2 * Copyright 2007 Dave Airlied
5 * Permission is hereby granted, free of charge, to any person obtaining a
6 * copy of this software and associated documentation files (the "Software"),
7 * to deal in the Software without restriction, including without limitation
8 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
9 * and/or sell copies of the Software, and to permit persons to whom the
10 * Software is furnished to do so, subject to the following conditions:
12 * The above copyright notice and this permission notice (including the next
13 * paragraph) shall be included in all copies or substantial portions of the
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * VA LINUX SYSTEMS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM, DAMAGES OR
20 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
21 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
22 * OTHER DEALINGS IN THE SOFTWARE.
25 * Authors: Dave Airlied <airlied@linux.ie>
26 * Ben Skeggs <darktama@iinet.net.au>
27 * Jeremy Kolb <jkolb@brandeis.edu>
30 #include <linux/dma-mapping.h>
31 #include <linux/swiotlb.h>
33 #include "nouveau_drv.h"
34 #include "nouveau_dma.h"
35 #include "nouveau_fence.h"
37 #include "nouveau_bo.h"
38 #include "nouveau_ttm.h"
39 #include "nouveau_gem.h"
40 #include "nouveau_mem.h"
41 #include "nouveau_vmm.h"
43 #include <nvif/class.h>
44 #include <nvif/if500b.h>
45 #include <nvif/if900b.h>
48 * NV10-NV40 tiling helpers
52 nv10_bo_update_tile_region(struct drm_device
*dev
, struct nouveau_drm_tile
*reg
,
53 u32 addr
, u32 size
, u32 pitch
, u32 flags
)
55 struct nouveau_drm
*drm
= nouveau_drm(dev
);
56 int i
= reg
- drm
->tile
.reg
;
57 struct nvkm_fb
*fb
= nvxx_fb(&drm
->client
.device
);
58 struct nvkm_fb_tile
*tile
= &fb
->tile
.region
[i
];
60 nouveau_fence_unref(®
->fence
);
63 nvkm_fb_tile_fini(fb
, i
, tile
);
66 nvkm_fb_tile_init(fb
, i
, addr
, size
, pitch
, flags
, tile
);
68 nvkm_fb_tile_prog(fb
, i
, tile
);
71 static struct nouveau_drm_tile
*
72 nv10_bo_get_tile_region(struct drm_device
*dev
, int i
)
74 struct nouveau_drm
*drm
= nouveau_drm(dev
);
75 struct nouveau_drm_tile
*tile
= &drm
->tile
.reg
[i
];
77 spin_lock(&drm
->tile
.lock
);
80 (!tile
->fence
|| nouveau_fence_done(tile
->fence
)))
85 spin_unlock(&drm
->tile
.lock
);
90 nv10_bo_put_tile_region(struct drm_device
*dev
, struct nouveau_drm_tile
*tile
,
91 struct dma_fence
*fence
)
93 struct nouveau_drm
*drm
= nouveau_drm(dev
);
96 spin_lock(&drm
->tile
.lock
);
97 tile
->fence
= (struct nouveau_fence
*)dma_fence_get(fence
);
99 spin_unlock(&drm
->tile
.lock
);
103 static struct nouveau_drm_tile
*
104 nv10_bo_set_tiling(struct drm_device
*dev
, u32 addr
,
105 u32 size
, u32 pitch
, u32 zeta
)
107 struct nouveau_drm
*drm
= nouveau_drm(dev
);
108 struct nvkm_fb
*fb
= nvxx_fb(&drm
->client
.device
);
109 struct nouveau_drm_tile
*tile
, *found
= NULL
;
112 for (i
= 0; i
< fb
->tile
.regions
; i
++) {
113 tile
= nv10_bo_get_tile_region(dev
, i
);
115 if (pitch
&& !found
) {
119 } else if (tile
&& fb
->tile
.region
[i
].pitch
) {
120 /* Kill an unused tile region. */
121 nv10_bo_update_tile_region(dev
, tile
, 0, 0, 0, 0);
124 nv10_bo_put_tile_region(dev
, tile
, NULL
);
128 nv10_bo_update_tile_region(dev
, found
, addr
, size
, pitch
, zeta
);
133 nouveau_bo_del_ttm(struct ttm_buffer_object
*bo
)
135 struct nouveau_drm
*drm
= nouveau_bdev(bo
->bdev
);
136 struct drm_device
*dev
= drm
->dev
;
137 struct nouveau_bo
*nvbo
= nouveau_bo(bo
);
139 if (unlikely(nvbo
->gem
.filp
))
140 DRM_ERROR("bo %p still attached to GEM object\n", bo
);
141 WARN_ON(nvbo
->pin_refcnt
> 0);
142 nv10_bo_put_tile_region(dev
, nvbo
->tile
, NULL
);
147 roundup_64(u64 x
, u32 y
)
155 nouveau_bo_fixup_align(struct nouveau_bo
*nvbo
, u32 flags
,
156 int *align
, u64
*size
)
158 struct nouveau_drm
*drm
= nouveau_bdev(nvbo
->bo
.bdev
);
159 struct nvif_device
*device
= &drm
->client
.device
;
161 if (device
->info
.family
< NV_DEVICE_INFO_V0_TESLA
) {
163 if (device
->info
.chipset
>= 0x40) {
165 *size
= roundup_64(*size
, 64 * nvbo
->mode
);
167 } else if (device
->info
.chipset
>= 0x30) {
169 *size
= roundup_64(*size
, 64 * nvbo
->mode
);
171 } else if (device
->info
.chipset
>= 0x20) {
173 *size
= roundup_64(*size
, 64 * nvbo
->mode
);
175 } else if (device
->info
.chipset
>= 0x10) {
177 *size
= roundup_64(*size
, 32 * nvbo
->mode
);
181 *size
= roundup_64(*size
, (1 << nvbo
->page
));
182 *align
= max((1 << nvbo
->page
), *align
);
185 *size
= roundup_64(*size
, PAGE_SIZE
);
189 nouveau_bo_new(struct nouveau_cli
*cli
, u64 size
, int align
,
190 uint32_t flags
, uint32_t tile_mode
, uint32_t tile_flags
,
191 struct sg_table
*sg
, struct reservation_object
*robj
,
192 struct nouveau_bo
**pnvbo
)
194 struct nouveau_drm
*drm
= cli
->drm
;
195 struct nouveau_bo
*nvbo
;
196 struct nvif_mmu
*mmu
= &cli
->mmu
;
197 struct nvif_vmm
*vmm
= &cli
->vmm
.vmm
;
199 int type
= ttm_bo_type_device
;
203 NV_WARN(drm
, "skipped size %016llx\n", size
);
208 type
= ttm_bo_type_sg
;
210 nvbo
= kzalloc(sizeof(struct nouveau_bo
), GFP_KERNEL
);
213 INIT_LIST_HEAD(&nvbo
->head
);
214 INIT_LIST_HEAD(&nvbo
->entry
);
215 INIT_LIST_HEAD(&nvbo
->vma_list
);
216 nvbo
->bo
.bdev
= &drm
->ttm
.bdev
;
219 /* This is confusing, and doesn't actually mean we want an uncached
220 * mapping, but is what NOUVEAU_GEM_DOMAIN_COHERENT gets translated
221 * into in nouveau_gem_new().
223 if (flags
& TTM_PL_FLAG_UNCACHED
) {
224 /* Determine if we can get a cache-coherent map, forcing
225 * uncached mapping if we can't.
227 if (!nouveau_drm_use_coherent_gpu_mapping(drm
))
228 nvbo
->force_coherent
= true;
231 if (cli
->device
.info
.family
>= NV_DEVICE_INFO_V0_FERMI
) {
232 nvbo
->kind
= (tile_flags
& 0x0000ff00) >> 8;
233 if (!nvif_mmu_kind_valid(mmu
, nvbo
->kind
)) {
238 nvbo
->comp
= mmu
->kind
[nvbo
->kind
] != nvbo
->kind
;
240 if (cli
->device
.info
.family
>= NV_DEVICE_INFO_V0_TESLA
) {
241 nvbo
->kind
= (tile_flags
& 0x00007f00) >> 8;
242 nvbo
->comp
= (tile_flags
& 0x00030000) >> 16;
243 if (!nvif_mmu_kind_valid(mmu
, nvbo
->kind
)) {
248 nvbo
->zeta
= (tile_flags
& 0x00000007);
250 nvbo
->mode
= tile_mode
;
251 nvbo
->contig
= !(tile_flags
& NOUVEAU_GEM_TILE_NONCONTIG
);
253 /* Determine the desirable target GPU page size for the buffer. */
254 for (i
= 0; i
< vmm
->page_nr
; i
++) {
255 /* Because we cannot currently allow VMM maps to fail
256 * during buffer migration, we need to determine page
257 * size for the buffer up-front, and pre-allocate its
260 * Skip page sizes that can't support needed domains.
262 if (cli
->device
.info
.family
> NV_DEVICE_INFO_V0_CURIE
&&
263 (flags
& TTM_PL_FLAG_VRAM
) && !vmm
->page
[i
].vram
)
265 if ((flags
& TTM_PL_FLAG_TT
) &&
266 (!vmm
->page
[i
].host
|| vmm
->page
[i
].shift
> PAGE_SHIFT
))
269 /* Select this page size if it's the first that supports
270 * the potential memory domains, or when it's compatible
271 * with the requested compression settings.
273 if (pi
< 0 || !nvbo
->comp
|| vmm
->page
[i
].comp
)
276 /* Stop once the buffer is larger than the current page size. */
277 if (size
>= 1ULL << vmm
->page
[i
].shift
)
284 /* Disable compression if suitable settings couldn't be found. */
285 if (nvbo
->comp
&& !vmm
->page
[pi
].comp
) {
286 if (mmu
->object
.oclass
>= NVIF_CLASS_MMU_GF100
)
287 nvbo
->kind
= mmu
->kind
[nvbo
->kind
];
290 nvbo
->page
= vmm
->page
[pi
].shift
;
292 nouveau_bo_fixup_align(nvbo
, flags
, &align
, &size
);
293 nvbo
->bo
.mem
.num_pages
= size
>> PAGE_SHIFT
;
294 nouveau_bo_placement_set(nvbo
, flags
, 0);
296 acc_size
= ttm_bo_dma_acc_size(&drm
->ttm
.bdev
, size
,
297 sizeof(struct nouveau_bo
));
299 ret
= ttm_bo_init(&drm
->ttm
.bdev
, &nvbo
->bo
, size
,
300 type
, &nvbo
->placement
,
301 align
>> PAGE_SHIFT
, false, NULL
, acc_size
, sg
,
302 robj
, nouveau_bo_del_ttm
);
304 /* ttm will call nouveau_bo_del_ttm if it fails.. */
313 set_placement_list(struct ttm_place
*pl
, unsigned *n
, uint32_t type
, uint32_t flags
)
317 if (type
& TTM_PL_FLAG_VRAM
)
318 pl
[(*n
)++].flags
= TTM_PL_FLAG_VRAM
| flags
;
319 if (type
& TTM_PL_FLAG_TT
)
320 pl
[(*n
)++].flags
= TTM_PL_FLAG_TT
| flags
;
321 if (type
& TTM_PL_FLAG_SYSTEM
)
322 pl
[(*n
)++].flags
= TTM_PL_FLAG_SYSTEM
| flags
;
326 set_placement_range(struct nouveau_bo
*nvbo
, uint32_t type
)
328 struct nouveau_drm
*drm
= nouveau_bdev(nvbo
->bo
.bdev
);
329 u32 vram_pages
= drm
->client
.device
.info
.ram_size
>> PAGE_SHIFT
;
330 unsigned i
, fpfn
, lpfn
;
332 if (drm
->client
.device
.info
.family
== NV_DEVICE_INFO_V0_CELSIUS
&&
333 nvbo
->mode
&& (type
& TTM_PL_FLAG_VRAM
) &&
334 nvbo
->bo
.mem
.num_pages
< vram_pages
/ 4) {
336 * Make sure that the color and depth buffers are handled
337 * by independent memory controller units. Up to a 9x
338 * speed up when alpha-blending and depth-test are enabled
342 fpfn
= vram_pages
/ 2;
346 lpfn
= vram_pages
/ 2;
348 for (i
= 0; i
< nvbo
->placement
.num_placement
; ++i
) {
349 nvbo
->placements
[i
].fpfn
= fpfn
;
350 nvbo
->placements
[i
].lpfn
= lpfn
;
352 for (i
= 0; i
< nvbo
->placement
.num_busy_placement
; ++i
) {
353 nvbo
->busy_placements
[i
].fpfn
= fpfn
;
354 nvbo
->busy_placements
[i
].lpfn
= lpfn
;
360 nouveau_bo_placement_set(struct nouveau_bo
*nvbo
, uint32_t type
, uint32_t busy
)
362 struct ttm_placement
*pl
= &nvbo
->placement
;
363 uint32_t flags
= (nvbo
->force_coherent
? TTM_PL_FLAG_UNCACHED
:
364 TTM_PL_MASK_CACHING
) |
365 (nvbo
->pin_refcnt
? TTM_PL_FLAG_NO_EVICT
: 0);
367 pl
->placement
= nvbo
->placements
;
368 set_placement_list(nvbo
->placements
, &pl
->num_placement
,
371 pl
->busy_placement
= nvbo
->busy_placements
;
372 set_placement_list(nvbo
->busy_placements
, &pl
->num_busy_placement
,
375 set_placement_range(nvbo
, type
);
379 nouveau_bo_pin(struct nouveau_bo
*nvbo
, uint32_t memtype
, bool contig
)
381 struct nouveau_drm
*drm
= nouveau_bdev(nvbo
->bo
.bdev
);
382 struct ttm_buffer_object
*bo
= &nvbo
->bo
;
383 bool force
= false, evict
= false;
386 ret
= ttm_bo_reserve(bo
, false, false, NULL
);
390 if (drm
->client
.device
.info
.family
>= NV_DEVICE_INFO_V0_TESLA
&&
391 memtype
== TTM_PL_FLAG_VRAM
&& contig
) {
399 if (nvbo
->pin_refcnt
) {
400 if (!(memtype
& (1 << bo
->mem
.mem_type
)) || evict
) {
401 NV_ERROR(drm
, "bo %p pinned elsewhere: "
402 "0x%08x vs 0x%08x\n", bo
,
403 1 << bo
->mem
.mem_type
, memtype
);
411 nouveau_bo_placement_set(nvbo
, TTM_PL_FLAG_TT
, 0);
412 ret
= nouveau_bo_validate(nvbo
, false, false);
418 nouveau_bo_placement_set(nvbo
, memtype
, 0);
420 /* drop pin_refcnt temporarily, so we don't trip the assertion
421 * in nouveau_bo_move() that makes sure we're not trying to
422 * move a pinned buffer
425 ret
= nouveau_bo_validate(nvbo
, false, false);
430 switch (bo
->mem
.mem_type
) {
432 drm
->gem
.vram_available
-= bo
->mem
.size
;
435 drm
->gem
.gart_available
-= bo
->mem
.size
;
443 nvbo
->contig
= false;
444 ttm_bo_unreserve(bo
);
449 nouveau_bo_unpin(struct nouveau_bo
*nvbo
)
451 struct nouveau_drm
*drm
= nouveau_bdev(nvbo
->bo
.bdev
);
452 struct ttm_buffer_object
*bo
= &nvbo
->bo
;
455 ret
= ttm_bo_reserve(bo
, false, false, NULL
);
459 ref
= --nvbo
->pin_refcnt
;
460 WARN_ON_ONCE(ref
< 0);
464 nouveau_bo_placement_set(nvbo
, bo
->mem
.placement
, 0);
466 ret
= nouveau_bo_validate(nvbo
, false, false);
468 switch (bo
->mem
.mem_type
) {
470 drm
->gem
.vram_available
+= bo
->mem
.size
;
473 drm
->gem
.gart_available
+= bo
->mem
.size
;
481 ttm_bo_unreserve(bo
);
486 nouveau_bo_map(struct nouveau_bo
*nvbo
)
490 ret
= ttm_bo_reserve(&nvbo
->bo
, false, false, NULL
);
494 ret
= ttm_bo_kmap(&nvbo
->bo
, 0, nvbo
->bo
.mem
.num_pages
, &nvbo
->kmap
);
496 ttm_bo_unreserve(&nvbo
->bo
);
501 nouveau_bo_unmap(struct nouveau_bo
*nvbo
)
506 ttm_bo_kunmap(&nvbo
->kmap
);
510 nouveau_bo_sync_for_device(struct nouveau_bo
*nvbo
)
512 struct nouveau_drm
*drm
= nouveau_bdev(nvbo
->bo
.bdev
);
513 struct ttm_dma_tt
*ttm_dma
= (struct ttm_dma_tt
*)nvbo
->bo
.ttm
;
519 /* Don't waste time looping if the object is coherent */
520 if (nvbo
->force_coherent
)
523 for (i
= 0; i
< ttm_dma
->ttm
.num_pages
; i
++)
524 dma_sync_single_for_device(drm
->dev
->dev
,
525 ttm_dma
->dma_address
[i
],
526 PAGE_SIZE
, DMA_TO_DEVICE
);
530 nouveau_bo_sync_for_cpu(struct nouveau_bo
*nvbo
)
532 struct nouveau_drm
*drm
= nouveau_bdev(nvbo
->bo
.bdev
);
533 struct ttm_dma_tt
*ttm_dma
= (struct ttm_dma_tt
*)nvbo
->bo
.ttm
;
539 /* Don't waste time looping if the object is coherent */
540 if (nvbo
->force_coherent
)
543 for (i
= 0; i
< ttm_dma
->ttm
.num_pages
; i
++)
544 dma_sync_single_for_cpu(drm
->dev
->dev
, ttm_dma
->dma_address
[i
],
545 PAGE_SIZE
, DMA_FROM_DEVICE
);
549 nouveau_bo_validate(struct nouveau_bo
*nvbo
, bool interruptible
,
552 struct ttm_operation_ctx ctx
= { interruptible
, no_wait_gpu
};
555 ret
= ttm_bo_validate(&nvbo
->bo
, &nvbo
->placement
, &ctx
);
559 nouveau_bo_sync_for_device(nvbo
);
565 nouveau_bo_wr16(struct nouveau_bo
*nvbo
, unsigned index
, u16 val
)
568 u16
*mem
= ttm_kmap_obj_virtual(&nvbo
->kmap
, &is_iomem
);
573 iowrite16_native(val
, (void __force __iomem
*)mem
);
579 nouveau_bo_rd32(struct nouveau_bo
*nvbo
, unsigned index
)
582 u32
*mem
= ttm_kmap_obj_virtual(&nvbo
->kmap
, &is_iomem
);
587 return ioread32_native((void __force __iomem
*)mem
);
593 nouveau_bo_wr32(struct nouveau_bo
*nvbo
, unsigned index
, u32 val
)
596 u32
*mem
= ttm_kmap_obj_virtual(&nvbo
->kmap
, &is_iomem
);
601 iowrite32_native(val
, (void __force __iomem
*)mem
);
606 static struct ttm_tt
*
607 nouveau_ttm_tt_create(struct ttm_bo_device
*bdev
, unsigned long size
,
608 uint32_t page_flags
, struct page
*dummy_read
)
610 #if IS_ENABLED(CONFIG_AGP)
611 struct nouveau_drm
*drm
= nouveau_bdev(bdev
);
613 if (drm
->agp
.bridge
) {
614 return ttm_agp_tt_create(bdev
, drm
->agp
.bridge
, size
,
615 page_flags
, dummy_read
);
619 return nouveau_sgdma_create_ttm(bdev
, size
, page_flags
, dummy_read
);
623 nouveau_bo_invalidate_caches(struct ttm_bo_device
*bdev
, uint32_t flags
)
625 /* We'll do this from user space. */
630 nouveau_bo_init_mem_type(struct ttm_bo_device
*bdev
, uint32_t type
,
631 struct ttm_mem_type_manager
*man
)
633 struct nouveau_drm
*drm
= nouveau_bdev(bdev
);
634 struct nvif_mmu
*mmu
= &drm
->client
.mmu
;
638 man
->flags
= TTM_MEMTYPE_FLAG_MAPPABLE
;
639 man
->available_caching
= TTM_PL_MASK_CACHING
;
640 man
->default_caching
= TTM_PL_FLAG_CACHED
;
643 man
->flags
= TTM_MEMTYPE_FLAG_FIXED
|
644 TTM_MEMTYPE_FLAG_MAPPABLE
;
645 man
->available_caching
= TTM_PL_FLAG_UNCACHED
|
647 man
->default_caching
= TTM_PL_FLAG_WC
;
649 if (drm
->client
.device
.info
.family
>= NV_DEVICE_INFO_V0_TESLA
) {
650 /* Some BARs do not support being ioremapped WC */
651 const u8 type
= mmu
->type
[drm
->ttm
.type_vram
].type
;
652 if (type
& NVIF_MEM_UNCACHED
) {
653 man
->available_caching
= TTM_PL_FLAG_UNCACHED
;
654 man
->default_caching
= TTM_PL_FLAG_UNCACHED
;
657 man
->func
= &nouveau_vram_manager
;
658 man
->io_reserve_fastpath
= false;
659 man
->use_io_reserve_lru
= true;
661 man
->func
= &ttm_bo_manager_func
;
665 if (drm
->client
.device
.info
.family
>= NV_DEVICE_INFO_V0_TESLA
)
666 man
->func
= &nouveau_gart_manager
;
668 if (!drm
->agp
.bridge
)
669 man
->func
= &nv04_gart_manager
;
671 man
->func
= &ttm_bo_manager_func
;
673 if (drm
->agp
.bridge
) {
674 man
->flags
= TTM_MEMTYPE_FLAG_MAPPABLE
;
675 man
->available_caching
= TTM_PL_FLAG_UNCACHED
|
677 man
->default_caching
= TTM_PL_FLAG_WC
;
679 man
->flags
= TTM_MEMTYPE_FLAG_MAPPABLE
|
680 TTM_MEMTYPE_FLAG_CMA
;
681 man
->available_caching
= TTM_PL_MASK_CACHING
;
682 man
->default_caching
= TTM_PL_FLAG_CACHED
;
693 nouveau_bo_evict_flags(struct ttm_buffer_object
*bo
, struct ttm_placement
*pl
)
695 struct nouveau_bo
*nvbo
= nouveau_bo(bo
);
697 switch (bo
->mem
.mem_type
) {
699 nouveau_bo_placement_set(nvbo
, TTM_PL_FLAG_TT
,
703 nouveau_bo_placement_set(nvbo
, TTM_PL_FLAG_SYSTEM
, 0);
707 *pl
= nvbo
->placement
;
712 nve0_bo_move_init(struct nouveau_channel
*chan
, u32 handle
)
714 int ret
= RING_SPACE(chan
, 2);
716 BEGIN_NVC0(chan
, NvSubCopy
, 0x0000, 1);
717 OUT_RING (chan
, handle
& 0x0000ffff);
724 nve0_bo_move_copy(struct nouveau_channel
*chan
, struct ttm_buffer_object
*bo
,
725 struct ttm_mem_reg
*old_reg
, struct ttm_mem_reg
*new_reg
)
727 struct nouveau_mem
*mem
= nouveau_mem(old_reg
);
728 int ret
= RING_SPACE(chan
, 10);
730 BEGIN_NVC0(chan
, NvSubCopy
, 0x0400, 8);
731 OUT_RING (chan
, upper_32_bits(mem
->vma
[0].addr
));
732 OUT_RING (chan
, lower_32_bits(mem
->vma
[0].addr
));
733 OUT_RING (chan
, upper_32_bits(mem
->vma
[1].addr
));
734 OUT_RING (chan
, lower_32_bits(mem
->vma
[1].addr
));
735 OUT_RING (chan
, PAGE_SIZE
);
736 OUT_RING (chan
, PAGE_SIZE
);
737 OUT_RING (chan
, PAGE_SIZE
);
738 OUT_RING (chan
, new_reg
->num_pages
);
739 BEGIN_IMC0(chan
, NvSubCopy
, 0x0300, 0x0386);
745 nvc0_bo_move_init(struct nouveau_channel
*chan
, u32 handle
)
747 int ret
= RING_SPACE(chan
, 2);
749 BEGIN_NVC0(chan
, NvSubCopy
, 0x0000, 1);
750 OUT_RING (chan
, handle
);
756 nvc0_bo_move_copy(struct nouveau_channel
*chan
, struct ttm_buffer_object
*bo
,
757 struct ttm_mem_reg
*old_reg
, struct ttm_mem_reg
*new_reg
)
759 struct nouveau_mem
*mem
= nouveau_mem(old_reg
);
760 u64 src_offset
= mem
->vma
[0].addr
;
761 u64 dst_offset
= mem
->vma
[1].addr
;
762 u32 page_count
= new_reg
->num_pages
;
765 page_count
= new_reg
->num_pages
;
767 int line_count
= (page_count
> 8191) ? 8191 : page_count
;
769 ret
= RING_SPACE(chan
, 11);
773 BEGIN_NVC0(chan
, NvSubCopy
, 0x030c, 8);
774 OUT_RING (chan
, upper_32_bits(src_offset
));
775 OUT_RING (chan
, lower_32_bits(src_offset
));
776 OUT_RING (chan
, upper_32_bits(dst_offset
));
777 OUT_RING (chan
, lower_32_bits(dst_offset
));
778 OUT_RING (chan
, PAGE_SIZE
);
779 OUT_RING (chan
, PAGE_SIZE
);
780 OUT_RING (chan
, PAGE_SIZE
);
781 OUT_RING (chan
, line_count
);
782 BEGIN_NVC0(chan
, NvSubCopy
, 0x0300, 1);
783 OUT_RING (chan
, 0x00000110);
785 page_count
-= line_count
;
786 src_offset
+= (PAGE_SIZE
* line_count
);
787 dst_offset
+= (PAGE_SIZE
* line_count
);
794 nvc0_bo_move_m2mf(struct nouveau_channel
*chan
, struct ttm_buffer_object
*bo
,
795 struct ttm_mem_reg
*old_reg
, struct ttm_mem_reg
*new_reg
)
797 struct nouveau_mem
*mem
= nouveau_mem(old_reg
);
798 u64 src_offset
= mem
->vma
[0].addr
;
799 u64 dst_offset
= mem
->vma
[1].addr
;
800 u32 page_count
= new_reg
->num_pages
;
803 page_count
= new_reg
->num_pages
;
805 int line_count
= (page_count
> 2047) ? 2047 : page_count
;
807 ret
= RING_SPACE(chan
, 12);
811 BEGIN_NVC0(chan
, NvSubCopy
, 0x0238, 2);
812 OUT_RING (chan
, upper_32_bits(dst_offset
));
813 OUT_RING (chan
, lower_32_bits(dst_offset
));
814 BEGIN_NVC0(chan
, NvSubCopy
, 0x030c, 6);
815 OUT_RING (chan
, upper_32_bits(src_offset
));
816 OUT_RING (chan
, lower_32_bits(src_offset
));
817 OUT_RING (chan
, PAGE_SIZE
); /* src_pitch */
818 OUT_RING (chan
, PAGE_SIZE
); /* dst_pitch */
819 OUT_RING (chan
, PAGE_SIZE
); /* line_length */
820 OUT_RING (chan
, line_count
);
821 BEGIN_NVC0(chan
, NvSubCopy
, 0x0300, 1);
822 OUT_RING (chan
, 0x00100110);
824 page_count
-= line_count
;
825 src_offset
+= (PAGE_SIZE
* line_count
);
826 dst_offset
+= (PAGE_SIZE
* line_count
);
833 nva3_bo_move_copy(struct nouveau_channel
*chan
, struct ttm_buffer_object
*bo
,
834 struct ttm_mem_reg
*old_reg
, struct ttm_mem_reg
*new_reg
)
836 struct nouveau_mem
*mem
= nouveau_mem(old_reg
);
837 u64 src_offset
= mem
->vma
[0].addr
;
838 u64 dst_offset
= mem
->vma
[1].addr
;
839 u32 page_count
= new_reg
->num_pages
;
842 page_count
= new_reg
->num_pages
;
844 int line_count
= (page_count
> 8191) ? 8191 : page_count
;
846 ret
= RING_SPACE(chan
, 11);
850 BEGIN_NV04(chan
, NvSubCopy
, 0x030c, 8);
851 OUT_RING (chan
, upper_32_bits(src_offset
));
852 OUT_RING (chan
, lower_32_bits(src_offset
));
853 OUT_RING (chan
, upper_32_bits(dst_offset
));
854 OUT_RING (chan
, lower_32_bits(dst_offset
));
855 OUT_RING (chan
, PAGE_SIZE
);
856 OUT_RING (chan
, PAGE_SIZE
);
857 OUT_RING (chan
, PAGE_SIZE
);
858 OUT_RING (chan
, line_count
);
859 BEGIN_NV04(chan
, NvSubCopy
, 0x0300, 1);
860 OUT_RING (chan
, 0x00000110);
862 page_count
-= line_count
;
863 src_offset
+= (PAGE_SIZE
* line_count
);
864 dst_offset
+= (PAGE_SIZE
* line_count
);
871 nv98_bo_move_exec(struct nouveau_channel
*chan
, struct ttm_buffer_object
*bo
,
872 struct ttm_mem_reg
*old_reg
, struct ttm_mem_reg
*new_reg
)
874 struct nouveau_mem
*mem
= nouveau_mem(old_reg
);
875 int ret
= RING_SPACE(chan
, 7);
877 BEGIN_NV04(chan
, NvSubCopy
, 0x0320, 6);
878 OUT_RING (chan
, upper_32_bits(mem
->vma
[0].addr
));
879 OUT_RING (chan
, lower_32_bits(mem
->vma
[0].addr
));
880 OUT_RING (chan
, upper_32_bits(mem
->vma
[1].addr
));
881 OUT_RING (chan
, lower_32_bits(mem
->vma
[1].addr
));
882 OUT_RING (chan
, 0x00000000 /* COPY */);
883 OUT_RING (chan
, new_reg
->num_pages
<< PAGE_SHIFT
);
889 nv84_bo_move_exec(struct nouveau_channel
*chan
, struct ttm_buffer_object
*bo
,
890 struct ttm_mem_reg
*old_reg
, struct ttm_mem_reg
*new_reg
)
892 struct nouveau_mem
*mem
= nouveau_mem(old_reg
);
893 int ret
= RING_SPACE(chan
, 7);
895 BEGIN_NV04(chan
, NvSubCopy
, 0x0304, 6);
896 OUT_RING (chan
, new_reg
->num_pages
<< PAGE_SHIFT
);
897 OUT_RING (chan
, upper_32_bits(mem
->vma
[0].addr
));
898 OUT_RING (chan
, lower_32_bits(mem
->vma
[0].addr
));
899 OUT_RING (chan
, upper_32_bits(mem
->vma
[1].addr
));
900 OUT_RING (chan
, lower_32_bits(mem
->vma
[1].addr
));
901 OUT_RING (chan
, 0x00000000 /* MODE_COPY, QUERY_NONE */);
907 nv50_bo_move_init(struct nouveau_channel
*chan
, u32 handle
)
909 int ret
= RING_SPACE(chan
, 6);
911 BEGIN_NV04(chan
, NvSubCopy
, 0x0000, 1);
912 OUT_RING (chan
, handle
);
913 BEGIN_NV04(chan
, NvSubCopy
, 0x0180, 3);
914 OUT_RING (chan
, chan
->drm
->ntfy
.handle
);
915 OUT_RING (chan
, chan
->vram
.handle
);
916 OUT_RING (chan
, chan
->vram
.handle
);
923 nv50_bo_move_m2mf(struct nouveau_channel
*chan
, struct ttm_buffer_object
*bo
,
924 struct ttm_mem_reg
*old_reg
, struct ttm_mem_reg
*new_reg
)
926 struct nouveau_mem
*mem
= nouveau_mem(old_reg
);
927 u64 length
= (new_reg
->num_pages
<< PAGE_SHIFT
);
928 u64 src_offset
= mem
->vma
[0].addr
;
929 u64 dst_offset
= mem
->vma
[1].addr
;
930 int src_tiled
= !!mem
->kind
;
931 int dst_tiled
= !!nouveau_mem(new_reg
)->kind
;
935 u32 amount
, stride
, height
;
937 ret
= RING_SPACE(chan
, 18 + 6 * (src_tiled
+ dst_tiled
));
941 amount
= min(length
, (u64
)(4 * 1024 * 1024));
943 height
= amount
/ stride
;
946 BEGIN_NV04(chan
, NvSubCopy
, 0x0200, 7);
949 OUT_RING (chan
, stride
);
950 OUT_RING (chan
, height
);
955 BEGIN_NV04(chan
, NvSubCopy
, 0x0200, 1);
959 BEGIN_NV04(chan
, NvSubCopy
, 0x021c, 7);
962 OUT_RING (chan
, stride
);
963 OUT_RING (chan
, height
);
968 BEGIN_NV04(chan
, NvSubCopy
, 0x021c, 1);
972 BEGIN_NV04(chan
, NvSubCopy
, 0x0238, 2);
973 OUT_RING (chan
, upper_32_bits(src_offset
));
974 OUT_RING (chan
, upper_32_bits(dst_offset
));
975 BEGIN_NV04(chan
, NvSubCopy
, 0x030c, 8);
976 OUT_RING (chan
, lower_32_bits(src_offset
));
977 OUT_RING (chan
, lower_32_bits(dst_offset
));
978 OUT_RING (chan
, stride
);
979 OUT_RING (chan
, stride
);
980 OUT_RING (chan
, stride
);
981 OUT_RING (chan
, height
);
982 OUT_RING (chan
, 0x00000101);
983 OUT_RING (chan
, 0x00000000);
984 BEGIN_NV04(chan
, NvSubCopy
, NV_MEMORY_TO_MEMORY_FORMAT_NOP
, 1);
988 src_offset
+= amount
;
989 dst_offset
+= amount
;
996 nv04_bo_move_init(struct nouveau_channel
*chan
, u32 handle
)
998 int ret
= RING_SPACE(chan
, 4);
1000 BEGIN_NV04(chan
, NvSubCopy
, 0x0000, 1);
1001 OUT_RING (chan
, handle
);
1002 BEGIN_NV04(chan
, NvSubCopy
, 0x0180, 1);
1003 OUT_RING (chan
, chan
->drm
->ntfy
.handle
);
1009 static inline uint32_t
1010 nouveau_bo_mem_ctxdma(struct ttm_buffer_object
*bo
,
1011 struct nouveau_channel
*chan
, struct ttm_mem_reg
*reg
)
1013 if (reg
->mem_type
== TTM_PL_TT
)
1015 return chan
->vram
.handle
;
1019 nv04_bo_move_m2mf(struct nouveau_channel
*chan
, struct ttm_buffer_object
*bo
,
1020 struct ttm_mem_reg
*old_reg
, struct ttm_mem_reg
*new_reg
)
1022 u32 src_offset
= old_reg
->start
<< PAGE_SHIFT
;
1023 u32 dst_offset
= new_reg
->start
<< PAGE_SHIFT
;
1024 u32 page_count
= new_reg
->num_pages
;
1027 ret
= RING_SPACE(chan
, 3);
1031 BEGIN_NV04(chan
, NvSubCopy
, NV_MEMORY_TO_MEMORY_FORMAT_DMA_SOURCE
, 2);
1032 OUT_RING (chan
, nouveau_bo_mem_ctxdma(bo
, chan
, old_reg
));
1033 OUT_RING (chan
, nouveau_bo_mem_ctxdma(bo
, chan
, new_reg
));
1035 page_count
= new_reg
->num_pages
;
1036 while (page_count
) {
1037 int line_count
= (page_count
> 2047) ? 2047 : page_count
;
1039 ret
= RING_SPACE(chan
, 11);
1043 BEGIN_NV04(chan
, NvSubCopy
,
1044 NV_MEMORY_TO_MEMORY_FORMAT_OFFSET_IN
, 8);
1045 OUT_RING (chan
, src_offset
);
1046 OUT_RING (chan
, dst_offset
);
1047 OUT_RING (chan
, PAGE_SIZE
); /* src_pitch */
1048 OUT_RING (chan
, PAGE_SIZE
); /* dst_pitch */
1049 OUT_RING (chan
, PAGE_SIZE
); /* line_length */
1050 OUT_RING (chan
, line_count
);
1051 OUT_RING (chan
, 0x00000101);
1052 OUT_RING (chan
, 0x00000000);
1053 BEGIN_NV04(chan
, NvSubCopy
, NV_MEMORY_TO_MEMORY_FORMAT_NOP
, 1);
1056 page_count
-= line_count
;
1057 src_offset
+= (PAGE_SIZE
* line_count
);
1058 dst_offset
+= (PAGE_SIZE
* line_count
);
1065 nouveau_bo_move_prep(struct nouveau_drm
*drm
, struct ttm_buffer_object
*bo
,
1066 struct ttm_mem_reg
*reg
)
1068 struct nouveau_mem
*old_mem
= nouveau_mem(&bo
->mem
);
1069 struct nouveau_mem
*new_mem
= nouveau_mem(reg
);
1070 struct nvif_vmm
*vmm
= &drm
->client
.vmm
.vmm
;
1073 ret
= nvif_vmm_get(vmm
, LAZY
, false, old_mem
->mem
.page
, 0,
1074 old_mem
->mem
.size
, &old_mem
->vma
[0]);
1078 ret
= nvif_vmm_get(vmm
, LAZY
, false, new_mem
->mem
.page
, 0,
1079 new_mem
->mem
.size
, &old_mem
->vma
[1]);
1083 ret
= nouveau_mem_map(old_mem
, vmm
, &old_mem
->vma
[0]);
1087 ret
= nouveau_mem_map(new_mem
, vmm
, &old_mem
->vma
[1]);
1090 nvif_vmm_put(vmm
, &old_mem
->vma
[1]);
1091 nvif_vmm_put(vmm
, &old_mem
->vma
[0]);
1097 nouveau_bo_move_m2mf(struct ttm_buffer_object
*bo
, int evict
, bool intr
,
1098 bool no_wait_gpu
, struct ttm_mem_reg
*new_reg
)
1100 struct nouveau_drm
*drm
= nouveau_bdev(bo
->bdev
);
1101 struct nouveau_channel
*chan
= drm
->ttm
.chan
;
1102 struct nouveau_cli
*cli
= (void *)chan
->user
.client
;
1103 struct nouveau_fence
*fence
;
1106 /* create temporary vmas for the transfer and attach them to the
1107 * old nvkm_mem node, these will get cleaned up after ttm has
1108 * destroyed the ttm_mem_reg
1110 if (drm
->client
.device
.info
.family
>= NV_DEVICE_INFO_V0_TESLA
) {
1111 ret
= nouveau_bo_move_prep(drm
, bo
, new_reg
);
1116 mutex_lock_nested(&cli
->mutex
, SINGLE_DEPTH_NESTING
);
1117 ret
= nouveau_fence_sync(nouveau_bo(bo
), chan
, true, intr
);
1119 ret
= drm
->ttm
.move(chan
, bo
, &bo
->mem
, new_reg
);
1121 ret
= nouveau_fence_new(chan
, false, &fence
);
1123 ret
= ttm_bo_move_accel_cleanup(bo
,
1127 nouveau_fence_unref(&fence
);
1131 mutex_unlock(&cli
->mutex
);
1136 nouveau_bo_move_init(struct nouveau_drm
*drm
)
1138 static const struct {
1142 int (*exec
)(struct nouveau_channel
*,
1143 struct ttm_buffer_object
*,
1144 struct ttm_mem_reg
*, struct ttm_mem_reg
*);
1145 int (*init
)(struct nouveau_channel
*, u32 handle
);
1147 { "COPY", 4, 0xc1b5, nve0_bo_move_copy
, nve0_bo_move_init
},
1148 { "GRCE", 0, 0xc1b5, nve0_bo_move_copy
, nvc0_bo_move_init
},
1149 { "COPY", 4, 0xc0b5, nve0_bo_move_copy
, nve0_bo_move_init
},
1150 { "GRCE", 0, 0xc0b5, nve0_bo_move_copy
, nvc0_bo_move_init
},
1151 { "COPY", 4, 0xb0b5, nve0_bo_move_copy
, nve0_bo_move_init
},
1152 { "GRCE", 0, 0xb0b5, nve0_bo_move_copy
, nvc0_bo_move_init
},
1153 { "COPY", 4, 0xa0b5, nve0_bo_move_copy
, nve0_bo_move_init
},
1154 { "GRCE", 0, 0xa0b5, nve0_bo_move_copy
, nvc0_bo_move_init
},
1155 { "COPY1", 5, 0x90b8, nvc0_bo_move_copy
, nvc0_bo_move_init
},
1156 { "COPY0", 4, 0x90b5, nvc0_bo_move_copy
, nvc0_bo_move_init
},
1157 { "COPY", 0, 0x85b5, nva3_bo_move_copy
, nv50_bo_move_init
},
1158 { "CRYPT", 0, 0x74c1, nv84_bo_move_exec
, nv50_bo_move_init
},
1159 { "M2MF", 0, 0x9039, nvc0_bo_move_m2mf
, nvc0_bo_move_init
},
1160 { "M2MF", 0, 0x5039, nv50_bo_move_m2mf
, nv50_bo_move_init
},
1161 { "M2MF", 0, 0x0039, nv04_bo_move_m2mf
, nv04_bo_move_init
},
1163 { "CRYPT", 0, 0x88b4, nv98_bo_move_exec
, nv50_bo_move_init
},
1164 }, *mthd
= _methods
;
1165 const char *name
= "CPU";
1169 struct nouveau_channel
*chan
;
1174 chan
= drm
->channel
;
1178 ret
= nvif_object_init(&chan
->user
,
1179 mthd
->oclass
| (mthd
->engine
<< 16),
1180 mthd
->oclass
, NULL
, 0,
1183 ret
= mthd
->init(chan
, drm
->ttm
.copy
.handle
);
1185 nvif_object_fini(&drm
->ttm
.copy
);
1189 drm
->ttm
.move
= mthd
->exec
;
1190 drm
->ttm
.chan
= chan
;
1194 } while ((++mthd
)->exec
);
1196 NV_INFO(drm
, "MM: using %s for buffer copies\n", name
);
1200 nouveau_bo_move_flipd(struct ttm_buffer_object
*bo
, bool evict
, bool intr
,
1201 bool no_wait_gpu
, struct ttm_mem_reg
*new_reg
)
1203 struct ttm_operation_ctx ctx
= { intr
, no_wait_gpu
};
1204 struct ttm_place placement_memtype
= {
1207 .flags
= TTM_PL_FLAG_TT
| TTM_PL_MASK_CACHING
1209 struct ttm_placement placement
;
1210 struct ttm_mem_reg tmp_reg
;
1213 placement
.num_placement
= placement
.num_busy_placement
= 1;
1214 placement
.placement
= placement
.busy_placement
= &placement_memtype
;
1217 tmp_reg
.mm_node
= NULL
;
1218 ret
= ttm_bo_mem_space(bo
, &placement
, &tmp_reg
, &ctx
);
1222 ret
= ttm_tt_bind(bo
->ttm
, &tmp_reg
, &ctx
);
1226 ret
= nouveau_bo_move_m2mf(bo
, true, intr
, no_wait_gpu
, &tmp_reg
);
1230 ret
= ttm_bo_move_ttm(bo
, &ctx
, new_reg
);
1232 ttm_bo_mem_put(bo
, &tmp_reg
);
1237 nouveau_bo_move_flips(struct ttm_buffer_object
*bo
, bool evict
, bool intr
,
1238 bool no_wait_gpu
, struct ttm_mem_reg
*new_reg
)
1240 struct ttm_operation_ctx ctx
= { intr
, no_wait_gpu
};
1241 struct ttm_place placement_memtype
= {
1244 .flags
= TTM_PL_FLAG_TT
| TTM_PL_MASK_CACHING
1246 struct ttm_placement placement
;
1247 struct ttm_mem_reg tmp_reg
;
1250 placement
.num_placement
= placement
.num_busy_placement
= 1;
1251 placement
.placement
= placement
.busy_placement
= &placement_memtype
;
1254 tmp_reg
.mm_node
= NULL
;
1255 ret
= ttm_bo_mem_space(bo
, &placement
, &tmp_reg
, &ctx
);
1259 ret
= ttm_bo_move_ttm(bo
, &ctx
, &tmp_reg
);
1263 ret
= nouveau_bo_move_m2mf(bo
, true, intr
, no_wait_gpu
, new_reg
);
1268 ttm_bo_mem_put(bo
, &tmp_reg
);
1273 nouveau_bo_move_ntfy(struct ttm_buffer_object
*bo
, bool evict
,
1274 struct ttm_mem_reg
*new_reg
)
1276 struct nouveau_mem
*mem
= new_reg
? nouveau_mem(new_reg
) : NULL
;
1277 struct nouveau_bo
*nvbo
= nouveau_bo(bo
);
1278 struct nouveau_vma
*vma
;
1280 /* ttm can now (stupidly) pass the driver bos it didn't create... */
1281 if (bo
->destroy
!= nouveau_bo_del_ttm
)
1284 if (mem
&& new_reg
->mem_type
!= TTM_PL_SYSTEM
&&
1285 mem
->mem
.page
== nvbo
->page
) {
1286 list_for_each_entry(vma
, &nvbo
->vma_list
, head
) {
1287 nouveau_vma_map(vma
, mem
);
1290 list_for_each_entry(vma
, &nvbo
->vma_list
, head
) {
1291 WARN_ON(ttm_bo_wait(bo
, false, false));
1292 nouveau_vma_unmap(vma
);
1298 nouveau_bo_vm_bind(struct ttm_buffer_object
*bo
, struct ttm_mem_reg
*new_reg
,
1299 struct nouveau_drm_tile
**new_tile
)
1301 struct nouveau_drm
*drm
= nouveau_bdev(bo
->bdev
);
1302 struct drm_device
*dev
= drm
->dev
;
1303 struct nouveau_bo
*nvbo
= nouveau_bo(bo
);
1304 u64 offset
= new_reg
->start
<< PAGE_SHIFT
;
1307 if (new_reg
->mem_type
!= TTM_PL_VRAM
)
1310 if (drm
->client
.device
.info
.family
>= NV_DEVICE_INFO_V0_CELSIUS
) {
1311 *new_tile
= nv10_bo_set_tiling(dev
, offset
, new_reg
->size
,
1312 nvbo
->mode
, nvbo
->zeta
);
1319 nouveau_bo_vm_cleanup(struct ttm_buffer_object
*bo
,
1320 struct nouveau_drm_tile
*new_tile
,
1321 struct nouveau_drm_tile
**old_tile
)
1323 struct nouveau_drm
*drm
= nouveau_bdev(bo
->bdev
);
1324 struct drm_device
*dev
= drm
->dev
;
1325 struct dma_fence
*fence
= reservation_object_get_excl(bo
->resv
);
1327 nv10_bo_put_tile_region(dev
, *old_tile
, fence
);
1328 *old_tile
= new_tile
;
1332 nouveau_bo_move(struct ttm_buffer_object
*bo
, bool evict
,
1333 struct ttm_operation_ctx
*ctx
,
1334 struct ttm_mem_reg
*new_reg
)
1336 struct nouveau_drm
*drm
= nouveau_bdev(bo
->bdev
);
1337 struct nouveau_bo
*nvbo
= nouveau_bo(bo
);
1338 struct ttm_mem_reg
*old_reg
= &bo
->mem
;
1339 struct nouveau_drm_tile
*new_tile
= NULL
;
1342 ret
= ttm_bo_wait(bo
, ctx
->interruptible
, ctx
->no_wait_gpu
);
1346 if (nvbo
->pin_refcnt
)
1347 NV_WARN(drm
, "Moving pinned object %p!\n", nvbo
);
1349 if (drm
->client
.device
.info
.family
< NV_DEVICE_INFO_V0_TESLA
) {
1350 ret
= nouveau_bo_vm_bind(bo
, new_reg
, &new_tile
);
1356 if (old_reg
->mem_type
== TTM_PL_SYSTEM
&& !bo
->ttm
) {
1357 BUG_ON(bo
->mem
.mm_node
!= NULL
);
1359 new_reg
->mm_node
= NULL
;
1363 /* Hardware assisted copy. */
1364 if (drm
->ttm
.move
) {
1365 if (new_reg
->mem_type
== TTM_PL_SYSTEM
)
1366 ret
= nouveau_bo_move_flipd(bo
, evict
,
1368 ctx
->no_wait_gpu
, new_reg
);
1369 else if (old_reg
->mem_type
== TTM_PL_SYSTEM
)
1370 ret
= nouveau_bo_move_flips(bo
, evict
,
1372 ctx
->no_wait_gpu
, new_reg
);
1374 ret
= nouveau_bo_move_m2mf(bo
, evict
,
1376 ctx
->no_wait_gpu
, new_reg
);
1381 /* Fallback to software copy. */
1382 ret
= ttm_bo_wait(bo
, ctx
->interruptible
, ctx
->no_wait_gpu
);
1384 ret
= ttm_bo_move_memcpy(bo
, ctx
, new_reg
);
1387 if (drm
->client
.device
.info
.family
< NV_DEVICE_INFO_V0_TESLA
) {
1389 nouveau_bo_vm_cleanup(bo
, NULL
, &new_tile
);
1391 nouveau_bo_vm_cleanup(bo
, new_tile
, &nvbo
->tile
);
1398 nouveau_bo_verify_access(struct ttm_buffer_object
*bo
, struct file
*filp
)
1400 struct nouveau_bo
*nvbo
= nouveau_bo(bo
);
1402 return drm_vma_node_verify_access(&nvbo
->gem
.vma_node
,
1403 filp
->private_data
);
1407 nouveau_ttm_io_mem_reserve(struct ttm_bo_device
*bdev
, struct ttm_mem_reg
*reg
)
1409 struct ttm_mem_type_manager
*man
= &bdev
->man
[reg
->mem_type
];
1410 struct nouveau_drm
*drm
= nouveau_bdev(bdev
);
1411 struct nvkm_device
*device
= nvxx_device(&drm
->client
.device
);
1412 struct nouveau_mem
*mem
= nouveau_mem(reg
);
1414 reg
->bus
.addr
= NULL
;
1415 reg
->bus
.offset
= 0;
1416 reg
->bus
.size
= reg
->num_pages
<< PAGE_SHIFT
;
1418 reg
->bus
.is_iomem
= false;
1419 if (!(man
->flags
& TTM_MEMTYPE_FLAG_MAPPABLE
))
1421 switch (reg
->mem_type
) {
1426 #if IS_ENABLED(CONFIG_AGP)
1427 if (drm
->agp
.bridge
) {
1428 reg
->bus
.offset
= reg
->start
<< PAGE_SHIFT
;
1429 reg
->bus
.base
= drm
->agp
.base
;
1430 reg
->bus
.is_iomem
= !drm
->agp
.cma
;
1433 if (drm
->client
.mem
->oclass
< NVIF_CLASS_MEM_NV50
|| !mem
->kind
)
1436 /* fallthrough, tiled memory */
1438 reg
->bus
.offset
= reg
->start
<< PAGE_SHIFT
;
1439 reg
->bus
.base
= device
->func
->resource_addr(device
, 1);
1440 reg
->bus
.is_iomem
= true;
1441 if (drm
->client
.mem
->oclass
>= NVIF_CLASS_MEM_NV50
) {
1443 struct nv50_mem_map_v0 nv50
;
1444 struct gf100_mem_map_v0 gf100
;
1450 switch (mem
->mem
.object
.oclass
) {
1451 case NVIF_CLASS_MEM_NV50
:
1452 args
.nv50
.version
= 0;
1454 args
.nv50
.kind
= mem
->kind
;
1455 args
.nv50
.comp
= mem
->comp
;
1456 argc
= sizeof(args
.nv50
);
1458 case NVIF_CLASS_MEM_GF100
:
1459 args
.gf100
.version
= 0;
1461 args
.gf100
.kind
= mem
->kind
;
1462 argc
= sizeof(args
.gf100
);
1469 ret
= nvif_object_map_handle(&mem
->mem
.object
,
1473 return ret
? ret
: -EINVAL
;
1476 reg
->bus
.offset
= handle
;
1486 nouveau_ttm_io_mem_free(struct ttm_bo_device
*bdev
, struct ttm_mem_reg
*reg
)
1488 struct nouveau_drm
*drm
= nouveau_bdev(bdev
);
1489 struct nouveau_mem
*mem
= nouveau_mem(reg
);
1491 if (drm
->client
.mem
->oclass
>= NVIF_CLASS_MEM_NV50
) {
1492 switch (reg
->mem_type
) {
1495 nvif_object_unmap_handle(&mem
->mem
.object
);
1498 nvif_object_unmap_handle(&mem
->mem
.object
);
1507 nouveau_ttm_fault_reserve_notify(struct ttm_buffer_object
*bo
)
1509 struct nouveau_drm
*drm
= nouveau_bdev(bo
->bdev
);
1510 struct nouveau_bo
*nvbo
= nouveau_bo(bo
);
1511 struct nvkm_device
*device
= nvxx_device(&drm
->client
.device
);
1512 u32 mappable
= device
->func
->resource_size(device
, 1) >> PAGE_SHIFT
;
1515 /* as long as the bo isn't in vram, and isn't tiled, we've got
1516 * nothing to do here.
1518 if (bo
->mem
.mem_type
!= TTM_PL_VRAM
) {
1519 if (drm
->client
.device
.info
.family
< NV_DEVICE_INFO_V0_TESLA
||
1523 if (bo
->mem
.mem_type
== TTM_PL_SYSTEM
) {
1524 nouveau_bo_placement_set(nvbo
, TTM_PL_TT
, 0);
1526 ret
= nouveau_bo_validate(nvbo
, false, false);
1533 /* make sure bo is in mappable vram */
1534 if (drm
->client
.device
.info
.family
>= NV_DEVICE_INFO_V0_TESLA
||
1535 bo
->mem
.start
+ bo
->mem
.num_pages
< mappable
)
1538 for (i
= 0; i
< nvbo
->placement
.num_placement
; ++i
) {
1539 nvbo
->placements
[i
].fpfn
= 0;
1540 nvbo
->placements
[i
].lpfn
= mappable
;
1543 for (i
= 0; i
< nvbo
->placement
.num_busy_placement
; ++i
) {
1544 nvbo
->busy_placements
[i
].fpfn
= 0;
1545 nvbo
->busy_placements
[i
].lpfn
= mappable
;
1548 nouveau_bo_placement_set(nvbo
, TTM_PL_FLAG_VRAM
, 0);
1549 return nouveau_bo_validate(nvbo
, false, false);
1553 nouveau_ttm_tt_populate(struct ttm_tt
*ttm
, struct ttm_operation_ctx
*ctx
)
1555 struct ttm_dma_tt
*ttm_dma
= (void *)ttm
;
1556 struct nouveau_drm
*drm
;
1560 bool slave
= !!(ttm
->page_flags
& TTM_PAGE_FLAG_SG
);
1562 if (ttm
->state
!= tt_unpopulated
)
1565 if (slave
&& ttm
->sg
) {
1566 /* make userspace faulting work */
1567 drm_prime_sg_to_page_addr_arrays(ttm
->sg
, ttm
->pages
,
1568 ttm_dma
->dma_address
, ttm
->num_pages
);
1569 ttm
->state
= tt_unbound
;
1573 drm
= nouveau_bdev(ttm
->bdev
);
1574 dev
= drm
->dev
->dev
;
1576 #if IS_ENABLED(CONFIG_AGP)
1577 if (drm
->agp
.bridge
) {
1578 return ttm_agp_tt_populate(ttm
, ctx
);
1582 #if IS_ENABLED(CONFIG_SWIOTLB) && IS_ENABLED(CONFIG_X86)
1583 if (swiotlb_nr_tbl()) {
1584 return ttm_dma_populate((void *)ttm
, dev
, ctx
);
1588 r
= ttm_pool_populate(ttm
, ctx
);
1593 for (i
= 0; i
< ttm
->num_pages
; i
++) {
1596 addr
= dma_map_page(dev
, ttm
->pages
[i
], 0, PAGE_SIZE
,
1599 if (dma_mapping_error(dev
, addr
)) {
1601 dma_unmap_page(dev
, ttm_dma
->dma_address
[i
],
1602 PAGE_SIZE
, DMA_BIDIRECTIONAL
);
1603 ttm_dma
->dma_address
[i
] = 0;
1605 ttm_pool_unpopulate(ttm
);
1609 ttm_dma
->dma_address
[i
] = addr
;
1615 nouveau_ttm_tt_unpopulate(struct ttm_tt
*ttm
)
1617 struct ttm_dma_tt
*ttm_dma
= (void *)ttm
;
1618 struct nouveau_drm
*drm
;
1621 bool slave
= !!(ttm
->page_flags
& TTM_PAGE_FLAG_SG
);
1626 drm
= nouveau_bdev(ttm
->bdev
);
1627 dev
= drm
->dev
->dev
;
1629 #if IS_ENABLED(CONFIG_AGP)
1630 if (drm
->agp
.bridge
) {
1631 ttm_agp_tt_unpopulate(ttm
);
1636 #if IS_ENABLED(CONFIG_SWIOTLB) && IS_ENABLED(CONFIG_X86)
1637 if (swiotlb_nr_tbl()) {
1638 ttm_dma_unpopulate((void *)ttm
, dev
);
1643 for (i
= 0; i
< ttm
->num_pages
; i
++) {
1644 if (ttm_dma
->dma_address
[i
]) {
1645 dma_unmap_page(dev
, ttm_dma
->dma_address
[i
], PAGE_SIZE
,
1650 ttm_pool_unpopulate(ttm
);
1654 nouveau_bo_fence(struct nouveau_bo
*nvbo
, struct nouveau_fence
*fence
, bool exclusive
)
1656 struct reservation_object
*resv
= nvbo
->bo
.resv
;
1659 reservation_object_add_excl_fence(resv
, &fence
->base
);
1661 reservation_object_add_shared_fence(resv
, &fence
->base
);
1664 struct ttm_bo_driver nouveau_bo_driver
= {
1665 .ttm_tt_create
= &nouveau_ttm_tt_create
,
1666 .ttm_tt_populate
= &nouveau_ttm_tt_populate
,
1667 .ttm_tt_unpopulate
= &nouveau_ttm_tt_unpopulate
,
1668 .invalidate_caches
= nouveau_bo_invalidate_caches
,
1669 .init_mem_type
= nouveau_bo_init_mem_type
,
1670 .eviction_valuable
= ttm_bo_eviction_valuable
,
1671 .evict_flags
= nouveau_bo_evict_flags
,
1672 .move_notify
= nouveau_bo_move_ntfy
,
1673 .move
= nouveau_bo_move
,
1674 .verify_access
= nouveau_bo_verify_access
,
1675 .fault_reserve_notify
= &nouveau_ttm_fault_reserve_notify
,
1676 .io_mem_reserve
= &nouveau_ttm_io_mem_reserve
,
1677 .io_mem_free
= &nouveau_ttm_io_mem_free
,