Merge tag 'for_linus' of git://git.kernel.org/pub/scm/linux/kernel/git/mst/vhost
[cris-mirror.git] / drivers / gpu / drm / i915 / i915_perf.c
blob0be50e43507de0e15ef06245335940eed75d3f6b
1 /*
2 * Copyright © 2015-2016 Intel Corporation
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
23 * Authors:
24 * Robert Bragg <robert@sixbynine.org>
28 /**
29 * DOC: i915 Perf Overview
31 * Gen graphics supports a large number of performance counters that can help
32 * driver and application developers understand and optimize their use of the
33 * GPU.
35 * This i915 perf interface enables userspace to configure and open a file
36 * descriptor representing a stream of GPU metrics which can then be read() as
37 * a stream of sample records.
39 * The interface is particularly suited to exposing buffered metrics that are
40 * captured by DMA from the GPU, unsynchronized with and unrelated to the CPU.
42 * Streams representing a single context are accessible to applications with a
43 * corresponding drm file descriptor, such that OpenGL can use the interface
44 * without special privileges. Access to system-wide metrics requires root
45 * privileges by default, unless changed via the dev.i915.perf_event_paranoid
46 * sysctl option.
50 /**
51 * DOC: i915 Perf History and Comparison with Core Perf
53 * The interface was initially inspired by the core Perf infrastructure but
54 * some notable differences are:
56 * i915 perf file descriptors represent a "stream" instead of an "event"; where
57 * a perf event primarily corresponds to a single 64bit value, while a stream
58 * might sample sets of tightly-coupled counters, depending on the
59 * configuration. For example the Gen OA unit isn't designed to support
60 * orthogonal configurations of individual counters; it's configured for a set
61 * of related counters. Samples for an i915 perf stream capturing OA metrics
62 * will include a set of counter values packed in a compact HW specific format.
63 * The OA unit supports a number of different packing formats which can be
64 * selected by the user opening the stream. Perf has support for grouping
65 * events, but each event in the group is configured, validated and
66 * authenticated individually with separate system calls.
68 * i915 perf stream configurations are provided as an array of u64 (key,value)
69 * pairs, instead of a fixed struct with multiple miscellaneous config members,
70 * interleaved with event-type specific members.
72 * i915 perf doesn't support exposing metrics via an mmap'd circular buffer.
73 * The supported metrics are being written to memory by the GPU unsynchronized
74 * with the CPU, using HW specific packing formats for counter sets. Sometimes
75 * the constraints on HW configuration require reports to be filtered before it
76 * would be acceptable to expose them to unprivileged applications - to hide
77 * the metrics of other processes/contexts. For these use cases a read() based
78 * interface is a good fit, and provides an opportunity to filter data as it
79 * gets copied from the GPU mapped buffers to userspace buffers.
82 * Issues hit with first prototype based on Core Perf
83 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
85 * The first prototype of this driver was based on the core perf
86 * infrastructure, and while we did make that mostly work, with some changes to
87 * perf, we found we were breaking or working around too many assumptions baked
88 * into perf's currently cpu centric design.
90 * In the end we didn't see a clear benefit to making perf's implementation and
91 * interface more complex by changing design assumptions while we knew we still
92 * wouldn't be able to use any existing perf based userspace tools.
94 * Also considering the Gen specific nature of the Observability hardware and
95 * how userspace will sometimes need to combine i915 perf OA metrics with
96 * side-band OA data captured via MI_REPORT_PERF_COUNT commands; we're
97 * expecting the interface to be used by a platform specific userspace such as
98 * OpenGL or tools. This is to say; we aren't inherently missing out on having
99 * a standard vendor/architecture agnostic interface by not using perf.
102 * For posterity, in case we might re-visit trying to adapt core perf to be
103 * better suited to exposing i915 metrics these were the main pain points we
104 * hit:
106 * - The perf based OA PMU driver broke some significant design assumptions:
108 * Existing perf pmus are used for profiling work on a cpu and we were
109 * introducing the idea of _IS_DEVICE pmus with different security
110 * implications, the need to fake cpu-related data (such as user/kernel
111 * registers) to fit with perf's current design, and adding _DEVICE records
112 * as a way to forward device-specific status records.
114 * The OA unit writes reports of counters into a circular buffer, without
115 * involvement from the CPU, making our PMU driver the first of a kind.
117 * Given the way we were periodically forward data from the GPU-mapped, OA
118 * buffer to perf's buffer, those bursts of sample writes looked to perf like
119 * we were sampling too fast and so we had to subvert its throttling checks.
121 * Perf supports groups of counters and allows those to be read via
122 * transactions internally but transactions currently seem designed to be
123 * explicitly initiated from the cpu (say in response to a userspace read())
124 * and while we could pull a report out of the OA buffer we can't
125 * trigger a report from the cpu on demand.
127 * Related to being report based; the OA counters are configured in HW as a
128 * set while perf generally expects counter configurations to be orthogonal.
129 * Although counters can be associated with a group leader as they are
130 * opened, there's no clear precedent for being able to provide group-wide
131 * configuration attributes (for example we want to let userspace choose the
132 * OA unit report format used to capture all counters in a set, or specify a
133 * GPU context to filter metrics on). We avoided using perf's grouping
134 * feature and forwarded OA reports to userspace via perf's 'raw' sample
135 * field. This suited our userspace well considering how coupled the counters
136 * are when dealing with normalizing. It would be inconvenient to split
137 * counters up into separate events, only to require userspace to recombine
138 * them. For Mesa it's also convenient to be forwarded raw, periodic reports
139 * for combining with the side-band raw reports it captures using
140 * MI_REPORT_PERF_COUNT commands.
142 * - As a side note on perf's grouping feature; there was also some concern
143 * that using PERF_FORMAT_GROUP as a way to pack together counter values
144 * would quite drastically inflate our sample sizes, which would likely
145 * lower the effective sampling resolutions we could use when the available
146 * memory bandwidth is limited.
148 * With the OA unit's report formats, counters are packed together as 32
149 * or 40bit values, with the largest report size being 256 bytes.
151 * PERF_FORMAT_GROUP values are 64bit, but there doesn't appear to be a
152 * documented ordering to the values, implying PERF_FORMAT_ID must also be
153 * used to add a 64bit ID before each value; giving 16 bytes per counter.
155 * Related to counter orthogonality; we can't time share the OA unit, while
156 * event scheduling is a central design idea within perf for allowing
157 * userspace to open + enable more events than can be configured in HW at any
158 * one time. The OA unit is not designed to allow re-configuration while in
159 * use. We can't reconfigure the OA unit without losing internal OA unit
160 * state which we can't access explicitly to save and restore. Reconfiguring
161 * the OA unit is also relatively slow, involving ~100 register writes. From
162 * userspace Mesa also depends on a stable OA configuration when emitting
163 * MI_REPORT_PERF_COUNT commands and importantly the OA unit can't be
164 * disabled while there are outstanding MI_RPC commands lest we hang the
165 * command streamer.
167 * The contents of sample records aren't extensible by device drivers (i.e.
168 * the sample_type bits). As an example; Sourab Gupta had been looking to
169 * attach GPU timestamps to our OA samples. We were shoehorning OA reports
170 * into sample records by using the 'raw' field, but it's tricky to pack more
171 * than one thing into this field because events/core.c currently only lets a
172 * pmu give a single raw data pointer plus len which will be copied into the
173 * ring buffer. To include more than the OA report we'd have to copy the
174 * report into an intermediate larger buffer. I'd been considering allowing a
175 * vector of data+len values to be specified for copying the raw data, but
176 * it felt like a kludge to being using the raw field for this purpose.
178 * - It felt like our perf based PMU was making some technical compromises
179 * just for the sake of using perf:
181 * perf_event_open() requires events to either relate to a pid or a specific
182 * cpu core, while our device pmu related to neither. Events opened with a
183 * pid will be automatically enabled/disabled according to the scheduling of
184 * that process - so not appropriate for us. When an event is related to a
185 * cpu id, perf ensures pmu methods will be invoked via an inter process
186 * interrupt on that core. To avoid invasive changes our userspace opened OA
187 * perf events for a specific cpu. This was workable but it meant the
188 * majority of the OA driver ran in atomic context, including all OA report
189 * forwarding, which wasn't really necessary in our case and seems to make
190 * our locking requirements somewhat complex as we handled the interaction
191 * with the rest of the i915 driver.
194 #include <linux/anon_inodes.h>
195 #include <linux/sizes.h>
196 #include <linux/uuid.h>
198 #include "i915_drv.h"
199 #include "i915_oa_hsw.h"
200 #include "i915_oa_bdw.h"
201 #include "i915_oa_chv.h"
202 #include "i915_oa_sklgt2.h"
203 #include "i915_oa_sklgt3.h"
204 #include "i915_oa_sklgt4.h"
205 #include "i915_oa_bxt.h"
206 #include "i915_oa_kblgt2.h"
207 #include "i915_oa_kblgt3.h"
208 #include "i915_oa_glk.h"
209 #include "i915_oa_cflgt2.h"
210 #include "i915_oa_cflgt3.h"
211 #include "i915_oa_cnl.h"
213 /* HW requires this to be a power of two, between 128k and 16M, though driver
214 * is currently generally designed assuming the largest 16M size is used such
215 * that the overflow cases are unlikely in normal operation.
217 #define OA_BUFFER_SIZE SZ_16M
219 #define OA_TAKEN(tail, head) ((tail - head) & (OA_BUFFER_SIZE - 1))
222 * DOC: OA Tail Pointer Race
224 * There's a HW race condition between OA unit tail pointer register updates and
225 * writes to memory whereby the tail pointer can sometimes get ahead of what's
226 * been written out to the OA buffer so far (in terms of what's visible to the
227 * CPU).
229 * Although this can be observed explicitly while copying reports to userspace
230 * by checking for a zeroed report-id field in tail reports, we want to account
231 * for this earlier, as part of the oa_buffer_check to avoid lots of redundant
232 * read() attempts.
234 * In effect we define a tail pointer for reading that lags the real tail
235 * pointer by at least %OA_TAIL_MARGIN_NSEC nanoseconds, which gives enough
236 * time for the corresponding reports to become visible to the CPU.
238 * To manage this we actually track two tail pointers:
239 * 1) An 'aging' tail with an associated timestamp that is tracked until we
240 * can trust the corresponding data is visible to the CPU; at which point
241 * it is considered 'aged'.
242 * 2) An 'aged' tail that can be used for read()ing.
244 * The two separate pointers let us decouple read()s from tail pointer aging.
246 * The tail pointers are checked and updated at a limited rate within a hrtimer
247 * callback (the same callback that is used for delivering EPOLLIN events)
249 * Initially the tails are marked invalid with %INVALID_TAIL_PTR which
250 * indicates that an updated tail pointer is needed.
252 * Most of the implementation details for this workaround are in
253 * oa_buffer_check_unlocked() and _append_oa_reports()
255 * Note for posterity: previously the driver used to define an effective tail
256 * pointer that lagged the real pointer by a 'tail margin' measured in bytes
257 * derived from %OA_TAIL_MARGIN_NSEC and the configured sampling frequency.
258 * This was flawed considering that the OA unit may also automatically generate
259 * non-periodic reports (such as on context switch) or the OA unit may be
260 * enabled without any periodic sampling.
262 #define OA_TAIL_MARGIN_NSEC 100000ULL
263 #define INVALID_TAIL_PTR 0xffffffff
265 /* frequency for checking whether the OA unit has written new reports to the
266 * circular OA buffer...
268 #define POLL_FREQUENCY 200
269 #define POLL_PERIOD (NSEC_PER_SEC / POLL_FREQUENCY)
271 /* for sysctl proc_dointvec_minmax of dev.i915.perf_stream_paranoid */
272 static int zero;
273 static int one = 1;
274 static u32 i915_perf_stream_paranoid = true;
276 /* The maximum exponent the hardware accepts is 63 (essentially it selects one
277 * of the 64bit timestamp bits to trigger reports from) but there's currently
278 * no known use case for sampling as infrequently as once per 47 thousand years.
280 * Since the timestamps included in OA reports are only 32bits it seems
281 * reasonable to limit the OA exponent where it's still possible to account for
282 * overflow in OA report timestamps.
284 #define OA_EXPONENT_MAX 31
286 #define INVALID_CTX_ID 0xffffffff
288 /* On Gen8+ automatically triggered OA reports include a 'reason' field... */
289 #define OAREPORT_REASON_MASK 0x3f
290 #define OAREPORT_REASON_SHIFT 19
291 #define OAREPORT_REASON_TIMER (1<<0)
292 #define OAREPORT_REASON_CTX_SWITCH (1<<3)
293 #define OAREPORT_REASON_CLK_RATIO (1<<5)
296 /* For sysctl proc_dointvec_minmax of i915_oa_max_sample_rate
298 * The highest sampling frequency we can theoretically program the OA unit
299 * with is always half the timestamp frequency: E.g. 6.25Mhz for Haswell.
301 * Initialized just before we register the sysctl parameter.
303 static int oa_sample_rate_hard_limit;
305 /* Theoretically we can program the OA unit to sample every 160ns but don't
306 * allow that by default unless root...
308 * The default threshold of 100000Hz is based on perf's similar
309 * kernel.perf_event_max_sample_rate sysctl parameter.
311 static u32 i915_oa_max_sample_rate = 100000;
313 /* XXX: beware if future OA HW adds new report formats that the current
314 * code assumes all reports have a power-of-two size and ~(size - 1) can
315 * be used as a mask to align the OA tail pointer.
317 static struct i915_oa_format hsw_oa_formats[I915_OA_FORMAT_MAX] = {
318 [I915_OA_FORMAT_A13] = { 0, 64 },
319 [I915_OA_FORMAT_A29] = { 1, 128 },
320 [I915_OA_FORMAT_A13_B8_C8] = { 2, 128 },
321 /* A29_B8_C8 Disallowed as 192 bytes doesn't factor into buffer size */
322 [I915_OA_FORMAT_B4_C8] = { 4, 64 },
323 [I915_OA_FORMAT_A45_B8_C8] = { 5, 256 },
324 [I915_OA_FORMAT_B4_C8_A16] = { 6, 128 },
325 [I915_OA_FORMAT_C4_B8] = { 7, 64 },
328 static struct i915_oa_format gen8_plus_oa_formats[I915_OA_FORMAT_MAX] = {
329 [I915_OA_FORMAT_A12] = { 0, 64 },
330 [I915_OA_FORMAT_A12_B8_C8] = { 2, 128 },
331 [I915_OA_FORMAT_A32u40_A4u32_B8_C8] = { 5, 256 },
332 [I915_OA_FORMAT_C4_B8] = { 7, 64 },
335 #define SAMPLE_OA_REPORT (1<<0)
338 * struct perf_open_properties - for validated properties given to open a stream
339 * @sample_flags: `DRM_I915_PERF_PROP_SAMPLE_*` properties are tracked as flags
340 * @single_context: Whether a single or all gpu contexts should be monitored
341 * @ctx_handle: A gem ctx handle for use with @single_context
342 * @metrics_set: An ID for an OA unit metric set advertised via sysfs
343 * @oa_format: An OA unit HW report format
344 * @oa_periodic: Whether to enable periodic OA unit sampling
345 * @oa_period_exponent: The OA unit sampling period is derived from this
347 * As read_properties_unlocked() enumerates and validates the properties given
348 * to open a stream of metrics the configuration is built up in the structure
349 * which starts out zero initialized.
351 struct perf_open_properties {
352 u32 sample_flags;
354 u64 single_context:1;
355 u64 ctx_handle;
357 /* OA sampling state */
358 int metrics_set;
359 int oa_format;
360 bool oa_periodic;
361 int oa_period_exponent;
364 static void free_oa_config(struct drm_i915_private *dev_priv,
365 struct i915_oa_config *oa_config)
367 if (!PTR_ERR(oa_config->flex_regs))
368 kfree(oa_config->flex_regs);
369 if (!PTR_ERR(oa_config->b_counter_regs))
370 kfree(oa_config->b_counter_regs);
371 if (!PTR_ERR(oa_config->mux_regs))
372 kfree(oa_config->mux_regs);
373 kfree(oa_config);
376 static void put_oa_config(struct drm_i915_private *dev_priv,
377 struct i915_oa_config *oa_config)
379 if (!atomic_dec_and_test(&oa_config->ref_count))
380 return;
382 free_oa_config(dev_priv, oa_config);
385 static int get_oa_config(struct drm_i915_private *dev_priv,
386 int metrics_set,
387 struct i915_oa_config **out_config)
389 int ret;
391 if (metrics_set == 1) {
392 *out_config = &dev_priv->perf.oa.test_config;
393 atomic_inc(&dev_priv->perf.oa.test_config.ref_count);
394 return 0;
397 ret = mutex_lock_interruptible(&dev_priv->perf.metrics_lock);
398 if (ret)
399 return ret;
401 *out_config = idr_find(&dev_priv->perf.metrics_idr, metrics_set);
402 if (!*out_config)
403 ret = -EINVAL;
404 else
405 atomic_inc(&(*out_config)->ref_count);
407 mutex_unlock(&dev_priv->perf.metrics_lock);
409 return ret;
412 static u32 gen8_oa_hw_tail_read(struct drm_i915_private *dev_priv)
414 return I915_READ(GEN8_OATAILPTR) & GEN8_OATAILPTR_MASK;
417 static u32 gen7_oa_hw_tail_read(struct drm_i915_private *dev_priv)
419 u32 oastatus1 = I915_READ(GEN7_OASTATUS1);
421 return oastatus1 & GEN7_OASTATUS1_TAIL_MASK;
425 * oa_buffer_check_unlocked - check for data and update tail ptr state
426 * @dev_priv: i915 device instance
428 * This is either called via fops (for blocking reads in user ctx) or the poll
429 * check hrtimer (atomic ctx) to check the OA buffer tail pointer and check
430 * if there is data available for userspace to read.
432 * This function is central to providing a workaround for the OA unit tail
433 * pointer having a race with respect to what data is visible to the CPU.
434 * It is responsible for reading tail pointers from the hardware and giving
435 * the pointers time to 'age' before they are made available for reading.
436 * (See description of OA_TAIL_MARGIN_NSEC above for further details.)
438 * Besides returning true when there is data available to read() this function
439 * also has the side effect of updating the oa_buffer.tails[], .aging_timestamp
440 * and .aged_tail_idx state used for reading.
442 * Note: It's safe to read OA config state here unlocked, assuming that this is
443 * only called while the stream is enabled, while the global OA configuration
444 * can't be modified.
446 * Returns: %true if the OA buffer contains data, else %false
448 static bool oa_buffer_check_unlocked(struct drm_i915_private *dev_priv)
450 int report_size = dev_priv->perf.oa.oa_buffer.format_size;
451 unsigned long flags;
452 unsigned int aged_idx;
453 u32 head, hw_tail, aged_tail, aging_tail;
454 u64 now;
456 /* We have to consider the (unlikely) possibility that read() errors
457 * could result in an OA buffer reset which might reset the head,
458 * tails[] and aged_tail state.
460 spin_lock_irqsave(&dev_priv->perf.oa.oa_buffer.ptr_lock, flags);
462 /* NB: The head we observe here might effectively be a little out of
463 * date (between head and tails[aged_idx].offset if there is currently
464 * a read() in progress.
466 head = dev_priv->perf.oa.oa_buffer.head;
468 aged_idx = dev_priv->perf.oa.oa_buffer.aged_tail_idx;
469 aged_tail = dev_priv->perf.oa.oa_buffer.tails[aged_idx].offset;
470 aging_tail = dev_priv->perf.oa.oa_buffer.tails[!aged_idx].offset;
472 hw_tail = dev_priv->perf.oa.ops.oa_hw_tail_read(dev_priv);
474 /* The tail pointer increases in 64 byte increments,
475 * not in report_size steps...
477 hw_tail &= ~(report_size - 1);
479 now = ktime_get_mono_fast_ns();
481 /* Update the aged tail
483 * Flip the tail pointer available for read()s once the aging tail is
484 * old enough to trust that the corresponding data will be visible to
485 * the CPU...
487 * Do this before updating the aging pointer in case we may be able to
488 * immediately start aging a new pointer too (if new data has become
489 * available) without needing to wait for a later hrtimer callback.
491 if (aging_tail != INVALID_TAIL_PTR &&
492 ((now - dev_priv->perf.oa.oa_buffer.aging_timestamp) >
493 OA_TAIL_MARGIN_NSEC)) {
495 aged_idx ^= 1;
496 dev_priv->perf.oa.oa_buffer.aged_tail_idx = aged_idx;
498 aged_tail = aging_tail;
500 /* Mark that we need a new pointer to start aging... */
501 dev_priv->perf.oa.oa_buffer.tails[!aged_idx].offset = INVALID_TAIL_PTR;
502 aging_tail = INVALID_TAIL_PTR;
505 /* Update the aging tail
507 * We throttle aging tail updates until we have a new tail that
508 * represents >= one report more data than is already available for
509 * reading. This ensures there will be enough data for a successful
510 * read once this new pointer has aged and ensures we will give the new
511 * pointer time to age.
513 if (aging_tail == INVALID_TAIL_PTR &&
514 (aged_tail == INVALID_TAIL_PTR ||
515 OA_TAKEN(hw_tail, aged_tail) >= report_size)) {
516 struct i915_vma *vma = dev_priv->perf.oa.oa_buffer.vma;
517 u32 gtt_offset = i915_ggtt_offset(vma);
519 /* Be paranoid and do a bounds check on the pointer read back
520 * from hardware, just in case some spurious hardware condition
521 * could put the tail out of bounds...
523 if (hw_tail >= gtt_offset &&
524 hw_tail < (gtt_offset + OA_BUFFER_SIZE)) {
525 dev_priv->perf.oa.oa_buffer.tails[!aged_idx].offset =
526 aging_tail = hw_tail;
527 dev_priv->perf.oa.oa_buffer.aging_timestamp = now;
528 } else {
529 DRM_ERROR("Ignoring spurious out of range OA buffer tail pointer = %u\n",
530 hw_tail);
534 spin_unlock_irqrestore(&dev_priv->perf.oa.oa_buffer.ptr_lock, flags);
536 return aged_tail == INVALID_TAIL_PTR ?
537 false : OA_TAKEN(aged_tail, head) >= report_size;
541 * append_oa_status - Appends a status record to a userspace read() buffer.
542 * @stream: An i915-perf stream opened for OA metrics
543 * @buf: destination buffer given by userspace
544 * @count: the number of bytes userspace wants to read
545 * @offset: (inout): the current position for writing into @buf
546 * @type: The kind of status to report to userspace
548 * Writes a status record (such as `DRM_I915_PERF_RECORD_OA_REPORT_LOST`)
549 * into the userspace read() buffer.
551 * The @buf @offset will only be updated on success.
553 * Returns: 0 on success, negative error code on failure.
555 static int append_oa_status(struct i915_perf_stream *stream,
556 char __user *buf,
557 size_t count,
558 size_t *offset,
559 enum drm_i915_perf_record_type type)
561 struct drm_i915_perf_record_header header = { type, 0, sizeof(header) };
563 if ((count - *offset) < header.size)
564 return -ENOSPC;
566 if (copy_to_user(buf + *offset, &header, sizeof(header)))
567 return -EFAULT;
569 (*offset) += header.size;
571 return 0;
575 * append_oa_sample - Copies single OA report into userspace read() buffer.
576 * @stream: An i915-perf stream opened for OA metrics
577 * @buf: destination buffer given by userspace
578 * @count: the number of bytes userspace wants to read
579 * @offset: (inout): the current position for writing into @buf
580 * @report: A single OA report to (optionally) include as part of the sample
582 * The contents of a sample are configured through `DRM_I915_PERF_PROP_SAMPLE_*`
583 * properties when opening a stream, tracked as `stream->sample_flags`. This
584 * function copies the requested components of a single sample to the given
585 * read() @buf.
587 * The @buf @offset will only be updated on success.
589 * Returns: 0 on success, negative error code on failure.
591 static int append_oa_sample(struct i915_perf_stream *stream,
592 char __user *buf,
593 size_t count,
594 size_t *offset,
595 const u8 *report)
597 struct drm_i915_private *dev_priv = stream->dev_priv;
598 int report_size = dev_priv->perf.oa.oa_buffer.format_size;
599 struct drm_i915_perf_record_header header;
600 u32 sample_flags = stream->sample_flags;
602 header.type = DRM_I915_PERF_RECORD_SAMPLE;
603 header.pad = 0;
604 header.size = stream->sample_size;
606 if ((count - *offset) < header.size)
607 return -ENOSPC;
609 buf += *offset;
610 if (copy_to_user(buf, &header, sizeof(header)))
611 return -EFAULT;
612 buf += sizeof(header);
614 if (sample_flags & SAMPLE_OA_REPORT) {
615 if (copy_to_user(buf, report, report_size))
616 return -EFAULT;
619 (*offset) += header.size;
621 return 0;
625 * Copies all buffered OA reports into userspace read() buffer.
626 * @stream: An i915-perf stream opened for OA metrics
627 * @buf: destination buffer given by userspace
628 * @count: the number of bytes userspace wants to read
629 * @offset: (inout): the current position for writing into @buf
631 * Notably any error condition resulting in a short read (-%ENOSPC or
632 * -%EFAULT) will be returned even though one or more records may
633 * have been successfully copied. In this case it's up to the caller
634 * to decide if the error should be squashed before returning to
635 * userspace.
637 * Note: reports are consumed from the head, and appended to the
638 * tail, so the tail chases the head?... If you think that's mad
639 * and back-to-front you're not alone, but this follows the
640 * Gen PRM naming convention.
642 * Returns: 0 on success, negative error code on failure.
644 static int gen8_append_oa_reports(struct i915_perf_stream *stream,
645 char __user *buf,
646 size_t count,
647 size_t *offset)
649 struct drm_i915_private *dev_priv = stream->dev_priv;
650 int report_size = dev_priv->perf.oa.oa_buffer.format_size;
651 u8 *oa_buf_base = dev_priv->perf.oa.oa_buffer.vaddr;
652 u32 gtt_offset = i915_ggtt_offset(dev_priv->perf.oa.oa_buffer.vma);
653 u32 mask = (OA_BUFFER_SIZE - 1);
654 size_t start_offset = *offset;
655 unsigned long flags;
656 unsigned int aged_tail_idx;
657 u32 head, tail;
658 u32 taken;
659 int ret = 0;
661 if (WARN_ON(!stream->enabled))
662 return -EIO;
664 spin_lock_irqsave(&dev_priv->perf.oa.oa_buffer.ptr_lock, flags);
666 head = dev_priv->perf.oa.oa_buffer.head;
667 aged_tail_idx = dev_priv->perf.oa.oa_buffer.aged_tail_idx;
668 tail = dev_priv->perf.oa.oa_buffer.tails[aged_tail_idx].offset;
670 spin_unlock_irqrestore(&dev_priv->perf.oa.oa_buffer.ptr_lock, flags);
673 * An invalid tail pointer here means we're still waiting for the poll
674 * hrtimer callback to give us a pointer
676 if (tail == INVALID_TAIL_PTR)
677 return -EAGAIN;
680 * NB: oa_buffer.head/tail include the gtt_offset which we don't want
681 * while indexing relative to oa_buf_base.
683 head -= gtt_offset;
684 tail -= gtt_offset;
687 * An out of bounds or misaligned head or tail pointer implies a driver
688 * bug since we validate + align the tail pointers we read from the
689 * hardware and we are in full control of the head pointer which should
690 * only be incremented by multiples of the report size (notably also
691 * all a power of two).
693 if (WARN_ONCE(head > OA_BUFFER_SIZE || head % report_size ||
694 tail > OA_BUFFER_SIZE || tail % report_size,
695 "Inconsistent OA buffer pointers: head = %u, tail = %u\n",
696 head, tail))
697 return -EIO;
700 for (/* none */;
701 (taken = OA_TAKEN(tail, head));
702 head = (head + report_size) & mask) {
703 u8 *report = oa_buf_base + head;
704 u32 *report32 = (void *)report;
705 u32 ctx_id;
706 u32 reason;
709 * All the report sizes factor neatly into the buffer
710 * size so we never expect to see a report split
711 * between the beginning and end of the buffer.
713 * Given the initial alignment check a misalignment
714 * here would imply a driver bug that would result
715 * in an overrun.
717 if (WARN_ON((OA_BUFFER_SIZE - head) < report_size)) {
718 DRM_ERROR("Spurious OA head ptr: non-integral report offset\n");
719 break;
723 * The reason field includes flags identifying what
724 * triggered this specific report (mostly timer
725 * triggered or e.g. due to a context switch).
727 * This field is never expected to be zero so we can
728 * check that the report isn't invalid before copying
729 * it to userspace...
731 reason = ((report32[0] >> OAREPORT_REASON_SHIFT) &
732 OAREPORT_REASON_MASK);
733 if (reason == 0) {
734 if (__ratelimit(&dev_priv->perf.oa.spurious_report_rs))
735 DRM_NOTE("Skipping spurious, invalid OA report\n");
736 continue;
740 * XXX: Just keep the lower 21 bits for now since I'm not
741 * entirely sure if the HW touches any of the higher bits in
742 * this field
744 ctx_id = report32[2] & 0x1fffff;
747 * Squash whatever is in the CTX_ID field if it's marked as
748 * invalid to be sure we avoid false-positive, single-context
749 * filtering below...
751 * Note: that we don't clear the valid_ctx_bit so userspace can
752 * understand that the ID has been squashed by the kernel.
754 if (!(report32[0] & dev_priv->perf.oa.gen8_valid_ctx_bit))
755 ctx_id = report32[2] = INVALID_CTX_ID;
758 * NB: For Gen 8 the OA unit no longer supports clock gating
759 * off for a specific context and the kernel can't securely
760 * stop the counters from updating as system-wide / global
761 * values.
763 * Automatic reports now include a context ID so reports can be
764 * filtered on the cpu but it's not worth trying to
765 * automatically subtract/hide counter progress for other
766 * contexts while filtering since we can't stop userspace
767 * issuing MI_REPORT_PERF_COUNT commands which would still
768 * provide a side-band view of the real values.
770 * To allow userspace (such as Mesa/GL_INTEL_performance_query)
771 * to normalize counters for a single filtered context then it
772 * needs be forwarded bookend context-switch reports so that it
773 * can track switches in between MI_REPORT_PERF_COUNT commands
774 * and can itself subtract/ignore the progress of counters
775 * associated with other contexts. Note that the hardware
776 * automatically triggers reports when switching to a new
777 * context which are tagged with the ID of the newly active
778 * context. To avoid the complexity (and likely fragility) of
779 * reading ahead while parsing reports to try and minimize
780 * forwarding redundant context switch reports (i.e. between
781 * other, unrelated contexts) we simply elect to forward them
782 * all.
784 * We don't rely solely on the reason field to identify context
785 * switches since it's not-uncommon for periodic samples to
786 * identify a switch before any 'context switch' report.
788 if (!dev_priv->perf.oa.exclusive_stream->ctx ||
789 dev_priv->perf.oa.specific_ctx_id == ctx_id ||
790 (dev_priv->perf.oa.oa_buffer.last_ctx_id ==
791 dev_priv->perf.oa.specific_ctx_id) ||
792 reason & OAREPORT_REASON_CTX_SWITCH) {
795 * While filtering for a single context we avoid
796 * leaking the IDs of other contexts.
798 if (dev_priv->perf.oa.exclusive_stream->ctx &&
799 dev_priv->perf.oa.specific_ctx_id != ctx_id) {
800 report32[2] = INVALID_CTX_ID;
803 ret = append_oa_sample(stream, buf, count, offset,
804 report);
805 if (ret)
806 break;
808 dev_priv->perf.oa.oa_buffer.last_ctx_id = ctx_id;
812 * The above reason field sanity check is based on
813 * the assumption that the OA buffer is initially
814 * zeroed and we reset the field after copying so the
815 * check is still meaningful once old reports start
816 * being overwritten.
818 report32[0] = 0;
821 if (start_offset != *offset) {
822 spin_lock_irqsave(&dev_priv->perf.oa.oa_buffer.ptr_lock, flags);
825 * We removed the gtt_offset for the copy loop above, indexing
826 * relative to oa_buf_base so put back here...
828 head += gtt_offset;
830 I915_WRITE(GEN8_OAHEADPTR, head & GEN8_OAHEADPTR_MASK);
831 dev_priv->perf.oa.oa_buffer.head = head;
833 spin_unlock_irqrestore(&dev_priv->perf.oa.oa_buffer.ptr_lock, flags);
836 return ret;
840 * gen8_oa_read - copy status records then buffered OA reports
841 * @stream: An i915-perf stream opened for OA metrics
842 * @buf: destination buffer given by userspace
843 * @count: the number of bytes userspace wants to read
844 * @offset: (inout): the current position for writing into @buf
846 * Checks OA unit status registers and if necessary appends corresponding
847 * status records for userspace (such as for a buffer full condition) and then
848 * initiate appending any buffered OA reports.
850 * Updates @offset according to the number of bytes successfully copied into
851 * the userspace buffer.
853 * NB: some data may be successfully copied to the userspace buffer
854 * even if an error is returned, and this is reflected in the
855 * updated @offset.
857 * Returns: zero on success or a negative error code
859 static int gen8_oa_read(struct i915_perf_stream *stream,
860 char __user *buf,
861 size_t count,
862 size_t *offset)
864 struct drm_i915_private *dev_priv = stream->dev_priv;
865 u32 oastatus;
866 int ret;
868 if (WARN_ON(!dev_priv->perf.oa.oa_buffer.vaddr))
869 return -EIO;
871 oastatus = I915_READ(GEN8_OASTATUS);
874 * We treat OABUFFER_OVERFLOW as a significant error:
876 * Although theoretically we could handle this more gracefully
877 * sometimes, some Gens don't correctly suppress certain
878 * automatically triggered reports in this condition and so we
879 * have to assume that old reports are now being trampled
880 * over.
882 * Considering how we don't currently give userspace control
883 * over the OA buffer size and always configure a large 16MB
884 * buffer, then a buffer overflow does anyway likely indicate
885 * that something has gone quite badly wrong.
887 if (oastatus & GEN8_OASTATUS_OABUFFER_OVERFLOW) {
888 ret = append_oa_status(stream, buf, count, offset,
889 DRM_I915_PERF_RECORD_OA_BUFFER_LOST);
890 if (ret)
891 return ret;
893 DRM_DEBUG("OA buffer overflow (exponent = %d): force restart\n",
894 dev_priv->perf.oa.period_exponent);
896 dev_priv->perf.oa.ops.oa_disable(dev_priv);
897 dev_priv->perf.oa.ops.oa_enable(dev_priv);
900 * Note: .oa_enable() is expected to re-init the oabuffer and
901 * reset GEN8_OASTATUS for us
903 oastatus = I915_READ(GEN8_OASTATUS);
906 if (oastatus & GEN8_OASTATUS_REPORT_LOST) {
907 ret = append_oa_status(stream, buf, count, offset,
908 DRM_I915_PERF_RECORD_OA_REPORT_LOST);
909 if (ret)
910 return ret;
911 I915_WRITE(GEN8_OASTATUS,
912 oastatus & ~GEN8_OASTATUS_REPORT_LOST);
915 return gen8_append_oa_reports(stream, buf, count, offset);
919 * Copies all buffered OA reports into userspace read() buffer.
920 * @stream: An i915-perf stream opened for OA metrics
921 * @buf: destination buffer given by userspace
922 * @count: the number of bytes userspace wants to read
923 * @offset: (inout): the current position for writing into @buf
925 * Notably any error condition resulting in a short read (-%ENOSPC or
926 * -%EFAULT) will be returned even though one or more records may
927 * have been successfully copied. In this case it's up to the caller
928 * to decide if the error should be squashed before returning to
929 * userspace.
931 * Note: reports are consumed from the head, and appended to the
932 * tail, so the tail chases the head?... If you think that's mad
933 * and back-to-front you're not alone, but this follows the
934 * Gen PRM naming convention.
936 * Returns: 0 on success, negative error code on failure.
938 static int gen7_append_oa_reports(struct i915_perf_stream *stream,
939 char __user *buf,
940 size_t count,
941 size_t *offset)
943 struct drm_i915_private *dev_priv = stream->dev_priv;
944 int report_size = dev_priv->perf.oa.oa_buffer.format_size;
945 u8 *oa_buf_base = dev_priv->perf.oa.oa_buffer.vaddr;
946 u32 gtt_offset = i915_ggtt_offset(dev_priv->perf.oa.oa_buffer.vma);
947 u32 mask = (OA_BUFFER_SIZE - 1);
948 size_t start_offset = *offset;
949 unsigned long flags;
950 unsigned int aged_tail_idx;
951 u32 head, tail;
952 u32 taken;
953 int ret = 0;
955 if (WARN_ON(!stream->enabled))
956 return -EIO;
958 spin_lock_irqsave(&dev_priv->perf.oa.oa_buffer.ptr_lock, flags);
960 head = dev_priv->perf.oa.oa_buffer.head;
961 aged_tail_idx = dev_priv->perf.oa.oa_buffer.aged_tail_idx;
962 tail = dev_priv->perf.oa.oa_buffer.tails[aged_tail_idx].offset;
964 spin_unlock_irqrestore(&dev_priv->perf.oa.oa_buffer.ptr_lock, flags);
966 /* An invalid tail pointer here means we're still waiting for the poll
967 * hrtimer callback to give us a pointer
969 if (tail == INVALID_TAIL_PTR)
970 return -EAGAIN;
972 /* NB: oa_buffer.head/tail include the gtt_offset which we don't want
973 * while indexing relative to oa_buf_base.
975 head -= gtt_offset;
976 tail -= gtt_offset;
978 /* An out of bounds or misaligned head or tail pointer implies a driver
979 * bug since we validate + align the tail pointers we read from the
980 * hardware and we are in full control of the head pointer which should
981 * only be incremented by multiples of the report size (notably also
982 * all a power of two).
984 if (WARN_ONCE(head > OA_BUFFER_SIZE || head % report_size ||
985 tail > OA_BUFFER_SIZE || tail % report_size,
986 "Inconsistent OA buffer pointers: head = %u, tail = %u\n",
987 head, tail))
988 return -EIO;
991 for (/* none */;
992 (taken = OA_TAKEN(tail, head));
993 head = (head + report_size) & mask) {
994 u8 *report = oa_buf_base + head;
995 u32 *report32 = (void *)report;
997 /* All the report sizes factor neatly into the buffer
998 * size so we never expect to see a report split
999 * between the beginning and end of the buffer.
1001 * Given the initial alignment check a misalignment
1002 * here would imply a driver bug that would result
1003 * in an overrun.
1005 if (WARN_ON((OA_BUFFER_SIZE - head) < report_size)) {
1006 DRM_ERROR("Spurious OA head ptr: non-integral report offset\n");
1007 break;
1010 /* The report-ID field for periodic samples includes
1011 * some undocumented flags related to what triggered
1012 * the report and is never expected to be zero so we
1013 * can check that the report isn't invalid before
1014 * copying it to userspace...
1016 if (report32[0] == 0) {
1017 if (__ratelimit(&dev_priv->perf.oa.spurious_report_rs))
1018 DRM_NOTE("Skipping spurious, invalid OA report\n");
1019 continue;
1022 ret = append_oa_sample(stream, buf, count, offset, report);
1023 if (ret)
1024 break;
1026 /* The above report-id field sanity check is based on
1027 * the assumption that the OA buffer is initially
1028 * zeroed and we reset the field after copying so the
1029 * check is still meaningful once old reports start
1030 * being overwritten.
1032 report32[0] = 0;
1035 if (start_offset != *offset) {
1036 spin_lock_irqsave(&dev_priv->perf.oa.oa_buffer.ptr_lock, flags);
1038 /* We removed the gtt_offset for the copy loop above, indexing
1039 * relative to oa_buf_base so put back here...
1041 head += gtt_offset;
1043 I915_WRITE(GEN7_OASTATUS2,
1044 ((head & GEN7_OASTATUS2_HEAD_MASK) |
1045 OA_MEM_SELECT_GGTT));
1046 dev_priv->perf.oa.oa_buffer.head = head;
1048 spin_unlock_irqrestore(&dev_priv->perf.oa.oa_buffer.ptr_lock, flags);
1051 return ret;
1055 * gen7_oa_read - copy status records then buffered OA reports
1056 * @stream: An i915-perf stream opened for OA metrics
1057 * @buf: destination buffer given by userspace
1058 * @count: the number of bytes userspace wants to read
1059 * @offset: (inout): the current position for writing into @buf
1061 * Checks Gen 7 specific OA unit status registers and if necessary appends
1062 * corresponding status records for userspace (such as for a buffer full
1063 * condition) and then initiate appending any buffered OA reports.
1065 * Updates @offset according to the number of bytes successfully copied into
1066 * the userspace buffer.
1068 * Returns: zero on success or a negative error code
1070 static int gen7_oa_read(struct i915_perf_stream *stream,
1071 char __user *buf,
1072 size_t count,
1073 size_t *offset)
1075 struct drm_i915_private *dev_priv = stream->dev_priv;
1076 u32 oastatus1;
1077 int ret;
1079 if (WARN_ON(!dev_priv->perf.oa.oa_buffer.vaddr))
1080 return -EIO;
1082 oastatus1 = I915_READ(GEN7_OASTATUS1);
1084 /* XXX: On Haswell we don't have a safe way to clear oastatus1
1085 * bits while the OA unit is enabled (while the tail pointer
1086 * may be updated asynchronously) so we ignore status bits
1087 * that have already been reported to userspace.
1089 oastatus1 &= ~dev_priv->perf.oa.gen7_latched_oastatus1;
1091 /* We treat OABUFFER_OVERFLOW as a significant error:
1093 * - The status can be interpreted to mean that the buffer is
1094 * currently full (with a higher precedence than OA_TAKEN()
1095 * which will start to report a near-empty buffer after an
1096 * overflow) but it's awkward that we can't clear the status
1097 * on Haswell, so without a reset we won't be able to catch
1098 * the state again.
1100 * - Since it also implies the HW has started overwriting old
1101 * reports it may also affect our sanity checks for invalid
1102 * reports when copying to userspace that assume new reports
1103 * are being written to cleared memory.
1105 * - In the future we may want to introduce a flight recorder
1106 * mode where the driver will automatically maintain a safe
1107 * guard band between head/tail, avoiding this overflow
1108 * condition, but we avoid the added driver complexity for
1109 * now.
1111 if (unlikely(oastatus1 & GEN7_OASTATUS1_OABUFFER_OVERFLOW)) {
1112 ret = append_oa_status(stream, buf, count, offset,
1113 DRM_I915_PERF_RECORD_OA_BUFFER_LOST);
1114 if (ret)
1115 return ret;
1117 DRM_DEBUG("OA buffer overflow (exponent = %d): force restart\n",
1118 dev_priv->perf.oa.period_exponent);
1120 dev_priv->perf.oa.ops.oa_disable(dev_priv);
1121 dev_priv->perf.oa.ops.oa_enable(dev_priv);
1123 oastatus1 = I915_READ(GEN7_OASTATUS1);
1126 if (unlikely(oastatus1 & GEN7_OASTATUS1_REPORT_LOST)) {
1127 ret = append_oa_status(stream, buf, count, offset,
1128 DRM_I915_PERF_RECORD_OA_REPORT_LOST);
1129 if (ret)
1130 return ret;
1131 dev_priv->perf.oa.gen7_latched_oastatus1 |=
1132 GEN7_OASTATUS1_REPORT_LOST;
1135 return gen7_append_oa_reports(stream, buf, count, offset);
1139 * i915_oa_wait_unlocked - handles blocking IO until OA data available
1140 * @stream: An i915-perf stream opened for OA metrics
1142 * Called when userspace tries to read() from a blocking stream FD opened
1143 * for OA metrics. It waits until the hrtimer callback finds a non-empty
1144 * OA buffer and wakes us.
1146 * Note: it's acceptable to have this return with some false positives
1147 * since any subsequent read handling will return -EAGAIN if there isn't
1148 * really data ready for userspace yet.
1150 * Returns: zero on success or a negative error code
1152 static int i915_oa_wait_unlocked(struct i915_perf_stream *stream)
1154 struct drm_i915_private *dev_priv = stream->dev_priv;
1156 /* We would wait indefinitely if periodic sampling is not enabled */
1157 if (!dev_priv->perf.oa.periodic)
1158 return -EIO;
1160 return wait_event_interruptible(dev_priv->perf.oa.poll_wq,
1161 oa_buffer_check_unlocked(dev_priv));
1165 * i915_oa_poll_wait - call poll_wait() for an OA stream poll()
1166 * @stream: An i915-perf stream opened for OA metrics
1167 * @file: An i915 perf stream file
1168 * @wait: poll() state table
1170 * For handling userspace polling on an i915 perf stream opened for OA metrics,
1171 * this starts a poll_wait with the wait queue that our hrtimer callback wakes
1172 * when it sees data ready to read in the circular OA buffer.
1174 static void i915_oa_poll_wait(struct i915_perf_stream *stream,
1175 struct file *file,
1176 poll_table *wait)
1178 struct drm_i915_private *dev_priv = stream->dev_priv;
1180 poll_wait(file, &dev_priv->perf.oa.poll_wq, wait);
1184 * i915_oa_read - just calls through to &i915_oa_ops->read
1185 * @stream: An i915-perf stream opened for OA metrics
1186 * @buf: destination buffer given by userspace
1187 * @count: the number of bytes userspace wants to read
1188 * @offset: (inout): the current position for writing into @buf
1190 * Updates @offset according to the number of bytes successfully copied into
1191 * the userspace buffer.
1193 * Returns: zero on success or a negative error code
1195 static int i915_oa_read(struct i915_perf_stream *stream,
1196 char __user *buf,
1197 size_t count,
1198 size_t *offset)
1200 struct drm_i915_private *dev_priv = stream->dev_priv;
1202 return dev_priv->perf.oa.ops.read(stream, buf, count, offset);
1206 * oa_get_render_ctx_id - determine and hold ctx hw id
1207 * @stream: An i915-perf stream opened for OA metrics
1209 * Determine the render context hw id, and ensure it remains fixed for the
1210 * lifetime of the stream. This ensures that we don't have to worry about
1211 * updating the context ID in OACONTROL on the fly.
1213 * Returns: zero on success or a negative error code
1215 static int oa_get_render_ctx_id(struct i915_perf_stream *stream)
1217 struct drm_i915_private *dev_priv = stream->dev_priv;
1219 if (HAS_LOGICAL_RING_CONTEXTS(dev_priv)) {
1220 dev_priv->perf.oa.specific_ctx_id = stream->ctx->hw_id;
1221 } else {
1222 struct intel_engine_cs *engine = dev_priv->engine[RCS];
1223 struct intel_ring *ring;
1224 int ret;
1226 ret = i915_mutex_lock_interruptible(&dev_priv->drm);
1227 if (ret)
1228 return ret;
1231 * As the ID is the gtt offset of the context's vma we
1232 * pin the vma to ensure the ID remains fixed.
1234 * NB: implied RCS engine...
1236 ring = engine->context_pin(engine, stream->ctx);
1237 mutex_unlock(&dev_priv->drm.struct_mutex);
1238 if (IS_ERR(ring))
1239 return PTR_ERR(ring);
1243 * Explicitly track the ID (instead of calling
1244 * i915_ggtt_offset() on the fly) considering the difference
1245 * with gen8+ and execlists
1247 dev_priv->perf.oa.specific_ctx_id =
1248 i915_ggtt_offset(stream->ctx->engine[engine->id].state);
1251 return 0;
1255 * oa_put_render_ctx_id - counterpart to oa_get_render_ctx_id releases hold
1256 * @stream: An i915-perf stream opened for OA metrics
1258 * In case anything needed doing to ensure the context HW ID would remain valid
1259 * for the lifetime of the stream, then that can be undone here.
1261 static void oa_put_render_ctx_id(struct i915_perf_stream *stream)
1263 struct drm_i915_private *dev_priv = stream->dev_priv;
1265 if (HAS_LOGICAL_RING_CONTEXTS(dev_priv)) {
1266 dev_priv->perf.oa.specific_ctx_id = INVALID_CTX_ID;
1267 } else {
1268 struct intel_engine_cs *engine = dev_priv->engine[RCS];
1270 mutex_lock(&dev_priv->drm.struct_mutex);
1272 dev_priv->perf.oa.specific_ctx_id = INVALID_CTX_ID;
1273 engine->context_unpin(engine, stream->ctx);
1275 mutex_unlock(&dev_priv->drm.struct_mutex);
1279 static void
1280 free_oa_buffer(struct drm_i915_private *i915)
1282 mutex_lock(&i915->drm.struct_mutex);
1284 i915_gem_object_unpin_map(i915->perf.oa.oa_buffer.vma->obj);
1285 i915_vma_unpin(i915->perf.oa.oa_buffer.vma);
1286 i915_gem_object_put(i915->perf.oa.oa_buffer.vma->obj);
1288 i915->perf.oa.oa_buffer.vma = NULL;
1289 i915->perf.oa.oa_buffer.vaddr = NULL;
1291 mutex_unlock(&i915->drm.struct_mutex);
1294 static void i915_oa_stream_destroy(struct i915_perf_stream *stream)
1296 struct drm_i915_private *dev_priv = stream->dev_priv;
1298 BUG_ON(stream != dev_priv->perf.oa.exclusive_stream);
1301 * Unset exclusive_stream first, it will be checked while disabling
1302 * the metric set on gen8+.
1304 mutex_lock(&dev_priv->drm.struct_mutex);
1305 dev_priv->perf.oa.exclusive_stream = NULL;
1306 mutex_unlock(&dev_priv->drm.struct_mutex);
1308 dev_priv->perf.oa.ops.disable_metric_set(dev_priv);
1310 free_oa_buffer(dev_priv);
1312 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
1313 intel_runtime_pm_put(dev_priv);
1315 if (stream->ctx)
1316 oa_put_render_ctx_id(stream);
1318 put_oa_config(dev_priv, stream->oa_config);
1320 if (dev_priv->perf.oa.spurious_report_rs.missed) {
1321 DRM_NOTE("%d spurious OA report notices suppressed due to ratelimiting\n",
1322 dev_priv->perf.oa.spurious_report_rs.missed);
1326 static void gen7_init_oa_buffer(struct drm_i915_private *dev_priv)
1328 u32 gtt_offset = i915_ggtt_offset(dev_priv->perf.oa.oa_buffer.vma);
1329 unsigned long flags;
1331 spin_lock_irqsave(&dev_priv->perf.oa.oa_buffer.ptr_lock, flags);
1333 /* Pre-DevBDW: OABUFFER must be set with counters off,
1334 * before OASTATUS1, but after OASTATUS2
1336 I915_WRITE(GEN7_OASTATUS2, gtt_offset | OA_MEM_SELECT_GGTT); /* head */
1337 dev_priv->perf.oa.oa_buffer.head = gtt_offset;
1339 I915_WRITE(GEN7_OABUFFER, gtt_offset);
1341 I915_WRITE(GEN7_OASTATUS1, gtt_offset | OABUFFER_SIZE_16M); /* tail */
1343 /* Mark that we need updated tail pointers to read from... */
1344 dev_priv->perf.oa.oa_buffer.tails[0].offset = INVALID_TAIL_PTR;
1345 dev_priv->perf.oa.oa_buffer.tails[1].offset = INVALID_TAIL_PTR;
1347 spin_unlock_irqrestore(&dev_priv->perf.oa.oa_buffer.ptr_lock, flags);
1349 /* On Haswell we have to track which OASTATUS1 flags we've
1350 * already seen since they can't be cleared while periodic
1351 * sampling is enabled.
1353 dev_priv->perf.oa.gen7_latched_oastatus1 = 0;
1355 /* NB: although the OA buffer will initially be allocated
1356 * zeroed via shmfs (and so this memset is redundant when
1357 * first allocating), we may re-init the OA buffer, either
1358 * when re-enabling a stream or in error/reset paths.
1360 * The reason we clear the buffer for each re-init is for the
1361 * sanity check in gen7_append_oa_reports() that looks at the
1362 * report-id field to make sure it's non-zero which relies on
1363 * the assumption that new reports are being written to zeroed
1364 * memory...
1366 memset(dev_priv->perf.oa.oa_buffer.vaddr, 0, OA_BUFFER_SIZE);
1368 /* Maybe make ->pollin per-stream state if we support multiple
1369 * concurrent streams in the future.
1371 dev_priv->perf.oa.pollin = false;
1374 static void gen8_init_oa_buffer(struct drm_i915_private *dev_priv)
1376 u32 gtt_offset = i915_ggtt_offset(dev_priv->perf.oa.oa_buffer.vma);
1377 unsigned long flags;
1379 spin_lock_irqsave(&dev_priv->perf.oa.oa_buffer.ptr_lock, flags);
1381 I915_WRITE(GEN8_OASTATUS, 0);
1382 I915_WRITE(GEN8_OAHEADPTR, gtt_offset);
1383 dev_priv->perf.oa.oa_buffer.head = gtt_offset;
1385 I915_WRITE(GEN8_OABUFFER_UDW, 0);
1388 * PRM says:
1390 * "This MMIO must be set before the OATAILPTR
1391 * register and after the OAHEADPTR register. This is
1392 * to enable proper functionality of the overflow
1393 * bit."
1395 I915_WRITE(GEN8_OABUFFER, gtt_offset |
1396 OABUFFER_SIZE_16M | OA_MEM_SELECT_GGTT);
1397 I915_WRITE(GEN8_OATAILPTR, gtt_offset & GEN8_OATAILPTR_MASK);
1399 /* Mark that we need updated tail pointers to read from... */
1400 dev_priv->perf.oa.oa_buffer.tails[0].offset = INVALID_TAIL_PTR;
1401 dev_priv->perf.oa.oa_buffer.tails[1].offset = INVALID_TAIL_PTR;
1404 * Reset state used to recognise context switches, affecting which
1405 * reports we will forward to userspace while filtering for a single
1406 * context.
1408 dev_priv->perf.oa.oa_buffer.last_ctx_id = INVALID_CTX_ID;
1410 spin_unlock_irqrestore(&dev_priv->perf.oa.oa_buffer.ptr_lock, flags);
1413 * NB: although the OA buffer will initially be allocated
1414 * zeroed via shmfs (and so this memset is redundant when
1415 * first allocating), we may re-init the OA buffer, either
1416 * when re-enabling a stream or in error/reset paths.
1418 * The reason we clear the buffer for each re-init is for the
1419 * sanity check in gen8_append_oa_reports() that looks at the
1420 * reason field to make sure it's non-zero which relies on
1421 * the assumption that new reports are being written to zeroed
1422 * memory...
1424 memset(dev_priv->perf.oa.oa_buffer.vaddr, 0, OA_BUFFER_SIZE);
1427 * Maybe make ->pollin per-stream state if we support multiple
1428 * concurrent streams in the future.
1430 dev_priv->perf.oa.pollin = false;
1433 static int alloc_oa_buffer(struct drm_i915_private *dev_priv)
1435 struct drm_i915_gem_object *bo;
1436 struct i915_vma *vma;
1437 int ret;
1439 if (WARN_ON(dev_priv->perf.oa.oa_buffer.vma))
1440 return -ENODEV;
1442 ret = i915_mutex_lock_interruptible(&dev_priv->drm);
1443 if (ret)
1444 return ret;
1446 BUILD_BUG_ON_NOT_POWER_OF_2(OA_BUFFER_SIZE);
1447 BUILD_BUG_ON(OA_BUFFER_SIZE < SZ_128K || OA_BUFFER_SIZE > SZ_16M);
1449 bo = i915_gem_object_create(dev_priv, OA_BUFFER_SIZE);
1450 if (IS_ERR(bo)) {
1451 DRM_ERROR("Failed to allocate OA buffer\n");
1452 ret = PTR_ERR(bo);
1453 goto unlock;
1456 ret = i915_gem_object_set_cache_level(bo, I915_CACHE_LLC);
1457 if (ret)
1458 goto err_unref;
1460 /* PreHSW required 512K alignment, HSW requires 16M */
1461 vma = i915_gem_object_ggtt_pin(bo, NULL, 0, SZ_16M, 0);
1462 if (IS_ERR(vma)) {
1463 ret = PTR_ERR(vma);
1464 goto err_unref;
1466 dev_priv->perf.oa.oa_buffer.vma = vma;
1468 dev_priv->perf.oa.oa_buffer.vaddr =
1469 i915_gem_object_pin_map(bo, I915_MAP_WB);
1470 if (IS_ERR(dev_priv->perf.oa.oa_buffer.vaddr)) {
1471 ret = PTR_ERR(dev_priv->perf.oa.oa_buffer.vaddr);
1472 goto err_unpin;
1475 dev_priv->perf.oa.ops.init_oa_buffer(dev_priv);
1477 DRM_DEBUG_DRIVER("OA Buffer initialized, gtt offset = 0x%x, vaddr = %p\n",
1478 i915_ggtt_offset(dev_priv->perf.oa.oa_buffer.vma),
1479 dev_priv->perf.oa.oa_buffer.vaddr);
1481 goto unlock;
1483 err_unpin:
1484 __i915_vma_unpin(vma);
1486 err_unref:
1487 i915_gem_object_put(bo);
1489 dev_priv->perf.oa.oa_buffer.vaddr = NULL;
1490 dev_priv->perf.oa.oa_buffer.vma = NULL;
1492 unlock:
1493 mutex_unlock(&dev_priv->drm.struct_mutex);
1494 return ret;
1497 static void config_oa_regs(struct drm_i915_private *dev_priv,
1498 const struct i915_oa_reg *regs,
1499 u32 n_regs)
1501 u32 i;
1503 for (i = 0; i < n_regs; i++) {
1504 const struct i915_oa_reg *reg = regs + i;
1506 I915_WRITE(reg->addr, reg->value);
1510 static int hsw_enable_metric_set(struct drm_i915_private *dev_priv,
1511 const struct i915_oa_config *oa_config)
1513 /* PRM:
1515 * OA unit is using “crclk” for its functionality. When trunk
1516 * level clock gating takes place, OA clock would be gated,
1517 * unable to count the events from non-render clock domain.
1518 * Render clock gating must be disabled when OA is enabled to
1519 * count the events from non-render domain. Unit level clock
1520 * gating for RCS should also be disabled.
1522 I915_WRITE(GEN7_MISCCPCTL, (I915_READ(GEN7_MISCCPCTL) &
1523 ~GEN7_DOP_CLOCK_GATE_ENABLE));
1524 I915_WRITE(GEN6_UCGCTL1, (I915_READ(GEN6_UCGCTL1) |
1525 GEN6_CSUNIT_CLOCK_GATE_DISABLE));
1527 config_oa_regs(dev_priv, oa_config->mux_regs, oa_config->mux_regs_len);
1529 /* It apparently takes a fairly long time for a new MUX
1530 * configuration to be be applied after these register writes.
1531 * This delay duration was derived empirically based on the
1532 * render_basic config but hopefully it covers the maximum
1533 * configuration latency.
1535 * As a fallback, the checks in _append_oa_reports() to skip
1536 * invalid OA reports do also seem to work to discard reports
1537 * generated before this config has completed - albeit not
1538 * silently.
1540 * Unfortunately this is essentially a magic number, since we
1541 * don't currently know of a reliable mechanism for predicting
1542 * how long the MUX config will take to apply and besides
1543 * seeing invalid reports we don't know of a reliable way to
1544 * explicitly check that the MUX config has landed.
1546 * It's even possible we've miss characterized the underlying
1547 * problem - it just seems like the simplest explanation why
1548 * a delay at this location would mitigate any invalid reports.
1550 usleep_range(15000, 20000);
1552 config_oa_regs(dev_priv, oa_config->b_counter_regs,
1553 oa_config->b_counter_regs_len);
1555 return 0;
1558 static void hsw_disable_metric_set(struct drm_i915_private *dev_priv)
1560 I915_WRITE(GEN6_UCGCTL1, (I915_READ(GEN6_UCGCTL1) &
1561 ~GEN6_CSUNIT_CLOCK_GATE_DISABLE));
1562 I915_WRITE(GEN7_MISCCPCTL, (I915_READ(GEN7_MISCCPCTL) |
1563 GEN7_DOP_CLOCK_GATE_ENABLE));
1565 I915_WRITE(GDT_CHICKEN_BITS, (I915_READ(GDT_CHICKEN_BITS) &
1566 ~GT_NOA_ENABLE));
1570 * NB: It must always remain pointer safe to run this even if the OA unit
1571 * has been disabled.
1573 * It's fine to put out-of-date values into these per-context registers
1574 * in the case that the OA unit has been disabled.
1576 static void gen8_update_reg_state_unlocked(struct i915_gem_context *ctx,
1577 u32 *reg_state,
1578 const struct i915_oa_config *oa_config)
1580 struct drm_i915_private *dev_priv = ctx->i915;
1581 u32 ctx_oactxctrl = dev_priv->perf.oa.ctx_oactxctrl_offset;
1582 u32 ctx_flexeu0 = dev_priv->perf.oa.ctx_flexeu0_offset;
1583 /* The MMIO offsets for Flex EU registers aren't contiguous */
1584 u32 flex_mmio[] = {
1585 i915_mmio_reg_offset(EU_PERF_CNTL0),
1586 i915_mmio_reg_offset(EU_PERF_CNTL1),
1587 i915_mmio_reg_offset(EU_PERF_CNTL2),
1588 i915_mmio_reg_offset(EU_PERF_CNTL3),
1589 i915_mmio_reg_offset(EU_PERF_CNTL4),
1590 i915_mmio_reg_offset(EU_PERF_CNTL5),
1591 i915_mmio_reg_offset(EU_PERF_CNTL6),
1593 int i;
1595 reg_state[ctx_oactxctrl] = i915_mmio_reg_offset(GEN8_OACTXCONTROL);
1596 reg_state[ctx_oactxctrl+1] = (dev_priv->perf.oa.period_exponent <<
1597 GEN8_OA_TIMER_PERIOD_SHIFT) |
1598 (dev_priv->perf.oa.periodic ?
1599 GEN8_OA_TIMER_ENABLE : 0) |
1600 GEN8_OA_COUNTER_RESUME;
1602 for (i = 0; i < ARRAY_SIZE(flex_mmio); i++) {
1603 u32 state_offset = ctx_flexeu0 + i * 2;
1604 u32 mmio = flex_mmio[i];
1607 * This arbitrary default will select the 'EU FPU0 Pipeline
1608 * Active' event. In the future it's anticipated that there
1609 * will be an explicit 'No Event' we can select, but not yet...
1611 u32 value = 0;
1613 if (oa_config) {
1614 u32 j;
1616 for (j = 0; j < oa_config->flex_regs_len; j++) {
1617 if (i915_mmio_reg_offset(oa_config->flex_regs[j].addr) == mmio) {
1618 value = oa_config->flex_regs[j].value;
1619 break;
1624 reg_state[state_offset] = mmio;
1625 reg_state[state_offset+1] = value;
1630 * Same as gen8_update_reg_state_unlocked only through the batchbuffer. This
1631 * is only used by the kernel context.
1633 static int gen8_emit_oa_config(struct drm_i915_gem_request *req,
1634 const struct i915_oa_config *oa_config)
1636 struct drm_i915_private *dev_priv = req->i915;
1637 /* The MMIO offsets for Flex EU registers aren't contiguous */
1638 u32 flex_mmio[] = {
1639 i915_mmio_reg_offset(EU_PERF_CNTL0),
1640 i915_mmio_reg_offset(EU_PERF_CNTL1),
1641 i915_mmio_reg_offset(EU_PERF_CNTL2),
1642 i915_mmio_reg_offset(EU_PERF_CNTL3),
1643 i915_mmio_reg_offset(EU_PERF_CNTL4),
1644 i915_mmio_reg_offset(EU_PERF_CNTL5),
1645 i915_mmio_reg_offset(EU_PERF_CNTL6),
1647 u32 *cs;
1648 int i;
1650 cs = intel_ring_begin(req, ARRAY_SIZE(flex_mmio) * 2 + 4);
1651 if (IS_ERR(cs))
1652 return PTR_ERR(cs);
1654 *cs++ = MI_LOAD_REGISTER_IMM(ARRAY_SIZE(flex_mmio) + 1);
1656 *cs++ = i915_mmio_reg_offset(GEN8_OACTXCONTROL);
1657 *cs++ = (dev_priv->perf.oa.period_exponent << GEN8_OA_TIMER_PERIOD_SHIFT) |
1658 (dev_priv->perf.oa.periodic ? GEN8_OA_TIMER_ENABLE : 0) |
1659 GEN8_OA_COUNTER_RESUME;
1661 for (i = 0; i < ARRAY_SIZE(flex_mmio); i++) {
1662 u32 mmio = flex_mmio[i];
1665 * This arbitrary default will select the 'EU FPU0 Pipeline
1666 * Active' event. In the future it's anticipated that there
1667 * will be an explicit 'No Event' we can select, but not
1668 * yet...
1670 u32 value = 0;
1672 if (oa_config) {
1673 u32 j;
1675 for (j = 0; j < oa_config->flex_regs_len; j++) {
1676 if (i915_mmio_reg_offset(oa_config->flex_regs[j].addr) == mmio) {
1677 value = oa_config->flex_regs[j].value;
1678 break;
1683 *cs++ = mmio;
1684 *cs++ = value;
1687 *cs++ = MI_NOOP;
1688 intel_ring_advance(req, cs);
1690 return 0;
1693 static int gen8_switch_to_updated_kernel_context(struct drm_i915_private *dev_priv,
1694 const struct i915_oa_config *oa_config)
1696 struct intel_engine_cs *engine = dev_priv->engine[RCS];
1697 struct i915_gem_timeline *timeline;
1698 struct drm_i915_gem_request *req;
1699 int ret;
1701 lockdep_assert_held(&dev_priv->drm.struct_mutex);
1703 i915_gem_retire_requests(dev_priv);
1705 req = i915_gem_request_alloc(engine, dev_priv->kernel_context);
1706 if (IS_ERR(req))
1707 return PTR_ERR(req);
1709 ret = gen8_emit_oa_config(req, oa_config);
1710 if (ret) {
1711 i915_add_request(req);
1712 return ret;
1715 /* Queue this switch after all other activity */
1716 list_for_each_entry(timeline, &dev_priv->gt.timelines, link) {
1717 struct drm_i915_gem_request *prev;
1718 struct intel_timeline *tl;
1720 tl = &timeline->engine[engine->id];
1721 prev = i915_gem_active_raw(&tl->last_request,
1722 &dev_priv->drm.struct_mutex);
1723 if (prev)
1724 i915_sw_fence_await_sw_fence_gfp(&req->submit,
1725 &prev->submit,
1726 GFP_KERNEL);
1729 i915_add_request(req);
1731 return 0;
1735 * Manages updating the per-context aspects of the OA stream
1736 * configuration across all contexts.
1738 * The awkward consideration here is that OACTXCONTROL controls the
1739 * exponent for periodic sampling which is primarily used for system
1740 * wide profiling where we'd like a consistent sampling period even in
1741 * the face of context switches.
1743 * Our approach of updating the register state context (as opposed to
1744 * say using a workaround batch buffer) ensures that the hardware
1745 * won't automatically reload an out-of-date timer exponent even
1746 * transiently before a WA BB could be parsed.
1748 * This function needs to:
1749 * - Ensure the currently running context's per-context OA state is
1750 * updated
1751 * - Ensure that all existing contexts will have the correct per-context
1752 * OA state if they are scheduled for use.
1753 * - Ensure any new contexts will be initialized with the correct
1754 * per-context OA state.
1756 * Note: it's only the RCS/Render context that has any OA state.
1758 static int gen8_configure_all_contexts(struct drm_i915_private *dev_priv,
1759 const struct i915_oa_config *oa_config,
1760 bool interruptible)
1762 struct i915_gem_context *ctx;
1763 int ret;
1764 unsigned int wait_flags = I915_WAIT_LOCKED;
1766 if (interruptible) {
1767 ret = i915_mutex_lock_interruptible(&dev_priv->drm);
1768 if (ret)
1769 return ret;
1771 wait_flags |= I915_WAIT_INTERRUPTIBLE;
1772 } else {
1773 mutex_lock(&dev_priv->drm.struct_mutex);
1776 /* Switch away from any user context. */
1777 ret = gen8_switch_to_updated_kernel_context(dev_priv, oa_config);
1778 if (ret)
1779 goto out;
1782 * The OA register config is setup through the context image. This image
1783 * might be written to by the GPU on context switch (in particular on
1784 * lite-restore). This means we can't safely update a context's image,
1785 * if this context is scheduled/submitted to run on the GPU.
1787 * We could emit the OA register config through the batch buffer but
1788 * this might leave small interval of time where the OA unit is
1789 * configured at an invalid sampling period.
1791 * So far the best way to work around this issue seems to be draining
1792 * the GPU from any submitted work.
1794 ret = i915_gem_wait_for_idle(dev_priv, wait_flags);
1795 if (ret)
1796 goto out;
1798 /* Update all contexts now that we've stalled the submission. */
1799 list_for_each_entry(ctx, &dev_priv->contexts.list, link) {
1800 struct intel_context *ce = &ctx->engine[RCS];
1801 u32 *regs;
1803 /* OA settings will be set upon first use */
1804 if (!ce->state)
1805 continue;
1807 regs = i915_gem_object_pin_map(ce->state->obj, I915_MAP_WB);
1808 if (IS_ERR(regs)) {
1809 ret = PTR_ERR(regs);
1810 goto out;
1813 ce->state->obj->mm.dirty = true;
1814 regs += LRC_STATE_PN * PAGE_SIZE / sizeof(*regs);
1816 gen8_update_reg_state_unlocked(ctx, regs, oa_config);
1818 i915_gem_object_unpin_map(ce->state->obj);
1821 out:
1822 mutex_unlock(&dev_priv->drm.struct_mutex);
1824 return ret;
1827 static int gen8_enable_metric_set(struct drm_i915_private *dev_priv,
1828 const struct i915_oa_config *oa_config)
1830 int ret;
1833 * We disable slice/unslice clock ratio change reports on SKL since
1834 * they are too noisy. The HW generates a lot of redundant reports
1835 * where the ratio hasn't really changed causing a lot of redundant
1836 * work to processes and increasing the chances we'll hit buffer
1837 * overruns.
1839 * Although we don't currently use the 'disable overrun' OABUFFER
1840 * feature it's worth noting that clock ratio reports have to be
1841 * disabled before considering to use that feature since the HW doesn't
1842 * correctly block these reports.
1844 * Currently none of the high-level metrics we have depend on knowing
1845 * this ratio to normalize.
1847 * Note: This register is not power context saved and restored, but
1848 * that's OK considering that we disable RC6 while the OA unit is
1849 * enabled.
1851 * The _INCLUDE_CLK_RATIO bit allows the slice/unslice frequency to
1852 * be read back from automatically triggered reports, as part of the
1853 * RPT_ID field.
1855 if (IS_GEN9(dev_priv) || IS_GEN10(dev_priv)) {
1856 I915_WRITE(GEN8_OA_DEBUG,
1857 _MASKED_BIT_ENABLE(GEN9_OA_DEBUG_DISABLE_CLK_RATIO_REPORTS |
1858 GEN9_OA_DEBUG_INCLUDE_CLK_RATIO));
1862 * Update all contexts prior writing the mux configurations as we need
1863 * to make sure all slices/subslices are ON before writing to NOA
1864 * registers.
1866 ret = gen8_configure_all_contexts(dev_priv, oa_config, true);
1867 if (ret)
1868 return ret;
1870 config_oa_regs(dev_priv, oa_config->mux_regs, oa_config->mux_regs_len);
1872 config_oa_regs(dev_priv, oa_config->b_counter_regs,
1873 oa_config->b_counter_regs_len);
1875 return 0;
1878 static void gen8_disable_metric_set(struct drm_i915_private *dev_priv)
1880 /* Reset all contexts' slices/subslices configurations. */
1881 gen8_configure_all_contexts(dev_priv, NULL, false);
1883 I915_WRITE(GDT_CHICKEN_BITS, (I915_READ(GDT_CHICKEN_BITS) &
1884 ~GT_NOA_ENABLE));
1888 static void gen10_disable_metric_set(struct drm_i915_private *dev_priv)
1890 /* Reset all contexts' slices/subslices configurations. */
1891 gen8_configure_all_contexts(dev_priv, NULL, false);
1893 /* Make sure we disable noa to save power. */
1894 I915_WRITE(RPM_CONFIG1,
1895 I915_READ(RPM_CONFIG1) & ~GEN10_GT_NOA_ENABLE);
1898 static void gen7_oa_enable(struct drm_i915_private *dev_priv)
1901 * Reset buf pointers so we don't forward reports from before now.
1903 * Think carefully if considering trying to avoid this, since it
1904 * also ensures status flags and the buffer itself are cleared
1905 * in error paths, and we have checks for invalid reports based
1906 * on the assumption that certain fields are written to zeroed
1907 * memory which this helps maintains.
1909 gen7_init_oa_buffer(dev_priv);
1911 if (dev_priv->perf.oa.exclusive_stream->enabled) {
1912 struct i915_gem_context *ctx =
1913 dev_priv->perf.oa.exclusive_stream->ctx;
1914 u32 ctx_id = dev_priv->perf.oa.specific_ctx_id;
1916 bool periodic = dev_priv->perf.oa.periodic;
1917 u32 period_exponent = dev_priv->perf.oa.period_exponent;
1918 u32 report_format = dev_priv->perf.oa.oa_buffer.format;
1920 I915_WRITE(GEN7_OACONTROL,
1921 (ctx_id & GEN7_OACONTROL_CTX_MASK) |
1922 (period_exponent <<
1923 GEN7_OACONTROL_TIMER_PERIOD_SHIFT) |
1924 (periodic ? GEN7_OACONTROL_TIMER_ENABLE : 0) |
1925 (report_format << GEN7_OACONTROL_FORMAT_SHIFT) |
1926 (ctx ? GEN7_OACONTROL_PER_CTX_ENABLE : 0) |
1927 GEN7_OACONTROL_ENABLE);
1928 } else
1929 I915_WRITE(GEN7_OACONTROL, 0);
1932 static void gen8_oa_enable(struct drm_i915_private *dev_priv)
1934 u32 report_format = dev_priv->perf.oa.oa_buffer.format;
1937 * Reset buf pointers so we don't forward reports from before now.
1939 * Think carefully if considering trying to avoid this, since it
1940 * also ensures status flags and the buffer itself are cleared
1941 * in error paths, and we have checks for invalid reports based
1942 * on the assumption that certain fields are written to zeroed
1943 * memory which this helps maintains.
1945 gen8_init_oa_buffer(dev_priv);
1948 * Note: we don't rely on the hardware to perform single context
1949 * filtering and instead filter on the cpu based on the context-id
1950 * field of reports
1952 I915_WRITE(GEN8_OACONTROL, (report_format <<
1953 GEN8_OA_REPORT_FORMAT_SHIFT) |
1954 GEN8_OA_COUNTER_ENABLE);
1958 * i915_oa_stream_enable - handle `I915_PERF_IOCTL_ENABLE` for OA stream
1959 * @stream: An i915 perf stream opened for OA metrics
1961 * [Re]enables hardware periodic sampling according to the period configured
1962 * when opening the stream. This also starts a hrtimer that will periodically
1963 * check for data in the circular OA buffer for notifying userspace (e.g.
1964 * during a read() or poll()).
1966 static void i915_oa_stream_enable(struct i915_perf_stream *stream)
1968 struct drm_i915_private *dev_priv = stream->dev_priv;
1970 dev_priv->perf.oa.ops.oa_enable(dev_priv);
1972 if (dev_priv->perf.oa.periodic)
1973 hrtimer_start(&dev_priv->perf.oa.poll_check_timer,
1974 ns_to_ktime(POLL_PERIOD),
1975 HRTIMER_MODE_REL_PINNED);
1978 static void gen7_oa_disable(struct drm_i915_private *dev_priv)
1980 I915_WRITE(GEN7_OACONTROL, 0);
1983 static void gen8_oa_disable(struct drm_i915_private *dev_priv)
1985 I915_WRITE(GEN8_OACONTROL, 0);
1989 * i915_oa_stream_disable - handle `I915_PERF_IOCTL_DISABLE` for OA stream
1990 * @stream: An i915 perf stream opened for OA metrics
1992 * Stops the OA unit from periodically writing counter reports into the
1993 * circular OA buffer. This also stops the hrtimer that periodically checks for
1994 * data in the circular OA buffer, for notifying userspace.
1996 static void i915_oa_stream_disable(struct i915_perf_stream *stream)
1998 struct drm_i915_private *dev_priv = stream->dev_priv;
2000 dev_priv->perf.oa.ops.oa_disable(dev_priv);
2002 if (dev_priv->perf.oa.periodic)
2003 hrtimer_cancel(&dev_priv->perf.oa.poll_check_timer);
2006 static const struct i915_perf_stream_ops i915_oa_stream_ops = {
2007 .destroy = i915_oa_stream_destroy,
2008 .enable = i915_oa_stream_enable,
2009 .disable = i915_oa_stream_disable,
2010 .wait_unlocked = i915_oa_wait_unlocked,
2011 .poll_wait = i915_oa_poll_wait,
2012 .read = i915_oa_read,
2016 * i915_oa_stream_init - validate combined props for OA stream and init
2017 * @stream: An i915 perf stream
2018 * @param: The open parameters passed to `DRM_I915_PERF_OPEN`
2019 * @props: The property state that configures stream (individually validated)
2021 * While read_properties_unlocked() validates properties in isolation it
2022 * doesn't ensure that the combination necessarily makes sense.
2024 * At this point it has been determined that userspace wants a stream of
2025 * OA metrics, but still we need to further validate the combined
2026 * properties are OK.
2028 * If the configuration makes sense then we can allocate memory for
2029 * a circular OA buffer and apply the requested metric set configuration.
2031 * Returns: zero on success or a negative error code.
2033 static int i915_oa_stream_init(struct i915_perf_stream *stream,
2034 struct drm_i915_perf_open_param *param,
2035 struct perf_open_properties *props)
2037 struct drm_i915_private *dev_priv = stream->dev_priv;
2038 int format_size;
2039 int ret;
2041 /* If the sysfs metrics/ directory wasn't registered for some
2042 * reason then don't let userspace try their luck with config
2043 * IDs
2045 if (!dev_priv->perf.metrics_kobj) {
2046 DRM_DEBUG("OA metrics weren't advertised via sysfs\n");
2047 return -EINVAL;
2050 if (!(props->sample_flags & SAMPLE_OA_REPORT)) {
2051 DRM_DEBUG("Only OA report sampling supported\n");
2052 return -EINVAL;
2055 if (!dev_priv->perf.oa.ops.init_oa_buffer) {
2056 DRM_DEBUG("OA unit not supported\n");
2057 return -ENODEV;
2060 /* To avoid the complexity of having to accurately filter
2061 * counter reports and marshal to the appropriate client
2062 * we currently only allow exclusive access
2064 if (dev_priv->perf.oa.exclusive_stream) {
2065 DRM_DEBUG("OA unit already in use\n");
2066 return -EBUSY;
2069 if (!props->oa_format) {
2070 DRM_DEBUG("OA report format not specified\n");
2071 return -EINVAL;
2074 /* We set up some ratelimit state to potentially throttle any _NOTES
2075 * about spurious, invalid OA reports which we don't forward to
2076 * userspace.
2078 * The initialization is associated with opening the stream (not driver
2079 * init) considering we print a _NOTE about any throttling when closing
2080 * the stream instead of waiting until driver _fini which no one would
2081 * ever see.
2083 * Using the same limiting factors as printk_ratelimit()
2085 ratelimit_state_init(&dev_priv->perf.oa.spurious_report_rs,
2086 5 * HZ, 10);
2087 /* Since we use a DRM_NOTE for spurious reports it would be
2088 * inconsistent to let __ratelimit() automatically print a warning for
2089 * throttling.
2091 ratelimit_set_flags(&dev_priv->perf.oa.spurious_report_rs,
2092 RATELIMIT_MSG_ON_RELEASE);
2094 stream->sample_size = sizeof(struct drm_i915_perf_record_header);
2096 format_size = dev_priv->perf.oa.oa_formats[props->oa_format].size;
2098 stream->sample_flags |= SAMPLE_OA_REPORT;
2099 stream->sample_size += format_size;
2101 dev_priv->perf.oa.oa_buffer.format_size = format_size;
2102 if (WARN_ON(dev_priv->perf.oa.oa_buffer.format_size == 0))
2103 return -EINVAL;
2105 dev_priv->perf.oa.oa_buffer.format =
2106 dev_priv->perf.oa.oa_formats[props->oa_format].format;
2108 dev_priv->perf.oa.periodic = props->oa_periodic;
2109 if (dev_priv->perf.oa.periodic)
2110 dev_priv->perf.oa.period_exponent = props->oa_period_exponent;
2112 if (stream->ctx) {
2113 ret = oa_get_render_ctx_id(stream);
2114 if (ret)
2115 return ret;
2118 ret = get_oa_config(dev_priv, props->metrics_set, &stream->oa_config);
2119 if (ret)
2120 goto err_config;
2122 /* PRM - observability performance counters:
2124 * OACONTROL, performance counter enable, note:
2126 * "When this bit is set, in order to have coherent counts,
2127 * RC6 power state and trunk clock gating must be disabled.
2128 * This can be achieved by programming MMIO registers as
2129 * 0xA094=0 and 0xA090[31]=1"
2131 * In our case we are expecting that taking pm + FORCEWAKE
2132 * references will effectively disable RC6.
2134 intel_runtime_pm_get(dev_priv);
2135 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
2137 ret = alloc_oa_buffer(dev_priv);
2138 if (ret)
2139 goto err_oa_buf_alloc;
2141 ret = dev_priv->perf.oa.ops.enable_metric_set(dev_priv,
2142 stream->oa_config);
2143 if (ret)
2144 goto err_enable;
2146 stream->ops = &i915_oa_stream_ops;
2148 /* Lock device for exclusive_stream access late because
2149 * enable_metric_set() might lock as well on gen8+.
2151 ret = i915_mutex_lock_interruptible(&dev_priv->drm);
2152 if (ret)
2153 goto err_lock;
2155 dev_priv->perf.oa.exclusive_stream = stream;
2157 mutex_unlock(&dev_priv->drm.struct_mutex);
2159 return 0;
2161 err_lock:
2162 dev_priv->perf.oa.ops.disable_metric_set(dev_priv);
2164 err_enable:
2165 free_oa_buffer(dev_priv);
2167 err_oa_buf_alloc:
2168 put_oa_config(dev_priv, stream->oa_config);
2170 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
2171 intel_runtime_pm_put(dev_priv);
2173 err_config:
2174 if (stream->ctx)
2175 oa_put_render_ctx_id(stream);
2177 return ret;
2180 void i915_oa_init_reg_state(struct intel_engine_cs *engine,
2181 struct i915_gem_context *ctx,
2182 u32 *reg_state)
2184 struct i915_perf_stream *stream;
2186 if (engine->id != RCS)
2187 return;
2189 stream = engine->i915->perf.oa.exclusive_stream;
2190 if (stream)
2191 gen8_update_reg_state_unlocked(ctx, reg_state, stream->oa_config);
2195 * i915_perf_read_locked - &i915_perf_stream_ops->read with error normalisation
2196 * @stream: An i915 perf stream
2197 * @file: An i915 perf stream file
2198 * @buf: destination buffer given by userspace
2199 * @count: the number of bytes userspace wants to read
2200 * @ppos: (inout) file seek position (unused)
2202 * Besides wrapping &i915_perf_stream_ops->read this provides a common place to
2203 * ensure that if we've successfully copied any data then reporting that takes
2204 * precedence over any internal error status, so the data isn't lost.
2206 * For example ret will be -ENOSPC whenever there is more buffered data than
2207 * can be copied to userspace, but that's only interesting if we weren't able
2208 * to copy some data because it implies the userspace buffer is too small to
2209 * receive a single record (and we never split records).
2211 * Another case with ret == -EFAULT is more of a grey area since it would seem
2212 * like bad form for userspace to ask us to overrun its buffer, but the user
2213 * knows best:
2215 * http://yarchive.net/comp/linux/partial_reads_writes.html
2217 * Returns: The number of bytes copied or a negative error code on failure.
2219 static ssize_t i915_perf_read_locked(struct i915_perf_stream *stream,
2220 struct file *file,
2221 char __user *buf,
2222 size_t count,
2223 loff_t *ppos)
2225 /* Note we keep the offset (aka bytes read) separate from any
2226 * error status so that the final check for whether we return
2227 * the bytes read with a higher precedence than any error (see
2228 * comment below) doesn't need to be handled/duplicated in
2229 * stream->ops->read() implementations.
2231 size_t offset = 0;
2232 int ret = stream->ops->read(stream, buf, count, &offset);
2234 return offset ?: (ret ?: -EAGAIN);
2238 * i915_perf_read - handles read() FOP for i915 perf stream FDs
2239 * @file: An i915 perf stream file
2240 * @buf: destination buffer given by userspace
2241 * @count: the number of bytes userspace wants to read
2242 * @ppos: (inout) file seek position (unused)
2244 * The entry point for handling a read() on a stream file descriptor from
2245 * userspace. Most of the work is left to the i915_perf_read_locked() and
2246 * &i915_perf_stream_ops->read but to save having stream implementations (of
2247 * which we might have multiple later) we handle blocking read here.
2249 * We can also consistently treat trying to read from a disabled stream
2250 * as an IO error so implementations can assume the stream is enabled
2251 * while reading.
2253 * Returns: The number of bytes copied or a negative error code on failure.
2255 static ssize_t i915_perf_read(struct file *file,
2256 char __user *buf,
2257 size_t count,
2258 loff_t *ppos)
2260 struct i915_perf_stream *stream = file->private_data;
2261 struct drm_i915_private *dev_priv = stream->dev_priv;
2262 ssize_t ret;
2264 /* To ensure it's handled consistently we simply treat all reads of a
2265 * disabled stream as an error. In particular it might otherwise lead
2266 * to a deadlock for blocking file descriptors...
2268 if (!stream->enabled)
2269 return -EIO;
2271 if (!(file->f_flags & O_NONBLOCK)) {
2272 /* There's the small chance of false positives from
2273 * stream->ops->wait_unlocked.
2275 * E.g. with single context filtering since we only wait until
2276 * oabuffer has >= 1 report we don't immediately know whether
2277 * any reports really belong to the current context
2279 do {
2280 ret = stream->ops->wait_unlocked(stream);
2281 if (ret)
2282 return ret;
2284 mutex_lock(&dev_priv->perf.lock);
2285 ret = i915_perf_read_locked(stream, file,
2286 buf, count, ppos);
2287 mutex_unlock(&dev_priv->perf.lock);
2288 } while (ret == -EAGAIN);
2289 } else {
2290 mutex_lock(&dev_priv->perf.lock);
2291 ret = i915_perf_read_locked(stream, file, buf, count, ppos);
2292 mutex_unlock(&dev_priv->perf.lock);
2295 /* We allow the poll checking to sometimes report false positive EPOLLIN
2296 * events where we might actually report EAGAIN on read() if there's
2297 * not really any data available. In this situation though we don't
2298 * want to enter a busy loop between poll() reporting a EPOLLIN event
2299 * and read() returning -EAGAIN. Clearing the oa.pollin state here
2300 * effectively ensures we back off until the next hrtimer callback
2301 * before reporting another EPOLLIN event.
2303 if (ret >= 0 || ret == -EAGAIN) {
2304 /* Maybe make ->pollin per-stream state if we support multiple
2305 * concurrent streams in the future.
2307 dev_priv->perf.oa.pollin = false;
2310 return ret;
2313 static enum hrtimer_restart oa_poll_check_timer_cb(struct hrtimer *hrtimer)
2315 struct drm_i915_private *dev_priv =
2316 container_of(hrtimer, typeof(*dev_priv),
2317 perf.oa.poll_check_timer);
2319 if (oa_buffer_check_unlocked(dev_priv)) {
2320 dev_priv->perf.oa.pollin = true;
2321 wake_up(&dev_priv->perf.oa.poll_wq);
2324 hrtimer_forward_now(hrtimer, ns_to_ktime(POLL_PERIOD));
2326 return HRTIMER_RESTART;
2330 * i915_perf_poll_locked - poll_wait() with a suitable wait queue for stream
2331 * @dev_priv: i915 device instance
2332 * @stream: An i915 perf stream
2333 * @file: An i915 perf stream file
2334 * @wait: poll() state table
2336 * For handling userspace polling on an i915 perf stream, this calls through to
2337 * &i915_perf_stream_ops->poll_wait to call poll_wait() with a wait queue that
2338 * will be woken for new stream data.
2340 * Note: The &drm_i915_private->perf.lock mutex has been taken to serialize
2341 * with any non-file-operation driver hooks.
2343 * Returns: any poll events that are ready without sleeping
2345 static __poll_t i915_perf_poll_locked(struct drm_i915_private *dev_priv,
2346 struct i915_perf_stream *stream,
2347 struct file *file,
2348 poll_table *wait)
2350 __poll_t events = 0;
2352 stream->ops->poll_wait(stream, file, wait);
2354 /* Note: we don't explicitly check whether there's something to read
2355 * here since this path may be very hot depending on what else
2356 * userspace is polling, or on the timeout in use. We rely solely on
2357 * the hrtimer/oa_poll_check_timer_cb to notify us when there are
2358 * samples to read.
2360 if (dev_priv->perf.oa.pollin)
2361 events |= EPOLLIN;
2363 return events;
2367 * i915_perf_poll - call poll_wait() with a suitable wait queue for stream
2368 * @file: An i915 perf stream file
2369 * @wait: poll() state table
2371 * For handling userspace polling on an i915 perf stream, this ensures
2372 * poll_wait() gets called with a wait queue that will be woken for new stream
2373 * data.
2375 * Note: Implementation deferred to i915_perf_poll_locked()
2377 * Returns: any poll events that are ready without sleeping
2379 static __poll_t i915_perf_poll(struct file *file, poll_table *wait)
2381 struct i915_perf_stream *stream = file->private_data;
2382 struct drm_i915_private *dev_priv = stream->dev_priv;
2383 __poll_t ret;
2385 mutex_lock(&dev_priv->perf.lock);
2386 ret = i915_perf_poll_locked(dev_priv, stream, file, wait);
2387 mutex_unlock(&dev_priv->perf.lock);
2389 return ret;
2393 * i915_perf_enable_locked - handle `I915_PERF_IOCTL_ENABLE` ioctl
2394 * @stream: A disabled i915 perf stream
2396 * [Re]enables the associated capture of data for this stream.
2398 * If a stream was previously enabled then there's currently no intention
2399 * to provide userspace any guarantee about the preservation of previously
2400 * buffered data.
2402 static void i915_perf_enable_locked(struct i915_perf_stream *stream)
2404 if (stream->enabled)
2405 return;
2407 /* Allow stream->ops->enable() to refer to this */
2408 stream->enabled = true;
2410 if (stream->ops->enable)
2411 stream->ops->enable(stream);
2415 * i915_perf_disable_locked - handle `I915_PERF_IOCTL_DISABLE` ioctl
2416 * @stream: An enabled i915 perf stream
2418 * Disables the associated capture of data for this stream.
2420 * The intention is that disabling an re-enabling a stream will ideally be
2421 * cheaper than destroying and re-opening a stream with the same configuration,
2422 * though there are no formal guarantees about what state or buffered data
2423 * must be retained between disabling and re-enabling a stream.
2425 * Note: while a stream is disabled it's considered an error for userspace
2426 * to attempt to read from the stream (-EIO).
2428 static void i915_perf_disable_locked(struct i915_perf_stream *stream)
2430 if (!stream->enabled)
2431 return;
2433 /* Allow stream->ops->disable() to refer to this */
2434 stream->enabled = false;
2436 if (stream->ops->disable)
2437 stream->ops->disable(stream);
2441 * i915_perf_ioctl - support ioctl() usage with i915 perf stream FDs
2442 * @stream: An i915 perf stream
2443 * @cmd: the ioctl request
2444 * @arg: the ioctl data
2446 * Note: The &drm_i915_private->perf.lock mutex has been taken to serialize
2447 * with any non-file-operation driver hooks.
2449 * Returns: zero on success or a negative error code. Returns -EINVAL for
2450 * an unknown ioctl request.
2452 static long i915_perf_ioctl_locked(struct i915_perf_stream *stream,
2453 unsigned int cmd,
2454 unsigned long arg)
2456 switch (cmd) {
2457 case I915_PERF_IOCTL_ENABLE:
2458 i915_perf_enable_locked(stream);
2459 return 0;
2460 case I915_PERF_IOCTL_DISABLE:
2461 i915_perf_disable_locked(stream);
2462 return 0;
2465 return -EINVAL;
2469 * i915_perf_ioctl - support ioctl() usage with i915 perf stream FDs
2470 * @file: An i915 perf stream file
2471 * @cmd: the ioctl request
2472 * @arg: the ioctl data
2474 * Implementation deferred to i915_perf_ioctl_locked().
2476 * Returns: zero on success or a negative error code. Returns -EINVAL for
2477 * an unknown ioctl request.
2479 static long i915_perf_ioctl(struct file *file,
2480 unsigned int cmd,
2481 unsigned long arg)
2483 struct i915_perf_stream *stream = file->private_data;
2484 struct drm_i915_private *dev_priv = stream->dev_priv;
2485 long ret;
2487 mutex_lock(&dev_priv->perf.lock);
2488 ret = i915_perf_ioctl_locked(stream, cmd, arg);
2489 mutex_unlock(&dev_priv->perf.lock);
2491 return ret;
2495 * i915_perf_destroy_locked - destroy an i915 perf stream
2496 * @stream: An i915 perf stream
2498 * Frees all resources associated with the given i915 perf @stream, disabling
2499 * any associated data capture in the process.
2501 * Note: The &drm_i915_private->perf.lock mutex has been taken to serialize
2502 * with any non-file-operation driver hooks.
2504 static void i915_perf_destroy_locked(struct i915_perf_stream *stream)
2506 if (stream->enabled)
2507 i915_perf_disable_locked(stream);
2509 if (stream->ops->destroy)
2510 stream->ops->destroy(stream);
2512 list_del(&stream->link);
2514 if (stream->ctx)
2515 i915_gem_context_put(stream->ctx);
2517 kfree(stream);
2521 * i915_perf_release - handles userspace close() of a stream file
2522 * @inode: anonymous inode associated with file
2523 * @file: An i915 perf stream file
2525 * Cleans up any resources associated with an open i915 perf stream file.
2527 * NB: close() can't really fail from the userspace point of view.
2529 * Returns: zero on success or a negative error code.
2531 static int i915_perf_release(struct inode *inode, struct file *file)
2533 struct i915_perf_stream *stream = file->private_data;
2534 struct drm_i915_private *dev_priv = stream->dev_priv;
2536 mutex_lock(&dev_priv->perf.lock);
2537 i915_perf_destroy_locked(stream);
2538 mutex_unlock(&dev_priv->perf.lock);
2540 return 0;
2544 static const struct file_operations fops = {
2545 .owner = THIS_MODULE,
2546 .llseek = no_llseek,
2547 .release = i915_perf_release,
2548 .poll = i915_perf_poll,
2549 .read = i915_perf_read,
2550 .unlocked_ioctl = i915_perf_ioctl,
2551 /* Our ioctl have no arguments, so it's safe to use the same function
2552 * to handle 32bits compatibility.
2554 .compat_ioctl = i915_perf_ioctl,
2559 * i915_perf_open_ioctl_locked - DRM ioctl() for userspace to open a stream FD
2560 * @dev_priv: i915 device instance
2561 * @param: The open parameters passed to 'DRM_I915_PERF_OPEN`
2562 * @props: individually validated u64 property value pairs
2563 * @file: drm file
2565 * See i915_perf_ioctl_open() for interface details.
2567 * Implements further stream config validation and stream initialization on
2568 * behalf of i915_perf_open_ioctl() with the &drm_i915_private->perf.lock mutex
2569 * taken to serialize with any non-file-operation driver hooks.
2571 * Note: at this point the @props have only been validated in isolation and
2572 * it's still necessary to validate that the combination of properties makes
2573 * sense.
2575 * In the case where userspace is interested in OA unit metrics then further
2576 * config validation and stream initialization details will be handled by
2577 * i915_oa_stream_init(). The code here should only validate config state that
2578 * will be relevant to all stream types / backends.
2580 * Returns: zero on success or a negative error code.
2582 static int
2583 i915_perf_open_ioctl_locked(struct drm_i915_private *dev_priv,
2584 struct drm_i915_perf_open_param *param,
2585 struct perf_open_properties *props,
2586 struct drm_file *file)
2588 struct i915_gem_context *specific_ctx = NULL;
2589 struct i915_perf_stream *stream = NULL;
2590 unsigned long f_flags = 0;
2591 bool privileged_op = true;
2592 int stream_fd;
2593 int ret;
2595 if (props->single_context) {
2596 u32 ctx_handle = props->ctx_handle;
2597 struct drm_i915_file_private *file_priv = file->driver_priv;
2599 specific_ctx = i915_gem_context_lookup(file_priv, ctx_handle);
2600 if (!specific_ctx) {
2601 DRM_DEBUG("Failed to look up context with ID %u for opening perf stream\n",
2602 ctx_handle);
2603 ret = -ENOENT;
2604 goto err;
2609 * On Haswell the OA unit supports clock gating off for a specific
2610 * context and in this mode there's no visibility of metrics for the
2611 * rest of the system, which we consider acceptable for a
2612 * non-privileged client.
2614 * For Gen8+ the OA unit no longer supports clock gating off for a
2615 * specific context and the kernel can't securely stop the counters
2616 * from updating as system-wide / global values. Even though we can
2617 * filter reports based on the included context ID we can't block
2618 * clients from seeing the raw / global counter values via
2619 * MI_REPORT_PERF_COUNT commands and so consider it a privileged op to
2620 * enable the OA unit by default.
2622 if (IS_HASWELL(dev_priv) && specific_ctx)
2623 privileged_op = false;
2625 /* Similar to perf's kernel.perf_paranoid_cpu sysctl option
2626 * we check a dev.i915.perf_stream_paranoid sysctl option
2627 * to determine if it's ok to access system wide OA counters
2628 * without CAP_SYS_ADMIN privileges.
2630 if (privileged_op &&
2631 i915_perf_stream_paranoid && !capable(CAP_SYS_ADMIN)) {
2632 DRM_DEBUG("Insufficient privileges to open system-wide i915 perf stream\n");
2633 ret = -EACCES;
2634 goto err_ctx;
2637 stream = kzalloc(sizeof(*stream), GFP_KERNEL);
2638 if (!stream) {
2639 ret = -ENOMEM;
2640 goto err_ctx;
2643 stream->dev_priv = dev_priv;
2644 stream->ctx = specific_ctx;
2646 ret = i915_oa_stream_init(stream, param, props);
2647 if (ret)
2648 goto err_alloc;
2650 /* we avoid simply assigning stream->sample_flags = props->sample_flags
2651 * to have _stream_init check the combination of sample flags more
2652 * thoroughly, but still this is the expected result at this point.
2654 if (WARN_ON(stream->sample_flags != props->sample_flags)) {
2655 ret = -ENODEV;
2656 goto err_flags;
2659 list_add(&stream->link, &dev_priv->perf.streams);
2661 if (param->flags & I915_PERF_FLAG_FD_CLOEXEC)
2662 f_flags |= O_CLOEXEC;
2663 if (param->flags & I915_PERF_FLAG_FD_NONBLOCK)
2664 f_flags |= O_NONBLOCK;
2666 stream_fd = anon_inode_getfd("[i915_perf]", &fops, stream, f_flags);
2667 if (stream_fd < 0) {
2668 ret = stream_fd;
2669 goto err_open;
2672 if (!(param->flags & I915_PERF_FLAG_DISABLED))
2673 i915_perf_enable_locked(stream);
2675 return stream_fd;
2677 err_open:
2678 list_del(&stream->link);
2679 err_flags:
2680 if (stream->ops->destroy)
2681 stream->ops->destroy(stream);
2682 err_alloc:
2683 kfree(stream);
2684 err_ctx:
2685 if (specific_ctx)
2686 i915_gem_context_put(specific_ctx);
2687 err:
2688 return ret;
2691 static u64 oa_exponent_to_ns(struct drm_i915_private *dev_priv, int exponent)
2693 return div64_u64(1000000000ULL * (2ULL << exponent),
2694 1000ULL * INTEL_INFO(dev_priv)->cs_timestamp_frequency_khz);
2698 * read_properties_unlocked - validate + copy userspace stream open properties
2699 * @dev_priv: i915 device instance
2700 * @uprops: The array of u64 key value pairs given by userspace
2701 * @n_props: The number of key value pairs expected in @uprops
2702 * @props: The stream configuration built up while validating properties
2704 * Note this function only validates properties in isolation it doesn't
2705 * validate that the combination of properties makes sense or that all
2706 * properties necessary for a particular kind of stream have been set.
2708 * Note that there currently aren't any ordering requirements for properties so
2709 * we shouldn't validate or assume anything about ordering here. This doesn't
2710 * rule out defining new properties with ordering requirements in the future.
2712 static int read_properties_unlocked(struct drm_i915_private *dev_priv,
2713 u64 __user *uprops,
2714 u32 n_props,
2715 struct perf_open_properties *props)
2717 u64 __user *uprop = uprops;
2718 u32 i;
2720 memset(props, 0, sizeof(struct perf_open_properties));
2722 if (!n_props) {
2723 DRM_DEBUG("No i915 perf properties given\n");
2724 return -EINVAL;
2727 /* Considering that ID = 0 is reserved and assuming that we don't
2728 * (currently) expect any configurations to ever specify duplicate
2729 * values for a particular property ID then the last _PROP_MAX value is
2730 * one greater than the maximum number of properties we expect to get
2731 * from userspace.
2733 if (n_props >= DRM_I915_PERF_PROP_MAX) {
2734 DRM_DEBUG("More i915 perf properties specified than exist\n");
2735 return -EINVAL;
2738 for (i = 0; i < n_props; i++) {
2739 u64 oa_period, oa_freq_hz;
2740 u64 id, value;
2741 int ret;
2743 ret = get_user(id, uprop);
2744 if (ret)
2745 return ret;
2747 ret = get_user(value, uprop + 1);
2748 if (ret)
2749 return ret;
2751 if (id == 0 || id >= DRM_I915_PERF_PROP_MAX) {
2752 DRM_DEBUG("Unknown i915 perf property ID\n");
2753 return -EINVAL;
2756 switch ((enum drm_i915_perf_property_id)id) {
2757 case DRM_I915_PERF_PROP_CTX_HANDLE:
2758 props->single_context = 1;
2759 props->ctx_handle = value;
2760 break;
2761 case DRM_I915_PERF_PROP_SAMPLE_OA:
2762 props->sample_flags |= SAMPLE_OA_REPORT;
2763 break;
2764 case DRM_I915_PERF_PROP_OA_METRICS_SET:
2765 if (value == 0) {
2766 DRM_DEBUG("Unknown OA metric set ID\n");
2767 return -EINVAL;
2769 props->metrics_set = value;
2770 break;
2771 case DRM_I915_PERF_PROP_OA_FORMAT:
2772 if (value == 0 || value >= I915_OA_FORMAT_MAX) {
2773 DRM_DEBUG("Out-of-range OA report format %llu\n",
2774 value);
2775 return -EINVAL;
2777 if (!dev_priv->perf.oa.oa_formats[value].size) {
2778 DRM_DEBUG("Unsupported OA report format %llu\n",
2779 value);
2780 return -EINVAL;
2782 props->oa_format = value;
2783 break;
2784 case DRM_I915_PERF_PROP_OA_EXPONENT:
2785 if (value > OA_EXPONENT_MAX) {
2786 DRM_DEBUG("OA timer exponent too high (> %u)\n",
2787 OA_EXPONENT_MAX);
2788 return -EINVAL;
2791 /* Theoretically we can program the OA unit to sample
2792 * e.g. every 160ns for HSW, 167ns for BDW/SKL or 104ns
2793 * for BXT. We don't allow such high sampling
2794 * frequencies by default unless root.
2797 BUILD_BUG_ON(sizeof(oa_period) != 8);
2798 oa_period = oa_exponent_to_ns(dev_priv, value);
2800 /* This check is primarily to ensure that oa_period <=
2801 * UINT32_MAX (before passing to do_div which only
2802 * accepts a u32 denominator), but we can also skip
2803 * checking anything < 1Hz which implicitly can't be
2804 * limited via an integer oa_max_sample_rate.
2806 if (oa_period <= NSEC_PER_SEC) {
2807 u64 tmp = NSEC_PER_SEC;
2808 do_div(tmp, oa_period);
2809 oa_freq_hz = tmp;
2810 } else
2811 oa_freq_hz = 0;
2813 if (oa_freq_hz > i915_oa_max_sample_rate &&
2814 !capable(CAP_SYS_ADMIN)) {
2815 DRM_DEBUG("OA exponent would exceed the max sampling frequency (sysctl dev.i915.oa_max_sample_rate) %uHz without root privileges\n",
2816 i915_oa_max_sample_rate);
2817 return -EACCES;
2820 props->oa_periodic = true;
2821 props->oa_period_exponent = value;
2822 break;
2823 case DRM_I915_PERF_PROP_MAX:
2824 MISSING_CASE(id);
2825 return -EINVAL;
2828 uprop += 2;
2831 return 0;
2835 * i915_perf_open_ioctl - DRM ioctl() for userspace to open a stream FD
2836 * @dev: drm device
2837 * @data: ioctl data copied from userspace (unvalidated)
2838 * @file: drm file
2840 * Validates the stream open parameters given by userspace including flags
2841 * and an array of u64 key, value pair properties.
2843 * Very little is assumed up front about the nature of the stream being
2844 * opened (for instance we don't assume it's for periodic OA unit metrics). An
2845 * i915-perf stream is expected to be a suitable interface for other forms of
2846 * buffered data written by the GPU besides periodic OA metrics.
2848 * Note we copy the properties from userspace outside of the i915 perf
2849 * mutex to avoid an awkward lockdep with mmap_sem.
2851 * Most of the implementation details are handled by
2852 * i915_perf_open_ioctl_locked() after taking the &drm_i915_private->perf.lock
2853 * mutex for serializing with any non-file-operation driver hooks.
2855 * Return: A newly opened i915 Perf stream file descriptor or negative
2856 * error code on failure.
2858 int i915_perf_open_ioctl(struct drm_device *dev, void *data,
2859 struct drm_file *file)
2861 struct drm_i915_private *dev_priv = dev->dev_private;
2862 struct drm_i915_perf_open_param *param = data;
2863 struct perf_open_properties props;
2864 u32 known_open_flags;
2865 int ret;
2867 if (!dev_priv->perf.initialized) {
2868 DRM_DEBUG("i915 perf interface not available for this system\n");
2869 return -ENOTSUPP;
2872 known_open_flags = I915_PERF_FLAG_FD_CLOEXEC |
2873 I915_PERF_FLAG_FD_NONBLOCK |
2874 I915_PERF_FLAG_DISABLED;
2875 if (param->flags & ~known_open_flags) {
2876 DRM_DEBUG("Unknown drm_i915_perf_open_param flag\n");
2877 return -EINVAL;
2880 ret = read_properties_unlocked(dev_priv,
2881 u64_to_user_ptr(param->properties_ptr),
2882 param->num_properties,
2883 &props);
2884 if (ret)
2885 return ret;
2887 mutex_lock(&dev_priv->perf.lock);
2888 ret = i915_perf_open_ioctl_locked(dev_priv, param, &props, file);
2889 mutex_unlock(&dev_priv->perf.lock);
2891 return ret;
2895 * i915_perf_register - exposes i915-perf to userspace
2896 * @dev_priv: i915 device instance
2898 * In particular OA metric sets are advertised under a sysfs metrics/
2899 * directory allowing userspace to enumerate valid IDs that can be
2900 * used to open an i915-perf stream.
2902 void i915_perf_register(struct drm_i915_private *dev_priv)
2904 int ret;
2906 if (!dev_priv->perf.initialized)
2907 return;
2909 /* To be sure we're synchronized with an attempted
2910 * i915_perf_open_ioctl(); considering that we register after
2911 * being exposed to userspace.
2913 mutex_lock(&dev_priv->perf.lock);
2915 dev_priv->perf.metrics_kobj =
2916 kobject_create_and_add("metrics",
2917 &dev_priv->drm.primary->kdev->kobj);
2918 if (!dev_priv->perf.metrics_kobj)
2919 goto exit;
2921 sysfs_attr_init(&dev_priv->perf.oa.test_config.sysfs_metric_id.attr);
2923 if (IS_HASWELL(dev_priv)) {
2924 i915_perf_load_test_config_hsw(dev_priv);
2925 } else if (IS_BROADWELL(dev_priv)) {
2926 i915_perf_load_test_config_bdw(dev_priv);
2927 } else if (IS_CHERRYVIEW(dev_priv)) {
2928 i915_perf_load_test_config_chv(dev_priv);
2929 } else if (IS_SKYLAKE(dev_priv)) {
2930 if (IS_SKL_GT2(dev_priv))
2931 i915_perf_load_test_config_sklgt2(dev_priv);
2932 else if (IS_SKL_GT3(dev_priv))
2933 i915_perf_load_test_config_sklgt3(dev_priv);
2934 else if (IS_SKL_GT4(dev_priv))
2935 i915_perf_load_test_config_sklgt4(dev_priv);
2936 } else if (IS_BROXTON(dev_priv)) {
2937 i915_perf_load_test_config_bxt(dev_priv);
2938 } else if (IS_KABYLAKE(dev_priv)) {
2939 if (IS_KBL_GT2(dev_priv))
2940 i915_perf_load_test_config_kblgt2(dev_priv);
2941 else if (IS_KBL_GT3(dev_priv))
2942 i915_perf_load_test_config_kblgt3(dev_priv);
2943 } else if (IS_GEMINILAKE(dev_priv)) {
2944 i915_perf_load_test_config_glk(dev_priv);
2945 } else if (IS_COFFEELAKE(dev_priv)) {
2946 if (IS_CFL_GT2(dev_priv))
2947 i915_perf_load_test_config_cflgt2(dev_priv);
2948 if (IS_CFL_GT3(dev_priv))
2949 i915_perf_load_test_config_cflgt3(dev_priv);
2950 } else if (IS_CANNONLAKE(dev_priv)) {
2951 i915_perf_load_test_config_cnl(dev_priv);
2954 if (dev_priv->perf.oa.test_config.id == 0)
2955 goto sysfs_error;
2957 ret = sysfs_create_group(dev_priv->perf.metrics_kobj,
2958 &dev_priv->perf.oa.test_config.sysfs_metric);
2959 if (ret)
2960 goto sysfs_error;
2962 atomic_set(&dev_priv->perf.oa.test_config.ref_count, 1);
2964 goto exit;
2966 sysfs_error:
2967 kobject_put(dev_priv->perf.metrics_kobj);
2968 dev_priv->perf.metrics_kobj = NULL;
2970 exit:
2971 mutex_unlock(&dev_priv->perf.lock);
2975 * i915_perf_unregister - hide i915-perf from userspace
2976 * @dev_priv: i915 device instance
2978 * i915-perf state cleanup is split up into an 'unregister' and
2979 * 'deinit' phase where the interface is first hidden from
2980 * userspace by i915_perf_unregister() before cleaning up
2981 * remaining state in i915_perf_fini().
2983 void i915_perf_unregister(struct drm_i915_private *dev_priv)
2985 if (!dev_priv->perf.metrics_kobj)
2986 return;
2988 sysfs_remove_group(dev_priv->perf.metrics_kobj,
2989 &dev_priv->perf.oa.test_config.sysfs_metric);
2991 kobject_put(dev_priv->perf.metrics_kobj);
2992 dev_priv->perf.metrics_kobj = NULL;
2995 static bool gen8_is_valid_flex_addr(struct drm_i915_private *dev_priv, u32 addr)
2997 static const i915_reg_t flex_eu_regs[] = {
2998 EU_PERF_CNTL0,
2999 EU_PERF_CNTL1,
3000 EU_PERF_CNTL2,
3001 EU_PERF_CNTL3,
3002 EU_PERF_CNTL4,
3003 EU_PERF_CNTL5,
3004 EU_PERF_CNTL6,
3006 int i;
3008 for (i = 0; i < ARRAY_SIZE(flex_eu_regs); i++) {
3009 if (i915_mmio_reg_offset(flex_eu_regs[i]) == addr)
3010 return true;
3012 return false;
3015 static bool gen7_is_valid_b_counter_addr(struct drm_i915_private *dev_priv, u32 addr)
3017 return (addr >= i915_mmio_reg_offset(OASTARTTRIG1) &&
3018 addr <= i915_mmio_reg_offset(OASTARTTRIG8)) ||
3019 (addr >= i915_mmio_reg_offset(OAREPORTTRIG1) &&
3020 addr <= i915_mmio_reg_offset(OAREPORTTRIG8)) ||
3021 (addr >= i915_mmio_reg_offset(OACEC0_0) &&
3022 addr <= i915_mmio_reg_offset(OACEC7_1));
3025 static bool gen7_is_valid_mux_addr(struct drm_i915_private *dev_priv, u32 addr)
3027 return addr == i915_mmio_reg_offset(HALF_SLICE_CHICKEN2) ||
3028 (addr >= i915_mmio_reg_offset(MICRO_BP0_0) &&
3029 addr <= i915_mmio_reg_offset(NOA_WRITE)) ||
3030 (addr >= i915_mmio_reg_offset(OA_PERFCNT1_LO) &&
3031 addr <= i915_mmio_reg_offset(OA_PERFCNT2_HI)) ||
3032 (addr >= i915_mmio_reg_offset(OA_PERFMATRIX_LO) &&
3033 addr <= i915_mmio_reg_offset(OA_PERFMATRIX_HI));
3036 static bool gen8_is_valid_mux_addr(struct drm_i915_private *dev_priv, u32 addr)
3038 return gen7_is_valid_mux_addr(dev_priv, addr) ||
3039 addr == i915_mmio_reg_offset(WAIT_FOR_RC6_EXIT) ||
3040 (addr >= i915_mmio_reg_offset(RPM_CONFIG0) &&
3041 addr <= i915_mmio_reg_offset(NOA_CONFIG(8)));
3044 static bool gen10_is_valid_mux_addr(struct drm_i915_private *dev_priv, u32 addr)
3046 return gen8_is_valid_mux_addr(dev_priv, addr) ||
3047 (addr >= i915_mmio_reg_offset(OA_PERFCNT3_LO) &&
3048 addr <= i915_mmio_reg_offset(OA_PERFCNT4_HI));
3051 static bool hsw_is_valid_mux_addr(struct drm_i915_private *dev_priv, u32 addr)
3053 return gen7_is_valid_mux_addr(dev_priv, addr) ||
3054 (addr >= 0x25100 && addr <= 0x2FF90) ||
3055 (addr >= i915_mmio_reg_offset(HSW_MBVID2_NOA0) &&
3056 addr <= i915_mmio_reg_offset(HSW_MBVID2_NOA9)) ||
3057 addr == i915_mmio_reg_offset(HSW_MBVID2_MISR0);
3060 static bool chv_is_valid_mux_addr(struct drm_i915_private *dev_priv, u32 addr)
3062 return gen7_is_valid_mux_addr(dev_priv, addr) ||
3063 (addr >= 0x182300 && addr <= 0x1823A4);
3066 static uint32_t mask_reg_value(u32 reg, u32 val)
3068 /* HALF_SLICE_CHICKEN2 is programmed with a the
3069 * WaDisableSTUnitPowerOptimization workaround. Make sure the value
3070 * programmed by userspace doesn't change this.
3072 if (i915_mmio_reg_offset(HALF_SLICE_CHICKEN2) == reg)
3073 val = val & ~_MASKED_BIT_ENABLE(GEN8_ST_PO_DISABLE);
3075 /* WAIT_FOR_RC6_EXIT has only one bit fullfilling the function
3076 * indicated by its name and a bunch of selection fields used by OA
3077 * configs.
3079 if (i915_mmio_reg_offset(WAIT_FOR_RC6_EXIT) == reg)
3080 val = val & ~_MASKED_BIT_ENABLE(HSW_WAIT_FOR_RC6_EXIT_ENABLE);
3082 return val;
3085 static struct i915_oa_reg *alloc_oa_regs(struct drm_i915_private *dev_priv,
3086 bool (*is_valid)(struct drm_i915_private *dev_priv, u32 addr),
3087 u32 __user *regs,
3088 u32 n_regs)
3090 struct i915_oa_reg *oa_regs;
3091 int err;
3092 u32 i;
3094 if (!n_regs)
3095 return NULL;
3097 if (!access_ok(VERIFY_READ, regs, n_regs * sizeof(u32) * 2))
3098 return ERR_PTR(-EFAULT);
3100 /* No is_valid function means we're not allowing any register to be programmed. */
3101 GEM_BUG_ON(!is_valid);
3102 if (!is_valid)
3103 return ERR_PTR(-EINVAL);
3105 oa_regs = kmalloc_array(n_regs, sizeof(*oa_regs), GFP_KERNEL);
3106 if (!oa_regs)
3107 return ERR_PTR(-ENOMEM);
3109 for (i = 0; i < n_regs; i++) {
3110 u32 addr, value;
3112 err = get_user(addr, regs);
3113 if (err)
3114 goto addr_err;
3116 if (!is_valid(dev_priv, addr)) {
3117 DRM_DEBUG("Invalid oa_reg address: %X\n", addr);
3118 err = -EINVAL;
3119 goto addr_err;
3122 err = get_user(value, regs + 1);
3123 if (err)
3124 goto addr_err;
3126 oa_regs[i].addr = _MMIO(addr);
3127 oa_regs[i].value = mask_reg_value(addr, value);
3129 regs += 2;
3132 return oa_regs;
3134 addr_err:
3135 kfree(oa_regs);
3136 return ERR_PTR(err);
3139 static ssize_t show_dynamic_id(struct device *dev,
3140 struct device_attribute *attr,
3141 char *buf)
3143 struct i915_oa_config *oa_config =
3144 container_of(attr, typeof(*oa_config), sysfs_metric_id);
3146 return sprintf(buf, "%d\n", oa_config->id);
3149 static int create_dynamic_oa_sysfs_entry(struct drm_i915_private *dev_priv,
3150 struct i915_oa_config *oa_config)
3152 sysfs_attr_init(&oa_config->sysfs_metric_id.attr);
3153 oa_config->sysfs_metric_id.attr.name = "id";
3154 oa_config->sysfs_metric_id.attr.mode = S_IRUGO;
3155 oa_config->sysfs_metric_id.show = show_dynamic_id;
3156 oa_config->sysfs_metric_id.store = NULL;
3158 oa_config->attrs[0] = &oa_config->sysfs_metric_id.attr;
3159 oa_config->attrs[1] = NULL;
3161 oa_config->sysfs_metric.name = oa_config->uuid;
3162 oa_config->sysfs_metric.attrs = oa_config->attrs;
3164 return sysfs_create_group(dev_priv->perf.metrics_kobj,
3165 &oa_config->sysfs_metric);
3169 * i915_perf_add_config_ioctl - DRM ioctl() for userspace to add a new OA config
3170 * @dev: drm device
3171 * @data: ioctl data (pointer to struct drm_i915_perf_oa_config) copied from
3172 * userspace (unvalidated)
3173 * @file: drm file
3175 * Validates the submitted OA register to be saved into a new OA config that
3176 * can then be used for programming the OA unit and its NOA network.
3178 * Returns: A new allocated config number to be used with the perf open ioctl
3179 * or a negative error code on failure.
3181 int i915_perf_add_config_ioctl(struct drm_device *dev, void *data,
3182 struct drm_file *file)
3184 struct drm_i915_private *dev_priv = dev->dev_private;
3185 struct drm_i915_perf_oa_config *args = data;
3186 struct i915_oa_config *oa_config, *tmp;
3187 int err, id;
3189 if (!dev_priv->perf.initialized) {
3190 DRM_DEBUG("i915 perf interface not available for this system\n");
3191 return -ENOTSUPP;
3194 if (!dev_priv->perf.metrics_kobj) {
3195 DRM_DEBUG("OA metrics weren't advertised via sysfs\n");
3196 return -EINVAL;
3199 if (i915_perf_stream_paranoid && !capable(CAP_SYS_ADMIN)) {
3200 DRM_DEBUG("Insufficient privileges to add i915 OA config\n");
3201 return -EACCES;
3204 if ((!args->mux_regs_ptr || !args->n_mux_regs) &&
3205 (!args->boolean_regs_ptr || !args->n_boolean_regs) &&
3206 (!args->flex_regs_ptr || !args->n_flex_regs)) {
3207 DRM_DEBUG("No OA registers given\n");
3208 return -EINVAL;
3211 oa_config = kzalloc(sizeof(*oa_config), GFP_KERNEL);
3212 if (!oa_config) {
3213 DRM_DEBUG("Failed to allocate memory for the OA config\n");
3214 return -ENOMEM;
3217 atomic_set(&oa_config->ref_count, 1);
3219 if (!uuid_is_valid(args->uuid)) {
3220 DRM_DEBUG("Invalid uuid format for OA config\n");
3221 err = -EINVAL;
3222 goto reg_err;
3225 /* Last character in oa_config->uuid will be 0 because oa_config is
3226 * kzalloc.
3228 memcpy(oa_config->uuid, args->uuid, sizeof(args->uuid));
3230 oa_config->mux_regs_len = args->n_mux_regs;
3231 oa_config->mux_regs =
3232 alloc_oa_regs(dev_priv,
3233 dev_priv->perf.oa.ops.is_valid_mux_reg,
3234 u64_to_user_ptr(args->mux_regs_ptr),
3235 args->n_mux_regs);
3237 if (IS_ERR(oa_config->mux_regs)) {
3238 DRM_DEBUG("Failed to create OA config for mux_regs\n");
3239 err = PTR_ERR(oa_config->mux_regs);
3240 goto reg_err;
3243 oa_config->b_counter_regs_len = args->n_boolean_regs;
3244 oa_config->b_counter_regs =
3245 alloc_oa_regs(dev_priv,
3246 dev_priv->perf.oa.ops.is_valid_b_counter_reg,
3247 u64_to_user_ptr(args->boolean_regs_ptr),
3248 args->n_boolean_regs);
3250 if (IS_ERR(oa_config->b_counter_regs)) {
3251 DRM_DEBUG("Failed to create OA config for b_counter_regs\n");
3252 err = PTR_ERR(oa_config->b_counter_regs);
3253 goto reg_err;
3256 if (INTEL_GEN(dev_priv) < 8) {
3257 if (args->n_flex_regs != 0) {
3258 err = -EINVAL;
3259 goto reg_err;
3261 } else {
3262 oa_config->flex_regs_len = args->n_flex_regs;
3263 oa_config->flex_regs =
3264 alloc_oa_regs(dev_priv,
3265 dev_priv->perf.oa.ops.is_valid_flex_reg,
3266 u64_to_user_ptr(args->flex_regs_ptr),
3267 args->n_flex_regs);
3269 if (IS_ERR(oa_config->flex_regs)) {
3270 DRM_DEBUG("Failed to create OA config for flex_regs\n");
3271 err = PTR_ERR(oa_config->flex_regs);
3272 goto reg_err;
3276 err = mutex_lock_interruptible(&dev_priv->perf.metrics_lock);
3277 if (err)
3278 goto reg_err;
3280 /* We shouldn't have too many configs, so this iteration shouldn't be
3281 * too costly.
3283 idr_for_each_entry(&dev_priv->perf.metrics_idr, tmp, id) {
3284 if (!strcmp(tmp->uuid, oa_config->uuid)) {
3285 DRM_DEBUG("OA config already exists with this uuid\n");
3286 err = -EADDRINUSE;
3287 goto sysfs_err;
3291 err = create_dynamic_oa_sysfs_entry(dev_priv, oa_config);
3292 if (err) {
3293 DRM_DEBUG("Failed to create sysfs entry for OA config\n");
3294 goto sysfs_err;
3297 /* Config id 0 is invalid, id 1 for kernel stored test config. */
3298 oa_config->id = idr_alloc(&dev_priv->perf.metrics_idr,
3299 oa_config, 2,
3300 0, GFP_KERNEL);
3301 if (oa_config->id < 0) {
3302 DRM_DEBUG("Failed to create sysfs entry for OA config\n");
3303 err = oa_config->id;
3304 goto sysfs_err;
3307 mutex_unlock(&dev_priv->perf.metrics_lock);
3309 return oa_config->id;
3311 sysfs_err:
3312 mutex_unlock(&dev_priv->perf.metrics_lock);
3313 reg_err:
3314 put_oa_config(dev_priv, oa_config);
3315 DRM_DEBUG("Failed to add new OA config\n");
3316 return err;
3320 * i915_perf_remove_config_ioctl - DRM ioctl() for userspace to remove an OA config
3321 * @dev: drm device
3322 * @data: ioctl data (pointer to u64 integer) copied from userspace
3323 * @file: drm file
3325 * Configs can be removed while being used, the will stop appearing in sysfs
3326 * and their content will be freed when the stream using the config is closed.
3328 * Returns: 0 on success or a negative error code on failure.
3330 int i915_perf_remove_config_ioctl(struct drm_device *dev, void *data,
3331 struct drm_file *file)
3333 struct drm_i915_private *dev_priv = dev->dev_private;
3334 u64 *arg = data;
3335 struct i915_oa_config *oa_config;
3336 int ret;
3338 if (!dev_priv->perf.initialized) {
3339 DRM_DEBUG("i915 perf interface not available for this system\n");
3340 return -ENOTSUPP;
3343 if (i915_perf_stream_paranoid && !capable(CAP_SYS_ADMIN)) {
3344 DRM_DEBUG("Insufficient privileges to remove i915 OA config\n");
3345 return -EACCES;
3348 ret = mutex_lock_interruptible(&dev_priv->perf.metrics_lock);
3349 if (ret)
3350 goto lock_err;
3352 oa_config = idr_find(&dev_priv->perf.metrics_idr, *arg);
3353 if (!oa_config) {
3354 DRM_DEBUG("Failed to remove unknown OA config\n");
3355 ret = -ENOENT;
3356 goto config_err;
3359 GEM_BUG_ON(*arg != oa_config->id);
3361 sysfs_remove_group(dev_priv->perf.metrics_kobj,
3362 &oa_config->sysfs_metric);
3364 idr_remove(&dev_priv->perf.metrics_idr, *arg);
3365 put_oa_config(dev_priv, oa_config);
3367 config_err:
3368 mutex_unlock(&dev_priv->perf.metrics_lock);
3369 lock_err:
3370 return ret;
3373 static struct ctl_table oa_table[] = {
3375 .procname = "perf_stream_paranoid",
3376 .data = &i915_perf_stream_paranoid,
3377 .maxlen = sizeof(i915_perf_stream_paranoid),
3378 .mode = 0644,
3379 .proc_handler = proc_dointvec_minmax,
3380 .extra1 = &zero,
3381 .extra2 = &one,
3384 .procname = "oa_max_sample_rate",
3385 .data = &i915_oa_max_sample_rate,
3386 .maxlen = sizeof(i915_oa_max_sample_rate),
3387 .mode = 0644,
3388 .proc_handler = proc_dointvec_minmax,
3389 .extra1 = &zero,
3390 .extra2 = &oa_sample_rate_hard_limit,
3395 static struct ctl_table i915_root[] = {
3397 .procname = "i915",
3398 .maxlen = 0,
3399 .mode = 0555,
3400 .child = oa_table,
3405 static struct ctl_table dev_root[] = {
3407 .procname = "dev",
3408 .maxlen = 0,
3409 .mode = 0555,
3410 .child = i915_root,
3416 * i915_perf_init - initialize i915-perf state on module load
3417 * @dev_priv: i915 device instance
3419 * Initializes i915-perf state without exposing anything to userspace.
3421 * Note: i915-perf initialization is split into an 'init' and 'register'
3422 * phase with the i915_perf_register() exposing state to userspace.
3424 void i915_perf_init(struct drm_i915_private *dev_priv)
3426 if (IS_HASWELL(dev_priv)) {
3427 dev_priv->perf.oa.ops.is_valid_b_counter_reg =
3428 gen7_is_valid_b_counter_addr;
3429 dev_priv->perf.oa.ops.is_valid_mux_reg =
3430 hsw_is_valid_mux_addr;
3431 dev_priv->perf.oa.ops.is_valid_flex_reg = NULL;
3432 dev_priv->perf.oa.ops.init_oa_buffer = gen7_init_oa_buffer;
3433 dev_priv->perf.oa.ops.enable_metric_set = hsw_enable_metric_set;
3434 dev_priv->perf.oa.ops.disable_metric_set = hsw_disable_metric_set;
3435 dev_priv->perf.oa.ops.oa_enable = gen7_oa_enable;
3436 dev_priv->perf.oa.ops.oa_disable = gen7_oa_disable;
3437 dev_priv->perf.oa.ops.read = gen7_oa_read;
3438 dev_priv->perf.oa.ops.oa_hw_tail_read =
3439 gen7_oa_hw_tail_read;
3441 dev_priv->perf.oa.oa_formats = hsw_oa_formats;
3442 } else if (HAS_LOGICAL_RING_CONTEXTS(dev_priv)) {
3443 /* Note: that although we could theoretically also support the
3444 * legacy ringbuffer mode on BDW (and earlier iterations of
3445 * this driver, before upstreaming did this) it didn't seem
3446 * worth the complexity to maintain now that BDW+ enable
3447 * execlist mode by default.
3449 dev_priv->perf.oa.oa_formats = gen8_plus_oa_formats;
3451 dev_priv->perf.oa.ops.init_oa_buffer = gen8_init_oa_buffer;
3452 dev_priv->perf.oa.ops.oa_enable = gen8_oa_enable;
3453 dev_priv->perf.oa.ops.oa_disable = gen8_oa_disable;
3454 dev_priv->perf.oa.ops.read = gen8_oa_read;
3455 dev_priv->perf.oa.ops.oa_hw_tail_read = gen8_oa_hw_tail_read;
3457 if (IS_GEN8(dev_priv) || IS_GEN9(dev_priv)) {
3458 dev_priv->perf.oa.ops.is_valid_b_counter_reg =
3459 gen7_is_valid_b_counter_addr;
3460 dev_priv->perf.oa.ops.is_valid_mux_reg =
3461 gen8_is_valid_mux_addr;
3462 dev_priv->perf.oa.ops.is_valid_flex_reg =
3463 gen8_is_valid_flex_addr;
3465 if (IS_CHERRYVIEW(dev_priv)) {
3466 dev_priv->perf.oa.ops.is_valid_mux_reg =
3467 chv_is_valid_mux_addr;
3470 dev_priv->perf.oa.ops.enable_metric_set = gen8_enable_metric_set;
3471 dev_priv->perf.oa.ops.disable_metric_set = gen8_disable_metric_set;
3473 if (IS_GEN8(dev_priv)) {
3474 dev_priv->perf.oa.ctx_oactxctrl_offset = 0x120;
3475 dev_priv->perf.oa.ctx_flexeu0_offset = 0x2ce;
3477 dev_priv->perf.oa.gen8_valid_ctx_bit = (1<<25);
3478 } else {
3479 dev_priv->perf.oa.ctx_oactxctrl_offset = 0x128;
3480 dev_priv->perf.oa.ctx_flexeu0_offset = 0x3de;
3482 dev_priv->perf.oa.gen8_valid_ctx_bit = (1<<16);
3484 } else if (IS_GEN10(dev_priv)) {
3485 dev_priv->perf.oa.ops.is_valid_b_counter_reg =
3486 gen7_is_valid_b_counter_addr;
3487 dev_priv->perf.oa.ops.is_valid_mux_reg =
3488 gen10_is_valid_mux_addr;
3489 dev_priv->perf.oa.ops.is_valid_flex_reg =
3490 gen8_is_valid_flex_addr;
3492 dev_priv->perf.oa.ops.enable_metric_set = gen8_enable_metric_set;
3493 dev_priv->perf.oa.ops.disable_metric_set = gen10_disable_metric_set;
3495 dev_priv->perf.oa.ctx_oactxctrl_offset = 0x128;
3496 dev_priv->perf.oa.ctx_flexeu0_offset = 0x3de;
3498 dev_priv->perf.oa.gen8_valid_ctx_bit = (1<<16);
3502 if (dev_priv->perf.oa.ops.enable_metric_set) {
3503 hrtimer_init(&dev_priv->perf.oa.poll_check_timer,
3504 CLOCK_MONOTONIC, HRTIMER_MODE_REL);
3505 dev_priv->perf.oa.poll_check_timer.function = oa_poll_check_timer_cb;
3506 init_waitqueue_head(&dev_priv->perf.oa.poll_wq);
3508 INIT_LIST_HEAD(&dev_priv->perf.streams);
3509 mutex_init(&dev_priv->perf.lock);
3510 spin_lock_init(&dev_priv->perf.oa.oa_buffer.ptr_lock);
3512 oa_sample_rate_hard_limit = 1000 *
3513 (INTEL_INFO(dev_priv)->cs_timestamp_frequency_khz / 2);
3514 dev_priv->perf.sysctl_header = register_sysctl_table(dev_root);
3516 mutex_init(&dev_priv->perf.metrics_lock);
3517 idr_init(&dev_priv->perf.metrics_idr);
3519 dev_priv->perf.initialized = true;
3523 static int destroy_config(int id, void *p, void *data)
3525 struct drm_i915_private *dev_priv = data;
3526 struct i915_oa_config *oa_config = p;
3528 put_oa_config(dev_priv, oa_config);
3530 return 0;
3534 * i915_perf_fini - Counter part to i915_perf_init()
3535 * @dev_priv: i915 device instance
3537 void i915_perf_fini(struct drm_i915_private *dev_priv)
3539 if (!dev_priv->perf.initialized)
3540 return;
3542 idr_for_each(&dev_priv->perf.metrics_idr, destroy_config, dev_priv);
3543 idr_destroy(&dev_priv->perf.metrics_idr);
3545 unregister_sysctl_table(dev_priv->perf.sysctl_header);
3547 memset(&dev_priv->perf.oa.ops, 0, sizeof(dev_priv->perf.oa.ops));
3549 dev_priv->perf.initialized = false;