Merge tag 'for_linus' of git://git.kernel.org/pub/scm/linux/kernel/git/mst/vhost
[cris-mirror.git] / drivers / gpu / drm / vmwgfx / vmwgfx_resource.c
blob200904ff9a221a0f372d7c20a7817d8bda9d8060
1 /**************************************************************************
3 * Copyright © 2009-2015 VMware, Inc., Palo Alto, CA., USA
4 * All Rights Reserved.
6 * Permission is hereby granted, free of charge, to any person obtaining a
7 * copy of this software and associated documentation files (the
8 * "Software"), to deal in the Software without restriction, including
9 * without limitation the rights to use, copy, modify, merge, publish,
10 * distribute, sub license, and/or sell copies of the Software, and to
11 * permit persons to whom the Software is furnished to do so, subject to
12 * the following conditions:
14 * The above copyright notice and this permission notice (including the
15 * next paragraph) shall be included in all copies or substantial portions
16 * of the Software.
18 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
19 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
20 * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
21 * THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM,
22 * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
23 * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
24 * USE OR OTHER DEALINGS IN THE SOFTWARE.
26 **************************************************************************/
28 #include "vmwgfx_drv.h"
29 #include <drm/vmwgfx_drm.h>
30 #include <drm/ttm/ttm_object.h>
31 #include <drm/ttm/ttm_placement.h>
32 #include <drm/drmP.h>
33 #include "vmwgfx_resource_priv.h"
34 #include "vmwgfx_binding.h"
36 #define VMW_RES_EVICT_ERR_COUNT 10
38 struct vmw_user_dma_buffer {
39 struct ttm_prime_object prime;
40 struct vmw_dma_buffer dma;
43 struct vmw_bo_user_rep {
44 uint32_t handle;
45 uint64_t map_handle;
48 static inline struct vmw_dma_buffer *
49 vmw_dma_buffer(struct ttm_buffer_object *bo)
51 return container_of(bo, struct vmw_dma_buffer, base);
54 static inline struct vmw_user_dma_buffer *
55 vmw_user_dma_buffer(struct ttm_buffer_object *bo)
57 struct vmw_dma_buffer *vmw_bo = vmw_dma_buffer(bo);
58 return container_of(vmw_bo, struct vmw_user_dma_buffer, dma);
61 struct vmw_resource *vmw_resource_reference(struct vmw_resource *res)
63 kref_get(&res->kref);
64 return res;
67 struct vmw_resource *
68 vmw_resource_reference_unless_doomed(struct vmw_resource *res)
70 return kref_get_unless_zero(&res->kref) ? res : NULL;
73 /**
74 * vmw_resource_release_id - release a resource id to the id manager.
76 * @res: Pointer to the resource.
78 * Release the resource id to the resource id manager and set it to -1
80 void vmw_resource_release_id(struct vmw_resource *res)
82 struct vmw_private *dev_priv = res->dev_priv;
83 struct idr *idr = &dev_priv->res_idr[res->func->res_type];
85 write_lock(&dev_priv->resource_lock);
86 if (res->id != -1)
87 idr_remove(idr, res->id);
88 res->id = -1;
89 write_unlock(&dev_priv->resource_lock);
92 static void vmw_resource_release(struct kref *kref)
94 struct vmw_resource *res =
95 container_of(kref, struct vmw_resource, kref);
96 struct vmw_private *dev_priv = res->dev_priv;
97 int id;
98 struct idr *idr = &dev_priv->res_idr[res->func->res_type];
100 write_lock(&dev_priv->resource_lock);
101 res->avail = false;
102 list_del_init(&res->lru_head);
103 write_unlock(&dev_priv->resource_lock);
104 if (res->backup) {
105 struct ttm_buffer_object *bo = &res->backup->base;
107 ttm_bo_reserve(bo, false, false, NULL);
108 if (!list_empty(&res->mob_head) &&
109 res->func->unbind != NULL) {
110 struct ttm_validate_buffer val_buf;
112 val_buf.bo = bo;
113 val_buf.shared = false;
114 res->func->unbind(res, false, &val_buf);
116 res->backup_dirty = false;
117 list_del_init(&res->mob_head);
118 ttm_bo_unreserve(bo);
119 vmw_dmabuf_unreference(&res->backup);
122 if (likely(res->hw_destroy != NULL)) {
123 mutex_lock(&dev_priv->binding_mutex);
124 vmw_binding_res_list_kill(&res->binding_head);
125 mutex_unlock(&dev_priv->binding_mutex);
126 res->hw_destroy(res);
129 id = res->id;
130 if (res->res_free != NULL)
131 res->res_free(res);
132 else
133 kfree(res);
135 write_lock(&dev_priv->resource_lock);
136 if (id != -1)
137 idr_remove(idr, id);
138 write_unlock(&dev_priv->resource_lock);
141 void vmw_resource_unreference(struct vmw_resource **p_res)
143 struct vmw_resource *res = *p_res;
145 *p_res = NULL;
146 kref_put(&res->kref, vmw_resource_release);
151 * vmw_resource_alloc_id - release a resource id to the id manager.
153 * @res: Pointer to the resource.
155 * Allocate the lowest free resource from the resource manager, and set
156 * @res->id to that id. Returns 0 on success and -ENOMEM on failure.
158 int vmw_resource_alloc_id(struct vmw_resource *res)
160 struct vmw_private *dev_priv = res->dev_priv;
161 int ret;
162 struct idr *idr = &dev_priv->res_idr[res->func->res_type];
164 BUG_ON(res->id != -1);
166 idr_preload(GFP_KERNEL);
167 write_lock(&dev_priv->resource_lock);
169 ret = idr_alloc(idr, res, 1, 0, GFP_NOWAIT);
170 if (ret >= 0)
171 res->id = ret;
173 write_unlock(&dev_priv->resource_lock);
174 idr_preload_end();
175 return ret < 0 ? ret : 0;
179 * vmw_resource_init - initialize a struct vmw_resource
181 * @dev_priv: Pointer to a device private struct.
182 * @res: The struct vmw_resource to initialize.
183 * @obj_type: Resource object type.
184 * @delay_id: Boolean whether to defer device id allocation until
185 * the first validation.
186 * @res_free: Resource destructor.
187 * @func: Resource function table.
189 int vmw_resource_init(struct vmw_private *dev_priv, struct vmw_resource *res,
190 bool delay_id,
191 void (*res_free) (struct vmw_resource *res),
192 const struct vmw_res_func *func)
194 kref_init(&res->kref);
195 res->hw_destroy = NULL;
196 res->res_free = res_free;
197 res->avail = false;
198 res->dev_priv = dev_priv;
199 res->func = func;
200 INIT_LIST_HEAD(&res->lru_head);
201 INIT_LIST_HEAD(&res->mob_head);
202 INIT_LIST_HEAD(&res->binding_head);
203 res->id = -1;
204 res->backup = NULL;
205 res->backup_offset = 0;
206 res->backup_dirty = false;
207 res->res_dirty = false;
208 if (delay_id)
209 return 0;
210 else
211 return vmw_resource_alloc_id(res);
215 * vmw_resource_activate
217 * @res: Pointer to the newly created resource
218 * @hw_destroy: Destroy function. NULL if none.
220 * Activate a resource after the hardware has been made aware of it.
221 * Set tye destroy function to @destroy. Typically this frees the
222 * resource and destroys the hardware resources associated with it.
223 * Activate basically means that the function vmw_resource_lookup will
224 * find it.
226 void vmw_resource_activate(struct vmw_resource *res,
227 void (*hw_destroy) (struct vmw_resource *))
229 struct vmw_private *dev_priv = res->dev_priv;
231 write_lock(&dev_priv->resource_lock);
232 res->avail = true;
233 res->hw_destroy = hw_destroy;
234 write_unlock(&dev_priv->resource_lock);
238 * vmw_user_resource_lookup_handle - lookup a struct resource from a
239 * TTM user-space handle and perform basic type checks
241 * @dev_priv: Pointer to a device private struct
242 * @tfile: Pointer to a struct ttm_object_file identifying the caller
243 * @handle: The TTM user-space handle
244 * @converter: Pointer to an object describing the resource type
245 * @p_res: On successful return the location pointed to will contain
246 * a pointer to a refcounted struct vmw_resource.
248 * If the handle can't be found or is associated with an incorrect resource
249 * type, -EINVAL will be returned.
251 int vmw_user_resource_lookup_handle(struct vmw_private *dev_priv,
252 struct ttm_object_file *tfile,
253 uint32_t handle,
254 const struct vmw_user_resource_conv
255 *converter,
256 struct vmw_resource **p_res)
258 struct ttm_base_object *base;
259 struct vmw_resource *res;
260 int ret = -EINVAL;
262 base = ttm_base_object_lookup(tfile, handle);
263 if (unlikely(base == NULL))
264 return -EINVAL;
266 if (unlikely(ttm_base_object_type(base) != converter->object_type))
267 goto out_bad_resource;
269 res = converter->base_obj_to_res(base);
271 read_lock(&dev_priv->resource_lock);
272 if (!res->avail || res->res_free != converter->res_free) {
273 read_unlock(&dev_priv->resource_lock);
274 goto out_bad_resource;
277 kref_get(&res->kref);
278 read_unlock(&dev_priv->resource_lock);
280 *p_res = res;
281 ret = 0;
283 out_bad_resource:
284 ttm_base_object_unref(&base);
286 return ret;
290 * Helper function that looks either a surface or dmabuf.
292 * The pointer this pointed at by out_surf and out_buf needs to be null.
294 int vmw_user_lookup_handle(struct vmw_private *dev_priv,
295 struct ttm_object_file *tfile,
296 uint32_t handle,
297 struct vmw_surface **out_surf,
298 struct vmw_dma_buffer **out_buf)
300 struct vmw_resource *res;
301 int ret;
303 BUG_ON(*out_surf || *out_buf);
305 ret = vmw_user_resource_lookup_handle(dev_priv, tfile, handle,
306 user_surface_converter,
307 &res);
308 if (!ret) {
309 *out_surf = vmw_res_to_srf(res);
310 return 0;
313 *out_surf = NULL;
314 ret = vmw_user_dmabuf_lookup(tfile, handle, out_buf, NULL);
315 return ret;
319 * Buffer management.
323 * vmw_dmabuf_acc_size - Calculate the pinned memory usage of buffers
325 * @dev_priv: Pointer to a struct vmw_private identifying the device.
326 * @size: The requested buffer size.
327 * @user: Whether this is an ordinary dma buffer or a user dma buffer.
329 static size_t vmw_dmabuf_acc_size(struct vmw_private *dev_priv, size_t size,
330 bool user)
332 static size_t struct_size, user_struct_size;
333 size_t num_pages = PAGE_ALIGN(size) >> PAGE_SHIFT;
334 size_t page_array_size = ttm_round_pot(num_pages * sizeof(void *));
336 if (unlikely(struct_size == 0)) {
337 size_t backend_size = ttm_round_pot(vmw_tt_size);
339 struct_size = backend_size +
340 ttm_round_pot(sizeof(struct vmw_dma_buffer));
341 user_struct_size = backend_size +
342 ttm_round_pot(sizeof(struct vmw_user_dma_buffer));
345 if (dev_priv->map_mode == vmw_dma_alloc_coherent)
346 page_array_size +=
347 ttm_round_pot(num_pages * sizeof(dma_addr_t));
349 return ((user) ? user_struct_size : struct_size) +
350 page_array_size;
353 void vmw_dmabuf_bo_free(struct ttm_buffer_object *bo)
355 struct vmw_dma_buffer *vmw_bo = vmw_dma_buffer(bo);
357 kfree(vmw_bo);
360 static void vmw_user_dmabuf_destroy(struct ttm_buffer_object *bo)
362 struct vmw_user_dma_buffer *vmw_user_bo = vmw_user_dma_buffer(bo);
364 ttm_prime_object_kfree(vmw_user_bo, prime);
367 int vmw_dmabuf_init(struct vmw_private *dev_priv,
368 struct vmw_dma_buffer *vmw_bo,
369 size_t size, struct ttm_placement *placement,
370 bool interruptible,
371 void (*bo_free) (struct ttm_buffer_object *bo))
373 struct ttm_bo_device *bdev = &dev_priv->bdev;
374 size_t acc_size;
375 int ret;
376 bool user = (bo_free == &vmw_user_dmabuf_destroy);
378 BUG_ON(!bo_free && (!user && (bo_free != vmw_dmabuf_bo_free)));
380 acc_size = vmw_dmabuf_acc_size(dev_priv, size, user);
381 memset(vmw_bo, 0, sizeof(*vmw_bo));
383 INIT_LIST_HEAD(&vmw_bo->res_list);
385 ret = ttm_bo_init(bdev, &vmw_bo->base, size,
386 ttm_bo_type_device, placement,
387 0, interruptible,
388 NULL, acc_size, NULL, NULL, bo_free);
389 return ret;
392 static void vmw_user_dmabuf_release(struct ttm_base_object **p_base)
394 struct vmw_user_dma_buffer *vmw_user_bo;
395 struct ttm_base_object *base = *p_base;
396 struct ttm_buffer_object *bo;
398 *p_base = NULL;
400 if (unlikely(base == NULL))
401 return;
403 vmw_user_bo = container_of(base, struct vmw_user_dma_buffer,
404 prime.base);
405 bo = &vmw_user_bo->dma.base;
406 ttm_bo_unref(&bo);
409 static void vmw_user_dmabuf_ref_obj_release(struct ttm_base_object *base,
410 enum ttm_ref_type ref_type)
412 struct vmw_user_dma_buffer *user_bo;
413 user_bo = container_of(base, struct vmw_user_dma_buffer, prime.base);
415 switch (ref_type) {
416 case TTM_REF_SYNCCPU_WRITE:
417 ttm_bo_synccpu_write_release(&user_bo->dma.base);
418 break;
419 default:
420 BUG();
425 * vmw_user_dmabuf_alloc - Allocate a user dma buffer
427 * @dev_priv: Pointer to a struct device private.
428 * @tfile: Pointer to a struct ttm_object_file on which to register the user
429 * object.
430 * @size: Size of the dma buffer.
431 * @shareable: Boolean whether the buffer is shareable with other open files.
432 * @handle: Pointer to where the handle value should be assigned.
433 * @p_dma_buf: Pointer to where the refcounted struct vmw_dma_buffer pointer
434 * should be assigned.
436 int vmw_user_dmabuf_alloc(struct vmw_private *dev_priv,
437 struct ttm_object_file *tfile,
438 uint32_t size,
439 bool shareable,
440 uint32_t *handle,
441 struct vmw_dma_buffer **p_dma_buf,
442 struct ttm_base_object **p_base)
444 struct vmw_user_dma_buffer *user_bo;
445 struct ttm_buffer_object *tmp;
446 int ret;
448 user_bo = kzalloc(sizeof(*user_bo), GFP_KERNEL);
449 if (unlikely(!user_bo)) {
450 DRM_ERROR("Failed to allocate a buffer.\n");
451 return -ENOMEM;
454 ret = vmw_dmabuf_init(dev_priv, &user_bo->dma, size,
455 (dev_priv->has_mob) ?
456 &vmw_sys_placement :
457 &vmw_vram_sys_placement, true,
458 &vmw_user_dmabuf_destroy);
459 if (unlikely(ret != 0))
460 return ret;
462 tmp = ttm_bo_reference(&user_bo->dma.base);
463 ret = ttm_prime_object_init(tfile,
464 size,
465 &user_bo->prime,
466 shareable,
467 ttm_buffer_type,
468 &vmw_user_dmabuf_release,
469 &vmw_user_dmabuf_ref_obj_release);
470 if (unlikely(ret != 0)) {
471 ttm_bo_unref(&tmp);
472 goto out_no_base_object;
475 *p_dma_buf = &user_bo->dma;
476 if (p_base) {
477 *p_base = &user_bo->prime.base;
478 kref_get(&(*p_base)->refcount);
480 *handle = user_bo->prime.base.hash.key;
482 out_no_base_object:
483 return ret;
487 * vmw_user_dmabuf_verify_access - verify access permissions on this
488 * buffer object.
490 * @bo: Pointer to the buffer object being accessed
491 * @tfile: Identifying the caller.
493 int vmw_user_dmabuf_verify_access(struct ttm_buffer_object *bo,
494 struct ttm_object_file *tfile)
496 struct vmw_user_dma_buffer *vmw_user_bo;
498 if (unlikely(bo->destroy != vmw_user_dmabuf_destroy))
499 return -EPERM;
501 vmw_user_bo = vmw_user_dma_buffer(bo);
503 /* Check that the caller has opened the object. */
504 if (likely(ttm_ref_object_exists(tfile, &vmw_user_bo->prime.base)))
505 return 0;
507 DRM_ERROR("Could not grant buffer access.\n");
508 return -EPERM;
512 * vmw_user_dmabuf_synccpu_grab - Grab a struct vmw_user_dma_buffer for cpu
513 * access, idling previous GPU operations on the buffer and optionally
514 * blocking it for further command submissions.
516 * @user_bo: Pointer to the buffer object being grabbed for CPU access
517 * @tfile: Identifying the caller.
518 * @flags: Flags indicating how the grab should be performed.
520 * A blocking grab will be automatically released when @tfile is closed.
522 static int vmw_user_dmabuf_synccpu_grab(struct vmw_user_dma_buffer *user_bo,
523 struct ttm_object_file *tfile,
524 uint32_t flags)
526 struct ttm_buffer_object *bo = &user_bo->dma.base;
527 bool existed;
528 int ret;
530 if (flags & drm_vmw_synccpu_allow_cs) {
531 bool nonblock = !!(flags & drm_vmw_synccpu_dontblock);
532 long lret;
534 lret = reservation_object_wait_timeout_rcu(bo->resv, true, true,
535 nonblock ? 0 : MAX_SCHEDULE_TIMEOUT);
536 if (!lret)
537 return -EBUSY;
538 else if (lret < 0)
539 return lret;
540 return 0;
543 ret = ttm_bo_synccpu_write_grab
544 (bo, !!(flags & drm_vmw_synccpu_dontblock));
545 if (unlikely(ret != 0))
546 return ret;
548 ret = ttm_ref_object_add(tfile, &user_bo->prime.base,
549 TTM_REF_SYNCCPU_WRITE, &existed, false);
550 if (ret != 0 || existed)
551 ttm_bo_synccpu_write_release(&user_bo->dma.base);
553 return ret;
557 * vmw_user_dmabuf_synccpu_release - Release a previous grab for CPU access,
558 * and unblock command submission on the buffer if blocked.
560 * @handle: Handle identifying the buffer object.
561 * @tfile: Identifying the caller.
562 * @flags: Flags indicating the type of release.
564 static int vmw_user_dmabuf_synccpu_release(uint32_t handle,
565 struct ttm_object_file *tfile,
566 uint32_t flags)
568 if (!(flags & drm_vmw_synccpu_allow_cs))
569 return ttm_ref_object_base_unref(tfile, handle,
570 TTM_REF_SYNCCPU_WRITE);
572 return 0;
576 * vmw_user_dmabuf_synccpu_release - ioctl function implementing the synccpu
577 * functionality.
579 * @dev: Identifies the drm device.
580 * @data: Pointer to the ioctl argument.
581 * @file_priv: Identifies the caller.
583 * This function checks the ioctl arguments for validity and calls the
584 * relevant synccpu functions.
586 int vmw_user_dmabuf_synccpu_ioctl(struct drm_device *dev, void *data,
587 struct drm_file *file_priv)
589 struct drm_vmw_synccpu_arg *arg =
590 (struct drm_vmw_synccpu_arg *) data;
591 struct vmw_dma_buffer *dma_buf;
592 struct vmw_user_dma_buffer *user_bo;
593 struct ttm_object_file *tfile = vmw_fpriv(file_priv)->tfile;
594 struct ttm_base_object *buffer_base;
595 int ret;
597 if ((arg->flags & (drm_vmw_synccpu_read | drm_vmw_synccpu_write)) == 0
598 || (arg->flags & ~(drm_vmw_synccpu_read | drm_vmw_synccpu_write |
599 drm_vmw_synccpu_dontblock |
600 drm_vmw_synccpu_allow_cs)) != 0) {
601 DRM_ERROR("Illegal synccpu flags.\n");
602 return -EINVAL;
605 switch (arg->op) {
606 case drm_vmw_synccpu_grab:
607 ret = vmw_user_dmabuf_lookup(tfile, arg->handle, &dma_buf,
608 &buffer_base);
609 if (unlikely(ret != 0))
610 return ret;
612 user_bo = container_of(dma_buf, struct vmw_user_dma_buffer,
613 dma);
614 ret = vmw_user_dmabuf_synccpu_grab(user_bo, tfile, arg->flags);
615 vmw_dmabuf_unreference(&dma_buf);
616 ttm_base_object_unref(&buffer_base);
617 if (unlikely(ret != 0 && ret != -ERESTARTSYS &&
618 ret != -EBUSY)) {
619 DRM_ERROR("Failed synccpu grab on handle 0x%08x.\n",
620 (unsigned int) arg->handle);
621 return ret;
623 break;
624 case drm_vmw_synccpu_release:
625 ret = vmw_user_dmabuf_synccpu_release(arg->handle, tfile,
626 arg->flags);
627 if (unlikely(ret != 0)) {
628 DRM_ERROR("Failed synccpu release on handle 0x%08x.\n",
629 (unsigned int) arg->handle);
630 return ret;
632 break;
633 default:
634 DRM_ERROR("Invalid synccpu operation.\n");
635 return -EINVAL;
638 return 0;
641 int vmw_dmabuf_alloc_ioctl(struct drm_device *dev, void *data,
642 struct drm_file *file_priv)
644 struct vmw_private *dev_priv = vmw_priv(dev);
645 union drm_vmw_alloc_dmabuf_arg *arg =
646 (union drm_vmw_alloc_dmabuf_arg *)data;
647 struct drm_vmw_alloc_dmabuf_req *req = &arg->req;
648 struct drm_vmw_dmabuf_rep *rep = &arg->rep;
649 struct vmw_dma_buffer *dma_buf;
650 uint32_t handle;
651 int ret;
653 ret = ttm_read_lock(&dev_priv->reservation_sem, true);
654 if (unlikely(ret != 0))
655 return ret;
657 ret = vmw_user_dmabuf_alloc(dev_priv, vmw_fpriv(file_priv)->tfile,
658 req->size, false, &handle, &dma_buf,
659 NULL);
660 if (unlikely(ret != 0))
661 goto out_no_dmabuf;
663 rep->handle = handle;
664 rep->map_handle = drm_vma_node_offset_addr(&dma_buf->base.vma_node);
665 rep->cur_gmr_id = handle;
666 rep->cur_gmr_offset = 0;
668 vmw_dmabuf_unreference(&dma_buf);
670 out_no_dmabuf:
671 ttm_read_unlock(&dev_priv->reservation_sem);
673 return ret;
676 int vmw_dmabuf_unref_ioctl(struct drm_device *dev, void *data,
677 struct drm_file *file_priv)
679 struct drm_vmw_unref_dmabuf_arg *arg =
680 (struct drm_vmw_unref_dmabuf_arg *)data;
682 return ttm_ref_object_base_unref(vmw_fpriv(file_priv)->tfile,
683 arg->handle,
684 TTM_REF_USAGE);
687 int vmw_user_dmabuf_lookup(struct ttm_object_file *tfile,
688 uint32_t handle, struct vmw_dma_buffer **out,
689 struct ttm_base_object **p_base)
691 struct vmw_user_dma_buffer *vmw_user_bo;
692 struct ttm_base_object *base;
694 base = ttm_base_object_lookup(tfile, handle);
695 if (unlikely(base == NULL)) {
696 pr_err("Invalid buffer object handle 0x%08lx\n",
697 (unsigned long)handle);
698 return -ESRCH;
701 if (unlikely(ttm_base_object_type(base) != ttm_buffer_type)) {
702 ttm_base_object_unref(&base);
703 pr_err("Invalid buffer object handle 0x%08lx\n",
704 (unsigned long)handle);
705 return -EINVAL;
708 vmw_user_bo = container_of(base, struct vmw_user_dma_buffer,
709 prime.base);
710 (void)ttm_bo_reference(&vmw_user_bo->dma.base);
711 if (p_base)
712 *p_base = base;
713 else
714 ttm_base_object_unref(&base);
715 *out = &vmw_user_bo->dma;
717 return 0;
720 int vmw_user_dmabuf_reference(struct ttm_object_file *tfile,
721 struct vmw_dma_buffer *dma_buf,
722 uint32_t *handle)
724 struct vmw_user_dma_buffer *user_bo;
726 if (dma_buf->base.destroy != vmw_user_dmabuf_destroy)
727 return -EINVAL;
729 user_bo = container_of(dma_buf, struct vmw_user_dma_buffer, dma);
731 *handle = user_bo->prime.base.hash.key;
732 return ttm_ref_object_add(tfile, &user_bo->prime.base,
733 TTM_REF_USAGE, NULL, false);
737 * vmw_dumb_create - Create a dumb kms buffer
739 * @file_priv: Pointer to a struct drm_file identifying the caller.
740 * @dev: Pointer to the drm device.
741 * @args: Pointer to a struct drm_mode_create_dumb structure
743 * This is a driver callback for the core drm create_dumb functionality.
744 * Note that this is very similar to the vmw_dmabuf_alloc ioctl, except
745 * that the arguments have a different format.
747 int vmw_dumb_create(struct drm_file *file_priv,
748 struct drm_device *dev,
749 struct drm_mode_create_dumb *args)
751 struct vmw_private *dev_priv = vmw_priv(dev);
752 struct vmw_dma_buffer *dma_buf;
753 int ret;
755 args->pitch = args->width * ((args->bpp + 7) / 8);
756 args->size = args->pitch * args->height;
758 ret = ttm_read_lock(&dev_priv->reservation_sem, true);
759 if (unlikely(ret != 0))
760 return ret;
762 ret = vmw_user_dmabuf_alloc(dev_priv, vmw_fpriv(file_priv)->tfile,
763 args->size, false, &args->handle,
764 &dma_buf, NULL);
765 if (unlikely(ret != 0))
766 goto out_no_dmabuf;
768 vmw_dmabuf_unreference(&dma_buf);
769 out_no_dmabuf:
770 ttm_read_unlock(&dev_priv->reservation_sem);
771 return ret;
775 * vmw_dumb_map_offset - Return the address space offset of a dumb buffer
777 * @file_priv: Pointer to a struct drm_file identifying the caller.
778 * @dev: Pointer to the drm device.
779 * @handle: Handle identifying the dumb buffer.
780 * @offset: The address space offset returned.
782 * This is a driver callback for the core drm dumb_map_offset functionality.
784 int vmw_dumb_map_offset(struct drm_file *file_priv,
785 struct drm_device *dev, uint32_t handle,
786 uint64_t *offset)
788 struct ttm_object_file *tfile = vmw_fpriv(file_priv)->tfile;
789 struct vmw_dma_buffer *out_buf;
790 int ret;
792 ret = vmw_user_dmabuf_lookup(tfile, handle, &out_buf, NULL);
793 if (ret != 0)
794 return -EINVAL;
796 *offset = drm_vma_node_offset_addr(&out_buf->base.vma_node);
797 vmw_dmabuf_unreference(&out_buf);
798 return 0;
802 * vmw_dumb_destroy - Destroy a dumb boffer
804 * @file_priv: Pointer to a struct drm_file identifying the caller.
805 * @dev: Pointer to the drm device.
806 * @handle: Handle identifying the dumb buffer.
808 * This is a driver callback for the core drm dumb_destroy functionality.
810 int vmw_dumb_destroy(struct drm_file *file_priv,
811 struct drm_device *dev,
812 uint32_t handle)
814 return ttm_ref_object_base_unref(vmw_fpriv(file_priv)->tfile,
815 handle, TTM_REF_USAGE);
819 * vmw_resource_buf_alloc - Allocate a backup buffer for a resource.
821 * @res: The resource for which to allocate a backup buffer.
822 * @interruptible: Whether any sleeps during allocation should be
823 * performed while interruptible.
825 static int vmw_resource_buf_alloc(struct vmw_resource *res,
826 bool interruptible)
828 unsigned long size =
829 (res->backup_size + PAGE_SIZE - 1) & PAGE_MASK;
830 struct vmw_dma_buffer *backup;
831 int ret;
833 if (likely(res->backup)) {
834 BUG_ON(res->backup->base.num_pages * PAGE_SIZE < size);
835 return 0;
838 backup = kzalloc(sizeof(*backup), GFP_KERNEL);
839 if (unlikely(!backup))
840 return -ENOMEM;
842 ret = vmw_dmabuf_init(res->dev_priv, backup, res->backup_size,
843 res->func->backup_placement,
844 interruptible,
845 &vmw_dmabuf_bo_free);
846 if (unlikely(ret != 0))
847 goto out_no_dmabuf;
849 res->backup = backup;
851 out_no_dmabuf:
852 return ret;
856 * vmw_resource_do_validate - Make a resource up-to-date and visible
857 * to the device.
859 * @res: The resource to make visible to the device.
860 * @val_buf: Information about a buffer possibly
861 * containing backup data if a bind operation is needed.
863 * On hardware resource shortage, this function returns -EBUSY and
864 * should be retried once resources have been freed up.
866 static int vmw_resource_do_validate(struct vmw_resource *res,
867 struct ttm_validate_buffer *val_buf)
869 int ret = 0;
870 const struct vmw_res_func *func = res->func;
872 if (unlikely(res->id == -1)) {
873 ret = func->create(res);
874 if (unlikely(ret != 0))
875 return ret;
878 if (func->bind &&
879 ((func->needs_backup && list_empty(&res->mob_head) &&
880 val_buf->bo != NULL) ||
881 (!func->needs_backup && val_buf->bo != NULL))) {
882 ret = func->bind(res, val_buf);
883 if (unlikely(ret != 0))
884 goto out_bind_failed;
885 if (func->needs_backup)
886 list_add_tail(&res->mob_head, &res->backup->res_list);
890 * Only do this on write operations, and move to
891 * vmw_resource_unreserve if it can be called after
892 * backup buffers have been unreserved. Otherwise
893 * sort out locking.
895 res->res_dirty = true;
897 return 0;
899 out_bind_failed:
900 func->destroy(res);
902 return ret;
906 * vmw_resource_unreserve - Unreserve a resource previously reserved for
907 * command submission.
909 * @res: Pointer to the struct vmw_resource to unreserve.
910 * @switch_backup: Backup buffer has been switched.
911 * @new_backup: Pointer to new backup buffer if command submission
912 * switched. May be NULL.
913 * @new_backup_offset: New backup offset if @switch_backup is true.
915 * Currently unreserving a resource means putting it back on the device's
916 * resource lru list, so that it can be evicted if necessary.
918 void vmw_resource_unreserve(struct vmw_resource *res,
919 bool switch_backup,
920 struct vmw_dma_buffer *new_backup,
921 unsigned long new_backup_offset)
923 struct vmw_private *dev_priv = res->dev_priv;
925 if (!list_empty(&res->lru_head))
926 return;
928 if (switch_backup && new_backup != res->backup) {
929 if (res->backup) {
930 lockdep_assert_held(&res->backup->base.resv->lock.base);
931 list_del_init(&res->mob_head);
932 vmw_dmabuf_unreference(&res->backup);
935 if (new_backup) {
936 res->backup = vmw_dmabuf_reference(new_backup);
937 lockdep_assert_held(&new_backup->base.resv->lock.base);
938 list_add_tail(&res->mob_head, &new_backup->res_list);
939 } else {
940 res->backup = NULL;
943 if (switch_backup)
944 res->backup_offset = new_backup_offset;
946 if (!res->func->may_evict || res->id == -1 || res->pin_count)
947 return;
949 write_lock(&dev_priv->resource_lock);
950 list_add_tail(&res->lru_head,
951 &res->dev_priv->res_lru[res->func->res_type]);
952 write_unlock(&dev_priv->resource_lock);
956 * vmw_resource_check_buffer - Check whether a backup buffer is needed
957 * for a resource and in that case, allocate
958 * one, reserve and validate it.
960 * @res: The resource for which to allocate a backup buffer.
961 * @interruptible: Whether any sleeps during allocation should be
962 * performed while interruptible.
963 * @val_buf: On successful return contains data about the
964 * reserved and validated backup buffer.
966 static int
967 vmw_resource_check_buffer(struct vmw_resource *res,
968 bool interruptible,
969 struct ttm_validate_buffer *val_buf)
971 struct ttm_operation_ctx ctx = { true, false };
972 struct list_head val_list;
973 bool backup_dirty = false;
974 int ret;
976 if (unlikely(res->backup == NULL)) {
977 ret = vmw_resource_buf_alloc(res, interruptible);
978 if (unlikely(ret != 0))
979 return ret;
982 INIT_LIST_HEAD(&val_list);
983 val_buf->bo = ttm_bo_reference(&res->backup->base);
984 val_buf->shared = false;
985 list_add_tail(&val_buf->head, &val_list);
986 ret = ttm_eu_reserve_buffers(NULL, &val_list, interruptible, NULL);
987 if (unlikely(ret != 0))
988 goto out_no_reserve;
990 if (res->func->needs_backup && list_empty(&res->mob_head))
991 return 0;
993 backup_dirty = res->backup_dirty;
994 ret = ttm_bo_validate(&res->backup->base,
995 res->func->backup_placement,
996 &ctx);
998 if (unlikely(ret != 0))
999 goto out_no_validate;
1001 return 0;
1003 out_no_validate:
1004 ttm_eu_backoff_reservation(NULL, &val_list);
1005 out_no_reserve:
1006 ttm_bo_unref(&val_buf->bo);
1007 if (backup_dirty)
1008 vmw_dmabuf_unreference(&res->backup);
1010 return ret;
1014 * vmw_resource_reserve - Reserve a resource for command submission
1016 * @res: The resource to reserve.
1018 * This function takes the resource off the LRU list and make sure
1019 * a backup buffer is present for guest-backed resources. However,
1020 * the buffer may not be bound to the resource at this point.
1023 int vmw_resource_reserve(struct vmw_resource *res, bool interruptible,
1024 bool no_backup)
1026 struct vmw_private *dev_priv = res->dev_priv;
1027 int ret;
1029 write_lock(&dev_priv->resource_lock);
1030 list_del_init(&res->lru_head);
1031 write_unlock(&dev_priv->resource_lock);
1033 if (res->func->needs_backup && res->backup == NULL &&
1034 !no_backup) {
1035 ret = vmw_resource_buf_alloc(res, interruptible);
1036 if (unlikely(ret != 0)) {
1037 DRM_ERROR("Failed to allocate a backup buffer "
1038 "of size %lu. bytes\n",
1039 (unsigned long) res->backup_size);
1040 return ret;
1044 return 0;
1048 * vmw_resource_backoff_reservation - Unreserve and unreference a
1049 * backup buffer
1051 * @val_buf: Backup buffer information.
1053 static void
1054 vmw_resource_backoff_reservation(struct ttm_validate_buffer *val_buf)
1056 struct list_head val_list;
1058 if (likely(val_buf->bo == NULL))
1059 return;
1061 INIT_LIST_HEAD(&val_list);
1062 list_add_tail(&val_buf->head, &val_list);
1063 ttm_eu_backoff_reservation(NULL, &val_list);
1064 ttm_bo_unref(&val_buf->bo);
1068 * vmw_resource_do_evict - Evict a resource, and transfer its data
1069 * to a backup buffer.
1071 * @res: The resource to evict.
1072 * @interruptible: Whether to wait interruptible.
1074 static int vmw_resource_do_evict(struct vmw_resource *res, bool interruptible)
1076 struct ttm_validate_buffer val_buf;
1077 const struct vmw_res_func *func = res->func;
1078 int ret;
1080 BUG_ON(!func->may_evict);
1082 val_buf.bo = NULL;
1083 val_buf.shared = false;
1084 ret = vmw_resource_check_buffer(res, interruptible, &val_buf);
1085 if (unlikely(ret != 0))
1086 return ret;
1088 if (unlikely(func->unbind != NULL &&
1089 (!func->needs_backup || !list_empty(&res->mob_head)))) {
1090 ret = func->unbind(res, res->res_dirty, &val_buf);
1091 if (unlikely(ret != 0))
1092 goto out_no_unbind;
1093 list_del_init(&res->mob_head);
1095 ret = func->destroy(res);
1096 res->backup_dirty = true;
1097 res->res_dirty = false;
1098 out_no_unbind:
1099 vmw_resource_backoff_reservation(&val_buf);
1101 return ret;
1106 * vmw_resource_validate - Make a resource up-to-date and visible
1107 * to the device.
1109 * @res: The resource to make visible to the device.
1111 * On succesful return, any backup DMA buffer pointed to by @res->backup will
1112 * be reserved and validated.
1113 * On hardware resource shortage, this function will repeatedly evict
1114 * resources of the same type until the validation succeeds.
1116 int vmw_resource_validate(struct vmw_resource *res)
1118 int ret;
1119 struct vmw_resource *evict_res;
1120 struct vmw_private *dev_priv = res->dev_priv;
1121 struct list_head *lru_list = &dev_priv->res_lru[res->func->res_type];
1122 struct ttm_validate_buffer val_buf;
1123 unsigned err_count = 0;
1125 if (!res->func->create)
1126 return 0;
1128 val_buf.bo = NULL;
1129 val_buf.shared = false;
1130 if (res->backup)
1131 val_buf.bo = &res->backup->base;
1132 do {
1133 ret = vmw_resource_do_validate(res, &val_buf);
1134 if (likely(ret != -EBUSY))
1135 break;
1137 write_lock(&dev_priv->resource_lock);
1138 if (list_empty(lru_list) || !res->func->may_evict) {
1139 DRM_ERROR("Out of device device resources "
1140 "for %s.\n", res->func->type_name);
1141 ret = -EBUSY;
1142 write_unlock(&dev_priv->resource_lock);
1143 break;
1146 evict_res = vmw_resource_reference
1147 (list_first_entry(lru_list, struct vmw_resource,
1148 lru_head));
1149 list_del_init(&evict_res->lru_head);
1151 write_unlock(&dev_priv->resource_lock);
1153 ret = vmw_resource_do_evict(evict_res, true);
1154 if (unlikely(ret != 0)) {
1155 write_lock(&dev_priv->resource_lock);
1156 list_add_tail(&evict_res->lru_head, lru_list);
1157 write_unlock(&dev_priv->resource_lock);
1158 if (ret == -ERESTARTSYS ||
1159 ++err_count > VMW_RES_EVICT_ERR_COUNT) {
1160 vmw_resource_unreference(&evict_res);
1161 goto out_no_validate;
1165 vmw_resource_unreference(&evict_res);
1166 } while (1);
1168 if (unlikely(ret != 0))
1169 goto out_no_validate;
1170 else if (!res->func->needs_backup && res->backup) {
1171 list_del_init(&res->mob_head);
1172 vmw_dmabuf_unreference(&res->backup);
1175 return 0;
1177 out_no_validate:
1178 return ret;
1182 * vmw_fence_single_bo - Utility function to fence a single TTM buffer
1183 * object without unreserving it.
1185 * @bo: Pointer to the struct ttm_buffer_object to fence.
1186 * @fence: Pointer to the fence. If NULL, this function will
1187 * insert a fence into the command stream..
1189 * Contrary to the ttm_eu version of this function, it takes only
1190 * a single buffer object instead of a list, and it also doesn't
1191 * unreserve the buffer object, which needs to be done separately.
1193 void vmw_fence_single_bo(struct ttm_buffer_object *bo,
1194 struct vmw_fence_obj *fence)
1196 struct ttm_bo_device *bdev = bo->bdev;
1198 struct vmw_private *dev_priv =
1199 container_of(bdev, struct vmw_private, bdev);
1201 if (fence == NULL) {
1202 vmw_execbuf_fence_commands(NULL, dev_priv, &fence, NULL);
1203 reservation_object_add_excl_fence(bo->resv, &fence->base);
1204 dma_fence_put(&fence->base);
1205 } else
1206 reservation_object_add_excl_fence(bo->resv, &fence->base);
1210 * vmw_resource_move_notify - TTM move_notify_callback
1212 * @bo: The TTM buffer object about to move.
1213 * @mem: The struct ttm_mem_reg indicating to what memory
1214 * region the move is taking place.
1216 * Evicts the Guest Backed hardware resource if the backup
1217 * buffer is being moved out of MOB memory.
1218 * Note that this function should not race with the resource
1219 * validation code as long as it accesses only members of struct
1220 * resource that remain static while bo::res is !NULL and
1221 * while we have @bo reserved. struct resource::backup is *not* a
1222 * static member. The resource validation code will take care
1223 * to set @bo::res to NULL, while having @bo reserved when the
1224 * buffer is no longer bound to the resource, so @bo:res can be
1225 * used to determine whether there is a need to unbind and whether
1226 * it is safe to unbind.
1228 void vmw_resource_move_notify(struct ttm_buffer_object *bo,
1229 struct ttm_mem_reg *mem)
1231 struct vmw_dma_buffer *dma_buf;
1233 if (mem == NULL)
1234 return;
1236 if (bo->destroy != vmw_dmabuf_bo_free &&
1237 bo->destroy != vmw_user_dmabuf_destroy)
1238 return;
1240 dma_buf = container_of(bo, struct vmw_dma_buffer, base);
1242 if (mem->mem_type != VMW_PL_MOB) {
1243 struct vmw_resource *res, *n;
1244 struct ttm_validate_buffer val_buf;
1246 val_buf.bo = bo;
1247 val_buf.shared = false;
1249 list_for_each_entry_safe(res, n, &dma_buf->res_list, mob_head) {
1251 if (unlikely(res->func->unbind == NULL))
1252 continue;
1254 (void) res->func->unbind(res, true, &val_buf);
1255 res->backup_dirty = true;
1256 res->res_dirty = false;
1257 list_del_init(&res->mob_head);
1260 (void) ttm_bo_wait(bo, false, false);
1267 * vmw_query_readback_all - Read back cached query states
1269 * @dx_query_mob: Buffer containing the DX query MOB
1271 * Read back cached states from the device if they exist. This function
1272 * assumings binding_mutex is held.
1274 int vmw_query_readback_all(struct vmw_dma_buffer *dx_query_mob)
1276 struct vmw_resource *dx_query_ctx;
1277 struct vmw_private *dev_priv;
1278 struct {
1279 SVGA3dCmdHeader header;
1280 SVGA3dCmdDXReadbackAllQuery body;
1281 } *cmd;
1284 /* No query bound, so do nothing */
1285 if (!dx_query_mob || !dx_query_mob->dx_query_ctx)
1286 return 0;
1288 dx_query_ctx = dx_query_mob->dx_query_ctx;
1289 dev_priv = dx_query_ctx->dev_priv;
1291 cmd = vmw_fifo_reserve_dx(dev_priv, sizeof(*cmd), dx_query_ctx->id);
1292 if (unlikely(cmd == NULL)) {
1293 DRM_ERROR("Failed reserving FIFO space for "
1294 "query MOB read back.\n");
1295 return -ENOMEM;
1298 cmd->header.id = SVGA_3D_CMD_DX_READBACK_ALL_QUERY;
1299 cmd->header.size = sizeof(cmd->body);
1300 cmd->body.cid = dx_query_ctx->id;
1302 vmw_fifo_commit(dev_priv, sizeof(*cmd));
1304 /* Triggers a rebind the next time affected context is bound */
1305 dx_query_mob->dx_query_ctx = NULL;
1307 return 0;
1313 * vmw_query_move_notify - Read back cached query states
1315 * @bo: The TTM buffer object about to move.
1316 * @mem: The memory region @bo is moving to.
1318 * Called before the query MOB is swapped out to read back cached query
1319 * states from the device.
1321 void vmw_query_move_notify(struct ttm_buffer_object *bo,
1322 struct ttm_mem_reg *mem)
1324 struct vmw_dma_buffer *dx_query_mob;
1325 struct ttm_bo_device *bdev = bo->bdev;
1326 struct vmw_private *dev_priv;
1329 dev_priv = container_of(bdev, struct vmw_private, bdev);
1331 mutex_lock(&dev_priv->binding_mutex);
1333 dx_query_mob = container_of(bo, struct vmw_dma_buffer, base);
1334 if (mem == NULL || !dx_query_mob || !dx_query_mob->dx_query_ctx) {
1335 mutex_unlock(&dev_priv->binding_mutex);
1336 return;
1339 /* If BO is being moved from MOB to system memory */
1340 if (mem->mem_type == TTM_PL_SYSTEM && bo->mem.mem_type == VMW_PL_MOB) {
1341 struct vmw_fence_obj *fence;
1343 (void) vmw_query_readback_all(dx_query_mob);
1344 mutex_unlock(&dev_priv->binding_mutex);
1346 /* Create a fence and attach the BO to it */
1347 (void) vmw_execbuf_fence_commands(NULL, dev_priv, &fence, NULL);
1348 vmw_fence_single_bo(bo, fence);
1350 if (fence != NULL)
1351 vmw_fence_obj_unreference(&fence);
1353 (void) ttm_bo_wait(bo, false, false);
1354 } else
1355 mutex_unlock(&dev_priv->binding_mutex);
1360 * vmw_resource_needs_backup - Return whether a resource needs a backup buffer.
1362 * @res: The resource being queried.
1364 bool vmw_resource_needs_backup(const struct vmw_resource *res)
1366 return res->func->needs_backup;
1370 * vmw_resource_evict_type - Evict all resources of a specific type
1372 * @dev_priv: Pointer to a device private struct
1373 * @type: The resource type to evict
1375 * To avoid thrashing starvation or as part of the hibernation sequence,
1376 * try to evict all evictable resources of a specific type.
1378 static void vmw_resource_evict_type(struct vmw_private *dev_priv,
1379 enum vmw_res_type type)
1381 struct list_head *lru_list = &dev_priv->res_lru[type];
1382 struct vmw_resource *evict_res;
1383 unsigned err_count = 0;
1384 int ret;
1386 do {
1387 write_lock(&dev_priv->resource_lock);
1389 if (list_empty(lru_list))
1390 goto out_unlock;
1392 evict_res = vmw_resource_reference(
1393 list_first_entry(lru_list, struct vmw_resource,
1394 lru_head));
1395 list_del_init(&evict_res->lru_head);
1396 write_unlock(&dev_priv->resource_lock);
1398 ret = vmw_resource_do_evict(evict_res, false);
1399 if (unlikely(ret != 0)) {
1400 write_lock(&dev_priv->resource_lock);
1401 list_add_tail(&evict_res->lru_head, lru_list);
1402 write_unlock(&dev_priv->resource_lock);
1403 if (++err_count > VMW_RES_EVICT_ERR_COUNT) {
1404 vmw_resource_unreference(&evict_res);
1405 return;
1409 vmw_resource_unreference(&evict_res);
1410 } while (1);
1412 out_unlock:
1413 write_unlock(&dev_priv->resource_lock);
1417 * vmw_resource_evict_all - Evict all evictable resources
1419 * @dev_priv: Pointer to a device private struct
1421 * To avoid thrashing starvation or as part of the hibernation sequence,
1422 * evict all evictable resources. In particular this means that all
1423 * guest-backed resources that are registered with the device are
1424 * evicted and the OTable becomes clean.
1426 void vmw_resource_evict_all(struct vmw_private *dev_priv)
1428 enum vmw_res_type type;
1430 mutex_lock(&dev_priv->cmdbuf_mutex);
1432 for (type = 0; type < vmw_res_max; ++type)
1433 vmw_resource_evict_type(dev_priv, type);
1435 mutex_unlock(&dev_priv->cmdbuf_mutex);
1439 * vmw_resource_pin - Add a pin reference on a resource
1441 * @res: The resource to add a pin reference on
1443 * This function adds a pin reference, and if needed validates the resource.
1444 * Having a pin reference means that the resource can never be evicted, and
1445 * its id will never change as long as there is a pin reference.
1446 * This function returns 0 on success and a negative error code on failure.
1448 int vmw_resource_pin(struct vmw_resource *res, bool interruptible)
1450 struct ttm_operation_ctx ctx = { interruptible, false };
1451 struct vmw_private *dev_priv = res->dev_priv;
1452 int ret;
1454 ttm_write_lock(&dev_priv->reservation_sem, interruptible);
1455 mutex_lock(&dev_priv->cmdbuf_mutex);
1456 ret = vmw_resource_reserve(res, interruptible, false);
1457 if (ret)
1458 goto out_no_reserve;
1460 if (res->pin_count == 0) {
1461 struct vmw_dma_buffer *vbo = NULL;
1463 if (res->backup) {
1464 vbo = res->backup;
1466 ttm_bo_reserve(&vbo->base, interruptible, false, NULL);
1467 if (!vbo->pin_count) {
1468 ret = ttm_bo_validate
1469 (&vbo->base,
1470 res->func->backup_placement,
1471 &ctx);
1472 if (ret) {
1473 ttm_bo_unreserve(&vbo->base);
1474 goto out_no_validate;
1478 /* Do we really need to pin the MOB as well? */
1479 vmw_bo_pin_reserved(vbo, true);
1481 ret = vmw_resource_validate(res);
1482 if (vbo)
1483 ttm_bo_unreserve(&vbo->base);
1484 if (ret)
1485 goto out_no_validate;
1487 res->pin_count++;
1489 out_no_validate:
1490 vmw_resource_unreserve(res, false, NULL, 0UL);
1491 out_no_reserve:
1492 mutex_unlock(&dev_priv->cmdbuf_mutex);
1493 ttm_write_unlock(&dev_priv->reservation_sem);
1495 return ret;
1499 * vmw_resource_unpin - Remove a pin reference from a resource
1501 * @res: The resource to remove a pin reference from
1503 * Having a pin reference means that the resource can never be evicted, and
1504 * its id will never change as long as there is a pin reference.
1506 void vmw_resource_unpin(struct vmw_resource *res)
1508 struct vmw_private *dev_priv = res->dev_priv;
1509 int ret;
1511 (void) ttm_read_lock(&dev_priv->reservation_sem, false);
1512 mutex_lock(&dev_priv->cmdbuf_mutex);
1514 ret = vmw_resource_reserve(res, false, true);
1515 WARN_ON(ret);
1517 WARN_ON(res->pin_count == 0);
1518 if (--res->pin_count == 0 && res->backup) {
1519 struct vmw_dma_buffer *vbo = res->backup;
1521 (void) ttm_bo_reserve(&vbo->base, false, false, NULL);
1522 vmw_bo_pin_reserved(vbo, false);
1523 ttm_bo_unreserve(&vbo->base);
1526 vmw_resource_unreserve(res, false, NULL, 0UL);
1528 mutex_unlock(&dev_priv->cmdbuf_mutex);
1529 ttm_read_unlock(&dev_priv->reservation_sem);
1533 * vmw_res_type - Return the resource type
1535 * @res: Pointer to the resource
1537 enum vmw_res_type vmw_res_type(const struct vmw_resource *res)
1539 return res->func->res_type;