_zero(struct drm_i915_private
*dev_priv
,
155 u32 val
= I915_READ(reg
);
160 WARN(1, "Interrupt register 0x%x is not zero: 0x%08x\n",
161 i915_mmio_reg_offset(reg
), val
);
162 I915_WRITE(reg
, 0xffffffff);
164 I915_WRITE(reg
, 0xffffffff);
168 static void gen2_assert_iir_is_zero(struct drm_i915_private
*dev_priv
,
171 u16 val
= I915_READ16(reg
);
176 WARN(1, "Interrupt register 0x%x is not zero: 0x%08x\n",
177 i915_mmio_reg_offset(reg
), val
);
178 I915_WRITE16(reg
, 0xffff);
180 I915_WRITE16(reg
, 0xffff);
184 #define GEN8_IRQ_INIT_NDX(type, which, imr_val, ier_val) do { \
185 gen3_assert_iir_is_zero(dev_priv, GEN8_##type##_IIR(which)); \
186 I915_WRITE(GEN8_##type##_IER(which), (ier_val)); \
187 I915_WRITE(GEN8_##type##_IMR(which), (imr_val)); \
188 POSTING_READ(GEN8_##type##_IMR(which)); \
191 #define GEN3_IRQ_INIT(type, imr_val, ier_val) do { \
192 gen3_assert_iir_is_zero(dev_priv, type##IIR); \
193 I915_WRITE(type##IER, (ier_val)); \
194 I915_WRITE(type##IMR, (imr_val)); \
195 POSTING_READ(type##IMR); \
198 #define GEN2_IRQ_INIT(type, imr_val, ier_val) do { \
199 gen2_assert_iir_is_zero(dev_priv, type##IIR); \
200 I915_WRITE16(type##IER, (ier_val)); \
201 I915_WRITE16(type##IMR, (imr_val)); \
202 POSTING_READ16(type##IMR); \
205 static void gen6_rps_irq_handler(struct drm_i915_private
*dev_priv
, u32 pm_iir
);
206 static void gen9_guc_irq_handler(struct drm_i915_private
*dev_priv
, u32 pm_iir
);
208 /* For display hotplug interrupt */
210 i915_hotplug_interrupt_update_locked(struct drm_i915_private
*dev_priv
,
216 lockdep_assert_held(&dev_priv
->irq_lock
);
217 WARN_ON(bits
& ~mask
);
219 val
= I915_READ(PORT_HOTPLUG_EN
);
222 I915_WRITE(PORT_HOTPLUG_EN
, val
);
226 * i915_hotplug_interrupt_update - update hotplug interrupt enable
227 * @dev_priv: driver private
228 * @mask: bits to update
229 * @bits: bits to enable
230 * NOTE: the HPD enable bits are modified both inside and outside
231 * of an interrupt context. To avoid that read-modify-write cycles
232 * interfer, these bits are protected by a spinlock. Since this
233 * function is usually not called from a context where the lock is
234 * held already, this function acquires the lock itself. A non-locking
235 * version is also available.
237 void i915_hotplug_interrupt_update(struct drm_i915_private
*dev_priv
,
241 spin_lock_irq(&dev_priv
->irq_lock
);
242 i915_hotplug_interrupt_update_locked(dev_priv
, mask
, bits
);
243 spin_unlock_irq(&dev_priv
->irq_lock
);
247 * ilk_update_display_irq - update DEIMR
248 * @dev_priv: driver private
249 * @interrupt_mask: mask of interrupt bits to update
250 * @enabled_irq_mask: mask of interrupt bits to enable
252 void ilk_update_display_irq(struct drm_i915_private
*dev_priv
,
253 uint32_t interrupt_mask
,
254 uint32_t enabled_irq_mask
)
258 lockdep_assert_held(&dev_priv
->irq_lock
);
260 WARN_ON(enabled_irq_mask
& ~interrupt_mask
);
262 if (WARN_ON(!intel_irqs_enabled(dev_priv
)))
265 new_val
= dev_priv
->irq_mask
;
266 new_val
&= ~interrupt_mask
;
267 new_val
|= (~enabled_irq_mask
& interrupt_mask
);
269 if (new_val
!= dev_priv
->irq_mask
) {
270 dev_priv
->irq_mask
= new_val
;
271 I915_WRITE(DEIMR
, dev_priv
->irq_mask
);
277 * ilk_update_gt_irq - update GTIMR
278 * @dev_priv: driver private
279 * @interrupt_mask: mask of interrupt bits to update
280 * @enabled_irq_mask: mask of interrupt bits to enable
282 static void ilk_update_gt_irq(struct drm_i915_private
*dev_priv
,
283 uint32_t interrupt_mask
,
284 uint32_t enabled_irq_mask
)
286 lockdep_assert_held(&dev_priv
->irq_lock
);
288 WARN_ON(enabled_irq_mask
& ~interrupt_mask
);
290 if (WARN_ON(!intel_irqs_enabled(dev_priv
)))
293 dev_priv
->gt_irq_mask
&= ~interrupt_mask
;
294 dev_priv
->gt_irq_mask
|= (~enabled_irq_mask
& interrupt_mask
);
295 I915_WRITE(GTIMR
, dev_priv
->gt_irq_mask
);
298 void gen5_enable_gt_irq(struct drm_i915_private
*dev_priv
, uint32_t mask
)
300 ilk_update_gt_irq(dev_priv
, mask
, mask
);
301 POSTING_READ_FW(GTIMR
);
304 void gen5_disable_gt_irq(struct drm_i915_private
*dev_priv
, uint32_t mask
)
306 ilk_update_gt_irq(dev_priv
, mask
, 0);
309 static i915_reg_t
gen6_pm_iir(struct drm_i915_private
*dev_priv
)
311 return INTEL_GEN(dev_priv
) >= 8 ? GEN8_GT_IIR(2) : GEN6_PMIIR
;
314 static i915_reg_t
gen6_pm_imr(struct drm_i915_private
*dev_priv
)
316 return INTEL_GEN(dev_priv
) >= 8 ? GEN8_GT_IMR(2) : GEN6_PMIMR
;
319 static i915_reg_t
gen6_pm_ier(struct drm_i915_private
*dev_priv
)
321 return INTEL_GEN(dev_priv
) >= 8 ? GEN8_GT_IER(2) : GEN6_PMIER
;
325 * snb_update_pm_irq - update GEN6_PMIMR
326 * @dev_priv: driver private
327 * @interrupt_mask: mask of interrupt bits to update
328 * @enabled_irq_mask: mask of interrupt bits to enable
330 static void snb_update_pm_irq(struct drm_i915_private
*dev_priv
,
331 uint32_t interrupt_mask
,
332 uint32_t enabled_irq_mask
)
336 WARN_ON(enabled_irq_mask
& ~interrupt_mask
);
338 lockdep_assert_held(&dev_priv
->irq_lock
);
340 new_val
= dev_priv
->pm_imr
;
341 new_val
&= ~interrupt_mask
;
342 new_val
|= (~enabled_irq_mask
& interrupt_mask
);
344 if (new_val
!= dev_priv
->pm_imr
) {
345 dev_priv
->pm_imr
= new_val
;
346 I915_WRITE(gen6_pm_imr(dev_priv
), dev_priv
->pm_imr
);
347 POSTING_READ(gen6_pm_imr(dev_priv
));
351 void gen6_unmask_pm_irq(struct drm_i915_private
*dev_priv
, u32 mask
)
353 if (WARN_ON(!intel_irqs_enabled(dev_priv
)))
356 snb_update_pm_irq(dev_priv
, mask
, mask
);
359 static void __gen6_mask_pm_irq(struct drm_i915_private
*dev_priv
, u32 mask
)
361 snb_update_pm_irq(dev_priv
, mask
, 0);
364 void gen6_mask_pm_irq(struct drm_i915_private
*dev_priv
, u32 mask
)
366 if (WARN_ON(!intel_irqs_enabled(dev_priv
)))
369 __gen6_mask_pm_irq(dev_priv
, mask
);
372 static void gen6_reset_pm_iir(struct drm_i915_private
*dev_priv
, u32 reset_mask
)
374 i915_reg_t reg
= gen6_pm_iir(dev_priv
);
376 lockdep_assert_held(&dev_priv
->irq_lock
);
378 I915_WRITE(reg
, reset_mask
);
379 I915_WRITE(reg
, reset_mask
);
383 static void gen6_enable_pm_irq(struct drm_i915_private
*dev_priv
, u32 enable_mask
)
385 lockdep_assert_held(&dev_priv
->irq_lock
);
387 dev_priv
->pm_ier
|= enable_mask
;
388 I915_WRITE(gen6_pm_ier(dev_priv
), dev_priv
->pm_ier
);
389 gen6_unmask_pm_irq(dev_priv
, enable_mask
);
390 /* unmask_pm_irq provides an implicit barrier (POSTING_READ) */
393 static void gen6_disable_pm_irq(struct drm_i915_private
*dev_priv
, u32 disable_mask
)
395 lockdep_assert_held(&dev_priv
->irq_lock
);
397 dev_priv
->pm_ier
&= ~disable_mask
;
398 __gen6_mask_pm_irq(dev_priv
, disable_mask
);
399 I915_WRITE(gen6_pm_ier(dev_priv
), dev_priv
->pm_ier
);
400 /* though a barrier is missing here, but don't really need a one */
403 void gen6_reset_rps_interrupts(struct drm_i915_private
*dev_priv
)
405 spin_lock_irq(&dev_priv
->irq_lock
);
406 gen6_reset_pm_iir(dev_priv
, dev_priv
->pm_rps_events
);
407 dev_priv
->gt_pm
.rps
.pm_iir
= 0;
408 spin_unlock_irq(&dev_priv
->irq_lock
);
411 void gen6_enable_rps_interrupts(struct drm_i915_private
*dev_priv
)
413 struct intel_rps
*rps
= &dev_priv
->gt_pm
.rps
;
415 if (READ_ONCE(rps
->interrupts_enabled
))
418 spin_lock_irq(&dev_priv
->irq_lock
);
419 WARN_ON_ONCE(rps
->pm_iir
);
420 WARN_ON_ONCE(I915_READ(gen6_pm_iir(dev_priv
)) & dev_priv
->pm_rps_events
);
421 rps
->interrupts_enabled
= true;
422 gen6_enable_pm_irq(dev_priv
, dev_priv
->pm_rps_events
);
424 spin_unlock_irq(&dev_priv
->irq_lock
);
427 void gen6_disable_rps_interrupts(struct drm_i915_private
*dev_priv
)
429 struct intel_rps
*rps
= &dev_priv
->gt_pm
.rps
;
431 if (!READ_ONCE(rps
->interrupts_enabled
))
434 spin_lock_irq(&dev_priv
->irq_lock
);
435 rps
->interrupts_enabled
= false;
437 I915_WRITE(GEN6_PMINTRMSK
, gen6_sanitize_rps_pm_mask(dev_priv
, ~0u));
439 gen6_disable_pm_irq(dev_priv
, dev_priv
->pm_rps_events
);
441 spin_unlock_irq(&dev_priv
->irq_lock
);
442 synchronize_irq(dev_priv
->drm
.irq
);
444 /* Now that we will not be generating any more work, flush any
445 * outstanding tasks. As we are called on the RPS idle path,
446 * we will reset the GPU to minimum frequencies, so the current
447 * state of the worker can be discarded.
449 cancel_work_sync(&rps
->work
);
450 gen6_reset_rps_interrupts(dev_priv
);
453 void gen9_reset_guc_interrupts(struct drm_i915_private
*dev_priv
)
455 spin_lock_irq(&dev_priv
->irq_lock
);
456 gen6_reset_pm_iir(dev_priv
, dev_priv
->pm_guc_events
);
457 spin_unlock_irq(&dev_priv
->irq_lock
);
460 void gen9_enable_guc_interrupts(struct drm_i915_private
*dev_priv
)
462 spin_lock_irq(&dev_priv
->irq_lock
);
463 if (!dev_priv
->guc
.interrupts_enabled
) {
464 WARN_ON_ONCE(I915_READ(gen6_pm_iir(dev_priv
)) &
465 dev_priv
->pm_guc_events
);
466 dev_priv
->guc
.interrupts_enabled
= true;
467 gen6_enable_pm_irq(dev_priv
, dev_priv
->pm_guc_events
);
469 spin_unlock_irq(&dev_priv
->irq_lock
);
472 void gen9_disable_guc_interrupts(struct drm_i915_private
*dev_priv
)
474 spin_lock_irq(&dev_priv
->irq_lock
);
475 dev_priv
->guc
.interrupts_enabled
= false;
477 gen6_disable_pm_irq(dev_priv
, dev_priv
->pm_guc_events
);
479 spin_unlock_irq(&dev_priv
->irq_lock
);
480 synchronize_irq(dev_priv
->drm
.irq
);
482 gen9_reset_guc_interrupts(dev_priv
);
486 * bdw_update_port_irq - update DE port interrupt
487 * @dev_priv: driver private
488 * @interrupt_mask: mask of interrupt bits to update
489 * @enabled_irq_mask: mask of interrupt bits to enable
491 static void bdw_update_port_irq(struct drm_i915_private
*dev_priv
,
492 uint32_t interrupt_mask
,
493 uint32_t enabled_irq_mask
)
498 lockdep_assert_held(&dev_priv
->irq_lock
);
500 WARN_ON(enabled_irq_mask
& ~interrupt_mask
);
502 if (WARN_ON(!intel_irqs_enabled(dev_priv
)))
505 old_val
= I915_READ(GEN8_DE_PORT_IMR
);
508 new_val
&= ~interrupt_mask
;
509 new_val
|= (~enabled_irq_mask
& interrupt_mask
);
511 if (new_val
!= old_val
) {
512 I915_WRITE(GEN8_DE_PORT_IMR
, new_val
);
513 POSTING_READ(GEN8_DE_PORT_IMR
);
518 * bdw_update_pipe_irq - update DE pipe interrupt
519 * @dev_priv: driver private
520 * @pipe: pipe whose interrupt to update
521 * @interrupt_mask: mask of interrupt bits to update
522 * @enabled_irq_mask: mask of interrupt bits to enable
524 void bdw_update_pipe_irq(struct drm_i915_private
*dev_priv
,
526 uint32_t interrupt_mask
,
527 uint32_t enabled_irq_mask
)
531 lockdep_assert_held(&dev_priv
->irq_lock
);
533 WARN_ON(enabled_irq_mask
& ~interrupt_mask
);
535 if (WARN_ON(!intel_irqs_enabled(dev_priv
)))
538 new_val
= dev_priv
->de_irq_mask
[pipe
];
539 new_val
&= ~interrupt_mask
;
540 new_val
|= (~enabled_irq_mask
& interrupt_mask
);
542 if (new_val
!= dev_priv
->de_irq_mask
[pipe
]) {
543 dev_priv
->de_irq_mask
[pipe
] = new_val
;
544 I915_WRITE(GEN8_DE_PIPE_IMR(pipe
), dev_priv
->de_irq_mask
[pipe
]);
545 POSTING_READ(GEN8_DE_PIPE_IMR(pipe
));
550 * ibx_display_interrupt_update - update SDEIMR
551 * @dev_priv: driver private
552 * @interrupt_mask: mask of interrupt bits to update
553 * @enabled_irq_mask: mask of interrupt bits to enable
555 void ibx_display_interrupt_update(struct drm_i915_private
*dev_priv
,
556 uint32_t interrupt_mask
,
557 uint32_t enabled_irq_mask
)
559 uint32_t sdeimr
= I915_READ(SDEIMR
);
560 sdeimr
&= ~interrupt_mask
;
561 sdeimr
|= (~enabled_irq_mask
& interrupt_mask
);
563 WARN_ON(enabled_irq_mask
& ~interrupt_mask
);
565 lockdep_assert_held(&dev_priv
->irq_lock
);
567 if (WARN_ON(!intel_irqs_enabled(dev_priv
)))
570 I915_WRITE(SDEIMR
, sdeimr
);
571 POSTING_READ(SDEIMR
);
574 u32
i915_pipestat_enable_mask(struct drm_i915_private
*dev_priv
,
577 u32 status_mask
= dev_priv
->pipestat_irq_mask
[pipe
];
578 u32 enable_mask
= status_mask
<< 16;
580 lockdep_assert_held(&dev_priv
->irq_lock
);
582 if (INTEL_GEN(dev_priv
) < 5)
586 * On pipe A we don't support the PSR interrupt yet,
587 * on pipe B and C the same bit MBZ.
589 if (WARN_ON_ONCE(status_mask
& PIPE_A_PSR_STATUS_VLV
))
592 * On pipe B and C we don't support the PSR interrupt yet, on pipe
593 * A the same bit is for perf counters which we don't use either.
595 if (WARN_ON_ONCE(status_mask
& PIPE_B_PSR_STATUS_VLV
))
598 enable_mask
&= ~(PIPE_FIFO_UNDERRUN_STATUS
|
599 SPRITE0_FLIP_DONE_INT_EN_VLV
|
600 SPRITE1_FLIP_DONE_INT_EN_VLV
);
601 if (status_mask
& SPRITE0_FLIP_DONE_INT_STATUS_VLV
)
602 enable_mask
|= SPRITE0_FLIP_DONE_INT_EN_VLV
;
603 if (status_mask
& SPRITE1_FLIP_DONE_INT_STATUS_VLV
)
604 enable_mask
|= SPRITE1_FLIP_DONE_INT_EN_VLV
;
607 WARN_ONCE(enable_mask
& ~PIPESTAT_INT_ENABLE_MASK
||
608 status_mask
& ~PIPESTAT_INT_STATUS_MASK
,
609 "pipe %c: enable_mask=0x%x, status_mask=0x%x\n",
610 pipe_name(pipe
), enable_mask
, status_mask
);
615 void i915_enable_pipestat(struct drm_i915_private
*dev_priv
,
616 enum pipe pipe
, u32 status_mask
)
618 i915_reg_t reg
= PIPESTAT(pipe
);
621 WARN_ONCE(status_mask
& ~PIPESTAT_INT_STATUS_MASK
,
622 "pipe %c: status_mask=0x%x\n",
623 pipe_name(pipe
), status_mask
);
625 lockdep_assert_held(&dev_priv
->irq_lock
);
626 WARN_ON(!intel_irqs_enabled(dev_priv
));
628 if ((dev_priv
->pipestat_irq_mask
[pipe
] & status_mask
) == status_mask
)
631 dev_priv
->pipestat_irq_mask
[pipe
] |= status_mask
;
632 enable_mask
= i915_pipestat_enable_mask(dev_priv
, pipe
);
634 I915_WRITE(reg
, enable_mask
| status_mask
);
638 void i915_disable_pipestat(struct drm_i915_private
*dev_priv
,
639 enum pipe pipe
, u32 status_mask
)
641 i915_reg_t reg
= PIPESTAT(pipe
);
644 WARN_ONCE(status_mask
& ~PIPESTAT_INT_STATUS_MASK
,
645 "pipe %c: status_mask=0x%x\n",
646 pipe_name(pipe
), status_mask
);
648 lockdep_assert_held(&dev_priv
->irq_lock
);
649 WARN_ON(!intel_irqs_enabled(dev_priv
));
651 if ((dev_priv
->pipestat_irq_mask
[pipe
] & status_mask
) == 0)
654 dev_priv
->pipestat_irq_mask
[pipe
] &= ~status_mask
;
655 enable_mask
= i915_pipestat_enable_mask(dev_priv
, pipe
);
657 I915_WRITE(reg
, enable_mask
| status_mask
);
662 * i915_enable_asle_pipestat - enable ASLE pipestat for OpRegion
663 * @dev_priv: i915 device private
665 static void i915_enable_asle_pipestat(struct drm_i915_private
*dev_priv
)
667 if (!dev_priv
->opregion
.asle
|| !IS_MOBILE(dev_priv
))
670 spin_lock_irq(&dev_priv
->irq_lock
);
672 i915_enable_pipestat(dev_priv
, PIPE_B
, PIPE_LEGACY_BLC_EVENT_STATUS
);
673 if (INTEL_GEN(dev_priv
) >= 4)
674 i915_enable_pipestat(dev_priv
, PIPE_A
,
675 PIPE_LEGACY_BLC_EVENT_STATUS
);
677 spin_unlock_irq(&dev_priv
->irq_lock
);
681 * This timing diagram depicts the video signal in and
682 * around the vertical blanking period.
684 * Assumptions about the fictitious mode used in this example:
686 * vsync_start = vblank_start + 1
687 * vsync_end = vblank_start + 2
688 * vtotal = vblank_start + 3
691 * latch double buffered registers
692 * increment frame counter (ctg+)
693 * generate start of vblank interrupt (gen4+)
696 * | generate frame start interrupt (aka. vblank interrupt) (gmch)
697 * | may be shifted forward 1-3 extra lines via PIPECONF
699 * | | start of vsync:
700 * | | generate vsync interrupt
702 * ___xxxx___ ___xxxx___ ___xxxx___ ___xxxx___ ___xxxx___ ___xxxx
703 * . \hs/ . \hs/ \hs/ \hs/ . \hs/
704 * ----va---> <-----------------vb--------------------> <--------va-------------
705 * | | <----vs-----> |
706 * -vbs-----> <---vbs+1---> <---vbs+2---> <-----0-----> <-----1-----> <-----2--- (scanline counter gen2)
707 * -vbs-2---> <---vbs-1---> <---vbs-----> <---vbs+1---> <---vbs+2---> <-----0--- (scanline counter gen3+)
708 * -vbs-2---> <---vbs-2---> <---vbs-1---> <---vbs-----> <---vbs+1---> <---vbs+2- (scanline counter hsw+ hdmi)
710 * last visible pixel first visible pixel
711 * | increment frame counter (gen3/4)
712 * pixel counter = vblank_start * htotal pixel counter = 0 (gen3/4)
714 * x = horizontal active
715 * _ = horizontal blanking
716 * hs = horizontal sync
717 * va = vertical active
718 * vb = vertical blanking
720 * vbs = vblank_start (number)
723 * - most events happen at the start of horizontal sync
724 * - frame start happens at the start of horizontal blank, 1-4 lines
725 * (depending on PIPECONF settings) after the start of vblank
726 * - gen3/4 pixel and frame counter are synchronized with the start
727 * of horizontal active on the first line of vertical active
730 /* Called from drm generic code, passed a 'crtc', which
731 * we use as a pipe index
733 static u32
i915_get_vblank_counter(struct drm_device
*dev
, unsigned int pipe
)
735 struct drm_i915_private
*dev_priv
= to_i915(dev
);
736 i915_reg_t high_frame
, low_frame
;
737 u32 high1
, high2
, low
, pixel
, vbl_start
, hsync_start
, htotal
;
738 const struct drm_display_mode
*mode
= &dev
->vblank
[pipe
].hwmode
;
739 unsigned long irqflags
;
741 htotal
= mode
->crtc_htotal
;
742 hsync_start
= mode
->crtc_hsync_start
;
743 vbl_start
= mode
->crtc_vblank_start
;
744 if (mode
->flags
& DRM_MODE_FLAG_INTERLACE
)
745 vbl_start
= DIV_ROUND_UP(vbl_start
, 2);
747 /* Convert to pixel count */
750 /* Start of vblank event occurs at start of hsync */
751 vbl_start
-= htotal
- hsync_start
;
753 high_frame
= PIPEFRAME(pipe
);
754 low_frame
= PIPEFRAMEPIXEL(pipe
);
756 spin_lock_irqsave(&dev_priv
->uncore
.lock
, irqflags
);
759 * High & low register fields aren't synchronized, so make sure
760 * we get a low value that's stable across two reads of the high
764 high1
= I915_READ_FW(high_frame
) & PIPE_FRAME_HIGH_MASK
;
765 low
= I915_READ_FW(low_frame
);
766 high2
= I915_READ_FW(high_frame
) & PIPE_FRAME_HIGH_MASK
;
767 } while (high1
!= high2
);
769 spin_unlock_irqrestore(&dev_priv
->uncore
.lock
, irqflags
);
771 high1
>>= PIPE_FRAME_HIGH_SHIFT
;
772 pixel
= low
& PIPE_PIXEL_MASK
;
773 low
>>= PIPE_FRAME_LOW_SHIFT
;
776 * The frame counter increments at beginning of active.
777 * Cook up a vblank counter by also checking the pixel
778 * counter against vblank start.
780 return (((high1
<< 8) | low
) + (pixel
>= vbl_start
)) & 0xffffff;
783 static u32
g4x_get_vblank_counter(struct drm_device
*dev
, unsigned int pipe
)
785 struct drm_i915_private
*dev_priv
= to_i915(dev
);
787 return I915_READ(PIPE_FRMCOUNT_G4X(pipe
));
791 * On certain encoders on certain platforms, pipe
792 * scanline register will not work to get the scanline,
793 * since the timings are driven from the PORT or issues
794 * with scanline register updates.
795 * This function will use Framestamp and current
796 * timestamp registers to calculate the scanline.
798 static u32
__intel_get_crtc_scanline_from_timestamp(struct intel_crtc
*crtc
)
800 struct drm_i915_private
*dev_priv
= to_i915(crtc
->base
.dev
);
801 struct drm_vblank_crtc
*vblank
=
802 &crtc
->base
.dev
->vblank
[drm_crtc_index(&crtc
->base
)];
803 const struct drm_display_mode
*mode
= &vblank
->hwmode
;
804 u32 vblank_start
= mode
->crtc_vblank_start
;
805 u32 vtotal
= mode
->crtc_vtotal
;
806 u32 htotal
= mode
->crtc_htotal
;
807 u32 clock
= mode
->crtc_clock
;
808 u32 scanline
, scan_prev_time
, scan_curr_time
, scan_post_time
;
811 * To avoid the race condition where we might cross into the
812 * next vblank just between the PIPE_FRMTMSTMP and TIMESTAMP_CTR
813 * reads. We make sure we read PIPE_FRMTMSTMP and TIMESTAMP_CTR
814 * during the same frame.
818 * This field provides read back of the display
819 * pipe frame time stamp. The time stamp value
820 * is sampled at every start of vertical blank.
822 scan_prev_time
= I915_READ_FW(PIPE_FRMTMSTMP(crtc
->pipe
));
825 * The TIMESTAMP_CTR register has the current
828 scan_curr_time
= I915_READ_FW(IVB_TIMESTAMP_CTR
);
830 scan_post_time
= I915_READ_FW(PIPE_FRMTMSTMP(crtc
->pipe
));
831 } while (scan_post_time
!= scan_prev_time
);
833 scanline
= div_u64(mul_u32_u32(scan_curr_time
- scan_prev_time
,
834 clock
), 1000 * htotal
);
835 scanline
= min(scanline
, vtotal
- 1);
836 scanline
= (scanline
+ vblank_start
) % vtotal
;
841 /* I915_READ_FW, only for fast reads of display block, no need for forcewake etc. */
842 static int __intel_get_crtc_scanline(struct intel_crtc
*crtc
)
844 struct drm_device
*dev
= crtc
->base
.dev
;
845 struct drm_i915_private
*dev_priv
= to_i915(dev
);
846 const struct drm_display_mode
*mode
;
847 struct drm_vblank_crtc
*vblank
;
848 enum pipe pipe
= crtc
->pipe
;
849 int position
, vtotal
;
854 vblank
= &crtc
->base
.dev
->vblank
[drm_crtc_index(&crtc
->base
)];
855 mode
= &vblank
->hwmode
;
857 if (mode
->private_flags
& I915_MODE_FLAG_GET_SCANLINE_FROM_TIMESTAMP
)
858 return __intel_get_crtc_scanline_from_timestamp(crtc
);
860 vtotal
= mode
->crtc_vtotal
;
861 if (mode
->flags
& DRM_MODE_FLAG_INTERLACE
)
864 if (IS_GEN2(dev_priv
))
865 position
= I915_READ_FW(PIPEDSL(pipe
)) & DSL_LINEMASK_GEN2
;
867 position
= I915_READ_FW(PIPEDSL(pipe
)) & DSL_LINEMASK_GEN3
;
870 * On HSW, the DSL reg (0x70000) appears to return 0 if we
871 * read it just before the start of vblank. So try it again
872 * so we don't accidentally end up spanning a vblank frame
873 * increment, causing the pipe_update_end() code to squak at us.
875 * The nature of this problem means we can't simply check the ISR
876 * bit and return the vblank start value; nor can we use the scanline
877 * debug register in the transcoder as it appears to have the same
878 * problem. We may need to extend this to include other platforms,
879 * but so far testing only shows the problem on HSW.
881 if (HAS_DDI(dev_priv
) && !position
) {
884 for (i
= 0; i
< 100; i
++) {
886 temp
= I915_READ_FW(PIPEDSL(pipe
)) & DSL_LINEMASK_GEN3
;
887 if (temp
!= position
) {
895 * See update_scanline_offset() for the details on the
896 * scanline_offset adjustment.
898 return (position
+ crtc
->scanline_offset
) % vtotal
;
901 static bool i915_get_crtc_scanoutpos(struct drm_device
*dev
, unsigned int pipe
,
902 bool in_vblank_irq
, int *vpos
, int *hpos
,
903 ktime_t
*stime
, ktime_t
*etime
,
904 const struct drm_display_mode
*mode
)
906 struct drm_i915_private
*dev_priv
= to_i915(dev
);
907 struct intel_crtc
*intel_crtc
= intel_get_crtc_for_pipe(dev_priv
,
910 int vbl_start
, vbl_end
, hsync_start
, htotal
, vtotal
;
911 unsigned long irqflags
;
913 if (WARN_ON(!mode
->crtc_clock
)) {
914 DRM_DEBUG_DRIVER("trying to get scanoutpos for disabled "
915 "pipe %c\n", pipe_name(pipe
));
919 htotal
= mode
->crtc_htotal
;
920 hsync_start
= mode
->crtc_hsync_start
;
921 vtotal
= mode
->crtc_vtotal
;
922 vbl_start
= mode
->crtc_vblank_start
;
923 vbl_end
= mode
->crtc_vblank_end
;
925 if (mode
->flags
& DRM_MODE_FLAG_INTERLACE
) {
926 vbl_start
= DIV_ROUND_UP(vbl_start
, 2);
932 * Lock uncore.lock, as we will do multiple timing critical raw
933 * register reads, potentially with preemption disabled, so the
934 * following code must not block on uncore.lock.
936 spin_lock_irqsave(&dev_priv
->uncore
.lock
, irqflags
);
938 /* preempt_disable_rt() should go right here in PREEMPT_RT patchset. */
940 /* Get optional system timestamp before query. */
942 *stime
= ktime_get();
944 if (IS_GEN2(dev_priv
) || IS_G4X(dev_priv
) || INTEL_GEN(dev_priv
) >= 5) {
945 /* No obvious pixelcount register. Only query vertical
946 * scanout position from Display scan line register.
948 position
= __intel_get_crtc_scanline(intel_crtc
);
950 /* Have access to pixelcount since start of frame.
951 * We can split this into vertical and horizontal
954 position
= (I915_READ_FW(PIPEFRAMEPIXEL(pipe
)) & PIPE_PIXEL_MASK
) >> PIPE_PIXEL_SHIFT
;
956 /* convert to pixel counts */
962 * In interlaced modes, the pixel counter counts all pixels,
963 * so one field will have htotal more pixels. In order to avoid
964 * the reported position from jumping backwards when the pixel
965 * counter is beyond the length of the shorter field, just
966 * clamp the position the length of the shorter field. This
967 * matches how the scanline counter based position works since
968 * the scanline counter doesn't count the two half lines.
970 if (position
>= vtotal
)
971 position
= vtotal
- 1;
974 * Start of vblank interrupt is triggered at start of hsync,
975 * just prior to the first active line of vblank. However we
976 * consider lines to start at the leading edge of horizontal
977 * active. So, should we get here before we've crossed into
978 * the horizontal active of the first line in vblank, we would
979 * not set the DRM_SCANOUTPOS_INVBL flag. In order to fix that,
980 * always add htotal-hsync_start to the current pixel position.
982 position
= (position
+ htotal
- hsync_start
) % vtotal
;
985 /* Get optional system timestamp after query. */
987 *etime
= ktime_get();
989 /* preempt_enable_rt() should go right here in PREEMPT_RT patchset. */
991 spin_unlock_irqrestore(&dev_priv
->uncore
.lock
, irqflags
);
994 * While in vblank, position will be negative
995 * counting up towards 0 at vbl_end. And outside
996 * vblank, position will be positive counting
999 if (position
>= vbl_start
)
1000 position
-= vbl_end
;
1002 position
+= vtotal
- vbl_end
;
1004 if (IS_GEN2(dev_priv
) || IS_G4X(dev_priv
) || INTEL_GEN(dev_priv
) >= 5) {
1008 *vpos
= position
/ htotal
;
1009 *hpos
= position
- (*vpos
* htotal
);
1015 int intel_get_crtc_scanline(struct intel_crtc
*crtc
)
1017 struct drm_i915_private
*dev_priv
= to_i915(crtc
->base
.dev
);
1018 unsigned long irqflags
;
1021 spin_lock_irqsave(&dev_priv
->uncore
.lock
, irqflags
);
1022 position
= __intel_get_crtc_scanline(crtc
);
1023 spin_unlock_irqrestore(&dev_priv
->uncore
.lock
, irqflags
);
1028 static void ironlake_rps_change_irq_handler(struct drm_i915_private
*dev_priv
)
1030 u32 busy_up
, busy_down
, max_avg
, min_avg
;
1033 spin_lock(&mchdev_lock
);
1035 I915_WRITE16(MEMINTRSTS
, I915_READ(MEMINTRSTS
));
1037 new_delay
= dev_priv
->ips
.cur_delay
;
1039 I915_WRITE16(MEMINTRSTS
, MEMINT_EVAL_CHG
);
1040 busy_up
= I915_READ(RCPREVBSYTUPAVG
);
1041 busy_down
= I915_READ(RCPREVBSYTDNAVG
);
1042 max_avg
= I915_READ(RCBMAXAVG
);
1043 min_avg
= I915_READ(RCBMINAVG
);
1045 /* Handle RCS change request from hw */
1046 if (busy_up
> max_avg
) {
1047 if (dev_priv
->ips
.cur_delay
!= dev_priv
->ips
.max_delay
)
1048 new_delay
= dev_priv
->ips
.cur_delay
- 1;
1049 if (new_delay
< dev_priv
->ips
.max_delay
)
1050 new_delay
= dev_priv
->ips
.max_delay
;
1051 } else if (busy_down
< min_avg
) {
1052 if (dev_priv
->ips
.cur_delay
!= dev_priv
->ips
.min_delay
)
1053 new_delay
= dev_priv
->ips
.cur_delay
+ 1;
1054 if (new_delay
> dev_priv
->ips
.min_delay
)
1055 new_delay
= dev_priv
->ips
.min_delay
;
1058 if (ironlake_set_drps(dev_priv
, new_delay
))
1059 dev_priv
->ips
.cur_delay
= new_delay
;
1061 spin_unlock(&mchdev_lock
);
1066 static void notify_ring(struct intel_engine_cs
*engine
)
1068 struct drm_i915_gem_request
*rq
= NULL
;
1069 struct intel_wait
*wait
;
1071 if (!engine
->breadcrumbs
.irq_armed
)
1074 atomic_inc(&engine
->irq_count
);
1075 set_bit(ENGINE_IRQ_BREADCRUMB
, &engine
->irq_posted
);
1077 spin_lock(&engine
->breadcrumbs
.irq_lock
);
1078 wait
= engine
->breadcrumbs
.irq_wait
;
1080 bool wakeup
= engine
->irq_seqno_barrier
;
1082 /* We use a callback from the dma-fence to submit
1083 * requests after waiting on our own requests. To
1084 * ensure minimum delay in queuing the next request to
1085 * hardware, signal the fence now rather than wait for
1086 * the signaler to be woken up. We still wake up the
1087 * waiter in order to handle the irq-seqno coherency
1088 * issues (we may receive the interrupt before the
1089 * seqno is written, see __i915_request_irq_complete())
1090 * and to handle coalescing of multiple seqno updates
1093 if (i915_seqno_passed(intel_engine_get_seqno(engine
),
1095 struct drm_i915_gem_request
*waiter
= wait
->request
;
1098 if (!test_bit(DMA_FENCE_FLAG_SIGNALED_BIT
,
1099 &waiter
->fence
.flags
) &&
1100 intel_wait_check_request(wait
, waiter
))
1101 rq
= i915_gem_request_get(waiter
);
1105 wake_up_process(wait
->tsk
);
1107 if (engine
->breadcrumbs
.irq_armed
)
1108 __intel_engine_disarm_breadcrumbs(engine
);
1110 spin_unlock(&engine
->breadcrumbs
.irq_lock
);
1113 dma_fence_signal(&rq
->fence
);
1114 i915_gem_request_put(rq
);
1117 trace_intel_engine_notify(engine
, wait
);
1120 static void vlv_c0_read(struct drm_i915_private
*dev_priv
,
1121 struct intel_rps_ei
*ei
)
1123 ei
->ktime
= ktime_get_raw();
1124 ei
->render_c0
= I915_READ(VLV_RENDER_C0_COUNT
);
1125 ei
->media_c0
= I915_READ(VLV_MEDIA_C0_COUNT
);
1128 void gen6_rps_reset_ei(struct drm_i915_private
*dev_priv
)
1130 memset(&dev_priv
->gt_pm
.rps
.ei
, 0, sizeof(dev_priv
->gt_pm
.rps
.ei
));
1133 static u32
vlv_wa_c0_ei(struct drm_i915_private
*dev_priv
, u32 pm_iir
)
1135 struct intel_rps
*rps
= &dev_priv
->gt_pm
.rps
;
1136 const struct intel_rps_ei
*prev
= &rps
->ei
;
1137 struct intel_rps_ei now
;
1140 if ((pm_iir
& GEN6_PM_RP_UP_EI_EXPIRED
) == 0)
1143 vlv_c0_read(dev_priv
, &now
);
1149 time
= ktime_us_delta(now
.ktime
, prev
->ktime
);
1151 time
*= dev_priv
->czclk_freq
;
1153 /* Workload can be split between render + media,
1154 * e.g. SwapBuffers being blitted in X after being rendered in
1155 * mesa. To account for this we need to combine both engines
1156 * into our activity counter.
1158 render
= now
.render_c0
- prev
->render_c0
;
1159 media
= now
.media_c0
- prev
->media_c0
;
1160 c0
= max(render
, media
);
1161 c0
*= 1000 * 100 << 8; /* to usecs and scale to threshold% */
1163 if (c0
> time
* rps
->up_threshold
)
1164 events
= GEN6_PM_RP_UP_THRESHOLD
;
1165 else if (c0
< time
* rps
->down_threshold
)
1166 events
= GEN6_PM_RP_DOWN_THRESHOLD
;
1173 static void gen6_pm_rps_work(struct work_struct
*work
)
1175 struct drm_i915_private
*dev_priv
=
1176 container_of(work
, struct drm_i915_private
, gt_pm
.rps
.work
);
1177 struct intel_rps
*rps
= &dev_priv
->gt_pm
.rps
;
1178 bool client_boost
= false;
1179 int new_delay
, adj
, min
, max
;
1182 spin_lock_irq(&dev_priv
->irq_lock
);
1183 if (rps
->interrupts_enabled
) {
1184 pm_iir
= fetch_and_zero(&rps
->pm_iir
);
1185 client_boost
= atomic_read(&rps
->num_waiters
);
1187 spin_unlock_irq(&dev_priv
->irq_lock
);
1189 /* Make sure we didn't queue anything we're not going to process. */
1190 WARN_ON(pm_iir
& ~dev_priv
->pm_rps_events
);
1191 if ((pm_iir
& dev_priv
->pm_rps_events
) == 0 && !client_boost
)
1194 mutex_lock(&dev_priv
->pcu_lock
);
1196 pm_iir
|= vlv_wa_c0_ei(dev_priv
, pm_iir
);
1198 adj
= rps
->last_adj
;
1199 new_delay
= rps
->cur_freq
;
1200 min
= rps
->min_freq_softlimit
;
1201 max
= rps
->max_freq_softlimit
;
1203 max
= rps
->max_freq
;
1204 if (client_boost
&& new_delay
< rps
->boost_freq
) {
1205 new_delay
= rps
->boost_freq
;
1207 } else if (pm_iir
& GEN6_PM_RP_UP_THRESHOLD
) {
1210 else /* CHV needs even encode values */
1211 adj
= IS_CHERRYVIEW(dev_priv
) ? 2 : 1;
1213 if (new_delay
>= rps
->max_freq_softlimit
)
1215 } else if (client_boost
) {
1217 } else if (pm_iir
& GEN6_PM_RP_DOWN_TIMEOUT
) {
1218 if (rps
->cur_freq
> rps
->efficient_freq
)
1219 new_delay
= rps
->efficient_freq
;
1220 else if (rps
->cur_freq
> rps
->min_freq_softlimit
)
1221 new_delay
= rps
->min_freq_softlimit
;
1223 } else if (pm_iir
& GEN6_PM_RP_DOWN_THRESHOLD
) {
1226 else /* CHV needs even encode values */
1227 adj
= IS_CHERRYVIEW(dev_priv
) ? -2 : -1;
1229 if (new_delay
<= rps
->min_freq_softlimit
)
1231 } else { /* unknown event */
1235 rps
->last_adj
= adj
;
1237 /* sysfs frequency interfaces may have snuck in while servicing the
1241 new_delay
= clamp_t(int, new_delay
, min
, max
);
1243 if (intel_set_rps(dev_priv
, new_delay
)) {
1244 DRM_DEBUG_DRIVER("Failed to set new GPU frequency\n");
1248 mutex_unlock(&dev_priv
->pcu_lock
);
1251 /* Make sure not to corrupt PMIMR state used by ringbuffer on GEN6 */
1252 spin_lock_irq(&dev_priv
->irq_lock
);
1253 if (rps
->interrupts_enabled
)
1254 gen6_unmask_pm_irq(dev_priv
, dev_priv
->pm_rps_events
);
1255 spin_unlock_irq(&dev_priv
->irq_lock
);
1260 * ivybridge_parity_work - Workqueue called when a parity error interrupt
1262 * @work: workqueue struct
1264 * Doesn't actually do anything except notify userspace. As a consequence of
1265 * this event, userspace should try to remap the bad rows since statistically
1266 * it is likely the same row is more likely to go bad again.
1268 static void ivybridge_parity_work(struct work_struct
*work
)
1270 struct drm_i915_private
*dev_priv
=
1271 container_of(work
, typeof(*dev_priv
), l3_parity
.error_work
);
1272 u32 error_status
, row
, bank
, subbank
;
1273 char *parity_event
[6];
1277 /* We must turn off DOP level clock gating to access the L3 registers.
1278 * In order to prevent a get/put style interface, acquire struct mutex
1279 * any time we access those registers.
1281 mutex_lock(&dev_priv
->drm
.struct_mutex
);
1283 /* If we've screwed up tracking, just let the interrupt fire again */
1284 if (WARN_ON(!dev_priv
->l3_parity
.which_slice
))
1287 misccpctl
= I915_READ(GEN7_MISCCPCTL
);
1288 I915_WRITE(GEN7_MISCCPCTL
, misccpctl
& ~GEN7_DOP_CLOCK_GATE_ENABLE
);
1289 POSTING_READ(GEN7_MISCCPCTL
);
1291 while ((slice
= ffs(dev_priv
->l3_parity
.which_slice
)) != 0) {
1295 if (WARN_ON_ONCE(slice
>= NUM_L3_SLICES(dev_priv
)))
1298 dev_priv
->l3_parity
.which_slice
&= ~(1<<slice
);
1300 reg
= GEN7_L3CDERRST1(slice
);
1302 error_status
= I915_READ(reg
);
1303 row
= GEN7_PARITY_ERROR_ROW(error_status
);
1304 bank
= GEN7_PARITY_ERROR_BANK(error_status
);
1305 subbank
= GEN7_PARITY_ERROR_SUBBANK(error_status
);
1307 I915_WRITE(reg
, GEN7_PARITY_ERROR_VALID
| GEN7_L3CDERRST1_ENABLE
);
1310 parity_event
[0] = I915_L3_PARITY_UEVENT
"=1";
1311 parity_event
[1] = kasprintf(GFP_KERNEL
, "ROW=%d", row
);
1312 parity_event
[2] = kasprintf(GFP_KERNEL
, "BANK=%d", bank
);
1313 parity_event
[3] = kasprintf(GFP_KERNEL
, "SUBBANK=%d", subbank
);
1314 parity_event
[4] = kasprintf(GFP_KERNEL
, "SLICE=%d", slice
);
1315 parity_event
[5] = NULL
;
1317 kobject_uevent_env(&dev_priv
->drm
.primary
->kdev
->kobj
,
1318 KOBJ_CHANGE
, parity_event
);
1320 DRM_DEBUG("Parity error: Slice = %d, Row = %d, Bank = %d, Sub bank = %d.\n",
1321 slice
, row
, bank
, subbank
);
1323 kfree(parity_event
[4]);
1324 kfree(parity_event
[3]);
1325 kfree(parity_event
[2]);
1326 kfree(parity_event
[1]);
1329 I915_WRITE(GEN7_MISCCPCTL
, misccpctl
);
1332 WARN_ON(dev_priv
->l3_parity
.which_slice
);
1333 spin_lock_irq(&dev_priv
->irq_lock
);
1334 gen5_enable_gt_irq(dev_priv
, GT_PARITY_ERROR(dev_priv
));
1335 spin_unlock_irq(&dev_priv
->irq_lock
);
1337 mutex_unlock(&dev_priv
->drm
.struct_mutex
);
1340 static void ivybridge_parity_error_irq_handler(struct drm_i915_private
*dev_priv
,
1343 if (!HAS_L3_DPF(dev_priv
))
1346 spin_lock(&dev_priv
->irq_lock
);
1347 gen5_disable_gt_irq(dev_priv
, GT_PARITY_ERROR(dev_priv
));
1348 spin_unlock(&dev_priv
->irq_lock
);
1350 iir
&= GT_PARITY_ERROR(dev_priv
);
1351 if (iir
& GT_RENDER_L3_PARITY_ERROR_INTERRUPT_S1
)
1352 dev_priv
->l3_parity
.which_slice
|= 1 << 1;
1354 if (iir
& GT_RENDER_L3_PARITY_ERROR_INTERRUPT
)
1355 dev_priv
->l3_parity
.which_slice
|= 1 << 0;
1357 queue_work(dev_priv
->wq
, &dev_priv
->l3_parity
.error_work
);
1360 static void ilk_gt_irq_handler(struct drm_i915_private
*dev_priv
,
1363 if (gt_iir
& GT_RENDER_USER_INTERRUPT
)
1364 notify_ring(dev_priv
->engine
[RCS
]);
1365 if (gt_iir
& ILK_BSD_USER_INTERRUPT
)
1366 notify_ring(dev_priv
->engine
[VCS
]);
1369 static void snb_gt_irq_handler(struct drm_i915_private
*dev_priv
,
1372 if (gt_iir
& GT_RENDER_USER_INTERRUPT
)
1373 notify_ring(dev_priv
->engine
[RCS
]);
1374 if (gt_iir
& GT_BSD_USER_INTERRUPT
)
1375 notify_ring(dev_priv
->engine
[VCS
]);
1376 if (gt_iir
& GT_BLT_USER_INTERRUPT
)
1377 notify_ring(dev_priv
->engine
[BCS
]);
1379 if (gt_iir
& (GT_BLT_CS_ERROR_INTERRUPT
|
1380 GT_BSD_CS_ERROR_INTERRUPT
|
1381 GT_RENDER_CS_MASTER_ERROR_INTERRUPT
))
1382 DRM_DEBUG("Command parser error, gt_iir 0x%08x\n", gt_iir
);
1384 if (gt_iir
& GT_PARITY_ERROR(dev_priv
))
1385 ivybridge_parity_error_irq_handler(dev_priv
, gt_iir
);
1389 gen8_cs_irq_handler(struct intel_engine_cs
*engine
, u32 iir
, int test_shift
)
1391 struct intel_engine_execlists
* const execlists
= &engine
->execlists
;
1392 bool tasklet
= false;
1394 if (iir
& (GT_CONTEXT_SWITCH_INTERRUPT
<< test_shift
)) {
1395 if (READ_ONCE(engine
->execlists
.active
)) {
1396 __set_bit(ENGINE_IRQ_EXECLIST
, &engine
->irq_posted
);
1401 if (iir
& (GT_RENDER_USER_INTERRUPT
<< test_shift
)) {
1402 notify_ring(engine
);
1403 tasklet
|= USES_GUC_SUBMISSION(engine
->i915
);
1407 tasklet_hi_schedule(&execlists
->tasklet
);
1410 static irqreturn_t
gen8_gt_irq_ack(struct drm_i915_private
*dev_priv
,
1414 irqreturn_t ret
= IRQ_NONE
;
1416 if (master_ctl
& (GEN8_GT_RCS_IRQ
| GEN8_GT_BCS_IRQ
)) {
1417 gt_iir
[0] = I915_READ_FW(GEN8_GT_IIR(0));
1419 I915_WRITE_FW(GEN8_GT_IIR(0), gt_iir
[0]);
1422 DRM_ERROR("The master control interrupt lied (GT0)!\n");
1425 if (master_ctl
& (GEN8_GT_VCS1_IRQ
| GEN8_GT_VCS2_IRQ
)) {
1426 gt_iir
[1] = I915_READ_FW(GEN8_GT_IIR(1));
1428 I915_WRITE_FW(GEN8_GT_IIR(1), gt_iir
[1]);
1431 DRM_ERROR("The master control interrupt lied (GT1)!\n");
1434 if (master_ctl
& GEN8_GT_VECS_IRQ
) {
1435 gt_iir
[3] = I915_READ_FW(GEN8_GT_IIR(3));
1437 I915_WRITE_FW(GEN8_GT_IIR(3), gt_iir
[3]);
1440 DRM_ERROR("The master control interrupt lied (GT3)!\n");
1443 if (master_ctl
& (GEN8_GT_PM_IRQ
| GEN8_GT_GUC_IRQ
)) {
1444 gt_iir
[2] = I915_READ_FW(GEN8_GT_IIR(2));
1445 if (gt_iir
[2] & (dev_priv
->pm_rps_events
|
1446 dev_priv
->pm_guc_events
)) {
1447 I915_WRITE_FW(GEN8_GT_IIR(2),
1448 gt_iir
[2] & (dev_priv
->pm_rps_events
|
1449 dev_priv
->pm_guc_events
));
1452 DRM_ERROR("The master control interrupt lied (PM)!\n");
1458 static void gen8_gt_irq_handler(struct drm_i915_private
*dev_priv
,
1462 gen8_cs_irq_handler(dev_priv
->engine
[RCS
],
1463 gt_iir
[0], GEN8_RCS_IRQ_SHIFT
);
1464 gen8_cs_irq_handler(dev_priv
->engine
[BCS
],
1465 gt_iir
[0], GEN8_BCS_IRQ_SHIFT
);
1469 gen8_cs_irq_handler(dev_priv
->engine
[VCS
],
1470 gt_iir
[1], GEN8_VCS1_IRQ_SHIFT
);
1471 gen8_cs_irq_handler(dev_priv
->engine
[VCS2
],
1472 gt_iir
[1], GEN8_VCS2_IRQ_SHIFT
);
1476 gen8_cs_irq_handler(dev_priv
->engine
[VECS
],
1477 gt_iir
[3], GEN8_VECS_IRQ_SHIFT
);
1479 if (gt_iir
[2] & dev_priv
->pm_rps_events
)
1480 gen6_rps_irq_handler(dev_priv
, gt_iir
[2]);
1482 if (gt_iir
[2] & dev_priv
->pm_guc_events
)
1483 gen9_guc_irq_handler(dev_priv
, gt_iir
[2]);
1486 static bool bxt_port_hotplug_long_detect(enum port port
, u32 val
)
1490 return val
& PORTA_HOTPLUG_LONG_DETECT
;
1492 return val
& PORTB_HOTPLUG_LONG_DETECT
;
1494 return val
& PORTC_HOTPLUG_LONG_DETECT
;
1500 static bool spt_port_hotplug2_long_detect(enum port port
, u32 val
)
1504 return val
& PORTE_HOTPLUG_LONG_DETECT
;
1510 static bool spt_port_hotplug_long_detect(enum port port
, u32 val
)
1514 return val
& PORTA_HOTPLUG_LONG_DETECT
;
1516 return val
& PORTB_HOTPLUG_LONG_DETECT
;
1518 return val
& PORTC_HOTPLUG_LONG_DETECT
;
1520 return val
& PORTD_HOTPLUG_LONG_DETECT
;
1526 static bool ilk_port_hotplug_long_detect(enum port port
, u32 val
)
1530 return val
& DIGITAL_PORTA_HOTPLUG_LONG_DETECT
;
1536 static bool pch_port_hotplug_long_detect(enum port port
, u32 val
)
1540 return val
& PORTB_HOTPLUG_LONG_DETECT
;
1542 return val
& PORTC_HOTPLUG_LONG_DETECT
;
1544 return val
& PORTD_HOTPLUG_LONG_DETECT
;
1550 static bool i9xx_port_hotplug_long_detect(enum port port
, u32 val
)
1554 return val
& PORTB_HOTPLUG_INT_LONG_PULSE
;
1556 return val
& PORTC_HOTPLUG_INT_LONG_PULSE
;
1558 return val
& PORTD_HOTPLUG_INT_LONG_PULSE
;
1565 * Get a bit mask of pins that have triggered, and which ones may be long.
1566 * This can be called multiple times with the same masks to accumulate
1567 * hotplug detection results from several registers.
1569 * Note that the caller is expected to zero out the masks initially.
1571 static void intel_get_hpd_pins(u32
*pin_mask
, u32
*long_mask
,
1572 u32 hotplug_trigger
, u32 dig_hotplug_reg
,
1573 const u32 hpd
[HPD_NUM_PINS
],
1574 bool long_pulse_detect(enum port port
, u32 val
))
1579 for_each_hpd_pin(i
) {
1580 if ((hpd
[i
] & hotplug_trigger
) == 0)
1583 *pin_mask
|= BIT(i
);
1585 port
= intel_hpd_pin_to_port(i
);
1586 if (port
== PORT_NONE
)
1589 if (long_pulse_detect(port
, dig_hotplug_reg
))
1590 *long_mask
|= BIT(i
);
1593 DRM_DEBUG_DRIVER("hotplug event received, stat 0x%08x, dig 0x%08x, pins 0x%08x\n",
1594 hotplug_trigger
, dig_hotplug_reg
, *pin_mask
);
1598 static void gmbus_irq_handler(struct drm_i915_private
*dev_priv
)
1600 wake_up_all(&dev_priv
->gmbus_wait_queue
);
1603 static void dp_aux_irq_handler(struct drm_i915_private
*dev_priv
)
1605 wake_up_all(&dev_priv
->gmbus_wait_queue
);
1608 #if defined(CONFIG_DEBUG_FS)
1609 static void display_pipe_crc_irq_handler(struct drm_i915_private
*dev_priv
,
1611 uint32_t crc0
, uint32_t crc1
,
1612 uint32_t crc2
, uint32_t crc3
,
1615 struct intel_pipe_crc
*pipe_crc
= &dev_priv
->pipe_crc
[pipe
];
1616 struct intel_pipe_crc_entry
*entry
;
1617 struct intel_crtc
*crtc
= intel_get_crtc_for_pipe(dev_priv
, pipe
);
1618 struct drm_driver
*driver
= dev_priv
->drm
.driver
;
1622 spin_lock(&pipe_crc
->lock
);
1623 if (pipe_crc
->source
) {
1624 if (!pipe_crc
->entries
) {
1625 spin_unlock(&pipe_crc
->lock
);
1626 DRM_DEBUG_KMS("spurious interrupt\n");
1630 head
= pipe_crc
->head
;
1631 tail
= pipe_crc
->tail
;
1633 if (CIRC_SPACE(head
, tail
, INTEL_PIPE_CRC_ENTRIES_NR
) < 1) {
1634 spin_unlock(&pipe_crc
->lock
);
1635 DRM_ERROR("CRC buffer overflowing\n");
1639 entry
= &pipe_crc
->entries
[head
];
1641 entry
->frame
= driver
->get_vblank_counter(&dev_priv
->drm
, pipe
);
1642 entry
->crc
[0] = crc0
;
1643 entry
->crc
[1] = crc1
;
1644 entry
->crc
[2] = crc2
;
1645 entry
->crc
[3] = crc3
;
1646 entry
->crc
[4] = crc4
;
1648 head
= (head
+ 1) & (INTEL_PIPE_CRC_ENTRIES_NR
- 1);
1649 pipe_crc
->head
= head
;
1651 spin_unlock(&pipe_crc
->lock
);
1653 wake_up_interruptible(&pipe_crc
->wq
);
1656 * For some not yet identified reason, the first CRC is
1657 * bonkers. So let's just wait for the next vblank and read
1658 * out the buggy result.
1660 * On GEN8+ sometimes the second CRC is bonkers as well, so
1661 * don't trust that one either.
1663 if (pipe_crc
->skipped
== 0 ||
1664 (INTEL_GEN(dev_priv
) >= 8 && pipe_crc
->skipped
== 1)) {
1665 pipe_crc
->skipped
++;
1666 spin_unlock(&pipe_crc
->lock
);
1669 spin_unlock(&pipe_crc
->lock
);
1675 drm_crtc_add_crc_entry(&crtc
->base
, true,
1676 drm_crtc_accurate_vblank_count(&crtc
->base
),
1682 display_pipe_crc_irq_handler(struct drm_i915_private
*dev_priv
,
1684 uint32_t crc0
, uint32_t crc1
,
1685 uint32_t crc2
, uint32_t crc3
,
1690 static void hsw_pipe_crc_irq_handler(struct drm_i915_private
*dev_priv
,
1693 display_pipe_crc_irq_handler(dev_priv
, pipe
,
1694 I915_READ(PIPE_CRC_RES_1_IVB(pipe
)),
1698 static void ivb_pipe_crc_irq_handler(struct drm_i915_private
*dev_priv
,
1701 display_pipe_crc_irq_handler(dev_priv
, pipe
,
1702 I915_READ(PIPE_CRC_RES_1_IVB(pipe
)),
1703 I915_READ(PIPE_CRC_RES_2_IVB(pipe
)),
1704 I915_READ(PIPE_CRC_RES_3_IVB(pipe
)),
1705 I915_READ(PIPE_CRC_RES_4_IVB(pipe
)),
1706 I915_READ(PIPE_CRC_RES_5_IVB(pipe
)));
1709 static void i9xx_pipe_crc_irq_handler(struct drm_i915_private
*dev_priv
,
1712 uint32_t res1
, res2
;
1714 if (INTEL_GEN(dev_priv
) >= 3)
1715 res1
= I915_READ(PIPE_CRC_RES_RES1_I915(pipe
));
1719 if (INTEL_GEN(dev_priv
) >= 5 || IS_G4X(dev_priv
))
1720 res2
= I915_READ(PIPE_CRC_RES_RES2_G4X(pipe
));
1724 display_pipe_crc_irq_handler(dev_priv
, pipe
,
1725 I915_READ(PIPE_CRC_RES_RED(pipe
)),
1726 I915_READ(PIPE_CRC_RES_GREEN(pipe
)),
1727 I915_READ(PIPE_CRC_RES_BLUE(pipe
)),
1731 /* The RPS events need forcewake, so we add them to a work queue and mask their
1732 * IMR bits until the work is done. Other interrupts can be processed without
1733 * the work queue. */
1734 static void gen6_rps_irq_handler(struct drm_i915_private
*dev_priv
, u32 pm_iir
)
1736 struct intel_rps
*rps
= &dev_priv
->gt_pm
.rps
;
1738 if (pm_iir
& dev_priv
->pm_rps_events
) {
1739 spin_lock(&dev_priv
->irq_lock
);
1740 gen6_mask_pm_irq(dev_priv
, pm_iir
& dev_priv
->pm_rps_events
);
1741 if (rps
->interrupts_enabled
) {
1742 rps
->pm_iir
|= pm_iir
& dev_priv
->pm_rps_events
;
1743 schedule_work(&rps
->work
);
1745 spin_unlock(&dev_priv
->irq_lock
);
1748 if (INTEL_GEN(dev_priv
) >= 8)
1751 if (HAS_VEBOX(dev_priv
)) {
1752 if (pm_iir
& PM_VEBOX_USER_INTERRUPT
)
1753 notify_ring(dev_priv
->engine
[VECS
]);
1755 if (pm_iir
& PM_VEBOX_CS_ERROR_INTERRUPT
)
1756 DRM_DEBUG("Command parser error, pm_iir 0x%08x\n", pm_iir
);
1760 static void gen9_guc_irq_handler(struct drm_i915_private
*dev_priv
, u32 gt_iir
)
1762 if (gt_iir
& GEN9_GUC_TO_HOST_INT_EVENT
) {
1763 /* Sample the log buffer flush related bits & clear them out now
1764 * itself from the message identity register to minimize the
1765 * probability of losing a flush interrupt, when there are back
1766 * to back flush interrupts.
1767 * There can be a new flush interrupt, for different log buffer
1768 * type (like for ISR), whilst Host is handling one (for DPC).
1769 * Since same bit is used in message register for ISR & DPC, it
1770 * could happen that GuC sets the bit for 2nd interrupt but Host
1771 * clears out the bit on handling the 1st interrupt.
1775 msg
= I915_READ(SOFT_SCRATCH(15));
1776 flush
= msg
& (INTEL_GUC_RECV_MSG_CRASH_DUMP_POSTED
|
1777 INTEL_GUC_RECV_MSG_FLUSH_LOG_BUFFER
);
1779 /* Clear the message bits that are handled */
1780 I915_WRITE(SOFT_SCRATCH(15), msg
& ~flush
);
1782 /* Handle flush interrupt in bottom half */
1783 queue_work(dev_priv
->guc
.log
.runtime
.flush_wq
,
1784 &dev_priv
->guc
.log
.runtime
.flush_work
);
1786 dev_priv
->guc
.log
.flush_interrupt_count
++;
1788 /* Not clearing of unhandled event bits won't result in
1789 * re-triggering of the interrupt.
1795 static void i9xx_pipestat_irq_reset(struct drm_i915_private
*dev_priv
)
1799 for_each_pipe(dev_priv
, pipe
) {
1800 I915_WRITE(PIPESTAT(pipe
),
1801 PIPESTAT_INT_STATUS_MASK
|
1802 PIPE_FIFO_UNDERRUN_STATUS
);
1804 dev_priv
->pipestat_irq_mask
[pipe
] = 0;
1808 static void i9xx_pipestat_irq_ack(struct drm_i915_private
*dev_priv
,
1809 u32 iir
, u32 pipe_stats
[I915_MAX_PIPES
])
1813 spin_lock(&dev_priv
->irq_lock
);
1815 if (!dev_priv
->display_irqs_enabled
) {
1816 spin_unlock(&dev_priv
->irq_lock
);
1820 for_each_pipe(dev_priv
, pipe
) {
1822 u32 status_mask
, enable_mask
, iir_bit
= 0;
1825 * PIPESTAT bits get signalled even when the interrupt is
1826 * disabled with the mask bits, and some of the status bits do
1827 * not generate interrupts at all (like the underrun bit). Hence
1828 * we need to be careful that we only handle what we want to
1832 /* fifo underruns are filterered in the underrun handler. */
1833 status_mask
= PIPE_FIFO_UNDERRUN_STATUS
;
1837 iir_bit
= I915_DISPLAY_PIPE_A_EVENT_INTERRUPT
;
1840 iir_bit
= I915_DISPLAY_PIPE_B_EVENT_INTERRUPT
;
1843 iir_bit
= I915_DISPLAY_PIPE_C_EVENT_INTERRUPT
;
1847 status_mask
|= dev_priv
->pipestat_irq_mask
[pipe
];
1852 reg
= PIPESTAT(pipe
);
1853 pipe_stats
[pipe
] = I915_READ(reg
) & status_mask
;
1854 enable_mask
= i915_pipestat_enable_mask(dev_priv
, pipe
);
1857 * Clear the PIPE*STAT regs before the IIR
1859 if (pipe_stats
[pipe
])
1860 I915_WRITE(reg
, enable_mask
| pipe_stats
[pipe
]);
1862 spin_unlock(&dev_priv
->irq_lock
);
1865 static void i8xx_pipestat_irq_handler(struct drm_i915_private
*dev_priv
,
1866 u16 iir
, u32 pipe_stats
[I915_MAX_PIPES
])
1870 for_each_pipe(dev_priv
, pipe
) {
1871 if (pipe_stats
[pipe
] & PIPE_VBLANK_INTERRUPT_STATUS
)
1872 drm_handle_vblank(&dev_priv
->drm
, pipe
);
1874 if (pipe_stats
[pipe
] & PIPE_CRC_DONE_INTERRUPT_STATUS
)
1875 i9xx_pipe_crc_irq_handler(dev_priv
, pipe
);
1877 if (pipe_stats
[pipe
] & PIPE_FIFO_UNDERRUN_STATUS
)
1878 intel_cpu_fifo_underrun_irq_handler(dev_priv
, pipe
);
1882 static void i915_pipestat_irq_handler(struct drm_i915_private
*dev_priv
,
1883 u32 iir
, u32 pipe_stats
[I915_MAX_PIPES
])
1885 bool blc_event
= false;
1888 for_each_pipe(dev_priv
, pipe
) {
1889 if (pipe_stats
[pipe
] & PIPE_VBLANK_INTERRUPT_STATUS
)
1890 drm_handle_vblank(&dev_priv
->drm
, pipe
);
1892 if (pipe_stats
[pipe
] & PIPE_LEGACY_BLC_EVENT_STATUS
)
1895 if (pipe_stats
[pipe
] & PIPE_CRC_DONE_INTERRUPT_STATUS
)
1896 i9xx_pipe_crc_irq_handler(dev_priv
, pipe
);
1898 if (pipe_stats
[pipe
] & PIPE_FIFO_UNDERRUN_STATUS
)
1899 intel_cpu_fifo_underrun_irq_handler(dev_priv
, pipe
);
1902 if (blc_event
|| (iir
& I915_ASLE_INTERRUPT
))
1903 intel_opregion_asle_intr(dev_priv
);
1906 static void i965_pipestat_irq_handler(struct drm_i915_private
*dev_priv
,
1907 u32 iir
, u32 pipe_stats
[I915_MAX_PIPES
])
1909 bool blc_event
= false;
1912 for_each_pipe(dev_priv
, pipe
) {
1913 if (pipe_stats
[pipe
] & PIPE_START_VBLANK_INTERRUPT_STATUS
)
1914 drm_handle_vblank(&dev_priv
->drm
, pipe
);
1916 if (pipe_stats
[pipe
] & PIPE_LEGACY_BLC_EVENT_STATUS
)
1919 if (pipe_stats
[pipe
] & PIPE_CRC_DONE_INTERRUPT_STATUS
)
1920 i9xx_pipe_crc_irq_handler(dev_priv
, pipe
);
1922 if (pipe_stats
[pipe
] & PIPE_FIFO_UNDERRUN_STATUS
)
1923 intel_cpu_fifo_underrun_irq_handler(dev_priv
, pipe
);
1926 if (blc_event
|| (iir
& I915_ASLE_INTERRUPT
))
1927 intel_opregion_asle_intr(dev_priv
);
1929 if (pipe_stats
[0] & PIPE_GMBUS_INTERRUPT_STATUS
)
1930 gmbus_irq_handler(dev_priv
);
1933 static void valleyview_pipestat_irq_handler(struct drm_i915_private
*dev_priv
,
1934 u32 pipe_stats
[I915_MAX_PIPES
])
1938 for_each_pipe(dev_priv
, pipe
) {
1939 if (pipe_stats
[pipe
] & PIPE_START_VBLANK_INTERRUPT_STATUS
)
1940 drm_handle_vblank(&dev_priv
->drm
, pipe
);
1942 if (pipe_stats
[pipe
] & PIPE_CRC_DONE_INTERRUPT_STATUS
)
1943 i9xx_pipe_crc_irq_handler(dev_priv
, pipe
);
1945 if (pipe_stats
[pipe
] & PIPE_FIFO_UNDERRUN_STATUS
)
1946 intel_cpu_fifo_underrun_irq_handler(dev_priv
, pipe
);
1949 if (pipe_stats
[0] & PIPE_GMBUS_INTERRUPT_STATUS
)
1950 gmbus_irq_handler(dev_priv
);
1953 static u32
i9xx_hpd_irq_ack(struct drm_i915_private
*dev_priv
)
1955 u32 hotplug_status
= I915_READ(PORT_HOTPLUG_STAT
);
1958 I915_WRITE(PORT_HOTPLUG_STAT
, hotplug_status
);
1960 return hotplug_status
;
1963 static void i9xx_hpd_irq_handler(struct drm_i915_private
*dev_priv
,
1966 u32 pin_mask
= 0, long_mask
= 0;
1968 if (IS_G4X(dev_priv
) || IS_VALLEYVIEW(dev_priv
) ||
1969 IS_CHERRYVIEW(dev_priv
)) {
1970 u32 hotplug_trigger
= hotplug_status
& HOTPLUG_INT_STATUS_G4X
;
1972 if (hotplug_trigger
) {
1973 intel_get_hpd_pins(&pin_mask
, &long_mask
, hotplug_trigger
,
1974 hotplug_trigger
, hpd_status_g4x
,
1975 i9xx_port_hotplug_long_detect
);
1977 intel_hpd_irq_handler(dev_priv
, pin_mask
, long_mask
);
1980 if (hotplug_status
& DP_AUX_CHANNEL_MASK_INT_STATUS_G4X
)
1981 dp_aux_irq_handler(dev_priv
);
1983 u32 hotplug_trigger
= hotplug_status
& HOTPLUG_INT_STATUS_I915
;
1985 if (hotplug_trigger
) {
1986 intel_get_hpd_pins(&pin_mask
, &long_mask
, hotplug_trigger
,
1987 hotplug_trigger
, hpd_status_i915
,
1988 i9xx_port_hotplug_long_detect
);
1989 intel_hpd_irq_handler(dev_priv
, pin_mask
, long_mask
);
1994 static irqreturn_t
valleyview_irq_handler(int irq
, void *arg
)
1996 struct drm_device
*dev
= arg
;
1997 struct drm_i915_private
*dev_priv
= to_i915(dev
);
1998 irqreturn_t ret
= IRQ_NONE
;
2000 if (!intel_irqs_enabled(dev_priv
))
2003 /* IRQs are synced during runtime_suspend, we don't require a wakeref */
2004 disable_rpm_wakeref_asserts(dev_priv
);
2007 u32 iir
, gt_iir
, pm_iir
;
2008 u32 pipe_stats
[I915_MAX_PIPES
] = {};
2009 u32 hotplug_status
= 0;
2012 gt_iir
= I915_READ(GTIIR
);
2013 pm_iir
= I915_READ(GEN6_PMIIR
);
2014 iir
= I915_READ(VLV_IIR
);
2016 if (gt_iir
== 0 && pm_iir
== 0 && iir
== 0)
2022 * Theory on interrupt generation, based on empirical evidence:
2024 * x = ((VLV_IIR & VLV_IER) ||
2025 * (((GT_IIR & GT_IER) || (GEN6_PMIIR & GEN6_PMIER)) &&
2026 * (VLV_MASTER_IER & MASTER_INTERRUPT_ENABLE)));
2028 * A CPU interrupt will only be raised when 'x' has a 0->1 edge.
2029 * Hence we clear MASTER_INTERRUPT_ENABLE and VLV_IER to
2030 * guarantee the CPU interrupt will be raised again even if we
2031 * don't end up clearing all the VLV_IIR, GT_IIR, GEN6_PMIIR
2032 * bits this time around.
2034 I915_WRITE(VLV_MASTER_IER
, 0);
2035 ier
= I915_READ(VLV_IER
);
2036 I915_WRITE(VLV_IER
, 0);
2039 I915_WRITE(GTIIR
, gt_iir
);
2041 I915_WRITE(GEN6_PMIIR
, pm_iir
);
2043 if (iir
& I915_DISPLAY_PORT_INTERRUPT
)
2044 hotplug_status
= i9xx_hpd_irq_ack(dev_priv
);
2046 /* Call regardless, as some status bits might not be
2047 * signalled in iir */
2048 i9xx_pipestat_irq_ack(dev_priv
, iir
, pipe_stats
);
2050 if (iir
& (I915_LPE_PIPE_A_INTERRUPT
|
2051 I915_LPE_PIPE_B_INTERRUPT
))
2052 intel_lpe_audio_irq_handler(dev_priv
);
2055 * VLV_IIR is single buffered, and reflects the level
2056 * from PIPESTAT/PORT_HOTPLUG_STAT, hence clear it last.
2059 I915_WRITE(VLV_IIR
, iir
);
2061 I915_WRITE(VLV_IER
, ier
);
2062 I915_WRITE(VLV_MASTER_IER
, MASTER_INTERRUPT_ENABLE
);
2063 POSTING_READ(VLV_MASTER_IER
);
2066 snb_gt_irq_handler(dev_priv
, gt_iir
);
2068 gen6_rps_irq_handler(dev_priv
, pm_iir
);
2071 i9xx_hpd_irq_handler(dev_priv
, hotplug_status
);
2073 valleyview_pipestat_irq_handler(dev_priv
, pipe_stats
);
2076 enable_rpm_wakeref_asserts(dev_priv
);
2081 static irqreturn_t
cherryview_irq_handler(int irq
, void *arg
)
2083 struct drm_device
*dev
= arg
;
2084 struct drm_i915_private
*dev_priv
= to_i915(dev
);
2085 irqreturn_t ret
= IRQ_NONE
;
2087 if (!intel_irqs_enabled(dev_priv
))
2090 /* IRQs are synced during runtime_suspend, we don't require a wakeref */
2091 disable_rpm_wakeref_asserts(dev_priv
);
2094 u32 master_ctl
, iir
;
2096 u32 pipe_stats
[I915_MAX_PIPES
] = {};
2097 u32 hotplug_status
= 0;
2100 master_ctl
= I915_READ(GEN8_MASTER_IRQ
) & ~GEN8_MASTER_IRQ_CONTROL
;
2101 iir
= I915_READ(VLV_IIR
);
2103 if (master_ctl
== 0 && iir
== 0)
2109 * Theory on interrupt generation, based on empirical evidence:
2111 * x = ((VLV_IIR & VLV_IER) ||
2112 * ((GEN8_MASTER_IRQ & ~GEN8_MASTER_IRQ_CONTROL) &&
2113 * (GEN8_MASTER_IRQ & GEN8_MASTER_IRQ_CONTROL)));
2115 * A CPU interrupt will only be raised when 'x' has a 0->1 edge.
2116 * Hence we clear GEN8_MASTER_IRQ_CONTROL and VLV_IER to
2117 * guarantee the CPU interrupt will be raised again even if we
2118 * don't end up clearing all the VLV_IIR and GEN8_MASTER_IRQ_CONTROL
2119 * bits this time around.
2121 I915_WRITE(GEN8_MASTER_IRQ
, 0);
2122 ier
= I915_READ(VLV_IER
);
2123 I915_WRITE(VLV_IER
, 0);
2125 gen8_gt_irq_ack(dev_priv
, master_ctl
, gt_iir
);
2127 if (iir
& I915_DISPLAY_PORT_INTERRUPT
)
2128 hotplug_status
= i9xx_hpd_irq_ack(dev_priv
);
2130 /* Call regardless, as some status bits might not be
2131 * signalled in iir */
2132 i9xx_pipestat_irq_ack(dev_priv
, iir
, pipe_stats
);
2134 if (iir
& (I915_LPE_PIPE_A_INTERRUPT
|
2135 I915_LPE_PIPE_B_INTERRUPT
|
2136 I915_LPE_PIPE_C_INTERRUPT
))
2137 intel_lpe_audio_irq_handler(dev_priv
);
2140 * VLV_IIR is single buffered, and reflects the level
2141 * from PIPESTAT/PORT_HOTPLUG_STAT, hence clear it last.
2144 I915_WRITE(VLV_IIR
, iir
);
2146 I915_WRITE(VLV_IER
, ier
);
2147 I915_WRITE(GEN8_MASTER_IRQ
, GEN8_MASTER_IRQ_CONTROL
);
2148 POSTING_READ(GEN8_MASTER_IRQ
);
2150 gen8_gt_irq_handler(dev_priv
, gt_iir
);
2153 i9xx_hpd_irq_handler(dev_priv
, hotplug_status
);
2155 valleyview_pipestat_irq_handler(dev_priv
, pipe_stats
);
2158 enable_rpm_wakeref_asserts(dev_priv
);
2163 static void ibx_hpd_irq_handler(struct drm_i915_private
*dev_priv
,
2164 u32 hotplug_trigger
,
2165 const u32 hpd
[HPD_NUM_PINS
])
2167 u32 dig_hotplug_reg
, pin_mask
= 0, long_mask
= 0;
2170 * Somehow the PCH doesn't seem to really ack the interrupt to the CPU
2171 * unless we touch the hotplug register, even if hotplug_trigger is
2172 * zero. Not acking leads to "The master control interrupt lied (SDE)!"
2175 dig_hotplug_reg
= I915_READ(PCH_PORT_HOTPLUG
);
2176 if (!hotplug_trigger
) {
2177 u32 mask
= PORTA_HOTPLUG_STATUS_MASK
|
2178 PORTD_HOTPLUG_STATUS_MASK
|
2179 PORTC_HOTPLUG_STATUS_MASK
|
2180 PORTB_HOTPLUG_STATUS_MASK
;
2181 dig_hotplug_reg
&= ~mask
;
2184 I915_WRITE(PCH_PORT_HOTPLUG
, dig_hotplug_reg
);
2185 if (!hotplug_trigger
)
2188 intel_get_hpd_pins(&pin_mask
, &long_mask
, hotplug_trigger
,
2189 dig_hotplug_reg
, hpd
,
2190 pch_port_hotplug_long_detect
);
2192 intel_hpd_irq_handler(dev_priv
, pin_mask
, long_mask
);
2195 static void ibx_irq_handler(struct drm_i915_private
*dev_priv
, u32 pch_iir
)
2198 u32 hotplug_trigger
= pch_iir
& SDE_HOTPLUG_MASK
;
2200 ibx_hpd_irq_handler(dev_priv
, hotplug_trigger
, hpd_ibx
);
2202 if (pch_iir
& SDE_AUDIO_POWER_MASK
) {
2203 int port
= ffs((pch_iir
& SDE_AUDIO_POWER_MASK
) >>
2204 SDE_AUDIO_POWER_SHIFT
);
2205 DRM_DEBUG_DRIVER("PCH audio power change on port %d\n",
2209 if (pch_iir
& SDE_AUX_MASK
)
2210 dp_aux_irq_handler(dev_priv
);
2212 if (pch_iir
& SDE_GMBUS
)
2213 gmbus_irq_handler(dev_priv
);
2215 if (pch_iir
& SDE_AUDIO_HDCP_MASK
)
2216 DRM_DEBUG_DRIVER("PCH HDCP audio interrupt\n");
2218 if (pch_iir
& SDE_AUDIO_TRANS_MASK
)
2219 DRM_DEBUG_DRIVER("PCH transcoder audio interrupt\n");
2221 if (pch_iir
& SDE_POISON
)
2222 DRM_ERROR("PCH poison interrupt\n");
2224 if (pch_iir
& SDE_FDI_MASK
)
2225 for_each_pipe(dev_priv
, pipe
)
2226 DRM_DEBUG_DRIVER(" pipe %c FDI IIR: 0x%08x\n",
2228 I915_READ(FDI_RX_IIR(pipe
)));
2230 if (pch_iir
& (SDE_TRANSB_CRC_DONE
| SDE_TRANSA_CRC_DONE
))
2231 DRM_DEBUG_DRIVER("PCH transcoder CRC done interrupt\n");
2233 if (pch_iir
& (SDE_TRANSB_CRC_ERR
| SDE_TRANSA_CRC_ERR
))
2234 DRM_DEBUG_DRIVER("PCH transcoder CRC error interrupt\n");
2236 if (pch_iir
& SDE_TRANSA_FIFO_UNDER
)
2237 intel_pch_fifo_underrun_irq_handler(dev_priv
, PIPE_A
);
2239 if (pch_iir
& SDE_TRANSB_FIFO_UNDER
)
2240 intel_pch_fifo_underrun_irq_handler(dev_priv
, PIPE_B
);
2243 static void ivb_err_int_handler(struct drm_i915_private
*dev_priv
)
2245 u32 err_int
= I915_READ(GEN7_ERR_INT
);
2248 if (err_int
& ERR_INT_POISON
)
2249 DRM_ERROR("Poison interrupt\n");
2251 for_each_pipe(dev_priv
, pipe
) {
2252 if (err_int
& ERR_INT_FIFO_UNDERRUN(pipe
))
2253 intel_cpu_fifo_underrun_irq_handler(dev_priv
, pipe
);
2255 if (err_int
& ERR_INT_PIPE_CRC_DONE(pipe
)) {
2256 if (IS_IVYBRIDGE(dev_priv
))
2257 ivb_pipe_crc_irq_handler(dev_priv
, pipe
);
2259 hsw_pipe_crc_irq_handler(dev_priv
, pipe
);
2263 I915_WRITE(GEN7_ERR_INT
, err_int
);
2266 static void cpt_serr_int_handler(struct drm_i915_private
*dev_priv
)
2268 u32 serr_int
= I915_READ(SERR_INT
);
2271 if (serr_int
& SERR_INT_POISON
)
2272 DRM_ERROR("PCH poison interrupt\n");
2274 for_each_pipe(dev_priv
, pipe
)
2275 if (serr_int
& SERR_INT_TRANS_FIFO_UNDERRUN(pipe
))
2276 intel_pch_fifo_underrun_irq_handler(dev_priv
, pipe
);
2278 I915_WRITE(SERR_INT
, serr_int
);
2281 static void cpt_irq_handler(struct drm_i915_private
*dev_priv
, u32 pch_iir
)
2284 u32 hotplug_trigger
= pch_iir
& SDE_HOTPLUG_MASK_CPT
;
2286 ibx_hpd_irq_handler(dev_priv
, hotplug_trigger
, hpd_cpt
);
2288 if (pch_iir
& SDE_AUDIO_POWER_MASK_CPT
) {
2289 int port
= ffs((pch_iir
& SDE_AUDIO_POWER_MASK_CPT
) >>
2290 SDE_AUDIO_POWER_SHIFT_CPT
);
2291 DRM_DEBUG_DRIVER("PCH audio power change on port %c\n",
2295 if (pch_iir
& SDE_AUX_MASK_CPT
)
2296 dp_aux_irq_handler(dev_priv
);
2298 if (pch_iir
& SDE_GMBUS_CPT
)
2299 gmbus_irq_handler(dev_priv
);
2301 if (pch_iir
& SDE_AUDIO_CP_REQ_CPT
)
2302 DRM_DEBUG_DRIVER("Audio CP request interrupt\n");
2304 if (pch_iir
& SDE_AUDIO_CP_CHG_CPT
)
2305 DRM_DEBUG_DRIVER("Audio CP change interrupt\n");
2307 if (pch_iir
& SDE_FDI_MASK_CPT
)
2308 for_each_pipe(dev_priv
, pipe
)
2309 DRM_DEBUG_DRIVER(" pipe %c FDI IIR: 0x%08x\n",
2311 I915_READ(FDI_RX_IIR(pipe
)));
2313 if (pch_iir
& SDE_ERROR_CPT
)
2314 cpt_serr_int_handler(dev_priv
);
2317 static void spt_irq_handler(struct drm_i915_private
*dev_priv
, u32 pch_iir
)
2319 u32 hotplug_trigger
= pch_iir
& SDE_HOTPLUG_MASK_SPT
&
2320 ~SDE_PORTE_HOTPLUG_SPT
;
2321 u32 hotplug2_trigger
= pch_iir
& SDE_PORTE_HOTPLUG_SPT
;
2322 u32 pin_mask
= 0, long_mask
= 0;
2324 if (hotplug_trigger
) {
2325 u32 dig_hotplug_reg
;
2327 dig_hotplug_reg
= I915_READ(PCH_PORT_HOTPLUG
);
2328 I915_WRITE(PCH_PORT_HOTPLUG
, dig_hotplug_reg
);
2330 intel_get_hpd_pins(&pin_mask
, &long_mask
, hotplug_trigger
,
2331 dig_hotplug_reg
, hpd_spt
,
2332 spt_port_hotplug_long_detect
);
2335 if (hotplug2_trigger
) {
2336 u32 dig_hotplug_reg
;
2338 dig_hotplug_reg
= I915_READ(PCH_PORT_HOTPLUG2
);
2339 I915_WRITE(PCH_PORT_HOTPLUG2
, dig_hotplug_reg
);
2341 intel_get_hpd_pins(&pin_mask
, &long_mask
, hotplug2_trigger
,
2342 dig_hotplug_reg
, hpd_spt
,
2343 spt_port_hotplug2_long_detect
);
2347 intel_hpd_irq_handler(dev_priv
, pin_mask
, long_mask
);
2349 if (pch_iir
& SDE_GMBUS_CPT
)
2350 gmbus_irq_handler(dev_priv
);
2353 static void ilk_hpd_irq_handler(struct drm_i915_private
*dev_priv
,
2354 u32 hotplug_trigger
,
2355 const u32 hpd
[HPD_NUM_PINS
])
2357 u32 dig_hotplug_reg
, pin_mask
= 0, long_mask
= 0;
2359 dig_hotplug_reg
= I915_READ(DIGITAL_PORT_HOTPLUG_CNTRL
);
2360 I915_WRITE(DIGITAL_PORT_HOTPLUG_CNTRL
, dig_hotplug_reg
);
2362 intel_get_hpd_pins(&pin_mask
, &long_mask
, hotplug_trigger
,
2363 dig_hotplug_reg
, hpd
,
2364 ilk_port_hotplug_long_detect
);
2366 intel_hpd_irq_handler(dev_priv
, pin_mask
, long_mask
);
2369 static void ilk_display_irq_handler(struct drm_i915_private
*dev_priv
,
2373 u32 hotplug_trigger
= de_iir
& DE_DP_A_HOTPLUG
;
2375 if (hotplug_trigger
)
2376 ilk_hpd_irq_handler(dev_priv
, hotplug_trigger
, hpd_ilk
);
2378 if (de_iir
& DE_AUX_CHANNEL_A
)
2379 dp_aux_irq_handler(dev_priv
);
2381 if (de_iir
& DE_GSE
)
2382 intel_opregion_asle_intr(dev_priv
);
2384 if (de_iir
& DE_POISON
)
2385 DRM_ERROR("Poison interrupt\n");
2387 for_each_pipe(dev_priv
, pipe
) {
2388 if (de_iir
& DE_PIPE_VBLANK(pipe
))
2389 drm_handle_vblank(&dev_priv
->drm
, pipe
);
2391 if (de_iir
& DE_PIPE_FIFO_UNDERRUN(pipe
))
2392 intel_cpu_fifo_underrun_irq_handler(dev_priv
, pipe
);
2394 if (de_iir
& DE_PIPE_CRC_DONE(pipe
))
2395 i9xx_pipe_crc_irq_handler(dev_priv
, pipe
);
2398 /* check event from PCH */
2399 if (de_iir
& DE_PCH_EVENT
) {
2400 u32 pch_iir
= I915_READ(SDEIIR
);
2402 if (HAS_PCH_CPT(dev_priv
))
2403 cpt_irq_handler(dev_priv
, pch_iir
);
2405 ibx_irq_handler(dev_priv
, pch_iir
);
2407 /* should clear PCH hotplug event before clear CPU irq */
2408 I915_WRITE(SDEIIR
, pch_iir
);
2411 if (IS_GEN5(dev_priv
) && de_iir
& DE_PCU_EVENT
)
2412 ironlake_rps_change_irq_handler(dev_priv
);
2415 static void ivb_display_irq_handler(struct drm_i915_private
*dev_priv
,
2419 u32 hotplug_trigger
= de_iir
& DE_DP_A_HOTPLUG_IVB
;
2421 if (hotplug_trigger
)
2422 ilk_hpd_irq_handler(dev_priv
, hotplug_trigger
, hpd_ivb
);
2424 if (de_iir
& DE_ERR_INT_IVB
)
2425 ivb_err_int_handler(dev_priv
);
2427 if (de_iir
& DE_AUX_CHANNEL_A_IVB
)
2428 dp_aux_irq_handler(dev_priv
);
2430 if (de_iir
& DE_GSE_IVB
)
2431 intel_opregion_asle_intr(dev_priv
);
2433 for_each_pipe(dev_priv
, pipe
) {
2434 if (de_iir
& (DE_PIPE_VBLANK_IVB(pipe
)))
2435 drm_handle_vblank(&dev_priv
->drm
, pipe
);
2438 /* check event from PCH */
2439 if (!HAS_PCH_NOP(dev_priv
) && (de_iir
& DE_PCH_EVENT_IVB
)) {
2440 u32 pch_iir
= I915_READ(SDEIIR
);
2442 cpt_irq_handler(dev_priv
, pch_iir
);
2444 /* clear PCH hotplug event before clear CPU irq */
2445 I915_WRITE(SDEIIR
, pch_iir
);
2450 * To handle irqs with the minimum potential races with fresh interrupts, we:
2451 * 1 - Disable Master Interrupt Control.
2452 * 2 - Find the source(s) of the interrupt.
2453 * 3 - Clear the Interrupt Identity bits (IIR).
2454 * 4 - Process the interrupt(s) that had bits set in the IIRs.
2455 * 5 - Re-enable Master Interrupt Control.
2457 static irqreturn_t
ironlake_irq_handler(int irq
, void *arg
)
2459 struct drm_device
*dev
= arg
;
2460 struct drm_i915_private
*dev_priv
= to_i915(dev
);
2461 u32 de_iir
, gt_iir
, de_ier
, sde_ier
= 0;
2462 irqreturn_t ret
= IRQ_NONE
;
2464 if (!intel_irqs_enabled(dev_priv
))
2467 /* IRQs are synced during runtime_suspend, we don't require a wakeref */
2468 disable_rpm_wakeref_asserts(dev_priv
);
2470 /* disable master interrupt before clearing iir */
2471 de_ier
= I915_READ(DEIER
);
2472 I915_WRITE(DEIER
, de_ier
& ~DE_MASTER_IRQ_CONTROL
);
2473 POSTING_READ(DEIER
);
2475 /* Disable south interrupts. We'll only write to SDEIIR once, so further
2476 * interrupts will will be stored on its back queue, and then we'll be
2477 * able to process them after we restore SDEIER (as soon as we restore
2478 * it, we'll get an interrupt if SDEIIR still has something to process
2479 * due to its back queue). */
2480 if (!HAS_PCH_NOP(dev_priv
)) {
2481 sde_ier
= I915_READ(SDEIER
);
2482 I915_WRITE(SDEIER
, 0);
2483 POSTING_READ(SDEIER
);
2486 /* Find, clear, then process each source of interrupt */
2488 gt_iir
= I915_READ(GTIIR
);
2490 I915_WRITE(GTIIR
, gt_iir
);
2492 if (INTEL_GEN(dev_priv
) >= 6)
2493 snb_gt_irq_handler(dev_priv
, gt_iir
);
2495 ilk_gt_irq_handler(dev_priv
, gt_iir
);
2498 de_iir
= I915_READ(DEIIR
);
2500 I915_WRITE(DEIIR
, de_iir
);
2502 if (INTEL_GEN(dev_priv
) >= 7)
2503 ivb_display_irq_handler(dev_priv
, de_iir
);
2505 ilk_display_irq_handler(dev_priv
, de_iir
);
2508 if (INTEL_GEN(dev_priv
) >= 6) {
2509 u32 pm_iir
= I915_READ(GEN6_PMIIR
);
2511 I915_WRITE(GEN6_PMIIR
, pm_iir
);
2513 gen6_rps_irq_handler(dev_priv
, pm_iir
);
2517 I915_WRITE(DEIER
, de_ier
);
2518 POSTING_READ(DEIER
);
2519 if (!HAS_PCH_NOP(dev_priv
)) {
2520 I915_WRITE(SDEIER
, sde_ier
);
2521 POSTING_READ(SDEIER
);
2524 /* IRQs are synced during runtime_suspend, we don't require a wakeref */
2525 enable_rpm_wakeref_asserts(dev_priv
);
2530 static void bxt_hpd_irq_handler(struct drm_i915_private
*dev_priv
,
2531 u32 hotplug_trigger
,
2532 const u32 hpd
[HPD_NUM_PINS
])
2534 u32 dig_hotplug_reg
, pin_mask
= 0, long_mask
= 0;
2536 dig_hotplug_reg
= I915_READ(PCH_PORT_HOTPLUG
);
2537 I915_WRITE(PCH_PORT_HOTPLUG
, dig_hotplug_reg
);
2539 intel_get_hpd_pins(&pin_mask
, &long_mask
, hotplug_trigger
,
2540 dig_hotplug_reg
, hpd
,
2541 bxt_port_hotplug_long_detect
);
2543 intel_hpd_irq_handler(dev_priv
, pin_mask
, long_mask
);
2547 gen8_de_irq_handler(struct drm_i915_private
*dev_priv
, u32 master_ctl
)
2549 irqreturn_t ret
= IRQ_NONE
;
2553 if (master_ctl
& GEN8_DE_MISC_IRQ
) {
2554 iir
= I915_READ(GEN8_DE_MISC_IIR
);
2556 I915_WRITE(GEN8_DE_MISC_IIR
, iir
);
2558 if (iir
& GEN8_DE_MISC_GSE
)
2559 intel_opregion_asle_intr(dev_priv
);
2561 DRM_ERROR("Unexpected DE Misc interrupt\n");
2564 DRM_ERROR("The master control interrupt lied (DE MISC)!\n");
2567 if (master_ctl
& GEN8_DE_PORT_IRQ
) {
2568 iir
= I915_READ(GEN8_DE_PORT_IIR
);
2573 I915_WRITE(GEN8_DE_PORT_IIR
, iir
);
2576 tmp_mask
= GEN8_AUX_CHANNEL_A
;
2577 if (INTEL_GEN(dev_priv
) >= 9)
2578 tmp_mask
|= GEN9_AUX_CHANNEL_B
|
2579 GEN9_AUX_CHANNEL_C
|
2582 if (iir
& tmp_mask
) {
2583 dp_aux_irq_handler(dev_priv
);
2587 if (IS_GEN9_LP(dev_priv
)) {
2588 tmp_mask
= iir
& BXT_DE_PORT_HOTPLUG_MASK
;
2590 bxt_hpd_irq_handler(dev_priv
, tmp_mask
,
2594 } else if (IS_BROADWELL(dev_priv
)) {
2595 tmp_mask
= iir
& GEN8_PORT_DP_A_HOTPLUG
;
2597 ilk_hpd_irq_handler(dev_priv
,
2603 if (IS_GEN9_LP(dev_priv
) && (iir
& BXT_DE_PORT_GMBUS
)) {
2604 gmbus_irq_handler(dev_priv
);
2609 DRM_ERROR("Unexpected DE Port interrupt\n");
2612 DRM_ERROR("The master control interrupt lied (DE PORT)!\n");
2615 for_each_pipe(dev_priv
, pipe
) {
2618 if (!(master_ctl
& GEN8_DE_PIPE_IRQ(pipe
)))
2621 iir
= I915_READ(GEN8_DE_PIPE_IIR(pipe
));
2623 DRM_ERROR("The master control interrupt lied (DE PIPE)!\n");
2628 I915_WRITE(GEN8_DE_PIPE_IIR(pipe
), iir
);
2630 if (iir
& GEN8_PIPE_VBLANK
)
2631 drm_handle_vblank(&dev_priv
->drm
, pipe
);
2633 if (iir
& GEN8_PIPE_CDCLK_CRC_DONE
)
2634 hsw_pipe_crc_irq_handler(dev_priv
, pipe
);
2636 if (iir
& GEN8_PIPE_FIFO_UNDERRUN
)
2637 intel_cpu_fifo_underrun_irq_handler(dev_priv
, pipe
);
2640 if (INTEL_GEN(dev_priv
) >= 9)
2641 fault_errors
&= GEN9_DE_PIPE_IRQ_FAULT_ERRORS
;
2643 fault_errors
&= GEN8_DE_PIPE_IRQ_FAULT_ERRORS
;
2646 DRM_ERROR("Fault errors on pipe %c: 0x%08x\n",
2651 if (HAS_PCH_SPLIT(dev_priv
) && !HAS_PCH_NOP(dev_priv
) &&
2652 master_ctl
& GEN8_DE_PCH_IRQ
) {
2654 * FIXME(BDW): Assume for now that the new interrupt handling
2655 * scheme also closed the SDE interrupt handling race we've seen
2656 * on older pch-split platforms. But this needs testing.
2658 iir
= I915_READ(SDEIIR
);
2660 I915_WRITE(SDEIIR
, iir
);
2663 if (HAS_PCH_SPT(dev_priv
) || HAS_PCH_KBP(dev_priv
) ||
2664 HAS_PCH_CNP(dev_priv
))
2665 spt_irq_handler(dev_priv
, iir
);
2667 cpt_irq_handler(dev_priv
, iir
);
2670 * Like on previous PCH there seems to be something
2671 * fishy going on with forwarding PCH interrupts.
2673 DRM_DEBUG_DRIVER("The master control interrupt lied (SDE)!\n");
2680 static irqreturn_t
gen8_irq_handler(int irq
, void *arg
)
2682 struct drm_device
*dev
= arg
;
2683 struct drm_i915_private
*dev_priv
= to_i915(dev
);
2688 if (!intel_irqs_enabled(dev_priv
))
2691 master_ctl
= I915_READ_FW(GEN8_MASTER_IRQ
);
2692 master_ctl
&= ~GEN8_MASTER_IRQ_CONTROL
;
2696 I915_WRITE_FW(GEN8_MASTER_IRQ
, 0);
2698 /* IRQs are synced during runtime_suspend, we don't require a wakeref */
2699 disable_rpm_wakeref_asserts(dev_priv
);
2701 /* Find, clear, then process each source of interrupt */
2702 ret
= gen8_gt_irq_ack(dev_priv
, master_ctl
, gt_iir
);
2703 gen8_gt_irq_handler(dev_priv
, gt_iir
);
2704 ret
|= gen8_de_irq_handler(dev_priv
, master_ctl
);
2706 I915_WRITE_FW(GEN8_MASTER_IRQ
, GEN8_MASTER_IRQ_CONTROL
);
2707 POSTING_READ_FW(GEN8_MASTER_IRQ
);
2709 enable_rpm_wakeref_asserts(dev_priv
);
2715 struct delayed_work work
;
2716 struct drm_i915_private
*i915
;
2720 static void wedge_me(struct work_struct
*work
)
2722 struct wedge_me
*w
= container_of(work
, typeof(*w
), work
.work
);
2724 dev_err(w
->i915
->drm
.dev
,
2725 "%s timed out, cancelling all in-flight rendering.\n",
2727 i915_gem_set_wedged(w
->i915
);
2730 static void __init_wedge(struct wedge_me
*w
,
2731 struct drm_i915_private
*i915
,
2738 INIT_DELAYED_WORK_ONSTACK(&w
->work
, wedge_me
);
2739 schedule_delayed_work(&w
->work
, timeout
);
2742 static void __fini_wedge(struct wedge_me
*w
)
2744 cancel_delayed_work_sync(&w
->work
);
2745 destroy_delayed_work_on_stack(&w
->work
);
2749 #define i915_wedge_on_timeout(W, DEV, TIMEOUT) \
2750 for (__init_wedge((W), (DEV), (TIMEOUT), __func__); \
2755 * i915_reset_device - do process context error handling work
2756 * @dev_priv: i915 device private
2758 * Fire an error uevent so userspace can see that a hang or error
2761 static void i915_reset_device(struct drm_i915_private
*dev_priv
)
2763 struct kobject
*kobj
= &dev_priv
->drm
.primary
->kdev
->kobj
;
2764 char *error_event
[] = { I915_ERROR_UEVENT
"=1", NULL
};
2765 char *reset_event
[] = { I915_RESET_UEVENT
"=1", NULL
};
2766 char *reset_done_event
[] = { I915_ERROR_UEVENT
"=0", NULL
};
2769 kobject_uevent_env(kobj
, KOBJ_CHANGE
, error_event
);
2771 DRM_DEBUG_DRIVER("resetting chip\n");
2772 kobject_uevent_env(kobj
, KOBJ_CHANGE
, reset_event
);
2774 /* Use a watchdog to ensure that our reset completes */
2775 i915_wedge_on_timeout(&w
, dev_priv
, 5*HZ
) {
2776 intel_prepare_reset(dev_priv
);
2778 /* Signal that locked waiters should reset the GPU */
2779 set_bit(I915_RESET_HANDOFF
, &dev_priv
->gpu_error
.flags
);
2780 wake_up_all(&dev_priv
->gpu_error
.wait_queue
);
2782 /* Wait for anyone holding the lock to wakeup, without
2783 * blocking indefinitely on struct_mutex.
2786 if (mutex_trylock(&dev_priv
->drm
.struct_mutex
)) {
2787 i915_reset(dev_priv
, 0);
2788 mutex_unlock(&dev_priv
->drm
.struct_mutex
);
2790 } while (wait_on_bit_timeout(&dev_priv
->gpu_error
.flags
,
2792 TASK_UNINTERRUPTIBLE
,
2795 intel_finish_reset(dev_priv
);
2798 if (!test_bit(I915_WEDGED
, &dev_priv
->gpu_error
.flags
))
2799 kobject_uevent_env(kobj
,
2800 KOBJ_CHANGE
, reset_done_event
);
2803 static void i915_clear_error_registers(struct drm_i915_private
*dev_priv
)
2807 if (!IS_GEN2(dev_priv
))
2808 I915_WRITE(PGTBL_ER
, I915_READ(PGTBL_ER
));
2810 if (INTEL_GEN(dev_priv
) < 4)
2811 I915_WRITE(IPEIR
, I915_READ(IPEIR
));
2813 I915_WRITE(IPEIR_I965
, I915_READ(IPEIR_I965
));
2815 I915_WRITE(EIR
, I915_READ(EIR
));
2816 eir
= I915_READ(EIR
);
2819 * some errors might have become stuck,
2822 DRM_DEBUG_DRIVER("EIR stuck: 0x%08x, masking\n", eir
);
2823 I915_WRITE(EMR
, I915_READ(EMR
) | eir
);
2824 I915_WRITE(IIR
, I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT
);
2829 * i915_handle_error - handle a gpu error
2830 * @dev_priv: i915 device private
2831 * @engine_mask: mask representing engines that are hung
2832 * @fmt: Error message format string
2834 * Do some basic checking of register state at error time and
2835 * dump it to the syslog. Also call i915_capture_error_state() to make
2836 * sure we get a record and make it available in debugfs. Fire a uevent
2837 * so userspace knows something bad happened (should trigger collection
2838 * of a ring dump etc.).
2840 void i915_handle_error(struct drm_i915_private
*dev_priv
,
2842 const char *fmt
, ...)
2844 struct intel_engine_cs
*engine
;
2849 va_start(args
, fmt
);
2850 vscnprintf(error_msg
, sizeof(error_msg
), fmt
, args
);
2854 * In most cases it's guaranteed that we get here with an RPM
2855 * reference held, for example because there is a pending GPU
2856 * request that won't finish until the reset is done. This
2857 * isn't the case at least when we get here by doing a
2858 * simulated reset via debugfs, so get an RPM reference.
2860 intel_runtime_pm_get(dev_priv
);
2862 i915_capture_error_state(dev_priv
, engine_mask
, error_msg
);
2863 i915_clear_error_registers(dev_priv
);
2866 * Try engine reset when available. We fall back to full reset if
2867 * single reset fails.
2869 if (intel_has_reset_engine(dev_priv
)) {
2870 for_each_engine_masked(engine
, dev_priv
, engine_mask
, tmp
) {
2871 BUILD_BUG_ON(I915_RESET_MODESET
>= I915_RESET_ENGINE
);
2872 if (test_and_set_bit(I915_RESET_ENGINE
+ engine
->id
,
2873 &dev_priv
->gpu_error
.flags
))
2876 if (i915_reset_engine(engine
, 0) == 0)
2877 engine_mask
&= ~intel_engine_flag(engine
);
2879 clear_bit(I915_RESET_ENGINE
+ engine
->id
,
2880 &dev_priv
->gpu_error
.flags
);
2881 wake_up_bit(&dev_priv
->gpu_error
.flags
,
2882 I915_RESET_ENGINE
+ engine
->id
);
2889 /* Full reset needs the mutex, stop any other user trying to do so. */
2890 if (test_and_set_bit(I915_RESET_BACKOFF
, &dev_priv
->gpu_error
.flags
)) {
2891 wait_event(dev_priv
->gpu_error
.reset_queue
,
2892 !test_bit(I915_RESET_BACKOFF
,
2893 &dev_priv
->gpu_error
.flags
));
2897 /* Prevent any other reset-engine attempt. */
2898 for_each_engine(engine
, dev_priv
, tmp
) {
2899 while (test_and_set_bit(I915_RESET_ENGINE
+ engine
->id
,
2900 &dev_priv
->gpu_error
.flags
))
2901 wait_on_bit(&dev_priv
->gpu_error
.flags
,
2902 I915_RESET_ENGINE
+ engine
->id
,
2903 TASK_UNINTERRUPTIBLE
);
2906 i915_reset_device(dev_priv
);
2908 for_each_engine(engine
, dev_priv
, tmp
) {
2909 clear_bit(I915_RESET_ENGINE
+ engine
->id
,
2910 &dev_priv
->gpu_error
.flags
);
2913 clear_bit(I915_RESET_BACKOFF
, &dev_priv
->gpu_error
.flags
);
2914 wake_up_all(&dev_priv
->gpu_error
.reset_queue
);
2917 intel_runtime_pm_put(dev_priv
);
2920 /* Called from drm generic code, passed 'crtc' which
2921 * we use as a pipe index
2923 static int i8xx_enable_vblank(struct drm_device
*dev
, unsigned int pipe
)
2925 struct drm_i915_private
*dev_priv
= to_i915(dev
);
2926 unsigned long irqflags
;
2928 spin_lock_irqsave(&dev_priv
->irq_lock
, irqflags
);
2929 i915_enable_pipestat(dev_priv
, pipe
, PIPE_VBLANK_INTERRUPT_STATUS
);
2930 spin_unlock_irqrestore(&dev_priv
->irq_lock
, irqflags
);
2935 static int i965_enable_vblank(struct drm_device
*dev
, unsigned int pipe
)
2937 struct drm_i915_private
*dev_priv
= to_i915(dev
);
2938 unsigned long irqflags
;
2940 spin_lock_irqsave(&dev_priv
->irq_lock
, irqflags
);
2941 i915_enable_pipestat(dev_priv
, pipe
,
2942 PIPE_START_VBLANK_INTERRUPT_STATUS
);
2943 spin_unlock_irqrestore(&dev_priv
->irq_lock
, irqflags
);
2948 static int ironlake_enable_vblank(struct drm_device
*dev
, unsigned int pipe
)
2950 struct drm_i915_private
*dev_priv
= to_i915(dev
);
2951 unsigned long irqflags
;
2952 uint32_t bit
= INTEL_GEN(dev_priv
) >= 7 ?
2953 DE_PIPE_VBLANK_IVB(pipe
) : DE_PIPE_VBLANK(pipe
);
2955 spin_lock_irqsave(&dev_priv
->irq_lock
, irqflags
);
2956 ilk_enable_display_irq(dev_priv
, bit
);
2957 spin_unlock_irqrestore(&dev_priv
->irq_lock
, irqflags
);
2962 static int gen8_enable_vblank(struct drm_device
*dev
, unsigned int pipe
)
2964 struct drm_i915_private
*dev_priv
= to_i915(dev
);
2965 unsigned long irqflags
;
2967 spin_lock_irqsave(&dev_priv
->irq_lock
, irqflags
);
2968 bdw_enable_pipe_irq(dev_priv
, pipe
, GEN8_PIPE_VBLANK
);
2969 spin_unlock_irqrestore(&dev_priv
->irq_lock
, irqflags
);
2974 /* Called from drm generic code, passed 'crtc' which
2975 * we use as a pipe index
2977 static void i8xx_disable_vblank(struct drm_device
*dev
, unsigned int pipe
)
2979 struct drm_i915_private
*dev_priv
= to_i915(dev
);
2980 unsigned long irqflags
;
2982 spin_lock_irqsave(&dev_priv
->irq_lock
, irqflags
);
2983 i915_disable_pipestat(dev_priv
, pipe
, PIPE_VBLANK_INTERRUPT_STATUS
);
2984 spin_unlock_irqrestore(&dev_priv
->irq_lock
, irqflags
);
2987 static void i965_disable_vblank(struct drm_device
*dev
, unsigned int pipe
)
2989 struct drm_i915_private
*dev_priv
= to_i915(dev
);
2990 unsigned long irqflags
;
2992 spin_lock_irqsave(&dev_priv
->irq_lock
, irqflags
);
2993 i915_disable_pipestat(dev_priv
, pipe
,
2994 PIPE_START_VBLANK_INTERRUPT_STATUS
);
2995 spin_unlock_irqrestore(&dev_priv
->irq_lock
, irqflags
);
2998 static void ironlake_disable_vblank(struct drm_device
*dev
, unsigned int pipe
)
3000 struct drm_i915_private
*dev_priv
= to_i915(dev
);
3001 unsigned long irqflags
;
3002 uint32_t bit
= INTEL_GEN(dev_priv
) >= 7 ?
3003 DE_PIPE_VBLANK_IVB(pipe
) : DE_PIPE_VBLANK(pipe
);
3005 spin_lock_irqsave(&dev_priv
->irq_lock
, irqflags
);
3006 ilk_disable_display_irq(dev_priv
, bit
);
3007 spin_unlock_irqrestore(&dev_priv
->irq_lock
, irqflags
);
3010 static void gen8_disable_vblank(struct drm_device
*dev
, unsigned int pipe
)
3012 struct drm_i915_private
*dev_priv
= to_i915(dev
);
3013 unsigned long irqflags
;
3015 spin_lock_irqsave(&dev_priv
->irq_lock
, irqflags
);
3016 bdw_disable_pipe_irq(dev_priv
, pipe
, GEN8_PIPE_VBLANK
);
3017 spin_unlock_irqrestore(&dev_priv
->irq_lock
, irqflags
);
3020 static void ibx_irq_reset(struct drm_i915_private
*dev_priv
)
3022 if (HAS_PCH_NOP(dev_priv
))
3025 GEN3_IRQ_RESET(SDE
);
3027 if (HAS_PCH_CPT(dev_priv
) || HAS_PCH_LPT(dev_priv
))
3028 I915_WRITE(SERR_INT
, 0xffffffff);
3032 * SDEIER is also touched by the interrupt handler to work around missed PCH
3033 * interrupts. Hence we can't update it after the interrupt handler is enabled -
3034 * instead we unconditionally enable all PCH interrupt sources here, but then
3035 * only unmask them as needed with SDEIMR.
3037 * This function needs to be called before interrupts are enabled.
3039 static void ibx_irq_pre_postinstall(struct drm_device
*dev
)
3041 struct drm_i915_private
*dev_priv
= to_i915(dev
);
3043 if (HAS_PCH_NOP(dev_priv
))
3046 WARN_ON(I915_READ(SDEIER
) != 0);
3047 I915_WRITE(SDEIER
, 0xffffffff);
3048 POSTING_READ(SDEIER
);
3051 static void gen5_gt_irq_reset(struct drm_i915_private
*dev_priv
)
3054 if (INTEL_GEN(dev_priv
) >= 6)
3055 GEN3_IRQ_RESET(GEN6_PM
);
3058 static void vlv_display_irq_reset(struct drm_i915_private
*dev_priv
)
3060 if (IS_CHERRYVIEW(dev_priv
))
3061 I915_WRITE(DPINVGTT
, DPINVGTT_STATUS_MASK_CHV
);
3063 I915_WRITE(DPINVGTT
, DPINVGTT_STATUS_MASK
);
3065 i915_hotplug_interrupt_update_locked(dev_priv
, 0xffffffff, 0);
3066 I915_WRITE(PORT_HOTPLUG_STAT
, I915_READ(PORT_HOTPLUG_STAT
));
3068 i9xx_pipestat_irq_reset(dev_priv
);
3070 GEN3_IRQ_RESET(VLV_
);
3071 dev_priv
->irq_mask
= ~0u;
3074 static void vlv_display_irq_postinstall(struct drm_i915_private
*dev_priv
)
3080 pipestat_mask
= PIPE_CRC_DONE_INTERRUPT_STATUS
;
3082 i915_enable_pipestat(dev_priv
, PIPE_A
, PIPE_GMBUS_INTERRUPT_STATUS
);
3083 for_each_pipe(dev_priv
, pipe
)
3084 i915_enable_pipestat(dev_priv
, pipe
, pipestat_mask
);
3086 enable_mask
= I915_DISPLAY_PORT_INTERRUPT
|
3087 I915_DISPLAY_PIPE_A_EVENT_INTERRUPT
|
3088 I915_DISPLAY_PIPE_B_EVENT_INTERRUPT
|
3089 I915_LPE_PIPE_A_INTERRUPT
|
3090 I915_LPE_PIPE_B_INTERRUPT
;
3092 if (IS_CHERRYVIEW(dev_priv
))
3093 enable_mask
|= I915_DISPLAY_PIPE_C_EVENT_INTERRUPT
|
3094 I915_LPE_PIPE_C_INTERRUPT
;
3096 WARN_ON(dev_priv
->irq_mask
!= ~0u);
3098 dev_priv
->irq_mask
= ~enable_mask
;
3100 GEN3_IRQ_INIT(VLV_
, dev_priv
->irq_mask
, enable_mask
);
3105 static void ironlake_irq_reset(struct drm_device
*dev
)
3107 struct drm_i915_private
*dev_priv
= to_i915(dev
);
3109 if (IS_GEN5(dev_priv
))
3110 I915_WRITE(HWSTAM
, 0xffffffff);
3113 if (IS_GEN7(dev_priv
))
3114 I915_WRITE(GEN7_ERR_INT
, 0xffffffff);
3116 gen5_gt_irq_reset(dev_priv
);
3118 ibx_irq_reset(dev_priv
);
3121 static void valleyview_irq_reset(struct drm_device
*dev
)
3123 struct drm_i915_private
*dev_priv
= to_i915(dev
);
3125 I915_WRITE(VLV_MASTER_IER
, 0);
3126 POSTING_READ(VLV_MASTER_IER
);
3128 gen5_gt_irq_reset(dev_priv
);
3130 spin_lock_irq(&dev_priv
->irq_lock
);
3131 if (dev_priv
->display_irqs_enabled
)
3132 vlv_display_irq_reset(dev_priv
);
3133 spin_unlock_irq(&dev_priv
->irq_lock
);
3136 static void gen8_gt_irq_reset(struct drm_i915_private
*dev_priv
)
3138 GEN8_IRQ_RESET_NDX(GT
, 0);
3139 GEN8_IRQ_RESET_NDX(GT
, 1);
3140 GEN8_IRQ_RESET_NDX(GT
, 2);
3141 GEN8_IRQ_RESET_NDX(GT
, 3);
3144 static void gen8_irq_reset(struct drm_device
*dev
)
3146 struct drm_i915_private
*dev_priv
= to_i915(dev
);
3149 I915_WRITE(GEN8_MASTER_IRQ
, 0);
3150 POSTING_READ(GEN8_MASTER_IRQ
);
3152 gen8_gt_irq_reset(dev_priv
);
3154 for_each_pipe(dev_priv
, pipe
)
3155 if (intel_display_power_is_enabled(dev_priv
,
3156 POWER_DOMAIN_PIPE(pipe
)))
3157 GEN8_IRQ_RESET_NDX(DE_PIPE
, pipe
);
3159 GEN3_IRQ_RESET(GEN8_DE_PORT_
);
3160 GEN3_IRQ_RESET(GEN8_DE_MISC_
);
3161 GEN3_IRQ_RESET(GEN8_PCU_
);
3163 if (HAS_PCH_SPLIT(dev_priv
))
3164 ibx_irq_reset(dev_priv
);
3167 void gen8_irq_power_well_post_enable(struct drm_i915_private
*dev_priv
,
3170 uint32_t extra_ier
= GEN8_PIPE_VBLANK
| GEN8_PIPE_FIFO_UNDERRUN
;
3173 spin_lock_irq(&dev_priv
->irq_lock
);
3175 if (!intel_irqs_enabled(dev_priv
)) {
3176 spin_unlock_irq(&dev_priv
->irq_lock
);
3180 for_each_pipe_masked(dev_priv
, pipe
, pipe_mask
)
3181 GEN8_IRQ_INIT_NDX(DE_PIPE
, pipe
,
3182 dev_priv
->de_irq_mask
[pipe
],
3183 ~dev_priv
->de_irq_mask
[pipe
] | extra_ier
);
3185 spin_unlock_irq(&dev_priv
->irq_lock
);
3188 void gen8_irq_power_well_pre_disable(struct drm_i915_private
*dev_priv
,
3193 spin_lock_irq(&dev_priv
->irq_lock
);
3195 if (!intel_irqs_enabled(dev_priv
)) {
3196 spin_unlock_irq(&dev_priv
->irq_lock
);
3200 for_each_pipe_masked(dev_priv
, pipe
, pipe_mask
)
3201 GEN8_IRQ_RESET_NDX(DE_PIPE
, pipe
);
3203 spin_unlock_irq(&dev_priv
->irq_lock
);
3205 /* make sure we're done processing display irqs */
3206 synchronize_irq(dev_priv
->drm
.irq
);
3209 static void cherryview_irq_reset(struct drm_device
*dev
)
3211 struct drm_i915_private
*dev_priv
= to_i915(dev
);
3213 I915_WRITE(GEN8_MASTER_IRQ
, 0);
3214 POSTING_READ(GEN8_MASTER_IRQ
);
3216 gen8_gt_irq_reset(dev_priv
);
3218 GEN3_IRQ_RESET(GEN8_PCU_
);
3220 spin_lock_irq(&dev_priv
->irq_lock
);
3221 if (dev_priv
->display_irqs_enabled
)
3222 vlv_display_irq_reset(dev_priv
);
3223 spin_unlock_irq(&dev_priv
->irq_lock
);
3226 static u32
intel_hpd_enabled_irqs(struct drm_i915_private
*dev_priv
,
3227 const u32 hpd
[HPD_NUM_PINS
])
3229 struct intel_encoder
*encoder
;
3230 u32 enabled_irqs
= 0;
3232 for_each_intel_encoder(&dev_priv
->drm
, encoder
)
3233 if (dev_priv
->hotplug
.stats
[encoder
->hpd_pin
].state
== HPD_ENABLED
)
3234 enabled_irqs
|= hpd
[encoder
->hpd_pin
];
3236 return enabled_irqs
;
3239 static void ibx_hpd_detection_setup(struct drm_i915_private
*dev_priv
)
3244 * Enable digital hotplug on the PCH, and configure the DP short pulse
3245 * duration to 2ms (which is the minimum in the Display Port spec).
3246 * The pulse duration bits are reserved on LPT+.
3248 hotplug
= I915_READ(PCH_PORT_HOTPLUG
);
3249 hotplug
&= ~(PORTB_PULSE_DURATION_MASK
|
3250 PORTC_PULSE_DURATION_MASK
|
3251 PORTD_PULSE_DURATION_MASK
);
3252 hotplug
|= PORTB_HOTPLUG_ENABLE
| PORTB_PULSE_DURATION_2ms
;
3253 hotplug
|= PORTC_HOTPLUG_ENABLE
| PORTC_PULSE_DURATION_2ms
;
3254 hotplug
|= PORTD_HOTPLUG_ENABLE
| PORTD_PULSE_DURATION_2ms
;
3256 * When CPU and PCH are on the same package, port A
3257 * HPD must be enabled in both north and south.
3259 if (HAS_PCH_LPT_LP(dev_priv
))
3260 hotplug
|= PORTA_HOTPLUG_ENABLE
;
3261 I915_WRITE(PCH_PORT_HOTPLUG
, hotplug
);
3264 static void ibx_hpd_irq_setup(struct drm_i915_private
*dev_priv
)
3266 u32 hotplug_irqs
, enabled_irqs
;
3268 if (HAS_PCH_IBX(dev_priv
)) {
3269 hotplug_irqs
= SDE_HOTPLUG_MASK
;
3270 enabled_irqs
= intel_hpd_enabled_irqs(dev_priv
, hpd_ibx
);
3272 hotplug_irqs
= SDE_HOTPLUG_MASK_CPT
;
3273 enabled_irqs
= intel_hpd_enabled_irqs(dev_priv
, hpd_cpt
);
3276 ibx_display_interrupt_update(dev_priv
, hotplug_irqs
, enabled_irqs
);
3278 ibx_hpd_detection_setup(dev_priv
);
3281 static void spt_hpd_detection_setup(struct drm_i915_private
*dev_priv
)
3285 /* Display WA #1179 WaHardHangonHotPlug: cnp */
3286 if (HAS_PCH_CNP(dev_priv
)) {
3287 val
= I915_READ(SOUTH_CHICKEN1
);
3288 val
&= ~CHASSIS_CLK_REQ_DURATION_MASK
;
3289 val
|= CHASSIS_CLK_REQ_DURATION(0xf);
3290 I915_WRITE(SOUTH_CHICKEN1
, val
);
3293 /* Enable digital hotplug on the PCH */
3294 hotplug
= I915_READ(PCH_PORT_HOTPLUG
);
3295 hotplug
|= PORTA_HOTPLUG_ENABLE
|
3296 PORTB_HOTPLUG_ENABLE
|
3297 PORTC_HOTPLUG_ENABLE
|
3298 PORTD_HOTPLUG_ENABLE
;
3299 I915_WRITE(PCH_PORT_HOTPLUG
, hotplug
);
3301 hotplug
= I915_READ(PCH_PORT_HOTPLUG2
);
3302 hotplug
|= PORTE_HOTPLUG_ENABLE
;
3303 I915_WRITE(PCH_PORT_HOTPLUG2
, hotplug
);
3306 static void spt_hpd_irq_setup(struct drm_i915_private
*dev_priv
)
3308 u32 hotplug_irqs
, enabled_irqs
;
3310 hotplug_irqs
= SDE_HOTPLUG_MASK_SPT
;
3311 enabled_irqs
= intel_hpd_enabled_irqs(dev_priv
, hpd_spt
);
3313 ibx_display_interrupt_update(dev_priv
, hotplug_irqs
, enabled_irqs
);
3315 spt_hpd_detection_setup(dev_priv
);
3318 static void ilk_hpd_detection_setup(struct drm_i915_private
*dev_priv
)
3323 * Enable digital hotplug on the CPU, and configure the DP short pulse
3324 * duration to 2ms (which is the minimum in the Display Port spec)
3325 * The pulse duration bits are reserved on HSW+.
3327 hotplug
= I915_READ(DIGITAL_PORT_HOTPLUG_CNTRL
);
3328 hotplug
&= ~DIGITAL_PORTA_PULSE_DURATION_MASK
;
3329 hotplug
|= DIGITAL_PORTA_HOTPLUG_ENABLE
|
3330 DIGITAL_PORTA_PULSE_DURATION_2ms
;
3331 I915_WRITE(DIGITAL_PORT_HOTPLUG_CNTRL
, hotplug
);
3334 static void ilk_hpd_irq_setup(struct drm_i915_private
*dev_priv
)
3336 u32 hotplug_irqs
, enabled_irqs
;
3338 if (INTEL_GEN(dev_priv
) >= 8) {
3339 hotplug_irqs
= GEN8_PORT_DP_A_HOTPLUG
;
3340 enabled_irqs
= intel_hpd_enabled_irqs(dev_priv
, hpd_bdw
);
3342 bdw_update_port_irq(dev_priv
, hotplug_irqs
, enabled_irqs
);
3343 } else if (INTEL_GEN(dev_priv
) >= 7) {
3344 hotplug_irqs
= DE_DP_A_HOTPLUG_IVB
;
3345 enabled_irqs
= intel_hpd_enabled_irqs(dev_priv
, hpd_ivb
);
3347 ilk_update_display_irq(dev_priv
, hotplug_irqs
, enabled_irqs
);
3349 hotplug_irqs
= DE_DP_A_HOTPLUG
;
3350 enabled_irqs
= intel_hpd_enabled_irqs(dev_priv
, hpd_ilk
);
3352 ilk_update_display_irq(dev_priv
, hotplug_irqs
, enabled_irqs
);
3355 ilk_hpd_detection_setup(dev_priv
);
3357 ibx_hpd_irq_setup(dev_priv
);
3360 static void __bxt_hpd_detection_setup(struct drm_i915_private
*dev_priv
,
3365 hotplug
= I915_READ(PCH_PORT_HOTPLUG
);
3366 hotplug
|= PORTA_HOTPLUG_ENABLE
|
3367 PORTB_HOTPLUG_ENABLE
|
3368 PORTC_HOTPLUG_ENABLE
;
3370 DRM_DEBUG_KMS("Invert bit setting: hp_ctl:%x hp_port:%x\n",
3371 hotplug
, enabled_irqs
);
3372 hotplug
&= ~BXT_DDI_HPD_INVERT_MASK
;
3375 * For BXT invert bit has to be set based on AOB design
3376 * for HPD detection logic, update it based on VBT fields.
3378 if ((enabled_irqs
& BXT_DE_PORT_HP_DDIA
) &&
3379 intel_bios_is_port_hpd_inverted(dev_priv
, PORT_A
))
3380 hotplug
|= BXT_DDIA_HPD_INVERT
;
3381 if ((enabled_irqs
& BXT_DE_PORT_HP_DDIB
) &&
3382 intel_bios_is_port_hpd_inverted(dev_priv
, PORT_B
))
3383 hotplug
|= BXT_DDIB_HPD_INVERT
;
3384 if ((enabled_irqs
& BXT_DE_PORT_HP_DDIC
) &&
3385 intel_bios_is_port_hpd_inverted(dev_priv
, PORT_C
))
3386 hotplug
|= BXT_DDIC_HPD_INVERT
;
3388 I915_WRITE(PCH_PORT_HOTPLUG
, hotplug
);
3391 static void bxt_hpd_detection_setup(struct drm_i915_private
*dev_priv
)
3393 __bxt_hpd_detection_setup(dev_priv
, BXT_DE_PORT_HOTPLUG_MASK
);
3396 static void bxt_hpd_irq_setup(struct drm_i915_private
*dev_priv
)
3398 u32 hotplug_irqs
, enabled_irqs
;
3400 enabled_irqs
= intel_hpd_enabled_irqs(dev_priv
, hpd_bxt
);
3401 hotplug_irqs
= BXT_DE_PORT_HOTPLUG_MASK
;
3403 bdw_update_port_irq(dev_priv
, hotplug_irqs
, enabled_irqs
);
3405 __bxt_hpd_detection_setup(dev_priv
, enabled_irqs
);
3408 static void ibx_irq_postinstall(struct drm_device
*dev
)
3410 struct drm_i915_private
*dev_priv
= to_i915(dev
);
3413 if (HAS_PCH_NOP(dev_priv
))
3416 if (HAS_PCH_IBX(dev_priv
))
3417 mask
= SDE_GMBUS
| SDE_AUX_MASK
| SDE_POISON
;
3418 else if (HAS_PCH_CPT(dev_priv
) || HAS_PCH_LPT(dev_priv
))
3419 mask
= SDE_GMBUS_CPT
| SDE_AUX_MASK_CPT
;
3421 mask
= SDE_GMBUS_CPT
;
3423 gen3_assert_iir_is_zero(dev_priv
, SDEIIR
);
3424 I915_WRITE(SDEIMR
, ~mask
);
3426 if (HAS_PCH_IBX(dev_priv
) || HAS_PCH_CPT(dev_priv
) ||
3427 HAS_PCH_LPT(dev_priv
))
3428 ibx_hpd_detection_setup(dev_priv
);
3430 spt_hpd_detection_setup(dev_priv
);
3433 static void gen5_gt_irq_postinstall(struct drm_device
*dev
)
3435 struct drm_i915_private
*dev_priv
= to_i915(dev
);
3436 u32 pm_irqs
, gt_irqs
;
3438 pm_irqs
= gt_irqs
= 0;
3440 dev_priv
->gt_irq_mask
= ~0;
3441 if (HAS_L3_DPF(dev_priv
)) {
3442 /* L3 parity interrupt is always unmasked. */
3443 dev_priv
->gt_irq_mask
= ~GT_PARITY_ERROR(dev_priv
);
3444 gt_irqs
|= GT_PARITY_ERROR(dev_priv
);
3447 gt_irqs
|= GT_RENDER_USER_INTERRUPT
;
3448 if (IS_GEN5(dev_priv
)) {
3449 gt_irqs
|= ILK_BSD_USER_INTERRUPT
;
3451 gt_irqs
|= GT_BLT_USER_INTERRUPT
| GT_BSD_USER_INTERRUPT
;
3454 GEN3_IRQ_INIT(GT
, dev_priv
->gt_irq_mask
, gt_irqs
);
3456 if (INTEL_GEN(dev_priv
) >= 6) {
3458 * RPS interrupts will get enabled/disabled on demand when RPS
3459 * itself is enabled/disabled.
3461 if (HAS_VEBOX(dev_priv
)) {
3462 pm_irqs
|= PM_VEBOX_USER_INTERRUPT
;
3463 dev_priv
->pm_ier
|= PM_VEBOX_USER_INTERRUPT
;
3466 dev_priv
->pm_imr
= 0xffffffff;
3467 GEN3_IRQ_INIT(GEN6_PM
, dev_priv
->pm_imr
, pm_irqs
);
3471 static int ironlake_irq_postinstall(struct drm_device
*dev
)
3473 struct drm_i915_private
*dev_priv
= to_i915(dev
);
3474 u32 display_mask
, extra_mask
;
3476 if (INTEL_GEN(dev_priv
) >= 7) {
3477 display_mask
= (DE_MASTER_IRQ_CONTROL
| DE_GSE_IVB
|
3478 DE_PCH_EVENT_IVB
| DE_AUX_CHANNEL_A_IVB
);
3479 extra_mask
= (DE_PIPEC_VBLANK_IVB
| DE_PIPEB_VBLANK_IVB
|
3480 DE_PIPEA_VBLANK_IVB
| DE_ERR_INT_IVB
|
3481 DE_DP_A_HOTPLUG_IVB
);
3483 display_mask
= (DE_MASTER_IRQ_CONTROL
| DE_GSE
| DE_PCH_EVENT
|
3484 DE_AUX_CHANNEL_A
| DE_PIPEB_CRC_DONE
|
3485 DE_PIPEA_CRC_DONE
| DE_POISON
);
3486 extra_mask
= (DE_PIPEA_VBLANK
| DE_PIPEB_VBLANK
| DE_PCU_EVENT
|
3487 DE_PIPEB_FIFO_UNDERRUN
| DE_PIPEA_FIFO_UNDERRUN
|
3491 dev_priv
->irq_mask
= ~display_mask
;
3493 ibx_irq_pre_postinstall(dev
);
3495 GEN3_IRQ_INIT(DE
, dev_priv
->irq_mask
, display_mask
| extra_mask
);
3497 gen5_gt_irq_postinstall(dev
);
3499 ilk_hpd_detection_setup(dev_priv
);
3501 ibx_irq_postinstall(dev
);
3503 if (IS_IRONLAKE_M(dev_priv
)) {
3504 /* Enable PCU event interrupts
3506 * spinlocking not required here for correctness since interrupt
3507 * setup is guaranteed to run in single-threaded context. But we
3508 * need it to make the assert_spin_locked happy. */
3509 spin_lock_irq(&dev_priv
->irq_lock
);
3510 ilk_enable_display_irq(dev_priv
, DE_PCU_EVENT
);
3511 spin_unlock_irq(&dev_priv
->irq_lock
);
3517 void valleyview_enable_display_irqs(struct drm_i915_private
*dev_priv
)
3519 lockdep_assert_held(&dev_priv
->irq_lock
);
3521 if (dev_priv
->display_irqs_enabled
)
3524 dev_priv
->display_irqs_enabled
= true;
3526 if (intel_irqs_enabled(dev_priv
)) {
3527 vlv_display_irq_reset(dev_priv
);
3528 vlv_display_irq_postinstall(dev_priv
);
3532 void valleyview_disable_display_irqs(struct drm_i915_private
*dev_priv
)
3534 lockdep_assert_held(&dev_priv
->irq_lock
);
3536 if (!dev_priv
->display_irqs_enabled
)
3539 dev_priv
->display_irqs_enabled
= false;
3541 if (intel_irqs_enabled(dev_priv
))
3542 vlv_display_irq_reset(dev_priv
);
3546 static int valleyview_irq_postinstall(struct drm_device
*dev
)
3548 struct drm_i915_private
*dev_priv
= to_i915(dev
);
3550 gen5_gt_irq_postinstall(dev
);
3552 spin_lock_irq(&dev_priv
->irq_lock
);
3553 if (dev_priv
->display_irqs_enabled
)
3554 vlv_display_irq_postinstall(dev_priv
);
3555 spin_unlock_irq(&dev_priv
->irq_lock
);
3557 I915_WRITE(VLV_MASTER_IER
, MASTER_INTERRUPT_ENABLE
);
3558 POSTING_READ(VLV_MASTER_IER
);
3563 static void gen8_gt_irq_postinstall(struct drm_i915_private
*dev_priv
)
3565 /* These are interrupts we'll toggle with the ring mask register */
3566 uint32_t gt_interrupts
[] = {
3567 GT_RENDER_USER_INTERRUPT
<< GEN8_RCS_IRQ_SHIFT
|
3568 GT_CONTEXT_SWITCH_INTERRUPT
<< GEN8_RCS_IRQ_SHIFT
|
3569 GT_RENDER_USER_INTERRUPT
<< GEN8_BCS_IRQ_SHIFT
|
3570 GT_CONTEXT_SWITCH_INTERRUPT
<< GEN8_BCS_IRQ_SHIFT
,
3571 GT_RENDER_USER_INTERRUPT
<< GEN8_VCS1_IRQ_SHIFT
|
3572 GT_CONTEXT_SWITCH_INTERRUPT
<< GEN8_VCS1_IRQ_SHIFT
|
3573 GT_RENDER_USER_INTERRUPT
<< GEN8_VCS2_IRQ_SHIFT
|
3574 GT_CONTEXT_SWITCH_INTERRUPT
<< GEN8_VCS2_IRQ_SHIFT
,
3576 GT_RENDER_USER_INTERRUPT
<< GEN8_VECS_IRQ_SHIFT
|
3577 GT_CONTEXT_SWITCH_INTERRUPT
<< GEN8_VECS_IRQ_SHIFT
3580 if (HAS_L3_DPF(dev_priv
))
3581 gt_interrupts
[0] |= GT_RENDER_L3_PARITY_ERROR_INTERRUPT
;
3583 dev_priv
->pm_ier
= 0x0;
3584 dev_priv
->pm_imr
= ~dev_priv
->pm_ier
;
3585 GEN8_IRQ_INIT_NDX(GT
, 0, ~gt_interrupts
[0], gt_interrupts
[0]);
3586 GEN8_IRQ_INIT_NDX(GT
, 1, ~gt_interrupts
[1], gt_interrupts
[1]);
3588 * RPS interrupts will get enabled/disabled on demand when RPS itself
3589 * is enabled/disabled. Same wil be the case for GuC interrupts.
3591 GEN8_IRQ_INIT_NDX(GT
, 2, dev_priv
->pm_imr
, dev_priv
->pm_ier
);
3592 GEN8_IRQ_INIT_NDX(GT
, 3, ~gt_interrupts
[3], gt_interrupts
[3]);
3595 static void gen8_de_irq_postinstall(struct drm_i915_private
*dev_priv
)
3597 uint32_t de_pipe_masked
= GEN8_PIPE_CDCLK_CRC_DONE
;
3598 uint32_t de_pipe_enables
;
3599 u32 de_port_masked
= GEN8_AUX_CHANNEL_A
;
3600 u32 de_port_enables
;
3601 u32 de_misc_masked
= GEN8_DE_MISC_GSE
;
3604 if (INTEL_GEN(dev_priv
) >= 9) {
3605 de_pipe_masked
|= GEN9_DE_PIPE_IRQ_FAULT_ERRORS
;
3606 de_port_masked
|= GEN9_AUX_CHANNEL_B
| GEN9_AUX_CHANNEL_C
|
3608 if (IS_GEN9_LP(dev_priv
))
3609 de_port_masked
|= BXT_DE_PORT_GMBUS
;
3611 de_pipe_masked
|= GEN8_DE_PIPE_IRQ_FAULT_ERRORS
;
3614 de_pipe_enables
= de_pipe_masked
| GEN8_PIPE_VBLANK
|
3615 GEN8_PIPE_FIFO_UNDERRUN
;
3617 de_port_enables
= de_port_masked
;
3618 if (IS_GEN9_LP(dev_priv
))
3619 de_port_enables
|= BXT_DE_PORT_HOTPLUG_MASK
;
3620 else if (IS_BROADWELL(dev_priv
))
3621 de_port_enables
|= GEN8_PORT_DP_A_HOTPLUG
;
3623 for_each_pipe(dev_priv
, pipe
) {
3624 dev_priv
->de_irq_mask
[pipe
] = ~de_pipe_masked
;
3626 if (intel_display_power_is_enabled(dev_priv
,
3627 POWER_DOMAIN_PIPE(pipe
)))
3628 GEN8_IRQ_INIT_NDX(DE_PIPE
, pipe
,
3629 dev_priv
->de_irq_mask
[pipe
],
3633 GEN3_IRQ_INIT(GEN8_DE_PORT_
, ~de_port_masked
, de_port_enables
);
3634 GEN3_IRQ_INIT(GEN8_DE_MISC_
, ~de_misc_masked
, de_misc_masked
);
3636 if (IS_GEN9_LP(dev_priv
))
3637 bxt_hpd_detection_setup(dev_priv
);
3638 else if (IS_BROADWELL(dev_priv
))
3639 ilk_hpd_detection_setup(dev_priv
);
3642 static int gen8_irq_postinstall(struct drm_device
*dev
)
3644 struct drm_i915_private
*dev_priv
= to_i915(dev
);
3646 if (HAS_PCH_SPLIT(dev_priv
))
3647 ibx_irq_pre_postinstall(dev
);
3649 gen8_gt_irq_postinstall(dev_priv
);
3650 gen8_de_irq_postinstall(dev_priv
);
3652 if (HAS_PCH_SPLIT(dev_priv
))
3653 ibx_irq_postinstall(dev
);
3655 I915_WRITE(GEN8_MASTER_IRQ
, GEN8_MASTER_IRQ_CONTROL
);
3656 POSTING_READ(GEN8_MASTER_IRQ
);
3661 static int cherryview_irq_postinstall(struct drm_device
*dev
)
3663 struct drm_i915_private
*dev_priv
= to_i915(dev
);
3665 gen8_gt_irq_postinstall(dev_priv
);
3667 spin_lock_irq(&dev_priv
->irq_lock
);
3668 if (dev_priv
->display_irqs_enabled
)
3669 vlv_display_irq_postinstall(dev_priv
);
3670 spin_unlock_irq(&dev_priv
->irq_lock
);
3672 I915_WRITE(GEN8_MASTER_IRQ
, GEN8_MASTER_IRQ_CONTROL
);
3673 POSTING_READ(GEN8_MASTER_IRQ
);
3678 static void i8xx_irq_reset(struct drm_device
*dev
)
3680 struct drm_i915_private
*dev_priv
= to_i915(dev
);
3682 i9xx_pipestat_irq_reset(dev_priv
);
3684 I915_WRITE16(HWSTAM
, 0xffff);
3689 static int i8xx_irq_postinstall(struct drm_device
*dev
)
3691 struct drm_i915_private
*dev_priv
= to_i915(dev
);
3694 I915_WRITE16(EMR
, ~(I915_ERROR_PAGE_TABLE
|
3695 I915_ERROR_MEMORY_REFRESH
));
3697 /* Unmask the interrupts that we always want on. */
3698 dev_priv
->irq_mask
=
3699 ~(I915_DISPLAY_PIPE_A_EVENT_INTERRUPT
|
3700 I915_DISPLAY_PIPE_B_EVENT_INTERRUPT
);
3703 I915_DISPLAY_PIPE_A_EVENT_INTERRUPT
|
3704 I915_DISPLAY_PIPE_B_EVENT_INTERRUPT
|
3705 I915_USER_INTERRUPT
;
3707 GEN2_IRQ_INIT(, dev_priv
->irq_mask
, enable_mask
);
3709 /* Interrupt setup is already guaranteed to be single-threaded, this is
3710 * just to make the assert_spin_locked check happy. */
3711 spin_lock_irq(&dev_priv
->irq_lock
);
3712 i915_enable_pipestat(dev_priv
, PIPE_A
, PIPE_CRC_DONE_INTERRUPT_STATUS
);
3713 i915_enable_pipestat(dev_priv
, PIPE_B
, PIPE_CRC_DONE_INTERRUPT_STATUS
);
3714 spin_unlock_irq(&dev_priv
->irq_lock
);
3719 static irqreturn_t
i8xx_irq_handler(int irq
, void *arg
)
3721 struct drm_device
*dev
= arg
;
3722 struct drm_i915_private
*dev_priv
= to_i915(dev
);
3723 irqreturn_t ret
= IRQ_NONE
;
3725 if (!intel_irqs_enabled(dev_priv
))
3728 /* IRQs are synced during runtime_suspend, we don't require a wakeref */
3729 disable_rpm_wakeref_asserts(dev_priv
);
3732 u32 pipe_stats
[I915_MAX_PIPES
] = {};
3735 iir
= I915_READ16(IIR
);
3741 /* Call regardless, as some status bits might not be
3742 * signalled in iir */
3743 i9xx_pipestat_irq_ack(dev_priv
, iir
, pipe_stats
);
3745 I915_WRITE16(IIR
, iir
);
3747 if (iir
& I915_USER_INTERRUPT
)
3748 notify_ring(dev_priv
->engine
[RCS
]);
3750 if (iir
& I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT
)
3751 DRM_DEBUG("Command parser error, iir 0x%08x\n", iir
);
3753 i8xx_pipestat_irq_handler(dev_priv
, iir
, pipe_stats
);
3756 enable_rpm_wakeref_asserts(dev_priv
);
3761 static void i915_irq_reset(struct drm_device
*dev
)
3763 struct drm_i915_private
*dev_priv
= to_i915(dev
);
3765 if (I915_HAS_HOTPLUG(dev_priv
)) {
3766 i915_hotplug_interrupt_update(dev_priv
, 0xffffffff, 0);
3767 I915_WRITE(PORT_HOTPLUG_STAT
, I915_READ(PORT_HOTPLUG_STAT
));
3770 i9xx_pipestat_irq_reset(dev_priv
);
3772 I915_WRITE(HWSTAM
, 0xffffffff);
3777 static int i915_irq_postinstall(struct drm_device
*dev
)
3779 struct drm_i915_private
*dev_priv
= to_i915(dev
);
3782 I915_WRITE(EMR
, ~(I915_ERROR_PAGE_TABLE
|
3783 I915_ERROR_MEMORY_REFRESH
));
3785 /* Unmask the interrupts that we always want on. */
3786 dev_priv
->irq_mask
=
3787 ~(I915_ASLE_INTERRUPT
|
3788 I915_DISPLAY_PIPE_A_EVENT_INTERRUPT
|
3789 I915_DISPLAY_PIPE_B_EVENT_INTERRUPT
);
3792 I915_ASLE_INTERRUPT
|
3793 I915_DISPLAY_PIPE_A_EVENT_INTERRUPT
|
3794 I915_DISPLAY_PIPE_B_EVENT_INTERRUPT
|
3795 I915_USER_INTERRUPT
;
3797 if (I915_HAS_HOTPLUG(dev_priv
)) {
3798 /* Enable in IER... */
3799 enable_mask
|= I915_DISPLAY_PORT_INTERRUPT
;
3800 /* and unmask in IMR */
3801 dev_priv
->irq_mask
&= ~I915_DISPLAY_PORT_INTERRUPT
;
3804 GEN3_IRQ_INIT(, dev_priv
->irq_mask
, enable_mask
);
3806 /* Interrupt setup is already guaranteed to be single-threaded, this is
3807 * just to make the assert_spin_locked check happy. */
3808 spin_lock_irq(&dev_priv
->irq_lock
);
3809 i915_enable_pipestat(dev_priv
, PIPE_A
, PIPE_CRC_DONE_INTERRUPT_STATUS
);
3810 i915_enable_pipestat(dev_priv
, PIPE_B
, PIPE_CRC_DONE_INTERRUPT_STATUS
);
3811 spin_unlock_irq(&dev_priv
->irq_lock
);
3813 i915_enable_asle_pipestat(dev_priv
);
3818 static irqreturn_t
i915_irq_handler(int irq
, void *arg
)
3820 struct drm_device
*dev
= arg
;
3821 struct drm_i915_private
*dev_priv
= to_i915(dev
);
3822 irqreturn_t ret
= IRQ_NONE
;
3824 if (!intel_irqs_enabled(dev_priv
))
3827 /* IRQs are synced during runtime_suspend, we don't require a wakeref */
3828 disable_rpm_wakeref_asserts(dev_priv
);
3831 u32 pipe_stats
[I915_MAX_PIPES
] = {};
3832 u32 hotplug_status
= 0;
3835 iir
= I915_READ(IIR
);
3841 if (I915_HAS_HOTPLUG(dev_priv
) &&
3842 iir
& I915_DISPLAY_PORT_INTERRUPT
)
3843 hotplug_status
= i9xx_hpd_irq_ack(dev_priv
);
3845 /* Call regardless, as some status bits might not be
3846 * signalled in iir */
3847 i9xx_pipestat_irq_ack(dev_priv
, iir
, pipe_stats
);
3849 I915_WRITE(IIR
, iir
);
3851 if (iir
& I915_USER_INTERRUPT
)
3852 notify_ring(dev_priv
->engine
[RCS
]);
3854 if (iir
& I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT
)
3855 DRM_DEBUG("Command parser error, iir 0x%08x\n", iir
);
3858 i9xx_hpd_irq_handler(dev_priv
, hotplug_status
);
3860 i915_pipestat_irq_handler(dev_priv
, iir
, pipe_stats
);
3863 enable_rpm_wakeref_asserts(dev_priv
);
3868 static void i965_irq_reset(struct drm_device
*dev
)
3870 struct drm_i915_private
*dev_priv
= to_i915(dev
);
3872 i915_hotplug_interrupt_update(dev_priv
, 0xffffffff, 0);
3873 I915_WRITE(PORT_HOTPLUG_STAT
, I915_READ(PORT_HOTPLUG_STAT
));
3875 i9xx_pipestat_irq_reset(dev_priv
);
3877 I915_WRITE(HWSTAM
, 0xffffffff);
3882 static int i965_irq_postinstall(struct drm_device
*dev
)
3884 struct drm_i915_private
*dev_priv
= to_i915(dev
);
3889 * Enable some error detection, note the instruction error mask
3890 * bit is reserved, so we leave it masked.
3892 if (IS_G4X(dev_priv
)) {
3893 error_mask
= ~(GM45_ERROR_PAGE_TABLE
|
3894 GM45_ERROR_MEM_PRIV
|
3895 GM45_ERROR_CP_PRIV
|
3896 I915_ERROR_MEMORY_REFRESH
);
3898 error_mask
= ~(I915_ERROR_PAGE_TABLE
|
3899 I915_ERROR_MEMORY_REFRESH
);
3901 I915_WRITE(EMR
, error_mask
);
3903 /* Unmask the interrupts that we always want on. */
3904 dev_priv
->irq_mask
=
3905 ~(I915_ASLE_INTERRUPT
|
3906 I915_DISPLAY_PORT_INTERRUPT
|
3907 I915_DISPLAY_PIPE_A_EVENT_INTERRUPT
|
3908 I915_DISPLAY_PIPE_B_EVENT_INTERRUPT
|
3909 I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT
);
3912 I915_ASLE_INTERRUPT
|
3913 I915_DISPLAY_PORT_INTERRUPT
|
3914 I915_DISPLAY_PIPE_A_EVENT_INTERRUPT
|
3915 I915_DISPLAY_PIPE_B_EVENT_INTERRUPT
|
3916 I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT
|
3917 I915_USER_INTERRUPT
;
3919 if (IS_G4X(dev_priv
))
3920 enable_mask
|= I915_BSD_USER_INTERRUPT
;
3922 GEN3_IRQ_INIT(, dev_priv
->irq_mask
, enable_mask
);
3924 /* Interrupt setup is already guaranteed to be single-threaded, this is
3925 * just to make the assert_spin_locked check happy. */
3926 spin_lock_irq(&dev_priv
->irq_lock
);
3927 i915_enable_pipestat(dev_priv
, PIPE_A
, PIPE_GMBUS_INTERRUPT_STATUS
);
3928 i915_enable_pipestat(dev_priv
, PIPE_A
, PIPE_CRC_DONE_INTERRUPT_STATUS
);
3929 i915_enable_pipestat(dev_priv
, PIPE_B
, PIPE_CRC_DONE_INTERRUPT_STATUS
);
3930 spin_unlock_irq(&dev_priv
->irq_lock
);
3932 i915_enable_asle_pipestat(dev_priv
);
3937 static void i915_hpd_irq_setup(struct drm_i915_private
*dev_priv
)
3941 lockdep_assert_held(&dev_priv
->irq_lock
);
3943 /* Note HDMI and DP share hotplug bits */
3944 /* enable bits are the same for all generations */
3945 hotplug_en
= intel_hpd_enabled_irqs(dev_priv
, hpd_mask_i915
);
3946 /* Programming the CRT detection parameters tends
3947 to generate a spurious hotplug event about three
3948 seconds later. So just do it once.
3950 if (IS_G4X(dev_priv
))
3951 hotplug_en
|= CRT_HOTPLUG_ACTIVATION_PERIOD_64
;
3952 hotplug_en
|= CRT_HOTPLUG_VOLTAGE_COMPARE_50
;
3954 /* Ignore TV since it's buggy */
3955 i915_hotplug_interrupt_update_locked(dev_priv
,
3956 HOTPLUG_INT_EN_MASK
|
3957 CRT_HOTPLUG_VOLTAGE_COMPARE_MASK
|
3958 CRT_HOTPLUG_ACTIVATION_PERIOD_64
,
3962 static irqreturn_t
i965_irq_handler(int irq
, void *arg
)
3964 struct drm_device
*dev
= arg
;
3965 struct drm_i915_private
*dev_priv
= to_i915(dev
);
3966 irqreturn_t ret
= IRQ_NONE
;
3968 if (!intel_irqs_enabled(dev_priv
))
3971 /* IRQs are synced during runtime_suspend, we don't require a wakeref */
3972 disable_rpm_wakeref_asserts(dev_priv
);
3975 u32 pipe_stats
[I915_MAX_PIPES
] = {};
3976 u32 hotplug_status
= 0;
3979 iir
= I915_READ(IIR
);
3985 if (iir
& I915_DISPLAY_PORT_INTERRUPT
)
3986 hotplug_status
= i9xx_hpd_irq_ack(dev_priv
);
3988 /* Call regardless, as some status bits might not be
3989 * signalled in iir */
3990 i9xx_pipestat_irq_ack(dev_priv
, iir
, pipe_stats
);
3992 I915_WRITE(IIR
, iir
);
3994 if (iir
& I915_USER_INTERRUPT
)
3995 notify_ring(dev_priv
->engine
[RCS
]);
3997 if (iir
& I915_BSD_USER_INTERRUPT
)
3998 notify_ring(dev_priv
->engine
[VCS
]);
4000 if (iir
& I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT
)
4001 DRM_DEBUG("Command parser error, iir 0x%08x\n", iir
);
4004 i9xx_hpd_irq_handler(dev_priv
, hotplug_status
);
4006 i965_pipestat_irq_handler(dev_priv
, iir
, pipe_stats
);
4009 enable_rpm_wakeref_asserts(dev_priv
);
4015 * intel_irq_init - initializes irq support
4016 * @dev_priv: i915 device instance
4018 * This function initializes all the irq support including work items, timers
4019 * and all the vtables. It does not setup the interrupt itself though.
4021 void intel_irq_init(struct drm_i915_private
*dev_priv
)
4023 struct drm_device
*dev
= &dev_priv
->drm
;
4024 struct intel_rps
*rps
= &dev_priv
->gt_pm
.rps
;
4027 intel_hpd_init_work(dev_priv
);
4029 INIT_WORK(&rps
->work
, gen6_pm_rps_work
);
4031 INIT_WORK(&dev_priv
->l3_parity
.error_work
, ivybridge_parity_work
);
4032 for (i
= 0; i
< MAX_L3_SLICES
; ++i
)
4033 dev_priv
->l3_parity
.remap_info
[i
] = NULL
;
4035 if (HAS_GUC_SCHED(dev_priv
))
4036 dev_priv
->pm_guc_events
= GEN9_GUC_TO_HOST_INT_EVENT
;
4038 /* Let's track the enabled rps events */
4039 if (IS_VALLEYVIEW(dev_priv
))
4040 /* WaGsvRC0ResidencyMethod:vlv */
4041 dev_priv
->pm_rps_events
= GEN6_PM_RP_UP_EI_EXPIRED
;
4043 dev_priv
->pm_rps_events
= GEN6_PM_RPS_EVENTS
;
4045 rps
->pm_intrmsk_mbz
= 0;
4048 * SNB,IVB,HSW can while VLV,CHV may hard hang on looping batchbuffer
4049 * if GEN6_PM_UP_EI_EXPIRED is masked.
4051 * TODO: verify if this can be reproduced on VLV,CHV.
4053 if (INTEL_GEN(dev_priv
) <= 7)
4054 rps
->pm_intrmsk_mbz
|= GEN6_PM_RP_UP_EI_EXPIRED
;
4056 if (INTEL_GEN(dev_priv
) >= 8)
4057 rps
->pm_intrmsk_mbz
|= GEN8_PMINTR_DISABLE_REDIRECT_TO_GUC
;
4059 if (IS_GEN2(dev_priv
)) {
4060 /* Gen2 doesn't have a hardware frame counter */
4061 dev
->max_vblank_count
= 0;
4062 } else if (IS_G4X(dev_priv
) || INTEL_GEN(dev_priv
) >= 5) {
4063 dev
->max_vblank_count
= 0xffffffff; /* full 32 bit counter */
4064 dev
->driver
->get_vblank_counter
= g4x_get_vblank_counter
;
4066 dev
->driver
->get_vblank_counter
= i915_get_vblank_counter
;
4067 dev
->max_vblank_count
= 0xffffff; /* only 24 bits of frame count */
4071 * Opt out of the vblank disable timer on everything except gen2.
4072 * Gen2 doesn't have a hardware frame counter and so depends on
4073 * vblank interrupts to produce sane vblank seuquence numbers.
4075 if (!IS_GEN2(dev_priv
))
4076 dev
->vblank_disable_immediate
= true;
4078 /* Most platforms treat the display irq block as an always-on
4079 * power domain. vlv/chv can disable it at runtime and need
4080 * special care to avoid writing any of the display block registers
4081 * outside of the power domain. We defer setting up the display irqs
4082 * in this case to the runtime pm.
4084 dev_priv
->display_irqs_enabled
= true;
4085 if (IS_VALLEYVIEW(dev_priv
) || IS_CHERRYVIEW(dev_priv
))
4086 dev_priv
->display_irqs_enabled
= false;
4088 dev_priv
->hotplug
.hpd_storm_threshold
= HPD_STORM_DEFAULT_THRESHOLD
;
4090 dev
->driver
->get_vblank_timestamp
= drm_calc_vbltimestamp_from_scanoutpos
;
4091 dev
->driver
->get_scanout_position
= i915_get_crtc_scanoutpos
;
4093 if (IS_CHERRYVIEW(dev_priv
)) {
4094 dev
->driver
->irq_handler
= cherryview_irq_handler
;
4095 dev
->driver
->irq_preinstall
= cherryview_irq_reset
;
4096 dev
->driver
->irq_postinstall
= cherryview_irq_postinstall
;
4097 dev
->driver
->irq_uninstall
= cherryview_irq_reset
;
4098 dev
->driver
->enable_vblank
= i965_enable_vblank
;
4099 dev
->driver
->disable_vblank
= i965_disable_vblank
;
4100 dev_priv
->display
.hpd_irq_setup
= i915_hpd_irq_setup
;
4101 } else if (IS_VALLEYVIEW(dev_priv
)) {
4102 dev
->driver
->irq_handler
= valleyview_irq_handler
;
4103 dev
->driver
->irq_preinstall
= valleyview_irq_reset
;
4104 dev
->driver
->irq_postinstall
= valleyview_irq_postinstall
;
4105 dev
->driver
->irq_uninstall
= valleyview_irq_reset
;
4106 dev
->driver
->enable_vblank
= i965_enable_vblank
;
4107 dev
->driver
->disable_vblank
= i965_disable_vblank
;
4108 dev_priv
->display
.hpd_irq_setup
= i915_hpd_irq_setup
;
4109 } else if (INTEL_GEN(dev_priv
) >= 8) {
4110 dev
->driver
->irq_handler
= gen8_irq_handler
;
4111 dev
->driver
->irq_preinstall
= gen8_irq_reset
;
4112 dev
->driver
->irq_postinstall
= gen8_irq_postinstall
;
4113 dev
->driver
->irq_uninstall
= gen8_irq_reset
;
4114 dev
->driver
->enable_vblank
= gen8_enable_vblank
;
4115 dev
->driver
->disable_vblank
= gen8_disable_vblank
;
4116 if (IS_GEN9_LP(dev_priv
))
4117 dev_priv
->display
.hpd_irq_setup
= bxt_hpd_irq_setup
;
4118 else if (HAS_PCH_SPT(dev_priv
) || HAS_PCH_KBP(dev_priv
) ||
4119 HAS_PCH_CNP(dev_priv
))
4120 dev_priv
->display
.hpd_irq_setup
= spt_hpd_irq_setup
;
4122 dev_priv
->display
.hpd_irq_setup
= ilk_hpd_irq_setup
;
4123 } else if (HAS_PCH_SPLIT(dev_priv
)) {
4124 dev
->driver
->irq_handler
= ironlake_irq_handler
;
4125 dev
->driver
->irq_preinstall
= ironlake_irq_reset
;
4126 dev
->driver
->irq_postinstall
= ironlake_irq_postinstall
;
4127 dev
->driver
->irq_uninstall
= ironlake_irq_reset
;
4128 dev
->driver
->enable_vblank
= ironlake_enable_vblank
;
4129 dev
->driver
->disable_vblank
= ironlake_disable_vblank
;
4130 dev_priv
->display
.hpd_irq_setup
= ilk_hpd_irq_setup
;
4132 if (IS_GEN2(dev_priv
)) {
4133 dev
->driver
->irq_preinstall
= i8xx_irq_reset
;
4134 dev
->driver
->irq_postinstall
= i8xx_irq_postinstall
;
4135 dev
->driver
->irq_handler
= i8xx_irq_handler
;
4136 dev
->driver
->irq_uninstall
= i8xx_irq_reset
;
4137 dev
->driver
->enable_vblank
= i8xx_enable_vblank
;
4138 dev
->driver
->disable_vblank
= i8xx_disable_vblank
;
4139 } else if (IS_GEN3(dev_priv
)) {
4140 dev
->driver
->irq_preinstall
= i915_irq_reset
;
4141 dev
->driver
->irq_postinstall
= i915_irq_postinstall
;
4142 dev
->driver
->irq_uninstall
= i915_irq_reset
;
4143 dev
->driver
->irq_handler
= i915_irq_handler
;
4144 dev
->driver
->enable_vblank
= i8xx_enable_vblank
;
4145 dev
->driver
->disable_vblank
= i8xx_disable_vblank
;
4147 dev
->driver
->irq_preinstall
= i965_irq_reset
;
4148 dev
->driver
->irq_postinstall
= i965_irq_postinstall
;
4149 dev
->driver
->irq_uninstall
= i965_irq_reset
;
4150 dev
->driver
->irq_handler
= i965_irq_handler
;
4151 dev
->driver
->enable_vblank
= i965_enable_vblank
;
4152 dev
->driver
->disable_vblank
= i965_disable_vblank
;
4154 if (I915_HAS_HOTPLUG(dev_priv
))
4155 dev_priv
->display
.hpd_irq_setup
= i915_hpd_irq_setup
;
4160 * intel_irq_fini - deinitializes IRQ support
4161 * @i915: i915 device instance
4163 * This function deinitializes all the IRQ support.
4165 void intel_irq_fini(struct drm_i915_private
*i915
)
4169 for (i
= 0; i
< MAX_L3_SLICES
; ++i
)
4170 kfree(i915
->l3_parity
.remap_info
[i
]);
4174 * intel_irq_install - enables the hardware interrupt
4175 * @dev_priv: i915 device instance
4177 * This function enables the hardware interrupt handling, but leaves the hotplug
4178 * handling still disabled. It is called after intel_irq_init().
4180 * In the driver load and resume code we need working interrupts in a few places
4181 * but don't want to deal with the hassle of concurrent probe and hotplug
4182 * workers. Hence the split into this two-stage approach.
4184 int intel_irq_install(struct drm_i915_private
*dev_priv
)
4187 * We enable some interrupt sources in our postinstall hooks, so mark
4188 * interrupts as enabled _before_ actually enabling them to avoid
4189 * special cases in our ordering checks.
4191 dev_priv
->runtime_pm
.irqs_enabled
= true;
4193 return drm_irq_install(&dev_priv
->drm
, dev_priv
->drm
.pdev
->irq
);
4197 * intel_irq_uninstall - finilizes all irq handling
4198 * @dev_priv: i915 device instance
4200 * This stops interrupt and hotplug handling and unregisters and frees all
4201 * resources acquired in the init functions.
4203 void intel_irq_uninstall(struct drm_i915_private
*dev_priv
)
4205 drm_irq_uninstall(&dev_priv
->drm
);
4206 intel_hpd_cancel_work(dev_priv
);
4207 dev_priv
->runtime_pm
.irqs_enabled
= false;
4211 * intel_runtime_pm_disable_interrupts - runtime interrupt disabling
4212 * @dev_priv: i915 device instance
4214 * This function is used to disable interrupts at runtime, both in the runtime
4215 * pm and the system suspend/resume code.
4217 void intel_runtime_pm_disable_interrupts(struct drm_i915_private
*dev_priv
)
4219 dev_priv
->drm
.driver
->irq_uninstall(&dev_priv
->drm
);
4220 dev_priv
->runtime_pm
.irqs_enabled
= false;
4221 synchronize_irq(dev_priv
->drm
.irq
);
4225 * intel_runtime_pm_enable_interrupts - runtime interrupt enabling
4226 * @dev_priv: i915 device instance
4228 * This function is used to enable interrupts at runtime, both in the runtime
4229 * pm and the system suspend/resume code.
4231 void intel_runtime_pm_enable_interrupts(struct drm_i915_private
*dev_priv
)
4233 dev_priv
->runtime_pm
.irqs_enabled
= true;
4234 dev_priv
->drm
.driver
->irq_preinstall(&dev_priv
->drm
);
4235 dev_priv
->drm
.driver
->irq_postinstall(&dev_priv
->drm
);