Merge tag 'for_linus' of git://git.kernel.org/pub/scm/linux/kernel/git/mst/vhost
[cris-mirror.git] / drivers / gpu / drm / i915 / intel_dpio_phy.c
blob76473e9836c6003d85f46808afe5ea26b920ab15
1 /*
2 * Copyright © 2014-2016 Intel Corporation
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21 * DEALINGS IN THE SOFTWARE.
24 #include "intel_drv.h"
26 /**
27 * DOC: DPIO
29 * VLV, CHV and BXT have slightly peculiar display PHYs for driving DP/HDMI
30 * ports. DPIO is the name given to such a display PHY. These PHYs
31 * don't follow the standard programming model using direct MMIO
32 * registers, and instead their registers must be accessed trough IOSF
33 * sideband. VLV has one such PHY for driving ports B and C, and CHV
34 * adds another PHY for driving port D. Each PHY responds to specific
35 * IOSF-SB port.
37 * Each display PHY is made up of one or two channels. Each channel
38 * houses a common lane part which contains the PLL and other common
39 * logic. CH0 common lane also contains the IOSF-SB logic for the
40 * Common Register Interface (CRI) ie. the DPIO registers. CRI clock
41 * must be running when any DPIO registers are accessed.
43 * In addition to having their own registers, the PHYs are also
44 * controlled through some dedicated signals from the display
45 * controller. These include PLL reference clock enable, PLL enable,
46 * and CRI clock selection, for example.
48 * Eeach channel also has two splines (also called data lanes), and
49 * each spline is made up of one Physical Access Coding Sub-Layer
50 * (PCS) block and two TX lanes. So each channel has two PCS blocks
51 * and four TX lanes. The TX lanes are used as DP lanes or TMDS
52 * data/clock pairs depending on the output type.
54 * Additionally the PHY also contains an AUX lane with AUX blocks
55 * for each channel. This is used for DP AUX communication, but
56 * this fact isn't really relevant for the driver since AUX is
57 * controlled from the display controller side. No DPIO registers
58 * need to be accessed during AUX communication,
60 * Generally on VLV/CHV the common lane corresponds to the pipe and
61 * the spline (PCS/TX) corresponds to the port.
63 * For dual channel PHY (VLV/CHV):
65 * pipe A == CMN/PLL/REF CH0
67 * pipe B == CMN/PLL/REF CH1
69 * port B == PCS/TX CH0
71 * port C == PCS/TX CH1
73 * This is especially important when we cross the streams
74 * ie. drive port B with pipe B, or port C with pipe A.
76 * For single channel PHY (CHV):
78 * pipe C == CMN/PLL/REF CH0
80 * port D == PCS/TX CH0
82 * On BXT the entire PHY channel corresponds to the port. That means
83 * the PLL is also now associated with the port rather than the pipe,
84 * and so the clock needs to be routed to the appropriate transcoder.
85 * Port A PLL is directly connected to transcoder EDP and port B/C
86 * PLLs can be routed to any transcoder A/B/C.
88 * Note: DDI0 is digital port B, DD1 is digital port C, and DDI2 is
89 * digital port D (CHV) or port A (BXT). ::
92 * Dual channel PHY (VLV/CHV/BXT)
93 * ---------------------------------
94 * | CH0 | CH1 |
95 * | CMN/PLL/REF | CMN/PLL/REF |
96 * |---------------|---------------| Display PHY
97 * | PCS01 | PCS23 | PCS01 | PCS23 |
98 * |-------|-------|-------|-------|
99 * |TX0|TX1|TX2|TX3|TX0|TX1|TX2|TX3|
100 * ---------------------------------
101 * | DDI0 | DDI1 | DP/HDMI ports
102 * ---------------------------------
104 * Single channel PHY (CHV/BXT)
105 * -----------------
106 * | CH0 |
107 * | CMN/PLL/REF |
108 * |---------------| Display PHY
109 * | PCS01 | PCS23 |
110 * |-------|-------|
111 * |TX0|TX1|TX2|TX3|
112 * -----------------
113 * | DDI2 | DP/HDMI port
114 * -----------------
118 * struct bxt_ddi_phy_info - Hold info for a broxton DDI phy
120 struct bxt_ddi_phy_info {
122 * @dual_channel: true if this phy has a second channel.
124 bool dual_channel;
127 * @rcomp_phy: If -1, indicates this phy has its own rcomp resistor.
128 * Otherwise the GRC value will be copied from the phy indicated by
129 * this field.
131 enum dpio_phy rcomp_phy;
134 * @reset_delay: delay in us to wait before setting the common reset
135 * bit in BXT_PHY_CTL_FAMILY, which effectively enables the phy.
137 int reset_delay;
140 * @pwron_mask: Mask with the appropriate bit set that would cause the
141 * punit to power this phy if written to BXT_P_CR_GT_DISP_PWRON.
143 u32 pwron_mask;
146 * @channel: struct containing per channel information.
148 struct {
150 * @port: which port maps to this channel.
152 enum port port;
153 } channel[2];
156 static const struct bxt_ddi_phy_info bxt_ddi_phy_info[] = {
157 [DPIO_PHY0] = {
158 .dual_channel = true,
159 .rcomp_phy = DPIO_PHY1,
160 .pwron_mask = BIT(0),
162 .channel = {
163 [DPIO_CH0] = { .port = PORT_B },
164 [DPIO_CH1] = { .port = PORT_C },
167 [DPIO_PHY1] = {
168 .dual_channel = false,
169 .rcomp_phy = -1,
170 .pwron_mask = BIT(1),
172 .channel = {
173 [DPIO_CH0] = { .port = PORT_A },
178 static const struct bxt_ddi_phy_info glk_ddi_phy_info[] = {
179 [DPIO_PHY0] = {
180 .dual_channel = false,
181 .rcomp_phy = DPIO_PHY1,
182 .pwron_mask = BIT(0),
183 .reset_delay = 20,
185 .channel = {
186 [DPIO_CH0] = { .port = PORT_B },
189 [DPIO_PHY1] = {
190 .dual_channel = false,
191 .rcomp_phy = -1,
192 .pwron_mask = BIT(3),
193 .reset_delay = 20,
195 .channel = {
196 [DPIO_CH0] = { .port = PORT_A },
199 [DPIO_PHY2] = {
200 .dual_channel = false,
201 .rcomp_phy = DPIO_PHY1,
202 .pwron_mask = BIT(1),
203 .reset_delay = 20,
205 .channel = {
206 [DPIO_CH0] = { .port = PORT_C },
211 static const struct bxt_ddi_phy_info *
212 bxt_get_phy_list(struct drm_i915_private *dev_priv, int *count)
214 if (IS_GEMINILAKE(dev_priv)) {
215 *count = ARRAY_SIZE(glk_ddi_phy_info);
216 return glk_ddi_phy_info;
217 } else {
218 *count = ARRAY_SIZE(bxt_ddi_phy_info);
219 return bxt_ddi_phy_info;
223 static const struct bxt_ddi_phy_info *
224 bxt_get_phy_info(struct drm_i915_private *dev_priv, enum dpio_phy phy)
226 int count;
227 const struct bxt_ddi_phy_info *phy_list =
228 bxt_get_phy_list(dev_priv, &count);
230 return &phy_list[phy];
233 void bxt_port_to_phy_channel(struct drm_i915_private *dev_priv, enum port port,
234 enum dpio_phy *phy, enum dpio_channel *ch)
236 const struct bxt_ddi_phy_info *phy_info, *phys;
237 int i, count;
239 phys = bxt_get_phy_list(dev_priv, &count);
241 for (i = 0; i < count; i++) {
242 phy_info = &phys[i];
244 if (port == phy_info->channel[DPIO_CH0].port) {
245 *phy = i;
246 *ch = DPIO_CH0;
247 return;
250 if (phy_info->dual_channel &&
251 port == phy_info->channel[DPIO_CH1].port) {
252 *phy = i;
253 *ch = DPIO_CH1;
254 return;
258 WARN(1, "PHY not found for PORT %c", port_name(port));
259 *phy = DPIO_PHY0;
260 *ch = DPIO_CH0;
263 void bxt_ddi_phy_set_signal_level(struct drm_i915_private *dev_priv,
264 enum port port, u32 margin, u32 scale,
265 u32 enable, u32 deemphasis)
267 u32 val;
268 enum dpio_phy phy;
269 enum dpio_channel ch;
271 bxt_port_to_phy_channel(dev_priv, port, &phy, &ch);
274 * While we write to the group register to program all lanes at once we
275 * can read only lane registers and we pick lanes 0/1 for that.
277 val = I915_READ(BXT_PORT_PCS_DW10_LN01(phy, ch));
278 val &= ~(TX2_SWING_CALC_INIT | TX1_SWING_CALC_INIT);
279 I915_WRITE(BXT_PORT_PCS_DW10_GRP(phy, ch), val);
281 val = I915_READ(BXT_PORT_TX_DW2_LN0(phy, ch));
282 val &= ~(MARGIN_000 | UNIQ_TRANS_SCALE);
283 val |= margin << MARGIN_000_SHIFT | scale << UNIQ_TRANS_SCALE_SHIFT;
284 I915_WRITE(BXT_PORT_TX_DW2_GRP(phy, ch), val);
286 val = I915_READ(BXT_PORT_TX_DW3_LN0(phy, ch));
287 val &= ~SCALE_DCOMP_METHOD;
288 if (enable)
289 val |= SCALE_DCOMP_METHOD;
291 if ((val & UNIQUE_TRANGE_EN_METHOD) && !(val & SCALE_DCOMP_METHOD))
292 DRM_ERROR("Disabled scaling while ouniqetrangenmethod was set");
294 I915_WRITE(BXT_PORT_TX_DW3_GRP(phy, ch), val);
296 val = I915_READ(BXT_PORT_TX_DW4_LN0(phy, ch));
297 val &= ~DE_EMPHASIS;
298 val |= deemphasis << DEEMPH_SHIFT;
299 I915_WRITE(BXT_PORT_TX_DW4_GRP(phy, ch), val);
301 val = I915_READ(BXT_PORT_PCS_DW10_LN01(phy, ch));
302 val |= TX2_SWING_CALC_INIT | TX1_SWING_CALC_INIT;
303 I915_WRITE(BXT_PORT_PCS_DW10_GRP(phy, ch), val);
306 bool bxt_ddi_phy_is_enabled(struct drm_i915_private *dev_priv,
307 enum dpio_phy phy)
309 const struct bxt_ddi_phy_info *phy_info;
311 phy_info = bxt_get_phy_info(dev_priv, phy);
313 if (!(I915_READ(BXT_P_CR_GT_DISP_PWRON) & phy_info->pwron_mask))
314 return false;
316 if ((I915_READ(BXT_PORT_CL1CM_DW0(phy)) &
317 (PHY_POWER_GOOD | PHY_RESERVED)) != PHY_POWER_GOOD) {
318 DRM_DEBUG_DRIVER("DDI PHY %d powered, but power hasn't settled\n",
319 phy);
321 return false;
324 if (!(I915_READ(BXT_PHY_CTL_FAMILY(phy)) & COMMON_RESET_DIS)) {
325 DRM_DEBUG_DRIVER("DDI PHY %d powered, but still in reset\n",
326 phy);
328 return false;
331 return true;
334 static u32 bxt_get_grc(struct drm_i915_private *dev_priv, enum dpio_phy phy)
336 u32 val = I915_READ(BXT_PORT_REF_DW6(phy));
338 return (val & GRC_CODE_MASK) >> GRC_CODE_SHIFT;
341 static void bxt_phy_wait_grc_done(struct drm_i915_private *dev_priv,
342 enum dpio_phy phy)
344 if (intel_wait_for_register(dev_priv,
345 BXT_PORT_REF_DW3(phy),
346 GRC_DONE, GRC_DONE,
347 10))
348 DRM_ERROR("timeout waiting for PHY%d GRC\n", phy);
351 static void _bxt_ddi_phy_init(struct drm_i915_private *dev_priv,
352 enum dpio_phy phy)
354 const struct bxt_ddi_phy_info *phy_info;
355 u32 val;
357 phy_info = bxt_get_phy_info(dev_priv, phy);
359 if (bxt_ddi_phy_is_enabled(dev_priv, phy)) {
360 /* Still read out the GRC value for state verification */
361 if (phy_info->rcomp_phy != -1)
362 dev_priv->bxt_phy_grc = bxt_get_grc(dev_priv, phy);
364 if (bxt_ddi_phy_verify_state(dev_priv, phy)) {
365 DRM_DEBUG_DRIVER("DDI PHY %d already enabled, "
366 "won't reprogram it\n", phy);
367 return;
370 DRM_DEBUG_DRIVER("DDI PHY %d enabled with invalid state, "
371 "force reprogramming it\n", phy);
374 val = I915_READ(BXT_P_CR_GT_DISP_PWRON);
375 val |= phy_info->pwron_mask;
376 I915_WRITE(BXT_P_CR_GT_DISP_PWRON, val);
379 * The PHY registers start out inaccessible and respond to reads with
380 * all 1s. Eventually they become accessible as they power up, then
381 * the reserved bit will give the default 0. Poll on the reserved bit
382 * becoming 0 to find when the PHY is accessible.
383 * HW team confirmed that the time to reach phypowergood status is
384 * anywhere between 50 us and 100us.
386 if (wait_for_us(((I915_READ(BXT_PORT_CL1CM_DW0(phy)) &
387 (PHY_RESERVED | PHY_POWER_GOOD)) == PHY_POWER_GOOD), 100)) {
388 DRM_ERROR("timeout during PHY%d power on\n", phy);
391 /* Program PLL Rcomp code offset */
392 val = I915_READ(BXT_PORT_CL1CM_DW9(phy));
393 val &= ~IREF0RC_OFFSET_MASK;
394 val |= 0xE4 << IREF0RC_OFFSET_SHIFT;
395 I915_WRITE(BXT_PORT_CL1CM_DW9(phy), val);
397 val = I915_READ(BXT_PORT_CL1CM_DW10(phy));
398 val &= ~IREF1RC_OFFSET_MASK;
399 val |= 0xE4 << IREF1RC_OFFSET_SHIFT;
400 I915_WRITE(BXT_PORT_CL1CM_DW10(phy), val);
402 /* Program power gating */
403 val = I915_READ(BXT_PORT_CL1CM_DW28(phy));
404 val |= OCL1_POWER_DOWN_EN | DW28_OLDO_DYN_PWR_DOWN_EN |
405 SUS_CLK_CONFIG;
406 I915_WRITE(BXT_PORT_CL1CM_DW28(phy), val);
408 if (phy_info->dual_channel) {
409 val = I915_READ(BXT_PORT_CL2CM_DW6(phy));
410 val |= DW6_OLDO_DYN_PWR_DOWN_EN;
411 I915_WRITE(BXT_PORT_CL2CM_DW6(phy), val);
414 if (phy_info->rcomp_phy != -1) {
415 uint32_t grc_code;
417 bxt_phy_wait_grc_done(dev_priv, phy_info->rcomp_phy);
420 * PHY0 isn't connected to an RCOMP resistor so copy over
421 * the corresponding calibrated value from PHY1, and disable
422 * the automatic calibration on PHY0.
424 val = dev_priv->bxt_phy_grc = bxt_get_grc(dev_priv,
425 phy_info->rcomp_phy);
426 grc_code = val << GRC_CODE_FAST_SHIFT |
427 val << GRC_CODE_SLOW_SHIFT |
428 val;
429 I915_WRITE(BXT_PORT_REF_DW6(phy), grc_code);
431 val = I915_READ(BXT_PORT_REF_DW8(phy));
432 val |= GRC_DIS | GRC_RDY_OVRD;
433 I915_WRITE(BXT_PORT_REF_DW8(phy), val);
436 if (phy_info->reset_delay)
437 udelay(phy_info->reset_delay);
439 val = I915_READ(BXT_PHY_CTL_FAMILY(phy));
440 val |= COMMON_RESET_DIS;
441 I915_WRITE(BXT_PHY_CTL_FAMILY(phy), val);
444 void bxt_ddi_phy_uninit(struct drm_i915_private *dev_priv, enum dpio_phy phy)
446 const struct bxt_ddi_phy_info *phy_info;
447 uint32_t val;
449 phy_info = bxt_get_phy_info(dev_priv, phy);
451 val = I915_READ(BXT_PHY_CTL_FAMILY(phy));
452 val &= ~COMMON_RESET_DIS;
453 I915_WRITE(BXT_PHY_CTL_FAMILY(phy), val);
455 val = I915_READ(BXT_P_CR_GT_DISP_PWRON);
456 val &= ~phy_info->pwron_mask;
457 I915_WRITE(BXT_P_CR_GT_DISP_PWRON, val);
460 void bxt_ddi_phy_init(struct drm_i915_private *dev_priv, enum dpio_phy phy)
462 const struct bxt_ddi_phy_info *phy_info =
463 bxt_get_phy_info(dev_priv, phy);
464 enum dpio_phy rcomp_phy = phy_info->rcomp_phy;
465 bool was_enabled;
467 lockdep_assert_held(&dev_priv->power_domains.lock);
469 was_enabled = true;
470 if (rcomp_phy != -1)
471 was_enabled = bxt_ddi_phy_is_enabled(dev_priv, rcomp_phy);
474 * We need to copy the GRC calibration value from rcomp_phy,
475 * so make sure it's powered up.
477 if (!was_enabled)
478 _bxt_ddi_phy_init(dev_priv, rcomp_phy);
480 _bxt_ddi_phy_init(dev_priv, phy);
482 if (!was_enabled)
483 bxt_ddi_phy_uninit(dev_priv, rcomp_phy);
486 static bool __printf(6, 7)
487 __phy_reg_verify_state(struct drm_i915_private *dev_priv, enum dpio_phy phy,
488 i915_reg_t reg, u32 mask, u32 expected,
489 const char *reg_fmt, ...)
491 struct va_format vaf;
492 va_list args;
493 u32 val;
495 val = I915_READ(reg);
496 if ((val & mask) == expected)
497 return true;
499 va_start(args, reg_fmt);
500 vaf.fmt = reg_fmt;
501 vaf.va = &args;
503 DRM_DEBUG_DRIVER("DDI PHY %d reg %pV [%08x] state mismatch: "
504 "current %08x, expected %08x (mask %08x)\n",
505 phy, &vaf, reg.reg, val, (val & ~mask) | expected,
506 mask);
508 va_end(args);
510 return false;
513 bool bxt_ddi_phy_verify_state(struct drm_i915_private *dev_priv,
514 enum dpio_phy phy)
516 const struct bxt_ddi_phy_info *phy_info;
517 uint32_t mask;
518 bool ok;
520 phy_info = bxt_get_phy_info(dev_priv, phy);
522 #define _CHK(reg, mask, exp, fmt, ...) \
523 __phy_reg_verify_state(dev_priv, phy, reg, mask, exp, fmt, \
524 ## __VA_ARGS__)
526 if (!bxt_ddi_phy_is_enabled(dev_priv, phy))
527 return false;
529 ok = true;
531 /* PLL Rcomp code offset */
532 ok &= _CHK(BXT_PORT_CL1CM_DW9(phy),
533 IREF0RC_OFFSET_MASK, 0xe4 << IREF0RC_OFFSET_SHIFT,
534 "BXT_PORT_CL1CM_DW9(%d)", phy);
535 ok &= _CHK(BXT_PORT_CL1CM_DW10(phy),
536 IREF1RC_OFFSET_MASK, 0xe4 << IREF1RC_OFFSET_SHIFT,
537 "BXT_PORT_CL1CM_DW10(%d)", phy);
539 /* Power gating */
540 mask = OCL1_POWER_DOWN_EN | DW28_OLDO_DYN_PWR_DOWN_EN | SUS_CLK_CONFIG;
541 ok &= _CHK(BXT_PORT_CL1CM_DW28(phy), mask, mask,
542 "BXT_PORT_CL1CM_DW28(%d)", phy);
544 if (phy_info->dual_channel)
545 ok &= _CHK(BXT_PORT_CL2CM_DW6(phy),
546 DW6_OLDO_DYN_PWR_DOWN_EN, DW6_OLDO_DYN_PWR_DOWN_EN,
547 "BXT_PORT_CL2CM_DW6(%d)", phy);
549 if (phy_info->rcomp_phy != -1) {
550 u32 grc_code = dev_priv->bxt_phy_grc;
552 grc_code = grc_code << GRC_CODE_FAST_SHIFT |
553 grc_code << GRC_CODE_SLOW_SHIFT |
554 grc_code;
555 mask = GRC_CODE_FAST_MASK | GRC_CODE_SLOW_MASK |
556 GRC_CODE_NOM_MASK;
557 ok &= _CHK(BXT_PORT_REF_DW6(phy), mask, grc_code,
558 "BXT_PORT_REF_DW6(%d)", phy);
560 mask = GRC_DIS | GRC_RDY_OVRD;
561 ok &= _CHK(BXT_PORT_REF_DW8(phy), mask, mask,
562 "BXT_PORT_REF_DW8(%d)", phy);
565 return ok;
566 #undef _CHK
569 uint8_t
570 bxt_ddi_phy_calc_lane_lat_optim_mask(uint8_t lane_count)
572 switch (lane_count) {
573 case 1:
574 return 0;
575 case 2:
576 return BIT(2) | BIT(0);
577 case 4:
578 return BIT(3) | BIT(2) | BIT(0);
579 default:
580 MISSING_CASE(lane_count);
582 return 0;
586 void bxt_ddi_phy_set_lane_optim_mask(struct intel_encoder *encoder,
587 uint8_t lane_lat_optim_mask)
589 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
590 enum port port = encoder->port;
591 enum dpio_phy phy;
592 enum dpio_channel ch;
593 int lane;
595 bxt_port_to_phy_channel(dev_priv, port, &phy, &ch);
597 for (lane = 0; lane < 4; lane++) {
598 u32 val = I915_READ(BXT_PORT_TX_DW14_LN(phy, ch, lane));
601 * Note that on CHV this flag is called UPAR, but has
602 * the same function.
604 val &= ~LATENCY_OPTIM;
605 if (lane_lat_optim_mask & BIT(lane))
606 val |= LATENCY_OPTIM;
608 I915_WRITE(BXT_PORT_TX_DW14_LN(phy, ch, lane), val);
612 uint8_t
613 bxt_ddi_phy_get_lane_lat_optim_mask(struct intel_encoder *encoder)
615 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
616 enum port port = encoder->port;
617 enum dpio_phy phy;
618 enum dpio_channel ch;
619 int lane;
620 uint8_t mask;
622 bxt_port_to_phy_channel(dev_priv, port, &phy, &ch);
624 mask = 0;
625 for (lane = 0; lane < 4; lane++) {
626 u32 val = I915_READ(BXT_PORT_TX_DW14_LN(phy, ch, lane));
628 if (val & LATENCY_OPTIM)
629 mask |= BIT(lane);
632 return mask;
636 void chv_set_phy_signal_level(struct intel_encoder *encoder,
637 u32 deemph_reg_value, u32 margin_reg_value,
638 bool uniq_trans_scale)
640 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
641 struct intel_digital_port *dport = enc_to_dig_port(&encoder->base);
642 struct intel_crtc *intel_crtc = to_intel_crtc(encoder->base.crtc);
643 enum dpio_channel ch = vlv_dport_to_channel(dport);
644 enum pipe pipe = intel_crtc->pipe;
645 u32 val;
646 int i;
648 mutex_lock(&dev_priv->sb_lock);
650 /* Clear calc init */
651 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW10(ch));
652 val &= ~(DPIO_PCS_SWING_CALC_TX0_TX2 | DPIO_PCS_SWING_CALC_TX1_TX3);
653 val &= ~(DPIO_PCS_TX1DEEMP_MASK | DPIO_PCS_TX2DEEMP_MASK);
654 val |= DPIO_PCS_TX1DEEMP_9P5 | DPIO_PCS_TX2DEEMP_9P5;
655 vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW10(ch), val);
657 if (intel_crtc->config->lane_count > 2) {
658 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW10(ch));
659 val &= ~(DPIO_PCS_SWING_CALC_TX0_TX2 | DPIO_PCS_SWING_CALC_TX1_TX3);
660 val &= ~(DPIO_PCS_TX1DEEMP_MASK | DPIO_PCS_TX2DEEMP_MASK);
661 val |= DPIO_PCS_TX1DEEMP_9P5 | DPIO_PCS_TX2DEEMP_9P5;
662 vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW10(ch), val);
665 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW9(ch));
666 val &= ~(DPIO_PCS_TX1MARGIN_MASK | DPIO_PCS_TX2MARGIN_MASK);
667 val |= DPIO_PCS_TX1MARGIN_000 | DPIO_PCS_TX2MARGIN_000;
668 vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW9(ch), val);
670 if (intel_crtc->config->lane_count > 2) {
671 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW9(ch));
672 val &= ~(DPIO_PCS_TX1MARGIN_MASK | DPIO_PCS_TX2MARGIN_MASK);
673 val |= DPIO_PCS_TX1MARGIN_000 | DPIO_PCS_TX2MARGIN_000;
674 vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW9(ch), val);
677 /* Program swing deemph */
678 for (i = 0; i < intel_crtc->config->lane_count; i++) {
679 val = vlv_dpio_read(dev_priv, pipe, CHV_TX_DW4(ch, i));
680 val &= ~DPIO_SWING_DEEMPH9P5_MASK;
681 val |= deemph_reg_value << DPIO_SWING_DEEMPH9P5_SHIFT;
682 vlv_dpio_write(dev_priv, pipe, CHV_TX_DW4(ch, i), val);
685 /* Program swing margin */
686 for (i = 0; i < intel_crtc->config->lane_count; i++) {
687 val = vlv_dpio_read(dev_priv, pipe, CHV_TX_DW2(ch, i));
689 val &= ~DPIO_SWING_MARGIN000_MASK;
690 val |= margin_reg_value << DPIO_SWING_MARGIN000_SHIFT;
693 * Supposedly this value shouldn't matter when unique transition
694 * scale is disabled, but in fact it does matter. Let's just
695 * always program the same value and hope it's OK.
697 val &= ~(0xff << DPIO_UNIQ_TRANS_SCALE_SHIFT);
698 val |= 0x9a << DPIO_UNIQ_TRANS_SCALE_SHIFT;
700 vlv_dpio_write(dev_priv, pipe, CHV_TX_DW2(ch, i), val);
704 * The document said it needs to set bit 27 for ch0 and bit 26
705 * for ch1. Might be a typo in the doc.
706 * For now, for this unique transition scale selection, set bit
707 * 27 for ch0 and ch1.
709 for (i = 0; i < intel_crtc->config->lane_count; i++) {
710 val = vlv_dpio_read(dev_priv, pipe, CHV_TX_DW3(ch, i));
711 if (uniq_trans_scale)
712 val |= DPIO_TX_UNIQ_TRANS_SCALE_EN;
713 else
714 val &= ~DPIO_TX_UNIQ_TRANS_SCALE_EN;
715 vlv_dpio_write(dev_priv, pipe, CHV_TX_DW3(ch, i), val);
718 /* Start swing calculation */
719 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW10(ch));
720 val |= DPIO_PCS_SWING_CALC_TX0_TX2 | DPIO_PCS_SWING_CALC_TX1_TX3;
721 vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW10(ch), val);
723 if (intel_crtc->config->lane_count > 2) {
724 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW10(ch));
725 val |= DPIO_PCS_SWING_CALC_TX0_TX2 | DPIO_PCS_SWING_CALC_TX1_TX3;
726 vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW10(ch), val);
729 mutex_unlock(&dev_priv->sb_lock);
733 void chv_data_lane_soft_reset(struct intel_encoder *encoder,
734 const struct intel_crtc_state *crtc_state,
735 bool reset)
737 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
738 enum dpio_channel ch = vlv_dport_to_channel(enc_to_dig_port(&encoder->base));
739 struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
740 enum pipe pipe = crtc->pipe;
741 uint32_t val;
743 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW0(ch));
744 if (reset)
745 val &= ~(DPIO_PCS_TX_LANE2_RESET | DPIO_PCS_TX_LANE1_RESET);
746 else
747 val |= DPIO_PCS_TX_LANE2_RESET | DPIO_PCS_TX_LANE1_RESET;
748 vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW0(ch), val);
750 if (crtc->config->lane_count > 2) {
751 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW0(ch));
752 if (reset)
753 val &= ~(DPIO_PCS_TX_LANE2_RESET | DPIO_PCS_TX_LANE1_RESET);
754 else
755 val |= DPIO_PCS_TX_LANE2_RESET | DPIO_PCS_TX_LANE1_RESET;
756 vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW0(ch), val);
759 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW1(ch));
760 val |= CHV_PCS_REQ_SOFTRESET_EN;
761 if (reset)
762 val &= ~DPIO_PCS_CLK_SOFT_RESET;
763 else
764 val |= DPIO_PCS_CLK_SOFT_RESET;
765 vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW1(ch), val);
767 if (crtc->config->lane_count > 2) {
768 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW1(ch));
769 val |= CHV_PCS_REQ_SOFTRESET_EN;
770 if (reset)
771 val &= ~DPIO_PCS_CLK_SOFT_RESET;
772 else
773 val |= DPIO_PCS_CLK_SOFT_RESET;
774 vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW1(ch), val);
778 void chv_phy_pre_pll_enable(struct intel_encoder *encoder,
779 const struct intel_crtc_state *crtc_state)
781 struct intel_digital_port *dport = enc_to_dig_port(&encoder->base);
782 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
783 struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
784 enum dpio_channel ch = vlv_dport_to_channel(dport);
785 enum pipe pipe = crtc->pipe;
786 unsigned int lane_mask =
787 intel_dp_unused_lane_mask(crtc_state->lane_count);
788 u32 val;
791 * Must trick the second common lane into life.
792 * Otherwise we can't even access the PLL.
794 if (ch == DPIO_CH0 && pipe == PIPE_B)
795 dport->release_cl2_override =
796 !chv_phy_powergate_ch(dev_priv, DPIO_PHY0, DPIO_CH1, true);
798 chv_phy_powergate_lanes(encoder, true, lane_mask);
800 mutex_lock(&dev_priv->sb_lock);
802 /* Assert data lane reset */
803 chv_data_lane_soft_reset(encoder, crtc_state, true);
805 /* program left/right clock distribution */
806 if (pipe != PIPE_B) {
807 val = vlv_dpio_read(dev_priv, pipe, _CHV_CMN_DW5_CH0);
808 val &= ~(CHV_BUFLEFTENA1_MASK | CHV_BUFRIGHTENA1_MASK);
809 if (ch == DPIO_CH0)
810 val |= CHV_BUFLEFTENA1_FORCE;
811 if (ch == DPIO_CH1)
812 val |= CHV_BUFRIGHTENA1_FORCE;
813 vlv_dpio_write(dev_priv, pipe, _CHV_CMN_DW5_CH0, val);
814 } else {
815 val = vlv_dpio_read(dev_priv, pipe, _CHV_CMN_DW1_CH1);
816 val &= ~(CHV_BUFLEFTENA2_MASK | CHV_BUFRIGHTENA2_MASK);
817 if (ch == DPIO_CH0)
818 val |= CHV_BUFLEFTENA2_FORCE;
819 if (ch == DPIO_CH1)
820 val |= CHV_BUFRIGHTENA2_FORCE;
821 vlv_dpio_write(dev_priv, pipe, _CHV_CMN_DW1_CH1, val);
824 /* program clock channel usage */
825 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW8(ch));
826 val |= CHV_PCS_USEDCLKCHANNEL_OVRRIDE;
827 if (pipe != PIPE_B)
828 val &= ~CHV_PCS_USEDCLKCHANNEL;
829 else
830 val |= CHV_PCS_USEDCLKCHANNEL;
831 vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW8(ch), val);
833 if (crtc_state->lane_count > 2) {
834 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW8(ch));
835 val |= CHV_PCS_USEDCLKCHANNEL_OVRRIDE;
836 if (pipe != PIPE_B)
837 val &= ~CHV_PCS_USEDCLKCHANNEL;
838 else
839 val |= CHV_PCS_USEDCLKCHANNEL;
840 vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW8(ch), val);
844 * This a a bit weird since generally CL
845 * matches the pipe, but here we need to
846 * pick the CL based on the port.
848 val = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW19(ch));
849 if (pipe != PIPE_B)
850 val &= ~CHV_CMN_USEDCLKCHANNEL;
851 else
852 val |= CHV_CMN_USEDCLKCHANNEL;
853 vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW19(ch), val);
855 mutex_unlock(&dev_priv->sb_lock);
858 void chv_phy_pre_encoder_enable(struct intel_encoder *encoder,
859 const struct intel_crtc_state *crtc_state)
861 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
862 struct intel_digital_port *dport = dp_to_dig_port(intel_dp);
863 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
864 struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
865 enum dpio_channel ch = vlv_dport_to_channel(dport);
866 enum pipe pipe = crtc->pipe;
867 int data, i, stagger;
868 u32 val;
870 mutex_lock(&dev_priv->sb_lock);
872 /* allow hardware to manage TX FIFO reset source */
873 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW11(ch));
874 val &= ~DPIO_LANEDESKEW_STRAP_OVRD;
875 vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW11(ch), val);
877 if (crtc_state->lane_count > 2) {
878 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW11(ch));
879 val &= ~DPIO_LANEDESKEW_STRAP_OVRD;
880 vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW11(ch), val);
883 /* Program Tx lane latency optimal setting*/
884 for (i = 0; i < crtc_state->lane_count; i++) {
885 /* Set the upar bit */
886 if (crtc_state->lane_count == 1)
887 data = 0x0;
888 else
889 data = (i == 1) ? 0x0 : 0x1;
890 vlv_dpio_write(dev_priv, pipe, CHV_TX_DW14(ch, i),
891 data << DPIO_UPAR_SHIFT);
894 /* Data lane stagger programming */
895 if (crtc_state->port_clock > 270000)
896 stagger = 0x18;
897 else if (crtc_state->port_clock > 135000)
898 stagger = 0xd;
899 else if (crtc_state->port_clock > 67500)
900 stagger = 0x7;
901 else if (crtc_state->port_clock > 33750)
902 stagger = 0x4;
903 else
904 stagger = 0x2;
906 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW11(ch));
907 val |= DPIO_TX2_STAGGER_MASK(0x1f);
908 vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW11(ch), val);
910 if (crtc_state->lane_count > 2) {
911 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW11(ch));
912 val |= DPIO_TX2_STAGGER_MASK(0x1f);
913 vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW11(ch), val);
916 vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW12(ch),
917 DPIO_LANESTAGGER_STRAP(stagger) |
918 DPIO_LANESTAGGER_STRAP_OVRD |
919 DPIO_TX1_STAGGER_MASK(0x1f) |
920 DPIO_TX1_STAGGER_MULT(6) |
921 DPIO_TX2_STAGGER_MULT(0));
923 if (crtc_state->lane_count > 2) {
924 vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW12(ch),
925 DPIO_LANESTAGGER_STRAP(stagger) |
926 DPIO_LANESTAGGER_STRAP_OVRD |
927 DPIO_TX1_STAGGER_MASK(0x1f) |
928 DPIO_TX1_STAGGER_MULT(7) |
929 DPIO_TX2_STAGGER_MULT(5));
932 /* Deassert data lane reset */
933 chv_data_lane_soft_reset(encoder, crtc_state, false);
935 mutex_unlock(&dev_priv->sb_lock);
938 void chv_phy_release_cl2_override(struct intel_encoder *encoder)
940 struct intel_digital_port *dport = enc_to_dig_port(&encoder->base);
941 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
943 if (dport->release_cl2_override) {
944 chv_phy_powergate_ch(dev_priv, DPIO_PHY0, DPIO_CH1, false);
945 dport->release_cl2_override = false;
949 void chv_phy_post_pll_disable(struct intel_encoder *encoder,
950 const struct intel_crtc_state *old_crtc_state)
952 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
953 enum pipe pipe = to_intel_crtc(old_crtc_state->base.crtc)->pipe;
954 u32 val;
956 mutex_lock(&dev_priv->sb_lock);
958 /* disable left/right clock distribution */
959 if (pipe != PIPE_B) {
960 val = vlv_dpio_read(dev_priv, pipe, _CHV_CMN_DW5_CH0);
961 val &= ~(CHV_BUFLEFTENA1_MASK | CHV_BUFRIGHTENA1_MASK);
962 vlv_dpio_write(dev_priv, pipe, _CHV_CMN_DW5_CH0, val);
963 } else {
964 val = vlv_dpio_read(dev_priv, pipe, _CHV_CMN_DW1_CH1);
965 val &= ~(CHV_BUFLEFTENA2_MASK | CHV_BUFRIGHTENA2_MASK);
966 vlv_dpio_write(dev_priv, pipe, _CHV_CMN_DW1_CH1, val);
969 mutex_unlock(&dev_priv->sb_lock);
972 * Leave the power down bit cleared for at least one
973 * lane so that chv_powergate_phy_ch() will power
974 * on something when the channel is otherwise unused.
975 * When the port is off and the override is removed
976 * the lanes power down anyway, so otherwise it doesn't
977 * really matter what the state of power down bits is
978 * after this.
980 chv_phy_powergate_lanes(encoder, false, 0x0);
983 void vlv_set_phy_signal_level(struct intel_encoder *encoder,
984 u32 demph_reg_value, u32 preemph_reg_value,
985 u32 uniqtranscale_reg_value, u32 tx3_demph)
987 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
988 struct intel_crtc *intel_crtc = to_intel_crtc(encoder->base.crtc);
989 struct intel_digital_port *dport = enc_to_dig_port(&encoder->base);
990 enum dpio_channel port = vlv_dport_to_channel(dport);
991 enum pipe pipe = intel_crtc->pipe;
993 mutex_lock(&dev_priv->sb_lock);
994 vlv_dpio_write(dev_priv, pipe, VLV_TX_DW5(port), 0x00000000);
995 vlv_dpio_write(dev_priv, pipe, VLV_TX_DW4(port), demph_reg_value);
996 vlv_dpio_write(dev_priv, pipe, VLV_TX_DW2(port),
997 uniqtranscale_reg_value);
998 vlv_dpio_write(dev_priv, pipe, VLV_TX_DW3(port), 0x0C782040);
1000 if (tx3_demph)
1001 vlv_dpio_write(dev_priv, pipe, VLV_TX3_DW4(port), tx3_demph);
1003 vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW11(port), 0x00030000);
1004 vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW9(port), preemph_reg_value);
1005 vlv_dpio_write(dev_priv, pipe, VLV_TX_DW5(port), DPIO_TX_OCALINIT_EN);
1006 mutex_unlock(&dev_priv->sb_lock);
1009 void vlv_phy_pre_pll_enable(struct intel_encoder *encoder,
1010 const struct intel_crtc_state *crtc_state)
1012 struct intel_digital_port *dport = enc_to_dig_port(&encoder->base);
1013 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
1014 struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
1015 enum dpio_channel port = vlv_dport_to_channel(dport);
1016 enum pipe pipe = crtc->pipe;
1018 /* Program Tx lane resets to default */
1019 mutex_lock(&dev_priv->sb_lock);
1020 vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW0(port),
1021 DPIO_PCS_TX_LANE2_RESET |
1022 DPIO_PCS_TX_LANE1_RESET);
1023 vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW1(port),
1024 DPIO_PCS_CLK_CRI_RXEB_EIOS_EN |
1025 DPIO_PCS_CLK_CRI_RXDIGFILTSG_EN |
1026 (1<<DPIO_PCS_CLK_DATAWIDTH_SHIFT) |
1027 DPIO_PCS_CLK_SOFT_RESET);
1029 /* Fix up inter-pair skew failure */
1030 vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW12(port), 0x00750f00);
1031 vlv_dpio_write(dev_priv, pipe, VLV_TX_DW11(port), 0x00001500);
1032 vlv_dpio_write(dev_priv, pipe, VLV_TX_DW14(port), 0x40400000);
1033 mutex_unlock(&dev_priv->sb_lock);
1036 void vlv_phy_pre_encoder_enable(struct intel_encoder *encoder,
1037 const struct intel_crtc_state *crtc_state)
1039 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
1040 struct intel_digital_port *dport = dp_to_dig_port(intel_dp);
1041 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
1042 struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
1043 enum dpio_channel port = vlv_dport_to_channel(dport);
1044 enum pipe pipe = crtc->pipe;
1045 u32 val;
1047 mutex_lock(&dev_priv->sb_lock);
1049 /* Enable clock channels for this port */
1050 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW8(port));
1051 val = 0;
1052 if (pipe)
1053 val |= (1<<21);
1054 else
1055 val &= ~(1<<21);
1056 val |= 0x001000c4;
1057 vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW8(port), val);
1059 /* Program lane clock */
1060 vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW14(port), 0x00760018);
1061 vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW23(port), 0x00400888);
1063 mutex_unlock(&dev_priv->sb_lock);
1066 void vlv_phy_reset_lanes(struct intel_encoder *encoder,
1067 const struct intel_crtc_state *old_crtc_state)
1069 struct intel_digital_port *dport = enc_to_dig_port(&encoder->base);
1070 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
1071 struct intel_crtc *crtc = to_intel_crtc(old_crtc_state->base.crtc);
1072 enum dpio_channel port = vlv_dport_to_channel(dport);
1073 enum pipe pipe = crtc->pipe;
1075 mutex_lock(&dev_priv->sb_lock);
1076 vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW0(port), 0x00000000);
1077 vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW1(port), 0x00e00060);
1078 mutex_unlock(&dev_priv->sb_lock);