Merge tag 'for_linus' of git://git.kernel.org/pub/scm/linux/kernel/git/mst/vhost
[cris-mirror.git] / drivers / gpu / drm / i915 / intel_breadcrumbs.c
blobf54ddda9fdadac01226cd65084674b91b807af76
1 /*
2 * Copyright © 2015 Intel Corporation
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
25 #include <linux/kthread.h>
26 #include <uapi/linux/sched/types.h>
28 #include "i915_drv.h"
30 #ifdef CONFIG_SMP
31 #define task_asleep(tsk) ((tsk)->state & TASK_NORMAL && !(tsk)->on_cpu)
32 #else
33 #define task_asleep(tsk) ((tsk)->state & TASK_NORMAL)
34 #endif
36 static unsigned int __intel_breadcrumbs_wakeup(struct intel_breadcrumbs *b)
38 struct intel_wait *wait;
39 unsigned int result = 0;
41 lockdep_assert_held(&b->irq_lock);
43 wait = b->irq_wait;
44 if (wait) {
46 * N.B. Since task_asleep() and ttwu are not atomic, the
47 * waiter may actually go to sleep after the check, causing
48 * us to suppress a valid wakeup. We prefer to reduce the
49 * number of false positive missed_breadcrumb() warnings
50 * at the expense of a few false negatives, as it it easy
51 * to trigger a false positive under heavy load. Enough
52 * signal should remain from genuine missed_breadcrumb()
53 * for us to detect in CI.
55 bool was_asleep = task_asleep(wait->tsk);
57 result = ENGINE_WAKEUP_WAITER;
58 if (wake_up_process(wait->tsk) && was_asleep)
59 result |= ENGINE_WAKEUP_ASLEEP;
62 return result;
65 unsigned int intel_engine_wakeup(struct intel_engine_cs *engine)
67 struct intel_breadcrumbs *b = &engine->breadcrumbs;
68 unsigned long flags;
69 unsigned int result;
71 spin_lock_irqsave(&b->irq_lock, flags);
72 result = __intel_breadcrumbs_wakeup(b);
73 spin_unlock_irqrestore(&b->irq_lock, flags);
75 return result;
78 static unsigned long wait_timeout(void)
80 return round_jiffies_up(jiffies + DRM_I915_HANGCHECK_JIFFIES);
83 static noinline void missed_breadcrumb(struct intel_engine_cs *engine)
85 if (drm_debug & DRM_UT_DRIVER) {
86 struct drm_printer p = drm_debug_printer(__func__);
88 intel_engine_dump(engine, &p,
89 "%s missed breadcrumb at %pS\n",
90 engine->name, __builtin_return_address(0));
93 set_bit(engine->id, &engine->i915->gpu_error.missed_irq_rings);
96 static void intel_breadcrumbs_hangcheck(struct timer_list *t)
98 struct intel_engine_cs *engine =
99 from_timer(engine, t, breadcrumbs.hangcheck);
100 struct intel_breadcrumbs *b = &engine->breadcrumbs;
102 if (!b->irq_armed)
103 return;
105 if (b->hangcheck_interrupts != atomic_read(&engine->irq_count)) {
106 b->hangcheck_interrupts = atomic_read(&engine->irq_count);
107 mod_timer(&b->hangcheck, wait_timeout());
108 return;
111 /* We keep the hangcheck timer alive until we disarm the irq, even
112 * if there are no waiters at present.
114 * If the waiter was currently running, assume it hasn't had a chance
115 * to process the pending interrupt (e.g, low priority task on a loaded
116 * system) and wait until it sleeps before declaring a missed interrupt.
118 * If the waiter was asleep (and not even pending a wakeup), then we
119 * must have missed an interrupt as the GPU has stopped advancing
120 * but we still have a waiter. Assuming all batches complete within
121 * DRM_I915_HANGCHECK_JIFFIES [1.5s]!
123 if (intel_engine_wakeup(engine) & ENGINE_WAKEUP_ASLEEP) {
124 missed_breadcrumb(engine);
125 mod_timer(&b->fake_irq, jiffies + 1);
126 } else {
127 mod_timer(&b->hangcheck, wait_timeout());
131 static void intel_breadcrumbs_fake_irq(struct timer_list *t)
133 struct intel_engine_cs *engine = from_timer(engine, t,
134 breadcrumbs.fake_irq);
135 struct intel_breadcrumbs *b = &engine->breadcrumbs;
137 /* The timer persists in case we cannot enable interrupts,
138 * or if we have previously seen seqno/interrupt incoherency
139 * ("missed interrupt" syndrome, better known as a "missed breadcrumb").
140 * Here the worker will wake up every jiffie in order to kick the
141 * oldest waiter to do the coherent seqno check.
144 spin_lock_irq(&b->irq_lock);
145 if (b->irq_armed && !__intel_breadcrumbs_wakeup(b))
146 __intel_engine_disarm_breadcrumbs(engine);
147 spin_unlock_irq(&b->irq_lock);
148 if (!b->irq_armed)
149 return;
151 mod_timer(&b->fake_irq, jiffies + 1);
154 static void irq_enable(struct intel_engine_cs *engine)
157 * FIXME: Ideally we want this on the API boundary, but for the
158 * sake of testing with mock breadcrumbs (no HW so unable to
159 * enable irqs) we place it deep within the bowels, at the point
160 * of no return.
162 GEM_BUG_ON(!intel_irqs_enabled(engine->i915));
164 /* Enabling the IRQ may miss the generation of the interrupt, but
165 * we still need to force the barrier before reading the seqno,
166 * just in case.
168 set_bit(ENGINE_IRQ_BREADCRUMB, &engine->irq_posted);
170 /* Caller disables interrupts */
171 spin_lock(&engine->i915->irq_lock);
172 engine->irq_enable(engine);
173 spin_unlock(&engine->i915->irq_lock);
176 static void irq_disable(struct intel_engine_cs *engine)
178 /* Caller disables interrupts */
179 spin_lock(&engine->i915->irq_lock);
180 engine->irq_disable(engine);
181 spin_unlock(&engine->i915->irq_lock);
184 void __intel_engine_disarm_breadcrumbs(struct intel_engine_cs *engine)
186 struct intel_breadcrumbs *b = &engine->breadcrumbs;
188 lockdep_assert_held(&b->irq_lock);
189 GEM_BUG_ON(b->irq_wait);
190 GEM_BUG_ON(!b->irq_armed);
192 GEM_BUG_ON(!b->irq_enabled);
193 if (!--b->irq_enabled)
194 irq_disable(engine);
196 b->irq_armed = false;
199 void intel_engine_pin_breadcrumbs_irq(struct intel_engine_cs *engine)
201 struct intel_breadcrumbs *b = &engine->breadcrumbs;
203 spin_lock_irq(&b->irq_lock);
204 if (!b->irq_enabled++)
205 irq_enable(engine);
206 GEM_BUG_ON(!b->irq_enabled); /* no overflow! */
207 spin_unlock_irq(&b->irq_lock);
210 void intel_engine_unpin_breadcrumbs_irq(struct intel_engine_cs *engine)
212 struct intel_breadcrumbs *b = &engine->breadcrumbs;
214 spin_lock_irq(&b->irq_lock);
215 GEM_BUG_ON(!b->irq_enabled); /* no underflow! */
216 if (!--b->irq_enabled)
217 irq_disable(engine);
218 spin_unlock_irq(&b->irq_lock);
221 void intel_engine_disarm_breadcrumbs(struct intel_engine_cs *engine)
223 struct intel_breadcrumbs *b = &engine->breadcrumbs;
224 struct intel_wait *wait, *n;
226 if (!b->irq_armed)
227 goto wakeup_signaler;
230 * We only disarm the irq when we are idle (all requests completed),
231 * so if the bottom-half remains asleep, it missed the request
232 * completion.
234 if (intel_engine_wakeup(engine) & ENGINE_WAKEUP_ASLEEP)
235 missed_breadcrumb(engine);
237 spin_lock_irq(&b->rb_lock);
239 spin_lock(&b->irq_lock);
240 b->irq_wait = NULL;
241 if (b->irq_armed)
242 __intel_engine_disarm_breadcrumbs(engine);
243 spin_unlock(&b->irq_lock);
245 rbtree_postorder_for_each_entry_safe(wait, n, &b->waiters, node) {
246 RB_CLEAR_NODE(&wait->node);
247 wake_up_process(wait->tsk);
249 b->waiters = RB_ROOT;
251 spin_unlock_irq(&b->rb_lock);
254 * The signaling thread may be asleep holding a reference to a request,
255 * that had its signaling cancelled prior to being preempted. We need
256 * to kick the signaler, just in case, to release any such reference.
258 wakeup_signaler:
259 wake_up_process(b->signaler);
262 static bool use_fake_irq(const struct intel_breadcrumbs *b)
264 const struct intel_engine_cs *engine =
265 container_of(b, struct intel_engine_cs, breadcrumbs);
267 if (!test_bit(engine->id, &engine->i915->gpu_error.missed_irq_rings))
268 return false;
270 /* Only start with the heavy weight fake irq timer if we have not
271 * seen any interrupts since enabling it the first time. If the
272 * interrupts are still arriving, it means we made a mistake in our
273 * engine->seqno_barrier(), a timing error that should be transient
274 * and unlikely to reoccur.
276 return atomic_read(&engine->irq_count) == b->hangcheck_interrupts;
279 static void enable_fake_irq(struct intel_breadcrumbs *b)
281 /* Ensure we never sleep indefinitely */
282 if (!b->irq_enabled || use_fake_irq(b))
283 mod_timer(&b->fake_irq, jiffies + 1);
284 else
285 mod_timer(&b->hangcheck, wait_timeout());
288 static bool __intel_breadcrumbs_enable_irq(struct intel_breadcrumbs *b)
290 struct intel_engine_cs *engine =
291 container_of(b, struct intel_engine_cs, breadcrumbs);
292 struct drm_i915_private *i915 = engine->i915;
293 bool enabled;
295 lockdep_assert_held(&b->irq_lock);
296 if (b->irq_armed)
297 return false;
299 /* The breadcrumb irq will be disarmed on the interrupt after the
300 * waiters are signaled. This gives us a single interrupt window in
301 * which we can add a new waiter and avoid the cost of re-enabling
302 * the irq.
304 b->irq_armed = true;
306 if (I915_SELFTEST_ONLY(b->mock)) {
307 /* For our mock objects we want to avoid interaction
308 * with the real hardware (which is not set up). So
309 * we simply pretend we have enabled the powerwell
310 * and the irq, and leave it up to the mock
311 * implementation to call intel_engine_wakeup()
312 * itself when it wants to simulate a user interrupt,
314 return true;
317 /* Since we are waiting on a request, the GPU should be busy
318 * and should have its own rpm reference. This is tracked
319 * by i915->gt.awake, we can forgo holding our own wakref
320 * for the interrupt as before i915->gt.awake is released (when
321 * the driver is idle) we disarm the breadcrumbs.
324 /* No interrupts? Kick the waiter every jiffie! */
325 enabled = false;
326 if (!b->irq_enabled++ &&
327 !test_bit(engine->id, &i915->gpu_error.test_irq_rings)) {
328 irq_enable(engine);
329 enabled = true;
332 enable_fake_irq(b);
333 return enabled;
336 static inline struct intel_wait *to_wait(struct rb_node *node)
338 return rb_entry(node, struct intel_wait, node);
341 static inline void __intel_breadcrumbs_finish(struct intel_breadcrumbs *b,
342 struct intel_wait *wait)
344 lockdep_assert_held(&b->rb_lock);
345 GEM_BUG_ON(b->irq_wait == wait);
347 /* This request is completed, so remove it from the tree, mark it as
348 * complete, and *then* wake up the associated task. N.B. when the
349 * task wakes up, it will find the empty rb_node, discern that it
350 * has already been removed from the tree and skip the serialisation
351 * of the b->rb_lock and b->irq_lock. This means that the destruction
352 * of the intel_wait is not serialised with the interrupt handler
353 * by the waiter - it must instead be serialised by the caller.
355 rb_erase(&wait->node, &b->waiters);
356 RB_CLEAR_NODE(&wait->node);
358 wake_up_process(wait->tsk); /* implicit smp_wmb() */
361 static inline void __intel_breadcrumbs_next(struct intel_engine_cs *engine,
362 struct rb_node *next)
364 struct intel_breadcrumbs *b = &engine->breadcrumbs;
366 spin_lock(&b->irq_lock);
367 GEM_BUG_ON(!b->irq_armed);
368 GEM_BUG_ON(!b->irq_wait);
369 b->irq_wait = to_wait(next);
370 spin_unlock(&b->irq_lock);
372 /* We always wake up the next waiter that takes over as the bottom-half
373 * as we may delegate not only the irq-seqno barrier to the next waiter
374 * but also the task of waking up concurrent waiters.
376 if (next)
377 wake_up_process(to_wait(next)->tsk);
380 static bool __intel_engine_add_wait(struct intel_engine_cs *engine,
381 struct intel_wait *wait)
383 struct intel_breadcrumbs *b = &engine->breadcrumbs;
384 struct rb_node **p, *parent, *completed;
385 bool first, armed;
386 u32 seqno;
388 /* Insert the request into the retirement ordered list
389 * of waiters by walking the rbtree. If we are the oldest
390 * seqno in the tree (the first to be retired), then
391 * set ourselves as the bottom-half.
393 * As we descend the tree, prune completed branches since we hold the
394 * spinlock we know that the first_waiter must be delayed and can
395 * reduce some of the sequential wake up latency if we take action
396 * ourselves and wake up the completed tasks in parallel. Also, by
397 * removing stale elements in the tree, we may be able to reduce the
398 * ping-pong between the old bottom-half and ourselves as first-waiter.
400 armed = false;
401 first = true;
402 parent = NULL;
403 completed = NULL;
404 seqno = intel_engine_get_seqno(engine);
406 /* If the request completed before we managed to grab the spinlock,
407 * return now before adding ourselves to the rbtree. We let the
408 * current bottom-half handle any pending wakeups and instead
409 * try and get out of the way quickly.
411 if (i915_seqno_passed(seqno, wait->seqno)) {
412 RB_CLEAR_NODE(&wait->node);
413 return first;
416 p = &b->waiters.rb_node;
417 while (*p) {
418 parent = *p;
419 if (wait->seqno == to_wait(parent)->seqno) {
420 /* We have multiple waiters on the same seqno, select
421 * the highest priority task (that with the smallest
422 * task->prio) to serve as the bottom-half for this
423 * group.
425 if (wait->tsk->prio > to_wait(parent)->tsk->prio) {
426 p = &parent->rb_right;
427 first = false;
428 } else {
429 p = &parent->rb_left;
431 } else if (i915_seqno_passed(wait->seqno,
432 to_wait(parent)->seqno)) {
433 p = &parent->rb_right;
434 if (i915_seqno_passed(seqno, to_wait(parent)->seqno))
435 completed = parent;
436 else
437 first = false;
438 } else {
439 p = &parent->rb_left;
442 rb_link_node(&wait->node, parent, p);
443 rb_insert_color(&wait->node, &b->waiters);
445 if (first) {
446 spin_lock(&b->irq_lock);
447 b->irq_wait = wait;
448 /* After assigning ourselves as the new bottom-half, we must
449 * perform a cursory check to prevent a missed interrupt.
450 * Either we miss the interrupt whilst programming the hardware,
451 * or if there was a previous waiter (for a later seqno) they
452 * may be woken instead of us (due to the inherent race
453 * in the unlocked read of b->irq_seqno_bh in the irq handler)
454 * and so we miss the wake up.
456 armed = __intel_breadcrumbs_enable_irq(b);
457 spin_unlock(&b->irq_lock);
460 if (completed) {
461 /* Advance the bottom-half (b->irq_wait) before we wake up
462 * the waiters who may scribble over their intel_wait
463 * just as the interrupt handler is dereferencing it via
464 * b->irq_wait.
466 if (!first) {
467 struct rb_node *next = rb_next(completed);
468 GEM_BUG_ON(next == &wait->node);
469 __intel_breadcrumbs_next(engine, next);
472 do {
473 struct intel_wait *crumb = to_wait(completed);
474 completed = rb_prev(completed);
475 __intel_breadcrumbs_finish(b, crumb);
476 } while (completed);
479 GEM_BUG_ON(!b->irq_wait);
480 GEM_BUG_ON(!b->irq_armed);
481 GEM_BUG_ON(rb_first(&b->waiters) != &b->irq_wait->node);
483 return armed;
486 bool intel_engine_add_wait(struct intel_engine_cs *engine,
487 struct intel_wait *wait)
489 struct intel_breadcrumbs *b = &engine->breadcrumbs;
490 bool armed;
492 spin_lock_irq(&b->rb_lock);
493 armed = __intel_engine_add_wait(engine, wait);
494 spin_unlock_irq(&b->rb_lock);
495 if (armed)
496 return armed;
498 /* Make the caller recheck if its request has already started. */
499 return i915_seqno_passed(intel_engine_get_seqno(engine),
500 wait->seqno - 1);
503 static inline bool chain_wakeup(struct rb_node *rb, int priority)
505 return rb && to_wait(rb)->tsk->prio <= priority;
508 static inline int wakeup_priority(struct intel_breadcrumbs *b,
509 struct task_struct *tsk)
511 if (tsk == b->signaler)
512 return INT_MIN;
513 else
514 return tsk->prio;
517 static void __intel_engine_remove_wait(struct intel_engine_cs *engine,
518 struct intel_wait *wait)
520 struct intel_breadcrumbs *b = &engine->breadcrumbs;
522 lockdep_assert_held(&b->rb_lock);
524 if (RB_EMPTY_NODE(&wait->node))
525 goto out;
527 if (b->irq_wait == wait) {
528 const int priority = wakeup_priority(b, wait->tsk);
529 struct rb_node *next;
531 /* We are the current bottom-half. Find the next candidate,
532 * the first waiter in the queue on the remaining oldest
533 * request. As multiple seqnos may complete in the time it
534 * takes us to wake up and find the next waiter, we have to
535 * wake up that waiter for it to perform its own coherent
536 * completion check.
538 next = rb_next(&wait->node);
539 if (chain_wakeup(next, priority)) {
540 /* If the next waiter is already complete,
541 * wake it up and continue onto the next waiter. So
542 * if have a small herd, they will wake up in parallel
543 * rather than sequentially, which should reduce
544 * the overall latency in waking all the completed
545 * clients.
547 * However, waking up a chain adds extra latency to
548 * the first_waiter. This is undesirable if that
549 * waiter is a high priority task.
551 u32 seqno = intel_engine_get_seqno(engine);
553 while (i915_seqno_passed(seqno, to_wait(next)->seqno)) {
554 struct rb_node *n = rb_next(next);
556 __intel_breadcrumbs_finish(b, to_wait(next));
557 next = n;
558 if (!chain_wakeup(next, priority))
559 break;
563 __intel_breadcrumbs_next(engine, next);
564 } else {
565 GEM_BUG_ON(rb_first(&b->waiters) == &wait->node);
568 GEM_BUG_ON(RB_EMPTY_NODE(&wait->node));
569 rb_erase(&wait->node, &b->waiters);
570 RB_CLEAR_NODE(&wait->node);
572 out:
573 GEM_BUG_ON(b->irq_wait == wait);
574 GEM_BUG_ON(rb_first(&b->waiters) !=
575 (b->irq_wait ? &b->irq_wait->node : NULL));
578 void intel_engine_remove_wait(struct intel_engine_cs *engine,
579 struct intel_wait *wait)
581 struct intel_breadcrumbs *b = &engine->breadcrumbs;
583 /* Quick check to see if this waiter was already decoupled from
584 * the tree by the bottom-half to avoid contention on the spinlock
585 * by the herd.
587 if (RB_EMPTY_NODE(&wait->node)) {
588 GEM_BUG_ON(READ_ONCE(b->irq_wait) == wait);
589 return;
592 spin_lock_irq(&b->rb_lock);
593 __intel_engine_remove_wait(engine, wait);
594 spin_unlock_irq(&b->rb_lock);
597 static bool signal_complete(const struct drm_i915_gem_request *request)
599 if (!request)
600 return false;
603 * Carefully check if the request is complete, giving time for the
604 * seqno to be visible or if the GPU hung.
606 return __i915_request_irq_complete(request);
609 static struct drm_i915_gem_request *to_signaler(struct rb_node *rb)
611 return rb_entry(rb, struct drm_i915_gem_request, signaling.node);
614 static void signaler_set_rtpriority(void)
616 struct sched_param param = { .sched_priority = 1 };
618 sched_setscheduler_nocheck(current, SCHED_FIFO, &param);
621 static int intel_breadcrumbs_signaler(void *arg)
623 struct intel_engine_cs *engine = arg;
624 struct intel_breadcrumbs *b = &engine->breadcrumbs;
625 struct drm_i915_gem_request *request;
627 /* Install ourselves with high priority to reduce signalling latency */
628 signaler_set_rtpriority();
630 do {
631 bool do_schedule = true;
633 set_current_state(TASK_INTERRUPTIBLE);
635 /* We are either woken up by the interrupt bottom-half,
636 * or by a client adding a new signaller. In both cases,
637 * the GPU seqno may have advanced beyond our oldest signal.
638 * If it has, propagate the signal, remove the waiter and
639 * check again with the next oldest signal. Otherwise we
640 * need to wait for a new interrupt from the GPU or for
641 * a new client.
643 rcu_read_lock();
644 request = rcu_dereference(b->first_signal);
645 if (request)
646 request = i915_gem_request_get_rcu(request);
647 rcu_read_unlock();
648 if (signal_complete(request)) {
649 if (!test_bit(DMA_FENCE_FLAG_SIGNALED_BIT,
650 &request->fence.flags)) {
651 local_bh_disable();
652 dma_fence_signal(&request->fence);
653 GEM_BUG_ON(!i915_gem_request_completed(request));
654 local_bh_enable(); /* kick start the tasklets */
657 spin_lock_irq(&b->rb_lock);
659 /* Wake up all other completed waiters and select the
660 * next bottom-half for the next user interrupt.
662 __intel_engine_remove_wait(engine,
663 &request->signaling.wait);
665 /* Find the next oldest signal. Note that as we have
666 * not been holding the lock, another client may
667 * have installed an even older signal than the one
668 * we just completed - so double check we are still
669 * the oldest before picking the next one.
671 if (request == rcu_access_pointer(b->first_signal)) {
672 struct rb_node *rb =
673 rb_next(&request->signaling.node);
674 rcu_assign_pointer(b->first_signal,
675 rb ? to_signaler(rb) : NULL);
677 rb_erase(&request->signaling.node, &b->signals);
678 RB_CLEAR_NODE(&request->signaling.node);
680 spin_unlock_irq(&b->rb_lock);
682 i915_gem_request_put(request);
684 /* If the engine is saturated we may be continually
685 * processing completed requests. This angers the
686 * NMI watchdog if we never let anything else
687 * have access to the CPU. Let's pretend to be nice
688 * and relinquish the CPU if we burn through the
689 * entire RT timeslice!
691 do_schedule = need_resched();
694 if (unlikely(do_schedule)) {
695 if (kthread_should_park())
696 kthread_parkme();
698 if (unlikely(kthread_should_stop())) {
699 i915_gem_request_put(request);
700 break;
703 schedule();
705 i915_gem_request_put(request);
706 } while (1);
707 __set_current_state(TASK_RUNNING);
709 return 0;
712 void intel_engine_enable_signaling(struct drm_i915_gem_request *request,
713 bool wakeup)
715 struct intel_engine_cs *engine = request->engine;
716 struct intel_breadcrumbs *b = &engine->breadcrumbs;
717 u32 seqno;
719 /* Note that we may be called from an interrupt handler on another
720 * device (e.g. nouveau signaling a fence completion causing us
721 * to submit a request, and so enable signaling). As such,
722 * we need to make sure that all other users of b->rb_lock protect
723 * against interrupts, i.e. use spin_lock_irqsave.
726 /* locked by dma_fence_enable_sw_signaling() (irqsafe fence->lock) */
727 GEM_BUG_ON(!irqs_disabled());
728 lockdep_assert_held(&request->lock);
730 seqno = i915_gem_request_global_seqno(request);
731 if (!seqno)
732 return;
734 request->signaling.wait.tsk = b->signaler;
735 request->signaling.wait.request = request;
736 request->signaling.wait.seqno = seqno;
737 i915_gem_request_get(request);
739 spin_lock(&b->rb_lock);
741 /* First add ourselves into the list of waiters, but register our
742 * bottom-half as the signaller thread. As per usual, only the oldest
743 * waiter (not just signaller) is tasked as the bottom-half waking
744 * up all completed waiters after the user interrupt.
746 * If we are the oldest waiter, enable the irq (after which we
747 * must double check that the seqno did not complete).
749 wakeup &= __intel_engine_add_wait(engine, &request->signaling.wait);
751 if (!__i915_gem_request_completed(request, seqno)) {
752 struct rb_node *parent, **p;
753 bool first;
755 /* Now insert ourselves into the retirement ordered list of
756 * signals on this engine. We track the oldest seqno as that
757 * will be the first signal to complete.
759 parent = NULL;
760 first = true;
761 p = &b->signals.rb_node;
762 while (*p) {
763 parent = *p;
764 if (i915_seqno_passed(seqno,
765 to_signaler(parent)->signaling.wait.seqno)) {
766 p = &parent->rb_right;
767 first = false;
768 } else {
769 p = &parent->rb_left;
772 rb_link_node(&request->signaling.node, parent, p);
773 rb_insert_color(&request->signaling.node, &b->signals);
774 if (first)
775 rcu_assign_pointer(b->first_signal, request);
776 } else {
777 __intel_engine_remove_wait(engine, &request->signaling.wait);
778 i915_gem_request_put(request);
779 wakeup = false;
782 spin_unlock(&b->rb_lock);
784 if (wakeup)
785 wake_up_process(b->signaler);
788 void intel_engine_cancel_signaling(struct drm_i915_gem_request *request)
790 struct intel_engine_cs *engine = request->engine;
791 struct intel_breadcrumbs *b = &engine->breadcrumbs;
793 GEM_BUG_ON(!irqs_disabled());
794 lockdep_assert_held(&request->lock);
795 GEM_BUG_ON(!request->signaling.wait.seqno);
797 spin_lock(&b->rb_lock);
799 if (!RB_EMPTY_NODE(&request->signaling.node)) {
800 if (request == rcu_access_pointer(b->first_signal)) {
801 struct rb_node *rb =
802 rb_next(&request->signaling.node);
803 rcu_assign_pointer(b->first_signal,
804 rb ? to_signaler(rb) : NULL);
806 rb_erase(&request->signaling.node, &b->signals);
807 RB_CLEAR_NODE(&request->signaling.node);
808 i915_gem_request_put(request);
811 __intel_engine_remove_wait(engine, &request->signaling.wait);
813 spin_unlock(&b->rb_lock);
815 request->signaling.wait.seqno = 0;
818 int intel_engine_init_breadcrumbs(struct intel_engine_cs *engine)
820 struct intel_breadcrumbs *b = &engine->breadcrumbs;
821 struct task_struct *tsk;
823 spin_lock_init(&b->rb_lock);
824 spin_lock_init(&b->irq_lock);
826 timer_setup(&b->fake_irq, intel_breadcrumbs_fake_irq, 0);
827 timer_setup(&b->hangcheck, intel_breadcrumbs_hangcheck, 0);
829 /* Spawn a thread to provide a common bottom-half for all signals.
830 * As this is an asynchronous interface we cannot steal the current
831 * task for handling the bottom-half to the user interrupt, therefore
832 * we create a thread to do the coherent seqno dance after the
833 * interrupt and then signal the waitqueue (via the dma-buf/fence).
835 tsk = kthread_run(intel_breadcrumbs_signaler, engine,
836 "i915/signal:%d", engine->id);
837 if (IS_ERR(tsk))
838 return PTR_ERR(tsk);
840 b->signaler = tsk;
842 return 0;
845 static void cancel_fake_irq(struct intel_engine_cs *engine)
847 struct intel_breadcrumbs *b = &engine->breadcrumbs;
849 del_timer_sync(&b->hangcheck);
850 del_timer_sync(&b->fake_irq);
851 clear_bit(engine->id, &engine->i915->gpu_error.missed_irq_rings);
854 void intel_engine_reset_breadcrumbs(struct intel_engine_cs *engine)
856 struct intel_breadcrumbs *b = &engine->breadcrumbs;
858 cancel_fake_irq(engine);
859 spin_lock_irq(&b->irq_lock);
861 if (b->irq_enabled)
862 irq_enable(engine);
863 else
864 irq_disable(engine);
866 /* We set the IRQ_BREADCRUMB bit when we enable the irq presuming the
867 * GPU is active and may have already executed the MI_USER_INTERRUPT
868 * before the CPU is ready to receive. However, the engine is currently
869 * idle (we haven't started it yet), there is no possibility for a
870 * missed interrupt as we enabled the irq and so we can clear the
871 * immediate wakeup (until a real interrupt arrives for the waiter).
873 clear_bit(ENGINE_IRQ_BREADCRUMB, &engine->irq_posted);
875 if (b->irq_armed)
876 enable_fake_irq(b);
878 spin_unlock_irq(&b->irq_lock);
881 void intel_engine_fini_breadcrumbs(struct intel_engine_cs *engine)
883 struct intel_breadcrumbs *b = &engine->breadcrumbs;
885 /* The engines should be idle and all requests accounted for! */
886 WARN_ON(READ_ONCE(b->irq_wait));
887 WARN_ON(!RB_EMPTY_ROOT(&b->waiters));
888 WARN_ON(rcu_access_pointer(b->first_signal));
889 WARN_ON(!RB_EMPTY_ROOT(&b->signals));
891 if (!IS_ERR_OR_NULL(b->signaler))
892 kthread_stop(b->signaler);
894 cancel_fake_irq(engine);
897 bool intel_breadcrumbs_busy(struct intel_engine_cs *engine)
899 struct intel_breadcrumbs *b = &engine->breadcrumbs;
900 bool busy = false;
902 spin_lock_irq(&b->rb_lock);
904 if (b->irq_wait) {
905 wake_up_process(b->irq_wait->tsk);
906 busy = true;
909 if (rcu_access_pointer(b->first_signal)) {
910 wake_up_process(b->signaler);
911 busy = true;
914 spin_unlock_irq(&b->rb_lock);
916 return busy;
919 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
920 #include "selftests/intel_breadcrumbs.c"
921 #endif